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Abstract— Folding a sequences into a multidimensional box to be developed for multidimensional coding. One approach
is a well-known method which is used as a multidimensional jn multidimensional Coding is to take an one-dimensional
coding technique. The operation of folding is generalizedn  ¢4e gnd to transform it into a multidimensional code. One

a way that the sequenceS can be folded into various shapes . - . . - o
and not just a box. The new definition of folding is based on technique in this approach is called folding and it is the

a lattice tiling for the given shapeS and a direction in the D-  Subject of the current paper. This technique was applied
dimensional integer grid. Necessary and sufficient conditins previously for two-dimensional synchronization patterfios

that a lattice tiling for S combined with a direction define pseudo-random arrays, and lately for multidimensionairerr
a folding of a sequence intoS are derived. The immediate ., racting codes. We start with a short introduction to ¢hes

and most impressive application is some new lower bounds - . . . .
on the number of dots in two-dimensional synchronization three multidimensional coding problems which motivated

patterns. This can be also generalized for multidimensiona OUr interest in the generalization of folding.
synchronization patterns. The technique and its applicabn Synchronization patterns

for two-dimensional synchronization patterns, raise somen- One-dimensional synchronization patterns were first intro
teresting problems in discrete geometry. We will also disss §,ced by Babcock in connection with radio interference [1].

these problems. It is also shown how folding can be used to Oth licati di d in details in 2 d
construct multidimensional error-correcting codes. Findly, by er applications are discussed in details in [2] and some

using the new definition of folding, multidimensional pseud- More are given in [3], [4]. The two-dimensional applica-
random arrays with various shapes are generated. tions and related structures were first introduced in [5] and

Index Terms— distinct difference configuration, folding, lat- dlscu§sed N many papers, e.g. (6, [7]' (81, [9], [10]; The
tice tiling, pseudo-random array, two-burst-correcting cods two-dimensional problems has also interest from discrete
geometry point of view and it was discussed for example
in [11], [12]. Recent new application in keys predistrilouti
for wireless sensor networks [13] led to new related two-

Multidimensional coding in general and two-dimensionalimensional problems concerning these patterns which are
coding in particular are subjects which attract lot of aldiscussed in [14], [15]. It has raised the following diseret
tention in the last three decades. One of the main regeometry problem: given a regular polygon with akean
sons is their modern applications which have developgge square (or hexagonal) grid, what is the maximum number
during these years. Such applications for synchronizatigh grid points that can be taken, such that any two lines
patterns include radar, sonar, physical alignment, ané-timconnecting these grid points are different either in their
position synchronization. For error-correcting codesythéength or in their slope. Upper bound technique based on
include two-dimensional magnetic and optical recording ag idea of Erdds and Turan [11], [16] is given in [14].
well as three-dimensional holographic recording. These asome preliminary lower bounds on the number of dots are
the storage devices of the future. Applications for pseudgtso given in [14], where the use of folding is applied.
random arrays include scrambling of two-dimensional datge|ding for such patterns was first used by [10]. An one-
two-dimensional digital watermarking, and structurechtig dimensional ruler was presented as a binary sequence and
patterns for imaging systems. Each one of these structui@siten into a two-dimensional array row by row, one binary
(multidimensional synchronization patterns, error-eoting symbol to each entry of the array. This was generalized
array codes, and pseudo-random arrays), and its related de# higher dimensions, say; x ny x ns array, by first
ing problem, is a generalization of an one-dimensionatstrupartitioning the array inta, two-dimensional arrays of size
ture. But, although the related theory of the one-dimeraion,, x ns;. The one-dimensional sequence is written into the
case is well developed, the theory for the multidimensionglesen, x ns arrays one by one in the order defined by the
case is developed rather slowly. This is due that the fact thgee-dimensional array. To each of thesg x ns arrays
most of the one-dimensional techniques are not generalizgd sequence is written row by row. Folding into higher
easily to higher dimensions. Hence, specific techniques hadimensions is done similarly and can be defined recursively.
o _ . This technique was used in [10] to generate asymptotically
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thors, e.g. [17], [18], [19], [20], [21], [22], [23], [24], The two-dimensional generalizations of pseudo-noise and
[25]. Multidimensional error-correcting codes are of iet® de Bruijn sequences are the pseudo-random arrays and
when the errors are not random errors. For correction pérfect maps [40], [41], [42], [43], [44], [45]. Pseudo-
up to ¢ random errors in a multidimensional array, we carandom arrays were also calldthear recurring arrays
consider the elements in the array as an one-dimensiohaling maximum=area matriceby Nomura, Miyakawa,
sequence and useteerror-correcting code to correct thesdmai, and Fukuda [41] who were the first to construct them.
errors. Hence, when we talk about multidimensional erroRerfect maps and pseudo-random arrays have been used in
correcting codes we refer to the errors as special on@s-dimensional range-finding, in data scrambling, and in
such as the rank of the error array [26], [27], or crissrsarious kinds of mask configurations. More recently, pseudo
cross patterns [27], [28], [29], etc. An important family ofandom arrays have found other applications in new and
multidimensional error-correcting codes are the burstrer emerging technological areas. One such application isstpbu
correcting codes. In these codes, we assume that the ertordetectable, digital watermarking of two-dimensionat te
are contained in a cluster whose size is at nbogthe one- images [46], [47]. Another interesting example is the use
dimensional case was considered for more than forty yeao$.pseudo-random arrays in creatisguctured lighf which
Fire [30] was the first to present a general construction. Ojs-a new reliable technique for recovering the surface of an
timal burst-correcting codes were considered in [31], [32bbject. The structured-light technique is based on prijgct
[33]. Generalizations, especially for two-dimensionadles, a light pattern and observing the illuminated scene from one
but also for multidimensional codes were considered or more points of view [48], [49], [50], [51]. As mentioned
various research papers, e.g. [18], [19], [21], [22], [33}]. in these papers, this technique can be generalized to three d
In general, "simple” folding of one-dimensional codes wermensions; hence, constructions of three-dimensionaéperf
not considered for multidimensional error-correctinge&sad maps and pseudo-random arrays are also of interest.
Even so in many of these papers, one-dimensional burst- . . . .
. . The main goal of this paper is to generalize the
correcting codes and error-correcting codes, were trenasfe

into two dimensional codes, e.g. [20], [21], [22], [23], |24 gilrllzn:(\)/éréstegfhtr;:g:: 't;;féni;,:,%rh?fr:}f;%gzgp?tltjeltrlggﬁﬂr
[25]. Colorings for two-dimensional coding, which transfe '

; . . - : correcting codes, and pseudo-random arrays. The general-
one-dimensional codes into multidimensional arrays were

considered for interleavin lﬁation will enable to obtain the following results:

g schemes [21] and other tech- . . .
nigues [25]. These colorings can be compared to the coloringl) I_:orm new two-dimensional codes for these applica-
which will be used in the sequel for folding. There is another __ 1ONS- » .
related problem of generating an array in which burst-srror 2) Generalize all the multidimensional codes for any

can be corrected on an unfolded sequence generated from number of dime_nsions in a simple way.
the array [34], [35], [36], [37], [38]. 3) Form some optimal codes not known before.

4) Make these codes feasible not just for multidimen-

sional boxes, but also for many other different shapes.
E) Solve the synchronization pattern problem as a dis-
crete geometry problem for various two-dimensional

Pseudo-random arrays

The one-dimensional pseudo-random sequences are th
maximal length linear shift register sequences known as M-
sequences and also pseudo-noise (PN) sequences [39]. These shapes, and in particular regular polygons
are sequences of leng?i — 1 generated by a linear feedback ' '

shift-register of orden. They have many desired properties Itis important to note that folding which was used in other
such as places in the literature aim only at one goal. Our folding

) ) aim is at several goals. Even so, our description of folding
. Recgrrences Property - the entries satisfy a recurrence&simple and very intuitive for all these goals.
relation of ordem. o The rest of this paper is organized as follows. In Sedfibn I
- Balanced Pr?perty 2"~1 entries in the sequence argye define the basic concepts of folding and lattice tiling.
onesand2"™" —1 entries in the sequence azeroes  Tiing and lattices are basic combinatorial and algebraic
« shift-and-Add Property - when a sequence is addefctures. We will consider only integer lattice tiling.ew
bitwise to its cyclic shift another cyclic shift of the i symmarize the important properties of lattices and
sequence is obtained. lattice tiling. In SectiofiTll we will present the generaition
« Autocorrelation Property - the out-of-phase value of thg; f5|ding into multidimensional shapes. All previous krow
autocorrelation function is always -1. folding definitions are special cases of the new definition.
« Window Property - each nonzerotuple appears €x- The new definition involves a lattice tiling and a direction.
actly once in one period of the sequence. We will prove necessary and sufficient conditions that a
There are other properties which we will not mention [40]attice with a direction define a folding. We first present
For a comprehensive work on these sequences the reaaqroof for the two-dimensional case since it is the most
is referred to [39]. Related sequences are the de Brugpplicable case. We continue to show the generalization for
sequences of length™ which are generated by nonlineathe multidimensional case. For the two-dimensional case th
feedback shift-register of order. These sequences have th@roofs are slightly simpler than the slightly different pfe
window property, i.e., each-tuple appears exactly once infor the multidimensional case. we will first consider folgin
one period of the sequence. in which two consecutive elements in the folded sequence



are also adjacent, at least cyclically, in the array. Thi wi 5 B
be generalized to folding in which each two consecutive 264952

elements in the folded sequence are not necessarily atljacen 39/42)45 4§ 51 J—‘ d
in the array. In Sectiofi IV we give a short summary on 252;2?22 gf 2? i' i;9| et
synchronization patterns and present basic theorems con- 8212427303334 3942] |

cerning the bounds on the number of elements in such [11]1417/20[2326[2932[35 ° 30
patterns. In SectionlV we apply the results of the previous [4]71101314 14222928 o |

sections to obtain new type of synchronization patterns 3 2 g flll‘ 114 2 - =

which are asymptotically either optimal or almost optimal. 14[7 ole

In Sectior['V] we discuss folding in the hexagonal grid and 0] i

present construction for synchronization patterns in diid

with shapes of hexagons or circles. In Secfion VIl we shofig- 1. Folding by diagonals
how folding can be applied to construct multidimensional
error-correcting codes. In sectidn_MIll we generalize thE
constructions in [41], [40] to form pseudo-random arrays on
different multidimensional shapes. Conclusion and pnoisle  The following sequence (ruler) of length 13 with five dots

xample forF2:

for further research are given in Section IX. is folded into a3 x 5 array
[0O]1[2[3]4[5][6[7[8]9]10[11]12)]
Il. FOLDING AND LATTICE TILING Lelel T Il T LT T Tel Tl
A. Folding 10111213 |14
Folding a rope, a ruler, or any other feasible object 516171819
is a common action in every day life. Folding an one- 0|1]2]3]4
dimensional sequence into R-dimensional array is very
similar, but there are a few variants. First, we will sumrpari . .
three variants for folding of an one-dimensional sequence
S0S1 - Sm—1 iNto a two-dimensional arrayl. The general- e | o °
ization for a D-dimensional array is straightforward while
the description becomes more clumsy. Example forF3:

F1. A is considered as a cyclic array horizontally and

; ) ; ... The following Bs-sequence irZs; : {0,1,4,10,12,17}
vertically in such a way that a walk diagonally visits . . . . L
. can be viewed as a cyclic ruler) is folded into an infinite
all the entries of the array. The elements of th

sequence are written along the diagonal of the ¢ array (we demonstrate part of the array with folding into a

array A. This folding works (i.e., all elements of thefSmall rectangle is given n bold). Not_e, that while the falgi
. . . .. 1S done we should consider all the integers modulo 31 (see
sequence are written into the array) if and only-if

andt are relatively primes. Figurel1).

F2. The elements of the sequence are written row by row .
(or column by column) inA. F1 and F2 were used by MacWilliams and Sloane [40] to

F3. The elements of the sequence are written diagonal [y Pseudo-random arrays. F2 was also used by Robin-
diagonal in A. son [1Q] to fold a one-dimensional ruler |n_to a two-
) dimensional Golomb rectangle. The generalization to highe
Example 1: dimensions is straight forward. F3 was used in [14] to obtain
Example forF1: some synchronization patterns #t .

