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Abstract Algebraic and fast algebraic attacks are power tools to analyze

stream ciphers. A class of symmetric Boolean functions with maximum

algebraic immunity were found vulnerable to fast algebraic attacks at EU-

ROCRYPT’06. Recently, the notion of AAR (algebraic attack resistant)

functions was introduced as a unified measure of protection against both

classical algebraic and fast algebraic attacks. In this correspondence, we

first give a decomposition of symmetric Boolean functions, then we show

that almost all symmetric Boolean functions, including these functions with

good algebraic immunity, behave badly against fast algebraic attacks, and

we also prove that no symmetric Boolean functions are AAR functions.

Besides, we improve the relations between algebraic degree and algebraic

immunity of symmetric Boolean functions.

Key Words stream cipher, symmetric Boolean function, algebraic at-

tacks, algebraic immunity, algebraic degree.

1 Introduction

Boolean functions are frequently used in the design of stream ciphers, block ciphers

and hash functions. One of the most vital roles in cryptography of Boolean functions is

to be used as filter and combination generators of stream ciphers based on linear feed-

back shift registers (LFSRs). Symmetric functions are an interesting subclass of Boolean

functions for their advantage in both implementation complexity and storage space (see

[5]).

In recent years, algebraic and fast algebraic attacks [7, 15, 6, 1] have been regarded

as a great threat against LFSR-based stream ciphers. These attacks use cleverly over-

defined systems of multi-variable nonlinear equations to recover the secret key. Algebraic

∗This work was supported by the National Natural Science Foundation of China under Grants 10971246

and 60970152.
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attacks lower the degree of the equations by multiplying a nonzero function while fast

algebraic attacks by linear combination. Thus algebraic immunity (AI) was introduced in

[15] to measure the ability of Boolean functions to resist algebraic attacks while the notion

of AAR (algebraic attack resistant) functions in [11] as a unified measure of protection

against both classical algebraic and fast algebraic attacks.

The maximum algebraic immunity (MAI) of n-variable Boolean functions is ⌈n
2
⌉ [7].

The majority function achieves MAI [8, 3]. For odd n, the majority function is the only

symmetric MAI functions, up to addition of a constant [12, 18]. However, the majority

function was found vulnerable to fast algebraic attacks in [2] at EUROCRYPT’06.

All the symmetric MAI functions on 2m variables were obtained in [17, 14] and were

proven having algebraic degree 2m−1 or 2m. Moreover, all the symmetric functions on

2m + 1 variables with sub-MAI 2m−1 were derived in [13]. A general method to construct

symmetric MAI functions was further provided in [16]. Nevertheless, we find all these

functions but few very vulnerable to fast algebraic attacks despite their resistance against

classical algebraic attacks.

A preprocessing of fast algebraic attacks on LFSR-based stream ciphers, which use a

Boolean function f as the filter or combination generator, is to find a function g of small

degree such that the multiple gf has degree not too large. For any pair of integers (e, d)

such that e + d ≥ n, there is a nonzero function g of degree at most e such that gf has

degree at most d [6]. We concentrate on the minimum of e + d and introduce the notion

of fast algebraic immunity (FAI), which generalizes the notion of AAR. The full fast

algebraic immunity (FFAI) of Boolean functions is n and FFAI functions are equivalent

to AAR functions.

In this correspondence, the fast algebraic immunity of symmetric Boolean functions is

studied. It’s found that any symmetric function is a composition of a Boolean function and

elementary symmetric functions with degree equal to a power of 2 and that the set of all

symmetric functions with degree at most 2k−1 is a ring generated by σ1, σ2, σ4, · · · , σ2k−1

and isomorphic to Bk. It’s further shown that almost all symmetric Boolean functions

behave badly against fast algebraic attacks. For one thing, any symmetric function with

degree not equal to a power of 2 has FAI strictly less than its degree, for another, in the

case n close to 2⌊log2 n⌋, symmetric functions with AI at least 2⌊log2 n⌋/2 have FAI close

to n/2, which is almost the worst case against fast algebraic attacks. Unfortunately, all

but few symmetric functions shown to be immune to classical algebraic attacks in the

previous literatures, such as [17, 14, 13, 16], fall into the case that n is either equal to

or a little more than 2⌊log2 n⌋. One (or more) function g with small degree, such that gf

has degree not large, is straightway derived from the SANFV of f , while the algorithm

proposed in [2] at EUROCRYPT’06 to determine g and gf for a symmetric function f

has complexity O(n3). Furthermore, it’s proven that there exist no symmetric FFAI (i.e.

