
ar
X

iv
:1

00
2.

44
73

v1
  [

cs
.IT

]  
24

 F
eb

 2
01

0

On Scaling Laws of Diversity Schemes in
Decentralized Estimation

Alex S. Leong and Subhrakanti Dey

Abstract

This paper is concerned with decentralized estimation of a Gaussian source using multiple sensors. We consider
a diversity scheme where only the sensor with the best channel sends their measurements over a fading channel to a
fusion center, using the analog amplify and forwarding technique. The fusion centre reconstructs an MMSE estimate
of the source based on the received measurements. A distributed version of the diversity scheme where sensors
decide whether to transmit based only on their local channelinformation is also considered. We derive asymptotic
expressions for the expected distortion (of the MMSE estimate at the fusion centre) of these schemes as the number
of sensors becomes large. For comparison, asymptotic expressions for the expected distortion for a coherent multi-
access scheme and an orthogonal access scheme are derived. We also study for the diversity schemes, the optimal
power allocation for minimizing the expected distortion subject to average total power constraints. The effect of
optimizing the probability of transmission on the expecteddistortion in the distributed scenario is also studied.
It is seen that as opposed to the coherent multi-access scheme and the orthogonal scheme (where the expected
distortion decays as1/M , M being the number of sensors), the expected distortion decays only as1/ ln(M) for
the diversity schemes. This reduction of the decay rate can be seen as a tradeoff between the simplicity of the
diversity schemes and the strict synchronization and largebandwidth requirements for the coherent multi-access
and the orthogonal schemes, respectively. It is proved thatoptimal sensor transmit power allocation achieves the
same asymptotic scaling law as the constant power allocation scheme, whereas it is observed that optimizing the
sensor transmission probability (with or without optimal power allocation) in the distributed case makes very little
difference to the asymptotic scaling laws.

I. INTRODUCTION

Wireless sensor networks have received much recent interest in the research community. Many different schemes
for decentralized estimation of sources using multiple sensors have been proposed, e.g. [1]–[6]. One popular
technique is analog amplify and forward [7], [8], where sensors transmit over fading channels a scaled version
of their analog measurements to a fusion center, and has beenshown to be optimal in some situations [9]. Analog
forwarding under different multiple access schemes such ascoherent multi-access [7], [10] and orthogonal access
[11], with correlated data between sensors [12], [13], and different network topologies [14], have also been studied.

One problem with the analog amplify and forwarding technique is that it appears to be hard to implement,
especially when the number of sensors is large, e.g. it is difficult to synchronize a large number of sensors in the
multi-access scheme (though studies suggest that even without perfect synchronization much of the gains can still
be achieved [8], [15]), while there might not be a sufficiently large number of orthogonal channels available in the
orthogonal scheme. This paper will study the performance ofthe analog forwarding technique using multiple access
schemes which may be easier to implement, based on the concept of multi-user diversity [16], [17]. Multi-user
diversity refers to different users experiencing good channel conditions at different times, and can be exploited
in the following manner: For the problem of maximizing the sum rate subject to average power constraints, the
optimal solution is to schedule the users such that at most only one user transmits, with this user being the one
having the best channel conditions at that instance.

In this paper we will study the use of a similar diversity scheme in the decentralized estimation of a Gaussian
source. In this scheme, which we will refer to as themulti-sensor diversity scheme, the sensor with the best channel
conditions at that time will amplify and forward its measurement to the fusion center, while the other sensors do
not transmit. The multi-sensor diversity scheme requires knowledge of all the channel gains in order to decide on
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the best channel. A distributed version of the multi-sensordiversity scheme, similar to a distributed version of the
multi-user diversity scheme studied in [18] (see also [19])called thechannel-aware ALOHA scheme, will then also
be considered.

In this paper we are interested in the asymptotic behaviour of such schemes as the number of sensorsM goes
to infinity. It is shown that in many cases the expected distortion (where the expectation is with respect to the time
varying channel gains) decays to a non-zero limit at the rate1/ ln(M). As a comparison we will also derive the
expected distortion of the multi-access and orthogonal access schemes, which decay at the rate1/M for largeM .
These results are similar to the existing asymptotic results for the distortion in the multi-access scheme [6]–[8] and
orthogonal access scheme [11], however theexpected distortion is not considered explicitly in these works. Note
also that characterising performance via expectations hasalso been used in e.g. Kalman filtering with intermittent
observations [20], where the behaviour of the expected error covariance was studied. Another related concept is
the distortion exponent [21], which relates the expected distortion with SNR under different source and channel
encodings, as the SNR goes to infinity.

We will also be interested in deriving the optimal power allocation to minimize the expected distortion subject
to average power constraints. We will study this problem forthe multi-sensor diversity and channel-aware ALOHA
schemes. For the channel-aware ALOHA scheme, we will also consider the problem of optimizing the thresholds
which determine when individual sensors will transmit. Theeffect of these optimal power allocation and/or optimal
threshold selection schemes on the asymptotic scaling lawsfor the expected distortion will be studied in detail. It
will be shown that with optimal power allocation, the asymptotic scaling law of expected distortion remains the
same as that with constant power allocation policy. It is also observed via numerical studies that with the optimal
threshold selection in the distributed case (with or without optimal power allocation), the asymptotic scaling laws
for expected distortion are very similar to that with an identical transmission probability of1/M across all the
sensors and some weaker theoretical results are proved.

The paper is organised as follows. Section II specifies our model and the different multiple access schemes used
by the sensors to communicate to the fusion center. Section III derives for symmetric parameters the asymptotic
behaviour for the multi-sensor diversity, channel aware ALOHA, multi-access, and orthogonal access schemes,
followed by comparisons and discussions. We comment on whether the results for the symmetric case can be
extended to general parameters in Section IV. Optimal powerallocation for the multi-sensor and channel aware
ALOHA schemes are considered in Section V. It turns out that the performance of the simple constant power
allocation of Section III is very close that with the optimalpower allocation, and we will prove why this is the
case. In Section VI we study the problem of optimal thresholdselection in the channel-aware ALOHA scheme and
its effect on the asymptotic decay rate of the expected distortion. Finally, Section VII presents some concluding
remarks and future research directions.

II. SYSTEM MODELS

We wish to estimate a discrete time scalar signalθk modelled as an i.i.d. bandlimited Gaussian source with zero
mean and varianceσ2

θ , with k representing the time index. The Gaussian source is measured by M sensors with
sensori having measurements

yi,k = θk + vi,k, i = 1, . . . ,M

with vi,k being i.i.d. Gaussian with zero mean and noise varianceσ2
i , with vi,k independent ofvj,k for i 6= j. Let

gi,k be the randomly time-varying channel power gains from sensor i to the fusion center, andαi,k the amplification
factors in the amplify and forward scheme. We assume thatgi,k andgj,k are independent fori 6= j. The transmit
power of sensori at timek is defined as

γi,k = α2
i,kE[y

2
i,k] = α2

i,k(σ
2
θ + σ2

i )

Next, we present the various multiple access schemes for transmitting the sensor measurements to a fusion center,
considered in this paper.
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A. Multi-sensor diversity scheme

Let gmax,k = max(g1,k, . . . , gM,k), andi∗ the index of the corresponding sensor. Consider a scheme where only
the sensor with the best channel transmits its measurement to the fusion center. The fusion center then receives

zk =
√
gmax,kαi∗,k(θk + vi∗,k) + nk

wherenk is i.i.d. Gaussian with zero mean and varianceσ2
n. Using the linear MMSE estimator [22], the mean

squared error ordistortion at timek can be easily shown to be

Dk =

(

1

σ2
θ

+
gmax,kα

2
i∗,k

gmax,kα
2
i∗,kσ

2
i∗ + σ2

n

)−1

B. Channel-aware ALOHA scheme

The multi-sensor diversity scheme requires knowledge of all the channel gains in order to determine the sensor
with the best channel. In practice this could be achieved by having each sensor transmitting a pilot signal to the
fusion center, which may then be used by the fusion center to estimate the individual channel gains. The fusion
center can then determine and inform the sensor that it has the best channel. However, as the number of sensors
increases, there is increasing overhead involved and the multi-sensor diversity scheme may be prohibitive for large
networks, see e.g. [18].

