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Performance of LDPC Codes Under
Faulty Iterative Decoding

Lav R. Varshney

Abstract

Departing from traditional communication theory where atéing algorithms are assumed to perform without
error, a system where noise perturbs both computationateand communication channels is considered here.
This paper studies limits in processing noisy signals witlisy circuits by investigating the effect of noise on
standard iterative decoders for low-density parity-cheglles. Concentration of decoding performance around its
average is shown to hold when noise is introduced into mespagsing and local computation. Density evolution
equations for simple faulty iterative decoders are deriiedne model, computing nonlinear estimation thresholds
shows that performance degrades smoothly as decoder moigases, but arbitrarily small probability of error is
not achievable. Probability of error may be driven to zeraiother system model; the decoding threshold again
decreases smoothly with decoder noise. As an applicatiothefmethods developed, an achievability result for
reliable memory systems constructed from unreliable covepts is provided.
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. INTRODUCTION

The basic goal in channel coding is to design encoder-degdes that allow reliable communication over noisy
channels at information rates close to capacity [1]. Thenary obstacle in the quest for practical capacity-achigvin
codes has been decoding complexity [2]-[4]. Low-densitsitp&heck (LDPC) codes have, however, emerged as
a class of codes that have performance at or near the Shainmof5l], [6] and yet are sufficiently structured as
to have decoders with circuit implementatiohs [[7]-[9].

In addition to decoder complexity, decoder reliability malgo limit practical channel codilﬁbln Shannon’s
schematic diagram of a general communication system [1, Hignd in the traditional information and commu-
nication theories that have developed within the confinethaf diagram, noise is localized in the communication
channel. The decoder is assumed to operate without erreen@ie possibility of unreliable computation on faulty
hardware, there is value in studying error-prone decodmgact Hamming'’s original development of parity-check
codes was motivated by applications in computing rathem thacommunication[[11].

The goal of this paper is to investigate limits of commurimatsystems with noisy decoders and has dual
motivations. The first is the eminently practical motivatiof determining how well error control codes work when
decoders are faulty. The second is the deeper motivatioetefhining fundamental limits for processing unreliable
signals with unreliable computational devices, illustthschematically in Fig.l1. The motivations are intertwined
As noted by Pierce, “The down-to-earth problem of making mpoter work, in fact, becomes tangled with this
difficult philosophical problem: ‘What is possible and whatimpossible when unreliable circuits are used to
process unreliable information?T [112].

A first step in understanding these issues is to analyze eplartclass of codes and decoding techniques: iterative
message-passing decoding algorithms for LDPC codes. WHeendde is represented as a factor graph, algorithm
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'One may also consider the effect of encoder complekity [h6jyever encoder noise need not be explicitly consideredesi may be
incorporated into channel noise, using the noise combianggment suggested by F[d. 3.
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Fig. 1. Schematic diagram of an information system that gsses unreliable signals with unreliable circuits.

computations occur at nodes and algorithm communicati@ariged out over edges. Correspondence between the
factor graph and the algorithm is not only a tool for expositbut also the way decoders are implementéd [7]-[9].
In traditional performance analysis, the decoders arenasduo work without error. In this paper, there will be
transient local computation and message-passing errdwsther the decoder is analog or digital.

When the decoder itself is noisy, one might believe thateadhg arbitrarily small probability of errorShannon
reliability) is not possible, but this is indeed possible for certais sénoisy channels and noisy decoders. This is
shown by example. For other sets of noisy channels and neisgdirs, Shannon reliability is not achievable, but
error probability tending to extremely small values is aghble. Small probability of errom, is often satisfactory in
practice, and s@-reliable performance is also investigated. Decodingsthods at)-reliability decrease smoothly
with increasing decoder noise. Communication systems nisglay graceful degradation with respect to noise
levels in the decoder.

The remainder of the paper is organized as follows. SeEfioeviews motivations and related work. Section Il
formalizes notation and SectiénllV gives concentratiomltsghat allow the density evolution method of analysis,
generalizing results in_[13]. A noisy version of the Gallage decoder for processing the output of a binary
symmetric channel is analyzed in Secfioh V, where it is shthah Shannon reliability is unattainable. In Secfion VI,
a noisy decoder for AWGN channels is analyzed. For this madtiel probability of error may be driven to zero
and the decoding threshold degrades smoothly as a functideander noise. As an application of the results of
Section Y, Sectioh V]I precisely characterizes the infaiorastorage capacity of a memory built from unreliable
components. Sectidn V]Il provides some conclusions.

Il. BACKGROUND
A. Practical Motivations

Although always present[11], [14], recent technologicahtls in digital circuit design bring practical motivatfon
to the fore [15]-[17]. The 2008 update of the Internationatfinology Roadmap for Semiconductors (IT@Qﬁr)ints
out that for complementary metal-oxide-silicon (CMOS)hiealogy, increasing power densities, decreasing supply
voltages, and decreasing sizes have increased sensttivitpsmic radiation, electromagnetic interference, and
thermal fluctuations. The ITRS further says that an ongohifi & the manufacturing paradigm will dramatically
reduce costs but will lead to more transient failures of aignlogic values, devices, and interconnects. Device
technologies beyond CMOS, such as single-electron tungekchnology([18], carbon-based nanoelectronics [19],
and chemically assembled electronic nanocomputers [B®klao projected to enter production, but they all display
erratic, random device behavior [21], [22].

Analog computations are always subject to noise [23] [Sinilar issues arise when performing real-valued
computations on digital computers since quantization,tidrefixed-point or floating-point, is often well-modeled
as bounded, additive stochastic noisel [25].

B. Coding and Computing

Information and communication theory have provided linfidisprocessing unreliable signals with reliable circuits
[1], [23], [26], whereas fault-tolerant computing theorgishprovided limits for processing reliable signals (inputs
with unreliable circuits[[12],[[27]+[31]. This work bringke two together.

>The overall objective of the ITRS is to present the consem$ibe semiconductor industry on the best current estimatesgarch and
development needs for the next fifteen years.



A Dbrief overview of terms and concepts from fault-toleraotmputing, based ori_[82],_[33], is now provided.
A fault is a physical defect, imperfection, or flaw that occurs witsbme hardware or software component. An
error is the informational manifestation of a fault. permanentfault exists indefinitely until corrective action
is taken, whereas @ansientfault appears and disappears in a short period of time. Ndigyits in which the
interconnection pattern of components are trees are chidlteulas[34], [35].

In an error mode] the effects of faults are given directly in the informatbmniverse. For example, the basic
von Neumann model of noisy circuits [27] models transiemdtfain logic gates and wires as message and node
computation noise that is both spatially and temporallyejpehdent; this has more recently also been called the
Hegde-Shanbhag model [36], aftér [37]. This error modelssduhere. Error models of permanent faults| [38],
[39] or of miswired circuit interconnection [28], [40] hau®een considered elsewhere. Such permanent errors in
decoding circuits may be interpreted as either changindatier graph used for decoding or as introducing new
potentials into the factor graph; the code used by the emcanld the code used by the decoder are different.

There are several design philosophies to combat fatdislt avoidanceseeks to make physical components more
reliable.Fault maskingseeks to prevent faults from introducing errdfault toleranceis the ability of a system to
continue performing its function in the presence of faultsis paper is primarily concerned with fault tolerance,
but Sectiori_ VIl considers fault masking.

C. Related Work

Empirical characterizations of message-passing dect@®esdemonstrated that probability of error performance
does not change much when messages are quantized at hiditioms{26]. Even algorithms that are coarsely
guantized versions of optimal belief propagation shouelittegradation in performancde [13], [41]—-[46]. It should be
emphasized, however, that fault-free, quantized decatiées significantly from decoders that make random erfors.
The difference is similar to that between control systenth finite-capacity noiseless channels and control systems
with noisy channels of equal capacity [50]. Seemingly thiy @mevious work on message-passing algorithms with
random errors is_[51], which deals with problems in disttéaliinferencd

The information theoretic problem of mismatch capadity] [8Bd its analog for iterative decoding [53] deal
with scenarios where an incorrect decoding metric is uséd may arise, e.g., due to incorrect estimation of the
channel noise power. For message-passing decoding algstitnismatch leads to incorrect parameters for local
computations. These are permanent faults rather than tlied€itransient faults considered in this paper.

Noisy LDPC decoders were previously analyzed in the cortéxtesigning reliable memories from unreliable
components [54]/]55] (revisited in Section VII), using Gagler’s original methods [26]. Several LPDC code analysis
tools have since been developed, including simulation, [B&pander graph arguments [57], [58], EXIT charts
[59], [6Q], and density evolution [13]l_[61]. [62]. This wiogeneralizes asymptotic characterizations developed by
Richardson and Urbanke for noiseless decoders [13], stoatlvat density evolution is applicable to faulty decoders.
Expander graph arguments have also been extended to thefcasesy decoding in a paper [63] that appeared
concurrently with the first presentation of this work [64]otd that previous works have not even considered the
possibility that Shannon reliability is achievable withisyodecoding.

