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On Optimal Binary One-Error-Correcting Codes of
Lengths2™ — 4 and 2™ — 3

Denis S. Krotov, Patric R. Dstergard, and Olli Pottonen

Abstract—Best and Brouwer [Discrete Math. 17 (1977), 235—
245] proved that triply-shortened and doubly-shortened bnary
Hamming codes (which have length2™ — 4 and 2™ — 3,
respectively) are optimal. Properties of such codes are her
studied, determining among other things parameters of cedin
subcodes. A utilization of these properties makes a compute
aided classification of the optimal binary one-error-correcting
codes of lengthsl2 and 13 possible; there are237610 and 117823
such codes, respectively (witt27375 and 17513 inequivalent ex-
tensions). This completes the classification of optimal bary one-
error-correcting codes for all lengths up to15. Some properties of
the classified codes are further investigated. Finally, its proved
that for any m > 4, there are optimal binary one-error-correcting
codes of length2™ — 4 and 2™ — 3 that cannot be lengthened to
perfect codes of length2™ — 1.

Index Terms—automorphism group, classification,
error-correcting code, MacWilliams transform

clique,

I. INTRODUCTION

BINARY CODE of lengthn is a setC C FZ, where
F, = {0,1} is the field of order2. The (Hamming)
distance between elements,c’ € F%, called words (or

codewordswhen they belong to a code), is the number df@! for that sak

coordinates in which they differ and is denoteddfy, c’). The

code is said to bé(d — 1)/2]-error-correcting. If every word
in the ambient space is at distance at mdst— 1)/2] from
some codeword of &(d — 1)/2]-error-correcting code, then
the code is callegherfect

The maximum size of a binary code of length and
minimum distancel is denoted byA(n, d); the corresponding
codes are said to beptimal For binary codes there is a direct
connection between optimal error-correcting codes witd od
and even minimum distance:

A(n+1,2d) = A(n,2d — 1). Q)

One gets from the odd case to the even caseXignding
the code with a parity bit, and from the even case to the odd
case by removing an arbitrary coordinate, calfthcturing
Other transformations of codes inclugbortening where a
coordinate is deleted and all codewords but those with angive
value in the deleted coordinate are removed, k@mgthening
which is the reverse operation of shortening. See [1] for the
basic theory of error-correcting codes.

When studying optimal error-correcting codes—or subopti-
e—it is reasonable to restrict the study tteso
that are essentially different in the following sense. Twtaby

minimum distancef a code is the smallest pairwise distancE°des are said to bequivalentf the codewords of one of the

among distinct codewords:
d(C) = min{d(c,c') : c,c’ € C, c # c'}.

The (Hamming)eightwt(c) of a wordc € 4 is the number
of nonzero coordinates.
A binary code of length, size M, and minimum distance

d is said to be arin, M, d) code. Since a code with minimum

distanced is able to correct up td(d — 1)/2] errors, such a
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codes can be mapped onto those of the other by the addition
of a vector followed by a permutation of the coordinates.fSuc

a mapping from a code onto itself is aatomorphisnof the
code; the set of all automorphisms of a co@eforms the
automorphism groupf C, denoted byAut(C).

A code with only even-weight codewords is said todwen
Codes equivalent to even codes are of central importantein t
current work; these codes have only even-weight codewords
or only odd-weight codewords, and they are characterized by
the fact that the distance between any two codewords is even.
We therefore call such codeven-distance codgsiot to be
confused with codes that have even minimum distance).

Hamming codes are perfect (and thereby optimal) one-error-
correcting codes:

A@2M —1,3) =22"—m 1

Best and Brouwer(|2] showed that by shortening Hamming
godes one, two, or three times, one still gets optimal codes:

)

For all but the very smallest parameters, there are many
inequivalent codes with the parameters [@ (2). In general,
a complete characterization or classification of such codes
does not seem feasible, but the classification problem can be

A@Q™—1—4,3)=22""""1"1 0<i<3.
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addressed for small parameters and general propertiessd ttthe given parameters. Led; be the distance distribution of
codes can be studied. For example, the issue whether co@lesind letA; be the MacWilliams transform ofl;, that is,
with these parameters can be lengthened to perfect codes has "
qttracted some interest in the literaturé [3], [4], [3],.[6or M A}, Z A K (i),
i = 1, every code[{2) can be lengthened to a perfect code ‘=0
and this can be done in a unique way up to equivalence n
[3]. Consequently, codes with such parameters are in atdirec 2"A, = MZA/iKk(i), ()
relationship to the perfect codes, so our main interest then i=0
codes withi = 2 andi = 3. where
One aim of the current work is to study properties of codes ) k i\ (n— i
with the parameters of doubly-shortened and triply-shnate Ki(i) = Z(—l)J (j) (k _ j)
perfect binary one-error-correcting codes. This studydstad 3=0

in Section[dl by considering certain properties of subcodes a Krawtchouk polynomial. It is well known that) = 1
which can be utilized in a computer-aided classification @fd A/ > 0 for 1 < i < n [7].