We consider now a scheme that we will call the channel-aware ALOHA scheme, that is based on a distributed
scheme for multi-user diversity considered in [18], see also [23] for a similar scheme in the distributed estimation
of a constant parameter. In this scheme a sensor will forwardits measurement to the fusion center only ifgi,k > Ti

for some thresholdTi.
In [18], choosingTi such thatPr(gi,k > Ti) = 1/M,∀i, was shown to be asymptotically optimal, in the sense

that this gives the same rate of throughput scaling as in the multi-user diversity scheme, but with a fraction of
throughput loss of1/e (asymptotically). For much of this paper we will also use this choice ofTi. We discuss in
Section VI how the transmission threshold can be optimized and the effect of the optimal threshold on the expected
distortion and its scaling law for largeM (assuming identical threshold for all sensors).

In this scheme, if more than one sensor transmits, then a collision is assumed (whereby the fusion centre does not
receive anything) andDk = σ2

θ . Similarly if no sensor transmits then alsoDk = σ2
θ . If only one sensor transmits,

then

Dk =

(

1

σ2
θ

+
gi∗,kα

2
i∗,k

gi∗,kα
2
i∗,kσ

2
i∗ + σ2

n

)−1

wherei∗ is the index of the sensor that is transmitting.

C. Multi-access scheme

In the (coherent) multi-access scheme [7], [10], the sensors transmit their measurements to the fusion center
using the amplify and forward technique over a multi-accesschannel, so the fusion center receives the sum

zk =

M
∑

i=1

√
gi,kαi,k(θk + vi,k) + nk (1)

The distortion at timek is given by

Dk =







1

σ2
θ

+

(

∑M
i=1

√
gi,kαi,k

)2

∑M
i=1 gi,kα

2
i,kσ

2
i + σ2

n







−1

=
σ2
θ

(

∑M
i=1 gi,kα

2
i,kσ

2
i + σ2

n

)

∑M
i=1 gi,kα

2
i,kσ

2
i + σ2

n + σ2
θ

(

∑M
i=1

√
gi,kαi,k

)2



4

D. Orthogonal access scheme

In the orthogonal access scheme [11], the sensors transmit their measurements to the fusion center via orthogonal
channels, so that the fusion center receives

zi,k =
√
gi,kαi,k(θk + vi,k) + ni,k, i = 1, . . . ,M

whereni,k is i.i.d. Gaussian with zero mean and varianceσ2
n,∀i. The distortion at timek is given by

Dk =

(

1

σ2
θ

+

M
∑

i=1

gi,kα
2
i,k

gi,kα
2
i,kσ

2
i + σ2

n

)−1

III. A SYMPTOTIC ANALYSIS

In this section, we are interested in deriving asymptotic expressions forE[Dk] asM → ∞, where the expectation
is over the random channel gainsgi,k, for the different schemes of Section II. Due to the i.i.d. (in time) nature
of the models we will drop the subscriptk. For analytical tractability we will first analyze “symmetric” sensor
networks withσ2

i = σ2
v ,∀i, with the gi’s being identically distributed, and simple power allocation policies, e.g.

constant power allocation. See Section IV for remarks on more general asymmetric situations, and Section V for
optimal power allocation. Apart from the multi-access scheme, for the other schemes we will need to assume a
specific distribution in order to obtain precise asymptoticresults. In these cases we will assume Rayleigh fading
(i.e, the channel power gains are exponentially distributed), though most of our analytical methods can be adapted
to other fading distributions.

Notation: For two functionsf(t) andg(t), we will use the standard asymptotic notation (see e.g. [24]) and say
that f ∼ g as t → t0, if f(t)

g(t) → 1 as t → t0. It is well known that the asymptotic relation∼ is retained under
addition, multiplication and division.

Notation: Extending the use of the symbol∼ to functions of random variables, for functionsf(t, ω) andg(t, ω),
we will also say thatf ∼ g w.p.1 ast → t0, if f(t,•)

g(t,•) → 1 w.p.1 ast → t0. For instance, ifXi are i.i.d., then
∑M

i=1 Xi ∼ ME[X1] w.p.1 asM → ∞, which follows from the definition and the strong law of largenumbers.

A. Multi-sensor diversity scheme

Let us useαi∗ = 1 (constant power allocation), andαj = 0,∀j 6= i∗. Considering Rayleigh fading, we first have
the following Lemma:

Lemma 3.1: Suppose thegi’s are exponentially distributed with mean1/λ, and letb > 0 be a constant. Then

E

[

1

gmax + b

]

∼ λ

λb+ lnM
∼ λ

ln(M)
asM → ∞

See Appendix A for the proof of Lemma 3.1.
Remark: The expectation above can actually be evaluated exactly as

E

[

1

gmax + b

]

=

M−1
∑

k=0

Mλ

(

M − 1

k

)

(−1)k exp(λ(k + 1)b)E1(λ(k + 1)b) (2)

whereE1(.) is the exponential integral. However characterising the behaviour ofE
[

1
gmax+b

]

asM becomes large
from the exact expression (2) does not appear obvious.

With the help of Lemma 3.1, one can now prove the following result.
Theorem 3.2: Suppose thegi’s are exponentially distributed with mean1/λ. Then in the multi-sensor diversity

scheme withαi∗ = 1, andαj = 0,∀j 6= i∗,

E[D] ∼ σ2
θσ

2
v

σ2
θ + σ2

v

[

1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

λ

ln(M)

]

asM → ∞. (3)
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Proof: We have

D =

(

1

σ2
θ

+
gmax

gmaxσ2
v + σ2

n

)−1

=
σ2
θ(gmaxσ

2
v + σ2

n)

gmax(σ2
v + σ2

θ) + σ2
n

=
σ2
θσ

2
v

σ2
θ + σ2

v



1 +

σ2
n
σ2
θ

σ2
v
(σ2

θ
+σ2

v
)

gmax + σ2
n

σ2
θ
+σ2

v





Therefore

E[D] =
σ2
θσ

2
v

σ2
θ + σ2

v

E



1 +

σ2
n
σ2
θ

σ2
v
(σ2

θ
+σ2

v
)

gmax +
σ2
n

σ2
θ
+σ2

v





Using Lemma 3.1, we then have

E[D] ∼ σ2
θσ

2
v

σ2
θ + σ2

v



1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

λ

ln(M) + λσ2
n

σ2
θ
+σ2

v





∼ σ2
θσ

2
v

σ2
θ + σ2

v

[

1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

λ

ln(M)

]

Hence asM → ∞, the expected distortion goes toσ
2
θ
σ2
v

σ2
θ
+σ2

v

at the rate1/ ln(M).

