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Abstract

We present a new inner bound for the rate region of the t-stage successive-refinement problem

with side-information. We also present a new upper bound for the rate-distortion function for lossy-

source coding with multiple decoders and side-information. Characterising this rate-distortion function

is a long-standing open problem, and it is widely believed that the tightest upper bound is provided by

Theorem 2 of Heegard and Berger’s paper “Rate Distortion when Side Information may be Absent,”

IEEE Trans. Inform. Theory, 1985. We give a counterexample to Heegard and Berger’s result.

Index Terms

Rate distortion, side-information, successive refinement.

This work was funded by the Australian Research Council Grant DP0880223.

R. Timo, T. Chan and A. Grant are with the Institute for Telecommunications Research, University of South Australia. Email:

{roy.timo, terence.chan, alex.grant}@unisa.edu.au.

August 24, 2021 DRAFT

ar
X

iv
:0

90
1.

17
05

v2
  [

cs
.I

T
] 

 1
8 

A
pr

 2
01

0



2

I. INTRODUCTION

One of the most important and celebrated results in multi-terminal information theory is Wyner

and Ziv’s solution to the problem of lossy source coding with side-information at the decoder [1]

– the Wyner-Ziv problem (fig. 1). The main objective of this problem is to find a computable

characterisation [2, Pg. 259] of the rate-distortion function R(d). This function describes the

smallest rate at which the encoder can compress an iid random sequence X so that the decoder,

which has side-information Y, can produce a replica X̂ of X that satisfies the average distortion

constraint

E

[
1

n

n∑
i=1

δ
(
Xi, X̂i

)]
≤ d , (1)

where δ is a real-valued distortion measure [3] and E[·] is the expectation operation. In [1, Thm.

1], Wyner and Ziv famously showed that

R(d) = min
U

{
I(X;U)− I(U ;Y )

}
, (2)

where the minimization is taken over all choices of an auxiliary random variable U that is jointly

distributed with (X, Y ) and which satisfies the following two properties: (1) U is conditionally

independent of Y given X; and (2) there exists a function X̂(U, Y ) with Eδ(X, X̂(U, Y )) ≤ d.

In this paper, we study the following two extensions of the Wyner-Ziv problem: (1) the

Wyner-Ziv problem with multiple decoders (fig. 3); and (2) the successive-refinement problem

with side-information (fig. 4). A brief history of the literature on these problems is as follows.
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Fig. 1. The Wyner-Ziv Problem: (X, Y) = (X1, Y1), (X2, Y2), . . ., (Xn, Yn) is an iid random sequence emitted by a source

q(x, y) = Pr[X = x, Y = y]. The encoder maps X to an index M , which belongs to a finite set M , at a rate r. Using M and

Y, the decoder is required to generate a replica X̂ = X̂1, X̂2, . . . , X̂n of X to within an average distortion d, according to (1).

The rate-distortion function R(d) is defined as the smallest rate for which such a reconstruction is possible. A single-letter

expression for this function was first given in [1, Thm. 1].
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A. The Wyner-Ziv Problem with t-Decoders

Suppose that the side-information Y in Figure 1 is unreliable in the sense that it may or may

not be available to the decoder. If the encoder does not know a priori when Y is available, then

Wyner and Ziv’s coding argument for (2) fails, and a more sophisticated argument is required to

exploit Y. This observation inspired Kaspi [4] in 1980 (published by Wyner on behalf of Kaspi

in 1994) as well as Heegard and Berger [5] in 1985 to independently study the problem shown

in fig. 2 – the Kaspi/Heegard-Berger problem. As with the Wyner-Ziv problem, the objective

of this problem is to characterise the corresponding rate-distortion function R(d1, d2). That is,

to find the smallest rate such that decoders 1 and 2 can produce replicas X̂1 and X̂2 of X to

within average distortions d1 and d2, respectively. To this end, Heegard and Berger [5, Thm. 1]

showed that1

R(d1, d2) = min
U,W

{
I (X;W ) + I (X;U | Y,W )

}
,

where the minimization is taken over all choices of two auxiliary random variables, U and

W , that are jointly distributed with (X, Y ) and which satisfy the following two properties: (1)

(U,W ) is conditionally independent of Y given X; and (2) there exist functions X̂1(W ) and

X̂2(Y, U,W ) with Eδ(X, X̂1(W )) ≤ d1 and Eδ(X, X̂2(Y, U,W )) ≤ d2, respectively.