Given the M-sequenc800111101011001 of length 15, B Tilin
we fold it into a3 x 5 array with a2 x 2 window 9

property (the extra row and extra column are given for better Tiling is one of the most basic concepts in combina-
understanding of the folding). torics. We say that @-dimensional shapé tiles the D-

dimensional spacg?” if disjoint copies ofS coverZP”.
Remark 1:We assume that our shape is a discrete

(0]6[12[3]9 0]

51112 8145 shape, i.e., it consists of discrete pointsf such that
10017134 |10 there is a path between any two points®fvhich consists
0|6 |12(3]9] 0 only from points ofS. The shapeS in Z” is usually not
represented as a union of pointsZ®’, but rather as a union
[0]1[0[1]0]0] of units cubes iIR” with 27 vertices inZ”. Let A be the
TTilolilin1 set of points in the first represgntatlon. The set of unit cube
TToTotorT by the second representation is
0[{1({0|1]0]0 {u(ﬁ,iz,...,ip) : (il,iQ,...,iD) GA} s




where We say thatA is alattice tiling for S if the lattice points

. . can be taken as the st to form a tiling (7, S). In this
Uiiriz,...iip) = 1001, 82, ip) +Ere1+E2€a++EDED * asa e have thasS| = V(A) = |det G|.

0<& <1, 1<i< D}, There is a large variety of literature about tiling and lat-
ande; is a vector of lengthD and weight one with @nein tices. We will refer the reader to two of the most interesting

the ith position. We omit the case of shapesi® which and comprehensive books [52], [53].
are not of interest to our discussion. Remark 3:Note, that different generator matrices for the
This cover ofZ2 with disioint copies ofS is calledtiling  S2M¢ lattice will result in different fundamental paradlel
Do J pies ob 1< 9 grams. This is related to the fact that the same lattice can
of Z with §. For each shap& we distinguish one Of the jnduce a tiling for different shapes with the same volume. A
points of& to b_e thecenterof S. Each copy ofS in a tiling fundamental parallelogram is always a shap&in which
has the center in the same related point. Th&sef centers Ig tiled by A (usually this is not a shape iB” and as a

in a tiling defines the tiling, and hence the tiling is denote bnse
. . - . : quence, most and usually all, of the shap&&”irare
by the pair(7’,S). Given a tiling (7, S) and a grid point | & oqamental parallelograms).

(i1,12,...,ip) we denote by(iy,is,...,ip) the center of ) ) . .

the copy ofS for which (i1, is, ..., ip) € S. We will also Lattices are very fundamental structures in various coding

assume that the origin is a center of some copyof problems, e.g. [54], [55], [56] is a small sample which does
not mean to be representative. They are also applied in

Remark 2:It is easy to verify that any point of can o X , . -
serve as the center d. If (7,S) is a tiling then we can multidimensional coding, e.g. [21]. This paper exhibits a

choose any point of to serve as a center without aﬁectindf"ew _application of lattices for multidimensional codingdan
the fact that(T, S) is a tiling. or discrete geometry problems.

Lemma 1:If (7,S8) is a tiling then for any given Lemma 2:Let A be a D-dimensional lattice, with a

point (i1,iz,...,ip) € ZP the point (i1,is,...,ip) — generator matriG, andS be aD-dimensional shape with
c(i1,i2,...,ip) belongs to the shaps whose center is in a point at the originA is a lattice tiling forS if and only if
the origin. |det G| = |S| and there are no two pointg;,is,...,ip)
Proof: Let S; be the copy ofS whose center is and(ji, jo,...,jp) in S such that(i; —j1,i2—ja2,...,ip—
in the origin andS, be the copy ofS with the point jp) is a lattice point.
(i1,%2,...,ip). Let (z1,x2,...,2p) be the point inS; Proof: Assume first that is a lattice tiling forS. The
related to the point(is,is,...,ip) in Sz. By definition, condition on the volume of is trivial. Assume the contrary
(i1,i2,...,ip) = c(i1,i2,...,ip) + (z1,22,...,xp) aNd  that(iy,iy,...,ip) and(ji, j2, ..., jp) are in the copy of,
the lemma follows. B whose center is in the origin, ar{d, — j1,i2 — ja,...,ip —
One of the most common types of tiling idadtice tiling. ;) is a lattice point. It follows that the poirfty, is, . .., ip)
A lattice A is a discrete, additive subgroup of the rédl  is contained in the shape centered in the origin and also
spaceR”. W.l.o.g., we can assume that in the shape centered &t — ji,is — ja,....ip — jp), @
A = {wvy +upva+ - +upvp : ui,...,up € Z}, (1) contradiction to the fact that is a lattice tiling forS.

) , , Now, assume thatdet G| = |S| and there are no two
where {z_;l,v%,...,vD.} is a set of Imearly mdepend_entpoints (ir,i,...,ip) and (ji,jo,...,jn) in S such that
vect%rs_ inR”. A Ia_ltt|ce A defined by [I]L)D|s a sul_)lattlce (ir—j1, 42— Jjas .- . ,ip—jp) iS a lattice point. We choose the
of Z” if and only if {v,va, ... 7“3} C Z7. We will be  y5int of s which is in the origin to be the center 8fand we
interested solely in sublattices @™ since our shapes arep|,ce copies o5 on each lattice point such that the center
defined inZ”. The vectors, vs, . .., vp are called ease

coincide with the lattice point. Sindelet G| = |S| we only

D ;
for A € Z7, and theD x D matrix have to show that there is no point which is contained in

vi1T  Vi2 ... V1D two different copies ofS in order to complete the proof that

Vo1 V29 ... V2D A is a lattice tiling forS. Assume the contrary that the point
G= : S : P is contained in two copies of with centers at’; and

' ' ' ' C5. Similarly to the proof of Lemmal1 it can be shown that
vpi Up2 ... UDD P — C; and P — (5 are points in the copy of centered
having these vectors as its rows is said to bgeaerator at the origin, But,P — C; — (P — Cs) = C, — C; is a
matrix for A. lattice point (since it is a difference of two lattice poihta
The volumeof a lattice A, denotedV'(A), is inversely contradiction to the assumption. Hencejs a lattice tiling
proportional to the number of lattice points per unit volumédor S. ]

More preciselyV’(A) may be defined as the volume of the corollary 1: Let A be a D-dimensional lattice, with a
fundamental parallelograrfi(A) in R”, which is given by generator matrixa, andS be aD-dimensional shape\ is

def . a lattice tiling forS if and only if | det G| = |S| and there
A= {&Gvrt&vat - +epup 0 <& < 1, =i < Dh o B pointsi1, i, ...,ip) and(ji, jo, . .., jp) in any
There is a simple expression for the volume/gfnamely, copy ofS such that(i; —ji,i2—jo,...,ip—jp) is a lattice
V(A) =|det G|. point.



[1l. THE GENERALIZED FOLDING METHOD How many different folded-rows do we have? In other
In this section we will generalize the definition of folding Words, how many d|ff§rent folding operations are defined in
All the previous three definition&(, F2, andF3) are special this way? There ar8” — 1 non-zero ternary vectors. i

cases of the new definition. The new definition involve@ith the ternary vectofdy, ds, ..., dp) define a folding then

a lattice tiling A, for a shapeS on which the folding is &lSOA with the temary vectof—di, —ds, ..., —dp) define a

performed. folding. The two folded-rows are in reverse order, and hence
A ternary vectorof length D, (d:,do, ..., dp), is a word they will be considered to bequiva[enllf two folded-rovx{s

of length D, whered; € {—1,0,+1}. are not equal_ and not a reverse pair then they will considered
Let S be a D-dimensional shape and lef = © benonequivalentThe question whgtherfor eadh, there

(di,ds,....dp) be a nonzero ternary vector of length  €Xists aD-dimensional shaps with 3 —1 different folded-

Let A be a lattice tiling for a shapé, and letS; be the "OWS will be partially answered in the sequel. Meanwhile,
copy of S which includes the origin. We define recursively V& present an example fdp = 2.

folded-rowstarting in the origin. If the pointiy, iz, . ..,ip) Before the example we shall define how we fold a
is the current point ofS; in the folded-row, then the nextSequence into a shage Let A be a lattice tiling for the
point on its folded-row is defined as follows: shapeS for vyhmh n= |$|. Let 6 be a direction for which
« If the point(iy +dy,is+do, ..., ip+dp) is in S then (A:S,0) defines a folding. Lel3 = bob ...b,—1 be a
it is the next point on the folded-row. sequence of length. The folding of 5 induced by(A, S, §)
« If the point (i, + dy,is +do, ...,ip +dp) is in Sy is denoted by(A, S, 4, B) and defined as the shagewith
S1 whose center is in the poirfey, ca cp) then the elements oB3, whereb; is in theith entry of the folded-

(il +dy —ci,t9+dy —co,...,ip +dp —CD) is the oW in S defined by(A,S,(S) ) )
next point on the folded-row (this is a point & by Example 3:Let A be the lattice whose generator matrix

Lemmald). given by the matrix
The new definition of folding is based on a lattide a 3 9
shapeS, and adirection 6. The triple (A, S,d) defines a G= [ 71 ] .
folding if the definition yields a folded-row which includes

all the elements ofS. It will be proved that onlyA and One can verify that sha . : . .
. . : . pes tiled by this lattice have difiere
0 determine whether the tripled, S, 6) defines a folding. folded-rows. It can be proved that this is the lattice with th

The role of S is only in the order O_f the ele_men_t_s n thesmallest volume which has this property, i.e., that the four
folded-row; and of coursd must define a lattice tiling for ;
. S . folded-rows are different.

S. Different lattice tilings for the same shaecan function
completely different. Also, not all directions for the same If our shapeS is an1 x 11 array then the folding of a
lattice tiling of the shap& should define (or not define) asequence with length 11 is defined as follows (the position
folding. labelled with ani is the place of theith element of the

Remark 4:1t is not difficult to see that the three foldingsequence).
defined earlier (F1, F2, and F3) are special cases of the ne@t the direction vecto(+1,0) the order is given by
definition. The definition of the generator matrices for the
three corresponding lattices are left as an exercise to the | 0 | 1 | 2 | 3 | 4 | 5 | 6 | v | 8 | 9 | 10 |

interested reader. N o
Remark 5: The definition of ternary vectors for the direc—FOr the direction vecto(0, +1) the order is given by

tion, in which the folding is performed, is given to guarante [0][3]6]9[1[4]7]10]2]5][8].
that two consecutive elements in the folded-row, are also
adjacent (possibly cyclically) in the shage For the direction vectof+1, +1) the order is given by

Example 2:Let S be a2 x 2 square. Let\; be the lattice
whose generator matrix given by the matrix

[0]9]7[5]3]1]10][8]6]4]2].

0 2

A; defines a lattice tiling foiS. None of the four possible
ternary vectors of length 2 define a folding with(andsS). | our shapes is given by
Let A, be the lattice whose generator matrix given by the

matrix 0 1
ng[o 2]

Ao also defines a lattice tiling foS. Each one of the

directions(+1,0), (+1,+1), and(+1, —1) defines a folding then the folding of a sequence of length 11 is depicted in
with A (andS). Only the direction(0, +1) does not define Figure[2.

a folding with A (and S). Finally, if our shapeS is given by

G [ 2 2 } For the direction vectof+1, —1) the order is given by
1:
[0]7]3]10]6]2]9]5]1[8]4].




i.e., corresponds to the same position of the folded-raw.

819110 ; !
4[516]7] with the direction vectof-+1,0); The _ng>_<t two Iemmas_, are an |rr_1med|ate_ consequence of
o123 the definitions and provide a concise condition whether the

triple (A, S, 0) defines a folding.
Lemma 4:Let A be a lattice tiling for the shapg and let

2[5]8 d = (d1,da,...,dp) be a nonzero ternary vectqn\, S, ¢)
114|710  with the direction vector0, +1); defines a folding if and only if the s€t(i - di,i-da, ... -
0[3/6|9 dp) —c(i-dy,i-da,...,i-dp) : 0<i<|S|} contains
|S| distinct elements.
ANE Proof: The lemma is an immediate consequence of
a[1l08 with the direction vectof+1, +1); Lemmadl[B, and the defi.nitio.r? of folding. [ |
olol75 Lemma 5:Let A be a lattice tiling for the shapg and let
d = (d1,da,...,dp) be a nonzero ternary vectqn\, S, ¢)
defines a folding if and only if|S|-d1, . ..,|S|-dp)—¢(|S]-
1]18/4 di,...,|S|-dp) = (0,...,0) and for each, 0 < i < |S]
6121915 yjth the direction vectof+1, —1). we have(i-dy,...,i-dp) —c(i-dy,...,i-dp) # (0,...,0).
0] 7|31 Proof: Assume first thafA, S, ¢) defines a folding. If
Fig. 2. Folding of the first shape for some0 < j < [S| we have(j - di,...,j-dp) —c(j -
dy,...,j-dp)=(0,...,0) theng(j) = ¢(0) and hence by
213 Lemmal3 the folded-row will have at mogtelements ofS.
8[9]1d Sincej < |S| we will have that(A, S, d) does not define
415]6]7] with the direction vectof+1,0); a folding. On the other hand, Lemrh 3 also implies that if
0]1 (A, S, 9) defines a folding then(|S]) = (0,...,0).
Now assume thaiS|-di, ..., |S|-dp)—c(|S|-d1,...,|S|
5 g g ((iD) = (O,...,O)) and( for eachi, 0 <) z#<( |S] We) have
. . . . t-dy,...,i-dp)—c(i-dy,...,7-dp 0,...,0). Let
é g'r 710 with the direction vectof0, +1); 0 < iy < iy < |S|: if glir) = gli») then by Lemmal3
we haveg(iz —i1) = ¢(0) = (0,...,0), a contradiction.
5 Therefore, the folded-row contains all the elementsSof
6/4[2 ) o and hence by definitiofA, S, ¢) defines a folding. [ |
3[1]108] with the direction vecto(+1, +1); Corollary 2: If (A,S,6), § = (di,ds, ...,dp), defines a

folding then the point|S|-di, ..., |S|-dp) is a lattice point.