B. Channel-aware ALOHA scheme

Recall that for this scheme,Ti is chosen such thatPr(gi > Ti) = 1/M . Again, with constant power allocation,
let us useαi = 1 if sensori transmits. By the symmetry of the situation it is clear thatTi = T,∀i. Note that by
the choice ofT each sensor has probability1/M of transmitting to the fusion center (some of which will result in
collision), so the long term total (across sensors) averagepower usage is the same as in the multi-sensor diversity
scheme. Considering Rayleigh fading, we have the followingresult:

Theorem 3.3: Suppose thegi’s are exponentially distributed with mean1/λ. Let αi = 1 if sensori transmits.
Then in the channel-aware ALOHA scheme

E[D] ∼ σ2
θ(1−

1

e
) +

1

e

σ2
θσ

2
v

σ2
θ + σ2

v

[

1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

λ

lnM

]

asM → ∞. (4)

Proof: We have

Pr(no sensor transmits) = (Pr(gi < T ))M

= (1− 1

M
)M

Pr(successful transmission) = M Pr(sensori transmits successfully)

= M Pr(gi > T )
∏

j 6=i

Pr(gj < T )

= M
1

M
(1− 1

M
)M−1 = (1− 1

M
)M−1

Pr(collision) = 1− (1− 1

M
)M − (1− 1

M
)M−1
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Then

E[D] = σ2
θ Pr(no sensor transmits) + σ2

θ Pr(collision)

+
1

Pr(gi > T )

∫ ∞

T

(

1

σ2
θ

+
gi

giσ2
v + σ2

n

)−1

p(gi)dgi × Pr(successful transmission)

= σ2
θ

[

1− (1− 1

M
)M−1

]

+M(1− 1

M
)M−1

∫ ∞

T

(

1

σ2
θ

+
gi

giσ2
v + σ2

n

)−1

p(gi)dgi

= σ2
θ

[

1− (1− 1

M
)M−1

]

+M(1− 1

M
)M−1

∫ ∞

T

σ2
θσ

2
v

σ2
θ + σ2

v



1 +

σ2
n
σ2
θ

σ2
v
(σ2

θ
+σ2

v
)

gi +
σ2
n

σ2
θ
+σ2

v



 p(gi)dgi

Since thegi’s are exponentially distributed with mean1/λ, T = 1
λ lnM and

∫ ∞

T

1

g + b
λ exp(−λg)dg = λ exp(λb)E1(λ(b+ T )) = λ exp(λb)E1(λb+ lnM)

Hence

E[D] = σ2
θ

[

1− (1− 1

M
)M−1

]

+M(1− 1

M
)M−1

[

σ2
θσ

2
v

σ2
θ + σ2

v

1

M
+

σ2
nσ

4
θ

(σ2
θ + σ2

v)
2
λ exp

(

λσ2
n

σ2
θ + σ2

v

)

E1

(

λσ2
n

σ2
θ + σ2

v

+ lnM

)]

∼ σ2
θ(1−

1

e
) +

1

e

σ2
θσ

2
v

σ2
θ + σ2

v



1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

λ

lnM + λσ2
n

σ2
θ
+σ2

v





∼ σ2
θ(1−

1

e
) +

1

e

σ2
θσ

2
v

σ2
θ + σ2

v

[

1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

λ

lnM

]

asM → ∞, where we have used the asymptotic expansion

E1(z) ∼
e−z

z

(

1− 1

z
+

2

z2
−+ . . .

)

.

The expected distortion in this case goes toσ2
θ(1− 1

e ) +
1
e

σ2
θ
σ2
v

σ2
θ
+σ2

v

at the rate1/ ln(M) asM → ∞.

C. Multi-access scheme

For fairness of comparison, let us use here the scalingαi = 1/
√
M,∀i, which will result in the same total long

term average transmit power usage as the multi-sensor diversity and channel-aware ALOHA schemes.
Theorem 3.4: Let αi = 1/

√
M,∀i. Then in the multi-access scheme,

E[D] ∼ σ2
vE[g1] + σ2

n

M(E[
√
g1])2

asM → ∞. (5)

Proof: We have

D =
σ2
θ

(

σ2
v

1
M

∑M
i=1 gi + σ2

n

)

σ2
v

1
M

∑M
i=1 gi + σ2

n +Mσ2
θ

(

1
M

∑M
i=1

√
gi

)2

∼ σ2
θ(σ

2
vE[g1] + σ2

n)

σ2
vE[g1] + σ2

n +Mσ2
θ(E[

√
g1])2

w.p.1

provided the expectationsE[g1] andE[
√
g1] exist, where the last line comes from applying the strong lawof large

numbers and the definition and properties of∼. SinceD is always bounded, we can then use results on uniform
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integrability, e.g. [25], to conclude that

E[D] ∼ σ2
θ(σ

2
vE[g1] + σ2

n)

σ2
vE[g1] + σ2

n +Mσ2
θ(E[

√
g1])2

∼ σ2
vE[g1] + σ2

n

M(E[
√
g1])2

Thus the expected distortion decays to zero at the rate1/M asM → ∞, similar to the scaling behaviour for the
distortion derived in [8].

D. Orthogonal access scheme

Theorem 3.5: Suppose thegi’s are exponentially distributed with mean1/λ. Let αi = 1/
√
M,∀i. Then in the

orthogonal access scheme

E[D] ∼ 1
1
σ2
θ

+ 1
λσ2

n

+
2σ2

v

Mλ2σ4
n

1

( 1
σ2
θ

+ 1
λσ2

n

)2
asM → ∞. (6)

Proof: We have

D =
1

1
σ2
θ

+
∑M

i=1
gi/M

giσ2
v
/M+σ2

n

=
1

1
σ2
θ

+
∑M

i=1
gi

giσ2
v
+Mσ2

n

∼ 1
1
σ2
θ

+ME[ g1
g1σ2

v
+Mσ2

n

]
w.p.1

provided the expectationE[g1/(g1σ2
v+σ2

n)] (and henceE[g1/(g1σ2
v+Mσ2

n)]) exists, where the last line now comes
from using a strong law of large numbers for triangular arrays [26], and the definition and properties of∼. Hence
by uniform integrability

E[D] ∼ 1
1
σ2
θ

+ME[ g1
g1σ2

v
+Mσ2

n

]

If we now assume allgi are exponentially distributed with mean1/λ, then

E

[

g1
g1σ2

v +Mσ2
n

]

= E

[

1

σ2
v

(

1− Mσ2
n/σ

2
v

g1 +Mσ2
n/σ

2
v

)]

=
1

σ2
v

[

1− λMσ2
n

σ2
v

exp

(

λMσ2
n

σ2
v

)

E1

(

λMσ2
n

σ2
v

)]

∼ 1

σ2
v

(

σ2
v

λMσ2
n

− 2σ4
v

λ2M2σ4
n

)

Hence

E[D] ∼ 1
1
σ2
θ

+ 1
λσ2

n

− 2σ2
v

λ2Mσ4
n

∼ 1
1
σ2
θ

+ 1
λσ2

n

+
2σ2

v

Mλ2σ4
n

1

( 1
σ2
θ

+ 1
λσ2

n

)2

which converges to( 1
σ2
θ

+ 1
λσ2

n

)−1 at the rate1/M .

