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Connectivity of Heterogeneous Wireless Networks
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Abstract

We address the connectivity of large-scale ad hoc hetesmyerwireless networks, where secondary
users exploit channels temporarily unused by primary usedsthe existence of a communication link
between two secondary users depends on not only the didteteen them but also the transmitting
and receiving activities of nearby primary users. We inficalthe concept afonnectivity regiordefined
as the set of density pairs — the density of secondary usetsrendensity of primary transmitters
— under which the secondary network is connected. Usingribe@nd techniques from continuum
percolation, we analytically characterize the connetgtivégion of the secondary network and reveal
the tradeoff between proximity (the number of neighbors) tire occurrence of spectrum opportunities.
Specifically, we establish three basic properties of theneotivity region — contiguity, monotonicity of
the boundary, and uniqueness of the infinite connected coemgpwhere the uniqueness implies the
occurrence of a phase transition phenomenon in terms oflthesa sure existence of either zero or
one infinite connected component; we identify and analyze dvitical densities which jointly specify
the profile as well as an outer bound on the connectivity regice study the impacts of secondary
users’ transmission power on the connectivity region amedctimditional average degree of a secondary
user, and demonstrate that matching the interference sasfge primary and the secondary networks
maximizes the tolerance of the secondary network to theairtraffic load. Furthermore, we establish
a necessary condition and a sufficient condition for conviggtwhich lead to an outer bound and an

inner bound on the connectivity region.
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I. INTRODUCTION

The communication infrastructure is becoming increasingterogeneous, with a dynamic
composition of interdependent, interactive, and hieraetihnetwork components with different
priorities and service requirements. One example is theniteg radio technology!|[1] for
opportunistic spectrum access which adopts a hierarclitatture for resource sharing [2].
Specifically, a secondary network is overlaid with a primastwork, where secondary users
identify and exploit temporarily and locally unused chdsnwithout causing unacceptable

interference to primary users [2].

A. Connectivity and Connectivity Region

While the connectivity of homogeneous ad hoc networks &tingj of peer users has been
well studied (see, for example. | [3, 4,5, 6, 7, 8, 9, 10])ldiis known about the connectivity
of heterogeneous networks. The problem is fundamentafferdnt from its counterpart in
homogeneous networks. In particular, the connectivityhef low-priority network component
depends on the characteristics (traffic pattern/load,lbgyp interference tolerance, etc.) of the
high-priority component, thus creating a much more divensé complex design space.

Using theories and techniques from continuum percolatias,analytically characterize the
connectivity of the secondary network in a large-scale ad eterogeneous network. Specifi-
cally, we consider a Poisson distributed secondary netwweklaid with a Poisson distributed
primary network in an infinite two-dimensional Euclidearas@. We definenetwork connectivity
as the existence of an infinite connected component almoslys{a.s.),i.e., the occurrence of
percolation. We say that the secondary network is stronghnected when it containsumique
infinite connected component a.s.

Due to the hierarchical structure of spectrum sharing, ancomcation link exists between
two secondary users if the following two conditions hold:1jGhey are within each other’s
transmission range; (C2) they see a spectrum opportuntgrdeed by the transmitting and

receiving activities of nearby primary users (see §ec.IJ-Bhus, given the transmission power

1This infinite network model is equivalent in distribution tiee limit of a sequence of finite networks with a fixed density
as the area of the network increases to infiriisy,, the so-callecextended networfl1]. It follows from the arguments similar
to the ones used in [12, Chapter 3] for homogeneous ad hownetwhat this infinite ad hoc heterogeneous network model

represents the limiting behavior of large-scale networks.
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and the interference tolerance of both the primary and therskary users, the connectivity of
the secondary network depends on the density of secondarg (due to (C1)) and the traffic
load of primary users (due to (C2)).

We thus introduce the concept obnnectivity regionC, defined as the set of density pairs
(As, Apr) under which the secondary network is connected, wherdenotes the density of the
secondary users and-r the density of primary transmitters (representing thditdbad of the
primary users). As illustrated in Figl 1, a secondary nekwuith a density pai\s, Apr) inside
this region is connected: the secondary network has a goemected component which includes
infinite secondary users. The existence of the giant coedembmponent enables bidirectional
communications between distant secondary users via ropltielaying. On the other hand, a
secondary network with a density péks, \pr) outside this region is not connected: the network
is separated into an infinite numberfofite connected components. Consequently, any secondary

user can only communicate with users within a limited range.

)\PT

Fig. 1. The connectivity regio@ (the upper boundarys(As) is defined as the supremum density of the primary transrsitter
to ensure connectivity with ixeddensity of the secondary users; the critical densigyof the secondary users is defined as the

infimum density of the secondary users to ensure connectivitler apositive density of the primary transmitters; the critical

density A%, of the primary transmitters the supremum density of the @rjntransmitters to ensure connectivity witHiaite

density of the secondary users).

The objective of this paper is to establish analytical ctigrizations of the connectivity region

and to study the impact of system design parameters (ircp&tj the transmission power of the
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secondary users) on the network connectivity. Main resaiéssummarized in the subsequent

two subsections.

B. Analytical Characterizations of the Connectivity Regio

We first establish three basic properties of the connegtiggion: contiguity, monotonicity
of the boundary, and uniqueness of the infinite connectedpooent. Specifically, based on a
coupling argument, we show that the connectivity region oatiguous area bounded below
by the As-axis and bounded above by a monotonically increasing fomct,.-(\s) (see Fig[lL),

where the upper boundary;(\s) is defined as
Apr(As) 2 sup{Apr : G(Ag, A\pr) IS connected,

with G(\s, Apr) denoting the secondary network of density overlaid with a primary network
specified by the densitypr of the primary transmitters. The uniqueness of the infinilenected
component is established based on the ergodic theory atairceombinatorial results. It shows
that once the secondary network is connected, it is stroognected.

Second, we identify and analyze two critical parametershefdonnectivity regionAt and
Nor. They jointly specify the profile as well as an outer bound ba tonnectivity region.
Referred to as the critical density of the secondary usgfsis the infimum density of the

secondary users to ensure connectivity under a positiveityesf the primary transmitters:
Xgé inf{\s : IApr > 0 s.t. G(As, Apr) IS connectesl.

We show that\y equals the critical density. of a homogeneouad hoc networki(e., in the
absence of primary users), which has been well studied T18% result shows that the “takeoff”
point in the connectivity region is completely determingctibe effect of proximity—the number
of neighbors (nodes within the transmission range of a stagnuser).

Referred to as the critical density of the primary transen#tt\% . is the supremum density
of the primary transmitters to ensure the connectivity & gecondary network with a finite

density of the secondary users:

A*PTé sup{Apr : IAg < 00 S.t. G(Ag, Apr) IS connectedl

We obtain an upper bound ok}, which is shown to be achievable in simulations. More

importantly, this result shows that when the density of thenpry transmitters is higher than
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the (finite) value given by this upper bound, the secondatwark cannot be connected no matter
how dense it is. This parametat,,. thus characterizes the impact of opportunity occurrence on
the connectivity of the secondary network: when the derddithe primary transmitters is beyond

a certain level, there are simply not enough spectrum oppiies for any secondary network
to be connected.

Since a precise characterization of the upper boundaryf\s) of the connectivity region is
intractable, we establish a necessary and a sufficient tondor connectivity to provide an
outer and an inner bound on the connectivity region. Thesszog condition is expressed in the
form of the conditional average degree of a secondary usdrisaderived by the construction of
a branching process. The sufficient condition is obtainedhleydiscretization of the continuum

percolation model into a dependent site percolation model.
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Fig. 2. Simulated connectivity regions for two differenarismission powersp{, denotes the transmission power of the

secondary users, and the lange is 3* times the smalp,,, wherea is the path-loss exponent).

C. Impact of Transmission Power on Connectivity: Proximisy Opportunity

The study on the impact of the secondary users’ transmigstover on the network con-

nectivity reveals an interesting tradeoff between progmnand opportunity in the design of
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heterogeneous networks. As illustrated in Hig. 2, we shoat thcreasingp,, enlarges the
connectivity regionC in the \s-axis (.e., better proximity leads to a smaller “takeoff” point),
but at the price of reducing in the \pr-axis. Specifically, with a large,., few secondary
users experience spectrum opportunities due to their iatgeference range with respect to the
primary users. This leads to a poor tolerance to the primaffid load parameterized bypr.

The transmission powey,, of the secondary network should thus be chosen according to
the operating point of the heterogeneous network given bydénsity of the secondary users
and the traffic load of the co-existing primary users. Using tolerance to the primary traffic
load as the performance measure, we show that the inteckerange-; of the secondary users

should be equal to the interference rargeof the primary users in order to maximize the upper

bound on the critical density},, of the primary transmitters. Given the interference tales
of the primary and secondary users, we can then design tlhmalgtansmission powep,, of

the secondary users based on that of the primary users.

D. Related Work

To our best knowledge, the connectivity of large-scale ad heterogeneous networks has
not been characterized analytically or experimentallyha literature. There are a number of
classic results on the connectivity of homogeneous ad hbwonks. For example, it has been
shown that to ensure eithérconnectivity (there exists a path between any pair of np[fe%]
or k-connectivity (there exist at leagtnode-disjoint paths between any pair of nodes) [8], the
average number of neighbors of each node must increase hathedtwork size. On the other
hand, to maintain a weaker connectivity — p-connectivitg.(the probability that any pair of
nodes is connected is at leagt the average number of neighbors is only required to beabov
a certain ‘magic number’ which does not depend on the netwi [7].