IIl. CODES, DECODERS AND PERFORMANCE

This section establishes the basic notation of LDPC charwdés and message-passing decoders for communi-
cation systems depicted in F[g. 1. It primarily follows ddished notation in the field [13], [65], and will therefore
be brief. Many of the notational conventions are depictdwsaatically in Fig[R2 using a factor graph-based decoder
implementation.

Consider the standard ensemble(d§, d.)-regular LDPC codes of length, C"(d, d.), defined by a uniform
measure on the set of labeled bipartite factor graphs witlabie node degreé, and check node degrel@ﬁ There

3Randomized algorithm5[47] and stochastic computafioih (d$ed for decoding iri [49]) make use of randomness to iseréanctionality,
but the randomness is deployed in a controlled manner.

“If the graphical model of the code and the graph of noisy comication links in a distributed system coincide, then thstriiuted
inference problem and the message-passing decoding prataia be made to coincide.

°A factor graph determines an “ordered code,” but the opgdsitnot true [[65]. Moreover, since codes are unordered tshjseveral
“ordered codes” are in fact the same code.



Fig. 2. Schematic diagram of a factor graph-based impleatient of a noisy decoder circuit. Only one variable-to-¢heessage and one
check-to-variable message are highlighted. Other widesws in gray, will also carry noisy messages.

aren variable nodes corresponding to the codeword lettersralidd. check nodes corresponding to the parity
check constraints. The design rate of the code isd,/d., though the actual rate might be higher since not all
checks may be independent; the true rate converges to tigndase for large: [65, Lemma 3.22]. One may also
consider irregular codes”(\, p) characterized by the degree distribution pairp). Generating functions of the
variable node and check node degree distributiot$) and p(¢), are functions of the form\(¢) = >_5%, \i¢* !
and p(¢) = -2, pi¢*~ 1, where\; and p; specify the fraction of edges that connect to nodes with ekegrThe
design rate id — fol p(¢)d¢/ fol A(¢)dC.

In the communication system of Figl 1, a codeword is selebtethe transmitter and is sent through the noisy
channel. Channel input and output letters are dendfed & andY € ). Since binary linear codes are used,
X can be taken a$+1}. The receiver contains a noisy message-passing decodeh vghused to process the
channel output codeword to produce an estimat& dhat is denoted{. The goal of the receiver is to recover the
channel input codeword with low probability of error. Thghout this work, probability of bit erroP, is used as
the performance criteridi,;

P, =Pr[X # X].

The message-passing decoder works in iterative stagedharitetation time is indexed b§= 0, 1,.... Within
the decoder, at timé = 0, each variable node has a realizationYafy;. A message-passing decoder exchanges
messages between nodes along wires. First each variabdeseodls a message to a neighboring check node over
a noisy messaging wire. Generically, sent messages areeteas/, .., message wire noise realizationswas, .,
and received messages /as..: assume without loss of generality that .., w,_,., andu,_.. are drawn from a
common messaging alphah#t.

Each check node processes received messages and sends inaskame to each neighboring variable node
over a noisy message wire. The noisiness of the check noadessing is generically denoted by an input random
variableU. € U. The check node computation is deno@ed : M%~1 x ¢/ — M. The notations/._,, Lhe—svs
andw._,, are used for signaling from check node to variable node;nagithout loss of generality assume that
Ve—svy We—syy he—v € M.

Each variable node now processesjiteind the messages it receives to produce new messages. Tiheessages
are produced through possibly noisy processing, wheredfsz nput is generically denotdd, € /. The variable
node computation is denotet) : Y x M%~1 x i/ — M. Local computations and message-passing continue
iteratively.

®An alternative would be to consider block error probahiliipwever an exact evaluation of this quantity is difficuledo the dependence
between different symbols of a codeword, even if the bitreprobability is the same for all symbols in the codeward| [67]



Message passing inducdecoding neighborhoodsvhich involve nodes/wires that have communicated with one
another. For a given nodg, its neighborhood of depthl is the induced subgraph consisting of all nodes reached
and edges traversed by paths of length at ndostarting from# (including ) and is denotedV?. The directed
neighborhood of deptid of a wire v — ¢, denoted byN¢? ., is defined as the induced subgraph containing all
wires and nodes on paths starting from the same place -asc but different fromv — c. Equivalently for a
wire ¢ — v, N2, is the induced subgraph containing all wires and nodes omsgstarting from the same place
asc — v but different fromc — v. If the induced subgraph (corresponding to a neighborh@d)tree then the
neighborhood idree-like otherwise it is not tree-like. The neighborhood is trée-lif and only if all involved
nodes are distinct.

Note that only extrinsic information is used in node compates. Also note that in the sequel, all decoder noises
Ue, Uy, Wy, andW,_,,) will be assumed to be independent of each other, as in théNearmann error model
of faulty computing.

A communication system is judged by information rate, epmbability, and blocklength. For fixed channels,
information theory specifies the limits of these three patams when optimizing over the unconstrained choice of
codes and decoders; Shannon reliability is achievableatesrbelow capacity in the limit of increasing blocklength.
When decoders are restricted to be noisy, tighter infonattieoretic limits are not known. Therefore comparing
performance of systems with noisy decoders to systems udemgfical codes but noiseless decoders is more
appropriate than comparing to Shannon limits.

Coding theory follows from information theory by restrimgi decoding complexity; analysis of noisy decoders
follows from coding theory by restricting decoding relitiyi

IV. DENSITY EVOLUTION CONCENTRATION RESULTS

Considering the great successes achieved by analyzingteeless decoder performance of ensembles of codes
[13], [61], [65] rather than of particular codes [26], thavea approach is pursued for noisy decoders. The first
mathematical contribution of this work is to extend the noettof analysis promulgated in [13] to the case of
decoders with random noise.

Several facts that simplify performance analysis are pro¥érst, under certain symmetry conditions with wide
applicability, the probability of error does not depend ohiehh codeword is transmitted. Second, the individual
performances of codes in an ensemble are, with high pratyalihe same as the average performance of the
ensemble. Finally, this average behavior converges to #dteawior of a code defined on a cycle-free graph.
Performance analysis then reduces to determining averagermance on an infinite tree: a noisy formula is
analyzed in place of general noisy circuits.

For brevity, only regular LDPC codes are considered in tkistion, however the results can be generalized to
irregular LDPC codes. In particular, replacing node degige maximum node degrees, the proofs standatis
mutandis Similarly, only binary LDPC codes are considered; genzgitibns to non-binary alphabets also follow,
as in [68].

A. Restriction to All-One Codeword

If certain symmetry conditions are satisfied by the systéwn tthe probability of error is conditionally indepen-
dent of the codeword that is transmitted. It is assumed tirout this section that messages in the decoder are in
belief format

Definition 1: A message in an iterative message-passing decoder for iy loiode is said to be ibelief formatif
the sign of the message indicates the bit estimate and thaitadg of the message is an increasing function of the
confidence level. In particular, a positive-valued messadieates belief that a bit ig-1 whereas a negative-valued
message indicates belief that a bit4d. A message of magnitude indicates complete uncertainty whereas a
message of infinite magnitude indicates complete confideneebit value.
Note, however, that it is not obvious that this is the besmfatr for noisy message-passing [[65, Appendix B.1].
The symmetry conditions can be restated for messages in fattmeats.

The several symmetry conditions are:

Definition 2 (Channel SymmetryA memoryless channel is binary-input output-symmetrid gatisfies

p(Yi =yl Xy =1) =p(Y; = —y|X; = —1)



for all channel usage times=1,...,n.
Definition 3 (Check Node Symmetry): check node message map is symmetric if it satisfies

dc
OO by, .. ba—1pig.—1,ba.w) = O (u1, . prg—1, ) (H bi)
=1

for any +1 sequencéb, ..., b, ). That is to say, the signs of the messages and the noise fadtaf the map.
Definition 4 (Variable Node Symmetryk variable node message map is symmetric if it satisfies

\II(O)(_N(% —U) = _\II(O) (/’LO7 U)

and
\II(Z)(_NJOv —H1y- -5 —Hd,—15 —’LL) = _\P(Z)(,Uf(]a M1y eey Ud,—1, ’LL),

for £ > 1. That is to say, the initial message from the variable nodg depends on the received value and internal
noise and there is sign inversion invariance for all message

Definition 5 (Message Wire Symmetry@Jonsider any message wire to be a mapghgM x M — M. Then
a message wire is symmetric if

p=Z(v,w) = -Z(-v,—w),

wherep is any message received at a node when the message sent &@ppbsite node is andw is message
wire noise with distribution symmetric aboQt

An example where the message wire symmetry condition haldf the message wire noise is additive and
symmetric abou®. Theny = v 4+ w = —(—v — w) andw is symmetric abou®.

