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On Scaling Laws of Diversity Schemes in
Decentralized Estimation
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Abstract

This paper is concerned with decentralized estimation ofasSian source using multiple sensors. We consider
a diversity scheme where only the sensor with the best chaends their measurements over a fading channel to a
fusion center, using the analog amplify and forwarding téghe. The fusion centre reconstructs an MMSE estimate
of the source based on the received measurements. A distiilmersion of the diversity scheme where sensors
decide whether to transmit based only on their local chaimiefmation is also considered. We derive asymptotic
expressions for the expected distortion (of the MMSE edtnaa the fusion centre) of these schemes as the number
of sensors becomes large. For comparison, asymptotic &sipres for the expected distortion for a coherent multi-
access scheme and an orthogonal access scheme are demvatbo/gtudy for the diversity schemes, the optimal
power allocation for minimizing the expected distortiorbgact to average total power constraints. The effect of
optimizing the probability of transmission on the expecthstortion in the distributed scenario is also studied.
It is seen that as opposed to the coherent multi-access scharh the orthogonal scheme (where the expected
distortion decays a$/M, M being the number of sensors), the expected distortion decaly asl/In(M) for
the diversity schemes. This reduction of the decay rate easeen as a tradeoff between the simplicity of the
diversity schemes and the strict synchronization and l&#aysdwidth requirements for the coherent multi-access
and the orthogonal schemes, respectively. It is proveddptimal sensor transmit power allocation achieves the
same asymptotic scaling law as the constant power allotatbeme, whereas it is observed that optimizing the
sensor transmission probability (with or without optimaler allocation) in the distributed case makes very little
difference to the asymptotic scaling laws.

. INTRODUCTION

Wireless sensor networks have received much recent ibfarédse research community. Many different schemes
for decentralized estimation of sources using multiplesses have been proposed, elg. [1]-[6]. One popular
technique is analog amplify and forward [7]1 [8], where s®mstransmit over fading channels a scaled version
of their analog measurements to a fusion center, and hasdhe®m to be optimal in some situations [9]. Analog
forwarding under different multiple access schemes suatoherent multi-access|[7], [10] and orthogonal access
[11], with correlated data between sensors [12]] [13], aiffdrént network topologies [14], have also been studied.

One problem with the analog amplify and forwarding techeigs that it appears to be hard to implement,
especially when the number of sensors is large, e.g. it feedlif to synchronize a large number of sensors in the
multi-access scheme (though studies suggest that eveauwierfect synchronization much of the gains can still
be achieved [8],.[15]), while there might not be a sufficigriirge humber of orthogonal channels available in the
orthogonal scheme. This paper will study the performandb@finalog forwarding technique using multiple access
schemes which may be easier to implement, based on the doofcepulti-user diversity [[16], [[1[7]. Multi-user
diversity refers to different users experiencing good clghrconditions at different times, and can be exploited
in the following manner: For the problem of maximizing tharswate subject to average power constraints, the
optimal solution is to schedule the users such that at mdgt@re user transmits, with this user being the one
having the best channel conditions at that instance.

In this paper we will study the use of a similar diversity stieein the decentralized estimation of a Gaussian
source. In this scheme, which we will refer to as thati-sensor diversity scheme, the sensor with the best channel
conditions at that time will amplify and forward its measument to the fusion center, while the other sensors do
not transmit. The multi-sensor diversity scheme require@stedge of all the channel gains in order to decide on
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the best channel. A distributed version of the multi-serteersity scheme, similar to a distributed version of the
multi-user diversity scheme studied in [18] (see also [X9])ed thechannel-aware ALOHA scheme, will then also
be considered.

In this paper we are interested in the asymptotic behavibguch schemes as the number of sensdrgoes
to infinity. It is shown that in many cases the expected distor(where the expectation is with respect to the time
varying channel gains) decays to a non-zero limit at the tdte (/). As a comparison we will also derive the
expected distortion of the multi-access and orthogonatssschemes, which decay at the rgt&/ for large M.
These results are similar to the existing asymptotic redaolt the distortion in the multi-access scheme [6]-[8] and
orthogonal access schemel[11], however @kigected distortion is not considered explicitly in these works. Note
also that characterising performance via expectationsatsasbeen used in e.g. Kalman filtering with intermittent
observations[[20], where the behaviour of the expected ewwariance was studied. Another related concept is
the distortion exponent [21], which relates the expectetiodion with SNR under different source and channel
encodings, as the SNR goes to infinity.

We will also be interested in deriving the optimal power eflton to minimize the expected distortion subject
to average power constraints. We will study this problemtli@ multi-sensor diversity and channel-aware ALOHA
schemes. For the channel-aware ALOHA scheme, we will alssider the problem of optimizing the thresholds
which determine when individual sensors will transmit. Hifect of these optimal power allocation and/or optimal
threshold selection schemes on the asymptotic scaling flemthe expected distortion will be studied in detail. It
will be shown that with optimal power allocation, the asyotjit scaling law of expected distortion remains the
same as that with constant power allocation policy. It i® albserved via numerical studies that with the optimal
threshold selection in the distributed case (with or withoptimal power allocation), the asymptotic scaling laws
for expected distortion are very similar to that with an itlesd transmission probability of /M across all the
sensors and some weaker theoretical results are proved.

The paper is organised as follows. Secfidn Il specifies owtehand the different multiple access schemes used
by the sensors to communicate to the fusion center. Seldiiatetives for symmetric parameters the asymptotic
behaviour for the multi-sensor diversity, channel awareOMA, multi-access, and orthogonal access schemes,
followed by comparisons and discussions. We comment onhehdahe results for the symmetric case can be
extended to general parameters in Sectioh IV. Optimal pailecation for the multi-sensor and channel aware
ALOHA schemes are considered in Sectloh V. It turns out that performance of the simple constant power
allocation of Sectiom Il is very close that with the optinadwer allocation, and we will prove why this is the
case. In Section VI we study the problem of optimal threstsaliéction in the channel-aware ALOHA scheme and
its effect on the asymptotic decay rate of the expected risto Finally, Section VIl presents some concluding
remarks and future research directions.