AAR) functions. Lastly, the relations between algebraic degree and algebraic immunity

of symmetric Boolean functions are improved. 2⌊log2(2a−1)⌋ is the lower degree of symmetric

functions with AI a. This bound is tight for symmetric MAI functions.

The remainder of this correspondence is organized as follows. In Section 2, some

basic concepts are provided and the notion of fast algebraic immunity is introduced, while
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Section 3 presents the decomposition of symmetric functions. Section 4 studies the fast

algebraic immunity of symmetric functions and Section 5 discusses the relations between

algebraic degree and algebraic immunity of symmetric functions. Section 6 concludes the

correspondence.

2 Preliminary

An n-variable Boolean function is a mapping from F
n
2 into F2, where F2 denote the

binary field. A Boolean function is said to be symmetric if its output is invariant under

any permutation of its input bits. Denote by Bn (resp. SBn) the set of all Boolean

functions (resp. symmetric Boolean functions) on n variables. Any function f ∈ Bn can

be uniquely represented as a truth table

f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), · · · , f(1, 1, · · · , 1)] ∈ F
2n

2 ,

or as a multivariate polynomial over F2, called the algebraic normal form (ANF),

f(x) =
∑

c=(c1,c2,··· ,cn)∈Fn

2

acx
c1
1 x

c2
2 · · ·xcn

n , ac ∈ F2.

The algebraic degree of f , denoted by deg(f), is given by maxac 6=0wt(c), where wt(c)

denote the Hamming weight of c. Any function f ∈ SBn can be uniquely represented as

a vector

vf = (vf (0), vf(1), · · · , vf(n)) ∈ F
n+1
2 ,

where vf (i) represents the function value for vectors of weight i. Let σi be the i-th

elementary symmetric function of x1, x2, · · · , xn. The symmetric function f can also be

uniquely represented as

f(x) =

n
∑

i=0

λf(i)σi, λf(i) ∈ F2.

The vector λf = (λf(0), λf(1), · · · , λf(n)) is called the simplified algebraic normal form

vector (SANFV) of f . More properties of symmetric Boolean functions can be found in

[5].

The algebraic immunity of Boolean functions is defined as follows.

Definition 1. [15] Let f be an n-variable Boolean function. The algebraic immunity (AI)

of f , denoted by AI(f), is defined as

AI(f) = min
g 6=0

{deg(g)|gf = 0 or g(f + 1) = 0}.

To resist fast algebraic attacks, the Boolean function f shouldn’t admit a function g of

small degree such that the multiple gf has degree not too large. There are several notions

of the immunity of Boolean functions against fast algebraic attacks in previous literatures,

such as [10], but they separately treat the two parameters deg(g) and deg(gf). Recently,

the notion of AAR (algebraic attack resistant) functions was introduced in [11] as a

unified measure of protection against classical algebraic attacks as well as fast algebraic

attacks.
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Definition 2. [11] Let f be an n-variable Boolean function. The function f is called

AAR if f has MAI and deg(g) + deg(gf) ≥ n for any function g with 1 ≤ deg(g) < n/2.

However, AAR is too restrictive to achieve. A 9-variableAAR function was observed

in [4]. A class of almost AAR functions were constructed in [11] by iteration. While it’s

still unknown whether there are AAR functions for any n.

For any Boolean function f , from the definition of AI there always exists a function

g of degree equal to AI(f) such that gf = 0 or gf = g. Therefore the minimum

of deg(g) + deg(gf) is smaller than or equal to 2AI(f). The notion of fast algebraic

immunity is introduced as follows.