Theorem 1 (Conditional Independence of ErroFor a given binary linear code and a given noisy message-
passing algorithm, IePe(Z) (x) denote the conditional probability of error after tftb decoding iteration, assuming
that codewordk was sent. If the channel and the decoder satisfy the symroehgitions given in Definitions] 245,
then P (x) does not depend ox.

Proof: Modification of [13, Lemma 1] or [65, Lemma 4.92]. AppendiX Avgs details. [ |
Suppose a system meets these symmetry conditions. Sineahility of error is independent of the transmitted
codeword and since all LDPC codes have the all-one codewotte codebook, one may assume without loss
of generality that this codeword is sent. Doing so removesrdmdomness associated with transmitted codeword

selection.

B. Concentration around Ensemble Average

The next simplification follows by seeing that the averagdgmmance of the ensemble of codes rather than
the performance of a particular code may be studied, sinceodles in the ensemble perform similarly. The
performances of almost all LDPC codes closely match theageeperformance of the ensemble from which they
are drawn. The average is over the instance of the code, #tieation of the channel noise, and the realizations
of the two forms of decoder noise. To simplify things, assuhe the number of decoder iterations is fixed at
some finitel. Let Z be the number of incorrect values held amongdait variable node-incident edges at the end
of the ¢th iteration (for a particular code, channel noise realiratand decoder noise realization) and ketZ] be
the expected value of . By constructing a martingale through sequentially remgaall of the random elements
and then using the Hoeffding-Azuma inequality, it can bevghdhat:

Theorem 2 (Concentration Around Expected ValuEere exists a positive constafit= 3(dy, d., ¢) such that
for anye > 0,

Pr[|Z — E[Z]| > ndye/2] < 2e75™,

Proof: Follows the basic ideas of the proofs of [13, Theorem 2]l of, [EBBeorem 4.94]. AppendikIB gives
details. |
A primary communication system performance criterion ish@ability of error P.; if the number of incorrect
valuesZ concentrates, then so dogs.



C. Convergence to the Cycle-Free Case

The previous theorem showed that the noisy decoding atgoiitehaves essentially deterministically for large
As now shown, this ensemble average performance convesgbe tperformance of an associated tree ensemble,
which will allow the assumption of independent messages.

For a given edge whose directed neighborhood of depik tree-like, letp be the expected number of incorrect
messages received along this edge (after message noise) 4 tteration, averaged over all graphs, inputs and
decoder noise realizations of both types.

Theorem 3 (Convergence to Cycle-Free CasH)ere exists a positive constaft= ~(dy,d., ) such that for
anye > 0 andn > 2v/e,

|E [Z] — ndyp| < ndye/2.

The proof is identical to the proof of [13, Theorem 2]. The ibadea is that the computation tree created by
unwrapping the code graph to a particular depth [69] almostlg has no repeated nodes.

The concentration and convergence results directly imphcentration around the average performance of a tree
ensemble:

Theorem 4 (Concentration Around Cycle-Free CasEfjere exist positive constants = ((dy,d.,¢) andy =
v(dy, de, ¢) such that for any > 0 andn > 27/,

Pr[|Z — ndyp| > ndye] < 2e75™,

Proof: Follows directly from Theorenls] 2 and 3. [ |

D. Density Evolution

With the conditional independence and concentration tgsall randomness is removed from explicit consider-
ation and all messages are independent. The problem retiudesisity evolution, the analysis of a discrete-time
dynamical system_[62]. The dynamical system state variabl@ost interest is the probability of bit errop,.

Denote the probability of bit error of a codec C™ after ¢ iterations of decoding byje(f) (g,¢,a), wheree is a
channel noise parameter (such as noise power or crossaMaaplity) anda is a decoder noise parameter (such
as logic gate error probability). Then density evolutioonpuites

lim F [Pe“)(g,s,a)} :
n—oo

where the expectation is over the choice of the code and theuganoise realizations. The main interest is in
the long-term behavior of the probability of error after foeming many iterations. The long-term behavior of a
generic dynamical system may be a limit cycle or a chaotr@aetidr, however density evolution usually converges
to a stable fixed point. Monotonicity (either increasing ecikasing) with respect to iteration numiemeed not
hold, but it often does. If there is a stable fixed point, tmaiting performance corresponds to

n* = lim lim F [Pe(é)(g,s,a)} .
£—00 N—00

In channel coding, certain sets of parametésss,«) lead to “good” performance, in the sense of smgi|

whereas other sets of parameters lead to “bad” performaitbelavge *. The goal of density evolution analysis

is to determine the boundary between these good and bad sets.

Though it is natural to expect the performance of an algaritb improve as the quality of its input improves
and as more resources are allocated to it, this may not beosan&ny decoders, however, there is a monotonicity
property that limiting behavior* improves as channel noiselecreases and as decoder noiskecreases. Moreover,
just as in other nonlinear estimation systems for dimeradityaexpanding signals [70]=[72], there is a threshold
phenomenon such that the limiting probability of error méwarmge precipitously with the values ofand a.

In traditional coding theory, there is no parameterand the goal is often to determine the range &r which
n* is zero. The boundary is often called the decoding threshaldl may be denoted"(n* = 0). A decoding
threshold for optimal codes under optimal decoding may bepded from the rate of the codeand the capacity
of the channel as a function ef C(¢). Since this Shannon limit threshold is for optimal codes dadoders, it
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Fig. 3. Local computation noise may be incorporated intogage-passing noise without essential loss of generality.

is clearly an upper bound tg*(0) for any given code and decoder. If the target error prolsbifi is non-zero,
then the Shannon limit threshold is derived from the soecbw-capacity,%, rather tharC(s)E

In the case of faulty decoders, the Shannon limits also geoupper bounds on theboundary for the set of
(e, a) that achieve good performance. One might hope for a Shamamdtic characterization of the entire «)-
boundary, but as noted previously, such results are nohexdternately, in the next sections, sets(ef«) that
can achievey*-reliability for particular LDPC codeg € C" are characterized using the density evolution method

developed in this section.

V. EXAMPLE: NOISY GALLAGER A DECODER

Section[ IV showed that density evolution equations deteenthe performance of almost all codes in the large
blocklength regime. Here the density evolution equatiaorafeimple noisy message-passing decoder, a noisy version
of Gallager's decoding algorithm A [26], [74], is derivedhd algorithm has message alphaldt= {+1}, with
messages in belief format simply indicating the estimaigd sf a bit. Although this simple decoding algorithm
cannot match the performance of belief propagation duestoeistricted messaging alphabt, it is of interest
since it is of extremely low complexity and can be analyzedlwically [74].

Consider decoding the LDPC-coded output of a binary synimelrannel (BSC) with crossover probability
At a check node, the outgoing message along edgethe product of all incoming messages excluding the one
incoming ong, i.e. the check node map is the XOR operation. At a variable node, the outgoing messaghe
original received code symbol unless all incoming messgigesthe opposite conclusion. That is,

vl === -y
Y, otherwise.

There is no essential loss of generality by combining cortput noise and message-passing noise into a single
form of noise, as demonstrated schematically in Elg. 3 amdgir in [75, Lemma 3.1]. This noise combining is
performed in the sequel to reduce the number of decoder paisEneters and allow a clean examination of the
central phenomenon. Thus, each message in the Gallageitlalg® is passed over an independent and identical
BSC wire with crossover probability.

The density evolution equation leads to an analytic chargettion of the set ofe, «) pairs, which parameterize
the noisiness of the communication system.

A. Density Evolution Equation

The density evolution equation is developed for generagufar LDPC ensembles. The state variable of density
evolution, sy, is taken to be the expected probability of bit error at thealde nodes in the large blocklength limit,
denoted here ag" (e, ).

The original received message is in error with probabiitghus

PO(e,a) =sg =e.

The initial variable-to-check message is in error with @oility (1 —¢)a +¢(1— ), since it is passed through a
BSC(). For further iterationst, the probability of error,Pe(é) (¢, ), is found by induction. Assumé’e(’) (e,a) = s

"The functionhz(-) is the binary entropy function. Thg*-capacity expression is obtained by adjusting capacityHay rate-distortion
function of an equiprobable binary source under frequerfogrier constraint;*, R(n*) = 1 — ha(n") [73].



for 0 < ¢ < ¢. Now consider the error probability of a check-to-variablessage in th¢/ + 1)th iteration. A
check-to-variable message emitted by a check node of degratong a particular edge is the product of all the
(d. — 1) incoming messages along all other edges. By assumptioh,®mh message is in error with probability
sy and all messages are independent. These messages are thassgd BSC¢) before being received, so the
probability of being received in error is

se(l —a) + (1 — sp)a = a+ sy — 2asy.