4 Before considering the generé)-dimensional case we
9|5] with the direction vectof+1, —1). want to givg a simple pondition to chepk wh.ether the triple
(A, S, 0) defines a folding in the two-dimensional case. For
each one of the four possible ternary vector we will give
a necessary and sufficient condition that the tripleS, ¢)
defines a folding.

Lemma 6:Let G be the generator matrix of a lattice
and lets = |det G|. Then the pointq0, s), (s,0), (s,s),
| and (s, —s) are lattice points.

Proof: It is sufficient to prove that the pointd), s),

(s,0) are lattice points. Let\ be a lattice whose generator
then the folding of a sequence of length 11 is depicted fatrix is given by

Figure[3.
Next, we aim to find sufficient and necessary conditions G = [ v o2 ] .
that a triple (A, S,d) defines a folding. We start with a Va1 U2
simple characterization for the order of the elements in\i..0.g. we assume thdtdet G| > 0, i.e., s = v11v22 —

~N|N|oo|w| (Ol
-
[en)

1
6
0

Fig. 3. Folding of the second shape

folded-row. v12V21. SINCE v22(v11,v12) — v12(v21,v22) = (s,0) and
Lemma 3:Let A be a lattice tiling for the shap8 and v11(v21,v22) — v21(vi1,v12) = (0, s), it follows that (0, s),
let § = (di,ds,...,dp) be a nonzero ternary vector. Let(s,0) are lattice points. ]
g(i) = (i-dy,...,i-dp) —c(i-dy,...,i-dp) and let Theorem 1:Let A be a lattice whose generator matrix is
i1, i» be two integers. Theg(i;) = g(ip) if and only if given by
glir +1) = glia + 1). G- [ Vi v ] .
Proof: The lemma follows immediately from the ob- V21 V22

servation thay(i1) = g(i2) if and only if (¢1-dy,...,41-dp) If A defines a lattice tiling for the shag® then the triple
and(ig - ds,...,i2-dp) are the same related positiondh (A, S,0) defines a folding



« with the ternary vectov = (+1,+1) if and only if thatt¢ - § is a lattice point (since the folded-row starts at

g.c.d(vag — w21, 011 — v12) = 1; a lattice point and ends one step before it reaches again a

« with the ternary vectod = (+1,—1) if and only if lattice point). This implies that the number of elements in a
g.c.d(vag + v21,v11 +v12) = 1; folded-row does not depend on the point$®fthosen to be

« with the ternary vectow = (+1,0) if and only if the center ofS. We can make any point & to be the center
g.c.d(via,v22) = 1; of S and hence any point can be at the origin. Therefore, all

« with the ternary vectory = (0,+1) if and only if folded-rows with the directiod havet elements. Any two
g.c.d(v11,v21) = 1. folded-rows are either equal or disjoint. Henceust be a
Proof: We will prove the case wheré = (+1,+1); divisor |S| andt does not depend on which point 6f is

the other three cases are proved similarly. the center. ]

Let A be a lattice tiling for the shaps§. By Lemmal®  The next lemma is an immediate consequence from the
we have that(|S|, |S|) is a lattice point. Therefore, theredefinition of a folded-row.

exist two integersa; and oo such thataj(vii,viz) + Lemma 8: The number of elements in a folded-row is one
az(va1,v22) = (|S|,18]), i.€., a1v11 + oo = ayviz + if and only if § is a lattice point. o _
(o2 = |S| = vi1v2s — vi2va1. These equations have Corollary 3: If the volume of a lattice is a prime number

exactly one solutiong; = voy — va; andas = vy — vy, then it defines a folding with a directiod unlessd is a

By Lemmal[5, (A, S,) defines a folding if and only if lattice point. N _

(ISI,18) = ¢(S],|S|) and for eachi, 0 < i < |S| we By _TheorenﬂB itis clear that_we can determine yvhether

have (i,7) # c(i, ). the triple (A, S, 9) defines a folding only by the lattica
Assume first that g.c.ths — va1, v11 —v12) = 1. Assume gnd the ternary direction vectar. The .rple ofS is onl_y

for the contrary, that there exist three integers3;, and [N the fact thatA should be a lattice tiling forS. But, it

Bo, such thatB;(vi1,vi2) + Ba(ver,vee) = (i i), 0 < Would be easier to examine simpler shapes (like rectangle)

i < |S|. Hence,Biviy + Bavar = Prviz + Bavas = i, tha_n more compl!cated shapes_even so they have the same

e, b2 — bu—ui — %2 Sincea; = vy — vy and lattice t||_|ng A. This Iea(_js to an_|mportant tool that we will

g.c.d(vas — v;,vi _ 012)1 — 1, it follows that 8, = ya; Use to f|nd_ an appropriate folding fpr a shage We will

and B, = ~as, for some integery > 0 (w.l.o.g. we can US€ @ foId!ng o_f a simpler shgp@ with the same volume

assume thay > 0). Therefore,i = Bivin + Bovor = and apply |terat_|velyth_e following theorem. The proof oéth

yaqvn + yasver = 4|S| > |S], a contradiction. Thus, it theore_m is an |mmed|a_1te consequence from the definitions

follows from Lemmdb that if g.c.€wog —vo1, v11 —v12) = 1 of lattice tiling and folding.

then (A, S,0) defines a folding with the ternary vector ~Theorem 2:Let A be a lattice tiling for the D-
§ = (+1,+1). dimensional shap§, let§ = (d1,ds,...,dp) be a nonzero

ternary vector, andA, S, ¢) defines a folding. Assume the
origin is a point in the copys’ of S, (i1,i2,...,ip) € &,
(iy+dy,is+ds,...,ip+dp) € S, S’ # S, and the center
of S is the point(ci, ca,...,cp). ThenA is also a lattice
tiling for the shapeQ = &’ U {(i1 + d1,i2 + da,...,ip +
dD)}\{(Z1+d1 —Cl,i2—|—d2—62,...,iD+dD—CD)} and
the triple (A, Q,0) also defines a folding.

Assume now that(A, S, d) defines a folding with the
ternary vectors = (+1,+1). Assume for the contrary that
g.C.d(Ugg — V21,V11 — Ulg) = v > 1. Since g.C.({:UQQ —
V21,V11 — Ulg) = v > 1, it follows that ﬁl = w
and 3, = “1=%12 are integers. Therefores; (viy, vi2) +
B2(v21,v92) = (@,@) and as a consequenég.i is an
integer. Hence, by Lemmia 5 we have tHat, S,d) does
not define a folding, a contradiction. Thus, (\,S,5) A Further generalization of folding

defines a folding with the termary vector= (+1, +1) then So far we have used a ternary vector to indicate the

9-C.d(v22 — va1, vy — v12) = L. ™ direction in which the supposed folding is performed. The
g;}g?;:;g:g} I\?vil?ebneers:zse(jnt?(; tizg';'?qlg)er;%oqgllg-il\-gﬁ iuse of a terna}ry vector is implied by a natural re_quirement
A dix A fhat consecutive elements on the folded-row will be also
ppendix A. consecutive elements in the shape (up to cyclic shift). 8sit,
. T . 9\% will see in the sequel, and specifically in the application
wnhout going into aII_ the computation, whethed, S, 0) . of Sectiond IV and_VTlI, we don't need this requirement.
defines a folding. It will be a consequence of the fOIIOV"'n@}his leads for further generalization and modification of
lemmas. folding which will yield a better understanding of the
Lemma 7: operation and its properties.
o The number of elements in a folded-row does not A direction vector (direction in short) of lengthD,
depend on the point of chosen to be the center of(dy,ds,...,dp), is a nonzero word of lengttD, where
S. d; € Z. The definitions of a folded-row and folding remain
» The number of elements in a folded-row is a divisor afis before with the exception that instead of a nonzero tgrnar
|S], i.e., a divisor of /' (A). vector we use any nonzero integer direction vector. Aldo, al
Proof: By LemmadB and]5 and the definition of thehe results obtained in this section remain true with theesam
folded-row, if we start the folded-row in the origin then theproofs. The only exception is Theorémn 1 for which we need
number of elements in the folded-row is the smallestich a generalized version which will be given in the sequel.
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Lemma 9:Let A be a lattice tiling for the shaps. 1 <i < D,and|{i : b =a;y, 1 <i < D}| > 2. Let

Let (dy,ds,...,dp) be a direction vector(iy,is,...,ip) S be aD-dimensional shape antl be a lattice tiling forS
be a lattice point, and the pointl;, ds,...,dp) is in the whose generator matrix is given by
shapeS whose center is in the origin. Then the folded-rows by 0 ... 0
defined by the direction&l;, ds, . ..,dp) and (i; +dy,i2 + 0 by ... 0
da,...,iq+ dp) are equivalent. _

Proof: Follows immediately from the observation that s .o
C(i1+d1,i2+d2,...,id+dp):(il,iQ,...,iD). [ | 0 0 ... bp

In vieV\_/ Of, Lemma[® we shoulq examine only therpen there is no direction for which the triple (A, S, 0)
|S| — 1 directions related to the points & whose cen- 4o toc o folding.

ter is in the origin. Hence, in the sequel each direction prof | ets — (d1, do,
0 = (dl,dQ,...,dl_)) will have_ the_property that the point ;4 |ety — ’YHleai- Then,o < |S| and for any given
(d1,da, ..., dp) will be contained in the copy af whose ghanes for which A is a lattice tiling we havéo - dy, o -
center is in the origin. One might puzzle how this relates to o-dp)—c(o-di,0o-da,...,o-dp) = (0,0,...,0).
the observation that the necessary and sufficient conditiqqe’nce” by Lemmals, the tfiF’ﬂe’\ s 5) does not define a
that a direction defines a folding depend only on the gefb'lding. T -
erator matrix ofA and not onS? The answer is that the | amima 12:Let A be a lattice tiling for the shaps. If |S|

folded-row itself is defined on the elements&fTherefore, . . ASi=1 . .
' is a prime number then there ex@féﬁf different directions
A will have different directions and folded-rows dependin‘%hicﬁl form LSL=1 nonequivalent foided-rows

on the shape. ) n ,
Remark 6:1f we consider only the|S| — 1 directions . Pro_of. Letp_— |S| be apnme number. BY C_orolla@ s
a directioné defines a folding if a and only i6 is not a

related to the points of whose center is in the origin, lattice point. A shapeS in the tiling contains exactly one
some on the ternary direction vectors might not be con- point. P 9 y

sidered (directions which form an equivalent folding wil ag(c::?'c?r?sl,nge-fr'?gjefg ret’hgyr%%r_?g;?:’ g.’:%so&gfe d(;ff'tlnheesla
be considered). This is another reason for the distinctif0 ! ! y Ice pol '

between the definitions of direction vectors (ternary vect ding. -

. _ . Example 4:Consider the lattice\ of Example[8. It is a
and integer vector). Each definition has a different purpose .. tiIFi)ng for three shapes given in Examag For each
Lemma 10:Let A be a lattice tiling for the shaps, j

B . s shape, four nonequivalent folding operations are given in
n =S| Letd = (d,dy,...,dp) be dlrec_tlon vector and ExamplelB. We will demonstrate the fifth one now.
let fofi1...fn—1 be its folded-row, wherg, = (0,0,...,0) . . .