optimal binary one-error-correcting codes of lendth and As C is an even-distance codd; = 0 for odd:, and, since
13, considered in Sectidn]Il. It turns out that the number ok, _1.(i) = (—1)'Kx(i), we have
equivalence classes @¢12,256,3) and (13,512,3) codes is ) )
237610 and 117823, respectively. Some central properties of Ay =An_ (4)
the _c!aSS|f|ed (_:odes are analyzed |n_Sen IV. Finallynitei Let a(i) = (n — 3)Ko(i) + 2K2(i) + 2K,_1(i). Direct
families of optimal one-error-correcting codes of length—4 .
calculations now show that

and 2" — 3 that cannot be lengthened to perfect one-error-
correcting codes of lengt®™ — 1 are presented in Secti@d V. (i) = (n —2i =2+ (=1))(n —2i +2+ (=1)").  (5)

1 (

A preliminary version of some of the results in this work can

be found in [8]. From [8) andn = 2™ — 3 =1 (mod 4) we derive
As only binary codes are considered in the current work, al(n—3)/2) = a((n —1)/2) =
the word binary is omitted in the sequel.
/ | al(n+1)/2) = a((n +3)/2) = 0, ®)
II. PROPERTIES OFSUBCODES andOL(i) >0 for any other |ntegef We haVeAO = 1, An,1 S
] 1, and, sinceC' has minimum distance, A, = 0. Utilizing
Some propert|e_s rela_ted tq subches of the codes un@r' we then get
study are conveniently investigated in the framework of or-
thogonal arrays. An OQ(t, k, ¢) orthogonal arrayof index
), strengtht, degreek, and orderg is a k x N array with 20(0)AF = a(0)Ap + a(n)Al, < Za(z‘)A;
entries from{0,1,...,¢— 1} and the property that every 1 i
column vector appears exactiytimes in everyt x N subarray; _2™((n—3)Ag + 242 + 24, 1) )
necessarilyN = \¢'. N M
The distance distribution(Ag, A1, ... A,,) of an (n, M, d) _ 2M(n—-3+24,.,) _2"(n—1)
codeC is defined by M - M
A 1 ((e.c) e O dle.d) - i) and thereby
i=—|1(c,c’):c,c € C, d(c,c')=1y|.
At ( 2"(n — 1) 2"(n—1)  2n7!

We will need the following theorem by Delsartg] [7]; for ~ 2a(0)A,  2(n—1)(n+3) n+3
more information about the MacWilliams transform, see also

i __on—1 _
[T, Chapter 5] We know that in factV = 2"~'/(n+3), so we have equal

ities in (). This implies thatv(0) Ay +a(n) A, = >, a(i) AL,
Theorem 1. An array is an orthogonal array of strengththatis,«(i)A; = 0 for 1 < i < n—1. By (@) and the comment
t if and only if the MacWilliams transform of the distancehereafter, it follows thatd; = 0 for 1 <: < (n —5)/2 (and
distribution of the code formed by the columns of the arraly: +5)/2 < ¢ < n —1). Application of Theorerl1 shows that
has entries4d|, =1, Aj = A, =--- = A, = 0. we have an orthogonal array with the given parameters.

mo_ 2™ —m—4 e i
We are now ready to prove a central result, essentiall To show that any(2 3,2 ,4) code is indeed

. o even-distance code, we assume that there is a €bde
following the arguments of [2, Theorem 6.1] (where, however , .~ = . -
. . which is not, to later arrive at a contradiction. The cade
the caseal = 3 rather thand = 4 is considered).

can be partitioned into sets of even-weight and odd-weight
Theorem 2. Every (2™ — 3,22"~™~4 4) code is an even- codewords, denoted b¥even andCoaq, respectively. That is,
distance code and forms @A, (¢, n,2) with t = 2m~1 — 4,  C = Ceven U Coda, With |Ceven| > 1 and|Coqa| > 1. For any
n=2"_—3 and\ =22"""—m, codewordsc € Ceven, €' € Coaa, We haved(c,c’) > 5 (as

) ) the distance is odd and greater than 4). Let
Proof: We first show that an even-distante = 2™ —

3, M = 22"~m=4 4) codeC forms an orthogonal array with Ci = Ceven U (Coqq + €;),



where e; is the weight-one vector with the 1 in coordi-same holds. This can be done by shortening in a coordinate

nate i. We now know thatC; is an even-distanc¢2™ — where two codewords that are at odd mutual distance have the
3,22"—m=4 4) code for anyl <i < n. same value. This is not possible by Theoiém 2. ]

We next prove thatC,q4q is an orthogonal array with the ) ) .
same strengtlt (see the early part of the proof) as the The distance: graph of a code is a graph ywth one vertex
different even-distance codés. The proof that the same holdsfor €ach codeword and edges between vertices whose corre-
for Cven is analogous. W.1.0.g., it suffices to consider the la§PONding codewords are at mutual distakce
t coordinates and twe-tuplest;, to that differ only in one
(we choose the last) coordinate—induction then shows tHaerollary 3. Every (2™ — 1 — 4,22 ~m~1-i 3) code with
this holds for any pairs—and show that these tiwuples 0 < i < 3 has a connected distandegraph.
occur in equally many codewords 6f,q4.
We denote the set of words in a cof@ethat have valuel Proof: If the distance-3 graph of afm, M, 3) code is not
in the lastt coordinates byC'(d). Then connected, then there are more than one way of extending the