[I. SYSTEM MODELS

We wish to estimate a discrete time scalar sighamodelled as an i.i.d. bandlimited Gaussian source with zero
mean and variance?, with k representing the time index. The Gaussian source is mehbyré/ sensors with
sensori having measurements

Yik = 9k+vi,kai = 17"'aM
with v; 5, being i.i.d. Gaussian with zero mean and noise variarfceNith v; ) independent ob; ;, for i # j. Let
i1 be the randomly time-varying channel power gains from senhsmthe fusion center, and, ;, the amplification

factors in the amplify and forward scheme. We assume ghatand g; ;. are independent for # j. The transmit
power of sensof at time k is defined as

2 2 2 /2, 2
Yik = o 1 Bly; k] = ai(0f + 07)

Next, we present the various multiple access schemes fosritting the sensor measurements to a fusion center,
considered in this paper.



A. Multi-sensor diversity scheme

Let gmaz k = max(gik,---,9mk), and:* the index of the corresponding sensor. Consider a schemesvoingy
the sensor with the best channel transmits its measuremehné tfusion center. The fusion center then receives

2k = \/maz k= k(O + Vi ) + np

wheren;, is i.i.d. Gaussian with zero mean and variance Using the linear MMSE estimator [22], the mean
squared error odistortion at time & can be easily shown to be

—1
2
D 1 gma:v,kai*7k
k= ;‘F a2 o2 + o2
0 ImaxkQpx 05 n

B. Channel-aware ALOHA scheme

The multi-sensor diversity scheme requires knowledge lathal channel gains in order to determine the sensor
with the best channel. In practice this could be achieveddmniny each sensor transmitting a pilot signal to the
fusion center, which may then be used by the fusion centestimate the individual channel gains. The fusion
center can then determine and inform the sensor that it leabdbkt channel. However, as the number of sensors
increases, there is increasing overhead involved and thieseasor diversity scheme may be prohibitive for large
networks, see e.g. [18].

We consider now a scheme that we will call the channel-awdr®H#A scheme, that is based on a distributed
scheme for multi-user diversity considered[in|[18], see §&3] for a similar scheme in the distributed estimation
of a constant parameter. In this scheme a sensor will fonisntheasurement to the fusion center only;if, > T;
for some threshold’;.

In [18], choosingT; such thatPr(g; ,, > T;) = 1/M, Vi, was shown to be asymptotically optimal, in the sense
that this gives the same rate of throughput scaling as in toki-oser diversity scheme, but with a fraction of
throughput loss ofl /e (asymptotically). For much of this paper we will also usestbhoice of7;. We discuss in
Sectior V] how the transmission threshold can be optimizedlthe effect of the optimal threshold on the expected
distortion and its scaling law for largk! (assuming identical threshold for all sensors).

In this scheme, if more than one sensor transmits, then @ioollis assumed (whereby the fusion centre does not
receive anything) and;, = o3. Similarly if no sensor transmits then alg®, = o7. If only one sensor transmits,

then
1 i 1O -
v, -*,ki
Dp=|=+ 2 Z2 2
Ty GirkQe 103 + 05

wherei* is the index of the sensor that is transmitting.

C. Multi-access scheme

In the (coherent) multi-access scheme [7],/[10], the sentansmit their measurements to the fusion center
using the amplify and forward technique over a multi-acagsnnel, so the fusion center receives the sum

M
2 = Z Vi k0 k(O + Vi i) + g 1)
=1

The distortion at timét is given by

M 2\ !
1 N (Zi:l \/gi,kai,kz>
2
o Y 9ik0 07 + 07
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Ty (Zi:l 9i k07 + Un)
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D. Orthogonal access scheme

In the orthogonal access schermel[11], the sensors trarsrithieasurements to the fusion center via orthogonal
channels, so that the fusion center receives

Zik = \/Gi ki k(O +vig) Fnip,i=1,..., M

wheren, . is i.i.d. Gaussian with zero mean and varian¢eVi. The distortion at timek is given by

-1
9i k& ik
D=5+
(09 Zgzkalka +02>

1. ASYMPTOTIC ANALYSIS

In this section, we are interested in deriving asymptotjeressions fol£[Dy] asM — oo, where the expectation
is over the random channel gaipgy,, for the different schemes of Section Il. Due to the i.i.ch {ime) nature
of the models we WiII drop the subscript For analytical tractability we will first analyze “symmigfr sensor
networks witho? = o2, Vi, with the g;'s being identically distributed, and simple power alldoatpolicies, e.g.
constant power aIIocatlon. See Section IV for remarks oneng@neral asymmetric situations, and Secfion V for
optimal power allocation. Apart from the multi-access sobefor the other schemes we will need to assume a
specific distribution in order to obtain precise asymptogisults. In these cases we will assume Rayleigh fading
(i.e, the channel power gains are exponentially distridhtthough most of our analytical methods can be adapted
to other fading distributions.

Notation: For two functionsf(¢) and g(t), we will use the standard asymptotic notation (see e.g) [24§l say
that f ~ g ast — t, if % — 1 ast — to. It is well known that the asymptotic relatior is retained under
addition, multiplication and division.

Notation: Extending the use of the symbel to functions of random variables, for functioriét, w) andg(¢,w),
we will also say thatf ~ g w.p.1 ast — t, if J;g ; — 1 w.p.1 ast — ty. For instance, ifX; are i.i.d., then
Zf‘il X; ~ ME[X;] w.p.1 asM — oo, which follows from the definition and the strong law of langembers.

A. Multi-sensor diversity scheme

Let us usen;- = 1 (constant power allocation), ang, = 0, Vj # ¢*. Considering Rayleigh fading, we first have
the following Lemma:
Lemma 3.1: Suppose theg;’s are exponentially distributed with medri\, and letb > 0 be a constant. Then

1 A A
. [Qmax-l-b] ~ Mtmar g M7

See Appendix_A for the proof of Lemnia 8.1.
Remark: The expectation above can actually be evaluated exactly as

-1
. [gmax + b] Z M*( >(—1)’“ exp(A(k + 1)b) By (A(k + 1)b) ?)

where E(.) is the exponential integral. However characterising thieab®ur of E [ﬁ} as M becomes large
from the exact expressiohl(2) does not appear obvious.