The theory of continuum percolation has been used by Doeksé in analyzing the con-
nectivity of a homogeneous ad hoc network under the worst castual interference [3, 4].
In [9, 110], the connectivity and the transmission delay inoanbgeneous ad hoc network with
statically or dynamically on-off links are investigatearin a percolation-based perspective.

The optimal power control in heterogeneous networks has bteelied in|[14], which focuses
on a single pair of secondary users in a Poisson network ofguyi users. The impacts of sec-

ondary users’ transmission power on the occurrence of spaaipportunities and the reliability
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of opportunity detection are analytically characterized.

E. Organization and Notations

The rest of this paper is organized as follows. Sec. Il prsséme Poisson model of the
heterogeneous network. In particular, the conditions lier éxistence a communication link in
the secondary network is specified based on a rigorous defirof spectrum opportunity. In
Sec![1ll, we introduce the concept of connectivity region astablish its three basic properties.
The two critical densities are analyzed, followed by a neagsand a sufficient condition for
connectivity. In Sec[_ 1V, we demonstrate the tradeoff bemv@roximity and opportunity by
studying the impacts of the secondary users’ transmissisrepon the connectivity region and
on the conditional degree of a secondary user. The optimastnission power of the secondary
users is obtained under the performance measure of the dagonetwork’s tolerance to the
primary traffic load. Sec V contains the detailed proofs efriain results, and Sedc.IVI concludes
the paper.

Throughout the paper, we use capital letters for parametdhe primary users and lowercase

letters for the secondary users.

I[I. NETWORK MODEL

We consider a Poisson distributed secondary network adevidh a Poisson distributed
primary network in an infinite two-dimensional Euclidearasp. The models of the primary and

secondary networks are specified in the following two sutises.

A. The Primary Network

The primary transmitters are distributed according to adivoensional Poisson point process
with density A\py. To each primary transmitter, its receiver is uniformly tdizited within
its transmission rangé?,. Here we have assumed that all primary transmitters use &ime s
transmission power and the transmitted signals undergcs@tnopic path loss. Based on the
displacement theorem [15, Chapter 5], it is easy to see beaptimary receivers form a two-
dimensional Poisson point process with dengity.. Note that the two Poisson processes formed

by the primary transmitters and receivers are correlated.
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B. The Secondary Network

The secondary users are distributed according to a twordiroeal Poisson point process
with density \g, independent of the Poisson processes of the primary titessrand receivers.
The transmission range of the secondary users is denotegl by

1) Communication Linksin contrast to the case in a homogeneous network, the egesten
a communication link between two secondary users depend®baonly the distance between
them but also the availability of the communication chanfel., the presence of a spectrum
opportunity). The latter is determined by the transmittamgl receiving activities in the primary
network as described below.

As illustrated in Fig[B, there exists an opportunity fromthe secondary transmitter, 8, the
secondary receiver, if the transmission frohrdoes not interfere with nearlgyrimary receivers
in the solid circle, and the reception Btis not affected by nearbgrimary transmittersn the
dashed circle/ [16]. Referred to as the interference rangthefecondary users, the radiys
of the solid circle atA depends on the transmission powerAfand the interference tolerance
of the primary receivers, whereas the raditis of the dashed circle (the interference range of
the primary users) depends on the transmission power ofrihagy users and the interference

tolerance ofB.

---
- -

~ 4

SeeaaenT Primary Rx

4
.*° W Primary Tx

Fig. 3. Definition of spectrum opportunity.

It is clear from the above discussion that spectrum opparesndepend on both transmitting
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and receiving activities of the primary users. Furthermspectrum opportunities aesymmetric
Specifically, a channel that is an opportunity whéns the transmitter and the receiver may
not be an opportunity whe is the transmitter andd the receiver. In other words, there
exist unidirectional communication links in the secondagtwork. Since unidirectional links
are difficult to utilize in wireless networks [17], we only rsider bidirectional links in the
secondary network when we define connectivity. As a consesgjevhen we determine whether
there exists a communication link between two secondargsuse need to check the existence
of spectrum opportunities in both directions.

To summarize, under the disk signal propagation and imemt® model, there is a (bidirec-
tional) link betweenA and B if and only if (C1) the distance betweeA and B is at most
rp; (C2) there exists a bidirectional spectrum opportunityneen A and B, i.e., there are
no primary transmitters within distande; of either A or B and no primary receivers within
distancer; of either A or B.

2) Connectivity: We interpret the connectivity of the secondary network ia grercolation
sense: the secondary network is connected if there exisitsfiaite connected component a.s.

Based on the above conditions (C1, C2) for the existence amarwnication link, we can
obtain an undirected random gragf\s, Apr) corresponding to the secondary network, which is
determined by three Poisson point processes: the secondarg with density\g, the primary
transmitters with density\py, and the primary receivers with density (correlated to the
process of the primary transmittgsﬁee Fig[# for an illustration df(\g, Ap7).

The question we aim to answer in this paper is the connectofitthe secondary network,

i.e., the percolation inG(\s, Apr).

IIl. ANALYTICAL CHARACTERIZATIONS OF THECONNECTIVITY REGION

Given the transmission power and the interference tolerasfcboth the primary and the

secondary users.e., R,, R, r,, andr; are fixed), the connectivity of the secondary network

The two Poisson point processes of the primary transmisietisreceivers are essentially a snap shot of the realizatibthe
primary transmitters and receivers. In different time slatifferent sets of primary users become active transrsitexeivers.
Thus, even if a secondary user is isolated at one time dueetalsence of spectrum opportunities, it may experience an

opportunity at a different time and be connected to otheors#ary users.
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=

Fig. 4. A realization of the heterogeneous network. The eandraphG(As, Apr) consists of all the secondary nodes and
all the bidirectional links denoted by solid lines. The datircles with radiiR; denote the interference regions of the primary
transmitters within which secondary users can not sucaysséceive, and the dashed circles with raiidenote the required

protection regions for the primary receivers within whitie tsecondary users should refrain from transmitting.

is determined by the densitys of the secondary users and the dengity- of the primary trans-
mitters. We thus introduce the concept of connectivity sagi of a secondary network, which
is defined as the set of density pajPs;, Apr) under which the secondary netwof\s, Apr)

is connected (see Figl 1).

ce {(A\s, Apr): G(As, Apr) is connected.

A. Basic Properties of the Connectivity Region
We establish in Theorefd 1 below three basic properties otdmmectivity region.
Theorem 1: Basic Properties of the Connectivity Region.

T1.1 The connectivity regio@ is contiguous, that is, for any two pointss;, Apr1), (As2, Apr2) €
C, there exists a continuous path@nconnecting the two points.
T1.2 The lower boundary of the connectivity regignis the \g-axis. Let A\};(Ag) denote the

upper boundary of the connectivity regichi.e.,
pr(As) 2 sup{A\pr : G(Ag, Apr) iS connected,

then we have thak}.(\s) is monotonically increasing with.
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T1.3 There exists either zero or one infinite connected cor@pbinG(\s, Apr) a.s.

Proof: The proofs of T1.1 and T1.2 are based on the coupling argynzem¢chnique
frequently used in continuum percolation [[13, Section .2T2je proof of T1.3 is based on the
ergodicity of the random model driven by the three Poissomtpprocesses of the primary
transmitters, the primary receivers, and the secondarysuskee concept of ergodicity of a
random model is reviewed in Sdc. V-AS). The details of theofs@re given in Se¢. ViB. m

T1.1 and T1.2 specify the basic structure of the connegtiggion, as illustrated in Fid.] 1.
T1.3 implies the occurrence of a phase transition phenomehat is, there exists either a unique
infinite connected component a.s. or no infinite connectedpoment a.s. This uniqueness of the
infinite connected component establishes the strong ctmitgof the secondary network: once
it is connected, it is strongly connected. It excludes thdesirable possibility of having more
than one (maybe infinite) infinite connected component inst@ndary network. We point out
that such a property is not always present in wireless nésvdiwo examples where more than

one infinite connected component exists in a homogeneous@ddiwork can be found in [18].

B. Critical Densities

In this subsection, we study the critical densiky of the secondary users and the critical

density A1, of the primary transmitters. Recall that

by = inf{\s : IApr > 0 s.t. G(A\g, Apr) IS connected],
Nop 2 sup{Apr: FAg < 00 S.t. G(As, Apr) is connectedl

We have the following theorem.
Theorem 2: Critical Densities.
Given R,, Ry, rp, andr;, we have
T2.1 Xy = A.(rp), where).(r,) is the critical density for a homogeneous ad hoc network with
transmission range, (i.e., in the absence of the primary network).
T2.2 \op < W where the constant.(1) is the critical density for a homogeneous
ad hoc network with a unit transmission range.
Proof: The basic idea of the proof of T2.1 is to approximate the seéapn network

G(As, Apr) by a discrete edge-percolation model on the grid. This disgation technique is
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often used to convert a continuum percolation model to areliscsite/edge percolation model
(see, for example, [13, Chapter 3]} [4]). The details of theop are given in Sed. V-C1.