The limit ( 1
σ2
θ

+ 1
λσ2

n

)−1 for D asM → ∞ was also previously shown in [11], though the rate of convergence was
not derived.
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Fig. 1. Multi-sensor diversity scheme. Comparison betweensimulated expected distortion and asymptotic expression.

E. Comparisons and discussions

The limit σ2
θ
σ2
v

σ2
θ
+σ2

v

= ( 1
σ2
θ

+ 1
σ2
v

)−1 in the multi-sensor diversity scheme corresponds to the distortion that can be
achieved with a single sensor, with estimation performed atthat sensor, i.e. no further analog forwarding to a
fusion center. For the channel-aware ALOHA scheme, the limit is σ2

θ(1− 1
e )+

1
e

σ2
θ
σ2
v

σ2
θ
+σ2

v

, which is clearly larger than
the limit in the multi-sensor diversity scheme. It can be regarded as a weighted combination of the limiting value
σ2
θ
σ2
v

σ2
θ
+σ2

v

when there is a successful transmission, and the distortionσ2
θ when transmissions are unsuccessful, with1

e
being the asymptotic probability of successful transmission asM → ∞ (which also corresponds to the asymptotic
throughput of a slotted ALOHA system [18], [27]). We note also that the limit ( 1

σ2
θ

+ 1
λσ2

n

)−1 in the orthogonal

scheme usingαi = 1/
√
M,∀i is different from the limit in the diversity scheme. Under the choices ofαi in this

paper, the expected distortion goes to zero only in the multi-access scheme.1

In terms of speed of convergence, the rate1/M is achieved in the multi-access and orthogonal schemes. On
the other hand, we get a slower convergence rate of1/ ln(M) in the diversity schemes. A similar1/ ln(M) rate
is achieved when sensor measurements are transmitted to a fusion center digitally using separate source/channel
coding, e.g. as in the CEO problem [7], [28].

Finally, in regards to implementation, the multi-access scheme requires that we the measurements add up
coherently as in (1) at the fusion center, which may be difficult to achieve for large sensor networks, since it
requires distributed transmit beamforming to be implemented. The orthogonal access scheme does not require as
much synchronization between sensors [11], but each sensorwill require its own orthogonal channel. The multi-
sensor diversity scheme does not have these issues, though it will still require the fusion center to determine which
sensor has the best channel, with this information then fed back to the sensors. The channel-aware ALOHA scheme
is probably the easiest to implement in practice, however asymptotically it has larger expected distortion when
compared to the multi-sensor diversity and multi-access schemes.

F. Numerical studies

Consider an example withσ2
θ = 1, σ2

v = 0.2, σ2
n = 0.1, and letgi,∀i be exponentially distributed with mean1/2.

Note that thenE[
√
gi] =

√

π/8, ( 1
σ2
θ

+ 1
σ2
v

)−1 = 0.1667, ( 1
σ2
θ

+ 1
λσ2

n

)−1 = 0.1667, andσ2
θ(1− 1

e )+
1
e

σ2
θ
σ2
v

σ2
θ
+σ2

v

= 0.6934.
In Fig. 1 we compare between the simulated expected distortion (averaging over 100000 channel realizations) and

the asymptotic expression (3) for the multi-sensor diversity scheme, for different numbers of sensorsM . In Fig. 2 we
compare between the simulated expected distortion and the asymptotic expression (4) for the channel-aware ALOHA
scheme, for different numbers of sensorsM . In Fig. 3 we compare between the simulated expected distortion and
the asymptotic expression (5) for the multi-access scheme.In Fig. 4 we compare between the simulated expected
distortion and the asymptotic expression (6) for the orthogonal access scheme. In each case, the validity of the
respective asymptotic expressions for largeM is confirmed.

1However if e.g. we useαi = 1,∀i, then the expected distortion will also go to zero in the orthogonal scheme.
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We also see that in the channel-aware ALOHA scheme, the expected distortion is not necessarily monotonically
decreasing with the number of sensors, though for largeM the 1/ ln(M) decay will still occur.

IV. GENERAL PARAMETERS

In this section we investigate how the results of Section IIIchange when the sensor noise variances are not
necessarily identical, and the fading channels are not necessarily identically distributed. The idea is to obtain upper
and lower bounds on the expected distortion which asymptotically will have the same scaling behaviour, a similar
method was used in [29] in the context of linear state estimation. We will see that in some cases the scaling
behaviour derived in Section III is still preserved, while in other cases not much can be said in general.

A. General sensor noise variances

We consider here the case where the sensor noise variancesσ2
i , i = 1, . . . ,M are not necessarily identical, though

the fading channels are still assumed to be i.i.d. across sensors. We assume that the sensor noise variances can be
bounded from both above and below, i.e.

0 < σ2
min ≤ σ2

i ≤ σ2
max < ∞,∀i

Then we note in all the different schemes considered here,D is an increasing function ofσ2
i for all i. Hence we

can upper and lower boundD with the symmetric results usingσ2
i = σ2

max,∀i andσ2
i = σ2

min,∀i respectively.
In the multi-sensor diversity scheme, we have for Rayleigh fading

σ2
θσ

2
min

σ2
θ + σ2

min

[

1 +
σ2
nσ

2
θ

σ2
min(σ

2
θ + σ2

min)

λ

ln(M)

]

(1 + o(1))

≤ E[D] ≤ σ2
θσ

2
max

σ2
θ + σ2

max

[

1 +
σ2
nσ

2
θ

σ2
max(σ

2
θ + σ2

max)

λ

ln(M)

]

(1 + o(1))

Note that the upper and lower bounds do not converge to the same limit asM → ∞, so for general sensor noise
variances one can not say much more about its asymptotic behaviour. Indeed, one can construct situations that can
be shown to not converge to any limit, in a similar fashion as in [29].

In the channel-aware ALOHA scheme, for Rayleigh fading we have

σ2
θ(1−

1

e
) +

1

e

σ2
θσ

2
min

σ2
θ + σ2

min

[

1 +
σ2
nσ

2
θ

σ2
min(σ

2
θ + σ2

min)

λ

ln(M)

]

(1 + o(1))

≤ E[D] ≤ σ2
θ(1−

1

e
) +

1

e

σ2
θσ

2
max

σ2
θ + σ2

max

[

1 +
σ2
nσ

2
θ

σ2
max(σ

2
θ + σ2

max)

λ

ln(M)

]

(1 + o(1))

Similarly, little more can be said about the asymptotic behaviour for the channel-aware ALOHA scheme in general.
On the other hand, in the multi-access scheme, we will have

σ2
minE[g1] + σ2

n

M(E[
√
g1])2

(1 + o(1)) ≤ E[D] ≤ σ2
maxE[g1] + σ2

n

M(E[
√
g1])2

(1 + o(1))

Since the upper and lower bounds both converge to zero at the rate1/M , the general situation will also have the
same scaling behaviour as the bounds.