Definition 3. Let f be an n-variable Boolean function. The fast algebraic immunity

(FAI) of the function f , denoted by FAI(f), is defined as

FAI(f) = min
g:1≤deg(g)<AI(f)

{2AI(f), deg(g) + deg(gf)}.

From the above definition, we know that AI(f) + 1 ≤ FAI(f) ≤ deg(f) + 2 since

AI(f)+1 ≤ deg(g)+deg(gf) for any nonconstant function g with degree less than AI(f)

and deg(l) + deg(lf) ≤ deg(f) + 2 for any affine function l.

For any pair of integers (e, d) such that e + d ≥ n, there is a nonzero function g of

degree at most e such that gf has degree at most d [6]. Hence, the full fast algebraic

immunity (FFAI) of n-variable Boolean functions is n. It is clear that any Boolean

function has AI greater than or equal to a half of its FAI. Therefore FFAI functions are

also MAI functions and are equivalent to AAR functions. By almost FFAI or almost

AAR functions we mean Boolean functions with FAI n− 1.

3 Decomposition of symmetric Boolean functions

Thereinafter,
(

k

i

)

may be regarded as
(

k

i

)

mod 2 ∈ F2 if there is no ambiguousness.

Lemma 1. Let σi and σj be i-th and j-th elementary symmetric Boolean functions on n

variables, 0 ≤ i, j ≤ n. Then we have

σiσj =

j+i
∑

k=j

(

k

i

)(

i

k − j

)

σk =
n

∑

k=0

(

k

i

)(

i

k − j

)

σk.

In particular, σ2
j = σj .

Proof. Expanding the product σiσj gives
(

n

i

)(

n−i

k−i

)(

i

k−j

)

monomials with degree k for

j ≤ k ≤ j + i and 0 ≤ k ≤ n. Since the product σiσj is also a symmetric function

and σk consists of
(

n

k

)

monomials with degree k, the coefficient of σk in σiσj equals to
(

n

i

)(

n−i

k−i

)(

i

k−j

)

/
(

n

k

)

=
(

k

i

)(

i

k−j

)

. Since f 2 = f for any Boolean function f , we also have

σ2
j = σj .

Corollary 2. 1. σ2s1+···+2sk = σ2s1σ2s2 · · ·σ2sk for pairwise different s1, s2, · · · , sk.
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2. If t ≥ 1 and j < 2s then σt·2s+j = σt·2sσj.

Proof. 1) Consider the polynomial (1 + x)2
s

∈ F2[x]. Since 1 + x2s = (1 + x)2
s

=
∑2s

k=0

(

2s

k

)

xk, we have
(

2s

k

)

= 1 if and only if k = 0, 2s. By Lemma 1 we have

σ2sσj =

2s+j
∑

k=j

(

k

2s

)(

2s

k − j

)

σk =

(

j

2s

)

σj +

(

2s + j

2s

)

σ2s+j. (1)

If j < 2s, then
(

j

2s

)

= 0 and
(

2s+j

2s

)

= 1 (considering the polynomial (1 + x)2
s+j ∈ F2[x]),

and by Eq.(1) we have σ2sσj = σ2s+j. Assuming s1 < s2 < · · · < sk without loss of

generality, since 2si−1 + · · ·+2s1 < 2si for 2 ≤ i ≤ k, we have σ2siσ2si−1+···+2s1 = σ2si+···+2s1

and therefore σ2sk+···+2s1 = σ2skσ2sk−1+···+2s1 = · · · = σ2skσ2sk−1 · · ·σ2s1 .

2) Let t · 2s = 2s + 2s1 + · · · + 2sk , s < s1 < · · · < sk. From 1) we know

σt·2s = σ2sk · · ·σ2s1σ2s , and hence σt·2sσj = σ2sk · · ·σ2s1σ2sσj = σ2sk · · ·σ2s1σ2s+j = · · · =

σ2sk+···+2s+j = σt·2s+j.

From the above corollary we obtain the following results proven in [3].