With the help of Lemm&_3l1, one can now prove the followingutes

Theorem 3.2: Suppose they;’s are exponentially distributed with meai\. Then in the multi-sensor diversity
scheme witho;- = 1, anda; = 0,5 # i,

2.2 2 2
ohos 05,04

E[D] ~ ?\4)} asM — oo. (3)

o2+ 02 o2(c2 + o2) In(



Proof: We have

1 g -t
max
b= (? i m)
9 max® ¢ n
2 2 2
J@ (gmamav + Un)
gmax(ag + O'g) + O'T2L

2 9 ‘77210'(3
090y o2(o5+0?)
2 2 L+ o2
Ty + Oy Imazx + Ug—_ﬁag
Therefore
2 2 7,9
0,0, 2 2
E[D] = 07 R |1 4 —200t)
99 + oy Imaz + Ug_ﬁgz
Using Lemmd 311, we then have
2 2 2 2
E[D] ~ %% |y, _ %% A
2 + 2 2( 2 + 2) )\0’%
o5 + o2 0305 +05) In(M) + e
N oZo? . ool A
O'g + o2 03(03 +02) In(M)

Hence asV/ — oo, the expected distortion goes gé% at the ratel /In(M).
6 v

B. Channel-aware ALOHA scheme

Recall that for this schemé; is chosen such thdtr(g; > 7;) = 1/M. Again, with constant power allocation,
let us usen; = 1 if sensori transmits. By the symmetry of the situation it is clear tiiat= 7', Vi. Note that by
the choice ofl" each sensor has probability A/ of transmitting to the fusion center (some of which will riésno
collision), so the long term total (across sensors) avepageer usage is the same as in the multi-sensor diversity
scheme. Considering Rayleigh fading, we have the followegplt:

Theorem 3.3: Suppose thgy;’s are exponentially distributed with medn A. Let a; = 1 if sensori transmits.
Then in the channel-aware ALOHA scheme

1 1 o202 o202 A
E[D] ~02(1 — =)+ =% n-o
(D] ~ a5 e)+eag+ag o2(c2+02)In M

asM — oo. (4)

Proof: We have

Pr(no sensor transmits= (Pr(g; < 7))

1
_(1_ M
( M )
Pr(successful transmissipe= M Pr(sensori transmits successfully

= MPr(g; > T)[[Prlg; <T)

J#i
1 1 1
- M 1— M-1 _ 1— M-1
i o) (=77
- 1 1
Pr(collision) =1 — (1 — —)M — (1 — —)M~!

M M



Then

E[D] = ¢ Pr(no sensor transmitst o3 Pr(collision)

1 b 1 gi _1 . -
Pr(g; > T) 02 ' gio2+ 02 ;)dg; x Pr(successful transmissipn

2 L Loy (1 gi -
= 0p [1_(1_M) ] +M(1 =) /T <U—g+m> p(9i)dgi
2 L Loy [ ojos %
=0y [1—(1—M) ]+M(1—M) /T Z+o? 1+@ p(gi)dgi
TyT0y

Since theg;'s are exponentially distributed with mean\, 7' = %th and

/00 L/\ exp(—Ag)dg = Aexp(Ab)E1(A(b+T)) = Aexp(Ab)E1(Ab + In M)

T g+b
Hence
1
E[D] = o7|1—(1—-—=)M"1
D = oG-
1 o202 1 ook Ao? Aoy
Ml — —yM-1]_%% 1 Tn% " ) B | =5 +InM
+M( M) [J§+03M+(03+0’3)2 o oj+02) " 03+U%+ B
TS G Gt A
~ g, -_— - - 2
9 e’ eol+o? o2(o5 +02) In M + Ug‘i?,z
0 v
(1 1) 1 ojo] 0395 A
~ g —_ = — T 5
9 e’ eos+o? o2(0f + 02)In M

asM — oo, where we have used the asymptotic expansion

e ” 1 2

The expected distortion in this case goesrfgl — %) + %oigsz at the ratel/In(M) as M — oc.
6 v
C. Multi-access scheme

For fairness of comparison, let us use here the scaling 1/v/ M, Vi, which will result in the same total long
term average transmit power usage as the multi-sensorsitivend channel-aware ALOHA schemes.
Theorem 3.4: Let o; = 1/v/ M, Vi. Then in the multi-access scheme,

o’E o2
E[D] ~ %\]&Dg as M — oo, )

Proof: We have
2 21 M 2
o (Uvﬂ i=19i + Un)

5
Ugﬁ z]“il gi + 02+ Moj (ﬁ Zf\il gi)
o7 (02E[q1] + o2)
02E[g1] 4+ 02 + Moj(E[\/g1])?

provided the expectatioris{g;] andE[,/g1] exist, where the last line comes from applying the strong dévarge
numbers and the definition and properties~afSince D is always bounded, we can then use results on uniform

w.p.1



integrability, e.g.[[25], to conclude that

03 (02E[g1] + 02)
02E[g1] 4+ 02 + Mo (E[/g1])?
02E[g1] + o2

M(E[y/gi])?

E[D]

[ |
Thus the expected distortion decays to zero at the raté as M — oo, similar to the scaling behaviour for the
distortion derived in[[8].