- oo For thel x 11 array the fifth folding operation has the
and f; = (d1,ds,...,dp). Then the directiond’ = f; direction vector(+-2. 0) and the order is given b
defines a folding if and only if g.c.ti,n) = 1. If the rection v (+2,0) IS gV y
direction 8’ = f; defines a folding then its folded-row is [o]6]1]7[2][8]3]9]4]10]5].
fofifai ... fu_i, where indices are taken moduto S
Proof: By definition and by Lemm&l3 we have that For the second shape and the direction vegidt, 0), the

= fim (ivdyido,... i-dp)—cli-dyi-da,... i-dp) OO IS GVenby

...,dp) be any direction vector

andfg.i = (fldl,fldg,,deD)—C(éldl,fl 4110 5

da,...,L-i-dp). Since the sequencl fi ... fn—1 cONsists 218/ 39

of n distinct points of Z”, it follows that the sequence 0[6]1]7

fofifei-.. fa_i consists ofn distinct points ofZ” if and

only if g.c.d(i,n) = 1. Thus, the lemma follows. [ | For the third shape and the direction vecterl, +2), the
Corollary 4: Let A be a lattice tiling for the shap&. order is given by

There exists one folding with respect Aoif and only if the 1d2

number of nonequivalent folding operations with respect to 71116

Ais @, where¢(-) is the Euler function. 9/3[8|2]
Corollary[4 implies that once we have one folding opera- 0|5

tion with its folded-row, then we can easily find and compute

all the other folding operations with their folded-rows. It We continue now with the theorem which generalizes

also implies that once the necessary and sufficient comditiorheorentL. Indeed, it was enough to prove the generalization

for the existence of one folding in the related theoremsnly for the D-dimensional case. But, we feel that making

are satisfied, then the necessary and sufficient conditiahe generalizations one step at a time, first for= 2 and

for the existence of many other folding are also satisfiedfter that for anyD > 2, will make it easier on the reader,

Nevertheless, Corollaiyl 4 does not guarantee that thete vdhd especially as we are using some different reasoning in

be a direction which defines a folding. This fact is showthese two generalizations.

in the next example given in terms of a lemma. Theorem 3:Let A be a lattice whose generator matrix is
Lemma 11:Lety a positive integer greater than one, given by

as,...ap, be nonzero integers, arig, bo,...pbp be nonzero G| v v

integers such that either;, = a; or b; = a;7v, for each B



Let d; and d» be two positive integers and = Therefore, if(A, S, ) defines a folding with the ternary
g.c.d(dy,ds). If A defines a lattice tiling for the shap® vectord = (+1,+1) then g.c.dwas — vo1,v11 — v12) = 1.

then the triple(A, S, §) defines a folding [ |
o with the ternary vector§ = (+d;,+ds) if and The generalization of Theordm 3 for tiiedimensional case
only if g'C.d(d]UZZ;dYUZl ’ d2v11 ;dlvl2) = 1 and is Theoreni 18 given in Appendix A.
g.c.d(r,|S|) = 1; The next lemma is an immediate consequence from the
« with the ternary vectord = (4d;,—d,) if and definitions on equivalent directions and folded-row.
only if g.c.d(bveztdevar deontdiviay — 1 and Lemma 13:1f the directions (di,ds,...,dp) and

g.cd(r,|S|) = 1; (d} ,dp) are equivalent then there exists
« with the ternary vectod = (+d;,0) if and only if @ Jattice point (i1,i2,...,ip) such that either
g.c.d(vi2,v22) = 1 and g.c.ddy, |S|) = 1; (dy,dy,...,dp) = (iv + di,iz + da,...,iq + dp) oOf
« with the ternary vecto® = (0,+dy) if and only if (di.d3,....dp) = (i1 —di,iz — da,...,iq — dp).

g.c.d(v11,v01) = 1 and g.c.ddy, |S|) = 1. Lemma 14:Let A be a lattice tiling for a shap8§. If |S]
. . QD . .
Proof: We will prove the case wher&= (+d;,+d,); IS a prime number then there exit— ternary direction
the other three cases are proved similarly. vectors which form folding if and only if there does not exist

Let A be a lattice tiling for the shap§. By Lemma[® a lattice point(iy, is,...,ip), where for each, 1 < j < D,
we have tha(|S| - d1, |S| - d2) is a lattice point. Therefore, we haveli;| < 2.
there exist two integers; anday such thato (vy1, v1s) + Proof: By LemmalY, if|S| is a prime number, then
az(va1,v22) = (|S|-d1,|S|-d2), i.e.,a1v11 +agva; = di|S|, the number of elements in a folded-row for a given ternary
Q112 + ovan = da|S|, and|S| = vi1v22 — v12v21. These vectord is either one ofS|. By Corollary[3 the number of
equations have exactly one solution, = d,ves —dove; and elements is one if and only if is a lattice point.
ag = dovi1—divio. By Lemmdb (A, S, 6) defines afolding  If there exist two equivalent directiongs, ...,dp) and
if and only if (|S| - d1,|S| - d2) = ¢(|S| - d1, |S| - d2) and for (d},...,d},) then by Lemmal 13 we have thadd;, —
eachi, 0 < i < |S| we have(i - dy,i-d3) # c(i-dy,i-dy). di,...,dp —dp) is a lattice point, whered;, — d;| < 2

Assume first that g.c.(frvzz—devar dovn-diviz)  — for eachi, 1 <i < D (since|d;| < 1 and|dj| < 1).
1 and g.cdr,|S|) = L Assume for the contrary, If there exists a lattice poir(ti1, ..., ip) for which |i;| <
that there exist three integefis 5;, and 3, such that 2, 1 < j < D, then there exists two ternary vectors
Bi(vi1,v12) + Ba(var,v22) = (i - di,i-d2), 0 < i < (di,...,dp) and (di,...,dp) for which (iy,...,ip) =
|S|. Hence we havel2 = devu—divie _ @ gGince (dy —df,...,dp — dp). n
B1 d1v22 —d2v21 ai D . . .
g.c.d(hvza=davar davii— dlm) = 1 it follows that 3; = The same result is obtained wheS| is not a prime
7@ ande _WM for some0 < v < 7. number if the necessary conditions of TheorEn} 18 are
- 1 L
Therefore, we have - d; = Biv1; + fove; = 2 1T|8\, i.e, satisfiedforallthe related——" ternary direction vectors. In

any case, if there exist a lattice polifit, io, ...,ip), where
for eachj, 1 < j < D, we have|i;| < 2, then there are
me related ternary direction vectors which form equiviale

i= @ But, since g.c.qr, |S|) = 1 it follows thaty = pr,
for some integerp > 0, a contradiction to the fact that

0 < v < 7. Hence, our assumption on the existence ldi Wi | . o thi tion b
three integers, 3;, and 3, is false. Thus, by Lemmgl 5 olding. VVe can aiso give an answer 1o this question by
we have that if g.c. (ﬂd“m dyva dovi dlm) — 1 and finding one ternary direction vector which defines a folding

g.c.d(7,|S]) = 1 then (A, S J) defmes a folding with the and using Corollary4.
direct|0n vectory = (+djy, +d2)
Assume now that(A,S,zS) defines a folding with the IV. BOUNDS ON SYNCHRONIZATION PATTERNS

direction vectoré = (+di,+dz). Assume for the con-  Qur original motivation for the generalization of the
trary that g.c.qdiezz—devar devu—diviz) — 3, > 1 or folding operation came from the design of two-dimensional
g.c.d(r,[S]) = v2 > 1. We distinguish now between two synchronization patterns. Given a grid (square or hexdyona
cases. and a shape on the grid, we would like to find what is
case 1:If g.c.d(druzz—devar dvni—diviz) — 1y > 1 then the largest sef\ of dots on grid points|A| = m, located
By = duza—dova andﬁz dz”ﬁi,,ldlm are integers. There-in S, such that the following property hold. All th¢?)
fore, B1(vi1, vi2) + Ba(var, va2) = (“i'y‘lil , “i'de) Hence, !lnes l_Jetween dots i\ are dlstmct e|th§r in their Ie_ngth or
'Vil‘ is an integer and for the integefly = 4122=d2t21 and Idnf;[greela s;oggﬁf%ucrgt%ggngg('jsOtz:nIS Ca”egr‘;“;‘St'r!;:
b o —dyus G | igurati is anm x m array wi
ﬁIQS\_ Isi % we have Sy (vir, vi2) + By(va1, v22) = exactly one dot in each row and each column t§as called
(7;d1, - dz) and as a consequence by Lemima 5 we hayecostas array [5]. IS is ak x m array with exactly one dot
that (A S,5) does not define a folding, a condtradlcélon in each column thess is called a sonar sequence [5]dfis
case 2:If g.c.d(7,[S]) = vz > 1 then letf, = 227882 5 ) DDC array thens is called a Golomb rectangle [7].
and g, = dxtu—diviz Hence,3) (v11,v12) + f2(va1,v22) =  These patterns have various applications as described.in [5
('5‘d '5‘d2) Clearly, 81, B2, and '5‘ are integers, and asA new application of these patterns to the design of key
a consequence by Lemrmh 5 we have {atS, 0) does not predistribution scheme for wireless sensor networks was

define a folding, a contradiction. described lately in [13]. In this application the shapeight
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be a Lee sphere, an hexagon, or a circle, and sometinesult.
another regular polygon. This application requires in someTheorem 6:Assume we are given a multi periodig-
cases to consider these shapes in the hexagonal grid. F3 @B array A with density u. Let Q be another shape on
used for this application in [14] to form a DDC whose shapg”. Then there exists a copy a® on Z” with at least
is a rectangle rotated in 45 degrees in the square grid (§ee A(S, Q)] dots.
Figure[1). Henceforth, we assume that our gridis, i.e., Proof: Let Q' be the shape such th&' = SN Q and
the square grid fotD = 2. Since the all the results of the|Q'| = A(S, Q). By LemmalIb we have that is a multi
previous sections hold foD-dimensional shapes we will periodic ©’-DDC. By Theoreni}4, there exists a set of at
continue to state the results inIa-dimensional language, least[u|Q’|] dots contained irS that form a DDC. Thus,
even so the applied part for synchronization patterns is twihere exists a copy of on Z” with at least[x - A(S, Q)]
dimensional. dots. ]
We will generalize some of the definition given for DDCs In order to apply Theoreril6 we will use folding of
in two-dimensional arrays [14] for multidimensional arsay sequences defined as follows. l&be an abelian group, and

The reason is not just the generalization, but we also neled B = {b1,bs,...,b,,} C A be a sequence of. distinct
these definitions in the sequel. Ldtbe a (generally infinite) elements ofd. We say thai3 is a Bx-sequence oved if all
D-dimensional array of dots iZ”, and lety;,1.,...,np the sumsa;, + a;, With 1 <i; <iy < m are distinct. For a

be positive integers. We say thalt is a multi periodic (or survey onB,-sequences and their generalizations the reader
doubly periodicif D = 2) with period (n1,72,...,np) if is referred to [57]. The following lemma is well known and
Al(i1,i2,...,ip) = A(ix + m,i2,...,ip) = A(i1,i2 + can be readily verified.

N2,...,ip) = --- = A(i1,42,...,ip + np). We define the  Lemma 16:A subset8 = {a;,as,...,am} C AisaBs-

densityof A to bed/(I17_,7;), whered is the number of sequence oved if and only if all the differences,;, — a;,
dots in anyn; x n2 x --- X np Sub-array of4. Note that with 1 <i; # i, < m are distinct inA.
the period(n1, 72, . . ., 7p) might not be unique, but that the Note that if B is a B,-sequence ove¥,, anda € Z,,
density of A does not depend on the period we choose. When so is the shift + B = {a+ ¢ : e € B}. The following
say that a multi periodic arrayl of dots is amulti periodic theorem, due to Bose [58], shows that laf§e-sequences
ny X ng X ---np DDC if everyn; X ng x ---np sub-array overZ, exist for many values of.
of A is a DDC. Theorem 7:Let ¢ be a prime power. Then there exists a
We write (i1,42,...,ip) + S for the shifted copy{ (i1 + Bs-sequence,as,...,a,, overZ, wheren = ¢> — 1 and
i,ig + iy ... ip + i) 1 (i},ih,...,ip) € S} of S. We m =gq.
say that a multi periodic arrayl is amulti periodicS-DDC
if the dots contained in every shift;,is,...,ip)+S of S
form a DDC. ) ] . . )
The definition of the density is given based on periodicity /N this subsection we will describe how we apply folding
of a D-dimensional box. If is the density, of the multi ©0 obtain a DDC with a shap& and a multi periodic
periodic arrayA, it implies that given a shaps$, the average S-DDC. Let A be a lattice tiling forS and letd =
number of dots in any shap® shifted all overA is p|S|. (d1,d2,...,dp) be a direction vector such that\, S, 4)
This leads to the following theorem given in [14] for thedefines a folding. We assign an integer fra@m, n = |S], to

two-dimensional case and which has a similar proof for tfe¢h point ofZ”. The attice coloringC(A, 9) is defined as
multidimensional case. follows. We assign 0 to the poirf©, 0, ...,0) and we color

Theorem 4:Let S be a shape, and letl be a multi the next element on the folded-row with 1 and so on until
periodic S-DDC of density u. Then there exists a set oflS| — 1 to the last element on the folded-row. This complete