Coaa(t)| = [(C, t) = Oy (£1)] = |Coven (£1)], code to an(n + 1, M, 4) code; cf. [8, p. 230]. In particular,
[Coaa(t2)] = 1(Coaa +e1)(t2)] = [Ca(ts)] | (61)] it can then be extended to a code that is not an even-distance

|Coda(t2)| = [(Coaa + €n)(t1)| = [Crn(t1)] — [Ceven(t1)]-  code. This is not possible by Corolldry 2. n
Since C; and C,, both form orthogonal arrays with strength _ . _
t, |Ci(t1)] = |Cn(ty)], and it follows that|Coqa(t;)| = Corollary 4. Shortening &2 3,22 *m:‘, 4) codet times
Coaal(ts)]- with t < 2m~1 — 4 gives a(2™ — 3 —¢,22" ~™~*~t 4) code

As C,qq is an even-distance code that forms an orthogorifiat is an even-distance code.
array with strengtnt = 2m~! — 4, we can now reuse the
calculations in the beginning of this proof to determinewvado In particular, withm = 4 andt = 4, we always get a
bound on the size af’,qq. Namely, we now have(i)A; =0 (9,16,4) subcode after shortening @3,256,4) code four
except fori = 0 andi = n, and can carry out calculationstimes.

closely related to[{7): .
However, not al(2™ —3—¢,22" ~m~4= 4) codes witht <

20(0)4) = a(0)Af+ a(n)Al, =Y ali)A; 2m=1 _ 4 are subcodes of som@™ — 3,22" ~™m~4 4) code.
d We shall now strengthen the necessary condition in Coydflar
_ 2"((n—=3)A0 +245 + 24, 1) for a code to be a subcode of(a™ — 3,22" "~ 4) code.
|Coadl Since the result is of interest specifically for the clasatfian
_ 2"(n—3+24, 1) S 2"(n — 3) in Section[, for clarity it is presented only for subcodes
a |Coad = |Coad] of (13,256, 4) codes. For the general case, similar conditions
so can alternatively be obtained using results by Vasil'évh [9
n nol and connections betweef2™ — 4,22 ~™~4 3) codes and
|Coaal > 2'n — 3) -2 (n=3) = |C|n =3 1-perfect codes of Ieng;(m —1 [0, Corollary)4].

n—1

2a(0) AL (n—1)(n+3)

But similarly one getsCeven| > [C|(n = 3)/(n — 1), and  Thaorem 3. Let C be obtained from g13,256,4) code by
thereby|C| = [Ceven| + [Coad| = |C|2(n — 3)/(n — 1) > |C] shorteningt times,0 < t < 4, and let N,, denote the number

whenn > 5, a contradiction. B of codewords of weight in C. If C is an even code, then
Corollary 1. A (2™ — 3,22"~™~4 4) code has a unique (5—t)No+N> > 5—t, andif C is a code with only odd-weight
distance distribution. codewords, theri5 — t) N1 + N3 < (t* — 11t + 44) /2.

Proof: It suffices to prove that the MacWilliams trans-

form of the distance distribution is unique. By the proof of . P_roof: V\_/|th0Ut loss of ge_nerallty, we assume tha_t short-
Theorent, for 2™ —3, 22" ~m—* 4) code we havel, = 0 ening is carried out by extracting codewords within ¢ given

for everyk except ford, — A” — 1 and the unknown values coordinates (after which thecoordinates are deleted).

.'(n71)/2 = A'(n_+1)/2 and.A/(nfl%)/Q = A/(n+3)/2' Equatio_n[@) We first consider the cage= 0 given an ever{13,256,4)
with k& = 0,2 gives a pair of equations which determines thgyge. Consider al('}) subcodes obtained by looking at all
unknown values. B different sets oft coordinates and shortening with respect to 0s
Consequently, the remark at the end 6f [2] about the distangeihese coordinates. By Corollaly 4, every such subcode has
distribution of certain codes not being unique applies O”B’ardinalityl()’, so the sum of their cardinalities (§43) .16 =

to triply-shortened perfect codes and not to triply-sheet® 11440, |n this sum, every codeword (in the original code) of

extended perfect codes. weight 0 is considered’;) = 715 times; similarly for each
Corollary 2. Every (2™ — ,22"~m=1-i 4) code witho < codeword of weight2, 4, 6, and 8, we get the counts30,
i < 3 is an even-distance code. 126, 35, and5, respectively.