Due to the XOR operation, the outgoing message will be inréfran odd number of these received messages
are in error. The probability of this event, averaged overdegree distribution, yields the probability

1—p[1—2(a+ s, —2as))]
5 :

Now considerPe(éH)(s, «), the error probability at the variable node in tffe+ 1)th iteration. Consider an edge
which is connected to a variable node of degiigeThe outgoing variable-to-check message along this edge is
error in the(¢ + 1)th iteration if the original received value is in error and a8l incoming messages are received
correctly or if the originally received value is correct kalt incoming messages are in error. The first event has
probability

. <1_ [1_(1_a) <1—P[1—2(O¢2+35—2a35)]> W <1 +p[1_2(a2+36_2a36)]>rv—1> |

The second event has probability

(1—¢) <[(1_a) (1 —p[l —2(a2+ se—ZaSe)]> ta (1+p[1—2(a2—|- SZ_QQSZ)]>]dV—1> |

Averaging over the degree distribution and adding the twmsetogether yields the density evolution equation
in recursive form:

sep1 =€ —eqg (s¢) + (1 —&)qy (se). 1)

The expressions

119 = [P~ Sapfen(S)],
139 = [ Lm0 20 3)]

andw,(35) = (2a — 1)(28 — 1) are used to define the density evolution recursion.

B. Performance Evaluation

With the density evolution equation established, the perémce of the coding-decoding system with particular
values of quality parameters and « may be determined. Taking the bit error probability as theeswariable,
stable fixed points of the deterministic, discrete-timenatyical system are to be found. Usually one would want
the probability of error to converge to zero, but since thighhnot be possible, a weaker performance criterion
may be needed. To start, consider partially noiseless cases

1) Noisy Channel, Noiseless Decodéior the noiseless decoder case, ive= 0, it has been known that there
are thresholds on, below which the probability of error goes to zero/dacreases, and above which the probability
of error goes to some large value. These can be found aradlytfor the Gallager A algorithm [74].
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2) Noiseless Channel, Noisy Decodétor the noisy Gallager A system under consideration, théalyiity of
error does not go to zero d@sgoes to infinity for anya > 0. This can be seen by considering the case of the
perfect original channek = 0, and anya > 0. The density evolution equation reduces to

Se41 = g (S0), )

with so = 0. The recursion does not have a fixed point at zero, and simoe grobability is bounded below by
zero, it must increase. The derivative is

£%a$le—m%@»+mm%@>
] 2

which is greater than zero for< s < % and0 < a < %; thus the error evolution forms a monotonically increasing

sequence. Since the sequence is monotone increasingngtadm zero, and there is no fixed point at zero, it

follows that this converges to the smallest real solutiors ef ¢, (s) since the fixed point cannot be jumped due

to monotonicity.

3) Noisy Channel, Noisy Decodefhe same phenomenon must also happen if the stafirgpositive, however
the value to which the density evolution converges is a remo-fixed point solution of the original equatidd (1),
not of (2), and is a function of both ande. Intuitively, for somewhat large initial values ef the noisy decoder
decreases the probability of error in the first few iteragigast like the noiseless one, but when the error probgbilit
becomes close to the internal decoder error, the probabilierror settles at that level. This is summarized in the
following proposition.

Proposition 1: Final error probabilityn* > 0 for any LDPC ensemble decoded using the noisy Gallager A
system defined in Sectidnl V, for every decoder noise level 0 and every channel noise level O]

The fact that probability of error cannot asymptotically ddven to zero with the noisy Gallager decoder is
expected yet is seemingly displeasing. In a practical se@nhowever, the ability to driveP, to a very small
number is also desirable. As such, a performance objecfiaelieving P. less thany is defined and the worst
channel (ordered by) for which a decoder with noise level can achieve that objective is determined. The channel
parameter

P (wals))(2a = 1)%,

= (n,0) = supfe € [0,3] | Jim PO(g,2,0) < n}

is called the threshold. For a large interval spivalues, there is a single threshold value below whijeteliable
communication is possible and above which it is not. Altéuedy, one can determine the probability of error to
which a system with particular ande can be driveny*(«, ¢) = limy_, Pe(g), and see whether this value is small.

In order to find the threshold in the case®f> 0 ande > 0, the real fixed point solutions of density evolution
recursion[(ll) need to be found. The real solutions of themmiyial equation ins,

e—eqa(s) +(1—¢€)ga(s) —s=0

are denoted < r1(a,e) < ro(a,e) < r3(a,e) < ... B The final probability of errom* is determined by the;,
since these are fixed points of the recursian (1).
The real solutions of the polynomial equationsn

5 = qq (8)

1 - qa(s) = da (s)
are denoted < 71(a) < () < --- B The threshold* as well as the region in the — e plane where the decoder
improves performance over no decoding are determined by;tience [(B) is obtained by solving recursidn (1) for
¢ and setting equal to zero. For particular ensembles of LD&des, these values can be computed analytically.
For these particular ensembles, it can be determined whéikefixed points are stable or unstable. Moreover,
various monotonicity results can be established to showfiked points cannot be jumped.

Analytical expressions for the («, ) andr;(«) are determined for the (3,6) regular LDPC code by solving the
appropriate polynomial equations and numerical evaloatf ther; expressions are shown as thin lines in Fig. 4
as functions ot for fixed a. The point where ; (o, ¢) = ¢ is 71 («) and the point wheres(a,e) = ¢ is m2(a). In
Fig.[4, these are points where the thin lines cross.

—s=0, 3)

8The number of real solutions can be determined through Bestaule of signs or a similar tool [76].
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Fig. 4. Thick line shows final error probability;”, after decoding &°(3, 6) code with the noisy Gallager A algorithm, = 0.005. This
is determined by the fixed points of density evolutien(a, £), shown with thin lines.

By analyzing the dynamical system equatidh (1) for the (8d@Je in detail, it can be shown that(«, <) and
r3(a, €) are stable fixed points of density evolution. Contranily,«, ) is an unstable fixed point, which determines
the boundary between the regions of attraction for the tablstfixed points. Since; (o, ¢) andrs(«, €) are stable
fixed points, the final error probability* will take on one of these two values, depending on the stapwint of
the recursiong. The thick line in Fig[# shows the final error probabilif§f as a function of initial error probability
. One may note thay* = r; is the desirable small error probability, wheregis= r5 is the undesirable large
error probability and that, delimits these two regimes.

The 7(«) points determine when it is beneficial to use the decodeheénsense thay* < . By varyinga (as
if in a sequence of plots like Fifl 4), an— ¢ region where the decoder is beneficial is demarcated; trihas/n
in Fig.[8. The functionry(«) is the n-reliability decoding threshold for large rangesmpf

Notice that the previously known special case, the decotfireshold of the noiseless decoder, can be recovered
from these results. The decoding threshold for the noisaelesoder is denoted; ,;; and is equal to the following
expression([74].

. 1— /o
BRU = — 5
where
B N 12 T N 6 " 4,/-5/12—b
7Ty 2 2
and

1 1
b—§< 2 >§_l<83+3\/993>3
3 \ 83 4 31/993 3 2 '

This value is recovered from noisy decoder results by natiragn* (o = 0,e) = 0 for € € [0, 5], Which are
the ordinate intercepts of the region in Hig. 5.