A. A Lattice Coloring for a Given Shape

at least[x|S|] dots contained ir§ that form a DDC. the cqlqring of thg_points of the shape whqse center is
) o the origin. To position(iy, iz, ...,ip) we assign the color
Another important observation from the definition of multif position (iy, i, ..., ip) — c(i1, 4s, . . .,ip). The color of
periodicS-DDC is the following lemma from [14]. position(iy, iz, . . ., ip) will be denoted by (i1, iz, . . ., ip).
JLemma 15:Let A be a multi periodicS-DDC, and let we will generalize the definition of folding a sequence
§"C S. Then A is a multi periodicS’-DDC. into a shapeS by the directiond, given the lattice tiling
Let 1, S, ... be an infinite sequence of similar shaped for S. The folding of a sequencB = boby ... by

such that|S; 1| > |S;|. Using the technique of Erdds andNto an array colored by the elements &} is defined by
Turan [11], [16], for which a detailed proof is given in [14] @SSigning the valué; to all the points of the array colored

one can prove that with the colori. If the coloring was defined by the use
Theorem 5:An upper bound on the number of dotsSp of the folding as described in this subsection, we say that
i — 00, is liM;_0e (v/]S1] +O(\/@))' the array is defined byA, S, d, ). Note, that we use the

same notation for folding the sequenBento the shapeS.
Let S andS’ be two-dimensional shapes in the grid. W&he one to which we refer should be understood from the
will denote by A(S, S’) the largest intersection betweéh context.
andS’ in any orientation. Our bounds on the number of dots Given a point(iy,is, ...,ip) € ZP, we say that the set of
in a DDC with a given shape are based on the followingoints{(i;+¢-dy,i2+¢-ds, . ..,ip+{-dp) : £ € Z} is arow
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of ZP defined bys. This is also the row ofiy,is,...,ip) most three of these integers (colors) are containef. it

defined byé = (di,ds,...,dp). implies that if these four points belong to the same copy of
Lemma 17:If the triple (A, S,d) defines a folding then S on the grid then at most three of these points have dots,

in any row of Z” defined bys there are lattice points. since the dots are distributed by ti#-sequences. Thus,

Proof: Given a point(iy,is,...,ip) and its color any shapeS on ZP will define a DDC and the theorem

C(i1,i2,-..,ip), then by the definitions of the folding andfollows. ]

the coloring we have that(i; +dq,ia+da,...,ip+dp) = Corollary 8: If the triple (A, S, d) defines a folding and

C(iy,42,...,ip)+1 (mod |S|). Hence, the row defined by B is a Bo-sequence ovek,,, wheren = |S|, then the pattern

§ has all the values between 0 af&] — 1 in their natural of dots defined byA, S, 4§, B) is a DDC.

order moduldS|. Therefore, any row defined Wyhas lattice Note, that the difference between Theoigm 8 and Cordllary 8

points (which are exactly the points of this row which aré related to the folding int@” andS, respectively. The last

colored withzeroe}. m lemma is given for completeness.
Corollary 5: If (i1,i2,...,ip), (i1+e1,ia+e2,...,ip+ Lemma 18:If (A,S,6) defines a folding then théS|

en), (j1,42,--.,4p), and (j; + e1,52 + e2,...,7p + ep) colors inside any copy of on aZP” are all distinct.

are four points ofZ” then C(i; + e1,is + ea,...,ip + Proof: Let S; and S; be two distinct copies ofS
ep)—Cli1,iz,...,ip) = C(j1+er,jatea,...,jp+ep)— ONZPY. Clearly, Sy = (e1,...,ep) + Si. By Corollary[5,
C(j1,j2,---,jp) (mod |S]). for each (¢1,...,ip), (J1,-..,Jp), € S1 we haveC(i; +

Proof: By LemmalLY to each one of these four point§t; ---»ip + e€p) = C(i1,...,ip) = C(j1 + e1,-..,jp +

there exists a lattice point in its row defined ByLet ep) —C(j1,-..,jp) (mod |S]). Therefore, ifS; contains

|S| distinct colors then als&, contains|S| distinct colors.
The lemma follows now from the fact thad, S, 6) defines
. . | a folding and therefore all the colors in the shapevhose
o Po=(j1i+az-di,jo+as-da,...,jp +az-dp) the 9 ¢ o o ap
. L Y . center is in the origin are distinct. ]
lattice point in the row of(j1, jo,...,jp); . ; .
. . . Note, that theorerh]8 is also an immediate consequence of

o Py=((i1+e1)+as-di,(iz+es) +az-da,...,(ip+ Lemmal 1B

ep) + az - dp) the lattice point in the row ofi; + '

¢« P = (7;1—|—Oél'dl,i2+a1'd2,...,iD+a1'dD) be
the lattice point in the row ofiy,is,...,ip);

e1,iz +€2,...,ip +ep). V. BOUNDS FORSPECIFIC SHAPES
Therefore, P =R+h-P = (G +er) + (?‘2 + In this section we will present some lower bounds on the
ag —ai) - dy, (j2 + e2) + (a2 +az — 1) -da,...,(Jp +  number of dots in some two-dimensional DDCs with specific

ep) + (a2 + a3 —a1) - dp) is also a lattice pointPy  ghapes. In the sequel we will use Theofém 6, Theglem 8, and
is a lattice point in the row, defined by, of (ji + corollary[8 to form DDCs with various given shapes with a
e1,j2 +e2,..., jp +ep). All these four points are colored arge number of dots. To examine how good are our lower
with zeroes Hence,C(i1, iz, ...,ip) = —a1 (mod |S]), pounds on the number of dots, in a DDC whose shape is
Clin + e1,i2 + €a,...,ip + ep) = —az mod |S]), o we should know what is the upper bound on the number
C(j1:42,- -+ jp) = —az (mod [S]), andC(j1 + e1,j2 +  of dots in a DDC whose shape i§. By Theorenib we
€2,..,jp +ep) = —(az +az —ai1) (mod |S]). Now, the  haye that for a DDC whose shape is a regular polygon or
claim of the corollary is readily verified. B 3 circle, an upper bound on the number of dots is at most
Corollary 6: If_ ¢’ is an integer vector of Ieng_th) ther_1 V/5+0(y/3), where the shape contaisgoints of the square
there exists an integer(¢’) such that for any given point grig ands — co. One of the main keys of our constructions,
P = (i,ia,...,ip) we haveC(P + ¢') = C(P) + and the usage of the given theory, is the ability to produce
e(d’) (mod [S]). a multi periodicS-DDC, whereS is a rectangle, the ratio
Corollary 7: If the triple (A, S, 4) defines a folding and petween its sides is close to any given numberand if
B is a By-sequence ovef,, wheren = |S|, then the array jts area iss then the number of dots in it is approximately

A defined by(A, S, 4, B) is multi periodic. V5 + 0(y/5).
Proof: Clearly, the array has periddS|, S|, ..., |S]) For the construction we will need the well known Dirich-
and the result follows. B |et's Theorem [59, p. 27].

Theorem 8:If the triple (A, S, 6) defines a folding and8  Theorem 9:If  andb are two positive relatively primes
is a By-sequence oveL,, wheren = |S|, then the pattern integers then the arithmetic progression of termns- b, for
of dots defined by(A, S, 4, B) is a multi periodicS-DDC. ;= 1,2, ..., contains an infinite number of primes.

Proof: By Corollary[7 the constructed array is multi The following theorem is a well known consequence of

periodic. the well known Euclidian algorithm [59, p. 11].

Since (A, S, 0) defines a folding it follows that théS] Theorem 10:If « and g are two integers such that
colors inside the shap& centered at the origin are all dis-g.c.d(«, 5) = 1 then there exist two integers, and cg
tinct. By Corollary(5, for the four position&1,is,...,ip), such thatc,a + cgff = 1.

(i1 +e1,ia +ea,...,ip +ep), (j1,72,---,4p), and (j1 + The next theorem makes usage of these well known old
e1,j2 + e2,...,jp + ep) we have thatC(i; + ej,io + foundations.
€2,...,ip + ep) — C(i1,42,...,ip) = C(j1 + e1,j2 + Theorem 11:For each positive number and anye > 0,

e2,...,jp +ep) —C(j1,J2,---,p) (mod |S]). Hence, at there exist two integers, andns such thaty < L < y+e;
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and there exists a multi periodfzDDC with va - bR+0(R) 4

dots whose shape is an xny = (aR+0(R)) x (bR+0(R)) Va
rectangle, wherer;n, = p?> — 1 for some primep, andn;

is an even integer. e

Proof: Given a positive numbey and ane > 0, it is

easy to verify that there exist two integersand 3 such that
V7 < £ < /AFeand g.cda,B) = 2. By Theoren{ID
there exist two integers,,, ¢z such that either,a + 2 =
cgfB>00rcgB+2=cqa > 0.

Assumec,o + 2 = cgf > 0 (the case wheregl +
2 = ¢, > 0 is handled similarly). Clearly, any factor of Fig. 4. From rectangle to "almost” quasi-perfect hexagothwhe same
cannot divide:,a+1. Sinceg dividesc,a+2, it follows that lattice tiling
a factor of cannot dividec,«+ 1. Hence, g.c.dag, coa+
1) = 1. Therefore, by Theoref 9 there exist infinitely many - ) ,
primes in the sequencesRk + coa +1, R=1,2, ... . whereS is glmost a a quasi-regular hexagon QR 0, h_)

Letp be a prime number of the form3R+coa+1. Now, With approximately,/ (b + w)h + o(/(b + w)h) dots. This
P?P—1=(p+1)(p—1) = (aBR+cac+2)(afR +coa) = construction implies the following theorem. _
(0BR + csB)(aBR + cact) = (a®R + acs)(B2R + Bea). Theorem 12:A Iowgr bpund on the number 01_‘ dots in
Thus, a(82R + Bca) x (02R + acs) rectangle satisfies the @ regular hexagon with sides of lengihis approximately

size requirements for the, x ns rectangle of the Theorem. \?’ffR + o(R).

Leta = 8%, b=a? n; = B2R+ Bca, n2 = &’ R+ acg, Now, we can give a few examples for other specific
and letS be ann; x ny rectangle. LetA be the a lattice shapes, mostly, regular polygons. To have some comparison
tiling for S with the generator matrix between the bounds for various shapes we will assume that

ny 40 the.ra(.jius of _the circle or the regular polygonsis(the
G = 0 ny ) radiusis the distance from the center of the regular polygon

_ ) to any one its vertices). We also define thacking ratio
whered =1 if n, =0 (mod4) andf =2 if ny =2 (mod 3 the ratio between the lower and the upper bounds on the
4). By Theorenill(A,S,4), 6 = (+1,0), defines a folding. nymber of dots. The shap® that we use will always by a

The existence of a multi periodi§-DDC with Va - bR+ multi periodicS-DDC on a multi periodic arrayA.
o(R) dots follows now from Theorenid 7 andl 8. |
The next key structure in our constructions is a certain
family of hexagons defined next. dentroid hexagons an A. Circle
hexagon with three disjoint pairs of parallel sides. If tbarf ~ we apply Theorenil6, wheré is a regular hexagon
angles of two parallel sides (called thasesof the hexagon) with radius p and Q is a circle with radiusR, sharing
are equal and the four other sides are equal, the hexagRa same center. The upper bound on the number of dots

will be called aquasi-regular hexagoand will be denoted i Q is VTR + o(R). A lower bound on the number of
by QRH(@, b, h), whereb is the length of a basé, is the V3v3

distance between the two bases, @n¢ 2w is the length V2
between the two vertices not on the bases. We will call tigiensity of A is approximatelyngg. Let 6 be the angle
line which connects these two vertices, tiameterof the petween two radius lines to the two intersection points of
hexagon (even if it might not be the longest line betweahe hexagon and the circle on one edge of the hexagon.
two points of the hexagon). Quasi-regular hexagon will bge have thatA(S, Q) = (7 — 30 + 3sinf)R? andp =
the shapeS that will have the role oS when we will apply %R Thus, a lower bound on the number of dotsan
Theoren{ 6 to obtain a lower bound on the number of dof§h\6/ﬁ
in a shapeQ which usually will be a regular polygon. Inis Tﬁf(”)A(& Q). The maximum is obtained when
the sequel we will say thaf; ~ 7, when we means that§ = 0.536267 yielding a lower bound of.70813R + o(R)
v < g <7v+e on the number of dots i and a packing ratio of 0.9637.
We want to show that there exists a quasi-regular We must note again, that even so this construction works
hexagon QRH, b, h) with approximately/(b+ w)h + for infinitely many values ofR, the density of these values
o(+/(b+ w)h) dots. By Theoremi 11, there exists a doublis quite low. This is a consequence of Theoremh 11 which
periodicS-DCC, whereS is ann; x ns = (R + o(R)) x can be applied for an arbitrary rati9 only when the
(BR+ o(R)) rectangle, such theglt% ~ HT“J ning = p?—1 corresponding integers obtained by Dirichlet's Theorem ar
for some primep, andn; is an even integer. The latticeprimes. Of course, there are many possible ratios between
A of Theorem Il is also a lattice tiling for a a shafie the sides of the rectangle that can be obtained for infinitely
whereS’ is "almost” a a quasi-regular hexagon QRH6, ) many values. A simple example is for any factorization of
(part of this lattice tiling is depicted in Figurgl 4). Byp? — 1 = nin, we can form am; x n, DDC and from
Theorem[L,(A,S,d), § = (+1,0), defines a folding for its related quasi-regular hexagons. We won't go into detail
this shape too. Hence, we obtain a doubly peridli®©CC, to obtain bounds which hold asymptotically for any given

dots in S is approximately. p + o(p) and hence the
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TABLE |