Corollary 3. Let m = ⌊log2 n⌋ and j =
∑m

k=0 jk2
k, jk ∈ {0, 1}. Then we have

1. σj = σj0
1 σj1

2 σj2
4 · · ·σjm

2m .

2. If n− 2m < j < 2m then σ2mσj = 0.

3. σiσj = σi∨j where ∨ means OR operation.

Proof. 1) It is affirmed by Corollary 2 (1).

2) It is derived from the fact that σ2mσj = σ2m+j for j < 2m by Corollary 2 (2) and

there is no σ2m+j for 2
m + j > n.

3) It can be deduced from 1) since σ2
2s = σ2s .

Thanks to the work above, the decomposition of symmetric Boolean functions is given

as follows.

Theorem 4 (Decomposition of symmetric Boolean functions). Let f ∈ SBn and m =

⌊log2 n⌋.

1. The symmetric function f is a composition of an (m+1)-variable Boolean function

Fm+1 and elementary symmetric functions σ1, σ2, σ4, · · · , σ2m :

f(x) = Fm+1(σ1, σ2, σ4, · · · , σ2m).

In particular, if f has degree at most 2k − 1, then f(x) = Fk(σ1, σ2, σ4, · · · , σ2k−1),

Fk ∈ Bk.

2. Furthermore we have

f(x) =

m
∑

i=k

σ2ifi(x) + f−
k (x),

where fi (k ≤ i ≤ m) and f−
k are symmetric functions of degree at most 2i − 1 and

2k − 1.

5



Proof. 1) Let f(x) =
∑n

j=0 λf (j)σj, λf(j) ∈ F2. By Corollary 3, we have σj = σj0
1 σj1

2 σj2
4 · · ·σjm

2m

and hence

f(x) =
n

∑

j=0

λf(j)σj =
n

∑

j=0

λf(j)σ
j0
1 σj1

2 σj2
4 · · ·σjm

2m .

Let Fm+1 ∈ Bm+1 and

Fm+1(y1, y2, · · · , ym+1) =
∑

0≤j≤n

λf(j)y
j0
1 yj12 · · · yjmm+1.

Then

f(x) = Fm+1(σ1, σ2, σ4, · · · , σ2m).

The same proof shows f(x) = Fk(σ1, σ2, σ4, · · · , σ2k−1) with Fk ∈ Bk when deg(f) ≤ 2k−1.

2) Since Fm+1 is a Boolean function, we can write Fm+1(y1, · · · , ym+1) =
∑m

i=k yi+1Fi(y1, · · · , yi)+

F−
k (y1, · · · , yk), k ≥ 1. Therefore

f(x) =Fm+1(σ1, σ2, σ4, · · · , σ2m)

=

m
∑

i=k

σ2iFi(σ1, σ2, σ4, · · · , σ2i−1)

+ F−
k (σ1, σ2, σ4, · · · , σ2k−1).

Let fi(x) = Fi(σ1, σ2, σ4, · · · , σ2i−1) (k ≤ i ≤ m) and f−
k (x) = F−

k (σ1, σ2, σ4, · · · , σ2k−1).

The symmetric function fi has degree at most 2i− 1 since the degree of σj0
1 σj1

2 σj2
4 · · ·σ

ji−1

2i−1

can not exceed 1+2+4+ · · ·+2i−1 = 2i−1. Similarly, f−
k has degree at most 2k−1.

Note that ⌈log2(n+1)⌉ = ⌊log2 n⌋+1. Theorem 4 shows that an n-variable symmetric

Boolean function corresponds to a ⌈log2(n+1)⌉-variable Boolean function. Furthermore,

a symmetric Boolean function of degree at most 2k−1 corresponds to a k-variable Boolean

function.

Theorem 5. Let 1 ≤ 2k ≤ n + 1. Then the set of all functions in SBn with degree at

most 2k − 1, denoted by SB2k−1
n , is the ring < σ1, σ2, σ4, · · · , σ2k−1 > and isomorphic to

Bk.