In the orthogonal scheme, we have for Rayleigh fading
(

1
1
σ2
θ

+ 1
λσ2

n

+
2σ2

min

Mλ2σ4
n

1

( 1
σ2
θ

+ 1
λσ2

n

)2

)

(1 + o(1)) ≤ E[D] ≤
(

1
1
σ2
θ

+ 1
λσ2

n

+
2σ2

max

Mλ2σ4
n

1

( 1
σ2
θ

+ 1
λσ2

n

)2

)

(1 + o(1))

Here, both the upper and lower bounds converge to( 1
σ2
θ

+ 1
λσ2

n

)−1 at the rate1/M , and so the general situation
will also do so.



11

B. Non-identically distributed fading channels

In the previous subsection where the sensor noise varianceswere different but the fading channels were still i.i.d.,
we found that the asymptotic behaviour was still preserved in the multi-access and orthogonal access schemes. We
now consider the situation where the sensor noise variancesare identical (σ2

i = σ2
v ,∀i), and the fading channels are

independent but not necessarily identically distributed,though for tractability assuming that the fading distributions
belong to the same “family”. To be more specific, we make the following assumption:

Assumption 4.1: The channel gainsgi can be written as

gi = µihi,∀i,
whereµi > 0 are constants satisfying

0 < µmin ≤ µi ≤ µmax < ∞,

and thehi’s are identically distributed.
For example, ifgi is exponentially distributed with mean1/λi, then we can takeµi = 1/λi, andhi will be

exponentially distributed with mean1, satisfying Assumption 4.1.
Consider first the multi-sensor diversity scheme. We rewrite max(g1, . . . , gM ) = max(µ1h1, . . . , µMhM ), and

then we have

max(µminh1, . . . , µminhM ) ≤ max(µ1h1, . . . , µMhM ) ≤ max(µmaxh1, . . . , µmaxhM )

We may then obtain for Rayleigh fading the bound

σ2
θσ

2
v

σ2
θ + σ2

v

[

1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

1

µmax ln(M)

]

(1 + o(1))

≤ E[D] ≤ σ2
θσ

2
v

σ2
θ + σ2

v

[

1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

1

µmin ln(M)

]

(1 + o(1))

The upper and lower bounds both converge toσ2
θσ

2
v/(σ

2
θ +σ2

v) at the rate1/ lnM . So for non-i.i.d. fading channels
satisfying Assumption 4.1 and identical sensor noise variances, the scaling behaviour of Section III is preserved in
the multi-sensor diversity scheme.

For the channel-aware ALOHA scheme, we may similarly obtainfor Rayleigh fading the bound

σ2
θ(1−

1

e
) +

1

e

σ2
θσ

2
v

σ2
θ + σ2

v

[

1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

1

µmax ln(M)

]

(1 + o(1))

≤ E[D] ≤ σ2
θ(1−

1

e
) +

1

e

σ2
θσ

2
v

σ2
θ + σ2

v

[

1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

1

µmin ln(M)

]

(1 + o(1))

which also preserves the scaling behaviour of Section III.
For the multi-access scheme, we will have

(

∑M
i=1

√
µminhiαi

)2

∑M
i=1 µmaxhiα2

i σ
2
v + σ2

n

≤

(

∑M
i=1

√
µihiαi

)2

∑M
i=1 µihiα2

iσ
2
v + σ2

n

≤

(

∑M
i=1

√
µmaxhiαi

)2

∑M
i=1 µminhiα2

i σ
2
v + σ2

n

and by similar calculations to Section III we may obtain the bound

σ2
vµminE[h1] + σ2

n

Mµmax(E[
√
h1])2

(1 + o(1)) ≤ E[D] ≤ σ2
vµmaxE[h1] + σ2

n

Mµmin(E[
√
h1])2

(1 + o(1))

The upper and lower bounds both converge to 0 at the rate1/M , preserving the scaling behaviour of Section III.
For the orthogonal scheme, we will have

M
∑

i=1

µminhiα
2
i

µminhiα
2
i σ

2
v + σ2

n

≤
M
∑

i=1

µihiα
2
i

µihiα
2
i σ

2
v + σ2

n

≤
M
∑

i=1

µmaxhiα
2
i

µmaxhiα
2
i σ

2
v + σ2

n

by making use of the fact that
µihiα

2
i

µihiα2
i σ

2
v + σ2

n
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is an increasing function ofµi. We may then obtain the bounds for Rayleigh fading:

1
1
σ2
θ

+ µmax

σ2
n

+
2σ2

vµ
2
max

Mσ4
n(

1
σ2
θ

+ µmax

σ2
n

)2
(1 + o(1)) ≤ E[D] ≤ 1

1
σ2
θ

+ µmin

σ2
n

+
2σ2

vµ
2
min

Mσ4
n(

1
σ2
θ

+ µmin

σ2
n

)2
(1 + o(1))

However, since the upper and lower bounds have different limits asM → ∞, little more can be said in general.

C. General sensor noise variances and non-identically distributed fading channels

By combining the results in the previous two subsections, itis clear that if we allow for both general sensor
noise variances and non-identically distributed fading channels satisfying Assumption 4.1, then only the multi-access
scheme will preserve the scaling behaviour of Section III.

V. OPTIMAL POWER ALLOCATION

In this section we consider optimal power allocation for themulti-sensor diversity and channel-aware ALOHA
schemes. For notational simplicity, and since we are also interested in the performance using optimal power
allocation for large numbers of sensors, we will consider symmetric sensor networks, although the results can be
generalized to general parameters such as unequal sensor noise variances and/or non-identical fading distributions as
considered in the previous section. Numerical results willshow that the difference in performance between optimal
power allocation and the constant power allocation used in Section III is very small. Indeed, we will argue that
asymptotically the results are equivalent. Optimal power allocation for multi-access and orthogonal access schemes,
with slightly different objectives and constraints, has previously been studied in [10] and [11] respectively and will
not be considered here.

A. Multi-sensor diversity scheme

We are interested in minimizing the expected distortionE[D] subject to an average power constraintP. For the
multi-sensor diversity scheme we can write this as

min
α2

i∗

E[D] = min
α2

i∗

σ2
θσ

2
v

σ2
θ + σ2

v

E



1 +

σ2
n
σ2
θ

σ2
v
(σ2

θ
+σ2

v
)

gmaxα
2
i∗ +

σ2
n

σ2
θ
+σ2

v





s.t.E[α2
i∗ ] ≤

P
σ2
θ + σ2

v

(7)

We have the following result:
Lemma 5.1: Consider the following problem

min
α2

i∗

E

[

1

gmaxα2
i∗ + b

]

s.t.E[α2
i∗ ] ≤

P
σ2
θ + σ2

v

The optimal solution is of the form

α2
i∗ =

{ √

1
gmaxν

− b
gmax

, gmax ≥ b2ν

0 , otherwise
(8)

where the Lagrange multiplierν satisfies
∫ ∞

b2ν

(
√

1

gmaxν
− b

gmax

)

p(gmax)dgmax =
P

σ2
θ + σ2

v

(9)

Proof: The derivation uses similar techniques to the capacity maximization problems for fading channels in
[30], [16], and is omitted for brevity.

