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Sequence Folding, Lattice Tiling,
and Multidimensional Coding

Tuvi Etzion, Fellow, IEEE

Abstract— Folding a sequenceS into a multidimensional box
is a well-known method which is used as a multidimensional
coding technique. The operation of folding is generalized in
a way that the sequenceS can be folded into various shapes
and not just a box. The new definition of folding is based on
a lattice tiling for the given shapeS and a direction in the D-
dimensional integer grid. Necessary and sufficient conditions
that a lattice tiling for S combined with a direction define
a folding of a sequence intoS are derived. The immediate
and most impressive application is some new lower bounds
on the number of dots in two-dimensional synchronization
patterns. This can be also generalized for multidimensional
synchronization patterns. The technique and its application
for two-dimensional synchronization patterns, raise somein-
teresting problems in discrete geometry. We will also discuss
these problems. It is also shown how folding can be used to
construct multidimensional error-correcting codes. Finally, by
using the new definition of folding, multidimensional pseudo-
random arrays with various shapes are generated.

Index Terms— distinct difference configuration, folding, lat-
tice tiling, pseudo-random array, two-burst-correcting cods

I. I NTRODUCTION

Multidimensional coding in general and two-dimensional
coding in particular are subjects which attract lot of at-
tention in the last three decades. One of the main rea-
sons is their modern applications which have developed
during these years. Such applications for synchronization
patterns include radar, sonar, physical alignment, and time-
position synchronization. For error-correcting codes they
include two-dimensional magnetic and optical recording as
well as three-dimensional holographic recording. These are
the storage devices of the future. Applications for pseudo-
random arrays include scrambling of two-dimensional data,
two-dimensional digital watermarking, and structured light
patterns for imaging systems. Each one of these structures
(multidimensional synchronization patterns, error-correcting
array codes, and pseudo-random arrays), and its related cod-
ing problem, is a generalization of an one-dimensional struc-
ture. But, although the related theory of the one-dimensional
case is well developed, the theory for the multidimensional
case is developed rather slowly. This is due that the fact the
most of the one-dimensional techniques are not generalized
easily to higher dimensions. Hence, specific techniques have
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to be developed for multidimensional coding. One approach
in multidimensional coding is to take an one-dimensional
code and to transform it into a multidimensional code. One
technique in this approach is called folding and it is the
subject of the current paper. This technique was applied
previously for two-dimensional synchronization patterns, for
pseudo-random arrays, and lately for multidimensional error-
correcting codes. We start with a short introduction to these
three multidimensional coding problems which motivated
our interest in the generalization of folding.
Synchronization patterns

One-dimensional synchronization patterns were first intro-
duced by Babcock in connection with radio interference [1].
Other applications are discussed in details in [2] and some
more are given in [3], [4]. The two-dimensional applica-
tions and related structures were first introduced in [5] and
discussed in many papers, e.g. [6], [7], [8], [9], [10]. The
two-dimensional problems has also interest from discrete
geometry point of view and it was discussed for example
in [11], [12]. Recent new application in keys predistribution
for wireless sensor networks [13] led to new related two-
dimensional problems concerning these patterns which are
discussed in [14], [15]. It has raised the following discrete
geometry problem: given a regular polygon with areas on
the square (or hexagonal) grid, what is the maximum number
of grid points that can be taken, such that any two lines
connecting these grid points are different either in their
length or in their slope. Upper bound technique based on
an idea of Erdös and Turán [11], [16] is given in [14].
Some preliminary lower bounds on the number of dots are
also given in [14], where the use of folding is applied.
Folding for such patterns was first used by [10]. An one-
dimensional ruler was presented as a binary sequence and
written into a two-dimensional array row by row, one binary
symbol to each entry of the array. This was generalized
for higher dimensions, sayn1 × n2 × n3 array, by first
partitioning the array inton1 two-dimensional arrays of size
n2 × n3. The one-dimensional sequence is written into the
thesen2 ×n3 arrays one by one in the order defined by the
three-dimensional array. To each of thesen2 × n3 arrays
the sequence is written row by row. Folding into higher
dimensions is done similarly and can be defined recursively.
This technique was used in [10] to generate asymptotically
optimal high dimensional synchronization patterns.
Error-correcting codes

There is no need for introduction to one-dimensional
error-correcting codes. Two-dimensional and multidimen-
sional error-correcting codes were discussed by many au-
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thors, e.g. [17], [18], [19], [20], [21], [22], [23], [24],
[25]. Multidimensional error-correcting codes are of interest
when the errors are not random errors. For correction of
up to t random errors in a multidimensional array, we can
consider the elements in the array as an one-dimensional
sequence and use at-error-correcting code to correct these
errors. Hence, when we talk about multidimensional error-
correcting codes we refer to the errors as special ones
such as the rank of the error array [26], [27], or criss-
cross patterns [27], [28], [29], etc. An important family of
multidimensional error-correcting codes are the burst-error-
correcting codes. In these codes, we assume that the errors
are contained in a cluster whose size is at mostb. The one-
dimensional case was considered for more than forty years.
Fire [30] was the first to present a general construction. Op-
timal burst-correcting codes were considered in [31], [32],
[33]. Generalizations, especially for two-dimensional codes,
but also for multidimensional codes were considered in
various research papers, e.g. [18], [19], [21], [22], [23],[25].
In general, ”simple” folding of one-dimensional codes were
not considered for multidimensional error-correcting codes.
Even so in many of these papers, one-dimensional burst-
correcting codes and error-correcting codes, were transferred
into two dimensional codes, e.g. [20], [21], [22], [23], [24],
[25]. Colorings for two-dimensional coding, which transfer
one-dimensional codes into multidimensional arrays were
considered for interleaving schemes [21] and other tech-
niques [25]. These colorings can be compared to the coloring
which will be used in the sequel for folding. There is another
related problem of generating an array in which burst-errors
can be corrected on an unfolded sequence generated from
the array [34], [35], [36], [37], [38].
Pseudo-random arrays

The one-dimensional pseudo-random sequences are the
maximal length linear shift register sequences known as M-
sequences and also pseudo-noise (PN) sequences [39]. These
are sequences of length2n−1 generated by a linear feedback
shift-register of ordern. They have many desired properties
such as

• Recurrences Property - the entries satisfy a recurrence
relation of ordern.

• Balanced Property -2n−1 entries in the sequence are
onesand2n−1 − 1 entries in the sequence arezeroes.

• shift-and-Add Property - when a sequence is added
bitwise to its cyclic shift another cyclic shift of the
sequence is obtained.

• Autocorrelation Property - the out-of-phase value of the
autocorrelation function is always -1.

• Window Property - each nonzeron-tuple appears ex-
actly once in one period of the sequence.

There are other properties which we will not mention [40].
For a comprehensive work on these sequences the reader
is referred to [39]. Related sequences are the de Bruijn
sequences of length2n which are generated by nonlinear
feedback shift-register of ordern. These sequences have the
window property, i.e., eachn-tuple appears exactly once in
one period of the sequence.

The two-dimensional generalizations of pseudo-noise and
de Bruijn sequences are the pseudo-random arrays and
perfect maps [40], [41], [42], [43], [44], [45]. Pseudo-
random arrays were also calledlinear recurring arrays
having maximum=area matricesby Nomura, Miyakawa,
Imai, and Fukuda [41] who were the first to construct them.
Perfect maps and pseudo-random arrays have been used in
two-dimensional range-finding, in data scrambling, and in
various kinds of mask configurations. More recently, pseudo-
random arrays have found other applications in new and
emerging technological areas. One such application is robust,
undetectable, digital watermarking of two-dimensional test
images [46], [47]. Another interesting example is the use
of pseudo-random arrays in creatingstructured light, which
is a new reliable technique for recovering the surface of an
object. The structured-light technique is based on projecting
a light pattern and observing the illuminated scene from one
or more points of view [48], [49], [50], [51]. As mentioned
in these papers, this technique can be generalized to three di-
mensions; hence, constructions of three-dimensional perfect
maps and pseudo-random arrays are also of interest.

The main goal of this paper is to generalize the
well-known technique, folding, for generating multidimen-
sional codes of these types, synchronization patterns, burst-
correcting codes, and pseudo-random arrays. The general-
ization will enable to obtain the following results:

1) Form new two-dimensional codes for these applica-
tions.

2) Generalize all the multidimensional codes for any
number of dimensions in a simple way.

3) Form some optimal codes not known before.
4) Make these codes feasible not just for multidimen-

sional boxes, but also for many other different shapes.
5) Solve the synchronization pattern problem as a dis-

crete geometry problem for various two-dimensional
shapes, and in particular regular polygons.

It is important to note that folding which was used in other
places in the literature aim only at one goal. Our folding
aim is at several goals. Even so, our description of folding
is simple and very intuitive for all these goals.

The rest of this paper is organized as follows. In Section II
we define the basic concepts of folding and lattice tiling.
Tiling and lattices are basic combinatorial and algebraic
structures. We will consider only integer lattice tiling. We
will summarize the important properties of lattices and
lattice tiling. In Section III we will present the generalization
of folding into multidimensional shapes. All previous known
folding definitions are special cases of the new definition.
The new definition involves a lattice tiling and a direction.
We will prove necessary and sufficient conditions that a
lattice with a direction define a folding. We first present
a proof for the two-dimensional case since it is the most
applicable case. We continue to show the generalization for
the multidimensional case. For the two-dimensional case the
proofs are slightly simpler than the slightly different proofs
for the multidimensional case. we will first consider folding
in which two consecutive elements in the folded sequence
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are also adjacent, at least cyclically, in the array. This will
be generalized to folding in which each two consecutive
elements in the folded sequence are not necessarily adjacent
in the array. In Section IV we give a short summary on
synchronization patterns and present basic theorems con-
cerning the bounds on the number of elements in such
patterns. In Section V we apply the results of the previous
sections to obtain new type of synchronization patterns
which are asymptotically either optimal or almost optimal.
In Section VI we discuss folding in the hexagonal grid and
present construction for synchronization patterns in thisgrid
with shapes of hexagons or circles. In Section VII we show
how folding can be applied to construct multidimensional
error-correcting codes. In section VIII we generalize the
constructions in [41], [40] to form pseudo-random arrays on
different multidimensional shapes. Conclusion and problems
for further research are given in Section IX.

II. FOLDING AND LATTICE TILING

A. Folding

Folding a rope, a ruler, or any other feasible object
is a common action in every day life. Folding an one-
dimensional sequence into aD-dimensional array is very
similar, but there are a few variants. First, we will summarize
three variants for folding of an one-dimensional sequence
s0s1 · · · sm−1 into a two-dimensional arrayA. The general-
ization for aD-dimensional array is straightforward while
the description becomes more clumsy.

F1. A is considered as a cyclic array horizontally and
vertically in such a way that a walk diagonally visits
all the entries of the array. The elements of the
sequence are written along the diagonal of ther × t
arrayA. This folding works (i.e., all elements of the
sequence are written into the array) if and only ifr
and t are relatively primes.

F2. The elements of the sequence are written row by row
(or column by column) inA.

F3. The elements of the sequence are written diagonal by
diagonal inA.

Example 1:

Example forF1:

Given the M-sequence000111101011001 of length 15,
we fold it into a 3 × 5 array with a 2 × 2 window
property (the extra row and extra column are given for better
understanding of the folding).

0 6 12 3 9 0

5 11 2 8 14 5
10 1 7 13 4 10
0 6 12 3 9 0

0 1 0 1 0 0

1 1 0 1 1 1
1 0 0 0 1 1
0 1 0 1 0 0

24
17 20 23

10 13 16 19224
11

18
25

32
39

46
53

7
14

21
28

35
42

49

3 6 9 12 15 18 21
2 5 8 11 14

1 4 7
0

52
45 48 51

38 41 44 47 50
31 34 37 40 43 4649

30 33 36 3942
29 32 35

2825
26

27

Fig. 1. Folding by diagonals

Example forF2:

The following sequence (ruler) of length 13 with five dots
is folded into a3× 5 array

0 1 2 3 4 5 6 7 8 9 10 11 12
• • • • •

10 11 12 13 14
5 6 7 8 9
0 1 2 3 4

• •

• • •

Example forF3:

The following B2-sequence inZ31 : {0, 1, 4, 10, 12, 17}
(can be viewed as a cyclic ruler) is folded into an infinite
array (we demonstrate part of the array with folding into a
small rectangle is given in bold). Note, that while the folding
is done we should consider all the integers modulo 31 (see
Figure 1).

F1 and F2 were used by MacWilliams and Sloane [40] to
form pseudo-random arrays. F2 was also used by Robin-
son [10] to fold a one-dimensional ruler into a two-
dimensional Golomb rectangle. The generalization to higher
dimensions is straight forward. F3 was used in [14] to obtain
some synchronization patterns inZD.

B. Tiling

Tiling is one of the most basic concepts in combina-
torics. We say that aD-dimensional shapeS tiles theD-
dimensional spaceZD if disjoint copies ofS coverZD.

Remark 1:We assume that our shapeS is a discrete
shape, i.e., it consists of discrete points ofZ

D such that
there is a path between any two points ofS which consists
only from points ofS. The shapeS in Z

D is usually not
represented as a union of points inZD, but rather as a union
of units cubes inRD with 2D vertices inZD. Let A be the
set of points in the first representation. The set of unit cube
by the second representation is

{U(i1,i2,...,iD) : (i1, i2, . . . , iD) ∈ A} ,
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where

U(i1,i2,...,iD) = {(i1, i2, . . . , iD)+ξ1ǫ1+ξ2ǫ2+· · ·+ξDǫD :

0 ≤ ξi < 1, 1 ≤ i ≤ D} ,

andǫi is a vector of lengthD and weight one with aone in
the ith position. We omit the case of shapes inRD which
are not of interest to our discussion.