The Kaspi/Heegard-Berger problem in Figure 2 was further generalised by Heegard and Berger

in [5, Sec. VII] to the problem shown in Figure 3. There are t-decoders, each with different

side-information, and the objective is to characterise the corresponding rate-distortion function

R(d). Unfortunately, this function has eluded characterisation for all but a few special cases. For

example, Heegard and Berger [5, Thm. 3] have characterised R(d) for stochastically degraded

side-information2; Tian and Diggavi [6], [7] have characterised R(d) for a quadratic Gaussian

source with jointly Gaussian side-information; and Sgarro’s result [8, Thm. 1] subsumes the

corresponding lossless problem. Notwithstanding this difficulty, however, this problem has helped

stimulate a number of important results [4], [6], [7], [9], [10].

1Kaspi’s result, [4, Thm. 2], gives an alternative characterisation of R(d1, d2) that uses one auxiliary random variable.
2The joint probability distribution of (X, Y1, Y2, . . . , Yt) can be manipulated to form the Markov chain X
Yt
Yt−1
· · ·
Y1

without altering R(d). We discuss this problem in detail in Section II-C.

August 24, 2021 DRAFT



4

1

So
ur

ce
q
(x

,
y
) Encoder

f(n) : X n →M
X

Y

r = 1
n

log2 |M|

M

Decoder 1

g
(n)
1 : M → X̂ n

1

Decoder 2

g
(n)
2 : M ×Y n

→ X̂ n
2

X̂1

X̂2

D
es

tin
at

io
n

February 14, 2010 DRAFT

Fig. 2. The Kaspi/Heegard-Berger Problem: The encoder compresses X in a manner suitable for two decoders – one of which

has side-information Y. The rate-distortion function R(d) defines the smallest rate at which decoders 1 and 2 can generate

replicas X̂1 = X̂1,1, X̂1,2, . . . , X̂1,n and X̂2 = X̂2,1, X̂2,2, . . . , X̂2,n of X to within average distortions d1 and d2, respectively.

A single-letter expression for this function was independently given in [4] and [5].

In [5, Thm. 2], Heegard and Berger claimed that a certain functional, R0(d), is an upper

bound for R(d). (The expression for R0(d) is given in equation (4) of Section II; however, this

expression requires notation from Section II.) For twenty-five years, R0(d) has been universally

considered to be the tightest upper bound for R(d) in the literature. In Example 3 of Section II,

we present a counterexample to [5, Thm. 2] that shows R0(d) is not an upper bound for R(d).

The invalidity of [5, Thm. 2] is by no means obvious as it involves a difficult minimization

over (2t − 1)-auxiliary random variables. Indeed, we note that this theorem has been cited with

modest frequency in the literature, and all the while this error appears to have gone unnoticed.

We present a new upper bound for R(d) in Theorem 2 of Section IV.

B. The Successive-Refinement Problem with Side-Information

The aforementioned counterexample led us to study the t-stage (or, t-decoder) successive-

refinement problem shown in Figure 4. The encoder maps X to t indices: M1,M2, . . . ,Mt. It

is required that decoder l uses indices M1 through Ml together with its side-information Yl to

produce a replica X̂l = Xl,1, Xl,2, . . . , Xl,n of X to within an average distortion dl. The objective

of this problem is to characterise the resulting admissible-rate region R(d). That is, to determine

the set of all rate tuples r = (r1, r2, . . . , rt) for which each decoder can reconstruct X to within

August 24, 2021 DRAFT
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Fig. 3. The Wyner-Ziv problem with t-decoders. The encoder compresses X in a manner suitable for t-decoders – each of

which has different side-information. The rate-distortion function R(d), where d = (d1, d2, . . . , dt), defines the smallest rate

at which decoder l, for all l = 1, 2, . . . , t, can generate a replica X̂l of X to within an average distortion dl. This problem is

open for t ≥ 2. We present an upper bound for R(d) in Theorem 2.

its desired distortion level.

Assuming the side-information is stochastically degraded, Steinberg and Merhav [9] charac-

terised R(d1, d2) for t = 2 decoders. Shortly thereafter, Tian and Diggavi [6] extended this

problem to t-decoders and proved the following result.