To provide a better sense of the performance of the noisya@allA algorithm, Tablé | lists some values @f
g, andn* (numerical evaluations are listed and an example of an acalyexpression is given in Appendix C).
As can be seen from these results, particularly from#heurve in Fig.[5, the error probability performance of
the system degrades gracefully as noise is added to the elecod

Returning to threshold characterization, an analyticptession for the threshold within the region to use decoder
is:

) n— 4o (1)
e'(n,a) = —,

1 —qa(n) — ga(n)

which is the solution to the polynomial equationdn

€ —éqy(n) + (1 — &gy (n) —n=0.
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Fig. 5. Decoding &°°(3,6) code with the noisy Gallager A algorithm. Region where iténéficial to use decoder is belaw and above

T1.

o 0.002 0.004
a

L
0.006

TABLE |
PERFORMANCE OFNOISY GALLAGER A ALGORITHM FOR (3,6) CODE

L
0.008

@ " (0.1, ) n*(a,e") 7™ (e, 0.01)

0 | 0.0394636562 0 0
1 x 1071 | 0.0394636560 | 7.8228 x 10~ | 1.3333 x 10™ !
1x107% | 0.0394636335 | 7.8228 x 107° | 1.3333 x 107°
1x107% | 0.0394613836 | 7.8234 x 10~ 7 | 1.3338 x 10~
1x 107 | 0.0392359948 | 7.8866 x 107> | 1.3812 x 10™°
3x 1077 | 0.0387781564 | 2.4050 x 10~% | 4.4357 x 10~°
1x 1073 | 0.0371477336 | 8.4989 x 10~ % | 1.8392 x 10~ 2
3x 1072 | 0.0321984070 | 3.0536 x 10> | 9.2572 x 10~ *
5x 1072 | 0.0266099758 | 6.3032 x 1072 | 2.4230 x 1073

The threshold is drawn for several valuesrpin Fig.[8. A threshold line determines the equivalence ofncieh

noise and decoder noise with respect to final probabilityrodre If for example, the binary symmetric channels
in the system are a result of hard-detected AWGN channetd) auline may be used to derive the equivalent
channel noise power for decoder noise power or vice versashbld lines therefore provide guidelines for power

allocation in communication system
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n-thresholds (gray lines) for decodingGd°(3,6) code with the noisy Gallager A algorithm within the regionuse decoder
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Fig. 7. Region to use decoder for Bazzi et al.’s optimized g2 LDPC code with noisy Gallager A decoding (black) is contdingthin
the region to use decoder for a rdt®2 LDPC code in Bazzi et al.’s optimal family of codes with= 1/10 (green) and contains the region
to use decoder for thé> (3, 6) code (gray).

C. Code Optimization

At this point, the bit error performance of a system has symg@en measured; no attempt has been made to
optimize a code for a particular decoder and set of parasefer fault-free decoding, it has been demonstrated
that irregular code ensembles can perform much better gguiar code ensembles like the (3,6) LDPC considered
above [74], [77]. One might hope for similar improvementsewh_.DPC code design takes decoder noise into
account. The space of system parameters to be consideremify decoders is much larger than for noiseless
decoders.

As a first step, consider the ensemble of rafe@ LDPC codes that were optimized by Bazzi et al. for the
fault-free Gallager A decoding algorithrn_[74]. The left deg distribution is

M) = a¢® + (1 = a)¢®

and the right degree distribution is
Ta 6 3 — 7a 7
p(¢) = ?C + TC ,

where the optimak is specified analytically. Numerically,opr = 0.1115.... Measuring the performance of this
code with the noisy Gallager A decoder yields the region ®decoder shown in Figl 7; the region to use decoder
for the (3,6) code is shown for comparison. By essentially ariterion of performance, this optimized code is
better than the (3,6) code.

Are there other codes that can perform better on the faulgoder than the code optimized for the fault-
free decoder? To see whether this is possible, arbitragifgrict to the family of ensembles that were found to
contain the optimal degree distribution for the fault-fidecoder and take = 1/10. Also let o = 1/500 be fixed.
The numerical value of the threshoiq/w(l/lo,a) = 0.048239, whereas the numerical value of the threshold
€aop(1/10,) = 0.047857. In this sense, the = 1/10 code is better than the = aopt code. In fact, as seen in
Fig.[4, the region to use decoder for this= 1/10 code contains the region to use decoder fordkg code.

On the other hand, the final error probability when operaditipreshold for the = 1/10 coden; ,,,(«, z—:*{/m(l/lo, a)) =
0.01869, whereas the final error probability when operating at thoésfor thea = aope code i (o, g5, (1/10, ) =
0.01766. So in this sense, the = aqp code is better than the = 1/10 code. The fact that highly optimized
ensembles usually lead to more simultaneous critical pagthe main complication.

If both threshold and final bit error probability are perfamece criteria, there is no total order on codes and

therefore there may be no notion of an optimal code.

VI. EXAMPLE: NoISY GAUSSIAN DECODER

It is also of interest to analyze a noisy version of the befisdpagation decoder applied to the output of a
continuous-alphabet channel. Density evolution for Bedi@pagation is difficult to analyze even in the noiseless
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decoder case, and so a Gaussian approximation methbd [U8¢ds The state variables are one-dimensional rather
than infinite-dimensional as for full analysis of belief pemation. The specific node computations carried out by
the decoder are as in belief propagation [13]; these can peamated by the function® and ¥ defined below.
The messages and noise model are specified in terms of thexapation.

Sectiorl Y had considered decoding the output of a BSC witlcadksr that was constructed with BSC components
and Propositiom]1 had shown that probability of bit errorIdomever be driven to zero. Here, the probability of
bit error does in fact go to zero.

Consider a binary input AWGN channel with variarnde The output is decoded using a noisy Gaussian decoder.
For simplicity, only regular LDPC codes are considered. Messages that are passed in this decoder are real-valued,
M =R U {+o0}, and are in belief format.

The variable-to-check messages in the zeroth iteratiortherdog-likelihood ratios computed from the channel
output symbolsy(y),

plylz=1)
plyle = —1)

The check node takes the received versions of these mesgages as input. The node implements a mapping

® whose outputy._,, satisfies:

Vyse = V(y) = IOg

de—1
etanh(ve—y) = H etanh(y—c, ),
=1
where the product is taken over messages on all incomingseegeept the one on which the message will be
outgoing, and

1 vV _-0)?
tanh(v) = tanh —e~ 4 dv.
etanh () \/R/R anh Se v

The check node mapping is motivated by Gaussian likelihaodputations. For the sequel, it is useful to define
a slightly different function

1 —etanh(v), ©>0
8(6) = { .
1|
which can be approximated as

with a = —0.4527, b = 0.0218, ¢ = 0.86 [78].
For iterations? > 1, the variable node takes the received versions ofcthe v messages;._,v, as inputs. The
mapping¥ yields outputy,_,. given by

d,—1
Vy—c = V(y) + Z Me—v;s
i=1

where the sum is taken over received messages from the meighlcheck nodes except the one to which this
message is outgoing. Again, the operation of the variabbiei® motivated by Gaussian likelihood computations.

As in SectiorlV, local computation noise is combined into sage-passing noise (FId. 3). To model quantization
[25] or random phenomena, consider each message passes dedbder to be corrupted by signal-independent
additive noise which is bounded asx/2 < w < a/2. This class of noise models includes uniform noise, and
truncated Gaussian noise, among others. If the noise is symamthen Theorerh]1 applies. Following the von
Neumann error model, each noise realizatioiis assumed to be independent.

A. Density Evolution Equation

The definition of the computation rules and the noise mode} ma used to derive the approximate density
evolution equation. The one-dimensional state variableseh to be tracked is, the mean belief at a variable
node. The symmetry condition relating mean belief to befefiance [13], [[78] is enforced. Thus, if the all-one
codeword was transmitted, then the valugoing to +oc implies that the density of,_,. tends to a “mass point
at infinity,” which in turn implies thatP. goes to0.
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To bound decoding performance under any noise model in s @f additive bounded noise, consider (non-
stochastic) worst-case noise. Assuming that the all-omkeword was sent, all messages should be as positive as
possible to move towards the correct decoded codeword (felsefs of +oo indicate perfect confidence in a bit
being 1). Consequently, the worst bounded noise that may be impissedsubtracta/2 from all messages that
are passed,; this requires knowledge of the transmittedwmrdiebeing all-one. If another codeword is transmitted,
then certain messages would hav added instead of subtracted.

Such a worst-case noise model does not meet the conditiofhedrem[l, but transmission of the all-one
codeword is assumed nonetheless. If there were an advevihrignowledge of the transmitted codeword imposing
worst-case hoise on the decoder, then probability of bitremould be conditionally independent of the transmitted
codeword, as given in Appendix A-1.

Note that the adversary is restricted to selecting eachenwalization independently. More complicated and
devious error patterns in space or in time are not possiblhénvon Neumann error model. Moreover, the
performance criterion is probability of bit error ratheathprobability of block error, so complicated error patsern
would provide no great benefit to the adversary.

Since the noise is conditionally deterministic given thanimitted codeword, derivation of the density evolution
equation is much simplified. An induction argument is usedi the base case is

SO == 6%’
wheres? is the channel noise power. This follows from the log-likelbd computation for an AWGN communication
channel with input alphabet = {+1}.
The inductive assumption in the induction argumenyis,. This message is communicated over message-passing
noise to get

a
Sp—1 — 3"

Next the check node computation is made to yield
o7 (1= 11— (sea — $)%71).