This cover ofZD with disjoint copies ofS is calledtiling
of ZD with S. For each shapeS we distinguish one of the
points ofS to be thecenterof S. Each copy ofS in a tiling
has the center in the same related point. The setT of centers
in a tiling defines the tiling, and hence the tiling is denoted
by the pair(T ,S). Given a tiling (T ,S) and a grid point
(i1, i2, . . . , iD) we denote byc(i1, i2, . . . , iD) the center of
the copy ofS for which (i1, i2, . . . , iD) ∈ S. We will also
assume that the origin is a center of some copy ofS.

Remark 2: It is easy to verify that any point ofS can
serve as the center ofS. If (T ,S) is a tiling then we can
choose any point ofS to serve as a center without affecting
the fact that(T ,S) is a tiling.

Lemma 1: If (T ,S) is a tiling then for any given
point (i1, i2, . . . , iD) ∈ Z

D the point (i1, i2, . . . , iD) −
c(i1, i2, . . . , iD) belongs to the shapeS whose center is in
the origin.

Proof: Let S1 be the copy ofS whose center is
in the origin andS2 be the copy ofS with the point
(i1, i2, . . . , iD). Let (x1, x2, . . . , xD) be the point inS1

related to the point(i1, i2, . . . , iD) in S2. By definition,
(i1, i2, . . . , iD) = c(i1, i2, . . . , iD) + (x1, x2, . . . , xD) and
the lemma follows.

One of the most common types of tiling is alattice tiling.
A lattice Λ is a discrete, additive subgroup of the realD-
spaceRD. W.l.o.g., we can assume that

Λ = {u1v1+u2v2+ · · ·+uDvD : u1, . . . , uD ∈ Z} , (1)

where {v1, v2, . . . , vD} is a set of linearly independent
vectors inR

D. A lattice Λ defined by (1) is a sublattice
of Z

D if and only if {v1, v2, . . . , vD} ⊂ Z
D. We will be

interested solely in sublattices ofZD since our shapes are
defined inZD. The vectorsv1, v2, . . . , vD are called abase
for Λ ⊆ Z

D, and theD ×D matrix

G =











v11 v12 . . . v1D
v21 v22 . . . v2D
...

...
. . .

...
vD1 vD2 . . . vDD











having these vectors as its rows is said to be agenerator
matrix for Λ.

The volumeof a latticeΛ, denotedV (Λ), is inversely
proportional to the number of lattice points per unit volume.
More precisely,V (Λ) may be defined as the volume of the
fundamental parallelogramΠ(Λ) in R

D, which is given by

Π(Λ)
def
= {ξ1v1+ξ2v2+· · ·+ξDvD : 0 ≤ ξi < 1, , 1 ≤ i ≤ D}.

There is a simple expression for the volume ofΛ, namely,
V (Λ) = | detG|.

We say thatΛ is a lattice tiling for S if the lattice points
can be taken as the setT to form a tiling (T ,S). In this
case we have that|S| = V (Λ) = | detG|.

There is a large variety of literature about tiling and lat-
tices. We will refer the reader to two of the most interesting
and comprehensive books [52], [53].

Remark 3:Note, that different generator matrices for the
same lattice will result in different fundamental parallelo-
grams. This is related to the fact that the same lattice can
induce a tiling for different shapes with the same volume. A
fundamental parallelogram is always a shape inR

D which
is tiled by Λ (usually this is not a shape inZD and as a
consequence, most and usually all, of the shapes inZ

D are
not fundamental parallelograms).

Lattices are very fundamental structures in various coding
problems, e.g. [54], [55], [56] is a small sample which does
not mean to be representative. They are also applied in
multidimensional coding, e.g. [21]. This paper exhibits a
new application of lattices for multidimensional coding and
for discrete geometry problems.

Lemma 2:Let Λ be a D-dimensional lattice, with a
generator matrixG, andS be aD-dimensional shape with
a point at the origin.Λ is a lattice tiling forS if and only if
| detG| = |S| and there are no two points(i1, i2, . . . , iD)
and(j1, j2, . . . , jD) in S such that(i1−j1, i2−j2, . . . , iD−
jD) is a lattice point.

Proof: Assume first thatΛ is a lattice tiling forS. The
condition on the volume ofS is trivial. Assume the contrary
that(i1, i2, . . . , iD) and(j1, j2, . . . , jD) are in the copy ofS,
whose center is in the origin, and(i1− j1, i2− j2, . . . , iD−
jD) is a lattice point. It follows that the point(i1, i2, . . . , iD)
is contained in the shape centered in the origin and also
in the shape centered at(i1 − j1, i2 − j2, . . . , iD − jD), a
contradiction to the fact thatΛ is a lattice tiling forS.

Now, assume that| detG| = |S| and there are no two
points (i1, i2, . . . , iD) and (j1, j2, . . . , jD) in S such that
(i1−j1, i2−j2, . . . , iD−jD) is a lattice point. We choose the
point ofS which is in the origin to be the center ofS and we
place copies ofS on each lattice point such that the center
coincide with the lattice point. Since| detG| = |S| we only
have to show that there is no point which is contained in
two different copies ofS in order to complete the proof that
Λ is a lattice tiling forS. Assume the contrary that the point
P is contained in two copies ofS with centers atC1 and
C2. Similarly to the proof of Lemma 1 it can be shown that
P − C1 andP − C2 are points in the copy ofS centered
at the origin, But,P − C1 − (P − C2) = C2 − C1 is a
lattice point (since it is a difference of two lattice points), a
contradiction to the assumption. Hence,Λ is a lattice tiling
for S.

Corollary 1: Let Λ be a D-dimensional lattice, with a
generator matrixG, andS be aD-dimensional shape.Λ is
a lattice tiling forS if and only if | detG| = |S| and there
are no two points(i1, i2, . . . , iD) and(j1, j2, . . . , jD) in any
copy ofS such that(i1−j1, i2−j2, . . . , iD−jD) is a lattice
point.
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III. T HE GENERALIZED FOLDING METHOD

In this section we will generalize the definition of folding.
All the previous three definitions (F1, F2, andF3) are special
cases of the new definition. The new definition involves
a lattice tiling Λ, for a shapeS on which the folding is
performed.

A ternary vectorof lengthD, (d1, d2, . . . , dD), is a word
of lengthD, wheredi ∈ {−1, 0,+1}.

Let S be a D-dimensional shape and letδ =
(d1, d2, . . . , dD) be a nonzero ternary vector of lengthD.
Let Λ be a lattice tiling for a shapeS, and letS1 be the
copy ofS which includes the origin. We define recursively a
folded-rowstarting in the origin. If the point(i1, i2, . . . , iD)
is the current point ofS1 in the folded-row, then the next
point on its folded-row is defined as follows:

• If the point(i1+d1, i2+d2, . . . , iD+dD) is in S1 then
it is the next point on the folded-row.

• If the point (i1 + d1, i2 + d2, . . . , iD + dD) is in S2 6=
S1 whose center is in the point(c1, c2, . . . , cD) then
(i1 + d1 − c1, i2 + d2 − c2, . . . , iD + dD − cD) is the
next point on the folded-row (this is a point inS1 by
Lemma 1).

The new definition of folding is based on a latticeΛ, a
shapeS, and adirection δ. The triple (Λ,S, δ) defines a
folding if the definition yields a folded-row which includes
all the elements ofS. It will be proved that onlyΛ and
δ determine whether the triple(Λ,S, δ) defines a folding.
The role ofS is only in the order of the elements in the
folded-row; and of courseΛ must define a lattice tiling for
S. Different lattice tilings for the same shapeS can function
completely different. Also, not all directions for the same
lattice tiling of the shapeS should define (or not define) a
folding.

Remark 4: It is not difficult to see that the three folding
defined earlier (F1, F2, and F3) are special cases of the new
definition. The definition of the generator matrices for the
three corresponding lattices are left as an exercise to the
interested reader.

Remark 5:The definition of ternary vectors for the direc-
tion, in which the folding is performed, is given to guarantee
that two consecutive elements in the folded-row, are also
adjacent (possibly cyclically) in the shapeS.

Example 2:Let S be a2×2 square. LetΛ1 be the lattice
whose generator matrix given by the matrix

G1 =

[

2 2
0 2

]

.

Λ1 defines a lattice tiling forS. None of the four possible
ternary vectors of length 2 define a folding withΛ (andS).

Let Λ2 be the lattice whose generator matrix given by the
matrix

G2 =

[

2 1
0 2

]

.

Λ2 also defines a lattice tiling forS. Each one of the
directions(+1, 0), (+1,+1), and(+1,−1) defines a folding
with Λ (andS). Only the direction(0,+1) does not define
a folding withΛ (andS).

How many different folded-rows do we have? In other
words, how many different folding operations are defined in
this way? There are3D − 1 non-zero ternary vectors. IfΛ
with the ternary vector(d1, d2, . . . , dD) define a folding then
alsoΛ with the ternary vector(−d1,−d2, . . . ,−dD) define a
folding. The two folded-rows are in reverse order, and hence
they will be considered to beequivalent. If two folded-rows
are not equal and not a reverse pair then they will considered
to benonequivalent. The question whether for eachD, there
exists aD-dimensional shapeS with 3D−1

2 different folded-
rows will be partially answered in the sequel. Meanwhile,
we present an example forD = 2.

Before the example we shall define how we fold a
sequence into a shapeS. Let Λ be a lattice tiling for the
shapeS for which n = |S|. Let δ be a direction for which
(Λ,S, δ) defines a folding. LetB = b0b1 . . . bn−1 be a
sequence of lengthn. The folding ofB induced by(Λ,S, δ)
is denoted by(Λ,S, δ,B) and defined as the shapeS with
the elements ofB, wherebi is in theith entry of the folded-
row in S defined by(Λ,S, δ).

Example 3:Let Λ be the lattice whose generator matrix
given by the matrix

G =

[

3 2
7 1

]

.

One can verify that shapes tiled by this lattice have different
folded-rows. It can be proved that this is the lattice with the
smallest volume which has this property, i.e., that the four
folded-rows are different.

If our shapeS is an 1 × 11 array then the folding of a
sequence with length 11 is defined as follows (the position
labelled with ani is the place of theith element of the
sequence).
For the direction vector(+1, 0) the order is given by

0 1 2 3 4 5 6 7 8 9 10 .

For the direction vector(0,+1) the order is given by

0 3 6 9 1 4 7 10 2 5 8 .

For the direction vector(+1,+1) the order is given by

0 9 7 5 3 1 10 8 6 4 2 .

For the direction vector(+1,−1) the order is given by

0 7 3 10 6 2 9 5 1 8 4 .

If our shapeS is given by

then the folding of a sequence of length 11 is depicted in
Figure 2.
Finally, if our shapeS is given by



6

0 1 2 3
4 5 6 7
8 9 10

with the direction vector(+1, 0);

0 3 6 9
1 4 7 10
2 5 8

with the direction vector(0,+1);

0 9 7 5
3 1 10 8
6 4 2

with the direction vector(+1,+1);

0 7 3 10
6 2 9 5
1 8 4

with the direction vector(+1,−1).

Fig. 2. Folding of the first shape

0 1

2 3

4 5 6 7
8 9 10

with the direction vector(+1, 0);

0 3

6 9

1 4 7 10
2 5 8

with the direction vector(0,+1);

0 9

7 5

3 1 10 8
6 4 2

with the direction vector(+1,+1);

0 7

3 10

6 2 9 5
1 8 4

with the direction vector(+1,−1).

Fig. 3. Folding of the second shape

then the folding of a sequence of length 11 is depicted in
Figure 3.

Next, we aim to find sufficient and necessary conditions
that a triple (Λ,S, δ) defines a folding. We start with a
simple characterization for the order of the elements in a
folded-row.

Lemma 3:Let Λ be a lattice tiling for the shapeS and
let δ = (d1, d2, . . . , dD) be a nonzero ternary vector. Let
g(i) = (i · d1, . . . , i · dD) − c(i · d1, . . . , i · dD) and let
i1, i2 be two integers. Theng(i1) = g(i2) if and only if
g(i1 + 1) = g(i2 + 1).

Proof: The lemma follows immediately from the ob-
servation thatg(i1) = g(i2) if and only if (i1 ·d1, . . . , i1 ·dD)
and(i2 · d1, . . . , i2 · dD) are the same related position inS,

i.e., corresponds to the same position of the folded-row.
The next two lemmas are an immediate consequence of

the definitions and provide a concise condition whether the
triple (Λ,S, δ) defines a folding.

Lemma 4:Let Λ be a lattice tiling for the shapeS and let
δ = (d1, d2, . . . , dD) be a nonzero ternary vector.(Λ,S, δ)
defines a folding if and only if the set{(i · d1, i · d2, . . . , i ·
dD) − c(i · d1, i · d2, . . . , i · dD) : 0 ≤ i < |S|} contains
|S| distinct elements.

Proof: The lemma is an immediate consequence of
Lemmas 1, 3, and the definition of folding.

Lemma 5:Let Λ be a lattice tiling for the shapeS and let
δ = (d1, d2, . . . , dD) be a nonzero ternary vector.(Λ,S, δ)
defines a folding if and only if(|S|·d1 , . . . , |S|·dD)−c(|S|·
d1, . . . , |S| · dD) = (0, . . . , 0) and for eachi, 0 < i < |S|
we have(i ·d1, . . . , i ·dD)−c(i ·d1, . . . , i ·dD) 6= (0, . . . , 0).

Proof: Assume first that(Λ,S, δ) defines a folding. If
for some0 < j < |S| we have(j · d1, . . . , j · dD) − c(j ·
d1, . . . , j · dD) = (0, . . . , 0) theng(j) = g(0) and hence by
Lemma 3 the folded-row will have at mostj elements ofS.
Since j < |S| we will have that(Λ,S, δ) does not define
a folding. On the other hand, Lemma 3 also implies that if
(Λ,S, δ) defines a folding theng(|S|) = (0, . . . , 0).