The proof of T2.2 is based on the argument that if there is init@ connected component in
the secondary network, then an infinite vacant component exist in the two Poisson Boolean
models driven by the primary transmitters and the primacgikers, respectively. The key point
is to carefully choose the radii of the two Poisson Booleardef® in order to obtain a valid
upper bound on\%.. The details of the proof can be found in Sec. V-C2. [ |

500
400
300 [

200

Fig. 5. A realization of the Poisson heterogeneous netwdrnithe percolation occurs (black stars denote primarginéters,
green plus signs denote primary receivers, red dots dematndary users, and blue segments denote the bidirectiokal
between secondary users). We have removed secondary usedowmot see opportunities for clarity. The simulation pasters
are given byhpr = 10km™2, R, = 50m, R; = 80m, As = 650km~2, r, = 50m, r; = 80m, and the critical density in this
case is)\.(50) ~ 576km~2.

Fig.[3 shows one realization of the Poisson heterogenedusriewhen )y is slightly larger
than \.(r,) and Apr is small. At least one left-to-right (L-R) crossing and aadeone top-to-
bottom (T-B) crossing can be found in the square networls thus expected that these L-R and

T-B crossings in finite square regions can form an infinitensmted component in the whole
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network onR2. If we slightly increase\pr, then we observe from Fi@] 6 that the reduction in
spectrum opportunities eliminates considerable comnatioic links in the secondary network,

creating several disjoint small components.

“ e By gl
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-200
-300

-400

-500
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Fig. 6. A realization of the Poisson heterogeneous netwohlerwthe percolation does not occur (black stars denote
primary transmitters, green plus signs denote primaryivers red dots denote secondary users, and blue segmeamtte de
the bidirectional links between secondary users). We hawsoved secondary users who do not see opportunities fdtyclar
The simulation parameters are given byr = 20km~2, R, = 50m, R; = 80m, As = 650km~2, r, = 50m, r; = 80m, and

the critical density in this case %.(50) ~ 576km~2.

Fig.[@ shows a simulation example of the connectivity regiwhere the upper bound on the

critical density\},,. of the primary transmitters given in T2.2 appears to be aelbie.

C. A Necessary Condition for Connectivity

In this subsection, we establish a necessary conditiondonectivity which is given in terms
of the average conditional degree of a secondary user. Dmiditton agrees with our intuition:

the secondary network cannot be connected if the degreeeoy eecondary user is small.
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Fig. 7. Simulated connectivity regions whep = 150m, r; = 240m, R, = 100m, and R; = 120m. The blue dashed line is
the upper bound—2c __ on the critical density\}, . of primary transmitters given in T2.2. The area of the sirreda

4max{R?,r?}77‘§
heterogeneous network 2000mx2000m. For a fixed density\s of the secondary users, the upper boundsgy (\s) is equal

to the minimum density of the primary transmitters such thagr all the1000 realizations, the percentage of the ones in which
there exists at least one L-R crossing is bel@. The intuitive reason for choosing the existence of an Lréssing as the

criterion for connectivity is illustrated in Fi][5-6.

Let I(A, d, rx/tx) denote the event that there exists primary receiversfudtess within dis-
tanced of a secondary uset. LetI(A, d, rx/tx) denote the complement 8fA, d, rx/tx). Since a
secondary user is isolated if it does not see a spectrum yytyr we focus on secondary users
who experience spectrum opportunities and define the dondltaverage degree of such a

secondary used as

1t = Eldeg(A)| (A, rr, ™) N I(A, Ry, )], 1)

wheredeg(A) denotes the degree of, r; the interference range of the secondary users, and
R; the interference range of the primary users. Notice thatdémgree ofA is the number of
secondary users within the transmission rangedaind experiencing opportunities. We arrive
at the following necessary condition for connectivity.

Theorem 3:A necessary condition for the connectivity G\g, \pr) is u > 1, wherey is

the conditional average degree of a secondary user defin@d.in
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Proof: The basic idea is to construct a branching process, wheredahéitional average
degreeu is the average number of offspring. This branching procesgigles an upper bound on
the number of secondary users in a connected componentIi, then the branching process
is finite a.s. It thus follows that there is no infinite conmeticomponent a.s. iG(Ag, Apr).
Details can be found in Selc. VD. [

To apply the necessary condition given in Theoreim 3, the itiondl average degreg
of a secondary usedA needs to be evaluated based on the network parameters3 lbet a
secondary user randomly and uniformly distributed witlie transmission range, of A. Let
g(Apr,rp, 71, Ry, Rr) denote the probability of a bidirectional opportunity betm A and B
conditioned on the event that sees an opportunity. Based on the statistical equivalende a
independence of different points in a Poisson point prodéssconditional average degreeof
a secondary used is given by this conditional probability(-) of a bidirectional opportunity
betweenA and a randomly chosen neighbor multiplied by the averagebeurof neighbors of
A, e,

w= ()\57”"5) -g()\PT77’p7TI7Rp7RI)- (2)

The detailed derivation fof2) and the expression fay(-) are given in Appendix A. It is also
shown in Appendix A thay(-) is a strictly decreasing function ofpr. Thusg=!(-), the inverse
of g(-) with respect to\pr, is well-defined.

Combining [(2) with Theorern] 3, we obtain an outer bound on tirnectivity region. Specif-
ically, let u(As, Apr) denote the conditional average degree of a secondary USENN Apr).
Then those density paifs.s, A\pr) satisfyingu(As, Apr) < 1 are outside the connectivity region.

Corollary 1: Given R,, R;, r,, andr;, an outer bound on the connectivity regiéris given

by
1
-1
Apr =9 (ASWT,%) )

whereg~!(-) is the inverse of the conditional probability-) with respect to\pr.

D. A Sufficient Condition for Connectivity

In this subsection, we establish a sufficient condition famreectivity, which provides an inner
bound on the connectivity region and a criterion for chegkivhether a secondary network is

connected.
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Os

Fig. 8. An illustration of the dependent site-percolationdal £ with side lengthd (solid dots denote sites, solid lines denote

edges connecting every two sites, and dashed lines der®sgtiared partition).

The sufficient condition for connectivity is established uiing the discretization technique.
The continuum percolation model is mapped onto a dependerpercolation modekL in the
following way. As illustrated in Figl18, we partitioi®? into (dashed) squares with side length
d and locate a site at the center of each square. Sites whaseiaded dashed squares share at
least one common point are considered connected (as dtadtby solid lines in Fid.]18). Thus
each site is connected to eight neighgc(see the eight neighbors,,...Og of site O in Fig.[8).

Let Bp be the associated dashed squar®pthenO is occupied if there exists i, at least
one secondary user who sees an opportunity.

Since the largest distance between two points in two neighdpalashed squares 5,24,

it follows that if we setd = 2% then for every pair of secondary users in two neighboring

3For the commonly used square site-percolation model, eitethas four neighbors. The site-percolation model conttrl

here can provide a better inner bound.
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dashed squares, they are within the transmission rangéeach other. Based on the definitions
of occupied site inC and communication link in the secondary network, we coreltitht the
existence of an infinite occupied component (a connectegoasnt consisting of only occupied
sites) inL implies the existence of an infinite connected componenhénsecondary network.

Due to the fact that spectrum opportunities are spatiallyeddent, the state of one site is
correlated with the states of its adjacent sites. Thus, Hwve site-percolation model is a
dependent model. Define the dependence range the minimum distance such that the state
of any two sites at distancé > k are independent, where the distance between two sites is the
minimum number of neighboring sites that must be traversenh fone site to the other. Then
the dependence range gfis given by

8max{R1+%”,7’1+%”} _

Tp

k=

1. 3)

Let p. denote the upper critical probability @f which is defined as the minimum occupied
probability p* such that if the occupied probability > p*, an infinite occupied component
containing the origin exists i with a positive probability (wpp.). Since the dependencegea
k of L is finite, it follows from Theorem 2.3.1 [12] that. < 1. Now we present the sufficient
condition for connectivity in the following theorem.

Theorem 4:Let p. denote the upper critical probability of the dependentgéecolation model

L specified above. Define

" Sl(taR 7TI)
1(7’7 RIHTI) = 2/; tﬂiR%dta (4)

where S, (t, R,, rr) is the common area of two circles with radij, andr; and centered apart.

Then the secondary network is connected if

A 2
{1 — exp <— er)} exp {—Aprm [Rf + 77 — I (Rp, Ry,r1)] } > pe.

Proof: The proof is based on the ergodicity of the heterogeneousanketmodel and
its relation with the constructed dependent site-permamodel £. Details can be found in
Sec.[V-E. |

By applying a general upper bound on the upper critical poditya p. for a site-percolation

model with finite dependence rangel[12, Theorem 2.3.1], wigeaat the following corollary.
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Corollary 2: A sufficient condition for the connectivity af (\s, Apr) is

T2
1 1 —exp <—Asé”>

l )
T [R% _|‘ T% - I(Rfa valrl)] n 1 _ (%)(2k+1)2

wherel(R;, R,, ) is defined in[(#) and is the dependence range of the site-percolation model
defined in [(B).

)\pT <

IV. I MPACT OF TRANSMISSION POWER: PROXIMITY VS. OPPORTUNITY

In this section, we study the impact of the secondary usessistnission power on the
connectivity and the conditional average degree of therstany network. As has been illustrated
in Fig.[2, there exists a tradeoff between proximity and oppoty in designing the secondary
users’ transmission power for connectivity. Specificaltgreasing the transmission power of the
secondary users leads to a smaller critical densityof the secondary users, but at the same
time, a lower tolerance to the primary traffic load manifdsy a smaller critical density:, .

of the primary transmitters.