Using Lemma 5.1, the optimal power allocation for problem (7) is given by (8), withb = σ2
n

σ2
θ
+σ2

v

. The expected
distortion under optimal power allocation can be computed as

E[D] =

∫ ∞

b2ν

σ2
θσ

2
v

σ2
θ + σ2

v

(

1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

√

ν

gmax

)

p(gmax)dgmax +

∫ b2ν

0
σ2
θp(gmax)dgmax (10)

whereν satisfies (9), and can be determined numerically.
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B. Channel-aware ALOHA scheme

For the channel-aware ALOHA scheme, the problem of minimizing the expected distortion subjectE[D] to an
average power constraintP can be written as

min
α2

i

E[D] = min
α2

i

σ2
θ

[

1− (1− 1

M
)M−1

]

+M(1− 1

M
)M−1

∫ ∞

T

σ2
θσ

2
v

σ2
θ + σ2

v



1 +

σ2
n
σ2
θ

σ2
v
(σ2

θ
+σ2

v
)

α2
i gi +

σ2
n

σ2
θ
+σ2

v



 p(gi)dgi

s.t.M
∫ ∞

T
α2
i p(gi)dgi ≤

P
σ2
θ + σ2

v

(11)

Similar to the multi-sensor diversity scheme, we have the following result:
Lemma 5.2: Consider the following problem

min
α2

i

∫ ∞

T

1

giα2
i + b

p(gi)dgi

s.t.
∫ ∞

T
α2
i p(gi)dgi ≤

P
M(σ2

θ + σ2
v)

The optimal solution is of the form

α2
i =

{ √

1
giν

− b
gi

, gi ≥ max(T, b2ν)

0 , otherwise
(12)

where the Lagrange multiplierν satisfies
∞
∫

max(T,b2ν)

(
√

1

giν
− b

gi

)

p(gi)dgi =
P

M(σ2
θ + σ2

v)
(13)

Using Lemma 5.2, the optimal power allocation for problem (11) is given by (12), withb = σ2
n

σ2
θ
+σ2

v

. The expected
distortion under optimal power allocation can be computed as

E[D] =σ2
θ

[

1− (1− 1

M
)M−1

]

+M(1− 1

M
)M−1

∞
∫

max(T,b2ν)

σ2
θσ

2
v

σ2
θ + σ2

v

(

1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

√

ν

gi

)

p(gi)dgi

+M(1− 1

M
)M−1

max(T,b2ν)
∫

T

σ2
θp(gi)dgi

(14)

whereν satisfies (13).

C. Numerical studies

We again consider a situation withσ2
θ = 1, σ2

v = 0.2, σ2
n = 0.1, and letgi,∀i be exponentially distributed with

mean1/2. For a fair comparison with the results of Section III-F, when performing optimal power allocation we
will take P/(σ2

θ + σ2
v) = 1.

In Fig. 5 we plot the expected distortion under constant (when the sensor is transmitting) and optimal power
allocation, for the multi-sensor diversity scheme with different numbers of sensors. In Fig. 6 we plot the expected
distortion under constant and optimal power allocation, for the channel-aware ALOHA scheme with different
numbers of sensors. The performance using constant power allocation can be seen to be very close to the performance
under optimal power allocation, particularly for large numbers of sensors. In the next subsection we will attempt
to explain this phenomenon.

D. Asymptotic behaviour under optimal power allocation

In this subsection we will prove why the optimal power allocation and constant power allocation schemes perform
so close to each other, especially for largeM . We will assume thatgi are exponentially distributed with mean1/λ.
We will also takeP/(σ2

θ + σ2
v) = 1.
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1) Multi-sensor diversity scheme: Before we state and prove the main theorem, we first give a preliminary result.

Lemma 5.3: For the multi-sensor diversity scheme under optimal power allocation,ν → 0 asM → ∞, whereν
satisfies (9).
See Appendix B for the proof of Lemma 5.3. We will now prove thefollowing:

Theorem 5.4: For the multi-sensor diversity scheme under optimal power allocation,

E[D] ∼ σ2
θσ

2
v

σ2
θ + σ2

v

[

1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

λ

ln(M)

]

asM → ∞.

Proof: Firstly, by using similar techniques to Appendix A, we can derive that

∫ ∞

0

1√
x
M(1− e−λx)M−1λe−λxdx ∼

√

λ

ln(M)
(15)

and
∫ ∞

0

1

x
M(1− e−λx)M−1λe−λxdx ∼ λ

ln(M)
(16)

By Lemma 5.3 and (15)-(16), the condition
∫ ∞

b2ν

(
√

1

gmaxν
− b

gmax

)

p(gmax)dgmax = 1
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is asymptotically
√

λ

ν ln(M)
− bλ

ln(M)
∼ 1

We can easily solve forν to get

ν ∼ λ

ln(M)

1

1 + 2bλ
ln(M) + ( bλ

ln(M))
2
∼ λ

ln(M)
(17)

and so
∫ ∞

b2ν

√

ν

x
M(1− e−λx)M−1λe−λxdx ∼

√

νλ

ln(M)
∼ λ

ln(M)

We also note that

(1− e−λb2ν)M = (1− exp(− λ2b2

ln(M)
))M

= O

(

(

λ2b2

ln(M)

)M
)

= o

(

1

ln(M)

)

Hence from (10),

E[D] ∼ σ2
θσ

2
v

σ2
θ + σ2

v

[

1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

λ

ln(M)

]

+ σ2
θ(1− e−λb2ν)M

∼ σ2
θσ

2
v

σ2
θ + σ2

v

[

1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

λ

ln(M)

]

which is the same asymptotic expression as (3) of Section III.
2) Channel-aware ALOHA scheme: We again first give a preliminary result before stating and proving the main

theorem.
Lemma 5.5: For the channel-aware ALOHA scheme under optimal power allocation,T > b2ν for M sufficiently

large, whereT = 1
λ ln(M) andν satisfies (13).

See Appendix C for the proof of Lemma 5.5. We will now prove thefollowing:
Theorem 5.6: For the channel-aware ALOHA scheme under optimal power allocation,

E[D] ∼ σ2
θ(1−

1

e
) +

1

e

σ2
θσ

2
v

σ2
θ + σ2

v

[

1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

λ

lnM

]

asM → ∞.

Proof: Recall thatT = 1
λ ln(M). First note that we can compute the following integrals:
∫ ∞

T

1√
x
λe−λxdx =

√
λπerfc(

√
λT ) =

√
λπerfc(

√

ln(M)) (18)

and
∫ ∞

T

1

x
λe−λxdx = λE1(λT ) = λE1(ln(M)) (19)

By Lemma 5.5 and (18)-(19), the condition
∞
∫

max(T,b2ν)

(
√

1

giν
− b

gi

)

p(gi)dgi =
1

M

is asymptotically
√

λπ

ν
erfc(

√

ln(M))− bλE1(ln(M)) ∼ 1

M
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and so

√
ν ∼

√
λπerfc(

√

ln(M))

1/M + bλE1(ln(M))

∼

√
λπ e− ln(M)√

π ln(M)

1/M + bλ e− ln(M)

ln(M)

∼
√

λ

ln(M)

Then
∞
∫

max(T,b2ν)

√

ν

x
λe−λxdx =

∫ ∞

T

√

ν

x
λe−λxdx

=
√
νλπerfc(

√

ln(M))

∼ λ

√

π

ln(M)

e− ln(M)

√

π ln(M)

=
λ

M ln(M)

Hence from (14) we have

E[D] ∼ σ2
θ(1−

1

e
) +M

1

e

σ2
θσ

2
v

σ2
θ + σ2

v

[

1

M
+

σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

λ

M lnM

]

= σ2
θ(1−

1

e
) +

1

e

σ2
θσ

2
v

σ2
θ + σ2

v

[

1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

λ

lnM

]

which is the same asymptotic expression as (4) of Section III.