Now assume that(|S|·d1, . . . , |S|·dD)−c(|S|·d1 , . . . , |S|·
dD) = (0, . . . , 0) and for eachi, 0 < i < |S| we have
(i · d1, . . . , i · dD) − c(i · d1, . . . , i · dD) 6= (0, . . . , 0). Let
0 < i1 < i2 < |S|; if g(i1) = g(i2) then by Lemma 3
we haveg(i2 − i1) = g(0) = (0, . . . , 0), a contradiction.
Therefore, the folded-row contains all the elements ofS
and hence by definition(Λ,S, δ) defines a folding.

Corollary 2: If (Λ,S, δ), δ = (d1, d2, . . . , dD), defines a
folding then the point(|S|·d1, . . . , |S|·dD) is a lattice point.

Before considering the generalD-dimensional case we
want to give a simple condition to check whether the triple
(Λ,S, δ) defines a folding in the two-dimensional case. For
each one of the four possible ternary vector we will give
a necessary and sufficient condition that the triple(Λ,S, δ)
defines a folding.

Lemma 6:Let G be the generator matrix of a latticeΛ
and let s = | detG|. Then the points(0, s), (s, 0), (s, s),
and (s,−s) are lattice points.

Proof: It is sufficient to prove that the points(0, s),
(s, 0) are lattice points. LetΛ be a lattice whose generator
matrix is given by

G =

[

v11 v12
v21 v22

]

.

W.l.o.g. we assume that| detG| > 0, i.e., s = v11v22 −
v12v21. Since v22(v11, v12) − v12(v21, v22) = (s, 0) and
v11(v21, v22)− v21(v11, v12) = (0, s), it follows that (0, s),
(s, 0) are lattice points.

Theorem 1:Let Λ be a lattice whose generator matrix is
given by

G =

[

v11 v12
v21 v22

]

.

If Λ defines a lattice tiling for the shapeS then the triple
(Λ,S, δ) defines a folding
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• with the ternary vectorδ = (+1,+1) if and only if
g.c.d.(v22 − v21, v11 − v12) = 1;

• with the ternary vectorδ = (+1,−1) if and only if
g.c.d.(v22 + v21, v11 + v12) = 1;

• with the ternary vectorδ = (+1, 0) if and only if
g.c.d.(v12, v22) = 1;

• with the ternary vectorδ = (0,+1) if and only if
g.c.d.(v11, v21) = 1.
Proof: We will prove the case whereδ = (+1,+1);

the other three cases are proved similarly.
Let Λ be a lattice tiling for the shapeS. By Lemma 6

we have that(|S|, |S|) is a lattice point. Therefore, there
exist two integersα1 and α2 such thatα1(v11, v12) +
α2(v21, v22) = (|S|, |S|), i.e., α1v11 + α2v21 = α1v12 +
α2v22 = |S| = v11v22 − v12v21. These equations have
exactly one solution,α1 = v22 − v21 andα2 = v11 − v12.
By Lemma 5, (Λ,S, δ) defines a folding if and only if
(|S|, |S|) = c(|S|, |S|) and for eachi, 0 < i < |S| we
have(i, i) 6= c(i, i).

Assume first that g.c.d.(v22−v21, v11−v12) = 1. Assume
for the contrary, that there exist three integersi, β1, and
β2, such thatβ1(v11, v12) + β2(v21, v22) = (i, i), 0 <
i < |S|. Hence,β1v11 + β2v21 = β1v12 + β2v22 = i,
i.e., β2

β1
= v11−v12

v22−v21
= α2

α1
. Since α1 = v22 − v21 and

g.c.d.(v22 − v21, v11 − v12) = 1, it follows that β1 = γα1

and β2 = γα2, for some integerγ > 0 (w.l.o.g. we can
assume thaγ > 0). Therefore,i = β1v11 + β2v21 =
γα1v11 + γα2v21 = γ|S| ≥ |S|, a contradiction. Thus, it
follows from Lemma 5 that if g.c.d.(v22−v21, v11−v12) = 1
then (Λ,S, δ) defines a folding with the ternary vector
δ = (+1,+1).

Assume now that(Λ,S, δ) defines a folding with the
ternary vectorδ = (+1,+1). Assume for the contrary that
g.c.d.(v22 − v21, v11 − v12) = ν > 1. Since g.c.d.(v22 −
v21, v11 − v12) = ν > 1, it follows that β1 = v22−v21

ν
and β2 = v11−v12

ν are integers. Therefore,β1(v11, v12) +

β2(v21, v22) = ( |S|
ν , |S|

ν ) and as a consequence|S|
ν is an

integer. Hence, by Lemma 5 we have that(Λ,S, δ) does
not define a folding, a contradiction. Thus, if(Λ,S, δ)
defines a folding with the ternary vectorδ = (+1,+1) then
g.c.d.(v22 − v21, v11 − v12) = 1.

Theorem 1 is generalized for theD-dimensional. This
generalization will be presented in Theorem 18 given in
Appendix A.

There are cases when we can determine immediately
without going into all the computation, whether(Λ,S, δ)
defines a folding. It will be a consequence of the following
lemmas.

Lemma 7:

• The number of elements in a folded-row does not
depend on the point ofS chosen to be the center of
S.

• The number of elements in a folded-row is a divisor of
|S|, i.e., a divisor ofV (Λ).
Proof: By Lemmas 3 and 5 and the definition of the

folded-row, if we start the folded-row in the origin then the
number of elements in the folded-row is the smallestt such

that t · δ is a lattice point (since the folded-row starts at
a lattice point and ends one step before it reaches again a
lattice point). This implies that the number of elements in a
folded-row does not depend on the point ofS chosen to be
the center ofS. We can make any point ofS to be the center
of S and hence any point can be at the origin. Therefore, all
folded-rows with the directionδ havet elements. Any two
folded-rows are either equal or disjoint. Hencet must be a
divisor |S| and t does not depend on which point ofS is
the center.

The next lemma is an immediate consequence from the
definition of a folded-row.

Lemma 8:The number of elements in a folded-row is one
if and only if δ is a lattice point.

Corollary 3: If the volume of a lattice is a prime number
then it defines a folding with a directionδ unlessδ is a
lattice point.

By Theorem 18 it is clear that we can determine whether
the triple (Λ,S, δ) defines a folding only by the latticeΛ
and the ternary direction vectorδ. The role ofS is only
in the fact thatΛ should be a lattice tiling forS. But, it
would be easier to examine simpler shapes (like rectangle)
than more complicated shapes even so they have the same
lattice tiling Λ. This leads to an important tool that we will
use to find an appropriate folding for a shapeS ′. We will
use a folding of a simpler shapeS with the same volume
and apply iteratively the following theorem. The proof of the
theorem is an immediate consequence from the definitions
of lattice tiling and folding.

Theorem 2:Let Λ be a lattice tiling for the D-
dimensional shapeS, let δ = (d1, d2, . . . , dD) be a nonzero
ternary vector, and(Λ,S, δ) defines a folding. Assume the
origin is a point in the copyS ′ of S, (i1, i2, . . . , iD) ∈ S ′,
(i1 + d1, i2 + d2, . . . , iD + dD) ∈ S̃, S ′ 6= S̃, and the center
of S̃ is the point(c1, c2, . . . , cD). ThenΛ is also a lattice
tiling for the shapeQ = S ′ ∪ {(i1 + d1, i2 + d2, . . . , iD +
dD)} \ {(i1+ d1− c1, i2+ d2− c2, . . . , iD + dD − cD)} and
the triple (Λ,Q, δ) also defines a folding.

A. Further generalization of folding

So far we have used a ternary vector to indicate the
direction in which the supposed folding is performed. The
use of a ternary vector is implied by a natural requirement
that consecutive elements on the folded-row will be also
consecutive elements in the shape (up to cyclic shift). But,as
we will see in the sequel, and specifically in the application
of Sections IV and VIII, we don’t need this requirement.
This leads for further generalization and modification of
folding which will yield a better understanding of the
operation and its properties.

A direction vector (direction in short) of lengthD,
(d1, d2, . . . , dD), is a nonzero word of lengthD, where
di ∈ Z. The definitions of a folded-row and folding remain
as before with the exception that instead of a nonzero ternary
vector we use any nonzero integer direction vector. Also, all
the results obtained in this section remain true with the same
proofs. The only exception is Theorem 1 for which we need
a generalized version which will be given in the sequel.
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Lemma 9:Let Λ be a lattice tiling for the shapeS.
Let (d1, d2, . . . , dD) be a direction vector,(i1, i2, . . . , iD)
be a lattice point, and the point(d1, d2, . . . , dD) is in the
shapeS whose center is in the origin. Then the folded-rows
defined by the directions(d1, d2, . . . , dD) and(i1+d1, i2+
d2, . . . , id + dD) are equivalent.

Proof: Follows immediately from the observation that
c(i1 + d1, i2 + d2, . . . , id + dD) = (i1, i2, . . . , iD).

In view of Lemma 9 we should examine only the
|S| − 1 directions related to the points ofS whose cen-
ter is in the origin. Hence, in the sequel each direction
δ = (d1, d2, . . . , dD) will have the property that the point
(d1, d2, . . . , dD) will be contained in the copy ofS whose
center is in the origin. One might puzzle how this relates to
the observation that the necessary and sufficient conditions
that a direction defines a folding depend only on the gen-
erator matrix ofΛ and not onS? The answer is that the
folded-row itself is defined on the elements ofS. Therefore,
Λ will have different directions and folded-rows depending
on the shapeS.

Remark 6: If we consider only the|S| − 1 directions
related to the points ofS whose center is in the origin,
some on the ternary direction vectors might not be con-
sidered (directions which form an equivalent folding will
be considered). This is another reason for the distinction
between the definitions of direction vectors (ternary vector
and integer vector). Each definition has a different purpose.

Lemma 10:Let Λ be a lattice tiling for the shapeS,
n = |S|. Let δ = (d1, d2, . . . , dD) be a direction vector and
let f0f1 . . . fn−1 be its folded-row, wheref0 = (0, 0, . . . , 0)
and f1 = (d1, d2, . . . , dD). Then the directionδ′ = fi
defines a folding if and only if g.c.d.(i, n) = 1. If the
direction δ′ = fi defines a folding then its folded-row is
f0fif2i . . . fn−i, where indices are taken modulon.

Proof: By definition and by Lemma 3 we have that
δ′ = fi = (i ·d1, i ·d2, . . . , i ·dD)− c(i ·d1, i ·d2, . . . , i ·dD)
andfℓ·i = (ℓ · i · d1, ℓ · i · d2, . . . , ℓ · i · dD)− c(ℓ · i · d1, ℓ · i ·
d2, . . . , ℓ · i · dD). Since the sequencef0f1 . . . fn−1 consists
of n distinct points ofZD, it follows that the sequence
f0fif2i . . . fn−i consists ofn distinct points ofZD if and
only if g.c.d.(i, n) = 1. Thus, the lemma follows.

Corollary 4: Let Λ be a lattice tiling for the shapeS.
There exists one folding with respect toΛ if and only if the
number of nonequivalent folding operations with respect to
Λ is φ(|S|)

2 , whereφ(·) is the Euler function.
Corollary 4 implies that once we have one folding opera-

tion with its folded-row, then we can easily find and compute
all the other folding operations with their folded-rows. It
also implies that once the necessary and sufficient conditions
for the existence of one folding in the related theorems
are satisfied, then the necessary and sufficient conditions
for the existence of many other folding are also satisfied.
Nevertheless, Corollary 4 does not guarantee that there will
be a direction which defines a folding. This fact is shown
in the next example given in terms of a lemma.

Lemma 11:Let γ a positive integer greater than one,a1,
a2,...,aD, be nonzero integers, andbi, b2,...,bD be nonzero
integers such that eitherbi = ai or bi = aiγ, for each

1 ≤ i ≤ D, and |{i : bi = aiγ, 1 ≤ i ≤ D}| ≥ 2. Let
S be aD-dimensional shape andΛ be a lattice tiling forS
whose generator matrix is given by











b1 0 . . . 0
0 b2 . . . 0
...

...
. . .

...
0 0 . . . bD











.

Then there is no directionδ for which the triple(Λ,S, δ)
defines a folding.

Proof: Let δ = (d1, d2, . . . , dD) be any direction vector
and letσ = γ

∏D
i=1 ai. Then,σ < |S| and for any given

shapeS for which Λ is a lattice tiling we have(σ · d1, σ ·
d2, . . . , σ · dD)− c(σ · d1, σ · d2, . . . , σ · dD) = (0, 0, . . . , 0).
Hence, by Lemma 5, the triple(Λ,S, δ) does not define a
folding.

Lemma 12:Let Λ be a lattice tiling for the shapeS. If |S|
is a prime number then there exists|S|−1

2 different directions
which form |S|−1

2 nonequivalent folded-rows.
Proof: Let p = |S| be a prime number. By Corollary 3

a directionδ defines a folding if a and only ifδ is not a
lattice point. A shapeS in the tiling contains exactly one
lattice point. Therefore, by Corollary 4, any one of thep−1
directions defined by the non-lattice points ofS defines a
folding.

Example 4:Consider the latticeΛ of Example 3. It is a
lattice tiling for three shapes given in Example 3. For each
shape, four nonequivalent folding operations are given in
Example 3. We will demonstrate the fifth one now.

For the1 × 11 array the fifth folding operation has the
direction vector(+2, 0) and the order is given by

0 6 1 7 2 8 3 9 4 10 5 .

For the second shape and the direction vector(+2, 0), the
order is given by

0 6 1 7
2 8 3 9
4 10 5

For the third shape and the direction vector(+1,+2), the
order is given by

0 5

10 4

9 3 8 2
7 1 6

We continue now with the theorem which generalizes
Theorem 1. Indeed, it was enough to prove the generalization
only for theD-dimensional case. But, we feel that making
the generalizations one step at a time, first forD = 2 and
after that for anyD ≥ 2, will make it easier on the reader,
and especially as we are using some different reasoning in
these two generalizations.