Proposition 1: If the side-information is stochastically degraded, then R(d) is equal to the

set of all rate tuples r for which there exists t auxiliary random variables U1, U2, . . ., Ut such

that
l∑

k=1

rk ≥
l∑

k=1

I
(
X;Uk

∣∣U1, U2, . . . , Uk−1, Yk
)
,

for all l = 1, 2, . . . , t, where

1) (U1, U2, . . . , Ut) is conditionally independent of (Y1, Y2, . . . , Yt) given X; and

2) there exist t functions X̂l(Ul, Yl), l = 1, 2, . . . , t, with Eδl(X, X̂(Ul, Yl)) ≤ dl.

August 24, 2021 DRAFT



6

1

Source: q(x, y1, y2, . . . , yt)

E
nc

od
er

f
(
n
)
:

X
n
→

M
1
×

M
2
×
··
·×

M
t

X Y1 Y2 Yt

M1

M2

Mt

r1 = 1
n

log2 |M1|

r2 = 1
n

log2 |M2|

rt = 1
n

log2 |Mt|

Decoder 1

g
(n)
1 : M1 ×Y n

1

→ X̂ n
1

Decoder 2

g
(n)
2 : M1 ×M2

×Y n
2 → X̂ n

2

Decoder t

g
(n)
t : ×t

i=1Mi

×Y n
t → X̂ n

t

X̂1

X̂2

X̂t

D
es

tin
at

io
n

February 20, 2010 DRAFT

Fig. 4. The successive-refinement problem with t stages. The encoder compresses X in t-stages. At stage l, decoder l generates

a replica X̂l of X. This problem is open for t ≥ 2. We present an inner bound for the admissible-rate region in Section III

(Theorem 1).

More recently, Tian and Diggavi [7] gave the following non-trivial inner bound for R(d1, d2)

under the assumption that X and Y2 are conditionally independent given Y1 – the scalable side-

information source coding problem. Note, this conditional independence is the reverse of the

stochastic degradedness used in Proposition 1.

Proposition 2: If X and Y2 are conditionally independent given Y1, then a rate pair (r1, r2)

is (d1, d2)-admissible if there exists three auxiliary random variables, U12, U1 and U2, such that

r1 ≥ I
(
X;U1, U12

∣∣Y1)
r1 + r2 ≥ I

(
X;U2, U12

∣∣Y2) + I
(
X;U1

∣∣Y1, U12

)
,

where

1) (U12, U1, U2) is conditionally independent of (Y1, Y2) given X;

2) there exist functions X̂1(U1, Y1) and X̂2(U2, Y2) such that Eδ1(X, X̂1(U1, Y1)) ≤ d1 and

Eδ2(X, X̂2(U2, Y2)) ≤ d2.
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We present a new inner bound for R(d) for the general t-decoder problem with arbitrarily

correlated side-information in Theorem 1 of Section III.

C. Paper Outline & Notation

In Section II, we formally define R(d) and R(d) and give the counterexample to [5, Thm.

2]. In Sections III and IV, we respectively present new achievability results for R(d) and R(d).

We describe a new lossless source coding problem in Section V, and the paper is concluded in

Section VI.

The non-negative real numbers and the natural numbers are written as R+ and N, respectively.

For s, t ∈ N with s ≤ t, we let [s, t] , {s, s + 1, s + 2, . . . , t}. When s = 1, we drop s,

i.e. [t] , {1, 2, . . . , t}. Proper subsets and subsets are identified by ⊂ and ⊆, respectively.

Random variables and random sequences are identified by upper case and bolded uppercase

letters, respectively. For example, X = X1, X2, . . . , Xn denotes the random sequence to be

replicated at the decoders, and Yl = Yl,1, Yl,2, . . . , Yl,n denotes the side-information at decoder

l. The letter U is always used to represent auxiliary random variables. The alphabets of random

variables are identified by matching calligraphic typeface, e.g. X and U are the respective

alphabets of X and U . A generic element of an alphabet is identified by a matching lowercase

letter, e.g. x ∈X and u ∈ U . The Cartesian product operation is denoted by ×, e.g. X ×Y .

The t-fold Cartesian product of a single alphabet/set is identified with a superscript, e.g. X t

and Rt
+. Tuples from product spaces are identified by boldfaced lowercase letters, e.g. x =

(x1, x2, . . . , xn) ∈X n.