R as we conjecture that the construction for quasi-regular
BOUNDS ON THE NUMBER OF DOTS IN ANn-GONDDC

hexagon can be strengthen asymptotically for almost all
parameters. Nevertheless, we will show briefly how we can
use a doubly periodi§-DDC, whereS is a square to obtain n
a lower bound for the number of dots in a DDC whose shape i }:ﬁ’%?g igﬁgig 0.5;99
is a circle. We use a doubly period®&DDC, whereS is a 5 1.54196R  1.45992R 0.9468
:
8

upper bound lower bound  packing ratio

(p+1) x (p—1) rectangle. For a lattice tiling af we use LO61I85R  ~ 1.61185R ~1

: . . 1.65421R  1.58844R  0.960241
a lattice A with the generator matrix L68179R  1.62625R  0.966977

9 170075k 1.63672R  0.96235

_q g 10 171433 1.64786R  0.961229

a=1|7P ) 12 1732058  1.66871R  0.963433

0 p+1 | 24 176234R  1.69815R  0.963578

36 176796R  1.70367R  0.963636

wheref = 1if p+1=0 (mod 4) and =2 if p+ 1 = 48 - 176992k LT056R - 0.963658
, 60  1.77083R  1.7065R  0.963669

2 (mod 4). By TheorenllL,(A,S,4), 6 = (+1,0), defines 72 L77133R 170699R  0.963675
a folding. We can use Theorel 2 to obtain a new shape 84 1.77163R  1.70728R 0.963679
S’ which produces better intersection with a circle, and a 96 1771828 1.70747R  0.963681

circle  1.77245R 1.70813R 0.963708

better lower bound on the number of dots in it (the previous
best packing ratio obtained with the method implied only
by Theorenlb (without using Theorelmh 2 and better multi
periodicS-DDCs) was0.91167 and it was given in [14]). V1. FOLDING IN THE HEXAGONAL GRID

The questions concerning DDCs can be asked in the
hexagonal grid in the same way that they are asked in
B. Regular Polygon the square grid. Similarly, they can be asked in debBse

For regular polygons with small number of sides we wifflimensional lattices. In this section we will consider some
use specific constructions which are given in Appendix @art of our discussion related to the hexagonal grid. The
If the number of sides is large we will use Theorén dexagonal grid is a two-dimensional grid and hence we will
where Q will be the regular polygon and is a regular compare it toZ2. In Z2 there are four different ternary
hexagon. Assume that the regular polygon hasdes, R is direction vectors, while in the hexagonal grid there are¢hr

its radius, andp is the radius of the regular hexagon. Thglifferent related directions. But, the total number of dire
area of the hexagon i§§p2 and hence the density of thelions depend on the shape in both grids (see Subséction I1I-A

o : . NG and especially Corollafyl 4). We can define a folded-row and
doubly periodic arrayA is approximately 3v3p The area folding in the hexagonal grid in the same way as they are

of the regular polygon is’mzﬁ and hence an upperdefined inZ?. To prove that the results remain unchanged
. \/msin 2% we will describe the well known transformation between the
bound on the number of dots i@ is Y—=—=R + o(R).

L . hexagonal grid and.?.
For simplicity we will further assume that = 12k (the The hexagonal gridis defined as follows. We start by

results for other values of are similar, but the constructlonsti”ng the planeR2 with regular hexagons whose sides have

become slightly more complicated for short description. V\fgngth 1//3 (so that the centers of hexagons that share an

will choose a regular hexagon which hgs_ a joint center Wigblge are at distancB. The center points of the hexagons
the regular polygon. We further choose it in a way iSand are the points of the grid. The hexagons fité in a way

Q intersect in exactly 12 vertices @ equally spread. We that each pointi, 0), i € Z, is a center of some hexagon.

will also make sure that each side Sfintersects exactly The transformation uses an isomorphic representation of

two vertices of @ with equal distance from the nearesf, . hexagonal grid. Each poifit, ) € Z has the following
vertices of S to these two intersection points. It imp”esneighboring vertices o

that A(S, Q) = %Rz and hence a lower bound on

the number of dots isﬁ":%;’i%)l% + o(R). Some values {(w+a,y+b)[abe{-1,0,1}a+b# 0}
2:34 (V341
obtained from this construction are given in Talile |I. It may be shown that the two representations are isomorphic

For small values of:, specific constructions are given inby using the mapping : R? — R?, which is defined by
Appendix C. For some constructions we need DDCs witf(z,y) = (z + \/ig, 2—%). The effect of the mapping on
other shapes like a Corner and a Flipped T which are definde neighbor set is shown in Figl 5. From now on, slightly
in Appendix B, where also constructions of multi periodichanging notation, we will also refer to this representatio
S-DDCs for these shapes are given. Tdble | summarizes th® the hexagonal grid. Using this new representation the
bounds we obtained for regular polygons and a circle in teighbors of poin(s, j) are
square grid. The same techniques can be used forlany
dimensional shape. Finally, we note that the problem is of {(¢ — 1,5 — 1), (i — 1,7), (4,7 — 1), (4, + 1),
interest also from discrete geometry point of view. Some (i+1,5),G+1,7+1)}.
similar questions can be found in [12].
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Fig. 6. From a corner CR, 9; 5, 4) to hexagonal sphere with radius 4

Fig. 5. The hexagonal model translation
correct adjacent errors in a multidimensional array, i.e.,
, i , ) a multidimensional 2-burst-correcting code. The construc
Lemma 19:Two lines differ in length or slope in oney,, s 5 generalization of the construction of optimal
representation if and only if they differ in length or slope i 5o _jimensional 2-burst-correcting codes given by Abram-

the other representation. son [31]. His construction was generalized for larger surst

Proof: This claim can be verified easil)_/ by observinqJ [32] and [33] who gave a comprehensive treatment
that two lines are equal in length and slope in one TePres8fr this topic. Multidimensional generalization for the 2-

tation if and only if they are equal in length and slope ”Burst-correcting codes were given in [23], [60]. We wil

theCOthﬁr regre;en;atior; . DDC in the h | arid give a multidimensional generalization only for the 2-lurs
i czjro alry_f : siape |s.a n t eDDeé(a}gor;a gn correcting codes. The parity-check matrix of a code of langt
if and only if £(S) = {¢(p) : p€S}isa InZ=. ™ — 1 and redundancyn + 1, consists of the2™ — 1

learly’ _the representation of the hexagonz_;ll grid in M3 hsecutive nonzero elements (powers of a primitive elémen
of Z# implies that all the results on folding in the square

id hold also in the h | arid. We will i o) of GF@2™) followed by a row ofones The received
grd-hold aiso in the hexagonal gnd. We Will CONSIAL 45 one or two errors depending if the last entry of its
now the most important fam|!|es of DDCs in the hexag.on ndrome isone or zerqg respectively. The position of the
grid, regular he_xagons and circles. A regular h_exago_” N Wor is determined by the first. entries of the syndrome.
hexagonalgnd 'S al_so called dexagonal sphe_mnth radius The generalization of this idea is done by folding the
Rt 'S a _shape with a cente_r hex_agon Wh_'ch includes 6Hlonzero elements of GF(") into the parity-check matrix
the points in the hexagonal grid which are within Manhatt a multidimensional code row by row, dimension by
distanceR from the center point. Applying the tranSforma'dimension. Assume that we haveD&dimenéional array of
tion £ on this sphere we obtain a new shape in the squ

. . . SAUafGe ny X ng X --- X np and we wish to correct any-
.g”d' This s_hape IS @R+ .1) x _(2R+ 1) square from which dimensional burst of length 2 (at most two adjacent position
isosceles right triangle with sides of lengihare removed

) are in error). The following construction given in [60] is
from the left upper corner and the right lower corner. For tl"l? ) 9 g [60]

fructi hagein Th B ased on folding the nonzero elements of a Galois field with
construction we use as our s i@e'n €OTENLD, a COMEr o racteristic 2 into a parity check matrix, where the order
CR(2R, wy +ws; R, ’wg), Wherew—2 ~1, |w1 —w2| <3 and

9.¢.d(wr, ws) — 1. In Appendix B a construction for doubly of the elements of the field is determined by a primitive

. ) L element of the field.

perlobdlcS;I?jD?,_vn\gl_ereS IS su_ch i,olrner‘,gls given vSvhers theConstruction A: Let o be a primitive element in GBE{")
number of dots irS is approximately/|S| + o(v/S1). BY o ihe smallest integem such that2™ — 1 > []2., ny.
Theorem[? the lattice tiling foS is also a lattice tiling Let d — Mow. D di= (i i ) here0 < i, <
for the shapeS’ obtained fromS by removing an isosceles etd = [log, D] andi = (i1,%5,. .., ip), where0 < 7, <
iaht trianale with sid f lenaitiz f the | left "~ 1. Let A be ad x D matrix containing distinct binary
rgnt tnangie with sides ot leng rom the lower fe d-tuples as columns. We construct the following x ns x
corner and adding it to the upper right corner of tSe

(see Figurdl6). The constructed doubly periodiecDDC xnp X (m+d 1) parity check matrix.

can be rotated by 90 degrees or flipped either horizontally 1

or vertically to obtain a doubly periodi@-DDC, whereQ he — AiT mod 2

is approximately an hexagonal sphere with radiisThis ' o i (T2 1 me)

yields a packing ratio approximately 1 between the lower

bound and the upper bound on the number of dots. Nofer all i = (¢1,i2,...,ip), where0 < i, <n, — 1.

it is easy to verify that the same construction, for a DDC The following two theorems were given in [60].

with a circle shape, given in Subsection V-A for the square Theorem 13:The code constructed in Construction A can
grid will work in the hexagonal grid. For this constructiorcorrect any 2-burstin an; x no x - - - x np array codeword.
we will use regular hexagon and a circle in the hexagonal Theorem 14:The code constructed by Construction A has
grid to obtain a packing ratio between the lower bound anddundancy which is greater by at most one from the trivial
the upper bound on the number of dots in the circle whidbwer bound on the redundancy.

is the same as in the square grid. The same construction will work if instead of B-
dimensional array our codewords will have have a shape
VII. A PPLICATION FORERROR-CORRECTION S of size2™ — 1, there is a lattice tiling\ for S, and there

In this section we will discuss the usage of foldings a direction vectop such that(A, S, 0) defines a folding.
to design optimal (or "almost” optimal) codes which camhe nonzero elements of GF() will be ordered along the
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folded-row of S. Since usually the number of elementsSn Proof: These properties follows immediately from the
is not2™ — 1 we should find a shap§’ which containsS fact that the entries of by the order of the folded-row are
and|S’| = 2™ — 1. We design a code with the shape&f consecutive elements of the M-sequertteThe two cyclic
and sinceS C S’ the code will be able to correct the samehifts of S have the same folded-row up to a cyclic shift.
type of errors inS. Therefore, these four properties are a direct consequence
Finally, the construction can be generalized in a way thitbm the related properties of the M-sequence. ]
the multidimensional code will be able to correct other type Lemma 21:Let A be a lattice tiling for the shapg andé
of two errors in a multidimensional array [60]. be a direction for which the tripleA, S, §) defines a folding.
Let B be a binary sequence of lengt$)|. Let P, and P, be
VIIl. A PPLICATION FORPSEUDO-RANDOM ARRAYS  two points for whichP, — ¢(Py) = P, — ¢(P). Then, for
MacWilliams and Sloane [40] gave the nameeudo- any two positive integerk; andks the twok; x ko windows

random sequencé a maximal length sequence obtaine8f (4, S, 6, B) whose leftmost bottom points ai@ and P,
. ) . re equal.

from a linear feedback shift register. These sequence&sck:aﬁ'jl Proof: The lemma is an immediate conseguence from

also PN I.DSGUdO N0|_se sequences or .M-sequences ht \& definition of the lattice coloring induced o, S, §) and

many desired properties as described in [39], [40]. Tf} e definition of(A, S, 6, B) m

term pseudo-random array was given by MacWilliams an Theorem 16'Ass’ur;1e’A define a lattice tiling for am x