By the inductive assumption, all messages will be equivatbat is why the product is &l. — 1)-fold product of
the same quantity. This value is communicated over messag&ing noise to get

o (1= 1= o5 - $N%1) - 5.

Finally the variable-node computation yields

s+ (dy — 1) {<23_1 (1 —[1 = p(sp—1 — %)]d°_1> — %} .

Again, all messages will be equivalent so the sum {ga— 1)-fold sum of the same quantity. Thus the density
evolution equation is

se= 23— 950 4 (@ - 1) {67 (1= (1= o1 - $I%7) | (4)

B. Performance Evaluation

One might wonder whether there are sets of noise parameterd) ande > 0 such thats, — +oc. Indeed
there are, and there is a threshold phenomenon just like gbual. showed for = 0 [78].

Proposition 2: Final error probabilityn* = 0 for LDPC ensembles decoded using the noisy Gaussian system
defined in Section VI, for binary-input AWGN channels withism levele < £*(«).

Proof: Substitutings = +oc into (4) demonstrates that it is a stable fixed point. It magher be verified that

the dynamical system proceeds toward that fixed point<f e*(«). [ |
Unlike Sectior Y where the*(n, ) thresholds could be evaluated analytically, only numégealuations of these
e*(«) thresholds are possible. These are shown in[Fig. 8 for tlegalar LDPC ensembles with ratg2, namely
the (3,6) ensemble, the (4,8) ensemble, and the (5,10) diseAs can be observed, thresholds decrease smoothly
as the decoder noise level increases. Moreover, the ogdefithe codes remains the same for all levels of decoder
noise depicted. Code optimization remains to be done.
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Fig. 8. Thresholds for decoding th#&* (3, 6) code (triangle), th&°°(4, 8) code (quadrangle), and tfiE* (5, 10) (pentangle), each with
the noisy Gaussian approximation algorithm. Notice that dndinate intercepts arel(3,6) = 0.8747, efry(4,8) = 0.8323, and
e&ru (5,10) = 0.7910, [78, Table 1.

The basic reason for the disparity between Proposifionsd?Tais that here, the noise is bounded whereas the
messages are unbounded. Thus once the messages growHargeide has essentially no effect. To use a term
from [67], once the decoder reaches threakout valugnoise cannot stop the decoder from achieving Shannon
reliability.

Perhaps a peak amplitude constraint on messages woulddpravimore realistic computation model, but the
equivalent of Propositioh]2 may not hold. Quantified datacpssing inequalities may provide insight into what
forms of noise and message constraints are truly limitind], [[B5].

VIl. APPLICATION: RELIABLE MEMORIES CONSTRUCTED FROMUNRELIABLE COMPONENTS

In Sectiorlll, complexity and reliability were cast as thevm@ry limitations on practical decoding. By considering
the design of fault masking techniques for memory systemspramunication problem beyond Figl 1, both
complexity and reliability may be explicitly constraindddeed, the problem of constructing reliable information
storage devices from unreliable components is centralut-falerant computing, and determining the information
storage capacity of such devices is a long-standing opeblgo[79]. This problem is related to problems in
distributed information storage [B0] and is intimatelydtieo the performance of codes under faulty decoding. The
analysis techniques developed thus far may be used directly

In particular, one may construct a memory architecture witlsy registers and a noisy LDPC correcting network.
At each time step, the correcting network decodes the exgisintents and restores them. The correcting network
prevents the codeword stored in the registers from wangléoio far away. Taylor and others have shown that there
exist non-zero levels of component noisiness such that DBQ-based construction achieves non-zero storage
capacity [54], [55], [68]. Results as in Sectibh V may be utegrecisely characterize storage capacity.

Before proceeding with an achievability result, requisigdinitions and the problem statement are given [54].

Definition 6: An elementary operatiors any Boolean function of two binary operands.

Definition 7: A system is considered to be constructed froomponentswhich are devices that either perform
one elementary operation or store one bit.

Definition 8: The complexityy of a system is the number of components within the system.

Definition 9: A memory system that stordsinformation bits is said to have anformation storage capability
of k.

Definition 10: Consider a sequence of memorig¥; }, ordered according to their information storage capabilit
i (bits). The sequencg)M;} is stableif it satisfies the following:

1) For anyk, M; must have2* allowed inputs denotedl;, }, 1 <i < 2%,

2) A class of states('(I},), is associated with each inpif, of M. The classe€’'(I;,) and C(I;,) must be

disjoint for all 7 # j and all k.
3) The complexity ofMy, x(My), must be bounded bgk, whereredundancy is fixed for all k.
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4) At ¢ = 0, let one of the inputs from{I,} be stored in each memory/;; in the sequence of memories
{M;}, with no further inputs in timeg > 0. Let I, denote the particular input stored in memavy.
Let A\, (T") denote the probability that the state bf;, does not belong t@'(Iy,) at ¢ = T and further let
Pr*X(T) = max; A, (T). Then for anyI’ > 0 andé > 0, there must exist & such thatP"**(T") < 6.

The demarcation of classes of states is equivalent to detiagcdecoding regions.

Definition 11: The storage capacity®, of memory is a number such that there exist stable memonyesegs
for all memory redundancy valuésgreater thar /€.

Note that unlike channel capacity for the communicatiorbpgm, there is no informational definition of storage
capacity that is known to go with the operational definition.

The basic problem then is to determine storage capacityghwisia measure of the circuit complexity required
to achieve arbitrarily reliable information storage. Thegit complexity must be linear in blocklength, a property
satisfied by systems with message-passing correcting netviior LDPC codes.

Although Propositiori]l shows that Shannon reliability i achievable for any noisy Gallager A decoder, the
definition of stable information storage does not requiiis. tBy only requiring maintenance within a decoding
region, the definition implies that either the contents @f themory may be read-out in coded form or equivalently
that there is a noiseless output device that yields decadfedmation; call this noiseless output device gikver
decoder

Consider the construction of a memory with noisy registsrstarage elements. These registers are connected to
a noisy Gallager A LDPC decoder (as described in Selion Y)chvtakes the register values as inputs and stores
its computational results back into the registers. To fireldtorage capacity of this construction, first compute the
complexity (presupposing that the construction will yielétable sequence of memories).

The Gallager A check node operation iS& — 1)-input XOR gate, which may be constructed frafn — 2
two-input XOR gates. A variable node determines whethetljts- 1 inputs are all the same and then compares
to the original received value. L&d,; denote the complexity of this logic. The output of the conmgmar to the
original received value is the value of the consensus vieme €onstruction to implement the consensus logic is
to OR together the outputs of @, — 1)-input AND gate and gd, — 1)-input AND gate with inverted inputs.
This is then XORed with the stored value. Such a circuit camigemented witt2(d, — 2) + 2 components, so
Dg, = 2d, — 2. The storage is carried out im registers. The total complexity of the memaW, x(My)c» (4, ,4.),
is

X(Mk)cn(dv,dc) = Tl(l + 2dv -2 + dv(dc - 2)) = n(dvdc — 1)

The information storage capability istimes the rate of the codé:. The complexity of an irredundant memory
with the same storage capability g = Rn. Hence, the redundancy is

X(Mk)cn(dv,dc) _ n(dvdc - 1) < (dvdc - 1)
Xirr,, Rn ~ 1-d,/dc

which is a constant. By [65, Lemma 3.22], the inequality airfwolds with equality with high probability for large
n. For the(3,6) regular LDPC code, the redundancy value3is so € = 1/34, if the construction does in fact
yield stable memories.

The conditions under which the memory is stable depends@sitber decoder. Since silver decoder complexity
does not enter, maximum likelihood should be used. The Gallbower bound to the ML decoding threshold for
the (3,6) regular LDPC code is},; 5 = 0.0914755 [81, Table I1]. Recall from Figl5 that the decoding threshol
for Gallager A decoding is}; 5, = 0.0394636562.

If the probability of bit error for the correcting network the memory stays within the decoding threshold of
the silver decoder, then stability follows. Thus the questieduces to determining the sets of component noisiness
levels (a, €) for which the decoding circuit achieves = 3, )-reliability.

Consider a memory system where bits are stored in registithspnobability «,. of flipping at each time step.
An LDPC codeword is stored in these registers; the prolgloli incorrect storage at the first time stepeisAt
each iteration, the variable node value from the correctiatyvork is placed in the register. This stored value is
used in the subsequent Gallager A variable node computatitrer than a received value from the input pins.
Suppose that the component noise values in the correctitmgpriemay be parameterized as in Secfigdn V. Then a
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Fig. 9. For a memory system constructed with noisy registecsa(3,6) LDPC Gallager A correcting network, the regiéh (delimited
by black line) comprises the “region to use decoder” and ysolgraph.

slight modification of the analysis in Sectibd V yields a dgnevolution equation

Sev1 = €2 — 2q (s¢) + (1 — €2)qg (se),

wherees = sy(1 — o) + o, (1 — s¢). There is a “region to use decoder” for this system, just aSention[ V. If
a, = «, this region is shown in Fid.]9, and is slightly smaller thae tegion in Fig[ 5. Denote this region and
its hypograph a$i. It follows that (n = €} 5,;)-reliability is achieved fofR. Sinceey, ,;-reliability is achievable,
e¢. p-reliability is achievable by monotonicity. Thus the caustion yields stable memories.