For notational convenience, the same letter is used to represent a joint pmf and its marginals,

e.g. if (X, Y ) on X ×Y is defined by p(x, y) , Pr[X = x, Y = y], then p(x) ,
∑

x∈X p(x, y).

The symbol 
 is used to denote Markov Chains, e.g. if (X, Y, Z) on X × Y ×Z is defined

by p(x, y, z) , Pr[X = x, Y = y, Z = z] where

p(x, y, z) =

 p(x, y)p(y, z)/p(y), if p(y) > 0

0, otherwise,

then we write X 
 Y 
 Z [p]. Mutual information and entropy are written in the standard

fashion [3] using I and H , respectively. We sometimes use subscripts for I and H to emphasize

that random variables under consideration are defined by a particular pmf, e.g. if (X, Y ) is

defined by p(x, y) = Pr[X = x, Y = y], then we write Ip(X;Y ).

August 24, 2021 DRAFT
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II. DEFINITIONS & COUNTEREXAMPLE

A. Successive Refinement with Side-Information

Consider Figure 4. Let X , Y1, Y2, . . ., Yt be finite alphabets and set Y ∗ , Y1×Y2×· · ·×Yt.

Let (
X,Y1,Y2, . . . ,Yt

)
,
{(
Xi, Y1,i, Y2,i, . . . , Yt,i)

}n
i=1

denote n (t + 1)-tuples of random variables that are drawn in an iid manner from X × Y ∗

according to a generic pmf q, where

q (x, y1, . . . , yt) , Pr
[
X1 = x1, Y1 = y1, . . . , Yt = yt

]
.

We assume that X = X1, X2, . . . , Xn is known to encoder and Yl = Yl,1, Yl,2, . . . , Yl,n is

known to decoder l. The encoder compresses X with

f (n) : X n →M1 ×M2 × · · · ×Mt ,

where M1, M2, . . ., Mt are finite sets. The resulting t indices

(M1,M2, . . . ,Mt) = f (n) (X)

are sent over channels 1 through t, respectively. The rate of the encoder on channel l (in bits

per source symbol) is given by

κ
(n)
l ,

1

n
log2 |Ml| ,

where |Ml| is the cardinality of Ml.

Consider decoder l. Let X̂l be a finite reconstruction alphabet, and let

δl : X × X̂l → R+

be a per-letter distortion measure. Observe that X̂l and δl can be different to those used at the

other decoders. We assume that δl is normal3 in sense that δl(x, x̂∗(x)) = 0 for all x ∈ X ,

where

x̂∗(x) , argmin
x̂∈X̂

δl(x, x̂) .

3It is possible to remove this assumption and extend the results of this paper to general reconstruction alphabets and per-letter

distortion measures using the procedure given in [11, Sec. 9.1].
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This decoder is required to generate a replica X̂l , X̂l,1, X̂l,2, . . . , X̂l,n of X using

g
(n)
l : M1 ×M2 · · · ×Ml × Y n

l → X̂ n
l ;

that is,

X̂l = g
(n)
l (M1,M2, . . . ,Ml,Yl) .

Finally, the quality of this replica is measured by the average distortion

∆
(n)
l , E

[
1

n

n∑
i=1

δl(Xi, X̂l,i)

]
.

Definition 1 (d-Admissible Rates): Suppose d = (d1, d2, . . . , dt) ∈ Rt
+. A rate tuple r = (r1,

r2, . . ., rt) ∈ Rt
+ is said to be d-admissible if, for arbitrary ε > 0, there exists an nε ∈ N, an

encoder f (nε) and t-decoders g(nε)1 , g(nε)2 , . . ., g(nε)t such that

dl + ε ≥ ∆
(nε)
l , ∀l ∈ [t], and

rl + ε ≥ κ
(nε)
l , ∀l ∈ [t].

We let R(d) denote the set of all d-admissible rate tuples.

We note that Definition 1 matches Tian and Diggavi [6] in that the lth channel (or, refinement)

rate κ(n)l is characterised in an individual (or, incremental) manner. In contrast, Steinberg and Mer-

hav [9] define the lth refinement rate in a cumulative manner, e.g. (1/n) log(|M1||M2| · · · |Ml|).