A. Impact on the Conditional Average Degree

As discussed in Sed._IIl{C, the expression for the conditiceverage degreg can be
decomposed into the product of two ternﬁgwg andg(Apr,rp, r1, Ry, Rr). The first term is the
average number of neighbors of a secondary user, whichasesewith the transmission power
pr Of the secondary usersd., enhanced proximity). The other terg\pr, 7,71, R,, R;) is the
conditional probability of a bidirectional opportunity,lweh decreases with,, due to reduced
spectrum opportunities. This tension between proximitg apportunity is illustrated in Fid.19,
where we observe that the impactef on proximity dominates whep,, is small (» increases
with p,,) while its impact on the occurrence of opportunities dortesavhenp,, is large
decreases with,,).

Corollary 3: Let p,, be the transmission power of secondary users @artie conditional
average degree defined [d (1), then under the disk signahgatipn and interference model we

hav

W= O ((ptm>_2/a) aSPtm — o0,

“Here we use the Big O notatiorf{z) = O(g(x)) asz — oo if and only if 3 M > 0, zo > 0 such that| f(z)| < M|g(z)|

for all x > xo.
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wherea« is the path-loss exponent.
Proof: We show this corollary by deriving an upper bound on the ciorail average degree
1. Details can be found in Appendix B. [ |

For a homogeneous network, the average degree of a usetrgs which increases with,,

2/

at rate(p,,)”’“. In sharp contrast, this corollary tells us that for a hedereous network, when

pi 1S large enough, the conditional average degreef a secondary user actualtjecreases

with p, at least as fast a@,,) /.

conditional average degree p
iSS

0 Il Il Il Il
0 100 200 300 400 500 600 700 800 900
transmission range rp

Fig. 9. Conditional average degreeof secondary users vs transmission ramgeof secondary users{ o (pm)é, where
pez IS the transmission power of secondary users anid the path-loss exponent, and simulation parameters &sn diy
Apr = 2.5km™2, R, = 200m, R; = 250m, \s = 25km™2, r; = r,/0.8).

B. Impact on the Connectivity Region

From the scaling relation of the critical density [[13, Prsgion 2.11], we know that in a

homogeneous two-dimensional network,
_ _2
Ae(rp) = Ae(1) (1) ™ o (pra) "7

where the constani (1) is the critical density for a homogeneous ad hoc network aith

unit transmission range. Thus, if each secondary user adopigh transmission power, then
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A.(r,) reduces. It follows from T2.1 that the critical density of secondary users to achieve
connectivity reduces due to the enhanced proximity.
On the other hand, from the upper bound on the critical dgnsit. of the primary transmitters

given in T2.2, we have that
)\*—PT = O ((ptx)_Z/a) aspta: — 0,

where we have assumed that= j5r; for somes € (0,1) under the disk signal propagation
and interference mO(@IThus, when the transmission power, of the secondary network is
large enough, the critical density;,,. of the primary transmitters decreases with at least as

fast as(pm)‘2/a due to reduced spectrum opportunities.

C. Optimal Design of Transmission Power

Due to the tension between proximity and opportunity, thdses not exist a transmission
power of the secondary users that leads to the “largest” exivity region (largest in the sense
that its connectivity region contains all regions achidegabith any finite transmission power
pi Of the secondary users). Thus, the optimal desigp,ofdepends on the operating point of
the heterogeneous network. For instance, when a sparsedsggmetwork is overlaid with a
primary network with low traffic load, a large, may be desirable to achieve connectivity. The
opposite holds when a dense secondary network is overldid avprimary network with high
traffic load.

Focusing on a sufficiently dense secondary network, we addhe design of its transmission
power for the maximum tolerance to the primary traffic. Dugt$aractability and achievability
indicated by simulation examples (see Fiy. 7), the uppentian the critical densitp\,,. of
the primary transmitters given in T2.2 is used as the perfoice measure.

Theorem 5:Let r; and R; denote the interference range of the secondary and the prima

users, respectively. For a fixed;, the upper bound on?,,. given in T2.2 is maximized when

the primary and secondary networks have matching interéereangesr; = R;.

5Since the minimum received signal power required for siafoéseception is, in general, higher than the maximum adlole

received interference power , the transmission rangis smaller than the interference rangge i.e., 8 < 1.
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Proof: Since under the disk signal propagation and interferencéemo, = Sr; for some

B € (0,1), the upper bound on},,. can be written as

Ac(1)
N 4R?—Br2
)\PT S Ae(1)
(4=p2)r}

Then the above theorem can be readily shown by finding themaxpoint for the two cases:

for r; < Ry,

for r; > Rj.

rr < Ry andr; > Rj. ]
An example of the upper bound ox},,. is plotted as a function of; in Fig.[10. Notice that
there is a distinct difference in the slope on the two sidak@foptimal point. As a consequence,
the operating region of; < R; is preferred over that of, > R; when the optimal point; = R;
cannot be achieved. We point out that the desired operasiggpm of r; < R; is the typical

case of a secondary network coexisting with a privilegethpry network.

30

Upper Bound for A}, (per km?)

T[:R[ 7

L L L L L
50 100 150 200 250 300 350

Fig. 10. An example of the upper bound an.,. as a function of-; (Parameters are given by; = 120m, r, = 0.625r7).

V. PROOFS

In this section, we present proofs of the main results pteseim Sec[IllF[V. We start with
a brief overview of several basic results in percolation argbdic theory that will be used in
the proofs.
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A. Percolation and Ergodic Theory

1) Poisson Boolean ModePoisson Boolean model is a common model in continuum perco-
lation [13]. Often referred to aB(X, p, A\), the model is specified by two elements: a Poisson
point processX on R? with density\ and a radius random variabtewith a given distribution.
Under this model, each point i is the center of a circle ifR? with a random radius distributed
according to the distribution of. Radii associated with different points are independend, a
they are also independent of pointsih Under a Poisson Boolean model, the whole space is
partitioned into two regions: the occupied region, whiclthie region covered by at least one
ball, and the vacant region, which is the complement of tleupied region. We define occupied
(vacant) components as those connected components in ¢hpied (vacant) region.

Assume that nodes in a homogeneous ad hoc network form aoRogsEnt process with
density A and their transmission rangerislt is easy to see that the connectivity of this network
can be studied through examining the occupied connecte¢p@oents in the corresponding
Poisson Boolean modd&(X, /2, \).

2) Sharp Transition in Two Dimensiong?hase transition is a well-known phenomenon in
percolation. For the Poisson Boolean model in two dimerssitiis phenomenon appears more
remarkable in the sense that the critical density for the exsstence of infinite occupied
components is equal to that for the a.s. existence of infidigant components. Let.(2p)

denote the critical density for the Poisson Boolean maiel, p, A), then we have that

O when\ < A.(2p), there is no infinite occupied component a.s. and there isquearnnfinite
vacant component a.s.;
O when\ > A\.(2p), there is a unique infinite occupied component a.s. and fkere infinite

vacant component a.s.

The exact value oA. is not known. For a deterministic radiys simulation results [19] indicate
that \.(2p) ~ 0.36p2, while rigorous bound$.192p=2 < \.(2p) < 0.843p~2 are provided
in [13, 20].

3) Crossing Probabilities:A continuous curve in the occupied region is called an oclipi
path. An occupied path is an occupied L-R crossing of the rectanfle< = < 1} x {0 <y <
Iy} if ~ intersects with both the left and the right boundaries of rexgtangle,i.e., v N ({z =
0} x{0<y<b})#o,yN{zx=04L}x{0<y<Il})# ¢, and the segment between the two
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intersecting points is fully contained in the rectanglee(§gg.[11(a)). Similarly, we define an

occupied T-B crossing by requiring thatintersects with the top and bottom boundaries of the

rectangle (see Fig._11(b)). Let
Pr{3 an occupied L-R crossing 46, [;] x [0, 2]},

O'((ll,lg), )\, L-R) =

o((l1,13), A\, T-B) = Pr{3 an occupied T-B crossing @0, /;] x [0, 5]},
denote the two crossing probabilities in the rectarnglé | x [0, l;]. Then for a Poisson Boolean
model B(X, p, A\) in two dimensions with a.s. bounded we havel|[13, Corollary 4.1] that for

(5)

if A < \(2p).

anyk > 1,
{1 it A > A(20);

lim o((kn,n), A, L-R) =
0,

n—oo

Due to the symmetry of the Poisson Boolean model, similanltesold for the T-B crossing

probability o ((n, kn), A, T-B).

\

Y
d Iy
" @) !
. g .
[
" (b) - !

Fig. 11. An illustration of the L-R crossing (a) and the T-Byssing (b) in a rectanglg0 < z <1} x {0 < y < I2}.
4) Dependent Edge-Percolation Moddlet £ be a square lattice oR? with side lengthd

(see Fig[IR). In an edge-percolation model, every sit€ iis occupied but every edge if

exists with some probability. An existing edge is often referred to as an open edge, and an
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edge that is not open is called closed. When the states @psed) of edges are correlated, we

have a dependent edge percolation model.

R R e iy e iy ®------- --
| | | Lt
— i . i . i ° i >
1 | d | |
d : 2 L
2 0 A R A Op ©----mo1 -
d | | |
| | b2 |
—@ } L } L } @ } o
L e I S S
| | o | |
—@ 1 4 1 4 1 L 4 1 o —

Fig. 12. Part of the lattice together with its dualC* (solid dots and solid segments are sites and edged and hollow

dots and dashed segments are sites and edge$)inThe dual latticeC™ is the (£, £)-shifted version ofz, which is used in

the proof of T2.1. Since distinct edges dhare crossed by distinct edges A and vice versa, there is a one-to-one mapping
from the edges of to the edges o ™. In this case, we claim an edge Zi" being open if and only if its corresponding edge

(i.e., the edge that it crosses) ifi is open.