Sloane [40] to a rectangular array obtained by folding a | ~ okiks !
. . ) ng array.A, such thatiyn, = 2 1. Assume further that

pseudo-random sequen8einto its entries. The constructedA defines a lattice tiling for the shagand(A, S, §) defines

arrays can be obtained also as what is called maximum -

area matrices [41]. In [40] it was proved that if a Ioseucloa_foldlng for the directiord. Then, if we fold an M-sequence

random sequence of length= 2% — 1 is folded into an i |2t(l)€ SV\;{:](;gsvdl:gCte'?tnéi’f t:: driilﬁltli?%hsegaisnha;”te
ni X ny array such thaty = 28t —1 > 1, np = 2 > 17 "2 propefty y Lo Y

1, and g.c.dni,ny) > 1 then the constructed ar?ély haiﬁehzisretzgﬁln; k2 window property by foldingS into A in

many desired properties and hence they called this array Proof: Since A is a lattice tiling for bothA and S
A a pseudo-random arraySome of the properties they o
tioned foll ] there is a sequence of arrayly = A, A;,...,A. = S, such
mentioned are as oows._ _ that | A \ Al = |4\ Apa| = 1,0<i<r—1,Asa
1) Recurrences t_he entries satisfy a recurrence relatiofytice tiling for A;, 0 < i < r, and the origin is contained in
along the folding. o A;, 0 < i < r. Moreover, it is easy to verify that given the
2) Balanced- 2¥**2—1 entries in the array arenesand shaped;, P, = Ais1 \ Ai, P, = A; \ Aiy1, we have that
Kr ooy — . . 11 o 11 1 141
2fik2=1 — 1 entries in the array areeroes . P, = P, —¢(P)) with respect taA;. The theorem follows
3) Shift-and-Add - the sum ofd with any of its cyclic by induction and using Lemnial21. -

shifts is another cyclic shift of. _ Theorem[ I does not give any new information about
4) Autocorrelation Function has two valuesz in-phase \indow sizes which are not covered in [40], [41]. The
and -1 out-of-phase. following lemma provides such information. We say that
5) Window property- each of the2*> — 1 nonzero 5 shapes of size 2" — 1 has theQ window property if
matrices of sizek, x k; is seen exactly once as 89| =y, and each nonzero value f@ appears exactly once
window in the array. in a copy ofS, whereS is considered to be a cyclic shape.
All these properties except for the window property are a Lemma 22:Let A be a lattice tiling for a shap8, |S| =
consequence of the fact that the elements in the folded-raw— 1, § be a direction vector, an be an M-sequence of
are consecutive elements of an M-sequefceBefore we length2” — 1. Let Q be a shape with volume. If in the
examine whether an array of any shape, obtained by foldiagrayS’ defined by(A, S, §, S) there is no copy of2 which
S into it, has these properties we have to define what iscantains onlyzeroesthenS has theQ window property.
cyclic shift of any given shapé§ (even so we used the term Proof: By the Shift-and-Add propertyS’ has two
without definition before). Our definition will assume agaitidentical copies ofQ if and only if S’ has a copy ofQ
that there exists a lattice tiling for S and a directiond which contains onlyzeroes Thus, S’ has theQ window
such that(A, S, §) defines a folding. Acyclic shiftof the property if and only if there is no copy o in S’ which

shapeS (placed on the grid) is obtained by taking the safontains onlyzeroes [ ]
of elements{z +¢ : = € S}. We can use now the properties we have found for the
Lemma 20:The shape of a cyclic shift af is S. generalized folding to obtain various results. An example
Proof: The cyclic shift is just a shift by of S on the is given in the following corollary.
grid. Therefore, the shape obtained is atso ] Corollary 10: Let A be a lattice tiling for a shapé,

Theorem 15:Let A be a lattice tiling for a shap& and |S|=2" —1, andS be an M-sequence of leng#¥ — 1. If
let 6 be a direction such thatA,S, ) defines a folding. 2" — 1 is a Mersenne prime thefi\, S, 4, .5) has thel x n
If an M-sequenceS is folded into S in the directiond and then x 1 window property for any given direction vector
then the Recurrences, Balanced, Shift-and-Add, and the
Autocorrelation Function properties hold for the constedc =~ Example 5:Consider the following M-sequencd =
array. 0000100101100111110001101110101 of length 31. LetA



be a lattice tiling for a corner CR(5,7;1,4) with the generat

matrix
3 4
10 3 ’

By folding of S in the direction(+1,0) we obtain the
following pseudo-random array

5)

|
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New pseudo-random arrays with window and corre-
lation properties are derived. These arrays differ from
known arrays either in their shape or the shape of their
window property.

The discussion on these results leads to many new inter-
esting open problems. We conclude with a list of six open

problems related to our discussion.

1]0]1 1)
AN
1/1]1] 1/0]o]0
1/0[1/1/0]0[1
o/ofo{ o 1 0 @
2)

This array has thé x 1 and 1 x 5 window properties.
Out of the 19 shapes of size 5 with exactly two rows it does
not have the window property only for the following three
shapes:

3)
The pseudo-random array obtained by foldifigoy the
direction (0, +1) is
4)
111]1
0/0J1]1]|0]1]1
0/0j0j0O2[1)1 5)
o[1{0[1q 1 1
o[1]of0[0O[1]0
6)

It has theb x 1 and1 x 5 window properties. But, out of
the 19 shapes of size 5 with exactly two rows it does not
have the window property for eight shapes.

Both pseudo-random arrays have a window property for
the star shape given by

We have discussed several applications for the folding
operation in general and for the new generalization
of folding in particular. We believe that there are
more interesting applications for this operation and we
would like to see them explored.

The construction for DDCs whose shape is a quasi-
perfect hexagon works for infinite number of param-
eters. But, the set of parameters is very sparse. Its
density depends on the number of primes obtained
by Dirichlet's Theorem. This immediately implies the
same for the parameters of DDCs whose shape is a
regular polygon. We would like to see a construction
of such DDCs with a dense set of parameters.

What is the lower bound on the number of dots in
a DDC whose shape is a circle with radii® We
conjecture that the lower bound {g7 R + o(R).

We would like to see an asymptotic improvement on
the lower bounds on the number of dots in a DDC
whose shape is a regulargon with radiusR.

Are there cases where we can improve the upper
bound on the number of dots in these DDCs asymp-
totically?

We would like to see a more general theorem which
connects folding of M-sequences and general window

property.

APPENDIXA

In this Appendix we prove the necessary and sufficient

condition for a triple(A, S, d) to define a folding. For the
| proof of the theorem we use the well known Cramer’s
rule [61] which is given first.

Theorem 17:Given the following system with then

IX. CONCLUSION AND OPEN PROBLEMS

The well-known definition of folding was generalized.
The generalization and its applications led to several new
results summarized as follows:

1) The generalization is based on a lattice tiling for a
shapeS and a directions. The number of possible |f
nonequivalent directions ié@. Necessary and suf-
ficient conditions that a direction defines a folding are
derived.

Folding a Bs-sequence into a shapg result in a
distinct difference configuration with the shafe

2)

3)
difference configuration with shape of regular poly-
gon, circle, and other interesting geometrical shapes
are derived.
Low redundancy multidimensional codes for correct-
ing a burst of length two are obtained.

4)

Lower bounds on the number of dots in a distindhenz; = =

linear equations and the variables, zo, ..., x,
a1 a12 a1n x1 by
a1 a2 a2n T2 bo
Gp1  An2 Gnn Tn by,
ajl a2 Gin
az1 a2 A2n
A = det ,
anl aAn2 Ann
A for 1 < k < n, where
an ajk—1) br a4 a1n
a1 ag(k—1) b2 Gz asn
A = det . . .
an1 An(k—1) bn An(k4+1) Ann



Let A be aD-dimensional lattice tiling for the shapg.
Let G be the following generator matrix of:

V11 V12 V1D

V21 V22 V2D
G= : .

UDp1 VD2 UDD

Given the direction vectof = (d,ds,. .

the nextl, values are negatives, and the ldst— ¢; — /5
values are 0's. By Lemm 5 and Corolldry 2,(i, S, §)

defines a folding then there exidd integer coefficients

O1,002,...,0(D such that
D
Zaj(vjl,ng,...,vj[)) =
j=1
(1Sl di, .. 1S|de, s —|SIdes 1, - - —|S|dey 42010, . ., 0),

and there is no integet, 0 < ¢ < |S], and D integer

coefficientsfy, 5o, . .., Sp such that

D
Zﬂj(vjlavj%---vij)
j=1

=(i-dy,...,i-do,—t-dej41y..,—1dp405,0,...,0) .
Hence we have the followindg equations:
D
Zajvjr:|8|'dra 1<r <4y, 2
j=1
D
> e =[S -dp, L+1<T <L+l (3)
j=1
D
> vy =0, L+l+1<r<D. (4)
j=1

Lett =d; if {1+/0; =1 andT = g.C.d(dl,dg, ooy do t0,)

if £1+¢> > 1. The D equations inl(2) [{3)[{4) are equivalent o,

to the following D equations:

D
> v =18] - di,
=1

2<r <4y,
-

D

dlv- —d Vi1
E Oéjijr rJ :O,
j=1

D
d1vj, + dyvj
ZOCJ‘M:O, [1+1§T’§£1+€2,

- T
J=1
D
ZOZJ"UJ'T:O, €1+€2+1§7’§D
j=1
We define now a set oD(D — 1) new coefficientsu,;,

2<r<D,1<j<D, as follows:

d1v — dyv;
um:% f0r2§1"§£1,

.,dp), w.l.o.g.
we assume that the firg¢t > 1 values of$ are positives,
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dlvjr + drvjl
T

Upj = for 1 +1 <7 <ty + £y,

Upj = vjp for by +40o+1<r <D.

Consider thg D — 1) x D matrix

U21 U22 U2p

Uus1 U3z2 usp
H = )

Up1 UD2 UpD

Using Theorern 17 it is easy to verify that the unique solution
for the ay’s is

p 1 i1 det Hy,

ap = (_1) d¢1+@2—1 (5)
1

where Hy, is the (D — 1) x (D — 1) matrix obtained from
H by deleting columrk of H.

Lemma 23:For eachk, 1 < k£ < D, 7 dividesq,, defined
in @).

Proof: Consider the followingD x D matrix

V11 V21 UD1
U21 U222 U2p
G=| us1 us2 u3p
Up1 Up2 UppD

By the definition of the entries in the matri®¥ and since
det G = |S] it follows that thatdet G = |S| (%)AHTI.
det G in Theoren[1V is equall, while A, is equal|S] -
dy (%)AHT2 Y, for some integel’. Thereforep, = 7Y
and the lemma follows. ]
This analysis leads to the following theorem.
Theorem 18:If A is a lattice tiling for the shapeS
then the triple(A, S, ) defines a folding if and only if
g.cd(%,%%,...,%2) =1and g.c.dr,|S]) = 1.

T o

Proof: Assume first thatA, S, ) defines a folding.

assume for the contrary that
gcd(&, 22 .. 22) =y >1org.cd(r,[S]) = > 1.
We distinguish between two cases.
Case 1:
Assume that g.c.g2t, %2, ..., 22) =1 > 1.

Equations[(R),[(8), and4) have exactly one solution for
the a;’s given in [8). Since g.c.d&, 22, ... 22) =y, it

T T
follows that3; = :jjl, 1 < i < D, are integers. Therefore,
we have

D
S
S G = old,, 1<r<t,
=1 TV,
< 15|
> Bivjr = ——dp, L+1<7 <l + L,
i=1 TVl

D
> Bjvjr =0, Li+lr+1<r<D,
j=1



D
Zﬂj(vjlavj% VD) =
J=1
S| S| S| S|
(Edh”"TldE“__ R T yldl1+l2705"'70)

and as a consequence by Lemiha 5 we have (thaF, ¢)
does not define a folding, a contradiction.
Case 2:

Assume that g.c.dr, |S|) = v2 > 1.

Let B; = $=, 1 < i < {1 + £>. Therefore,
D
Zﬁj(vjl,ng,...mj[,):
j=1
S| S| S| 18]
—dy,...,—d¢,,——d v, ——d 0,...,0
(1/2 1, ) 0 2% Vs l1+15 ) Vs 144025 Yy ) )7

and as a consequence by Lemiha 5 we have (thaF, )
does not define a folding, a contradiction.
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" Fig. 7. A corner CR7,11;2,4)

Since the rows ofG are linearly independent it implies
that fa; = |S|B; for eachl < i < D, ie., i = %
Bi fg‘ is an integer and’ = g.c.d(¢,|S|) implies that
Bi = |8Wozz, 1 <4< D.g.cd(/v,|S|/v) =1 and hence
'%‘ divides «; for eachi, 1 < ¢« < D. g.c.d(r,|S])

1, 7 divides «;, and hence‘s| divides % for each i,

1 < i < D. Hence, g.cqo;l,af,...,“f?) > 15 But,
g.cd(&, 22 ..., 22) =1and hence = |S|, i.e. £ > |S],

a contradiction. ThusiA, S, 0) defines a folding. [ |

APPENDIXB

As a consequence of Case 1 and Case 2 we have that

if (A,S, 5) defines a folding with the ternary vectérthen
g.cd(%,22,...,22)=1andg.cdr,|S]) = 1.