Proof. From Theorem 4 we know SB2k−1
n is contained in R =< σ1, σ2, σ4, · · · , σ2k−1 >.

We just check that R is an isomorphism of Bk since |Bk| = |SB2k−1
n |. Let

τ : Bk → R, f(y1, y2, · · · , yk) 7→ f(σ1, σ2, σ4, · · · , σ2k−1).

From Theorem 4 we know τ is a injection. By Lemma 1 we know σ2
2s = σ2s , and hence τ

is a surjection. Let f, g ∈ Bk. It’s clear that τ(f + g) = τ(f) + τ(g). Since τ(ys) = σ2s−1

for 1 ≤ s ≤ k, we have τ(Πk
s=1y

cs
s ) = Πk

s=1σ
cs
2s−1 = Πk

s=1τ
cs(ys) and therefore τ(fg) =

τ(f)τ(g).

Corollary 6. SB2m−1 is an isomorphism of Bm.

6



The upper degree of the product of two symmetric Boolean functions is given as

below.

Corollary 7. Let g, f ∈ SBn, deg(g) ≤ 2k − 1 and deg(f) ≤ t · 2k − 1 (t ≥ 1). Then

deg(gf) ≤ t · 2k − 1.

Proof. It holds for t = 1 since SB2k−1
n is a ring by Theorem 5. Consider the product σiσj

with i ≤ 2k − 1 and 2k ≤ j ≤ t · 2k − 1 when t > 1. Let j = t′ · 2k + j′, 1 ≤ t′ ≤ t − 1,

j′ ≤ 2k − 1. From Corollary 2 we have σiσj = σiσt′·2k+j′ = σiσj′σt′·2k , which has degree at

most t′ · 2k + 2k − 1 ≤ t · 2k − 1 since σiσj′ ∈ SB2k−1
n .

From the above corollary we know SB2k−1
n SBt·2k−1

n = SBt·2k−1
n for t ≥ 1.

4 Fast algebraic attacks on symmetric Boolean func-

tions

In this section, we will first show that fast algebraic attacks on symmetric Boolean func-

tions work efficiently, and then prove the nonexistence of symmetric FFAI functions.

Theorem 8. Let f ∈ SBn, f(x) = σ2t+1+
∑2t

i=0 λf(i)σi and g(x) = σ1+λf(2t)+1. Then

the multiple gf has degree at most 2t − 1. Moreover, if λf(2t) = 0, then (σ1 + 1)f , if

nonzero, has degree 2s+ 1 where s is maximum such that λf (2s) = 1; if λf (2t) = 1, then

σ1f , if nonzero, has degree 2s+1 where s is maximum such that λf(2s)+λf(2s+1) = 1.

Proof. It’s trivial for t = 0. Then assume t ≥ 1.

By Corollary 2, we have σ1σ2i = σ2i+1 and therefore σ1σ2i+1 = σ2i+1. Hence

h(x) =(σ1 + λf (2t) + 1)f(x)

=(σ1 + λf (2t) + 1)(σ2t+1 + λf(2t)σ2t +

2t−1
∑

i=0

λf(i)σi)

=

t−1
∑

i=0

[λf(2t)λf(2i+ 1) + λf (2i)]σ2i+1

+

t−1
∑

i=0

[(λf (2t) + 1)λf(2i)]σ2i,

showing deg(h) ≤ 2t− 1.

If λf(2t) = 0, then

h(x) =

t−1
∑

i=0

λf(2i)σ2i+1 +

t−1
∑

i=0

λf(2i)σ2i

and therefore deg(h) = 2s+ 1 when s is maximum such that λf(2s) = 1.

7



If λf(2t) = 1, then

h(x) =

t−1
∑

i=0

[λf(2i+ 1) + λf(2i)]σ2i+1

and therefore deg(h) = 2s+1 when s is maximum such that λf(2s)+λf (2s+1) = 1.

Remark. If λf(2s) = 0 (resp. λf(2s) = λf(2s + 1)) for any s with 0 ≤ s ≤ t, then we

have (σ1 + 1)f = 0 (resp. σ1f = 0).