D. Orthogonal access scheme

Theorem 3.5: Suppose they;’s are exponentially distributed with medri\. Let o; = 1/v/ M, Vi. Then in the
orthogonal access scheme

E[D] ~ asM — oo. (6)

mqm| =
_l_
>
Q
>
N
S)
[
—
-
_l_
—
e

Proof: We have
1
1 9:/M
0'_3 + ZZ 1 g;02/M+02
1

O'_g + Zl 1 970'24—]\/[0'2

1
~ w.p.1
o7 + ME[5 5475

provided the expectatioi[g; /(g102 +02)] (and hencé[g; /(9102 + Ma2)]) exists, where the last line now comes
from using a strong law of large numbers for triangular asrf6], and the definition and properties of Hence
by uniform integrability

1

ELD] ~ L+ ME]

9102+MO'2 ]

If we now assume all; are exponentially distributed with medri)\, then
2 2
: {*91 } =[5 (- 5 i)
g102 + Mo?2 o2 g1+ Mo?2/o?
1 [ )\MU <)\MU ) <)\Man>}
== 1= 2
UU UU
4
2

1
o2 \\Mao? )\2MU

Hence
1
E[D] ~ - - 553
o2 T %0z ~ Xiot
1 202 1
~ + 2,4 (1 T2
which converges teL + <L>)~! at the ratel /M. |
Ty n

The limit ( + A02) L'for D asM — oo was also previously shown in[11], though the rate of conseeg was
not derlved
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Fig. 1. Multi-sensor diversity scheme. Comparison betwsietulated expected distortion and asymptotic expression.

E. Comparisons and discussions
The limit = (% + 2%)~! in the multi-sensor diversity scheme corresponds to theriisn that can be

achieved W|th+a srnglia serclrsor with estimation performedhat sensor, i.e. no. further analog forwarding to a
fusion center. For the channel-aware ALOHA scheme, thet isni3(1 — —) +1 Zf =, Which is clearly larger than
the Irmrt in the multi-sensor diversity scheme. It can bearelgd as a Werghted combination of the limiting value
7 +02 when there is a successful transmission, and the distosfowhen transmissions are unsuccessful, with
belng the asymptotic probability of successful transmissisM — oo (which also corresponds to the asymptotrc

throughput of a slotted ALOHA system [18], [27]). We notealhat the Irmrt( + % 2) Lin the orthogonal

scheme usingy; = 1/+/M, Vi is different from the limit in the diversity scheme Undeetbhoices ofw; in this
paper, the expected distortion goes to zero only in the ragltess schenfe

In terms of speed of convergence, the rafd/ is achieved in the multi-access and orthogonal schemes. On
the other hand, we get a slower convergence raté/dfi(A/) in the diversity schemes. A simildr/ In(M) rate
is achieved when sensor measurements are transmitted ®iam feenter digitally using separate source/channel
coding, e.g. as in the CEO problem [7],_[28].

Finally, in regards to implementation, the multi-acceshesge requires that we the measurements add up
coherently as in[{1) at the fusion center, which may be diffitm achieve for large sensor networks, since it
requires distributed transmit beamforming to be impleradniThe orthogonal access scheme does not require as
much synchronization between sensars [11], but each seviBaequire its own orthogonal channel. The multi-
sensor diversity scheme does not have these issues, thtowriihstill require the fusion center to determine which
sensor has the best channel, with this information then &t o the sensors. The channel-aware ALOHA scheme
is probably the easiest to implement in practice, howevgmasotically it has larger expected distortion when
compared to the multi-sensor diversity and multi-accebees.

F. Numerical studies

Consider an example with? = 1,02 = 0.2,02 = 0.1, and Ieth,Vi be exponentially distributed with medri2.
Note that ther[,/g;] = \/7/8, (%+ i) = 0.1667, (55 +352) " = 0.1667, andoj(1—¢)+¢ U"fﬂ = 0.6934.

In Fig.[d we compare betwee(rfw theUS|muIated expected distoftiveraging over 100000 channel realizations) and
the asymptotic expressidn (3) for the multi-sensor divgsitheme, for different numbers of sensdfs In Fig.[2 we
compare between the simulated expected distortion andstheotic expressionl4) for the channel-aware ALOHA
scheme, for different numbers of sensadrs In Fig.[3 we compare between the simulated expected dtoaind
the asymptotic expressionl (5) for the multi-access schémEig.[4 we compare between the simulated expected
distortion and the asymptotic expressiéh (6) for the ortmad access scheme. In each case, the validity of the

respective asymptotic expressions for lafgeis confirmed.

IHowever if e.g. we usey; = 1, Vi, then the expected distortion will also go to zero in the agttnal scheme.
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We also see that in the channel-aware ALOHA scheme, the tegbécstortion is not necessarily monotonically
decreasing with the number of sensors, though for ldy¢he 1/In(M) decay will still occur.

IV. GENERAL PARAMETERS

In this section we investigate how the results of SecliohcHange when the sensor noise variances are not
necessarily identical, and the fading channels are notssec#y identically distributed. The idea is to obtain uppe
and lower bounds on the expected distortion which asyngatibyi will have the same scaling behaviour, a similar
method was used iri_[29] in the context of linear state esiimatWe will see that in some cases the scaling
behaviour derived in Sectidnlll is still preserved, whileather cases not much can be said in general.

A. General sensor noise variances

We consider here the case where the sensor noise variafges 1, ..., M are not necessarily identical, though
the fading channels are still assumed to be i.i.d. acrossosgnWe assume that the sensor noise variances can be
bounded from both above and below, i.e.

0 <02, <02 <o, <oo,Vi

Then we note in all the different schemes considered heris an increasing function ofz for all 7. Hence we
can upper and lower bounB with the symmetric results using? = o02,,,,Vi ando? = o2, , Vi respectively.
In the multi-sensor diversity scheme, we have for Rayleatirfg

man’

2 2 2 2
A
el L } (1+o0(1))
09 + Umzn mzn(ae + Umzn) IH(M)
o202 oo A
SE[D]SM [ n-6 (1+0(1))

Note that the upper and lower bounds do not converge to the §am as M — oo, so for general sensor noise
variances one can not say much more about its asymptoticvioeinaindeed, one can construct situations that can
be shown to not converge to any limit, in a similar fashionra§29].

In the channel-aware ALOHA scheme, for Rayleigh fading weeha

0_3(1_1) 1 Jgazun ) 0203 A } (14 o(1))
€ e 09 + Umm U?nin(ae + Umm) IH(M)
1 1 o202 0202 A
<E[D]<op(l— =)+ ——fmae [ 0 1+o0(1
DI ot =t o o [ o + Ay mary | )

Similarly, litle more can be said about the asymptotic véhar for the channel-aware ALOHA scheme in general.
On the other hand, in the multi-access scheme, we will have

O-rznmE[ ] + J J%@axE[ ] + U

M(E[/g1])? M(E[/g1])?