Proof: From a code with the given parameters that is not After repeating these calculations with respect to sherten
an even-distance code, one can get a subcode for which ithgs in 3, 2, 1, and0 coordinates, we arrive at the following



system of equations: A. Survey of Old Results

[ Ny A survey of classification results for optimal error-cotieg
715 330 126 35 5 0 0 Ny 11440 codes can be found in|[8, Section 7.1.4], where catalogues of
286 165 84 35 10 1 0 Ny 9152 optimal codes can also be obtained in electronic form. In the
78 55 36 21 10 3 0 Ng = 4992 | . current study, we consider optimal codes with= 3—that
13 11 9 7 5 31 Ng 1664 is, optimal one-error-correcting codes—atid= 4. Zaremba
1 1 1 1 111 Nig 256 [11] proved that the code attainind(7,3) = 16 is unique
Nis (up to equivalence) and so is therefore its extension; ibits n

When these equations are combined_with the coeﬁicierﬁgﬁcu“ to show that all optimal codes with shorter lengtre
8/128, —36,/128, 94/128, —187/128, 315,128, and with the also unique. Baicheva and Kolev [12] proved that theresare

coefficientss /128, —52/128, 190/128, —515/128, 1155,/128 equivalence classes of codes attaini(@, 3) = 20, and these
one gets the equ’atiorﬁsv -‘:-N +N’ —6 and]’V LN + have 3 extensions. Litsyn and Vardy [13] proved uniqueness
EN . — 99 respectivelyo SineaVs = 1 and N > 0. we Of the code attainingd(9,3) = 40 and its extension. The
getlgNO i J’VQ > 5 and Nw n 5]\}122 P Fror% the ’Iatter second author of this paper together with Baicheva and Kolev

inequality, we gebN; + N3 < 22 for odd-weight codes after classified the codes attaining(10,3) = 72 and A(11,3) =

adding the all-one word to all codewords. This completes tt]iém; there ar_e562 equivalence clgsses (wn%.extensmns)
proof for ¢ = 0. and 7398 equivalences classes (witli41 extensions) of such

The inequality5Ny + N, > 5 means that we have eitherc0deS, respectively. _ _
No =1 0or Ny > 5 (or both). In the former case, we will have Knowing the sizes of the optimal one-error-correcting de

one codeword of weighd after any shortening. In the latterP t© length 11, one in fact knows the sizes of such codes up

case, on the other hand, the codewords of wegmust have to length 15 by[(P). o .
disjoint supports, so at mosbf them are lost when shortening The perfect codes attamm@(lS, 3) = 2048 were classified .

¢ times. It follows that(5 — )N+ N» > 5 after shortening by the second and the third authbr [14]; the number c_>f equiv-
t times. This proves the first part of the theorem. ale_nce classes of such codesS%i_’), with 2165 extensions.

For the second part of the theorem, we use induction aH§ing a result by BIackmor_e [3], this classification can bedj_s_
let C be a code obtained by shortening an eves, 256, 4) to get the number _of _equwalence classes of codes_attamlng
codet — 1 times. Moreover, le’ = 0C, U 1C4, s0 Cy and A(14,3) = 1024, Whlch i538408; thesg ha\_/6983 extensions.

C, are obtained after shortening thes, 256, 4) codet times: All these results still leave the classification problem o far

Cy is obviously even and’, has only odd-weight codewords.lengthsm and13. Itis kpown [5] that not all such codes can
We also define the code@’ = 1C, U0C; (which is obviously be obtained by shortening codes of lengthor 15.
equivalent toC).

The weight distributions of the codes, C’, Cy, andC; B. Classification Approach

0 1 T —
are denoted by, Ny, N,;, and N, respectively, sav,, = The general idea underlying the current work is to classify

Ny + Ny_y and N, = Ny_; + N,,. From codes in an iterative manner by utilizing the fact that an
(5—t+1)Ng+Ny>5—-t+1 (n, M, d) code has afin—1, M’, d) subcode with\f’ > M/2.
This idea—uwith various variations—has been used earlier in
[15] and elsewhere. However, it is easy to argue why it is
(5—(t—1)N] +N; < ((t—1)2 = 11(t — 1) + 44) /2, not feasible to classify thél2, 256, 3) and (13,512, 3) codes
directly in such a manner.
A classification of the(12,256,3) and (13,512, 3) codes
(5—t)N{ + Nj via a classification of th¢11, M’,3) codes withM’" > 128
= ((5-(t— 1))N11 + (- (t- 1))N8 + N31 + NS) would lead to a prohibitive number of codes of length 11. To
0 o 1 see this, it suffices to obtain a rough bound on the number of
—((5 = (t=1))Ng + Ny + Ny) equivalence classes @i1,128,3) codes. Every(11, 144, 3)

(6= (t—=1))Ni+N3) —((5—(t—1))No+ N2)  optimal code hag'*) different subsets of 128 codewords,
128

and

we now obtain

< (t—1)2=11(t—1)+44)/2— (5—(t—1)) and any such set of words can be equivalent to at r2d4tl!
= (211t +44)/2. sets in total. Therefore, there are at least
144
This completes the proof. L (125) ~ 8.4-10°
It could be possible to sharpen Theoreém 3, but, as we shall 211!
later see, it fulfills our needs in the current study. equivalence classes dfi1,128,3) codes. Similar (rough)
bounds can be obtained for the number(df, M, 3) codes
I1l. CLASSIFICATION OF ONE-ERROR-CORRECTING with 129 < M < 144.
CopEes So far in this section, we have considered the case3.