Theorem 8 gives an affine function g such that gf has degree at most deg(f)− 2 for

odd deg(f). In other words, any symmetric function with odd degree has FAI strictly

smaller than its degree. Although the product gf has odd degree if gf 6= 0, we cannot

apply the theorem recursively to gf to lower the degree of f since g · gf = g · f and

(g + 1) · gf = 0 · f .

From Theorem 8, we know that 2−t is the probability that gf = 0 and 2−i the

probability that gf has degree deg(f)− 2i. Consequently, the expectation of the degree

of gf is deg(f)− 4 when deg(f) is large.

Corollary 9. The expectation of the degree of the product gf of Theorem 8 is deg(f)− 4

when deg(f) tends to infinity.

Now we consider symmetric Boolean functions with degree not equal to a power of 2.

Theorem 10. Let f ∈ SBn and deg(f) ≥ 2k > 1. If 2k does not divide deg(f), then

there exists a nonconstant function g of degree at most e with e = deg(f) mod 2k such

that the product gf has degree at most deg(f)− e− 1.

Proof. Let deg(f) = t · 2k + e, t ≥ 1, 0 < e < 2k. Let f(x) = σt·2k+e +
∑t·2k+e−1

i=0 λf (i)σi.

By Corollary 2, we have σt·2k+i = σt·2kσi for 0 ≤ i < 2k, and therefore

f(x) = σt·2k(σe +

e−1
∑

i=0

λf (t · 2
k + i)σi) +

t·2k−1
∑

i=0

λf (i)σi.

Let g(x) = σe +
∑e−1

i=0 λf(t · 2
k + i)σi + 1 and f−(x) =

∑t·2k−1
i=0 λf(i)σi. Then

f(x) = σt·2k(g(x) + 1) + f−(x),

and hence gf = gf−. On one hand, the symmetric function g has degree e; on the other

hand, by Corollary 7, the function gf− has degree at most t · 2k − 1 = deg(f)− e− 1.

The theorem not only proves the existence of the function g but also explicitly iden-

tifies several such functions. More exactly, the number of g’s is 1 less than the weight of

deg(f).

Taking k = ⌊log2 deg(f)⌋, if deg(f) 6= 2k then there is a nonconstant function g such

that deg(g) + deg(gf) ≤ deg(f)− 1 and therefore the following result is obtained.

8



Corollary 11. Let f ∈ SBn and deg(f) > 1 is not a power of 2. Then FAI(f) ≤

deg(f)− 1.

Theorem 10 and Corollary 11 show that symmetric functions with degree not equal

to a power of 2 do not behave well against fast algebraic attacks. Then we consider

the symmetric functions with degree 2⌊log2 n⌋. For the case n − 2⌊log2 n⌋ large, 2⌊log2 n⌋ is

very small compared with n and therefore the symmetric functions with degree 2⌊log2 n⌋

naturally behave badly against fast algebraic attacks. For n − 2⌊log2 n⌋ not too large, we

will show fast algebraic attacks on the symmetric functions with any degree are also very

efficient. These imply that almost all symmetric Boolean functions are vulnerable to fast

algebraic attacks.

Now we consider the symmetric functions on n variables, including the functions of

degree equal to a power of 2, for the case n− 2⌊log2 n⌋ smaller than 2⌊log2 n⌋/2− 1.

Theorem 12. Let f ∈ SBn and 2m ≤ n < 2m + 2m−1 − 1. Then AI(f) ≤ 2m−1 − 1 or

deg(σef) = 2m−1 + e with e = n− 2m + 1.

Proof. By Theorem 4, we have

f(x) = σ2mfm(x) + σ2m−1fm−1(x) + f−
m−1(x),

where fm is a symmetric function of degree at most 2m−1, and fm−1,f
−
m−1 are of degree at

most 2m−1−1. Let g = σe(fm−1+1). Since n < 2m+2m−1−1, we have e = n−2m+1 <

2m−1 and therefore deg(g) ≤ 2m−1− 1 by Corollary 7. By Corollary 3, we have σeσ2m = 0

since n − 2m < e < 2m. If g 6= 0, then gf = gf−
m−1 which is again of degree at most

2m−1 − 1 by Corollary 7. This means f or f + 1 admits an annihilator of degree at most

2m−1 − 1, that is, AI(f) ≤ 2m−1 − 1. Otherwise g = 0, then σefm−1 = σe and hence

σef = σ2m−1+σe
+ σef

−
m−1, which is of degree 2m−1 + e.