Theorem 3:Let Λ be a lattice whose generator matrix is
given by

G =

[

v11 v12
v21 v22

]

.
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Let d1 and d2 be two positive integers andτ =
g.c.d.(d1, d2). If Λ defines a lattice tiling for the shapeS
then the triple(Λ,S, δ) defines a folding

• with the ternary vectorδ = (+d1,+d2) if and
only if g.c.d.(d1v22−d2v21

τ , d2v11−d1v12
τ ) = 1 and

g.c.d.(τ, |S|) = 1;
• with the ternary vectorδ = (+d1,−d2) if and

only if g.c.d.(d1v22+d2v21
τ , d2v11+d1v12

τ ) = 1 and
g.c.d.(τ, |S|) = 1;

• with the ternary vectorδ = (+d1, 0) if and only if
g.c.d.(v12, v22) = 1 and g.c.d.(d1, |S|) = 1;

• with the ternary vectorδ = (0,+d2) if and only if
g.c.d.(v11, v21) = 1 and g.c.d.(d2, |S|) = 1.
Proof: We will prove the case whereδ = (+d1,+d2);

the other three cases are proved similarly.
Let Λ be a lattice tiling for the shapeS. By Lemma 6

we have that(|S| · d1, |S| · d2) is a lattice point. Therefore,
there exist two integersα1 andα2 such thatα1(v11, v12) +
α2(v21, v22) = (|S|·d1, |S|·d2), i.e.,α1v11+α2v21 = d1|S|,
α1v12 + α2v22 = d2|S|, and |S| = v11v22 − v12v21. These
equations have exactly one solution,α1 = d1v22−d2v21 and
α2 = d2v11−d1v12. By Lemma 5,(Λ,S, δ) defines a folding
if and only if (|S| · d1, |S| · d2) = c(|S| · d1, |S| · d2) and for
eachi, 0 < i < |S| we have(i · d1, i · d2) 6= c(i · d1, i · d2).

Assume first that g.c.d.(d1v22−d2v21
τ , d2v11−d1v12

τ ) =
1 and g.c.d.(τ, |S|) = 1. Assume for the contrary,
that there exist three integersi, β1, and β2, such that
β1(v11, v12) + β2(v21, v22) = (i · d1, i · d2), 0 < i <
|S|. Hence we have,β2

β1
= d2v11−d1v12

d1v22−d2v21
= α2

α1
. Since

g.c.d.(d1v22−d2v21
τ , d2v11−d1v12

τ ) = 1 it follows that β1 =
γ d1v22−d2v21

τ andβ2 = γ d2v11−d1v12
τ , for some0 < γ < τ .

Therefore, we havei · d1 = β1v11 + β2v21 = γd1|S|
τ , i.e.,

i = γ|S|
τ . But, since g.c.d.(τ, |S|) = 1 it follows thatγ = ρτ ,

for some integerρ > 0, a contradiction to the fact that
0 < γ < τ . Hence, our assumption on the existence of
three integersi, β1, and β2 is false. Thus, by Lemma 5
we have that if g.c.d.(d1v22−d2v21

τ , d2v11−d1v12
τ ) = 1 and

g.c.d.(τ, |S|) = 1 then (Λ,S, δ) defines a folding with the
direction vectorδ = (+d1,+d2).

Assume now that(Λ,S, δ) defines a folding with the
direction vectorδ = (+d1,+d2). Assume for the con-
trary that g.c.d.(d1v22−d2v21

τ , d2v11−d1v12
τ ) = ν1 > 1 or

g.c.d.(τ, |S|) = ν2 > 1. We distinguish now between two
cases.
case 1: If g.c.d.(d1v22−d2v21

τ , d2v11−d1v12
τ ) = ν1 > 1 then

β1 = d1v22−d2v21
τν1

andβ2 = d2v11−d1v12
τν1

are integers. There-

fore, β1(v11, v12) + β2(v21, v22) = ( |S|·d1

τν1
, |S|·d2

τν1
). Hence,

|S|
ν1

is an integer and for the integersβ′
1 = d1v22−d2v21

ν1
and

β′
2 = d2v11−d1v12

ν1
we haveβ′

1(v11, v12) + β′
2(v21, v22) =

( |S|
ν1

d1,
|S|
ν1

d2) and as a consequence by Lemma 5 we have
that (Λ,S, δ) does not define a folding, a contradiction.
case 2:If g.c.d.(τ, |S|) = ν2 > 1 then letβ1 = d1v22−d2v21

ν2

andβ2 = d2v11−d1v12
ν2

. Hence,β1(v11, v12)+β2(v21, v22) =

( |S|
ν2

d1,
|S|
ν2

d2). Clearly,β1, β2, and |S|
ν2

are integers, and as
a consequence by Lemma 5 we have that(Λ,S, δ) does not
define a folding, a contradiction.

Therefore, if(Λ,S, δ) defines a folding with the ternary
vectorδ = (+1,+1) then g.c.d.(v22 − v21, v11 − v12) = 1.

The generalization of Theorem 3 for theD-dimensional case
is Theorem 18 given in Appendix A.

The next lemma is an immediate consequence from the
definitions on equivalent directions and folded-row.

Lemma 13:If the directions (d1, d2, . . . , dD) and
(d′1, d

′
2, . . . , d

′
D) are equivalent then there exists

a lattice point (i1, i2, . . . , iD) such that either
(d′1, d

′
2, . . . , d

′
D) = (i1 + d1, i2 + d2, . . . , id + dD) or

(d′1, d
′
2, . . . , d

′
D) = (i1 − d1, i2 − d2, . . . , id − dD).

Lemma 14:Let Λ be a lattice tiling for a shapeS. If |S|
is a prime number then there exist3D−1

2 ternary direction
vectors which form folding if and only if there does not exist
a lattice point(i1, i2, . . . , iD), where for eachi, 1 ≤ j ≤ D,
we have|ij| ≤ 2.

Proof: By Lemma 7, if |S| is a prime number, then
the number of elements in a folded-row for a given ternary
vectorδ is either one or|S|. By Corollary 3 the number of
elements is one if and only ifδ is a lattice point.

If there exist two equivalent directions(d1, . . . , dD) and
(d′1, . . . , d

′
D) then by Lemma 13 we have that(d1 −

d′1, . . . , dD − d′D) is a lattice point, where|di − d′i| ≤ 2
for eachi, 1 ≤ i ≤ D (since|di| ≤ 1 and |d′i| ≤ 1).

If there exists a lattice point(i1, . . . , iD) for which |ij| ≤
2, 1 ≤ j ≤ D, then there exists two ternary vectors
(d1, . . . , dD) and (d′1, . . . , d

′
D) for which (i1, . . . , iD) =

(d1 − d′1, . . . , dD − d′D).
The same result is obtained when|S| is not a prime

number if the necessary conditions of Theorem 18 are
satisfied for all the related3

D−1
2 ternary direction vectors. In

any case, if there exist a lattice point(i1, i2, . . . , iD), where
for eachj, 1 ≤ j ≤ D, we have|ij | ≤ 2, then there are
some related ternary direction vectors which form equivalent
folding. We can also give an answer to this question by
finding one ternary direction vector which defines a folding
and using Corollary 4.

IV. B OUNDS ONSYNCHRONIZATION PATTERNS

Our original motivation for the generalization of the
folding operation came from the design of two-dimensional
synchronization patterns. Given a grid (square or hexagonal)
and a shapeS on the grid, we would like to find what is
the largest set∆ of dots on grid points,|∆| = m, located
in S, such that the following property hold. All the

(

m
2

)

lines between dots in∆ are distinct either in their length or
in their slope. Such a shapeS with dots is called adistinct
difference configuration(DDC). If S is anm×m array with
exactly one dot in each row and each column thanS is called
a Costas array [5]. IfS is ak×m array with exactly one dot
in each column thenS is called a sonar sequence [5]. IfS is
a k×n DDC array thenS is called a Golomb rectangle [7].
These patterns have various applications as described in [5].
A new application of these patterns to the design of key
predistribution scheme for wireless sensor networks was
described lately in [13]. In this application the shapeS might
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be a Lee sphere, an hexagon, or a circle, and sometimes
another regular polygon. This application requires in some
cases to consider these shapes in the hexagonal grid. F3 was
used for this application in [14] to form a DDC whose shape
is a rectangle rotated in 45 degrees in the square grid (see
Figure 1). Henceforth, we assume that our grid isZ

D, i.e.,
the square grid forD = 2. Since the all the results of the
previous sections hold forD-dimensional shapes we will
continue to state the results in aD-dimensional language,
even so the applied part for synchronization patterns is two-
dimensional.

We will generalize some of the definition given for DDCs
in two-dimensional arrays [14] for multidimensional arrays.
The reason is not just the generalization, but we also need
these definitions in the sequel. LetA be a (generally infinite)
D-dimensional array of dots inZD, and letη1, η2, . . . , ηD
be positive integers. We say thatA is a multi periodic (or
doubly periodicif D = 2) with period (η1, η2, . . . , ηD) if
A(i1, i2, . . . , iD) = A(i1 + η1, i2, . . . , iD) = A(i1, i2 +
η2, . . . , iD) = · · · = A(i1, i2, . . . , iD + ηD). We define the
densityof A to be d/(ΠD

j=1ηj), whered is the number of
dots in anyη1 × η2 × · · · × ηD sub-array ofA. Note that
the period(η1, η2, . . . , ηD) might not be unique, but that the
density ofA does not depend on the period we choose. We
say that a multi periodic arrayA of dots is amulti periodic
n1 × n2 × · · ·nD DDC if every n1 ×n2 × · · ·nD sub-array
of A is a DDC.

We write (i1, i2, . . . , iD) + S for the shifted copy{(i1 +
i′1, i2 + i′2, . . . , iD + i′D) : (i′1, i

′
2, . . . , i

′
D) ∈ S} of S. We

say that a multi periodic arrayA is amulti periodicS-DDC
if the dots contained in every shift(i1, i2, . . . , iD)+S of S
form a DDC.

The definition of the density is given based on periodicity
of a D-dimensional box. Ifµ is the density, of the multi
periodic arrayA, it implies that given a shapeS, the average
number of dots in any shapeS shifted all overA is µ|S|.
This leads to the following theorem given in [14] for the
two-dimensional case and which has a similar proof for the
multidimensional case.

Theorem 4:Let S be a shape, and letA be a multi
periodic S-DDC of densityµ. Then there exists a set of
at least⌈µ|S|⌉ dots contained inS that form a DDC.

Another important observation from the definition of multi
periodicS-DDC is the following lemma from [14].

Lemma 15:Let A be a multi periodicS-DDC, and let
S ′ ⊆ S. ThenA is a multi periodicS ′-DDC.

Let S1, S2, . . . be an infinite sequence of similar shapes
such that|Si+1| > |Si|. Using the technique of Erdös and
Turán [11], [16], for which a detailed proof is given in [14],
one can prove that

Theorem 5:An upper bound on the number of dots inSi,
i → ∞, is limi→∞(

√

|Si|+ o(
√

|Si|)).

Let S andS ′ be two-dimensional shapes in the grid. We
will denote by∆(S,S ′) the largest intersection betweenS
andS ′ in any orientation. Our bounds on the number of dots
in a DDC with a given shape are based on the following

result.
Theorem 6:Assume we are given a multi periodicS-

DDC arrayA with densityµ. Let Q be another shape on
Z
D. Then there exists a copy ofQ on Z

D with at least
⌈µ ·∆(S,Q)⌉ dots.

Proof: Let Q′ be the shape such thatQ′ = S ∩Q and
|Q′| = ∆(S,Q). By Lemma 15 we have thatA is a multi
periodic Q′-DDC. By Theorem 4, there exists a set of at
least⌈µ|Q′|⌉ dots contained inS that form a DDC. Thus,
there exists a copy ofQ on Z

D with at least⌈µ ·∆(S,Q)⌉
dots.

In order to apply Theorem 6 we will use folding of
sequences defined as follows. LetA be an abelian group, and
let B = {b1, b2, . . . , bm} ⊆ A be a sequence ofm distinct
elements ofA. We say thatB is aB2-sequence overA if all
the sumsai1 + ai2 with 1 ≤ i1 ≤ i2 ≤ m are distinct. For a
survey onB2-sequences and their generalizations the reader
is referred to [57]. The following lemma is well known and
can be readily verified.

Lemma 16:A subsetB = {a1, a2, . . . , am} ⊆ A is aB2-
sequence overA if and only if all the differencesai1 − ai2
with 1 ≤ i1 6= i2 ≤ m are distinct inA.

Note that if B is a B2-sequence overZn and a ∈ Zn,
then so is the shifta+B = {a+ e : e ∈ B}. The following
theorem, due to Bose [58], shows that largeB2-sequences
overZn exist for many values ofn.

Theorem 7:Let q be a prime power. Then there exists a
B2-sequencea1, a2, . . . , am overZn wheren = q2 − 1 and
m = q.

A. A Lattice Coloring for a Given Shape

In this subsection we will describe how we apply folding
to obtain a DDC with a shapeS and a multi periodic
S-DDC. Let Λ be a lattice tiling for S and let δ =
(d1, d2, . . . , dD) be a direction vector such that(Λ,S, δ)
defines a folding. We assign an integer fromZn, n = |S|, to
each point ofZD. The lattice coloringC(Λ, δ) is defined as
follows. We assign 0 to the point(0, 0, . . . , 0) and we color
the next element on the folded-row with 1 and so on until
|S|− 1 to the last element on the folded-row. This complete
the coloring of the points of the shapeS whose center is
the origin. To position(i1, i2, . . . , iD) we assign the color
of position (i1, i2, . . . , iD)− c(i1, i2, . . . , iD). The color of
position(i1, i2, . . . , iD) will be denoted byC(i1, i2, . . . , iD).

We will generalize the definition of folding a sequence
into a shapeS by the directionδ, given the lattice tiling
Λ for S. The folding of a sequenceB = b0b1 . . . bn−1

into an array colored by the elements ofZn is defined by
assigning the valuebi to all the points of the array colored
with the color i. If the coloring was defined by the use
of the folding as described in this subsection, we say that
the array is defined by(Λ,S, δ,B). Note, that we use the
same notation for folding the sequenceB into the shapeS.
The one to which we refer should be understood from the
context.