Since the upper and lower bounds both converge to zero attké fM, the general situation will also have the
same scaling behaviour as the bounds.
In the orthogonal scheme, we have for Rayleigh fading

1 202 1 1 202 1
min 1 ) <E[D] < max 1 1
(U_lg Ai? + M)204 (%Jr A;g)z)( +0(1)) <E[D] < (U%Jr Ai? + M2t (%Jr A;g)z)( +0(1))

=(L+0(1)) <E[D] < =(1+0(1))

Here, both the upper and lower bounds convergéigo+ )\02) 1 at the ratel /M, and so the general situation
will also do so.
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B. Non-identically distributed fading channels

In the previous subsection where the sensor noise varianeesdifferent but the fading channels were still i.i.d.,
we found that the asymptotic behaviour was still preserveithé multi-access and orthogonal access schemes. We
now consider the situation where the sensor noise variaareeiglentical ¢ = o2, Vi), and the fading channels are
independent but not necessarily identically distributedugh for tractability assuming that the fading distribos
belong to the same “family”. To be more specific, we make tHieiong assumption:

Assumption 4.1: The channel gaing; can be written as

9i = /’Llhlavza
wherep; > 0 are constants satisfying
0< Hmin < j2% < Mmaz < 00,

and theh;'s are identically distributed.

For example, ifg; is exponentially distributed with meaty)\;, then we can takg,; = 1/)\;, and h; will be
exponentially distributed with mean satisfying Assumption 411.

Consider first the multi-sensor diversity scheme. We rewritx (g1, ...,gy) = max(uiha, ..., parhar), and
then we have

max(ﬂminhh cee 7,UminhM) < max(,ulhla cee 7,UMhM) < max(ﬂmaxhla cee 7//fma:chM)

We may then obtain for Rayleigh fading the bound

o302 olo? 1 ](1+0(1))
02 + o2 02(03 + 02) tmaz In(M)
o202 o202 1
< E[D] < 6%v n-6 1+ o(1
<BID) < S0 (14 ) (o)

The upper and lower bounds both convergefo?/(c2 +o2) at the ratel / In M. So for non-i.i.d. fading channels
satisfying Assumptiof 411 and identical sensor noise maga, the scaling behaviour of Section Il is preserved in
the multi-sensor diversity scheme.

For the channel-aware ALOHA scheme, we may similarly obtamRayleigh fading the bound

2 9 2 2
1. 1 o505 1 ](1+0(1))

o3 (1— =)+ = [ Y

S s g 02(0F + 02) pmaa In(M)
<E[D] <oj(l— =)+ -——2" o
=~ [ ] > 09( 6) + 60’3 _|_O-3 |: 0'12)(0'3 +03) Hmin IH(M)

o

which also preserves the scaling behaviour of Se¢fidn IIl.
For the multi-access scheme, we will have

2 2 2

(vail \/ﬂminhiai) (Zf\il V ,uz'hz'Oéi) (Zf\il V Mmaxhiaz’)

< <
Yl pmashiado? + 02 = 3 pihiadol + 02 T 32 pminhiao? + o2
and by similar calculations to Sectiénllll we may obtain tteaibd

2 iminE[h 2 2 lmaz B[R 2
TutminBln] ¥ 0wy 1) < wip) < Tobimazltlin] o,

Mﬂmam(E[ hl]) Mﬂmin(E[\/ hl])

The upper and lower bounds both converge to 0 at thelraté, preserving the scaling behaviour of Section IIl.
For the orthogonal scheme, we will have

M

(1+0(1))

M M
Pminhia? < Z pihio? < Z Pmazhio?

722 2 = o2 2 2 = ) 2
P Hminhioios + o P pihioios + of P Hmazhic o5 + 0

by making use of the fact that
pihio?
,u,h,alza% + O’%
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is an increasing function gf;. We may then obtain the bounds for Rayleigh fading:
1 207l 1 200112,
(1+0(1)) <E[D] < . T
ozt Mo (5 + Ppe)? o+l Mol (o M)

7 n

(1+0(1))
However, since the upper and lower bounds have differeritsias M — oo, little more can be said in general.

C. General sensor noise variances and non-identically distributed fading channels

By combining the results in the previous two subsectionss itlear that if we allow for both general sensor
noise variances and non-identically distributed fadingrotels satisfying Assumptién 4.1, then only the multi-asce
scheme will preserve the scaling behaviour of Sedtidn III.

V. OPTIMAL POWER ALLOCATION

In this section we consider optimal power allocation for thelti-sensor diversity and channel-aware ALOHA
schemes. For notational simplicity, and since we are alserésted in the performance using optimal power
allocation for large numbers of sensors, we will considenmetric sensor networks, although the results can be
generalized to general parameters such as unequal setfis®vadances and/or non-identical fading distributiogs a
considered in the previous section. Numerical results stibw that the difference in performance between optimal
power allocation and the constant power allocation usedeicti@ (Il is very small. Indeed, we will argue that
asymptotically the results are equivalent. Optimal powecation for multi-access and orthogonal access schemes,
with slightly different objectives and constraints, hasypously been studied in [10] and [11] respectively and will
not be considered here.

A. Multi-sensor diversity scheme

We are interested in minimizing the expected distorfi&j®] subject to an average power constrghtFor the
multi-sensor diversity scheme we can write this as

2 9 9,%

0,0 2(o5+02
m%nE[D] :mzin 20 sz 1+ Uu(209+au)02
az. ajx Og + 0y Imaz O« + ag—:af (7)
P
st.E[a?] < SR
0y + 05

We have the following result:
Lemma 5.1: Consider the following problem
1
e[
al. Imaz ¥ + b

P
o2+ 02

StE[eZ] <

The optimal solution is of the form

1 b 9
- > by
0422* = { \/%7 Imas Imax = (8)

0 , otherwise

where the Lagrange multiplier satisfies

o0 1 b P
- max d maxr — "9 . _o 9
/b2z/ ( ImaxV gma:v> p(g ) g O'g + O’% ( )
Proof: The derivation uses similar techniques to the capacity mistion problems for fading channels in
[30], [16], and is omitted for brevity. [ |

_Using Lemmail]l_, the optimal power allocation for problémnié7given by [(8), withb = #
distortion under optimal power allocation can be computed a

b2
E[D] = /OO 2-30-12) 2 <1 + 2 O-;%O-g 2 - )p(gmax)dgmam +/ Vggp(gmax)dgmam (10)
b2y O + O ooy + 02) \/ Jmaz 0

wherev satisfies[(B), and can be determined numerically.