Consider a special case of dependent edge-percolationlnfodéere the state of an edge
e is only correlated with its six adjacent edges (edges thatesa common point witk). We
have the following known result.

Fact 1: [4, Proposition 1]

For any collection{e;} , of n distinct edges inC, we have

w3

P{(C; =0)Nn(Co=0)N---N(C,,=0)} <gq

whereC; is the indicator ofe; being open,, and = 1 — p is the probability of an edge being
closed.

5) Ergodic Theory: The study object of ergodic theory is the so-called meapueserving
(m.p.) dynamical systerft2, &, u, T'), which consists of a sé?, a o-algebraF of measurable

subsets of?, a nonnegative measupeon (2, F), and an invertible m.p. transformati@h: Q —
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Q such thatu(T'F) = u(F) forall I € F. A setF' € J is said to be T-invariant it ' F = F.
Obviously, all T-invariant sets ifF form a o-algebra.

An m.p. dynamical systerft), &, u, T') is said to be ergodic if the-algebra of T-invariant
sets is trivial,i.e., for any invariant set, either it has measure zero or its cempht has measure
zero. Another property of the m.p. dynamical system thatliespergodicity is called mixing:
an m.p. dynamical systertf), ¥, p, 7T) is said to be mixing if for allE, F € F, u(T"E N
F)— uw(E)u(F) — 0 asn — oo. For a m.p. dynamical system which is a product of two m.p.
dynamical systems, we have the following classical resu#érgodic theory.

Fact 2: [22, Theorem 2.6.1]

The product system of a mixing m.p. dynamical system and godéz m.p. dynamic system is
ergodic, that is, for a mixind<2, ¥, u, 7') and an ergodi¢V, £, v, S), the product system
(Qx ¥, FxL, uxv, TxS)is ergodic, wheref x L is theos-algebra on2 x ¥ generated
by subsets of the fornt" x L (F € F,L € £) andp x v is the corresponding product measure.

The concepts of ergodicity and mixing can also be defined foaralom model under a
probability space2, F, i), where the m.p. transformatidfi is replaced by a transformation
group{S, : = € R% or Z%} indexed byR? or Z%. For a point process model, the transformation
S, is usually to shift the realizatiow € 2 by z. A random model under a probability space
(Q,F,u) is said to be ergodic if there exists a transformation grédp : = € R? or Z4}
that acts ergodically o, 7, ). A transformation group{S, : = € R or Z?} is said to
act ergodically if thes-algebra of events invariant under the whole group is trivia., any
invariant event has measure either zero or one. Moreovem@m model under a probability
space(Q), 7, ) is said to be mixing if there exists a transformation grd#p : = € R? or Z4}
such that for allE, F' € &, we haveu(S,E N F) — u(E)u(F) — 0 as|z| — oo. One direct
consequence of an ergodic random model is presented as.below

Fact 3: For an ergodic random modé&l, F, ), if an eventE € F invariant under the whole

transformation groudS, : = € R? or Z} occurs wpp.j.e., u(E) > 0, then it occurs a.si,e.,
n(E) = 1.

B. Proof of Theorem 1

1) Proof of T1.1:To prove T1.1, it suffices to show that for any two given poipits;, Apr1)
and (As2, Apr2) in C, we can find a path i€ that connects these two points. In particular, the
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path we constructed is given by a horizontal segment andtaiesegment as shown in Fig.]13,

where we assume, without loss of generality, that < Ags.

ApT ApT
()\5'27 APT?) ()\517 >\PT1) (>\52a )\PTl)
® @------------------ .
L 0 °
()\Sla )\PTI) ()\527 )\PTI) (ASQa )\PTQ)
(@) Apr1 < Apre Ag (0) Apr1 > Apro \g

Fig. 13. The continuous path connecting the two po{iXs:, Ap7r1) and (Asz, Apr2) in the connectivity regiorC.

Consider case (a) in Fig. 13 wherer; < Apry. Case (b) can be proven similarly. First
we show every pointis, Apr1) (As1 < As < Ago) On the horizontal segment belongs do
Let M = Ag — Ag1. A Poisson point procesX with density \g is statistically equivalent to
the superposition of a Poisson point procésswith density A\s; and an independent Poisson
point processX’ with density \'. It follows that any realization of the heterogeneous nekwo
with densitieshs and A\pr; can be generated by adding more secondary nodes to a nealizat
of the heterogeneous network with densitles and Apr;. Thus, the existence of an infinite
connected component (\s1, Apr1) implies the existence of an infinite connected component
in G(As, Apr1). We thus have thaths, A\pr1) € C for (Ag; < Ag < Aga).

Now we know that the two end pointS\s2, Apr1) and (Asq, Apr2) Of the vertical segment
belong toC. For a point(As2, Apr) (Apr1 < Apr < Apr2) On the vertical segment, let =
Apr2 — Apr, then any realization of the heterogeneous network withsidies \s; and Apr can
be obtained by independently removing each primary tratenreceiver pair with probability
X /Apre from a realization of the heterogeneous network with dessits, and Apr». It follows
from the definition of communication link in the secondarywark (see Sed. [I-B1) that the
existence of an infinite connected componengins., Apr2) implies the existence of an infinite
connected component (s, Apr). Thus, we havé\gs, Apr) € C (Apr1 < Apr < Apra).

2) Proof of Theorem 1.2Suppose that\s, A\pr) € C (Apr > 0), then by using the coupling
argument for showing that the vertical segment belong€ io the above proof of T1.1, we

conclude that\g,0) € C, i.e., the \g-axis is the lower boundary af.
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Suppose thaksy > Ag; > 0. In order to prove the monotonicity of,,(\s) with Ag it suffices
to show thatV Apr > 0, if (As1, Apr) € C then(A\s2, Apr) € C. This is a direct consequence of
the coupling argument for showing that the horizontal sagrbelongs taC in the above proof
of T1.1.

3) Proof of Theorem 1.3We first establish the ergodicity of the heterogeneous ndtwo
model.

Lemma 1:The heterogeneous network model is ergodic.

Proof of Lemmall: The proof of this lemma is inspired by the proof of the ergagiof
Poisson Boolean model [13, Proposition 2.8]. The difficiigre is that for the heterogeneous
network model, we have two correlated Poisson point pr@sedbe primary transmitters and
the primary receivers. The definition of the shift transfation for the primary network model
is thus more complicated than the standard Poisson Boolealelmvith a deterministic radius
p. To prove Lemmall, we first show the ergodicity of the primaggwork model, and then we
show the mixing property of the secondary network modelc&ithe primary network model
is independent of the secondary network model, it follovesrfrFact 2 that the heterogeneous
network model is ergodic.

Let B¢ denote the Boreb-algebra inR?, and N the set of all simple counting meaSLHem

B4, Construct as-algebraN for N generated by sets of the form
{n € N: n(A) =k},

where A € B¢ and k is an integer. A point proces¥ can now be defined as a measurable
mapping from a probability spag&€), F, P) into (N, N) [21, Chapter 7]. The measuyeon
N induced byX is defined as/(G) = P(X~}(G)), for all G € N.

In order to define the shift transformation éh it is convenient to identify($2, F) with
(N, N). Let w(A) denote the number of points i € B¢, V w € Q, and T, be the shift
according to a vector € R?. ThenT, induces a shift transformatia$i, : Q — Q through the

equation for everyd ¢ B¢,

(Sow)(A) = w(T; 1 A). (6)

A simple counting measure di? is an integer-valued measure for which the measures of oliBdrel sets are all finite

and the measure of a point is at most 1.
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Let (Qpr, Fpr, Ppr) be the probability space of the Poisson point proc&ss for the
primary transmitters with densitypr. Let Qpr be the product spack], [ 1.cz2 Cr, for the
primary receivers, wher€'y, = {(z,y) : 2*>+y* < R,}. Then we equiff2pr with the usual
producto-algebra and product measufer with all marginal probability measure being;,
where.;; is a uniform probability measure afiz,. Finally, we set2p = Qpr x Qpr and equip
Qp with the product measur®» = Ppr x Ppr and the usual product-algebra. It follows
that the primary network model is a measurable mapping ffigninto Npr x Qpr defined by
(wpr, wpr) = (Xpr(wer), wpr), WhereNpr is specified in the definition of the point process.

The positions of the primary transmitters correspondindupr, wpr) € Qpr x Qpg are
easily known fromwpr. For the primary receivers, the positions are obtained l&sAafe. Consider

binary cubes

2
K(n,z) = H(ZZQ_”, (z;+1)27"] foralln € Nandz € Z*

=1
For each primary transmitterpr, there exists a unique smallest integgr= ny(xp7r) such that
it is contained in a binary cub& (ng, z(ng, zpr)) Which contains no other primary transmitters.
The relative position of pr's receiver with respect topr is then given byvpg(ng, z(ng, xpr)).
Let e, e; denote the unit vectors iR?, then the translatiofi,, : R? — R? (: = 1,2) defined

by © — x + e; induces a shift transformatioti,, on Q255 through the equation
(Ue,wpr)(n, 2) = wpgr(n, z — 2"¢;), fori=1,2.
HenceT,, also induces a shift transformatidbi on Qp = Qpr x Qpr as follows:
T..(wp) = (Se,wpr, U wpg), fori=1,2,

where S,, is defined in[(6). By using techniques similar to the proof afoRan models| [13,
Proposition 2.8], we have that the m.p. dynamical syst@m, Fp, Pp, Tel) is ergodic.