Before describing the classification approach used in t¥ course, by[(ll), we might as well consider the cdse 4.
current work, we give a short review of some old relatebh fact, we shall do so in the sequel, to get a smaller number
classification results. of equivalence classes of subcodes in each stage.



To make the classification feasible, we shall make use thfat the vertex corresponding to the new coordinate and the
Corollary [4, which shows that not only do alll2, M,4) value given to the old codewords have the smallest labe& (Se
subcodes of th€13,256,4) and (14,512, 4) codes havell = [19] for an analogous approach for constant weight codes.)
128, but we have the much stronger result that(@llA/,4) Codes that pass this test must still be compared with the othe
subcodes of thé13,256,4) and (14,512,4) codes have size codes obtained from the same subcode.

M = 16 and are even-distance codes. Moreover, the numbeifFor the first few sets of parameters [ (8puty processes
of subcodes to be considered can be reduced considerablyth®y graphs in a sufficiently fast manner. However, the larger

Theoren{B. the codes, the greater is the need for enhancing such a direct
All in all, by Corollary[4 the(13,256,4) and (14,512,4) approach, cf.[[14]. In the current work, an invariant was
codes can be obtained as follows: used that is based on sets of four codewords with the same
(9,16,4) — (10,32,4) — (11,64,4) — value in all but six coordinates, where they form the streetu

(12,128,4) — (13,256,4) — (14,512, 4). (8 {000000,111100,110011,001%1{I4], [27].

) . . . The search starts from th&t3566 equivalence classes of
The even-distanc€9,16,4) codes are classified 'terat'Velyeven-distaanQ,16,4) codes, which in turn were classified

from smaller codes, without any assumptions on the sizesQf atively from smaller codes. In Talile I, the number ofiequ

subcodes. , , o _alence classes of codes after each lengthening and applicat
As described in[[8, Section 7.1.1], lengthening is carriegs e necessary conditions is shown.

out by using a clique algorithm. For each set of parameters

in the sequencd(8), the number of codes is further reduced TABLE |

by isomorph rejection and by discarding codes that do not NUMBER OF INTERMEDIATE (EVEN-DISTANCE) CODES
fulfill Corollary E and Theoren{]3. Details regarding the

implementation of some of these parts will be discussed. next (n, M, d) #
(9,16, 25170
(10,32,4) 24819

C. Implementation and Results (11,64,4) 31899
: . 12,128,4) 37667

Before presenting the results of the computations, we shall E13.256,4g 27375
consider some details regarding the implementation obuari (14,512,4) 17513

parts of the algorithm.
The method of lengthening codes by finding cliques in a
certaincompatibility graph—consisting of one vertex for each

(even) word that can be added and with edges between vertlgF 114512, 4) codes. Puncturing the codes in all possible

whose corresponding words are at mutual distance atdeast . . L
P 9 ways and carrying out further isomorph rejection reveadd th

1S \{vell known, cf. [8, Sgct!on 7-1.1] Howe\(er, we are he.r%ere are237610 equivalence classes 0f2, 256, 3) codes and
facing the challenge of finding rather large cliques—up @ si 117823 equivalence classes 613,512, 3) codes. A total of

256, in the last step ofI8). This clique search can be sped 1e8s than one month of CPU-time using one core of a 2.8-GHz

as fOHO.WS in the last three steps f (8), again relying on thpeersonal computer was needed for the whole search.
theoretical results.

Consider the step of lengthening &m, 275, 4) code with Before presenting the main properties of the classified

11 < n < 13, by including a coordinate with Os for thesecodes, we shall briefly discuss validation of these computer

codewords and adding codewords of length- 1 with 1s in aided results.

the new (say, first) coordinate. The candidates for the new o o

codewords can be partitioned ing¥ 10 setsS; depending D- Validation of Classification

on the values in the firstk — 9 coordinates (recall that the Data from the classification steps can be used to vali-
value in the first coordinate is 1 for all of these). L@} be date the results by using a double-counting argument. More
the subgraph of the original compatibility graph induced bgpecifically, the total number of even-distante, 2", 4)

the vertices corresponding to the codewordsSin We now codes (that is, labeled codes disregarding equivalence) wi
construct a new grapf¥ with one vertex for all cliques of size 10 < n < 14 can be counted in two ways. This is a well-
32 in G, for anyi, and with edges between vertices whenev&nown technique, se¢|[8, Chapter 10] and| [19].

the corresponding codes pairwise fulfill the minimum disean  The orbit-stabilizer theorem gives the number of labeled
criterion. The cliques of siz€”~1° in G give the desired even-distancén,2"°,4) codes as

Table[] shows that there arg7375 equivalence classes
0f5(13,256,4) codes as well ad7513 equivalence classes

codes. The program Cliquer_[16] was used in this work to npl
solve clique instances. Z Aut(C)]’ 9)
Isomorph rejectionthat is, detecting and removing copies cec

of equivalent codes, is carried out via a transformation intvhereC is a set with one code from each equivalence class
a graph [[15] and using the graph isomorphism prograaf such codes.