. The expected
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B. Channel-aware ALOHA scheme

For the channel-aware ALOHA scheme, the problem of miningzihe expected distortion subjeE{D] to an
average power constraift can be written as

2 42
9,99

. s 2 L a1 Loy [© og03 o3(03+03)
min E[D] = minog |1 — (1 - M) + M1 - M) o L == p(gi)dg;
o o T %™ % @9t 53tz (11)
s.t.M ‘n(g;)dg; < ———=
| etptandn < s
Similar to the multi-sensor diversity scheme, we have thieviong result:
Lemma 5.2; Consider the following problem
& 1
i [ G
[ee) 9 d -
S.t. - )dg; < —————
The optimal solution is of the form
1 _ b > 2
0%2 _ gv g 0 9 Z maX(T? b V) (12)
0 ) otherwise

where the Lagrange multiplier satisfies

7 <\/92'IV_ 3) Plos)dg: = W (13)

max(T,b%v)

o
) P
og+ol

Using Lemma5.2, the optimal power allocation for probléd)(& given by [(1R), withh =
distortion under optimal power allocation can be computed a

The expected

1 1 T o202 o202 v
ED:21— 1__]\/[—1 Ml__]\/[—l/ 0%v 1 n-e - Zdz
D) = |1~ (1= 51+ a1 = 0 [ S8 (1 BT [ g
max(T,b%v)
max (T,b%v) (14)

1 e
N KO
T
wherev satisfies[(13).

C. Numerical studies

We again consider a situation witlf = 1,02 = 0.2,02 = 0.1, and letg;, Vi be exponentially distributed with
meanl/2. For a fair comparison with the results of Section lll-F, whgerforming optimal power allocation we
will take P/ (03 + o2) = 1.

In Fig.[3 we plot the expected distortion under constant (witie sensor is transmitting) and optimal power
allocation, for the multi-sensor diversity scheme withfetiént numbers of sensors. In Fig. 6 we plot the expected
distortion under constant and optimal power allocatiom, tite channel-aware ALOHA scheme with different
numbers of sensors. The performance using constant poweatbn can be seen to be very close to the performance
under optimal power allocation, particularly for large ruens of sensors. In the next subsection we will attempt
to explain this phenomenon.

D. Asymptotic behaviour under optimal power allocation

In this subsection we will prove why the optimal power alliea and constant power allocation schemes perform
so close to each other, especially for lafge We will assume tha; are exponentially distributed with mean\.
We will also takeP /(o7 + 02) = 1.



14
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Fig. 5. Multi-sensor diversity scheme. Comparison betweamstant and optimal power allocation
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Fig. 6. Channel-aware ALOHA scheme. Comparison betweestanhand optimal power allocation

1) Multi-sensor diversity scheme: Before we state and prove the main theorem, we first give @nirery result.

Lemma 5.3: For the multi-sensor diversity scheme under optimal povlecation,» — 0 asM — oo, wherev
satisfies[(D).
See Appendix B for the proof of Lemnia b.3. We will now prove fthéowing:

Theorem 5.4: For the multi-sensor diversity scheme under optimal poviecation,

e o202 A
o2+ 02 02(c% + 02) In(M)

Proof: Firstly, by using similar techniques to Appendix A, we camide that

E[D] ~

} asM — oo.

A
In(M)

> ]
/ — M1 — e )M\ A%y ~ (15)
0

\/E

and o 1 \
ZM(1 - —Az\M—1 — Az ~

3 (1—e"7) Ae Mdx )

By Lemmal[5.8 and (15)-(16), the condition

© 1 b
- p(gma:c)dgmax =1
b2y ImaxV Imax

(16)
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is asymptotically
A bA

Jn(0) ) !
We can easily solve for to get
A 1 A
Vo~ ~ a7
In(M) 1+ 1112(1)]\)2[) + (lnl(’;‘V[))? In(M)

and so

< v _ o An\M—1y —)z VA A
/,,ZV \/;M(1 e )T A ~ LD Y i

212
— (- exp(—%»

We also note that

(1 . e—)\b2u)M

_ < 1
In(M)
Hence from [(ID),
2 _2 2 2
BiD) ~ 52 [1+ ot o) i -
N o202 [ olo? A ]
o2+ 02 02(cf + 02) In(M)
which is the same asymptotic expression[as (3) of Settion Il [ |

2) Channel-aware ALOHA scheme: We again first give a preliminary result before stating ara/jprg the main
theorem.
Lemma 5.5: For the channel-aware ALOHA scheme under optimal powecation, T > b?v for M sufficiently
large, wherel’ = §ln(M) andv satisfies[(1B).
See Appendix T for the proof of Lemnia b.5. We will now prove thibowing:
Theorem 5.6: For the channel-aware ALOHA scheme under optimal powercation,
1 1 030% 252

E[D] ~ o3(1 - 1) + u%

- asM — oo.
e’ eop+o? [ o2(cf +02)In M

Proof: Recall thatT' = §ln(M). First note that we can compute the following integrals:

/ h %/\e_mdm = Vrerfo(VAT) = Varerfe(y/In(M)) (18)
T
and o0
/ %/\e_md:n = AE1(AT) = AE1(In(M)) (19)
T

By Lemmal[5.b and (18)-(19), the condition

max(T,b%v)

is asymptotically

@erfc( (A1) — bAE, (In(M)) ~ %
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and so

Vrerfe(y/In(M))
" 1/M + bAEL(In(M))

I~ 87111(1&1)
)\Tr\/wln(ﬂ/[)
~ o— In(M)
1/M + bA—ln(M)

N

A
In(M)