Given a point(i1, i2, . . . , iD) ∈ Z
D, we say that the set of

points{(i1+ℓ·d1, i2+ℓ·d2, . . . , iD+ℓ·dD) : ℓ ∈ Z} is arow
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of ZD defined byδ. This is also the row of(i1, i2, . . . , iD)
defined byδ = (d1, d2, . . . , dD).

Lemma 17:If the triple (Λ,S, δ) defines a folding then
in any row ofZD defined byδ there are lattice points.

Proof: Given a point (i1, i2, . . . , iD) and its color
C(i1, i2, . . . , iD), then by the definitions of the folding and
the coloring we have thatC(i1+d1, i2+d2, . . . , iD+dD) ≡
C(i1, i2, . . . , iD)+ 1 (mod |S|). Hence, the row defined by
δ has all the values between 0 and|S| − 1 in their natural
order modulo|S|. Therefore, any row defined byδ has lattice
points (which are exactly the points of this row which are
colored withzeroes).

Corollary 5: If (i1, i2, . . . , iD), (i1+e1, i2+e2, . . . , iD+
eD), (j1, j2, . . . , jD), and (j1 + e1, j2 + e2, . . . , jD + eD)
are four points ofZD then C(i1 + e1, i2 + e2, . . . , iD +
eD)−C(i1, i2, . . . , iD) ≡ C(j1+e1, j2+e2, . . . , jD+eD)−
C(j1, j2, . . . , jD) (mod |S|).

Proof: By Lemma 17 to each one of these four points
there exists a lattice point in its row defined byδ. Let

• P1 = (i1 + α1 · d1, i2 + α1 · d2, . . . , iD + α1 · dD) be
the lattice point in the row of(i1, i2, . . . , iD);

• P2 = (j1 + α2 · d1, j2 + α2 · d2, . . . , jD + α2 · dD) the
lattice point in the row of(j1, j2, . . . , jD);

• P3 = ((i1+ e1)+α3 ·d1, (i2+ e2)+α3 ·d2, . . . , (iD +
eD) + α3 · dD) the lattice point in the row of(i1 +
e1, i2 + e2, . . . , iD + eD).

Therefore,P4 = P2 + P3 − P1 = ((j1 + e1) + (α2 +
α3 − α1) · d1, (j2 + e2) + (α2 + α3 − α1) · d2, . . . , (jD +
eD) + (α2 + α3 − α1) · dD) is also a lattice point.P4

is a lattice point in the row, defined byδ, of (j1 +
e1, j2 + e2, . . . , jD + eD). All these four points are colored
with zeroes. Hence,C(i1, i2, . . . , iD) ≡ −α1 (mod |S|),
C(i1 + e1, i2 + e2, . . . , iD + eD) ≡ −α3 (mod |S|),
C(j1, j2, . . . , jD) ≡ −α2 (mod |S|), and C(j1 + e1, j2 +
e2, . . . , jD + eD) ≡ −(α2 +α3 −α1) (mod |S|). Now, the
claim of the corollary is readily verified.

Corollary 6: If δ′ is an integer vector of lengthD then
there exists an integere(δ′) such that for any given point
P = (i1, i2, . . . , iD) we have C(P + δ′) = C(P ) +
e(δ′) (mod |S|).

Corollary 7: If the triple (Λ,S, δ) defines a folding and
B is aB2-sequence overZn, wheren = |S|, then the array
A defined by(Λ,S, δ,B) is multi periodic.

Proof: Clearly, the array has period(|S|, |S|, . . . , |S|)
and the result follows.

Theorem 8:If the triple (Λ,S, δ) defines a folding andB
is a B2-sequence overZn, wheren = |S|, then the pattern
of dots defined by(Λ,S, δ,B) is a multi periodicS-DDC.

Proof: By Corollary 7 the constructed array is multi
periodic.

Since (Λ,S, δ) defines a folding it follows that the|S|
colors inside the shapeS centered at the origin are all dis-
tinct. By Corollary 5, for the four positions(i1, i2, . . . , iD),
(i1 + e1, i2 + e2, . . . , iD + eD), (j1, j2, . . . , jD), and(j1 +
e1, j2 + e2, . . . , jD + eD) we have thatC(i1 + e1, i2 +
e2, . . . , iD + eD) − C(i1, i2, . . . , iD) ≡ C(j1 + e1, j2 +
e2, . . . , jD + eD)− C(j1, j2, . . . , jD) (mod |S|). Hence, at

most three of these integers (colors) are contained inB. It
implies that if these four points belong to the same copy of
S on the grid then at most three of these points have dots,
since the dots are distributed by theB2-sequenceB. Thus,
any shapeS on Z

D will define a DDC and the theorem
follows.

Corollary 8: If the triple (Λ,S, δ) defines a folding and
B is aB2-sequence overZn, wheren = |S|, then the pattern
of dots defined by(Λ,S, δ,B) is a DDC.
Note, that the difference between Theorem 8 and Corollary 8
is related to the folding intoZD andS, respectively. The last
lemma is given for completeness.

Lemma 18:If (Λ,S, δ) defines a folding then the|S|
colors inside any copy ofS on aZD are all distinct.

Proof: Let S1 and S2 be two distinct copies ofS
on Z

D. Clearly,S2 = (e1, . . . , eD) + S1. By Corollary 5,
for each (i1, . . . , iD), (j1, . . . , jD),∈ S1 we haveC(i1 +
e1, . . . , iD + eD) − C(i1, . . . , iD) ≡ C(j1 + e1, . . . , jD +
eD) − C(j1, . . . , jD) (mod |S|). Therefore, ifS1 contains
|S| distinct colors then alsoS2 contains|S| distinct colors.
The lemma follows now from the fact that(Λ,S, δ) defines
a folding and therefore all the colors in the shapeS whose
center is in the origin are distinct.
Note, that theorem 8 is also an immediate consequence of
Lemma 18.

V. BOUNDS FORSPECIFIC SHAPES

In this section we will present some lower bounds on the
number of dots in some two-dimensional DDCs with specific
shapes. In the sequel we will use Theorem 6, Theorem 8, and
Corollary 8 to form DDCs with various given shapes with a
large number of dots. To examine how good are our lower
bounds on the number of dots, in a DDC whose shape is
Q, we should know what is the upper bound on the number
of dots in a DDC whose shape isQ. By Theorem 5 we
have that for a DDC whose shape is a regular polygon or
a circle, an upper bound on the number of dots is at most√
s+o(

√
s), where the shape containss points of the square

grid ands → ∞. One of the main keys of our constructions,
and the usage of the given theory, is the ability to produce
a multi periodicS-DDC, whereS is a rectangle, the ratio
between its sides is close to any given numberγ, and if
its area iss then the number of dots in it is approximately√
s+ o(

√
s).

For the construction we will need the well known Dirich-
let’s Theorem [59, p. 27].

Theorem 9:If a andb are two positive relatively primes
integers then the arithmetic progression of termsai+ b, for
i = 1, 2, ..., contains an infinite number of primes.

The following theorem is a well known consequence of
the well known Euclidian algorithm [59, p. 11].

Theorem 10:If α and β are two integers such that
g.c.d.(α, β) = 1 then there exist two integerscα and cβ
such thatcαα+ cββ = 1.

The next theorem makes usage of these well known old
foundations.

Theorem 11:For each positive numberγ and anyǫ > 0,
there exist two integersn1 andn2 such thatγ ≤ n1

n2
< γ+ǫ;
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and there exists a multi periodicS-DDC with
√
a · bR+o(R)

dots whose shape is ann1×n2 = (aR+o(R))×(bR+o(R))
rectangle, wheren1n2 = p2 − 1 for some primep, andn1

is an even integer.
Proof: Given a positive numberγ and anǫ > 0, it is

easy to verify that there exist two integersα andβ such that√
γ ≤ β

α <
√
γ + ǫ and g.c.d.(α, β) = 2. By Theorem 10

there exist two integerscα, cβ such that eithercαα + 2 =
cββ > 0 or cββ + 2 = cαα > 0.

Assumecαα + 2 = cββ > 0 (the case wherecββ +
2 = cαα > 0 is handled similarly). Clearly, any factor ofα
cannot dividecαα+1. Sinceβ dividescαα+2, it follows that
a factor ofβ cannot dividecαα+1. Hence, g.c.d.(αβ, cαα+
1) = 1. Therefore, by Theorem 9 there exist infinitely many
primes in the sequenceαβR+ cαα+ 1, R = 1, 2, . . . .

Let p be a prime number of the formαβR+cαα+1. Now,
p2−1 = (p+1)(p−1) = (αβR+ cαα+2)(αβR+ cαα) =
(αβR + cββ)(αβR + cαα) = (α2R + αcβ)(β

2R + βcα).
Thus, a(β2R+ βcα)× (α2R+ αcβ) rectangle satisfies the
size requirements for then1×n2 rectangle of the Theorem.

Let a = β2, b = α2, n1 = β2R+ βcα, n2 = α2R+αcβ ,
and letS be ann1 × n2 rectangle. LetΛ be the a lattice
tiling for S with the generator matrix

G =

[

n2
n1

2 + θ
0 n1

]

,

whereθ = 1 if n1 ≡ 0 (mod4) andθ = 2 if n1 ≡ 2 (mod
4). By Theorem 1,(Λ,S, δ), δ = (+1, 0), defines a folding.

The existence of a multi periodicS-DDC with
√
a · bR+

o(R) dots follows now from Theorems 7 and 8.
The next key structure in our constructions is a certain

family of hexagons defined next. Acentroid hexagonis an
hexagon with three disjoint pairs of parallel sides. If the four
angles of two parallel sides (called thebasesof the hexagon)
are equal and the four other sides are equal, the hexagon
will be called aquasi-regular hexagonand will be denoted
by QRH(w, b, h), whereb is the length of a base,h is the
distance between the two bases, andb + 2w is the length
between the two vertices not on the bases. We will call the
line which connects these two vertices, thediameterof the
hexagon (even if it might not be the longest line between
two points of the hexagon). Quasi-regular hexagon will be
the shapeS that will have the role ofS when we will apply
Theorem 6 to obtain a lower bound on the number of dots
in a shapeQ which usually will be a regular polygon. In
the sequel we will say thatβα ≈ γ, when we means that
γ ≤ β

α < γ + ǫ.
We want to show that there exists a quasi-regular

hexagon QRH(w, b, h) with approximately
√

(b+ w)h +
o(
√

(b+ w)h) dots. By Theorem 11, there exists a doubly
periodicS-DCC, whereS is ann1 × n2 = (αR+ o(R))×
(βR+o(R)) rectangle, such thatn2

n1
≈ b+w

h , n1n2 = p2−1
for some primep, and n1 is an even integer. The lattice
Λ of Theorem 11 is also a lattice tiling for a a shapeS ′,
whereS ′ is ”almost” a a quasi-regular hexagon QRH(w, b, h)
(part of this lattice tiling is depicted in Figure 4). By
Theorem 1,(Λ,S, δ), δ = (+1, 0), defines a folding for
this shape too. Hence, we obtain a doubly periodicS ′-DCC,

Fig. 4. From rectangle to ”almost” quasi-perfect hexagon with the same
lattice tiling

whereS ′ is ”almost” a a quasi-regular hexagon QRH(w, b, h)
with approximately

√

(b + w)h+ o(
√

(b+ w)h) dots. This
construction implies the following theorem.

Theorem 12:A lower bound on the number of dots in
a regular hexagon with sides of lengthR is approximately√

3
√
3√

2
R+ o(R).

Now, we can give a few examples for other specific
shapes, mostly, regular polygons. To have some comparison
between the bounds for various shapes we will assume that
the radius of the circle or the regular polygons isR (the
radius is the distance from the center of the regular polygon
to any one its vertices). We also define thepacking ratio
as the ratio between the lower and the upper bounds on the
number of dots. The shapeS that we use will always by a
multi periodicS-DDC on a multi periodic arrayA.

A. Circle

We apply Theorem 6, whereS is a regular hexagon
with radius ρ and Q is a circle with radiusR, sharing
the same center. The upper bound on the number of dots
in Q is

√
πR + o(R). A lower bound on the number of

dots in S is approximately
√

3
√
3√

2
ρ + o(ρ) and hence the

density ofA is approximately
√
2√

3
√
3ρ

. Let θ be the angle

between two radius lines to the two intersection points of
the hexagon and the circle on one edge of the hexagon.
We have that∆(S,Q) = (π − 3θ + 3 sin θ)R2 and ρ =
cos θ

2

cos π
6

R. Thus, a lower bound on the number of dots inQ

is
√

3
√
3ρ+o(ρ)√
2|S| ∆(S,Q). The maximum is obtained when

θ = 0.536267 yielding a lower bound of1.70813R+ o(R)
on the number of dots inQ and a packing ratio of 0.9637.

We must note again, that even so this construction works
for infinitely many values ofR, the density of these values
is quite low. This is a consequence of Theorem 11 which
can be applied for an arbitrary ratioγ only when the
corresponding integers obtained by Dirichlet’s Theorem are
primes. Of course, there are many possible ratios between
the sides of the rectangle that can be obtained for infinitely
many values. A simple example is for any factorization of
p2 − 1 = n1n2 we can form ann1 × n2 DDC and from
its related quasi-regular hexagons. We won’t go into details
to obtain bounds which hold asymptotically for any given
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R as we conjecture that the construction for quasi-regular
hexagon can be strengthen asymptotically for almost all
parameters. Nevertheless, we will show briefly how we can
use a doubly periodicS-DDC, whereS is a square to obtain
a lower bound for the number of dots in a DDC whose shape
is a circle. We use a doubly periodicS-DDC, whereS is a
(p+ 1)× (p− 1) rectangle. For a lattice tiling ofS we use
a latticeΛ with the generator matrix

G =

[

p− 1 p+1
2 + θ

0 p+ 1

]

,

whereθ = 1 if p + 1 ≡ 0 (mod 4) and θ = 2 if p + 1 ≡
2 (mod 4). By Theorem 1,(Λ,S, δ), δ = (+1, 0), defines
a folding. We can use Theorem 2 to obtain a new shape
S ′ which produces better intersection with a circle, and a
better lower bound on the number of dots in it (the previous
best packing ratio obtained with the method implied only
by Theorem 6 (without using Theorem 2 and better multi
periodicS-DDCs) was0.91167 and it was given in [14]).