We also note that R(d) is dependent on the successive-refinement decoding order [7]. That is,

if we interchange decoders (keeping the same side-information and distortion constraints at each

decoder), then R(d) will change.

We conclude this section with a summary of some fundamental properties of R(d). These

properties can all be deduced directly from Definition 1. See [6], [9], [12]–[14] for similar

discussions.

Proposition 3: The region R(d) is completely defined by the pair-wise marginal distribu-

tions of X with each side-information. Let q′ and q′′ be pmfs on X × Y ∗, and let R(d)[q′]

and R(d)[q′′] denote their respective d-admissible rate regions (assuming the same distortion

measures). If q′(x, yl) = q′′(x, yl) for all (x, yl) ∈X ×Yl and l ∈ [t], then R(d)[q′] = R(d)[q′′].

August 24, 2021 DRAFT
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Proposition 4: The region R(d), for every d ∈ Rt
+, is a closed convex subset of Rt

+ that is

uniquely determined by its lower boundary{
r ∈ R(d) : ∀r̃ ∈ R(d), r̃l ≤ rl , ∀l ∈ [t] ⇒ r̃l = rl ∀l ∈ [t]

}
.

Proposition 5: The region R(d) is sum incremental in the sense that rate can always be

transferred from higher-index channels to lower-index channels. If r ∈ R(d), then

R(d) ⊇ L (r) ,

{
r̃ ∈ Rt

+ :
l∑

k=1

r̃k ≥
l∑

k=1

rk ∀l ∈ [t]

}
. (3)

We note in passing that Proposition 5 also holds in a more universal setting. Suppose r ∈ Rt
+.

Consider all combinations of the source distribution, distortion measures and distortion tuple

(e.g., X̃ , Ỹ ∗, q̃, {δ̃l}tl=1 and d̃ ∈ Rt
+) such that the resulting d̃-admissible rate region R(d̃)[q̃]

contains r. The proposition shows that L (r) is an inner bound for every such region. In addition,

it can be shown that L (r) is maximal in the sense that L (r) = R(d̃)[q̃] for some choice of

X̃ , Ỹ ∗, q̃, {δ̃l} and d̃. Therefore, the d-admissibility of r̃ /∈ L (r) cannot be inferred from the

d-admissibility of r without specific consideration of the source distribution, distortion measures

and distortion tuple. For this reason, L (r) can be called the latent admissible rate region implied

by r. See, for example, [14].

We give an inner bound for R(d) in Theorem 1 of Section III. However, before giving this

bound, it is useful to formally define the rate-distortion function R(d) (fig. 3) and then review

Heegard and Berger’s functional R0(d).

B. Rate Distortion with Side-Information at t-decoders

The rate-distortion function R(d) for the problem shown in Figure 3 can be efficiently

recovered from R(d) by restricting the code rate on channels 2 through t to be zero.

Definition 2: The rate-distortion function for lossy source coding with side-information at

t-decoders (fig. 3) is defined by

R(d) , min
{
r ∈ R+ : (r, 0, 0, · · · , 0) ∈ R(d)

}
,

where the indicated minimum exists because R(d) is closed and bounded from below.
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It should be noted that Definition 2 technically permits the use of codes with asymptotically-

vanishing rates on channels 2 through t. That is, the d-admissibility of rates approaching R(d)

from above can be proved using a sequence of codes where εi → 0 and κ
(nεi )

l → 0 for all

l ∈ [2, t]. Such codes, however, are not permitted in the single-channel rate-distortion problem

(fig. 3); we can only use codes with κ
(n)
l = 0 for all l ∈ [2, t]. Despite this subtle difference,

Definition 2 is equivalent to the definition used in [5] because any message transmitted on

channels 2 through t can be transferred4 to channel 1 (see Proposition 5).

As mentioned in Section II-A, R(d) depends on the successive-refinement decoding order.

This dependence, of course, is not shared by R(d). Indeed, the aforementioned rate-transfer

argument can be used show that the decoding order (used to define R(d) in Definition 2) can

be interchanged with any other decoding order without altering R(d).

Using the time-sharing principle, it can be shown that R(d) is convex on Rt
+. This convexity

ensures that R(d) is continuous on the interior of Rt
+ [16, Thm. 10.1]. Moreover, it can also be

verified that R(d) is continuous whenever dl = 0 for some l ∈ [t]; see, for example, [1, Pg. 2].