Since the transmission range of secondary users is fixed, the probability space of the
secondary network model is the probability spafe, Fs, Ps) for the Poisson point process
X of secondary users with densiky. It follows from the proof of Poisson point processes [13,
Proposition 2.6] that the m.p. dynamical systéy, Fs, Ps, Se,) IS mixing.

Since the primary network model is independent of the seagndetwork model, the sample

space of the heterogeneous network mdeelan be written as the product 0f> and(g, i.e.,
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Q = Qp xNQg. We equip2 with product measur® = Pp x Ps and the usual produet-algebra.
Similarly, the translatiorY,, (i = 1, 2) induces a transformatioﬁei on Q = QOp x Qg, which is

given by
Tei (W) = (Tein7 Seiws>'

Then it follows from FactR that the product m.p. dynamicateyn(Q2, &, P, Tel) is ergodic.
Since thes-algebra invariant under the transformation grc{lfp . z € Z*} is a subset of the-
algebra invariant under the transformatifin, we conclude thaf7, : z € Z?} acts ergodically,
i.e., the heterogeneous network model is ergodic. [ ]
Based on Lemmal 1, we have the following lemma.
Lemma 2: The number of infinite connected componengjif\s, A\pr) is a constant a.s., and
it can only take value fror{0, 1, co}.

Proof of Lemmal2: Let K denote the (random) number of infinite connected components
in G(As, Apr), then since for alk > 0, the evenf{ K’ = k} is invariant under the group of shift
transformations, it follows from Lemnid 1 and Fatt 3 that thengé occurs with probability or
1. Consequently, we have thaf is an a.s. constant. Then it suffices to exclude the podgibili
of K > 2. This is shown by contradiction, that is, if there exist > 2 infinite connected
components, then they can be linked together as one connescteponent wpp. The proof is
inspired by the proof of Proposition 3.3 in_[13], and a majdfedence is that here we need to
consider the impact of the primary network on the conndgtigf the secondary network.

Suppose that there arE > 2 infinite connected components a.s. If we remove all the
secondary nodes centered inside a W®dx= [—n,n]?, then the resulting secondary network
should contain at leask unbounded components a.s. Let, f6rC R?, G[A] denote the graph

formed by secondary nodes i Given a boxB ande > 0, consider the event
E(B,¢€) :={d(U, B) < r, — e for any infinite connected componefitin G[B|} .

Partition the boxB into squares with side lengthh > 0 and letS, = {Si,..., Sy} denote
the collection of all the squares which are adjacent to thenary of B. Clearly, for a boxB
ande > 0, we can finda = a(B,e¢) € (0,7,/v/5) andn = n(a) > 0 such that for any point
x ¢ B with d(z,B) < r, — ¢/2, there exists a squaré = S(z) € S, for which we have
sup,es d(7,y) < r, —n. This means that, if we center in each squareSpfa secondary node
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and there are neither primary transmitters nor primaryivecg within a bigger box3 = [—n —
max{r;, R}, n+max{r;, R;}|?, then every infinite component in G[B] with d(U, B) < r,—¢
is connected to some secondary nodeSin

Let E(a,n) be the event that each squaredp contains at least one secondary node and
E(B) the event that there are neither primary transmitters niangry receivers within3. Since
E(a,n) depends on the configuration of secondary nodes inside thébd’ (B, ¢) depends on
the configuration of secondary nodes outsiSlend the configuration of primary nodes, based

on the independence of the primary network and the secondswyork, we have
PI(E(B,€) N E(a,n) N E(B)) = Pr(E(B, ¢))P(E(a,n))PI(E(B)|E(B, €)).

If E(B,e¢), E(a,n) and E(B) all occur wpp., then there is only one infinite connected
componemt wpp. By using arguments similar to the proof for Proposit®8 in [13], we have
that there exists a large enough b&xand ¢ > 0 such that RiE(B,¢)) > 0. Obviously,
Pr(E(a,n)) > 0. Moreover, it is easy to see th&(E(B)|E(B,¢)) > P(E(B)) > 0. |

Now we have that the numbét of infinite connected components is equal to zero, one or
infinity a.s. To exclude the possibility ok = oo, we can directly apply the proof of Poisson
Boolean models [13, Theorem 3.6] here, which is based orralegembinatorial results. The

details are omitted.

C. Proof of Theorem 2

1) Proof of T2.1: To prove T2.1, it suffices to show that

(@) for any\s < A.(r,), the secondary network is not connected for amy > 0;
(b) for anyAs > A.(r,), there exists &}, (As) > 0 such that Apr < A} (As), the secondary
network is connected.

From Sec[V-A, we know that for a Poisson homogeneous ad htworle with density A
and transmission range the necessary and sufficient condition for connectivity is A.(7).
Since the existence of an infinite connected component irs¢foendary network implies the
existence of an infinite connected component in the homagenad hoc network with the same

density and the same transmission range, by using a cougigugnent, we conclude that when

"Sincea < r,/v/5, every secondary node in a squareSafis connected to those secondary nodes in the neighborirayesu
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As < Ac(rp), there does not exist an infinite connected component atbeisecondary network
for any A\pr > 0. This proves part (a).

The basic idea of the proof of part (b) is to approximate tle®sdary networlj (s, \pr) by a
discrete dependent edge-percolation model on the grid. dibcrete dependent edge-percolation
model £ is constructed in a way such that the existence of an infimtenected component in
L implies the existence of an infinite connected componerdt(ikg, Apr).

Construct the square lattic® on R? with side lengthd (see Fig['IR). Note that each site in
L is virtual and is not related to any node either in the secgndatwork or in the primary
network. Next we specify the conditions for an edge beingnopel, which is the key to the
mapping fromG(\g, Apr) to L.

For each edge in L, let (x., y.) denote the middle point of. Then we introduce three
random fieldsA., B., and C., all associated with the edgein £, whereC, = A.B, is the
indicator of the edge being openA. represents the condition (C1) of the distance between two
users for the existence of a communication link in the seapndetwork, andB. represents the
condition (C2) of the spectrum opportunity. Specificallpnsider the Poisson Boolean model
B(Xs, 1,/2, A\s) WhereXg is the Poisson point process generated by secondary usensfor
a horizontal edge, A, = 1 if the following two events (illustrated in Fi¢. 14) are true

(i) there is an occupied L-R crossing of the rectarigle-3d/4, x.+3d/4]x [y.—d/4, ye.+d/4]
in B(Xs, rp/2, A\s);
(i) there are two occupied T-B crossings of the square-3d/4, x.—d/4] % [y.—d/4, y.+d /4]
and the squarér, + d/4, x. + 3d/4] X [ye — d/4, ye +d/4] Iin B(Xs, 1,/2, As);
and A, = 0 otherwise. For a vertical edge the definition ofA, is similar, where the horizontal
and vertical coordinates are switched in the above two svent

Next we define the random fiel8.. For an edge: in £, B. = 1 if A, = 1 and the following

two events are true:
(i) there is no primary transmitter within distandeg, of any secondary node of the three
crossings in the definition ofi,;
(i) there is no primary receiver within distanece of any secondary node of the three crossings
in the definition ofA,;
and B, = 0 otherwise. It follows from the definition of communicatioimk in the secondary
network (see SeC. I[-B1) that 4. = 1 and B, = 1, then the three crossings B(Xs, 7,/2, As)
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@ Q

Fig. 14. A realization whered. = 1 for the edgee (hollow points are sites il and solid segments are edgesdh

are also three crossings s, Apr).

Let C, = A.B., then we claim that the edge is open if C, = 1, ande is closed if
C. = 0. We observe from Fid. 14 that whether the edgis open is correlated with the states
of the other edges. This modél thus is a dependent edge-percolation model. Furthermore,
as shown in Fig[_15, if there exists an infinite open conneci@uiponent inL, then those
crossings associated with the edges in the infinite comganghcomprise an infinite connected
component inG(\s, Apr). AS a consequence, by considering the uniqueness of theténfin
connected component ifi(\s, A\pr), we only need to prove the following lemma in order to
show T2.1.

Lemma 3:Let C'(O) denote the open connected component containing the ofigin L.

Then given\g > A.(r,), 3 D > 0, A > 0 such that ford = D and any\pr < A}, we have
Pr{|C(O)| = o0} >0,

where|C(O)| is the number of edges i@'(O).
Proof of Lemma3: For an arbitrary edge in £, let ¢ = P{C. = 0}, then we have

q=Pr{(A. =0)U (B, =0)} < P{A. =0} + Pr{B, = 0}.
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Fig. 15. Percolation inC (thick segments are open edgesdrand thin segments are closed edge<jrand blue curves are

those crossings associated with the open edges).