B. Regular Polygon

For regular polygons with small number of sides we will
use specific constructions which are given in Appendix C.
If the number of sides is large we will use Theorem 6,
whereQ will be the regular polygon andS is a regular
hexagon. Assume that the regular polygon hasn sides,R is
its radius, andρ is the radius of the regular hexagon. The
area of the hexagon is3

√
3

2 ρ2 and hence the density of the

doubly periodic arrayA is approximately
√
2√

3
√
3ρ

. The area

of the regular polygon isn·R
2 sin 2π

n

2 and hence an upper

bound on the number of dots inQ is
√

n·sin 2π
n√

2
R + o(R).

For simplicity we will further assume thatn = 12k (the
results for other values ofn are similar, but the constructions
become slightly more complicated for short description. We
will choose a regular hexagon which has a joint center with
the regular polygon. We further choose it in a way thatS and
Q intersect in exactly 12 vertices ofQ equally spread. We
will also make sure that each side ofS intersects exactly
two vertices ofQ with equal distance from the nearest
vertices ofS to these two intersection points. It implies
that ∆(S,Q) =

6+n·sin 2π
n

4 R2 and hence a lower bound on

the number of dots is6+n·sin 2π
n

2·3
1
4 (

√
3+1)

R + o(R). Some values

obtained from this construction are given in Table I.
For small values ofn, specific constructions are given in

Appendix C. For some constructions we need DDCs with
other shapes like a Corner and a Flipped T which are defined
in Appendix B, where also constructions of multi periodic
S-DDCs for these shapes are given. Table I summarizes the
bounds we obtained for regular polygons and a circle in the
square grid. The same techniques can be used for anyD-
dimensional shape. Finally, we note that the problem is of
interest also from discrete geometry point of view. Some
similar questions can be found in [12].

TABLE I

BOUNDS ON THE NUMBER OF DOTS IN ANn-GON DDC

n upper bound lower bound packing ratio
3 1.13975R 1.02462R 0.899
4 1.41421R 1.41421R 1
5 1.54196R 1.45992R 0.9468
6 1.61185R ≈ 1.61185R ≈ 1
7 1.65421R 1.58844R 0.960241
8 1.68179R 1.62625R 0.966977
9 1.70075R 1.63672R 0.96235
10 1.71433R 1.64786R 0.961229
12 1.73205R 1.66871R 0.963433
24 1.76234R 1.69815R 0.963578
36 1.76796R 1.70367R 0.963636
48 1.76992R 1.7056R 0.963658
60 1.77083R 1.7065R 0.963669
72 1.77133R 1.70699R 0.963675
84 1.77163R 1.70728R 0.963679
96 1.77182R 1.70747R 0.963681
circle 1.77245R 1.70813R 0.963708

VI. FOLDING IN THE HEXAGONAL GRID

The questions concerning DDCs can be asked in the
hexagonal grid in the same way that they are asked in
the square grid. Similarly, they can be asked in denseD-
dimensional lattices. In this section we will consider some
part of our discussion related to the hexagonal grid. The
hexagonal grid is a two-dimensional grid and hence we will
compare it toZ2. In Z

2 there are four different ternary
direction vectors, while in the hexagonal grid there are three
different related directions. But, the total number of direc-
tions depend on the shape in both grids (see Subsection III-A
and especially Corollary 4). We can define a folded-row and
folding in the hexagonal grid in the same way as they are
defined inZ2. To prove that the results remain unchanged
we will describe the well known transformation between the
hexagonal grid andZ2.

The hexagonal gridis defined as follows. We start by
tiling the planeR2 with regular hexagons whose sides have
length1/

√
3 (so that the centers of hexagons that share an

edge are at distance1). The center points of the hexagons
are the points of the grid. The hexagons tileR2 in a way
that each point(i, 0), i ∈ Z, is a center of some hexagon.

The transformation uses an isomorphic representation of
the hexagonal grid. Each point(x, y) ∈ Z

2 has the following
neighboring vertices,

{(x+ a, y + b) | a, b ∈ {−1, 0, 1}, a+ b 6= 0}.

It may be shown that the two representations are isomorphic
by using the mappingξ : R2 → R

2, which is defined by
ξ(x, y) = (x + y√

3
, 2y√

3
). The effect of the mapping on

the neighbor set is shown in Fig. 5. From now on, slightly
changing notation, we will also refer to this representation
as the hexagonal grid. Using this new representation the
neighbors of point(i, j) are

{(i− 1, j − 1), (i− 1, j), (i, j − 1), (i, j + 1),

(i+ 1, j), (i+ 1, j + 1)}.
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Fig. 5. The hexagonal model translation

Lemma 19:Two lines differ in length or slope in one
representation if and only if they differ in length or slope in
the other representation.

Proof: This claim can be verified easily by observing
that two lines are equal in length and slope in one represen-
tation if and only if they are equal in length and slope in
the other representation.

Corollary 9: A shapeS is a DDC in the hexagonal grid
if and only if ξ(S) = {ξ(p) : p ∈ S} is a DDC inZ2.

Clearly, the representation of the hexagonal grid in terms
of Z2 implies that all the results on folding in the square
grid hold also in the hexagonal grid. We will consider
now the most important families of DDCs in the hexagonal
grid, regular hexagons and circles. A regular hexagon in the
hexagonal grid is also called anhexagonal spherewith radius
R. It is a shape with a center hexagon which includes all
the points in the hexagonal grid which are within Manhattan
distanceR from the center point. Applying the transforma-
tion ξ on this sphere we obtain a new shape in the square
grid. This shape is a(2R+1)×(2R+1) square from which
isosceles right triangle with sides of lengthR are removed
from the left upper corner and the right lower corner. For the
construction we use as our shapeS, in Theorem 6, a corner
CR(2R,w1+w2;R,w2), where R

w2
≈ 1, |w1 −w2| ≤ 3 and

g.c.d.(w1, w2) = 1. In Appendix B a construction for doubly
periodicS-DDC, whereS is such corner, is given where the
number of dots inS is approximately

√

|S|+ o(
√

|S|). By
Theorem 2 the lattice tiling forS is also a lattice tiling
for the shapeS ′ obtained fromS by removing an isosceles
right triangle with sides of lengthR from the lower left
corner and adding it to the upper right corner of theS
(see Figure 6). The constructed doubly periodicS ′-DDC
can be rotated by 90 degrees or flipped either horizontally
or vertically to obtain a doubly periodicQ-DDC, whereQ
is approximately an hexagonal sphere with radiusR. This
yields a packing ratio approximately 1 between the lower
bound and the upper bound on the number of dots. Now,
it is easy to verify that the same construction, for a DDC
with a circle shape, given in Subsection V-A for the square
grid will work in the hexagonal grid. For this construction
we will use regular hexagon and a circle in the hexagonal
grid to obtain a packing ratio between the lower bound and
the upper bound on the number of dots in the circle which
is the same as in the square grid.

VII. A PPLICATION FORERROR-CORRECTION

In this section we will discuss the usage of folding
to design optimal (or ”almost” optimal) codes which can

Fig. 6. From a corner CR(9, 9; 5, 4) to hexagonal sphere with radius 4

correct adjacent errors in a multidimensional array, i.e.,
a multidimensional 2-burst-correcting code. The construc-
tion is a generalization of the construction of optimal
one-dimensional 2-burst-correcting codes given by Abram-
son [31]. His construction was generalized for larger bursts
by [32] and [33] who gave a comprehensive treatment
for this topic. Multidimensional generalization for the 2-
burst-correcting codes were given in [23], [60]. We will
give a multidimensional generalization only for the 2-burst-
correcting codes. The parity-check matrix of a code of length
2m − 1 and redundancym + 1, consists of the2m − 1
consecutive nonzero elements (powers of a primitive element
α) of GF(2m) followed by a row of ones. The received
word has one or two errors depending if the last entry of its
syndrome isone or zero, respectively. The position of the
error is determined by the firstm entries of the syndrome.

The generalization of this idea is done by folding the
nonzero elements of GF(2m) into the parity-check matrix
of a multidimensional code row by row, dimension by
dimension. Assume that we have aD-dimensional array of
size n1 × n2 × · · · × nD and we wish to correct anyD-
dimensional burst of length 2 (at most two adjacent positions
are in error). The following construction given in [60] is
based on folding the nonzero elements of a Galois field with
characteristic 2 into a parity check matrix, where the order
of the elements of the field is determined by a primitive
element of the field.
Construction A: Let α be a primitive element in GF(2m)
for the smallest integerm such that2m − 1 ≥ ∏D

ℓ=1 nℓ.
Let d = ⌈log2 D⌉ and i = (i1, i2, . . . , iD), where0 ≤ iℓ ≤
nℓ − 1. Let A be ad×D matrix containing distinct binary
d-tuples as columns. We construct the followingn1 × n2 ×
· · · × nD × (m+ d+ 1) parity check matrixH .

hi =





1
AiT mod 2

α
PD

j=1
ij(

QD
ℓ=j+1

nℓ)



 .

for all i = (i1, i2, . . . , iD), where0 ≤ iℓ ≤ nℓ − 1.
The following two theorems were given in [60].
Theorem 13:The code constructed in Construction A can

correct any 2-burst in ann1×n2×· · ·×nD array codeword.
Theorem 14:The code constructed by Construction A has

redundancy which is greater by at most one from the trivial
lower bound on the redundancy.

The same construction will work if instead of aD-
dimensional array our codewords will have have a shape
S of size2m − 1, there is a lattice tilingΛ for S, and there
is a direction vectorδ such that(Λ,S, δ) defines a folding.
The nonzero elements of GF(2m) will be ordered along the
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folded-row ofS. Since usually the number of elements inS
is not 2m − 1 we should find a shapeS ′ which containsS
and |S ′| = 2m − 1. We design a code with the shape ofS ′

and sinceS ⊂ S ′ the code will be able to correct the same
type of errors inS.

Finally, the construction can be generalized in a way that
the multidimensional code will be able to correct other types
of two errors in a multidimensional array [60].

VIII. A PPLICATION FORPSEUDO-RANDOM ARRAYS

MacWilliams and Sloane [40] gave the namepseudo-
random sequenceto a maximal length sequence obtained
from a linear feedback shift register. These sequences called
also PN Pseudo Noise sequences or M-sequences have
many desired properties as described in [39], [40]. The
term pseudo-random array was given by MacWilliams and
Sloane [40] to a rectangular array obtained by folding a
pseudo-random sequenceS into its entries. The constructed
arrays can be obtained also as what is called maximum-
area matrices [41]. In [40] it was proved that if a pseudo-
random sequence of lengthn = 2k1k2 − 1 is folded into an
n1 × n2 array such thatn1 = 2k1 − 1 > 1, n2 = n

n1
>

1, and g.c.d(n1, n2) > 1 then the constructed array has
many desired properties and hence they called this array
A a pseudo-random array. Some of the properties they
mentioned are as follows:

1) Recurrences- the entries satisfy a recurrence relation
along the folding.

2) Balanced- 2k1k2−1 entries in the array areonesand
2k1k2−1 − 1 entries in the array arezeroes.

3) Shift-and-Add - the sum ofA with any of its cyclic
shifts is another cyclic shift ofA.

4) Autocorrelation Function- has two values:n in-phase
and -1 out-of-phase.

5) Window property- each of the2k1k2 − 1 nonzero
matrices of sizek1 × k2 is seen exactly once as a
window in the array.

All these properties except for the window property are a
consequence of the fact that the elements in the folded-row
are consecutive elements of an M-sequenceS. Before we
examine whether an array of any shape, obtained by folding
S into it, has these properties we have to define what is a
cyclic shift of any given shapeS (even so we used the term
without definition before). Our definition will assume again
that there exists a lattice tilingΛ for S and a directionδ
such that(Λ,S, δ) defines a folding. Acyclic shift of the
shapeS (placed on the grid) is obtained by taking the set
of elements{x+ δ : x ∈ S}.

Lemma 20:The shape of a cyclic shift ofS is S.
Proof: The cyclic shift is just a shift byδ of S on the

grid. Therefore, the shape obtained is alsoS.
Theorem 15:Let Λ be a lattice tiling for a shapeS and

let δ be a direction such that(Λ,S, δ) defines a folding.
If an M-sequenceS is folded into S in the directionδ
then the Recurrences, Balanced, Shift-and-Add, and the
Autocorrelation Function properties hold for the constructed
array.

Proof: These properties follows immediately from the
fact that the entries ofS by the order of the folded-row are
consecutive elements of the M-sequenceS. The two cyclic
shifts of S have the same folded-row up to a cyclic shift.
Therefore, these four properties are a direct consequence
from the related properties of the M-sequence.

Lemma 21:Let Λ be a lattice tiling for the shapeS andδ
be a direction for which the triple(Λ,S, δ) defines a folding.
Let B be a binary sequence of length|S|. Let P1 andP2 be
two points for whichP1 − c(P1) = P2 − c(P2). Then, for
any two positive integersk1 andk2 the twok1×k2 windows
of (Λ,S, δ,B) whose leftmost bottom points areP1 andP2

are equal.
Proof: The lemma is an immediate consequence from

the definition of the lattice coloring induced by(Λ,S, δ) and
the definition of(Λ,S, δ,B).

Theorem 16:AssumeΛ define a lattice tiling for ann1×
n2 arrayA, such thatn1n2 = 2k1k2 −1. Assume further that
Λ defines a lattice tiling for the shapeS and(Λ,S, δ) defines
a folding for the directionδ. Then, if we fold an M-sequence
S into S in the directionδ, the resulting shapeS has the
k1 × k2 window property if and only if then1 × n2 array
A has thek1 × k2 window property by foldingS into A in
the directionδ.