nauty [17]. The graph considered has two vertices for eachlLet C’ be a set of representatives from all equivalence
coordinate, one for each value of the coordinate. The progralasses of even-distande — 1,275 4) codes andN¢ the
nautycan be asked to give a canonical labeling of the verticesumber of final codes (before isomorph rejection) that are
we use the idea of canonical augmentation [18] and requibtained in the computer search starting from the c6de



Then the total number of labeled codes can also be obtained
as

TABLE IV
AUTOMORPHISMS OF(13, 512, 3) CODES

1 [Aut(O)] # [Aut(C)] # JAut(C)] #
3 2" (n —1)IN¢ (10) 1 782 64 15534 3072 15
|[Aut(C)| 2 4464 96 48 4096 59
cec 3 55 128 6988 6144 5
: 4 11412 192 51 8192 13
and it can be checked wheth@) = (@0). 6 71 256 3245 12288 3
For the classification leading up t(9,16,4) codes, a 8 19902 384 16 16384 7
modified scheme analogous to the thatlin/ [19] was utilized 12 37 512 - 1391 24576 1
SHE : : 16 27406 768 19 32768 1
The utilization of Corollary¥ and Theorel 3 in the three 24 54 1024 475 49152 1
steps from(9, 16, 4) to (12,128, 4) implies that not all even- ié 255%5 215286 1525 98304 1
distance(n, 2"~°,4) codes are classified fdi0 <n < 12. A
more extensive modification of the counting argument, appar
ently requiring a modification of the classification scherse a TABLE V
well, would be necessary to handle these instances; this was AUTOMORPHISMS OF(14, 512, 4) CODES
not considered in the current work. In any case, the double- _[Aut(C)] #_ [Aut(C)] #_JAu(C)]  #
counting argument gave the desired result for the final two 12 % 25 8072 19
S 2 187 128 2300 4096 72
steps, the classification ¢13,256,4) and(14,512,4) codes. 3 8 192 51 6144 8
4 599 256 1429 8192 23
6 31 336 5 12288 10
IV. PROPERTIES OF THECLASSIFIED CODES 8 1167 384 37 16384 3
12 43 512 713 21504 1
In Tables[Il to[V, the orders of the automorphism groups 16 2799 768 17 24576 7
- 21 2 1024 378 32768 7
of the classified codes are shown. 24 28 1344 2 08304 1
32 3878 1536 24 172032 1
TABLE Il 48 38 2048 161 196608 1
AUTOMORPHISMS OF(12, 256, 3) CODES 64 3412 2688 2 1376256 1
[Aut(C)] #  JAut(O)] # JAut(0)] #
1 14179 64 8511 2048 39
2 45267 96 90 3072 3
3 41 128 3114 4096 9 It is known [5] that not all(12,256,3) and (13,512, 3)
4 66449 192 55 6144 4
6 137 256 1247 8192 1 codes can be lengthened (b5,2048,3) codes (and analo-
8 44529 384 39 12288 4 gously for the extended codes with= 4). In [5] two equiv-
ig 32115993 57%% 422 éig% i alence classes i3, 512, 3) codes that cannot be lengthened
>4 89 1024 82 73708 1 were found, in addition to the 117819 equivalence clasﬁs_ th
32 20813 1152 1 147456 1 can be lengthened. Our results show that the two exceptional
48 98 1536 15 codes found in[[5] are the only ones with this property.
Moreover, they have equivalent extensions, so there isqueni
(14,512, 4) code that cannot be lengthened td18, 2048, 4)
TABLE IlI code; the automorphism group of this code has order 768.
AUTOMORPHISMS OF(13, 256, 4) CODES There are 10 equivalence classeq 1, 256, 3) codes that
TAut(C)] F Aut(O)] F JAw(O)] # cannot be lengthened td5,2048,3) codes, and these have
1 841 64 2041 3072 4 3 inequivalent extensions. Codes from 7 of the 10 equiva-
g 273: 123 8% 2282 1 lence classes can be lengthened 18, 512, 3) codes, which
4 5507 192 37 6144 2 must then be equivalent to the codes discovered lin [5]. The
6 35 256 395 8192 1 three equivalence classes (@2, 256, 3) codes that cannot be
8 5034 384 19 12288 2 ; -
2 39 519 161 16384 1 lengthened ta(13,512,3) codes have equivalent extensions;
16 5352 768 18 24576 1
24 52 1024 38 73728 1
32 4043 1536 17 147456 1 TABLE VI
48 50 2048 15 DISTANCE DISTRIBUTIONS OF(12, 256, 3) CODES

The distance distributions of th@2, 256, 3) codes are of

the form

(1,0,0,16 + 1,39 — 1, 48 — 4y, 48 + 4y, 48 + 64,
39 — 6,“7 16 — 4/1/’4M7/'L’ 1- :u)a

where0 < u < 1 (the distance distribution is unique for the
other tabulated parameters). The distribution of the value

amongst these codes is shown in Tdblé VI.