Then

[e.e]

/ K/\e_mdm:/ \/?)\e_)‘xdm
X T X

max(T,b%v)

= Vrerfo(y/In(M))

- e—ln(M)
In(M) /7 In(M)
B A
- MIn(M)
Hence from[(I¥) we have
1 1 ojo [1 olos A
EID] ~ 2 1— = M= 0% v - n-e
[D] ~ o5 6)+ 603—1—03 [M+ag(ag+ag)MlnM]
_ 02(1 B 1) n 1 030% U?LJ% A
o e’ eop+o? 02(0f +02)In M

which is the same asymptotic expression[as (4) of Sefion Il [ |

VI. OPTIMAL THRESHOLD SELECTION FOR CHANNEEAWARE ALOHA SCHEME

So far in this paper we have used the choice of threstold= +1In(M) in the channel-aware ALOHA
scheme. In this section we will consider the optimal choitéhceshold in the channel-aware ALOHA scheme for
symmetric sensor networks. We consider both thresholdnigaition under constant power allocation, and a joint
threshold/power optimization. We will assume Rayleighirigd so thatg; are exponentially distributed with mean
1/A.

A. Optimal thresholds under constant power allocation

Recall that in the channel-aware ALOHA scheme each senaosritrits whery; > 7. The problem we now
consider is to determine the optimal choiceToto minimize the expected distortion.

Note that under Rayleigh fadin®r(g; > 7)) = e~*”. For a fair comparison with the model of Section 1I-B we
will normalise the powers, and let; be of the form

AT
2=
M
The expected distortion can then be derived similar to 8effi-Bl as
> /1 g /M !
ED:z[l_M—ATl_ —)\TM—l} M(1 — —,\TM_1/ L i do

= {1 — Me M (1 - e_)‘T)M_l}

2 2 2 2 —AT 2 —\T 2 —\T
B . 050 _ oiosMe Aoz Me o:Me
M= S | S e (e ) B (0 (e 7))
0 v v 2] v 0 v 0 v (20)
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The optimal threshold can then be found by numerically seagcfor theT™ that satisfies—~ dE[D] s—=|p=pr- = 0 and
d2IE[D]|
dT2 T=T* > 0.

B. Joint threshold/power optimization

Here we wish to optimize both the threshold and determineofitenal power allocation that will minimize the
expected distortion, subject to an average power constilite problem can be written as

—\T —AT\M-1 -1 [ 0303 0257321302)
ITnln09 [I—Me (I—e") }—I—M(l—e ) P 1—|—_2v =— | p(g:)dyg;
«a T U@ gy Oéi i + 0'§+0'3 (21)
st.M 4 Vg, < ———
A a;p(gi)dgi < O_g _1_0_12)

To solve [21), we note that for a givéh it can be shown similar to Sectién V-B that the optimal poakwocation

has the form
2=V g%, - gﬁ . gi > max(T,b%v)
0 , otherwise

wherer satisfies

P
do — —
/<\/ >p(gz) 9= Mo o)
max (T,
and
(o]
E[D] 2 1 M —AT(l —)\T)M—l} —I—M(l —AT)M—l/ 030121 <1_|_ O'%Ug V) ( )d

=0y |1 — Me —e —e — :)dg;
’ g\ oo +an)\ g )

max(T,b%v)
max(T,b%v)

+M(1 - E‘AT)M_I/ oap(g;)dg;
T
(22)

With this, we may then again perform a line search to find thigmag 7 that minimizesE[D].

C. Numerical studies

We again consider the situation wittf = 1,02 = 0.2,02 = 0.1, and letg;, Vi be exponentially distributed with
mean1/2.

In Figures Y andl8 we plot the thresholds and expected dmtounder constant power allocation, comparing
the performance using optimal thresholds and the simplécehaf threshold?l” = §ln(M). The results can be
seen to be very close to each other.

In Figures[® and 10 we plot the thresholds and expected ti@ipicomparing the performance using optimal
power allocation with optimal thresholds, and constant groallocation with the simple thresholdl = %111(]\/[).
The results can also be seen to be very close to each other.

D. Optimal thresholding for large M

From the numerical results in the previous subsection,peaps that the optimal thresholds (under both constant
power and optimal power allocation) are asymptoticallysda §ln(M). Indeed, we have the following result:
Lemma 6.1: Under both constant power and optimal power allocation,apmal thresholdg™ satisfy T ~
+In(M) asM — oo.
Proof: RegardT as a function ofA/. Consider the term

Me—)\T(M)(l B e—AT(M))M—l
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Fig. 10. Constant power allocation and simple thresholdim@ptimal power allocation and optimal thresholding

in both the expressions_(20) arid(22). If the thresholds hosen such that this term decays to zerdlAs— oo,
then in both [(2D) and(22) we havg [l — MeATM) (1 — ¢ ATMM=1] , 52 and hence

E[D] > o2(1 4 o(1)) asM — oo.

However, we already know from Secti¢n III-B that the choiE€M) = 1In(M) results in a lower expected
distortion than this. Thus a necessary condition for thenugdt choice of thresholdd™ (M) is that the term
Me (M) (1 — =M™ (M)YM=1 does not converge to zero ag — cc.

Now for the termMe=*7"(M) to not converge to zero, one neefis(M) < 1 In(M)(1 + o(1)). For the term
(1 — e " (M)M=1 to not converge to zero, one nee@$(M) > +In(M)(1 + o(1)). Combining these two
statements, one then gets that the optimal thresholds raustthe formZ™(M) ~ 1 In(M). [ |

Intuitively, one could next attempt to substitufé ~ §ln(M) into (20) or [21) in order to obtain the asymptotic
expression[{4) for the expected distortion. This howeveroisa rigorous argument since performing the operation
e~*T" does not retain the asymptotic relatien We can prove however, the following weaker result:

Lemma 6.2: Under both constant power and optimal power allocation, gptimal thresholding, we have

oo 1 1 0302 0203 A

(b= 22)uwmu»§Eunsﬁu——»+—2

e’ eop+o? e’ eoy+o? 02(0f +02)In M

(1+0(1))

asM — oo.
Proof: The upper bound ofi[D] comes from the fact that the sub-optimal chdite= + In(M) with constant
power allocation gives the asymptotic behaviddr (4) in BecHI-B] For the lower bound, consider the term