Proof: SinceΛ is a lattice tiling for bothA and S
there is a sequence of arraysA0 = A, A1,...,Ar = S, such
that |Ai+1 \ Ai| = |Ai \ Ai+1| = 1, 0 ≤ i ≤ r − 1, Λ is a
lattice tiling forAi, 0 ≤ i ≤ r, and the origin is contained in
Ai, 0 ≤ i ≤ r. Moreover, it is easy to verify that given the
shapeAi, P1 = Ai+1 \ Ai, P2 = Ai \ Ai+1, we have that
P2 = P1 − c(P1) with respect toAi. The theorem follows
now by induction and using Lemma 21.

Theorem 16 does not give any new information about
window sizes which are not covered in [40], [41]. The
following lemma provides such information. We say that
a shapeS of size 2n − 1 has theQ window property if
|Q| = n and each nonzero value forQ appears exactly once
in a copy ofS, whereS is considered to be a cyclic shape.

Lemma 22:Let Λ be a lattice tiling for a shapeS, |S| =
2n − 1, δ be a direction vector, andS be an M-sequence of
length 2n − 1. Let Q be a shape with volumen. If in the
arrayS ′ defined by(Λ,S, δ, S) there is no copy ofQ which
contains onlyzeroesthenS has theQ window property.

Proof: By the Shift-and-Add property,S ′ has two
identical copies ofQ if and only if S ′ has a copy ofQ
which contains onlyzeroes. Thus, S ′ has theQ window
property if and only if there is no copy ofQ in S ′ which
contains onlyzeroes.
We can use now the properties we have found for the
generalized folding to obtain various results. An example
is given in the following corollary.

Corollary 10: Let Λ be a lattice tiling for a shapeS,
|S| = 2n − 1, andS be an M-sequence of length2n − 1. If
2n − 1 is a Mersenne prime then(Λ,S, δ, S) has the1× n
and then×1 window property for any given direction vector
δ.

Example 5:Consider the following M-sequenceS =
0000100101100111110001101110101 of length 31. LetΛ
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be a lattice tiling for a corner CR(5,7;1,4) with the generator
matrix

G2 =

[

3 4
10 3

]

.

By folding of S in the direction (+1, 0) we obtain the
following pseudo-random array

0 0 0 0 1 0 0
1 0 1 1 0 0 1
1 1 1 1 0 0 0
1 1 0 1 1 1 0
1 0 1

This array has the5 × 1 and 1 × 5 window properties.
Out of the 19 shapes of size 5 with exactly two rows it does
not have the window property only for the following three
shapes:

The pseudo-random array obtained by foldingS by the
direction(0,+1) is

0 1 0 0 0 1 0
0 1 0 1 0 1 1
0 0 0 0 1 1 1
0 0 1 1 0 1 1
1 1 1

It has the5× 1 and1× 5 window properties. But, out of
the 19 shapes of size 5 with exactly two rows it does not
have the window property for eight shapes.

Both pseudo-random arrays have a window property for
the star shape given by

.

IX. CONCLUSION AND OPEN PROBLEMS

The well-known definition of folding was generalized.
The generalization and its applications led to several new
results summarized as follows:

1) The generalization is based on a lattice tiling for a
shapeS and a directionδ. The number of possible
nonequivalent directions isµ(|S|)

2 . Necessary and suf-
ficient conditions that a direction defines a folding are
derived.

2) Folding a B2-sequence into a shapeS result in a
distinct difference configuration with the shapeS.

3) Lower bounds on the number of dots in a distinct
difference configuration with shape of regular poly-
gon, circle, and other interesting geometrical shapes
are derived.

4) Low redundancy multidimensional codes for correct-
ing a burst of length two are obtained.

5) New pseudo-random arrays with window and corre-
lation properties are derived. These arrays differ from
known arrays either in their shape or the shape of their
window property.

The discussion on these results leads to many new inter-
esting open problems. We conclude with a list of six open
problems related to our discussion.

1) We have discussed several applications for the folding
operation in general and for the new generalization
of folding in particular. We believe that there are
more interesting applications for this operation and we
would like to see them explored.

2) The construction for DDCs whose shape is a quasi-
perfect hexagon works for infinite number of param-
eters. But, the set of parameters is very sparse. Its
density depends on the number of primes obtained
by Dirichlet’s Theorem. This immediately implies the
same for the parameters of DDCs whose shape is a
regular polygon. We would like to see a construction
of such DDCs with a dense set of parameters.

3) What is the lower bound on the number of dots in
a DDC whose shape is a circle with radiusR? We
conjecture that the lower bound is

√
πR+ o(R).

4) We would like to see an asymptotic improvement on
the lower bounds on the number of dots in a DDC
whose shape is a regularn-gon with radiusR.

5) Are there cases where we can improve the upper
bound on the number of dots in these DDCs asymp-
totically?

6) We would like to see a more general theorem which
connects folding of M-sequences and general window
property.

APPENDIX A

In this Appendix we prove the necessary and sufficient
condition for a triple(Λ,S, δ) to define a folding. For the
proof of the theorem we use the well known Cramer’s
rule [61] which is given first.

Theorem 17:Given the following system with then
linear equations and the variablesx1, x2, . . . , xn











a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann





















x1

x2

...
xn











=











b1
b2
...
bn











.

If

A = det

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

thenxk = Ak

A for 1 ≤ k ≤ n, where

Ak = det

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 . . . a1(k−1) b1 a1(k+1) . . . a1n
a21 . . . a2(k−1) b2 a2(k+1) . . . a2n

...
. . .

... . . .
...

. . .
...

an1 . . . an(k−1) bn an(k+1) . . . ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Let Λ be aD-dimensional lattice tiling for the shapeS.
Let G be the following generator matrix ofΛ:

G =











v11 v12 . . . v1D
v21 v22 . . . v2D
...

...
. . .

...
vD1 vD2 . . . vDD











.

Given the direction vectorδ = (d1, d2, . . . , dD), w.l.o.g.
we assume that the firstℓ1 ≥ 1 values ofδ are positives,
the nextℓ2 values are negatives, and the lastD − ℓ1 − ℓ2
values are 0’s. By Lemma 5 and Corollary 2, if(Λ,S, δ)
defines a folding then there existD integer coefficients
α1, α2, . . . , αD such that

D
∑

j=1

αj(vj1, vj2, . . . , vjD) =

(|S|d1, . . . , |S|dℓ1 ,−|S|dℓ1+1, . . . ,−|S|dℓ1+ℓ2 , 0, . . . , 0),

and there is no integeri, 0 < i < |S|, and D integer
coefficientsβ1, β2, . . . , βD such that

D
∑

j=1

βj(vj1, vj2, . . . , vjD)

= (i · d1, . . . , i · dℓ1 ,−i · dℓ1+1, . . . ,−i · dℓ1+ℓ2 , 0, . . . , 0) .

Hence we have the followingD equations:

D
∑

j=1

αjvjr = |S| · dr, 1 ≤ r ≤ ℓ1, (2)

D
∑

j=1

αjvjr = −|S| · dr, ℓ1 + 1 ≤ r ≤ ℓ1 + ℓ2, (3)

D
∑

j=1

αjvjr = 0, ℓ1 + ℓ2 + 1 ≤ r ≤ D . (4)

Let τ = d1 if ℓ1+ ℓ2 = 1 andτ = g.c.d.(d1, d2, . . . , dℓ1+ℓ2)
if ℓ1+ℓ2 > 1. TheD equations in (2), (3), (4) are equivalent
to the followingD equations:

D
∑

j=1

αjvj1 = |S| · d1,

D
∑

j=1

αj
d1vjr − drvj1

τ
= 0, 2 ≤ r ≤ ℓ1,

D
∑

j=1

αj
d1vjr + drvj1

τ
= 0, ℓ1 + 1 ≤ r ≤ ℓ1 + ℓ2,

D
∑

j=1

αjvjr = 0, ℓ1 + ℓ2 + 1 ≤ r ≤ D.

We define now a set ofD(D − 1) new coefficientsurj,
2 ≤ r ≤ D, 1 ≤ j ≤ D, as follows:

urj =
d1vjr − drvj1

τ
for 2 ≤ r ≤ ℓ1,

urj =
d1vjr + drvj1

τ
for ℓ1 + 1 ≤ r ≤ ℓ1 + ℓ2,

urj = vjr for ℓ1 + ℓ2 + 1 ≤ r ≤ D.

Consider the(D − 1)×D matrix

H =











u21 u22 . . . u2D

u31 u32 . . . u3D

...
...

. . .
...

uD1 uD2 . . . uDD











.

Using Theorem 17 it is easy to verify that the unique solution
for theαk ’s is

αk = (−1)k−1 d1τ
ℓ1+ℓ2−1 detHk

dℓ1+ℓ2−1
1

(5)

whereHk is the (D − 1) × (D − 1) matrix obtained from
H by deleting columnk of H .

Lemma 23:For eachk, 1 ≤ k ≤ D, τ dividesαk defined
in (5).

Proof: Consider the followingD ×D matrix

G̃ =















v11 v21 . . . vD1

u21 u22 . . . u2D

u31 u32 . . . u3D

...
...

. . .
...

uD1 uD2 . . . uDD















.

By the definition of the entries in the matrixH and since
detG = |S| it follows that thatdet G̃ = |S|

(

d1

τ

)ℓ1+ℓ2−1
.

det G̃ in Theorem 17 is equalA, while Ak is equal |S| ·
d1

(

d1

τ

)ℓ1+ℓ2−2
Y , for some integerY . Therefore,αk = τY

and the lemma follows.
This analysis leads to the following theorem.
Theorem 18:If Λ is a lattice tiling for the shapeS

then the triple(Λ,S, δ) defines a folding if and only if
g.c.d.(α1

τ , α2

τ , . . . , αD

τ ) = 1 and g.c.d.(τ, |S|) = 1.
Proof: Assume first that(Λ,S, δ) defines a folding.

Now, assume for the contrary that
g.c.d.(α1

τ , α2

τ , . . . , αD

τ ) = ν1 > 1 or g.c.d.(τ, |S|) = ν2 > 1.
We distinguish between two cases.
Case 1:

Assume that g.c.d.(α1

τ , α2

τ , . . . , αD

τ ) = ν1 > 1.
Equations (2), (3), and (4) have exactly one solution for

theαi’s given in (5). Since g.c.d.(α1

τ , α2

τ , . . . , αD

τ ) = ν1, it
follows thatβi =

αi

τν1
, 1 ≤ i ≤ D, are integers. Therefore,

we have

D
∑

j=1

βjvjr =
|S|
τν1

dr, 1 ≤ r ≤ ℓ1,

D
∑

j=1

βjvjr =
−|S|
τν1

dr, ℓ1 + 1 ≤ r ≤ ℓ1 + ℓ2,

D
∑

j=1

βjvjr = 0, ℓ1 + ℓ2 + 1 ≤ r ≤ D,
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i.e.,
D
∑

j=1

βj(vj1, vj2, . . . , vjD) =

(
|S|
τν1

d1, . . . ,
|S|
τν1

dℓ1 ,−
|S|
τν1

dℓ1+1, . . . ,−
|S|
τν1

dℓ1+ℓ2 , 0, . . . , 0),

and as a consequence by Lemma 5 we have that(Λ,S, δ)
does not define a folding, a contradiction.
Case 2:

Assume that g.c.d.(τ, |S|) = ν2 > 1.
Let βi =

αi

ν2
, 1 ≤ i ≤ ℓ1 + ℓ2. Therefore,

D
∑

j=1

βj(vj1, vj2, . . . , vjD) =

(
|S|
ν2

d1, . . . ,
|S|
ν2

dℓ1 ,−
|S|
ν2

dℓ1+1, . . . ,−
|S|
ν2

dℓ1+ℓ2 , 0, . . . , 0),

and as a consequence by Lemma 5 we have that(Λ,S, δ)
does not define a folding, a contradiction.

As a consequence of Case 1 and Case 2 we have that
if (Λ,S, δ) defines a folding with the ternary vectorδ then
g.c.d.(α1

τ , α2

τ , . . . , αD

τ ) = 1 and g.c.d.(τ, |S|) = 1.

Now assume that g.c.d.(α1

τ , α2

τ , . . . , αD

τ ) = 1 and
g.c.d.(τ, |S|) = 1. Consider the set ofD equations defined
by

D
∑

j=1

αj(vj1, vj2, . . . , vjD) = (6)

(|S|d1, . . . , |S|dℓ1 ,−|S|dℓ1+1, . . . ,−|S|dℓ1+ℓ2 , 0, . . . , 0),

Since the rows ofG are linearly independent, it follows that
this set of equations has a unique solution for theαi’s (but,
these coefficients are not necessary integers). Using the same
analysis proceeding the theorem, we have by the Cramer’s
rule that this solution is given by (5) and hence theαi’s
are integers. Assume for the contrary that(Λ,S, δ) does not
define a folding. Then, by Lemma 5 we have that there exist
D integersβi, 1 ≤ i ≤ D, such that

D
∑

j=1

βj(vj1, vj2, . . . , vjD) = (7)

(ℓ · d1, . . . , ℓ · dℓ1 ,−ℓ · dℓ1+1, . . . ,−ℓ · dℓ1+ℓ2 , 0, . . . , 0),

for some integer0 < ℓ < |S|.
Since the rows ofG are linearly independent then there

exists exactly one set ofβi’s (integers or non-integers) which
satisfies (7). Letν = g.c.d.(ℓ, |S|), where clearly1 ≤ ν ≤
ℓ < |S|. From equations (6) and (7) we obtain

D
∑

j=1

(ℓαj)(vj1, vj2, . . . , vjD) =

(ℓ|S|d1, . . . , ℓ|S|dℓ1 ,−ℓ|S|dℓ1+1, . . . ,−ℓ|S|dℓ1+ℓ2 , 0, . . . , 0)

=

D
∑

j=1

(|S|βj)(vj1, vj2, . . . , vjD) ,

Fig. 7. A corner CR(7, 11; 2, 4)

Since the rows ofG are linearly independent it implies
that ℓαi = |S|βi for each 1 ≤ i ≤ D, i.e., βi = ℓαi

|S| .