256 #2560 #2560 # 2564 #
0 127 128 3719 172 184 216 7787
32 132 132 15 176 2703 220 2298

60 4 136 269 180 142 224 23319
64 720 140 3 184 1424 228 2091
84 6 144 403 188 313 232 9405

88 37 148 35 192 17343 236 2253
96 1055 152 105 196 1003 240 11324
108 18 156 133 200 2445 244 1746
112 181 160 5149 204 1112 248 3779
116 24 164 a7 208 11370 252 602
124 6 168 209 212 1578 256 120992




the unique(13,256,4) code that cannot be lengthened to a Let E be the set of even words i} that do not belong
(14,512,4) code has an automorphism group of order 384.to C' U D. The size of the se® is 2"~ — |C] — |D| =
It turns out that one detail ir_[5] is incorrect: shortening2™ —1— (2™ —4))M = 3M. Similarly the odd-weight words
the (two) (13,512,3) codes that cannot be lengthened tof F% are divided intoC, D, and E.
(15,2048, 3) codes always leads t612,256,3) codes that We now define
cannot be lengthened {d5, 2048, 3) codes. 1
Switching is a method for obtaining new codes from old (4, B) = WH(av b):ac A,be B,d(a,b) =1},
ones. Seel [21] for some general results on switching perfect. . . .
codes and[[22] for specific results regardif, 2048, 3) vﬁwz:h gives the average number of neighbor®ifior a word
perfect codes. : , — . g
In [5] it is shown that there are at least 21 switching cIaSS(\?\ﬁtl;]efi(uds Ef)St C?u?r?)e(rg ' a?e).ui(i)ruee\ieeryﬁpa"i %g t éiisé rf: o
3 = 14, , C
OT (13’512’-3) codes. As no _n_evv(_13,512,_3) codes were 1 from d andd’, respectivel 'm?)reove@(c ¢’)is1or 3. For
discovered in the current classification, 21 is the exactamm ellc. ¢! T 1ph y;aMA 7'b'|' , h
of switching classes. The number of codes in the switchiljiBe:gS, (ecéf:h) c_orr,ets e(;i;:] m”—i p(;?rssl (liltlgfs) tonr?{ﬁ:e
. c', — , .
classes is 115973, 1240, 561, 6 (2 classes), 4, 3 (6 classgg ed(c.c') = 3 therep areM?él , pogsibilities i choose
2 (6- .classe.s), and 1 -(3 glasses). The, 256, 3) codgs ar ande’ elach corr’es onding to gia(ré d’). The total number
partitioned into 10 switching classes of the following size ¢ J d.d) i thp P—g Fl) M:él ' 6MA
234749, 2509, 331, and 3 (7 classes). of pairs(d,d’) is thenP = (n — 1)M A, 1 + n—3, SO
The sets of codewords affected when switching are calle?D D) - P M(m-1+6(n—-1)(n—5)/6)
i-components Various information r_egard_ing‘-components P, B | D B M(n—1)
of the (15,2048,3) codes is provided in[[22]. For the Since p(D.T) — 1 by the definition ofD, we get that
(12,256, 3) and (13,512, 3) codes, the possible sizes of min- >MNC€PLL, L) = 1 DY n » We g
imal i-components are 16, 32, 64, 96, 112, and 128; and 3%?7@ = n—pD,C) = pD,D) = 3, p(E, D) =
64, 128, 192, 224, and 256, respectively. p(D, E)|D|/|E| = n —1, andp(E, E) = n —p(E, D) = 1.
Last but not least, the classification approach developesl he i , , . n
provides an alternative—and faster, starting from scratch We define theconflict graphof a codeC' with minimum

way for classifying the(15,1024,4) and (16,2048, 4) codes, d?stancei as the graph with one vertex for each word that_ is at
which was first done in [14]. distance at least— 1 from C and with edges between vertices

whose corresponding words are at mutual distance lessdthan
(this is essentially the complement of a compatibility drap
see Sectiop ITI-C). When we are specifically considegmgn-

The examples of(12,256,3) and (13,512,3) codes that gistancecodes, we modify this definition and only consider
cannot be lengthened {@5, 2024, 3) codes lead to the obviousygrds that are at odd distance frafh

guestion whether there—for some or all > 5—are optimal -

codes of lengtf2™ — 4 and2™ — 3 that cannot be lengthened tolN€orem 4. An (n = 2 — 3, M = 2*"~™~4,4) codeC'
perfect codes of length™ — 1. We shall now show that suchiS & triply-shortened extended perfect code if and onlysif it
codes indeed exist for all such. Before the construction, CONflict graph is tripartite, that is, ig-colorable.

we consider a necessary condition for a code to be a triply-  proof: W.lL.o.g., C' is an even code. By the proof of

shortened perfect code; this question is studied in grei@igth | emma[], the conflict graph af has orde3]\/.
in [6], [10]. Assume that” is a triply-shortened extended perfect code.

_The neighborsof a word is the set of words at Hammingas the extended perfect code is self-complementary, it s t
distance 1. Thecomplementof a binary word is obtained fgrm

by adding the all-one vector to the_word. Similarly, the QOOOUQO()lUEOlOUElOOU
complement of a code&”, denoted byC, consists of the C111uU D110U E101 U FO011,
complements of its codewords.

=n—4.