Proposition 3: Let R be the set of memory component noise parameters) within the region to use decoder
or its hypograph corresponding to a system with a GallageorPecting network for th¢3, 6) LDPC code, depicted
in Fig.[9. Then a sequence of memories constructed #womponents have a storage capacity lower bounded
as¢ > 1/34.

This may be directly generalized for any choice of code efderas follows.

Theorem 5:Let R be the (computable) set of memory component noise parasneter) within the region to
use decoder or its hypograph corresponding to a system withllager A correcting network for the\, p) LDPC
code. Then a sequence of memories constructed fisoomponents have a storage capacity lower bounded as

_ =N/
=X -1
The bound reduces td — d,/d.)/(d,d. — 1) for regular codes.
This theorem gives a precise achievability result that ldgustorage capacity. It also implies a code ensemble
optimization problem similar to the one in Sectibn V-C. Theestion of an optimal architecture for memory
systems however remains open.

VIIl. CONCLUSIONS

Loeliger et al. [[7] had observed that decoders are robusbiidealities and noise in physical implementations,
however they had noted that “the quantitative analysis e$¢heffects is a challenging theoretical problem.” This
work has taken steps to address this challenge by chamcterobustness to decoder noise.

The extension of the density evolution method to the caseaoltyf decoders allows a simplified means of
asymptotic performance characterization. Results framrtiethod show that in certain cases Shannon reliability is
not achievable (Propositidd 1), whereas in other casesaithgevable (Propositidn 2). In either case, however, the
degradation of a suitably defined decoding threshold is $maith increasing decoder noise, whether in circuit
nodes or circuit wires. Due to this smoothness, codes optignfor fault-free decoders do work well with faulty
decoders, however optimization of codes for systems witittyfadecoders remains to be studied.

No attempt was made to apply fault masking methods to deadopding algorithms with improved performance
in the presence of noise. One approach might be to use codihip whe decoder so as to reduce the values.ddf
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course, the within-decoder code would need to be decodezteTdre also more direct circuit-oriented techniques
that may be applied [82][_[83]. Following the concept of catenated codes, concatenated decoders may also be
promising. The basic idea of using a first (noiseless) dectmleorrect many errors and then a second (noiseless)
decoder to clean things up was already present ih [61], bubi be extended to the faulty decoder setting.

Reducing power consumption in decoder circuits has beerctiveaarea of research [37], [84]-[90], however
power reduction often has the effect of increasing noishéndecoder [91]. The tradeoff developed between the
quality of the communication channel and the quality of teeatler may provide guidelines for allocating resources
in communication system design.

Analysis of other decoding algorithms with other error miedeill presumably yield results similar to those
obtained here. For greater generality, one might move lewimple LDPC codes and consider arbitrary codes
decoded with very general iterative decoding circuits [@@h suitable error models. An even more general model
of computation such as a Turing machine or beyond [92] doésseem to have an obvious, appropriate error
model.

Even just a bit of imagination provides numerous models adnctel noise and circuit faults that may be
investigated in the future to provide further insights iritee fundamental limits of noisy communication and
computing.
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APPENDIX A
PROOF OFTHEOREM[I

Let x € C" be a codeword and I€Y denote the corresponding channel outpit= xZ (where the notation
means pointwise multiplication on lengthvectors). Note tha¥ is equal to the channel output observation when
x Is all-one. The goal is to show that messages sent during ¢lsedihg process for cases when the received
codeword is eithexZ or x correspond.

Let n; be an arbitrary variable node and fet be one of its neighboring check nodes. Izzé;i) (y) and ugf) (y)
denote the variable-to-check message fropto 7; at the respective terminals in iteratidn assuming received

valuey. Similarly, Ietyj(.f) (y) andugf) (y) be the check-to-variable message fromto »; at the respective terminal
in iteration ¢ assuming received valug
By Definition[2, the channel is memoryless binary-input ettpymmetric and it may be modeled multiplicatively

as
th = l’tZt, (5)

where{Z,} is a sequence of i.i.d. random variables aiglthe channel usage time. The validity of the multiplicativ
model is shown in[[13, p. 605] and [65, p. 184].
The proof proceeds by induction and so the base case is ish&blfirst. By the multiplicative model](5),

Vi(]('])(Y) = ul.(j(.))(xz). Recalling thatz; € {+1}, by the variable node symmetry condition (Definiti@h which
includes computation noiseﬁg), it follows thatz/i(]q) (y) = Vi(](')) (xz) = wiyi(jO) (z).

Now take the wire noiseugjo.) on the message from; to »; into account. It is symmetric (Definitidd 5) and so
0 (y) = miy(o) (z) implies a similar property fo;uﬁ?). In particular,

i i
ME?) ()

I
(1]

[1]

WP (y),wld) (6)
(zavsy (2),w])))

—/ (0 0
i‘:(Vz'(j : (2), wing))

I
8
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where the last step follows becausec {41} and so it can be taken outside Bfby Definition[5, when it is put
back in for the wire noise. Now since; € {jil} and since the wire noise is symmetric abouby Definition[3,
miE(Ui(;])(z),xin?)) will correspond tomug.) (z), in the sense that error event probabilities will be ideaitic
Assume thatugf) (y) corresponds tcrmg)(z) for all (7,7) pairs and somé > 0 as the inductive assumption.
Let \V;,, be the set of all variable nodes that are connected to ched&mp Sincex is a codeword, it satisfies
the parity checks, and Sﬂke/\/ﬁj = 1. Then from the check node symmetry condition (Definifion lf}(ffrl)(y)

corresponds tociu(.f“)(z). Further, by the wire noise symmetry condition (Definitidnamd the same argument

J
as for the base casaé?”(y) corresponds tOc,-u%H)(z). By invoking the variable node symmetry condition
(e41)

(Definition[4) again, it follows that/i(fH)(y) corresponds tov;; (z) for all (i, ) pairs.

Thus by induction, all messages to and from variable nodetheny is received correspond to the product of
x; and the corresponding message whes received.

Both decoders proceed in correspondence and commit exaetlgame number of errors.

1) Worst-Case NoiseThe same result with the same basic proof also holds when tteensise operatiort
is symmetric butw is not symmetric stochastic, but is instead worst-case.oFthe essential modification is ifnl(6)

and the related part of the induction step. Since wire n@sgependent on;, it can be written as;;w. Thus,

u (y) = Ew) (y), 2wl
(0))

ij
= miE(V-(Q) (z) w(o))

’ g

0
(z), zjw

where step (a) follows becausg € {41} and so it can be taken outside &fby the symmetry property dE.
Thus the two decoders will proceed in exact one-to-one spmedence, not just in probabilistic correspondence.

APPENDIX B
PROOF OFTHEOREM[Z

Prior to giving the proof of Theorernl 2, a review of some deifimis from probability theory[[93] and the
Hoeffding-Azuma inequality are provided.

Consider a measurable spa@e, F) consisting of a sample spaée and ac-algebraF of subsets of? that
contains the whole space and is closed under complementatid countable unions. A random variable is an
F-measurable function of. If there is a collectionZ, |y € C) of random variablesZ, : Q — R, then

Z=0(Zylv€C)

is defined to be the smallestalgebraz on 2 such that each mafZ, |y € C) is Z-measurable.

Definition 12 (Filtration): Let {F;} be a sequence of-algebras with respect to the same sample spadehese
F; are said to form diltration if 7y C 7, C --- are ordered by refinement in the sense that each subsetrof
Fi is also inF; for i < j. Also Fy = {0, Q}.

Usually, {F;} is thenatural filtration 7; = o(Zy, Z1, ..., Z;) of some sequence of random variablés, 71, .. .),
and then the knowledge abautknown at step consists of the valuegy(w), Z1(w),. .., Z;(w).

For a probability triple(Q2, 7,P), a version of the conditional expectation of a random véeigh given ao-
algebraF is a random variable denotdd|[Z|F]. Two versions of conditional expectation agree almostlgubeit
measure zero departures are not considered subsequemlyecsion is fixed as canonical. Conditional expectation
given a measurable evext is denotedE [Z|o(€)] and conditional expectation given a random variabileis
denotedE [Z|o(W)].