βi = ℓαi

|S| is an integer andν = g.c.d.(ℓ, |S|) implies that

βi =
ℓ/ν
|S|/ναi, 1 ≤ i ≤ D. g.c.d.(ℓ/ν, |S|/ν) = 1 and hence

|S|
ν divides αi for each i, 1 ≤ i ≤ D. g.c.d.(τ, |S|) =

1, τ divides αi, and hence|S|
ν divides αi

τ for each i,
1 ≤ i ≤ D. Hence, g.c.d.(α1

τ , α2

τ , . . . , αD

τ ) ≥ |S|
ν . But,

g.c.d.(α1

τ , α2

τ , . . . , αD

τ ) = 1 and henceν = |S|, i.e.,ℓ ≥ |S|,
a contradiction. Thus,(Λ,S, δ) defines a folding.

APPENDIX B

In this appendix we consider DDCs with two special
shapes, called corner and flipped T. The DDCs with these
shapes and special parameters are important in applying
Theorem 6 to obtain other DDCs such as triangles in the
square grid and hexagonal spheres in the hexagonal grid.

A. Corner

A corner, CR(h1+h2, w1+w2;h2, w2), is an(h1+h2)×
(w1 + w2) rectangle from which anh2 × w2 rectangle was
removed from its right upper corner. An example is given
in Figure 7. LetS be a CR(h1 + h2, w1 + w2;h2, w2) and
let Λ the lattice with the following generator matrix

G =

[

w1 h1

−w2 h1 + h2

]

.

Clearly, Λ is a lattice tiling for S. A general result
concerning DDCs whose shape is a corner seems to be
quite difficult. We will consider the case which seems to
be the most useful for our purpose. First note, that by
Theorem 1,δ = (0,+1) defines a folding forΛ if and
only if g.c.d.(w1, w2) = 1. Assume first thath1 = h2

and |w1 − w2| ≤ 3. By Theorem 11, we have ann1 × n2

rectangleQ such thatn1n2 = p2 − 1 for some primep,
2n1

n2
≈ h1+h2

2w1+w2
, andn1 is even. Now, we will make new

choices forh1, h2, w1, andw2, which are close to the old
ones. Leth1 = h2 = n1; we distinguish between three cases
of n2:

(W.1) If n2 = 3ω + 1 thenw1 = ω andw2 = ω + 1.
(W.2) If n2 = 3ω + 2 thenw1 = ω + 1 andw2 = ω.
(W.3) If n2 = 3ω then we distinguish between two cases:

• if ω− 1 ≡ 0 (mod3) thenw1 = ω+1 andw2 =
ω − 2.

• if ω− 1 6≡ 0 (mod3) thenw1 = ω− 1 andw2 =
ω + 2.

It is easy to verify that the size of the new corner CR(h1+
h2, w1 + w2;h2, w2), S ′, is n1n2 = p2 − 1, Λ is a lattice
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Fig. 8. A flipped T FT(5, 17; 4, 6)

tiling for S ′, (Λ,S ′, δ), δ = (0,+1), defines a folding, and
we can form a doubly periodicS ′-DDC with it. Hence, we
have the following theorem.

Theorem 19:Let n1 and n2 be two integers such that
n1n2 = p2 − 1 for some prime numberp, n2 = 2w1 + w2,
wheren1 is an even integer,w1, w2, are defined by (W.1),
(W.2), (W.3). Then there exists a doubly periodicS-DDC,
whose shape is a corner, CR(2n1, w1 +w2;n1, w2), with p
dots.

B. Flipped T

A flipped T, FT(h,w1 + w2 + w3;w1, w3), is an(2h) ×
(w1+w2+w3) rectangle from which anh×w1 rectangle was
removed from its left upper corner and anh×w3 rectangle
was removed from its right upper corner. An example is
given in Figure 8. LetS be a FT(h,w1 +w2 +w3;w1, w3)
and letΛ the lattice with the following generator matrix

G =

[

w1 + w2 h
w1 + 2w2 + w3 0

]

.

Clearly, Λ is a lattice tiling for S. A general result
concerning DDCs whose shape is a flipped T seems to
be quite difficult. We will consider the case which seems
to be the most useful for our purpose. First note, that by
Theorem 1,δ = (0,+1) defines a folding forΛ if and only
if g.c.d.(w1+w2, w1+2w2+w3) = 1 which is equivalent to
g.c.d.(w1 +w2, w2 +w3) = 1. Assume that|w1 −w3| ≤ 4.
By Theorem 11, we have ann1 × n2 rectangleQ such that
n1n2 = p2−1 for some primep, n1

n2
≈ h

w1+2w2+w3
, andn2

is even. Now, we will make new choices forh, w1, andw3,
which are close to the old ones. Leth = n1; we distinguish
between two cases ofn2:

(Y.1) If n2 = 4ω thenw1 = 2ω + 1 − w2 andw3 = 2ω −
1− w2.

(Y.2) If n2 = 4ω + 2 thenw1 = 2ω + 3 − w2 andw3 =
2ω − 1− w2.

It is easy to verify that the size of the new flipped T,
FT(h,w1 +w2 +w3;w1, w3), S ′, is n1n2 = p2 − 1, Λ is a
lattice tiling forS ′, (Λ,S ′, δ), δ = (0,+1), defines a folding,
and we can form a doubly periodicS ′-DDC with it. Hence,
we have the following theorem.

Theorem 20:Let n1 and w2 be two integers such that
n2 = w1 + 2w2 + w3, w1, w3, are defined by (Y.1), (Y.2),
andn1n2 = p2 − 1 for some prime numberp. Then there
exists a doubly periodicS-DDC, whose shape is a flipped
T, FT(n1, w1 + w2 + w3;w1, w3), with p dots.

APPENDIX C

In this section we demonstrate how Theorem 6 is applied
for several geometric shapes (having the role ofQ in the
theorem), where our shapeS in the doubly periodicS-DDC
is an appropriate corner, flipped T, or quasi-regular hexagon.

C. Equilateral Triangle

Let Q be an equilateral triangle with sides of lengthB.
The area ofQ is

√
3
4 B2 and hence an upper bound on the

number of dots inQ is 3
1
4

2 B+ o(B) = 0.658B+ o(B). For

our shapeS we take a flipped T, FT(B
2
√
2
,
√

2
3B; B

2
√
6
, B
2
√
6
)

which overlaps in its shorter base with the base ofQ. These
bases ofS and Q share the same center. The area ofS
is

√
3
4 B2 and hence the density of the array is2

3
1
4 B

. The

intersection ofS and Q, ∆(Q,S), equal to 3
√
2−2

√
3

2 B2.
Therefore, a lower bound on the number of dots inQ is
3
√
2−2

√
3

3
1
4

B + o(B) = 0.5916B + o(B) and the resulting
packing ratio is 0.899 . The same result can be obtained by
using other structures instead of a flipped T.

D. Isosceles Right Triangle

Let Q be an equilateral triangle with base and height of
lengthB. The area ofQ is 1

2B
2 and hence an upper bound

on the number of dots inQ is 1√
2
B+o(B) = 0.707B+o(B).

For our shapeS we take a corner CR(
√

2
3B,

√

2
3B; B√

6
, B√

6
)

which overlaps in its two shorter sides with the base and
height ofQ. S andQ shares the intersection vertex of these
sides. The area ofS is 1

2B
2 and hence the density of the

array is
√
2

B . The intersection ofS andQ, ∆(Q,S), equal
to (

√
6− 2)B2. Therefore, a lower bound on the number of

dots inQ is (
√
12 − 2

√
2)B + o(B) = 0.63567B + o(B)

and the resulting packing ratio is 0.899 (exactly as in the
case of an equilateral triangle).

E. Regular Pentagon

Let Q be a pentagon with radiusR. The area ofQ is
5
2 sin

2π
5 and hence an upper bound on the number of dots

in Q is 1.54196R+ o(R). Let S be a quasi-perfect hexagon
having a joint base withQ and two short overlapping
sides withQ, where these sides are connected to this base
(see Figure 9). The distance between the base and the
diameter ofS is aR, 2 sin π

10 cos
3π
10 < a ≤ (1 + sin 3π

10 )/2.
The length of the base is2R sin π

5 and the length of the
diameter ofS is 2R sin π

5 + 2aR tan π
10 . Hence, the area

of S is (4 sin π
5 + 2a tan π

10 )aR
2 and the density of the

array is 1√
4a sin π

5
+2a2 tan π

10
R

. The area of the intersection

betweenQ and S, ∆(S,Q), is computed by subtracting
from the area ofS the area of the two isosceles triangles
σ1 and σ2. The lower bound on the number of dots is

1√
4a sin π

5
+2a2 tan π

10
R
∆(S,Q). The maximum on this lower

bound is obtained fora = 0.814853, i.e., the lower bound
on the number of dots in a pentagon with radiusR is
1.45992R+ o(R) yielding a packing ratio of 0.946795.
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Fig. 9. Quasi-regular hexagon intersecting a regular pentagon

F. Regular Heptagon

Let Q be a regular heptagon with radiusR. The area of
Q is 7

2 sin
2π
7 R2 and hence an upper bound on the number

of dots inQ is 1.65421R+ o(R). Let S be a quasi-perfect
hexagon constructed as follows. We refer to the sides of
Q as side 0, side 1, side 2, side 3, side 4, side 5, side 6,
in consecutive order clockwise. Let’s denote the six sides
of S by side A, side B, side C, side D, side E, side F,
in consecutive order clockwise, where side A is the lower
base ofS. Sides B and C ofS overlap sides 1 and 2 ofQ,
respectively; sides B and C are longer than sides 1 and 2.
The two bases ofS, sides A and D, have angles9π14 with
sides B and C, respectively. Side A intersect sides 0 and 6
of Q; side D intersect sides 3 and 4 ofQ. The length of
the segment, on side 0, from the vertex of the intersection
between sides 0 and 1 and the intersection of side A and side
0 is xR. Finally, sides E and F ofS are parallel to sides B
and C, respectively; Side E intersect sides 4 and 5; side F
intersect sides 5 and 6. The distance between the vertex of
the intersection between side E and F ofS and side 5 of
Q is aR. Computing|S|, ∆(S,Q), and the lower bound on
the number of dots inQ, i.e., ∆(S,Q)√

|S|
, as functions ofx and

a implies that the maximum is obtained forx = 0.432042
anda = 0.0840633, and the lower bound on the number of
dots inQ is 1.58844R + o(R) yielding a packing ratio of
0.960241.

G. Regular Octagon

LetQ be a regular octagon with radiusR. The area ofQ is
4 sin π

4R
2 and hence an upper bound on the number of dots

in Q is 1.68179R+ o(R). Let S be a quasi-perfect hexagon
having a joint diameter of length2R with Q and overlapping
four side edges with theQ. The distance between the diame-
ter of the hexagon (octagon) and a base ofS is αR. The area
of theS is 4αR2−2α2 sin π

8

sin 3π
8

R2 and hence the density of the

array is 1
r

4α−2α2
sin π

8

sin 3π
8

R
. The intersection betweenQ and

S, ∆(S,Q), is 4 sin π
4R

2 − 2(1 − α)2R2 sin 3π
8

sin π
8

. Therefore,
a lower bound on the number of dots in the octagon is
4 sin π

4
R−2(1−α)2R

sin 3π
8

sin π
8

r

4α−2α2
sin π

8

sin 3π
8

. The maximum is obtained forα =

0.872852 and hence a lower bound on the number of dots
is 1.62625R+ o(R) and the packing ratio is 0.966977 .

H. Regular Nonagon

Let Q be a regular nonagon with radiusR. Let S be a
quasi-regular hexagon with radiusρ, whereρ =

sin 11π
18

sin π
3

R,
such thatQ and S share the same center and there is an
overlap in three pairs of edges betweenQ and S. The
area ofQ is 9

2 sin
2π
9 R2 and hence an upper bound on the

number of dots inQ is 1.700748R + o(R). The area of

S is 3
√
3

2

(

sin 11π
18

sin π
3

)2

R2 and hence the density of the array

is
√
2 sin π

3

3
1
4
√
3R sin 11π

18

. The area of the intersection betweenQ

andS, ∆(S,Q), is 3
√
3

2

(

sin 11π
18

sin π
3

)2

R2 − 6
sin2 π

18
cos π

9

sin π
3

R2 =

2.8625667R2. Therefore, a lower bound on the number of
dots in the nonagon is1.63672R + o(R) and the packing
ratio is 0.96235 .

I. Regular Decagon

Let Q be a regular decagon with radiusR with sides 0, 1,
2, 3, 4, 5, 6, 7, 8, 9 in consecutive order clockwise. The area
of Q is 5 sin π

5R
2 and hence an upper bound on the number

of dots in Q is 1.71433R + o(R). Let S a quasi-perfect
hexagon with sides A, B, C, D, E, and F, in consecutive
order clockwise, where A is the lower base ofS. Sides B
and C ofS overlap with sides 1 and 3 ofQ; sides E and
F of Q overlap with sides 6 and 8 ofQ. The two bases A
and D ofS have distanceaR to the diameter ofS which
connects the intersection vertex of sides B and C with the
intersection vertex of sides E and F. The distance between
the diameter and a base (A or D) isaR. The area ofS is
s = 2(2 sin 2π

5 +2
sin π

10
sin π

5

sin 3π
10

− sin π
5

sin 3π
10

a)aR2 and the density

of the array is 1√
s
. Finally,∆(S,Q) = (5 sin π

5 −2
sin 2π

5

sin π
10

(1−
a)2)R2. The lower bound of the number of dots inQ is
1√
s
∆(S,Q). The maximum on this lower bound is obtained

for a = 0.923286; the lower bound is1.64786R+o(R) and
the packing ratio is 0.961229 .
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