From the result on the crossing probabilities given[in (5@, kmow that whems > A.(r,),

Pr{A. =0} = Pr{atleast one crossing does not ekist

() )] oo ()2 9)
e ((2) o)

— 0 as d— oo, z’.e.,dlimPr{Ae:O}:O.
—00

IN

Thus when\g > A (r},), Ve > 0, 3 D > 0 such that Pf4, = 0} < £.
Given A, =1, let Sg, be the area of the region covered by the circles with r&dicentered

at those secondary nodes in the three crossings,Sgnte the area of the region covered by

the circles with radiir; centered at those secondary nodes in the three crossings.Wéd have
P{B.=0| A. =1} = Pr{d some primary transmitter iSx, }

+Pr{3 some primary receiver i, }.
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Since Sg, < (2 +2R;+1,) (44 2Rr+7,) and S,, < (3¢ +2r;+ 1) (4 +2r7+ 1), it

follows from the basic property of Poisson point procestes t

3d d
P{B.=0] A =1} < 1—exp {—)\PT (7 + 2R, +7"p) (5 +2R; +7’p)}

3d d
+1 —exp [—)\pT <? +2rr + Tp) (5 +2rr + Tp):| .
Obviously,Alim0 P{B.=0| A. = 1} = 0 for fixed d. Thus if we choose = D, thenVe > 0,
PT—
3 Ap > 0 such that

P{B.=0] A. =1} < % for all Apr < App.
It implies that whend = D, for all Apy < A\5p,
P{B. =0} = P{A.=0}+Pr{B.=0]| A. =1}P{A. =1}

< P{A. =0} +PH{B.=0]| A. =1}
2€

3

Thus ford = D and all\pyr < A}, we have

<

g <PH{A, =0}+PH{B. =0} <e. (7)
From Fig.[14, we can see thatdf> max{4R; + 2r,, 4r; + 2r,}, then the state of edge
is only correlated with its six adjacent edges and it is irehgjent of other edges. In this case,
by using the ‘Peierls argumeén{23, Chapter 1], we can show that if the probability of an edg
4
being closed; < (%) , then
Pr{|C(O)| = o0} > 0. (8)
The proof of the above statement follows the proof of TheoBm [3] except that the upper
bound on the probability of. edges all being closed is replaced by the one given in[Bact 1.
Thus by combining[(8) with[{7), we conclude that givég > A\.(r,), 3 D > 0, App > 0
such that for fixed! = max{D,4R; + 2r,, 4r; + 2r,} and any\pr < A5,

Pr{|C(O)| = o0} > 0.
Notice that\},, depends onD which is chosen according to the crossing probability and is

determined by\s. As a consequencey,; is a function ofAg, i.e., App = App(As). u

8The essence of ‘Peierls argument’ is to make use of the coedocorrespondence between a finite open component in

lattice £ containing the originD and a closed circuit in the dual lattie&" of £ surrounding the origirO.



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEQRUGUST, 2009. 35

2) Proof of T2.2: From the conditions for the existence of a communicatiok §m the
secondary network specified in Sec. Tl}B1, we know that fargwsecondary node in an infinite
connected component, there can exist neither any primansitnitter within distancéz; of it
nor any primary receiver within distanee of it. In other words, every secondary node in an
infinite connected component must be located outside allcttides centered at the primary
transmitters and the primary receivers with raflii and r;, respectively. Thus, if there is an
infinite connected component in the secondary network, #meimfinite vacant component must
exist in the two Poisson Boolean mod#&éX pr, Rpr, Apr) and B(Xpr, Rpr, Apr) driven
by the primary transmitters and the primary receivers,eetyely. HereRpr and Rpr are some
appropriate radii which will be specified later. A naturabate for Rpr is R;, but if we consider
the counterexample given in Fig.116, then we can clearly Isaiedven if there is an infinite path
in the secondary network, no infinite vacant component &xistthe Poisson Boolean model
B(Xpr, R, pAp) driven by the primary transmitters. Similarly, countenexdes can be easily

constructed for choosing@rr = ;.

5 s o Primary Transmitter
------ » Secondary User

Fig. 16. A counterexample for choosif@rr = R;. All the secondary nodes in the infinite path are locatedideitthose
circles centered at the primary transmitters with ralii, which form a series of rings surrounding the origh and there is

no infinite vacant component in the Poisson Boolean mé{&{ »r, R;, Apr) driven by the primary transmitters.

Suppose there is an infinite connected component in the dagpmetwork. Then we can
find a sequence of secondary uséf§, S», Ss, ---} such that they comprise an infinite path
starting fromsS; (see Fig[1l).

Assume thatS; andS;,; (i > 1) are two adjacent secondary nodes in the above infinite path.
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Fig. 17. An infinite path in the secondary network. The dastegients form an inner bound on the infinite vacant component
in the Poisson Boolean model driven by the primary receivers

Notice that the distancé, ;,, betweenS; and S, satisfiesd; ;41 < r, < r;, where the second
inequality r, < r; follows from the fact that the minimum transmission power $oiccessful
reception is in general higher than the maximum allowablerfarence power.

As we know, all the primary receivers must be outside the twoles with radiir; cen-
tered atS; and S;,, respectively, as shown in Fig.118. Given> 0, consider the rectangle

[—%, %] X [—¢, €] betweenS; andS;, ;. By a simple computation in geometry, we have

that the minimum distance from all the primary receivershe tectangle is/r? — % —¢€. As

illustrated in Fig.[1l7, it implies that there exists an innvacant component in the Poisson
Boolean models (XPR, \/ 72— % — €, )\pT) driven by the primary receivgsBy recalling
the known results in Se€. V-A2, we thus conclude that forea# 0,

Apr < (2\ [ri —r2/4 — €>_2 Ac(1).

1
Apr < ———=A(1).
PT_4T%—7‘I2) (1)

The other term@)\c(l) in the upper bound is obtained by applying the same argument

Let ¢ — 0, then it yields

to the Poisson Boolean model driven by the primary transmnsitt

D. Proof of Theorem 3

Consider the connected componérit containing an arbitrarily chosen secondary uder

Assuming thaiC,| > 1, we construct a branching process as follows. Notice that'if > 1

This technique used here can also be applied to the case whenr;, where only the minimum distance from all the
primary receiver to the bar betweei; and S;+1 needs to be recomputed.
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Fig. 18. One edgéS;, Si+1) in the infinite path.

where |C4| is the number of users contained @, then A must see the opportunity.e.,

I(A,r;,rX) NI(A, Ry, tx) is true. Call A the initial point (or0O-th generation) of the branching
process. Then the children df (i.e., the 1st generation of the branching process) are secondary

users which satisfy the following two conditions:

(i) it is within distancer, of A, wherer, is the transmission range of secondary users;
(i) there exist neither any primary receiver within distan; of the secondary user nor any

primary transmitter within distancg&; of the secondary user.

The n-th (n > 2) generation of the branching process are obtained siyjiland they are
connected to their parents in tlye — 1)-th generation of the branching process via bidirectional
links. Obviously, all the secondary users@n are counted in the constructed branching process
model. But some of them may probably be counted more than, simeee we do not exclude the
previousn generations (including generatiohwhen we consider the-th generation. Thus, this
branching process gives us an upper bound on the number @iday users i 4. It follows
that if the branching process does not grow to infinity wppentthere does not exist an infinite
connected component a.s. @{\s, Apr), due to the stationarity of the heterogeneous network
model. Since the conditional average degreés the average number of offspring for every
generation, the necessary condition follows immediatedynfthe classic theorem for branching

processes [12, Theorem 2.1.1].
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E. Proof of Theorem 4

From the construction of the dependent site-percolatiodehd, we know that the existence
of an infinite occupied component ifiimplies the existence of an infinite connected component
in G(As, Apr). Then in order to obtain a sufficient condition for the cortivéty of the secondary
network, it suffices to find a sufficient condition for the d®isce of an infinite occupied
component inC.

Let p be the probability that one site is occupied. Then based erddiinition of the upper
critical probabilityp. of £, we have that ifp > p., an infinite occupied component containing
the origin exists inC wpp. It implies that ifp > p., there exists an infinite connected component
in the secondary network wpp. Since the event that therdéseaisinfinite connected component
in the secondary network is invariant under the group oftghsinsformations, it follows from
the ergodicity of the heterogeneous network model (see Lefirthat ifp > p., there exists
an infinite connected component in the secondary network a.s

Based on the definition of occupied site A we have

p = [1— exp(—)\sdz)]Pr{H (A, r, ) NI(A, R,,tx)}

A 2
= [1 — exp (— Sgrp)} exp {—Aprm [R}+ 1] — I(R;, Ry, rp)] } .

In the last step, P{H (A, rr,rx) NI(A, RI,tx)} has been obtained by setting the distaice 0
in the expression for the probability of a unidirectionapoptunity between two secondary users

with distanced apart given in Proposition 1 in [14].

VI. CONCLUSION AND FUTURE DIRECTIONS

We have studied the connectivity of a large-scale ad hoadgt@eous wireless network in
terms of the occurrence of the percolation phenomenon. We roduced the concept of
connectivity region to specify the dependency of connégtion the density of the secondary
users and the traffic load of the primary users. We have shawveral basic properties of
the connectivity region: the contiguity of the region, the@motonicity of the boundary, and
the uniqueness of the infinite connected component. We haag/tecally characterized the
critical density of the secondary users and the criticalsdgrof the primary transmitters; they

jointly specify the profile of the connectivity region. Weueaalso established a necessary and a



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEQRUGUST, 2009. 39

sufficient condition for connectivity, which give an outerdean inner bound, respectively, on the
connectivity region. Furthermore, by examining the impaiftthe secondary users’ transmission
power on the connectivity region and on the conditional agerdegree of a secondary user,
we have demonstrated the tradeoff between proximity andtigpa opportunity. In establishing
these results, we have used techniques and theories imgonti percolation, including the
coupling argument, ergodic theory, the discretizatiommégue, and the approximation using a
branching process.