2 2
o8 [1 — Me (1 - e_’\T)M_l] + Me2T(1 — e AH)M-L g(f“ -
o+ 02

in either [20) or[(2l1). One can easily show that this term isimized by usingl’ = 1 In(M), resulting in

0.20.2
os [1 — Me (1 - e_AT)M—l] + Me T (1 — e AT)M-1_287%

o3 + 02
1 1 o202
2 M-1 M-1 0~v
—o21—-(1-— 1— — _76%
1= g
1 1 o202
~ (- o)+ o0
e eoy + oy
Hence from either(20) of (21E[D] > (03(1 - b+ %0%f02> (1+o0(1)). |
By Lemmal6.2, we see tha@[D] will go to the same limiting value;(1 — 1) + 527 at a rate at least as

fast asl/In(M). However, showing that the rate is exactlyln(M), and that the exact asymptotic behaviour is
given by [4), remain open issues.
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VIl. CONCLUSION

The asymptotic behaviour for decentralized estimation rofi.ad Gaussian source, using the analog amplify
and forwarding technigque under a number of different midtgccess schemes, has been studied. Focusing on the
expected distortion, the rate of decay Iofln(M) has been shown for multi-sensor diversity and channel@war
ALOHA schemes, while the coherent multi-access and orthabaccess schemes have decay ratek/df. The
optimal power allocation for the multi-sensor diversitthemes has also been derived, and we have found that
simple power allocation policies can actually approachapBmal results very closely as the number of sensors
increases.

The diversity schemes considered here can obviously be made sophisticated. For instance, instead of just
the best sensor transmitting their measurement to therficgater, we could have the be€tsensors transmitting,
with N > 2. This could be useful in particular when the sensor measemésrare spatially correlated. For another
example, in the channel-aware ALOHA scheme, instead ofmaisgpicollision when more than one sensor transmits
at the same time, we might be able to combine them by cohgradting up the sensor transmissions as in the
multi-access scheme. Analysis of these schemes will be carglicated, but could constitute possible areas of
future investigation.

APPENDIX

A. Proof of Lemma[3.]]

Proof: The maximum ofM i.i.d. exponential random variables with meaf\, has cumulative distribution
function

F(z)=(1- e_’\:”)M
and hence the probability density function
p(m) — M(l . e—)\m)l\/l—l)\e—)\m.

We wish to find the largél/ behaviour of

—)\:v M-1 — Az
E{L] - M/ A

X+b x+b

e —Mt
= M/ T dt
0o b—+xIn(l—e?)

where in the second line we used the substitutioh= 1 — e~**. To determine the asymptotic behaviour of the

integral
00 e—Mt
[ "
0o b—xIn(l—e™?)

we will use a Tauberian theorem for the Laplace transform ps445 of[[31] or p.248 of [32], which in our notation
says that iff(t) > 0, 0 < p < 0o, and L(t) is a slowly varying function at infinity, then each of the tedas

o 1
/ e Mtf(t)dt ~ M™PL <—> asM — oo
0 M

and

/ f(r tPL( )1) ast — 0

implies the other.
Thus we can study first the asymptotic behaviour of

t 1 ¢ 1
dr =\ d
/0 b— +In(l—e7) ! /0 Ab—In(1 —e7) !
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ast — 0. Using an integration by parts, we obtain

¢ 1
dr =
/0 Ao —In(l—e7) "

t t Te
N —In(l—e?) /0 A= —In(d—e 2"

Next, it may be verified thate="/(1 —e~7) < 1, and thatl /(A\b — In(1 — e~ 7))? is an increasing function of.
Then

—T

/0 A= e 0b—tn( —e 2"

- /0 A= b—Tn(d—e 2"

</t L d
= Jo Ob—n(1 —em)2""
t

= (Ab—In(1 —e™t))?

t
° </\b “I(i- e—t)> ast=0

and so

¢ 1 At
A dr ~
/0 N —In(l—e ) T A —In(l—e )
Y
Ab—1In(t)  Ab+1In(1/t)

ast — 0. With L(t) = m
the Tauberian theorem that

(which can be easily shown to be slowly varying) amnek 1, we thus have by

A
M dt ~ M x M1 x ——
/ ln 1—et) Ab + In(M)

~—C _asM
n(30) asM — oo

B. Proof of Lemma 5.3

Proof: The proof is by contradiction. Regard M) as a function ofM.
Suppose/(M) does not converge to 0 &4 — oo. Then there exists a constant> 0 such thatv(M) > v for
infinitely many values of\/. In particular, there are infinitely many values &f such that the following is true:

/ M —)\:v M— 1/\ —)\:vdl, < _/ B_AI)JV[_IAB_)\deE
b2y b2v
>~ 1

(1 e—)\m)l\/l—l)\e—)\mdx
b 7

vn(M)

where the last line comes fror_(15). Since

b
/ —M(1 — e )M=1xe=22dy > 0,
b2u(M) T
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the condition

o 1 b
- P\9mazx dgmam =1
/b2V(M) ( gma:cV(M) Imaz ) ( )

thus cannot be satisfied for alf, which is a contradiction. [ ]

C. Proof of Lemma55
Proof: Call a = max(T, b*v) = max(3 In(M), b?v). Then

/ < 1 3) e Midg; = W/A—Werfc(\/)\a) — bAE1(\a)
a giv i v

AT 1
\/ 7erfc(\/ﬁ) = bAE1(Aa) + 77

Now by definition ofa, we havea > }In(M), or e=** < .. Hence

,/%”erfc(\/Aa) > bAE;(Aa) + e~
Also note the inequality erfe/\a) < e, Then

—Aa
Vv arerfe(v Aa) < e A _ VAT <V
AE1(Aa) + e 2 = bAE (Aa) + e A 1+ bherE ()a)

From [13) we obtain

<
sy

Thus /v < VAr < 7“11(3[)” for M sufficiently large, which then proves Lemial5.5.
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