Definition 13 (Martingale):Let 7y C F; C --- be a filtration on{2 and let Zy, Z;,... be a sequence of
random variables of such that?Z; is F;-measurable. The#y, Z1, ... is amartingalewith respect to the filtration
FoCFLC--- if E[Z)|Fici]l = Zi-a.

A generic way to construct a martingale is Doob’s constaurcti

Definition 14 (Doob Martingale).Let 7y C F; C --- be a filtration on(2 and letZ be a random variable on

Q. Then the sequence of random variablgs 71, ... such thatZ; = E [Z|F;] is a Doob martingale.
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Lemma 1 (Hoeffding-Azuma Inequality [13], [94], [95] et Zy, Z1,... be a martingale with respect to the
filtration 7y C F; C --- such that for each > 0, the following bounded difference condition is satisfied

|Zi — Zz'—1| <y, o € [0,00).

Then for alln > 0 and any¢ > 0,

62
Pr[|Z, — Zy| > £] < 2exp < 35 04%) .

Now to the proof of Theoreml 2; as noted before, it is an extensf [13, Theorem 2] oi [65, Theorem 4.94]. The
basic idea is to construct a Doob martingale about the objeiciterest by revealing various randomly determined
aspects in a filtration-refining manner. The first set of stiepgsed to reveal which code was chosen from the
ensemble of codes; thal, edges in the bipartite graph are ordered in some arbitranneraand exposed one by
one. Then the: channel noise realizations are revealed. At this point #aetgraph and the exact channel noise
realizations encountered have been revealed. Now the decmilse realizations must be revealed. Thererare
variable nodes, so the computation noise in each of thenvealed one by one. There ang, edges over which
variable-to-check communication noise is manifested nfthere arend, /d. check nodes with computation noise,
and finally there arewd, check-to-variable communication noises for one iteratbthe algorithm. The decoder
noise realizations are revealed for each iteration. At #mgrining of the revelation process, the average (over ehoic
of code, channel noise realization, and decoder noise&t@ln) is known; after the:w = (d,+2¢d,+1+0+4d, /d:)n
revelation steps, the exact system used is known.

Recall thatZ denotes the number of incorrect values held at the end of¢tinateration for a particular
(g,y,w,u) € Q. Sinceg is a graph in the set of labeled bipartite factor graphs wihiable node degreé,
and check node degrek, G"(d,,d.); y is a particular input to the decoder,c V"; w is a particular realization
of the message-passing noise, ¢ M?2*"; and v is a particular realization of the local computation noise,
u € YWHtdr/dn the sample space 18 = G"(dy, dc) x Y™ x M2 5 gy(ttd/den

In order to define random variables, first define the follonéxgosure procedure. Suppose realizations of random
quantities are exposed sequentially. First exposeitheedges of the graph one at a time. At step d,n expose
the particular check node socket which is connected tatthgariable node socket. Next, in the followimgsteps,
expose the received valugsone at a time. Finally in the remainin@d, + 1+ d, /d.)¢n steps, expose the decoder
noise values:; andw; that were encountered in all iterations up to iteration

Let =;, 0 < i < m, be a sequence of equivalence relations on the sample Spacgered by refinement. Re-
finement means thdy', v, w’,v) =; (¢",y",w”,u") implies (¢, v/, w',v") =1 (¢, 3", w",u"). The equivalence
relations define equivalence classes such that/, v, v') =; (¢”,y”,w"”,«”) if and only if the realizations of
random quantities revealed in the fiissteps for both pairs is the same.

Now, define a sequence of random variabtgs7., ..., Z,,. Let the random variabl&, be Z, = F [Z], where
the expectation is over the code choice, channel noise , acodér noise. The remaining random varialbifesare
constructed as conditional expectations given the mebsuemuivalence eventy’, v, v, v') =; (g9, y, w, u):

Zi(g7y7w7u) =K [2(9/7y/vw/7u/)‘a((glvy/7w/7u/) = (97%71)7“))] .

Note thatZ,, = Z and that by constructioiy, 7, ..., Z,, is a Doob martingale. The filtration is understood to
be the natural filtration of the random variablBg, 71, ..., Z,,.
To use the Hoeffding-Azuma inequality to give bounds on

Pr[|Z — E[Z]| > ndye/2] = Pr||Z,, — Zo| > ndy€/2],
bounded difference conditions
’Zi+1(g7y7w7u) - Zl(gvy7w7u)‘ < i = 07 sy M= 1

need to be proved for suitable constantsthat may depend od,, d., and/.
For the steps where bipartite graph edges are exposed, ishweaen in [13, p. 614] that

| Ziv1(g,y, w,u) — Zi(g,y, w,u)| < 8(dyde)’, 0 <i < ndy.
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It was further shown in[[13, p. 615] that for the steps whendhannel outputs are revealed that
’Zi—i-l(g,y,U),U) - ZZ(g7y7w7u)’ < 2(dVdC)£' ndV < i < n(l + dV) (7)

It remains to show that the inequality is also fulfilled foeps when decoder noise realizations are revealed. The
bounding procedure is nearly identical to that which yigfds When a node noise realizatians revealed, clearly
only something whose directed neighborhood includes thie rad which the noise causes perturbations can be
affected. Similarly, when an edge noise realizatioris revealed, only something whose directed neighborhood
includes the edge on which the noisecauses perturbations can be affected._In [13, p. 603], lidgsva that the size
of the directed neighborhood of degthof the noden(u) associated with noise is bounded awgfu)| < 2(dyd.)*
and similarly the size of the directed neighborhood of larigtof the edges(w) associated with noise is bounded
as |N§(‘;U)| < 2(dyd.)". Since the maximum depth that can be affected by a noiserpation is2/, a weak uniform
bound for the remaining exposure steps is

| Zis1(g,y, w,u) — Zi(g, y, w,u)| < 2(dyde)’, n(1 4 dy)dy < i < m.

Since bounded difference constantshave been provided for all the theorem follows from application of the
Hoeffding-Azuma inequality to the martingale.
One may compute a particular value @fto use as follows. The bounded difference sum is

ij af = 64ndy(dyde)® + dn(dyde)® + 4[20dyn + nl + nldy/d.)(dyd:)*
k=1
=n {64dv + 4+ 8dyl+ 0+ %} d,2td 2"
Setting constants in the theorem and in the Hoeffding-Azimeguality equal yields
% ::512dv2”_1dc2é4—32dv2@_2dc2é4—64£dv2”_1d02é4—8€dV24_1dc2@‘14—8€dv2”_2dc24
< (544 + 80¢)d, 2 *d
Thus § can be taken ag544 + 80¢)d,*'d.*".

APPENDIXC
AN ANALYTICAL EXPRESSION

An analytical expression for*(n = 1/10,a = 5 x 1073) is
5 (1= V1+4er),
wherec; is the second root of the polynomial in
c1 + o€ + 63é2 + 0453 + 0554 + 065—55,
and constantgc, ..., cg) are defined as follows.

c1 = 3602 — 360> + 18600 — 62400° + 147520 — 253447 + 31680a°

—928160a” + 16896a'° — 61440t + 10242
| 3424572914129280658801
~4000000000000000000000000

co =1 — T2a + 108002 — 8160 + 38640a* — 1259520° + 29542408 — 5068800a.”
+ 6336000° — 5632000 + 33792000 — 122880 + 204802
~133200752195329280658801
~200000000000000000000000

c3 = 32 — 864a + 10080a? — 691200 + 314880a* — 10122240° + 236492805 — 405504007
+ 50688000 — 45056000 + 2703360? — 9830400t + 1638400'?
~ 698088841835929280658801
~25000000000000000000000
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¢y = 160 — 3840cr + 4224002 — 2816000 + 12672000 — 4055040a° + 94617600 — 162201600
+ 202752000 — 180224000 + 10813440a° — 39321600t + 65536002
_ 886384871716129280658801
~6250000000000000000000

c5 = 320 — 7680cr + 84480 — 5632000 + 25344000 — 8110080 + 18923520a° — 32440320a”
+ 4055040002 — 360448000° + 21626880'" — 78643200t + 131072002
_ 886384871716129280658801
~3125000000000000000000

¢ = 256 — 61440 4 6758402 — 4505600 + 2027520a* — 64880640° + 15138816a° — 259522560."
+ 324403200° — 288358400° + 1730150400 — 62914560t + 104857602
_ 886384871716129280658801
3906250000000000000000
As given in Tabld]l, the numerical value of(np = 1/10,a = 5 x 1072) is 0.0266099758.

Similarly complicated analytical expressions are avéd@dbr the other entries of Tablé | and the values used to
create Figs. 14,15, arld 6.
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