VI. OPTIMAL THRESHOLD SELECTION FOR CHANNEL-AWARE ALOHA SCHEME

So far in this paper we have used the choice of thresholdT = 1
λ ln(M) in the channel-aware ALOHA

scheme. In this section we will consider the optimal choice of threshold in the channel-aware ALOHA scheme for
symmetric sensor networks. We consider both threshold optimization under constant power allocation, and a joint
threshold/power optimization. We will assume Rayleigh fading, so thatgi are exponentially distributed with mean
1/λ.

A. Optimal thresholds under constant power allocation

Recall that in the channel-aware ALOHA scheme each sensor transmits whengi > T . The problem we now
consider is to determine the optimal choice ofT to minimize the expected distortion.

Note that under Rayleigh fading,Pr(gi > T ) = e−λT . For a fair comparison with the model of Section II-B we
will normalise the powers, and letαi be of the form

α2
i =

eλT

M

The expected distortion can then be derived similar to Section III-B as

E[D] = σ2
θ

[

1−Me−λT (1− e−λT )M−1
]

+M(1− e−λT )M−1

∫ ∞

T

(

1

σ2
θ

+
gie

λT /M

giσ2
ve

λT /M + σ2
n

)−1

p(gi)dgi

= σ2
θ

[

1−Me−λT (1− e−λT )M−1
]

+M(1− e−λT )M−1 σ2
θσ

2
v

σ2
θ + σ2

v

[

e−λT +
σ2
nσ

2
θMe−λT

σ2
v(σ

2
θ + σ2

v)
λ exp

(

λσ2
nMe−λT

σ2
θ + σ2

v

)

E1

(

λ

(

σ2
nMe−λT

σ2
θ + σ2

v

+ T

))]

(20)
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The optimal threshold can then be found by numerically searching for theT ∗ that satisfiesdE[D]
dT |T=T ∗ = 0 and

d2
E[D]
dT 2 |T=T ∗ > 0.

B. Joint threshold/power optimization

Here we wish to optimize both the threshold and determine theoptimal power allocation that will minimize the
expected distortion, subject to an average power constraint. The problem can be written as

min
T,α2

i

σ2
θ

[

1−Me−λT (1− e−λT )M−1
]

+M(1− e−λT )M−1

∫ ∞

T

σ2
θσ

2
v

σ2
θ + σ2

v



1 +

σ2
n
σ2
θ

σ2
v
(σ2

θ
+σ2

v
)

α2
i gi +

σ2
n

σ2
θ
+σ2

v



 p(gi)dgi

s.t.M
∫ ∞

T
α2
i p(gi)dgi ≤

P
σ2
θ + σ2

v

(21)

To solve (21), we note that for a givenT , it can be shown similar to Section V-B that the optimal powerallocation
has the form

α2
i =

{ √

1
giν

− b
gi

, gi ≥ max(T, b2ν)

0 , otherwise

whereν satisfies
∞
∫

max(T,b2ν)

(
√

1

giν
− b

gi

)

p(gi)dgi =
P

M(σ2
θ + σ2

v)

and

E[D] =σ2
θ

[

1−Me−λT (1− e−λT )M−1
]

+M(1− e−λT )M−1

∞
∫

max(T,b2ν)

σ2
θσ

2
v

σ2
θ + σ2

v

(

1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

√

ν

gi

)

p(gi)dgi

+M(1− e−λT )M−1

max(T,b2ν)
∫

T

σ2
θp(gi)dgi

(22)

With this, we may then again perform a line search to find the optimal T ∗ that minimizesE[D].

C. Numerical studies

We again consider the situation withσ2
θ = 1, σ2

v = 0.2, σ2
n = 0.1, and letgi,∀i be exponentially distributed with

mean1/2.
In Figures 7 and 8 we plot the thresholds and expected distortion under constant power allocation, comparing

the performance using optimal thresholds and the simple choice of thresholdT = 1
λ ln(M). The results can be

seen to be very close to each other.
In Figures 9 and 10 we plot the thresholds and expected distortion, comparing the performance using optimal

power allocation with optimal thresholds, and constant power allocation with the simple thresholdT = 1
λ ln(M).

The results can also be seen to be very close to each other.

D. Optimal thresholding for large M

From the numerical results in the previous subsection, it appears that the optimal thresholds (under both constant
power and optimal power allocation) are asymptotically equal to 1

λ ln(M). Indeed, we have the following result:
Lemma 6.1: Under both constant power and optimal power allocation, theoptimal thresholdsT ∗ satisfyT ∗ ∼

1
λ ln(M) asM → ∞.

Proof: RegardT as a function ofM . Consider the term

Me−λT (M)(1− e−λT (M))M−1
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in both the expressions (20) and (22). If the thresholds are chosen such that this term decays to zero asM → ∞,
then in both (20) and (22) we haveσ2

θ [1−Me−λT (M)(1− e−λT (M))M−1] → σ2
θ , and hence

E[D] ≥ σ2
θ(1 + o(1)) asM → ∞.

However, we already know from Section III-B that the choiceT (M) = 1
λ ln(M) results in a lower expected

distortion than this. Thus a necessary condition for the optimal choice of thresholdsT ∗(M) is that the term
Me−λT ∗(M)(1− e−λT ∗(M))M−1 does not converge to zero asM → ∞.

Now for the termMe−λT ∗(M) to not converge to zero, one needsT ∗(M) ≤ 1
λ ln(M)(1 + o(1)). For the term

(1 − e−λT ∗(M))M−1 to not converge to zero, one needsT ∗(M) ≥ 1
λ ln(M)(1 + o(1)). Combining these two

statements, one then gets that the optimal thresholds must have the formT ∗(M) ∼ 1
λ ln(M).

Intuitively, one could next attempt to substituteT ∗ ∼ 1
λ ln(M) into (20) or (21) in order to obtain the asymptotic

expression (4) for the expected distortion. This however isnot a rigorous argument since performing the operation
e−λT ∗

does not retain the asymptotic relation∼. We can prove however, the following weaker result:
Lemma 6.2: Under both constant power and optimal power allocation, andoptimal thresholding, we have
(

σ2
θ(1−

1

e
) +

1

e

σ2
θσ

2
v

σ2
θ + σ2

v

)

(1 + o(1)) ≤ E[D] ≤ σ2
θ(1−

1

e
) +

1

e

σ2
θσ

2
v

σ2
θ + σ2

v

[

1 +
σ2
nσ

2
θ

σ2
v(σ

2
θ + σ2

v)

λ

lnM

]

(1 + o(1))

asM → ∞.
Proof: The upper bound onE[D] comes from the fact that the sub-optimal choiceT = 1

λ ln(M) with constant
power allocation gives the asymptotic behaviour (4) in Section III-B. For the lower bound, consider the term

σ2
θ

[

1−Me−λT (1− e−λT )M−1
]

+Me−λT (1− e−λT )M−1 σ2
θσ

2
v

σ2
θ + σ2

v

in either (20) or (21). One can easily show that this term is minimized by usingT = 1
λ ln(M), resulting in

σ2
θ

[

1−Me−λT (1− e−λT )M−1
]

+Me−λT (1− e−λT )M−1 σ2
θσ

2
v

σ2
θ + σ2

v

= σ2
θ

[

1− (1− 1

M
)M−1

]

+ (1− 1

M
)M−1 σ2

θσ
2
v

σ2
θ + σ2

v

∼ σ2
θ(1−

1

e
) +

1

e

σ2
θσ

2
v

σ2
θ + σ2

v

Hence from either (20) or (21),E[D] ≥
(

σ2
θ(1− 1

e ) +
1
e

σ2
θ
σ2
v

σ2
θ
+σ2

v

)

(1 + o(1)).