Proposition 6: The rate-distortion function R(d) is continuous, non-increasing (i.e., R(d) ≤

R(d̃) when dl ≥ d̃l for all l ∈ [t]) and convex on Rt
+.

The following proposition for lossless reconstructions can be obtained as an extension to the

Slepian-Wolf Theorem [17, Thm. 2], a variant of a more general result by Sgarro [8, Thm. 2],

or a special case of Bakshi and Effros [18, Thm. 1].

Proposition 7: If, for every l ∈ [t], X̂l = X and δl satisfies

δl(x, x) = 0 and

δl(x, x̂) > 0, x 6= x̂ ,

then

R(0, 0, . . . , 0) = max
l∈[t]

H(X|Yl) .

To review Heegard and Berger’s work on R(d) for generic distortion tuples, we first need to

define (2t − 1)-auxiliary random variables – one for every non-empty subset of decoders. For

4In general, it is difficult to prove the equivalence of asymptotically-vanishing rates and zero-capacity channels (i.e. “deleting

the channel”) without such a rate-transfer argument. See, for example, [15].
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this purpose, arrange the non-empty subsets of [t] into a list S1,S2, . . . ,S2t−1 (the ordering is

not important). For each j ∈ [2t − 1], let USj
be a finite alphabet. Define U ∗ , US1 ×US2 ×

· · · ×US2t−1
. Let P denote all those pmfs p on U ∗ ×X ×Y ∗ whose (X ×Y ∗)-marginal is

equal to the source distribution q:

p(x, y1, . . . , yt) ,
∑

(u1,u2...,u2t−1)∈U ∗

p(u1, u2 . . . , u2t−1, x, y1, . . . , yt)

= q(x, y1, y2, . . . , yt) .

Each p ∈ P specifies a joint pmf for (2t − 1)-auxiliary random variables. We denote these

variables by US1 , US2 , . . ., US2t−1
, where USj

takes values from USj
. Let A , {US1 , US2 ,

. . ., US2t−1
}, and let

A ⊃
Sj
,
{
USk
∈ A : Sk ⊃ Sj

}
denote those auxiliary random variables associated with supersets of Sj .

Let P(d) denote the set of all p ∈P for which the following two properties are satisfied:

(P1) p factors to form the Markov chain:(
US1 , US2 , . . . , US2t−1

)

X 


(
Y1, Y2, . . . , Yt

)
[p] ; and

(P2) for every decoder l ∈ [t] there exists a function X̂l(Yl, U{l},A
⊃
{l}) with

Epδl
(
X, X̂l

(
Yl, U{l},A

⊃
{l}
))
≤ dl .

Heegard and Berger claimed [5, Thm. 2] that the functional

R0(d) = min
p∈P(d)

2t−1∑
j=1

max
l∈Sj

Ip
(
X;USj

∣∣A ⊃
Sj
, Yl
)

(4)

is an upper bound for R(d) for all finite alphabets US1 , US2 , . . ., US2t−1
such that P(d) is

non-empty. In the next two examples, we confirm that R0(d) is an upper bound for R(d) when

there is one or two decoders (t = 1 or 2); however, in the third example we show that R0(d) is

not an upper bound for R(d) when there is three or more decoders (t ≥ 3).

For brevity, we drop set notation for each auxiliary random in the following three examples.

For example, we write U1, U12 and U123 in place of U{1}, U{1,2} and U{1,2,3}, respectively.
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Example 1: If t = 1, then (4) reduces to

R0(d1) = min
p∈P(d1)

Ip
(
X;U1

∣∣Y1)
= min

p∈P(d1)

{
Ip
(
X;U1

)
− Ip

(
U1;Y1

)}
, (5)

where the equality in (5) follows from the chain rule for mutual information and the Markov

chain U1 
X 
 Y1 [q]. If the cardinality of US1 is limited to |US1| ≤ |X | + 1, then the right

hand side of (5) reduces to the Wyner-Ziv formula (2). �

Example 2: If t = 2, then (4) reduces to

R0(d1, d2) = min
p∈P(d1,d2)

{
max
l∈{1,2}

Ip
(
X;U12

∣∣Yl)+ Ip
(
X;U1

∣∣Y1, U12

)
+ Ip

(
X;U2

∣∣Y2, U12

)}
. (6)