Remark. The same proof shows that the theorem applies to e with n − 2m < e < 2m−1,

but e = n− 2m + 1 is minimum.

Theorem 12 shows that symmetric functions on n variables with n − 2⌊log2 n⌋ not

large are vulnerable to fast algebraic attacks. Especially if n is close to 2⌊log2 n⌋, then

e = n − 2⌊log2 n⌋ + 1 is close to 1 and d = 2⌊log2 n⌋/2 + e is close to n/2, so e + d is

close to n/2, and therefore the symmetric functions with AI at least 2⌊log2 n⌋/2 are very

vulnerable to fast algebraic attacks. For example, any symmetric MAI function f on

2m variables admits the linear function σ1 such that σ1f has degree 2m−1 + 1 while any

symmetric function f on 2m + 1 variables with MAI 2m−1 + 1 or sub-MAI 2m−1 admits

the quadratic function σ2 such that σ2f has degree 2m−1 + 2. They are almost the worst

cases against fast algebraic attacks since any function with AI a has FAI at least a + 1.

Unfortunately, the symmetric MAI functions obtained in [17, 14] are in the case n = 2m

and the symmetric sub-MAI functions derived in [13] have n = 2m + 1. Moreover, the

symmetric MAI functions constructed in [16, Theorem 2.4] have n ∈ [2m, 5/4 · 2m], and

therefore these functions admit σe with e ≤ n/5 such that σef has degree at most 3n/5.
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Theorem 12 also gives g = σe(fm−1 + 1) 6= 0 and h = σe(fm−1 + 1)f−
m−1 both with

degree at most 2m−1 − 1 or g = σe with degree e and h = σ2m−1+e + σef
−
m−1 with degree

2m−1 + e such that gf = h. The symmetric functions with AI at most 2m−1 − 1 =

2⌊log2 n⌋/2 − 1 naturally have FAI at most 2m − 2 = 2⌊log2 n⌋ − 2. And these symmetric

functions with AI at least 2m−1 = 2⌊log2 n⌋/2 have FAI smaller than or equal to 2m−1+2e =

2m−1 + 2(n− 2m + 1) = 2n− 3 · 2m−1 + 2 = 2n− 3 · 2⌊log2 n⌋/2 + 2.

Corollary 13. Let f ∈ SBn and 2m ≤ n < 2m + 2m−1 − 1. Then FAI(f) ≤ max{2m −

2, 2n− 3 · 2m−1 + 2}.

The following theorem proves the nonexistence of symmetric FFAI functions.

Theorem 14. Let n ≥ 5 and f ∈ SBn. Then FAI(f) < n.

Proof. Corollary 11 has proven the case that f has degree not equal to 2m. When f has

degree 2m, we just check the cases n = 2m, 2m + 1 or 2m + 2. These cases have been

proven in Corollary 13 if 2n− 3 · 2m−1 + 2 < n < 2m + 2m−1 − 1, i.e. m ≥ 3 for n = 2m,

2m+1 and m ≥ 4 for n = 2m+2. The rest cases n = 5, 6, 10 are confirmed by computing

all possible values of FAI for the symmetric functions on 5, 6 or 10 variables.

5 Relations between algebraic degree and algebraic

immunity of symmetric Boolean functions

In this section, we will study the relations between algebraic degree and algebraic immu-

nity of symmetric functions. It’s well known that for any Boolean function f the algebraic

immunity is less than or equal to its algebraic degree since f(f + 1) = 0, whereas the

relations between algebraic degree and algebraic immunity can be improved for symmetric

functions.