By Lemma 6.2, we see thatE[D] will go to the same limiting valueσ2
θ(1 − 1

e ) +
1
e

σ2
θ
σ2
v

σ2
θ
+σ2

v

at a rate at least as
fast as1/ ln(M). However, showing that the rate is exactly1/ ln(M), and that the exact asymptotic behaviour is
given by (4), remain open issues.
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VII. C ONCLUSION

The asymptotic behaviour for decentralized estimation of an i.i.d Gaussian source, using the analog amplify
and forwarding technique under a number of different multiple access schemes, has been studied. Focusing on the
expected distortion, the rate of decay of1/ ln(M) has been shown for multi-sensor diversity and channel-aware
ALOHA schemes, while the coherent multi-access and orthogonal access schemes have decay rates of1/M . The
optimal power allocation for the multi-sensor diversity schemes has also been derived, and we have found that
simple power allocation policies can actually approach theoptimal results very closely as the number of sensors
increases.

The diversity schemes considered here can obviously be mademore sophisticated. For instance, instead of just
the best sensor transmitting their measurement to the fusion center, we could have the bestN sensors transmitting,
with N ≥ 2. This could be useful in particular when the sensor measurements are spatially correlated. For another
example, in the channel-aware ALOHA scheme, instead of assuming collision when more than one sensor transmits
at the same time, we might be able to combine them by coherently adding up the sensor transmissions as in the
multi-access scheme. Analysis of these schemes will be morecomplicated, but could constitute possible areas of
future investigation.

APPENDIX

A. Proof of Lemma 3.1

Proof: The maximum ofM i.i.d. exponential random variables with mean1/λ, has cumulative distribution
function

F (x) = (1− e−λx)M

and hence the probability density function

p(x) = M(1− e−λx)M−1λe−λx.

We wish to find the largeM behaviour of

E

[

1

X + b

]

= M

∫ ∞

0

(1− e−λx)M−1λe−λx

x+ b
dx

= M

∫ ∞

0

e−Mt

b− 1
λ ln(1− e−t)

dt

where in the second line we used the substitutione−t = 1 − e−λx. To determine the asymptotic behaviour of the
integral

∫ ∞

0

e−Mt

b− 1
λ ln(1− e−t)

dt,

we will use a Tauberian theorem for the Laplace transform, see p.445 of [31] or p.248 of [32], which in our notation
says that iff(t) ≥ 0, 0 ≤ ρ < ∞, andL(t) is a slowly varying function at infinity, then each of the relations

∫ ∞

0
e−Mtf(t)dt ∼ M−ρL

(

1

M

)

asM → ∞

and
∫ t

0
f(τ)dτ ∼ tρL(t)

Γ(ρ+ 1)
as t → 0

implies the other.
Thus we can study first the asymptotic behaviour of

∫ t

0

1

b− 1
λ ln(1− e−τ )

dτ = λ

∫ t

0

1

λb− ln(1− e−τ )
dτ
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as t → 0. Using an integration by parts, we obtain
∫ t

0

1

λb− ln(1− e−τ )
dτ =

t

λb− ln(1− e−t)
−
∫ t

0

τe−τ

(1− e−τ )(λb− ln(1− e−τ ))2
dτ

Next, it may be verified thatτe−τ/(1 − e−τ ) ≤ 1, and that1/(λb − ln(1 − e−τ ))2 is an increasing function ofτ .
Then

∣

∣

∣

∣

∫ t

0

τe−τ

(1− e−τ )(λb− ln(1− e−τ ))2
dτ

∣

∣

∣

∣

=

∫ t

0

τe−τ

(1− e−τ )(λb− ln(1− e−τ ))2
dτ

≤
∫ t

0

1

(λb− ln(1− e−τ ))2
dτ

≤ t

(λb− ln(1− e−t))2

= o

(

t

λb− ln(1− e−t)

)

as t → 0

and so

λ

∫ t

0

1

λb− ln(1− e−τ )
dτ ∼ λt

λb− ln(1− e−t)

∼ λt

λb− ln(t)
=

λt

λb+ ln(1/t)

as t → 0. With L(t) = λ
λb+ln(1/t) (which can be easily shown to be slowly varying) andρ = 1, we thus have by

the Tauberian theorem that

M

∫ ∞

0

e−Mt

b− 1
λ ln(1− e−t)

dt ∼ M ×M−1 × λ

λb+ ln(M)

∼ λ

ln(M)
asM → ∞

B. Proof of Lemma 5.3

Proof: The proof is by contradiction. Regardν(M) as a function ofM .
Supposeν(M) does not converge to 0 asM → ∞. Then there exists a constantν̄ > 0 such thatν(M) ≥ ν̄ for

infinitely many values ofM . In particular, there are infinitely many values ofM such that the following is true:

∫ ∞

b2ν(M)

√

1

xν(M)
M(1− e−λx)M−1λe−λxdx ≤ 1√

ν̄

∫ ∞

b2ν̄

1√
x
M(1− e−λx)M−1λe−λxdx

<
1√
ν̄

∫ ∞

0

1√
x
M(1− e−λx)M−1λe−λxdx

∼
√

λ

ν̄ ln(M)

where the last line comes from (15). Since
∫ ∞

b2ν(M)

b

x
M(1− e−λx)M−1λe−λxdx ≥ 0,
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the condition
∫ ∞

b2ν(M)

(√

1

gmaxν(M)
− b

gmax

)

p(gmax)dgmax = 1

thus cannot be satisfied for allM , which is a contradiction.

C. Proof of Lemma 5.5

Proof: Call a = max(T, b2ν) = max( 1λ ln(M), b2ν). Then
∫ ∞

a

(
√

1

giν
− b

gi

)

λe−λgidgi =

√

λπ

ν
erfc(

√
λa)− bλE1(λa)

From (13) we obtain
√

λπ

ν
erfc(

√
λa) = bλE1(λa) +

1

M
.

Now by definition ofa, we havea ≥ 1
λ ln(M), or e−λa ≤ 1

M . Hence
√

λπ

ν
erfc(

√
λa) ≥ bλE1(λa) + e−λa

Also note the inequality erfc(
√
λa) ≤ e−λa. Then

√
ν ≤

√
λπerfc(

√
λa)

bλE1(λa) + e−λa
≤ e−λa

√
λπ

bλE1(λa) + e−λa
=

√
λπ

1 + bλeλaE1(λa)
≤

√
λπ

Thus
√
ν ≤

√
λπ ≤

√
ln(M)/λ

b for M sufficiently large, which then proves Lemma 5.5.
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