To highlight unique design tradeoffs in heterogeneous otsy we have ignored the fading
effect and the mutual interference between secondary.ugsers take into account these factors,
then the received signal to interference-plus-noise satatwo secondary users will replace the
distance between them in the condition (C1) for the exigafca communication link between
them. This will result in a random connection model with etated links, where the correlation
between links is due to the mutual interference and the tiomd{C2) on the presence of the
bidirectional opportunity. Although the connectivity reg can still be defined in the same way,
there will be another tradeoff between proximity and mutinérference besides the tradeoff
between proximity and opportunity. The combination of théwo tradeoffs will significantly
complicate the characterization of the connectivity of seeondary network. We hope results

obtained in this paper serve as a first step toward solvirgyrttare complex problem.
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APPENDIX A: EXPRESSION FORCONDITIONAL AVERAGE DEGREE

The expression for the conditional average degresf a secondary user is presented in the
following proposition.

Proposition 1: Let A¢ and Apr be the density of secondary users and primary transmitters,
respectively. Let; and R; be the interference range of the secondary and primary,ussgsec-

tively, andr, and R, the transmission range of the secondary and primary usespectively.
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Then the conditional average degre®f a secondary user is given by

no = ()\SWTI%) : g()\PT,TparlaR]MRI)

P2t
= )\571'7‘2/ ﬁexp { — )\pT [ﬂ'(’f‘? -+ R% —+ I(R[,Rp,’f‘[)) — S[(t,’/‘[,’f‘[) — S[(t,R[,R[)
0 P
S[Q ’f’ 9 Rp,t ’f’[)
/ / T drd@] at, (A1)
Sva(t,Rr,Ry)

where

R
T Si(t, Ry, rr)
I(R;, R =2 t—————2dt
( I p)rf) /0 7TRI2) 5

Si(t,r1,m9) the common area of two circles with radii and r, and centered apart (see
Fig. [19(a)), andSy.(t, r1,72) is the union of two circles with radii; and r, and centered
apart (see Fid._19(b))5S1a(r, 0, Ry, t, ;) is the intersection area between one circle with radius
R, and the union of the two circles with both radii (see Fig[19(c)). FoSyx(r, 0, Ry, t, 1),
the two identical circles are centere@dpart, and the other circle is centereda®), where the
middle point of the centers of the two identical circles i®sbn to be the origi.

The expressions faf(R;, R,, ;) andS;(t,r1,72) can be obtained in explicit form, which can
be found in [14, Appendix A]. The expression 8§,(r, 6, R,,t,r;) depends on the expression
for the common area of three circles which is tedious andvsrgin [24]. By applying the basic
property of the exponential function o (A1), we can eashipw thatg(-) is a strictly decreasing
function of A\p7.

Proof: Let Ks(A) denote the event that there exist exaétlgeighbors of a secondary user
A. We thus have

p = Eldeg(A)| I(A,rr,rx) NI(A, Ry, tX)]

= Ex[E[deg(A)| I(A, rr,x) NI(A, Ry, X) N Ks(A)]]

o\ K
o —)\s7rr ()\5’71'7’ )
= E e I Eldeg(A)| I(A,rr,rx) NI(A, Ry, tX) N Kg(A)].
k=0 '

Whenk = 0, it is obvious thatdeg(A) = 0. Whenk > 0, let B; be a neighbor oA, and1p;

an indicator function forB; such thatl g; = 1 if I(B;, r;,rx) NI(B;, R, tx) occurs andlg; = 0

otherwise. Then by considering the statistical indepeodemd equivalence of thesecondary
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Fig. 19. An illustration ofS; (¢, 71, 2) (the common area of two circles with radii andr. and centered apart),Su2(t, 71, 72)
(the union area of two circles with radti andr, and centered apart), andS;2(r, 0, Ry, t, 1) (the intersection area between

one circle with radiusk?, and the union of the two identical circles with radii).

users, we have

E[deg(A)| T(A, r7, 1) N I(A, Ry, ) N Kg(A)]

k
i=

> E[1i| I(A,r,1x) NI(A, Ry, X))
1

= ]{ZE[131| H(A, rr, rX) N I[(A, Ry, tX)]

= k‘Pr{]I(Bl, rr, rX) N H(Bl, RI; tX)| H(A, rr, rX) N H(A, RI; tX)}
PH{I(By,rr,rX) NI(By, Ry, tX) NI(A, rr,rX) NI(A, Ry, tx)}
PH{I(A,r;,rxX) NI(A, R, tX)}

=k

It follows that

4= Agmr? Pr{I(By,r;,rX) N1(By, Ry, tX) NI(A, 7, rx) N1I(A, RI,tx)}. ’2)
Pr{I(A, r;,rx) NI(A, Ry, tx)}
According to the definition of spectrum opportunity {RtA, r;, rx) N I(A, R;,tX)} can be

obtained by setting the distande= 0 in the expression for the probability of a unidirectional
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opportunity between two secondary users with distance d gpgen in Proposition 1 in/[14]:

PH{I(A, 77, 1X) NI(A, Ry, tX)} = exp[—Apr7(r] + R: — [(Ry, Ry, 71))]- (A3)

Next we derive the expression for the probability of a bidii@nal opportunityj.e., P{I( By, r;, rx)n

I(By, Ry, tx) NI(A, r;,rx) NI(A, Ry, tx)}, which depends on the location &f only through its
distance taA. Since B is uniformly distributed within distance, of A, the density function of
the distance betweenB; and A is given byf—ﬁ for 0 <t <r,. In this case, the probability of

a bidirectional opportunity can be written as

PH{L(By,rr, X)) NL(By, Ry, txX) NI(A, rr,rX) NI(A, Ry, tx)}

= / ’ ﬁPr{H(Bl,m, rX) NI(By, Ry, tX) NI(A, rr,rx) N1(A, R, tX)| d(By, A) = t}dt, (A4)
0

2
"p

where the integrand can be written as

PH{L(By,rr, rX) NI(By, Ry, tX) N I(A, rr, X)) NI(A, Ry, tX)| d(By, A) =t}

= Pr{I[(Bl, Ry, tX) N I[(A, Ry, tX)| H(Bl, rr, rX) N I[(A, Ty, rX) N d(Bl, A) = t}

PHI(By, 1, 1%) N L(A, r7,1%)| d(By, A) = t}. (A5)

Next, we compute the two probabilities {n_(A5) one by onec8ithe primary receivers admit

a Poisson point process with density;, we have

PHI(By,r, ) NI(A, 77, 1X)| d(By, A) =t} = exp[—)\pT(27rT% — Si(t,rr,rp))l, (AB)

where S;(t,r7,r) is the common area of two circles with both radji and centered apart
(see Fig[Ib(a)).

Let X pr denote the Poisson point process formed by primary tratensitf we remove from
Xpr primary transmitters whose receivers are within distancef B; or A, then it follows

from Coloring Theorem [15, Chapter 5] that all the remaingmgmary transmitters form another

_ SIQ (7'767Rp7t7rf)

Poisson point process with density |1 = ] whereSys(r, 0, R,, t,ry) is the area

of the circle with radiusk, and centered atr, ) intersecting the two circles with both radij
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and centered apart (see Fid. 19(c)). We thus have

PI’{H(Bl, RI; tX) N H(A Ry, tX)| ]I(Bl, rr, rX) N H(A, rr, rX) N d(Bl, A) = t}

= exp{ —Apr // [1 — Sra(r i;‘mt .71) drd@]
P

SUQ(t Ry, R[

;

= eXp —)\pT 27TR2 S](t R[,R[ // 512 T i;;p7t TI) rdrdé s (A7)
P

Sva(t,Rr,Ry)

\

where Sy»(t, Ry, R;) is the union of two circles with both radik; and centered apart (see
Fig. [19(b)).
Substitute [(AB["Al7) into[(Ab), we have

PI’{]I(Bl, rr, rX) N H(Bl, RI; tX) N H(A, rr, rX) N ]I(A, R[, tX)| d(Bl, A) = t}

= €exp { — )\pT |:27T(’f’? + R?) - S](t, rr, ’l“[) - S](t, R[, R[)

// Sia(r, 6. Sy, .11) drd@] } (A8)
TR
Sva(t,Rr,Ry)
The expression for the conditional average degretus follows by plugging[(AB) into[(A4)
and then[(AB[_A#) into[(AR). |

APPENDIX B: PROOF OFCOROLLARY 3

From [14, Appendix A] and Fid. 19(b, c), we know that when> R, + Ry,

I(RDR;IHTI) = R?? (Bl)
// Sra(r, i]f;”t D 4rd) = Sya(t, By Ry) = 20R2 — Sy(t. Ry Ry).  (B2)
Sva(t,Rr,Ry) P
Substitute [(BIL[ BR) into (A1), we have
P2t
= )\Smf,/ ﬁ exp[—Apr(7r? — Sp(t,rr,rr))]dt. (B3)
0

Plugging the expression fd¥; (¢, r;,r;) [14, Appendix A] into [B3) yields

"v2t t 12
= )\Sm“f)/o -2 &XP [—)\pT (77'7”% — 2r% arccos (2”) +t\)r] — Z)] dt.

p
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By applying the inequalityrccos(z) < 7 — o for 0 < = < 1, we have

v 2t T t t2
< A 2 — —A 2_op? (= — — t/r2— — dt
w < Sm’p/o 7’% exp{ PT [7”'1 r7 5 o + ry 1

P2t
< )\SW‘Z/ T—zexp(—Athrl)dt
0 p

2 2 20
= AgT — exp(—A r?) — == exp(=A\ 7"2)
S ()‘%DTT% )‘%DTT% p(=Aprfr7) Apr p(=AprBry)
2)\577' 2
— )\%)T (T[) 9

where we have assumed that = r; (0 < 5 < 1) under the disk signal propagation and

interference model. Sincg o (p,)"/*, we arrive at Corollary]3.
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