V. LENGTHENING2™ — 4 AND 2™ — 3 CODES

for some (n, M,4) codesD, E, and F with odd weights.
Lemma 1. LetC be an everfn = 2™ —3, M = 22" —™~% 4) FurthermoreD, E, and F must be independent sets in the
code, and letE = {x € F% : d(x,C) > 3, wt(x) ever}, conflict graph ofC, so the conflict graph is tripartite.

E ={xeF?:d(x,C) >3, wt(x) odd. A word of £ has  To prove implication in the opposite direction, we assume
on average one neighbor iA. that the conflict graph of the (even) codgis tripartite with

Proof: By Corollary[1,C has a unigue distance distribu-partSD’ E, and F. Now construct the code

tion A;, especiallyd,,_; =1 andA4,,_3 = (n —1)(n —5)/6. C00U DO1U E10U F11,
Since 4,,_.1 = 1 and there cannot be more than one . . .

codeword at distance — 1 from some codeword, it follows Wh'(.:h IS an even code. Each of the four parts of th|s_ .COde has

that each codeword af’ has exactly one neighbor i@. We Minimum distance at leadt Moreover, from the definition of

define W xacty '9 a conflict graph and the fact thatn E = (), COOUD0O1UE10
D={xeFy} :dx,0)=1}\C has minimum distance at leastFor every wordc € C, there

20 ' is a wordc’ € C such thatd(c,c’) = n — 1, soc ¢ F
Note that|D| = (n — 1) M. (otherwise we would havé(C, F') = 1 which is not possible)



and therebyC'N I = (), which further implies thaCO0U F11  a perfect one-error-correcting code of length= 24 — 1,

has minimum distance at leatt and letDy, ..., D15 be the partition offi? from Lemmal2,
Since D, F, and F' have minimum distance at least 4 anadvhere Dy can be lengthened to an optimal code of length

|D| + |E| + |F| = 3M, where M = 22"~m~4_it follows 13 but not to a perfect code of length 15. Furthermore, let

that|D| = |E| = |F| = M, and all of these codes are optimaldd, ..., A}, be a partition of the even-weight words B’
(n=2m-3, M = 22"~™~% 4) code. Hence every word i into extended perfect codes (for example, take cosets of the
is at distance:— 1 from exactly one other word if", whereby extended Hamming code), and let}, ..., A}, be such a

every word inF has exactly one neighbor iR. Using this partition of the odd-weight words dfi6.
result and the fact, by Lemnia 1, that every wordrirhas on Now consider the code
average one neighbor i U E U F, we get that a word i’ Y Y .
has no neighbors i U E. Consequentlyd(D, F) > 3 and C= U AGl XA X X AT X D
d(E,F)>3,s0D01UF11 and E10 U F11 have minimum 32511 4;=0 (mod 16)
distance at least 4. (@1,....2:)€P
Now we have lengthened to a(2™—1,2%2"~™~2 4) code, of length2™ —4. It is not difficult to show that the cod€, the
which has a (unique) lengthening to an extended perfect camtenstruction of which is a variation of a construction[in][23
3. B has the desired minimum distance, length, and cardinality.
m 9" _m—4 . Since the conflict graph of contains as a subgraph the
Corollary 5. An (n =2 —4,M =2 ,3) code is a ; o . .
triply-shortened perfect code if and only if its conflict gha conflict graph of Do, WhICh 15 n.ot tripartite, the conflict
is tripartite, that is, is3-colorable. graph of C' cannot be tripartite either. It then follows from
' ' Corollary[3 thatC' cannot be lengthened to a perfect one-
Proof: Extend the code (to get even weights only) andrror-correcting code of lengti™ — 1.
the words in the conflict graph (to get odd weights only), and Since the partitionDy, ..., D15 was chosen so that it can
use Theoreril4. m be lengthened to a partitiody, ..., D}, of Fi3, the code
Now we proceed to the construction of codes that cannGt can be lengthened to @™ — 3,22" ~™~3 3) code that
be lengthened to perfect codes. We start with a lemma, whicannot be lengthened further—alternatively, use the toarti
is followed by the main result of this section. Dj,..., D5 instead in[(Il). ]

(11)

G541

Lemma 2. The spaceF3® (resp. F3?) can be partitioned Corollary 6. For m > 4, there are (2™ — 3,22"~™m~4 4)
into 16 copies of(13, 512, 3) codes (resp(12, 256, 3) codes), codes and2™ —2,22"~™~3 4) codes that cannot be length-
where at least one of the codes cannot be lengthened temed to an extended perfect code of lerijth

(15,2048, 3) code.

Proof: We construct a partition afi?, where one of the REFERENCES
codes is a(13,512,3) code C' with a (12,256,3) subcode, [1] F.J. MacWwiliams and N. J. A. Sloan&he Theory of Error-Correcting
neither of which can be extended tq 5, 2048, 3) code; such Codes Amsterdam: North-Holland, 1977.

; ; : ; - [2] M. R. Best and A. E. Brouwer, “The triply shortened bindtgmming
codes exist by [5] and Sectién]lV. With the desired partition code is optimal,Discrete Math, vol. 17, pp. 235-245, 1977.
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