)

1
T
1 Q2

Rt R

ap
boT

Now assume that g.c( 1 and

g.c.d(7,|S|) = 1. Consider the set oD equations defined
by
D
Zaj(vjl,ng,...,vjp): (6)
j=1
(|S|d1, - .., |S|de,, —|S|dey 415 - - -, —|S|dey 45,0, ..., 0),

Since the rows of7 are linearly independent, it follows that
this set of equations has a unique solution for dh's (but,

these coefficients are not necessary integers). Using the sa
analysis proceeding the theorem, we have by the Cramer’s

rule that this solution is given by ](5) and hence thgs
are integers. Assume for the contrary that S, ) does not
define a folding. Then, by Lemnid 5 we have that there exi$
D integersg;, 1 < i < D, such that

D

> B, vja, - v5p) = (7
j=1
(-dy,....0-do,,—L-dp41,...,—C dp 4+4,,0,...,0),

for some integed < ¢ < |S].

Since the rows of7 are linearly independent then thereOnes Lethy = hy —

exists exactly one set @f’s (integers or non-integers) wh|ch
satisfies[(I7). Letv = g.c.d(¢,|S]), where clearlyl < v <
¢ < |S|. From equationd{6) andl(7) we obtain

In this appendix we consider DDCs with two special
shapes, called corner and flipped T. The DDCs with these
shapes and special parameters are important in applying
Theorem[ b to obtain other DDCs such as triangles in the
square grid and hexagonal spheres in the hexagonal grid.

A. Corner

A corner, CR(hy + ha, w1 +wa; ho, wa), is an(hy +ha) X
(w1 + we) rectangle from which ahs x wy rectangle was
removed from its right upper corner. An example is given
in Figure[T. LetS be a CRAy + ha, w1 + we; ha, we) and
let A the lattice with the following generator matrix

G:[ " }

hy + ho
Clearly, A is a lattice tiling for S. A general result
?ncermng DDCs whose shape is a corner seems to be
quite difficult. We will consider the case which seems to
be the most useful for our purpose. First note, that by
Theorem[1L,§ = (0,+1) defines a folding forA if and
only if g.c.d(wy,ws) = 1. Assume first thath; = ho
and |w; — we| < 3. By Theorenﬂll, we have amy x no
rectangleQ such thatn,ny, = p?> — 1 for some primep,
I 2’];1;1[3 andn; is even. Now, we will make new
ch0|ces forhy, he, wy, andws, which are close to the old
= n1; we distinguish between three cases

wq
—wsy

(W.l) If ng = 3w+ 1thenw; =w andws; = w + 1.
(W.2) If no = 3w +2thenw; =w+1 andws = w.

(W.3) If ny = 3w then we distinguish between two cases:

D
E (baj) (v, vjo, ..., VD) =
=1

j=
(€|S|dla s a£|8|d417 _£|S|d41+la EREE)

Z IS185)(vj1,v52, - -+, VD)

—|8|dy, 1,0, ...,0)

e if w—1=0 (mod3) thenw; =w+1 andwy =
w— 2.
e if w—1%0 (mod3) thenw; = w—1 andw,
w+ 2.
It is easy to verify that the size of the new corner(@R+
h,Q,’LUl + U)Q;h,Q,’LUQ), S/, is ning = p2 — 1, A is a lattice



19

APPENDIXC

In this section we demonstrate how Theoilgm 6 is applied
for several geometric shapes (having the role®in the
theorem), where our shagkin the doubly periodicS-DDC
is an appropriate corner, flipped T, or quasi-regular herago

Fig. 8. Aflipped T F1(5,17;4,6) C. Equilateral Triangle

Let Q be an equilateral triangle with sides of length

. ﬁ 9
tiling for &', (A, S',4), § = (0,+1), defines a folding, and The area ofQ is ~4> B* and hence an upper bound on the

1
we can form a doubly periodi§’-DDC with it. Hence, we Nnumber of dots inQ is 2+ B+ o(B) = 0.658 B+ o(B). For

have the following theorem. our shapeS we take a flipped T, FT{5, \/gB; o o)
Theorem 19:Let n; and no be two integers such thatwhich overlaps in its shorter base with the bas&ofThese
ning = p* — 1 for some prime numbep, ny = 2w + w2, bases ofS and Q share the same center. The areaSof
wheren; is an even integeny,, wo, are defined by (W.1), js \/T§B2 and hence the density of the arrayggg, The
4

(W.2), (W.3). Then there exists a doubly periodieDDC, . . 370243 12
whose shape is a comer, ; with intersection ofS and Q, A(Q,S), equal to =*5=¥=B~,
P (R, w1 + wa;ma, wp) p Therefore, a lower bound on the number of dotsQnis

dots. .
3223 4 o(B) = 0.5916B + o(B) and the resulting
4
pacgking ratio is 0.899 . The same result can be obtained by
B. Flipped T using other structures instead of a flipped T.

A flipped T, FT(h, w1 + wa + ws; wy,ws), is an(2h) x
(w1 +wo+ws) rectangle from which ah x w; rectangle was D. Isosceles Right Triangle
removed from its left upper corner and anx w3 rectangle  Let Q be an equilateral triangle with base and height of
was removed from its right upper corner. An example igngth B. The area ofQ is %BQ and hence an upper bound

given in Figure B. LetS be a FTh, w; + w2 + ws; w1, w3)  onthe number of dots i@ is %B—i—o(B) = 0.707B+o(B).

and letA the lattice with the following generator matrix
g9 For our shape we take a corner CR@B, \/gB; %, %)
B w1y + wa h which overlaps in its two shorter sides with the base and
wy +2ws +wz 0 | height of 9. S and Q shares the intersection vertex of these

sides. The area aof is %Bz and hence the density of the

Clearly, A is a lattice tiling for S. A general result array isg. The intersection o and Q, A(Q,S), equal

concerming DDCs whose shape is a flipped T seems tg)(\/é— 2)B2. Therefore, a lower bound on the number of

be quite difficult. We will consider the case which seemg .. i Q is (V12 — 2v2)B + o(B) = 0.63567B + o(B)

to be the most useful for our purpose. First note, that %d the resultina packing ratio is 0.899 (exactlv as in the
Theoren]Ly = (0, +1) defines a folding for\ if and only ..o o an equig\tgral trigngle). ' ( y

if g.c.d (w1 + w2, w1 +2we +w3) = 1 which is equivalent to
g.c.d(w; 4+ wa, wy + w3) = 1. Assume thatw; — ws| < 4.
By Theoreni1lL, we have am x n» rectangleQ such that E- Regular Pentagon

ning = p? — 1 for some primep, Z—; ~ h , andng Let Q be a pentagon with radiuR. The area ofQ is

w1 +2wa+ws

is even. Now, we will make new choices far wy, andws, %sin %’r and hence an upper bound on the number of dots

which are close to the old ones. Liet= n;; we distinguish in Q is 1.54196 R+ o(R). Let S be a quasi-perfect hexagon

between two cases of;: having a joint base withQ and two short overlapping
(Y.1) If ny = 4w thenw; = 2w + 1 — wp andws = 2w — sides withQ, where these sides are connected to this base
1 — wo. (see Figure[19). The distance between the base and the
(Y.2) If ny = 4w + 2 thenw; = 2w + 3 — wy andw; = diameter ofS is aR, 2sin.110 cos 31’—’5 <a<(l+sin ?{—g)/Q.
2w —1 — wy. The length of the base i8Rsin ¢ and the length of the

. . . . diameter ofS is 2Rsin ¢ + 2aRtan {;. Hence, the area
It is easy to verify that the size of the new flipped Tof Sis (4sinT + 2atanll)aR2 and the density of the

FT(h w1 + w2 + w3 wq w3),S', IS ning :p2—1,Aisa . 1 0 ] X
S e . : . Th f the int t
lattice tiling forS’, (A, S’,6), d = (0,+1), defines a folding, amay 1S e T42a%tan 5 R € area ot the Intersec .|on
and we can form a doubly period&/-DDC with it. Hence, PetweenQ and S, A(S, Q), is computed by subtracting
we have the following theorem. from the area ofS the area of the two isosceles triangles

Theorem 20:Let n; and w» be two integers such thato: and 72 The lower bound on the number of dots is
ny = wi + 2ws + ws, wi, ws, are defined by (Y.1), (Y.2), Jiesm Trsman prs (S Q) The maximum on this lower
andniny = p? — 1 for some prime numbep. Then there bound is obtained for, = 0.814853, i.e., the lower bound
exists a doubly periodi&-DDC, whose shape is a flippedon the number of dots in a pentagon with radifsis

T, FT(n1, w1 + wa + ws; wy, ws), with p dots. 1.45992R + o(R) yielding a packing ratio of 0.946795.
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H. Regular Nonagon
Let Q be a regular nonagon with radiu®. Let S be a

i 11
1

quasi-regular hexagon with radiys wherep = 2235 R,
3

.24 such thatQ and S share the same center and thére is an
overlap in three pairs of edges betweéhand S. The
area ofQ is §sin 2* R? and hence an upper bound on the

aR number of dots inQ is 1.700748R + o(R). The area of

Sis % (b".‘ i ) R? and hence the density of the array

Sin 3

iS V2 sin %
P R —
Fig. 9. Quasi-regular hexagon intersecting a regular genta 31+/3Rsin T

i. 33 Sin% 2 2 sin21"—8(:os% 2
andS, A(S,Q), is 22 (2 ) R* - 6—+—2R* =
sin § sin §

F. Regular Heptagon 2.8625667R?2. Therefore, a lower bound on the number of

. . dots in the nonagon i$.63672R + o(R) and the packing
Let Q be a regular heptagon with radids The area of ratio is 0.96235 .

Q is 7 sin Z R? and hence an upper bound on the number
of dots inQ is 1.65421R + o(R). Let S be a quasi-perfect
hexagon constructed as follows. We refer to the sides bfR€gular Decagon

Q as side 0, side 1, side 2, side 3, side 4, side 5, side 6Let Q be a regular decagon with radiéswith sides 0, 1,

in consecutive order clockwise. Let's denote the six sidés 3, 4, 5, 6, 7, 8, 9 in consecutive order clockwise. The area
of S by side A, side B, side C, side D, side E, side Ff Q is5sim§R2 and hence an upper bound on the number
in consecutive order clockwise, where side A is the lowef dots in Q is 1.71433R + o(R). Let § a quasi-perfect
base ofS. Sides B and C of overlap sides 1 and 2 a, hexagon with sides A, B, C, D, E, and F, in consecutive
respectively; sides B and C are longer than sides 1 andadkder clockwise, where A is the lower base &f Sides B
The two bases oF, sides A and D, have angI% with and C ofS overlap with sides 1 and 3 of; sides E and
sides B and C, respectively. Side A intersect sides 0 and=6of Q overlap with sides 6 and 8 a. The two bases A

of Q; side D intersect sides 3 and 4 ¢f. The length of and D ofS have distance R to the diameter ofS which

the segment, on side 0, from the vertex of the intersectioonnects the intersection vertex of sides B and C with the
between sides 0 and 1 and the intersection of side A and sidtersection vertex of sides E and F. The distance between
0 is zR. Finally, sides E and F of are parallel to sides B the diameter and a base (A or D)ds?. The area ofS is

01

.26

.24
. The area of the intersection betweéh

and C, respectively; Side E intersect sides 4 and 5; sidesF= 2(2sin 2Z +2Si“£ SmE_ ——#-a)aR? and the density
10 10

intersect sides 5 and 6. The distance between the vertex0 [he array is . Finally, A(S, Q) = (5 sin T —2
the intersection between side E and F&fand side 5 of YIS Y. ) = Sy

Q is aR. Computing|S|, A(S, Q), and the lower bound on a)?)R?. The lower bound of the number of dots @ is

{ : ; ! )
the number of dots i, i.e., 25:2) 55 functions of: and %A(S, Q). The maximum on this lower bound is obtained

molies that th e S e far— 0430049 O @ = 0-923286; the lower bound is.64786 R+ o(R) and
a Implies that the maximum is obtained fer= 0.432042 %he packing ratio is 0.961229 .

anda = 0.0840633, and the lower bound on the number o
dots in Q is 1.58844R + o(R) yielding a packing ratio of
0.960241.

so2
smT"(l_

in
Sin 10
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