Proposition 15. Let f ∈ SBn. If f has degree not equal to a power of 2, then AI(f) <

2⌊log2 deg(f)⌋. Consequently, we have AI(f) ≤ 2⌊log2 deg(f)⌋ for any f ∈ SBn.

Proof. Let k = ⌊log2 deg(f)⌋. By Theorem 4 we have f = σ2kfk + f−
k , where fk is a

symmetric function of degree deg(f)−2k and f−
k of degree at most 2k−1. Let g = fk+1 and

h = gf−
k . Then gf = h, deg(g) = deg(f)−2k ≤ 2k−1 and deg(h) ≤ 2k−1. If deg(f) 6= 2k,

then g 6= 0 and therefore AI(f) ≤ 2k−1. If deg(f) = 2k, then AI(f) ≤ deg(f) = 2k.

Corollary 16. Let f ∈ SBn. Then deg(f) ≥ 2⌈log2 AI(f)⌉ = 2⌊log2(2AI(f)−1)⌋.

Proof. We only check the case AI(f) > 1. Let a = AI(f) and d = deg(f). Proposition 15

shows that log2 a ≤ ⌊log2 d⌋, i.e. ⌈log2 a⌉ ≤ ⌊log2 d⌋. Hence d ≥ 2⌈log2 a⌉ = 2⌊log2(2a−1)⌋.

Siegenthaler’s inequality[19] states that any m-th order correlation-immune function

has degree at most n−m and any m-resilient function (0 ≤ m < n−1) has degree at most

n−m− 1. Therefore the order of correlation-immune (resp. resiliency) of any symmetric

Boolean function with AI equal to a (a > 1) is smaller than or equal to n − 2⌊log2(2a−1)⌋

(resp. n− 2⌊log2(2a−1)⌋ − 1).

Now we consider the lower bound of algebraic degree for symmetric MAI functions.
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Corollary 17. Let f ∈ SBn and AI(f) = ⌈n
2
⌉. Then deg(f) ≥ 2⌊log2(n−1)⌋.

Proof. Since ⌈n
2
⌉ ≥ n

2
, by Corollary 16, we have deg(f) ≥ 2⌊log2(n−1)⌋.

For every n, there exist symmetric MAI functions on n variables of degree 2⌊log2 n⌋.

For example, the majority function f achieves MAI and also has degree 2⌊log2 n⌋ [8]. When

n = 2m, the function σ2m−1 achieves MAI [3]. In addition, all the symmetric MAI functions

on 2m variables were obtained in [17, 14] and were proven having algebraic degree 2m−1

or 2m. Notice that 2⌊log2(n−1)⌋ = 2⌊log2 n⌋ if n 6= 2m, and 2⌊log2(n−1)⌋ = 2m−1 if n = 2m.

Therefore the bound of Corollary 17 is tight.

Table 1: The upper algebraic immunity of symmetric functions with designated degree

deg d 1 2–3 4–7 8–15 16–31 32–63 64–127 128–255

Upper AI 2⌊log2 d⌋ 1 2 4 8 16 32 64 128

Table 2: The lower degree of symmetric functions with designated algebraic immunity

AI a 1 2 3–4 5–8 9–16 17–32 33–64 65–128

Lower deg 2⌈log2 a⌉ 1 2 4 8 16 32 64 128

Notice that the relation between algebraic degree and algebraic immunity of sym-

metric Boolean functions doesn’t relate to the number of variables. Therefore the bounds

listed in Table 1 and Table 2 are true for any reasonable n. We leave a open problem

whether the bound is tight when AI isn’t MAI.

6 Conclusion

Symmetric Boolean functions, which can be considered as compositions of Boolean

functions and elementary symmetric functions with power-of-2 degree, behave badly

against fast algebraic attacks, so these functions are unfit to be used in stream ciphers.

In other words, if symmetric functions are used in the design of ciphers, fast algebraic

immunity should never be ignored, and the number n of variables had better be neither

equal to nor a little more than 2m. n approximating 3 · 2m−1 seems to be a good choice

but it still need further study.
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