One may invoke the Support Lemma [2, Pg. 310] to show that imposing the cardinality constraints

|U{1,2}| ≤ |X |+ 5, |U{1}| ≤ |X | |U{1,2}|+ 1, and |U{2}| ≤ |X | |U{1,2}|+ 1, does not alter the

minimization in (6). It can be shown, see Theorem 2, that R0(d1, d2) ≥ R(d1, d2). �

Example 3: If t = 3 and |Y1| = |Y2| = |Y3| = 1, then (4) reduces to

R0(d1, d2, d3) = min
p∈P(d1,d2,d3)

{
Ip
(
X;U123

)
+ Ip

(
X;U12

∣∣U123

)
+ Ip

(
X;U13

∣∣U123

)
+ Ip

(
X;U23

∣∣U123

)
+ Ip

(
X;U1

∣∣U12, U13, U123

)
+ Ip

(
X;U2

∣∣U12, U23, U123

)
+ Ip

(
X;U3

∣∣U13, U23, U123

)}
. (7)

Suppose that X = X̂1 = X̂2 = X̂3 = {0, 1, 2}, and let X be uniform on X . Finally, set

δl(x, x̂) =

 0, if x = x̂

1, otherwise,
(8)

for l = 1, 2, 3 and require that d1 = d2 = d3 = 0.

We now choose the following auxiliary random variables. Set

U{1,2} = U{1,3} = U{2,3} = {0, 1, 2} , and (9a)∣∣U{1}∣∣ =
∣∣U{2}∣∣ =

∣∣U{3}∣∣ =
∣∣U{1,2,3}∣∣ = 1 . (9b)

Let C be independent of X and uniform on {0, 1, 2}. Using modulo-3 arithmetic, choose

U12 = C, U13 = X + C, and U23 = X + 2C . (9c)
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Note, X can be written as a function of any pair of U12, U13 and U23, and the Markov chain

(U1, U2, U3, U12, U13, U23, U123) 
 X 
 (Y1, Y2, Y3) is trivially satisfied. It follows that these

auxiliary random variables are defined by some p′ ∈P(0, 0, 0).

From (9b), it follows that (7) is bound from above by

R0(0, 0, 0) ≤ Ip′ (X;U12) + Ip′ (X;U13) + Ip′ (X;U23) . (10)

Furthermore, every mutual information term on the right hand side of (10) is zero from (9c).

Since R0(0, 0, 0) is non-negative, it follows that R0(0, 0, 0) = 0; however, from Proposition 7

we have that R(0, 0, 0) = H(X) > 0. This counterexample demonstrates that R0(d) is not an

upper bound for R(d). �

It appears that this counterexample does not invalidate any results in the rate-distortion

literature. In particular, those papers that cite [5, Thm. 3] are either concerned with the special

case of 2 decoders or stochastically degraded side-information. See, for example, [4], [6], [7],

[9], [10]. The case of stochastically degraded side-information is discussed in the next section.

When t = 3, we can force (4) to become an upper bound for R(d1, d2, d3) by modifying the

set P(d1, d2, d3) on which the minimization takes place. Namely, if we define

P∗(d1, d2, d3) ,

{
p ∈P(d1, d2, d3) :

U13 
 (X,U123) 
 U12 [p]

U23 
 (X,U123) 
 (U12, U13) [p]

}
, (11)

then it can be shown that

R∗0(d1, d2, d3) , min
p∈P∗(d1,d2,d3)

7∑
j=1

max
l∈Sj

Ip
(
X;USj

∣∣A ⊃
Sj
, Yl
)

is an upper bound for R(d1, d2, d3). The additional Markov chains in (11) are sufficient to verify,

via classical random coding techniques, the admissibility of rates approaching R∗0(d1, d2, d3)

from above. In general, this approach can be extended to t ≥ 3 decoders by carefully choosing

appropriate Markov chains for each of the (2t − 1)-auxiliary random variables5. For example,

if USj
is chosen to be degenerate (constant) whenever Sj is not of the form [l, t] for some

l ∈ [t], then one obtains appropriate Markov chains and a valid upper bound for R(d). In

5In Section IV, we will take a slightly more general approach wherein the mutual information terms in (4) – rather than the

minimization set P(d) – are modified to produce an upper bound for R(d). We would like to thank Dr. Chao Tian as well as

an anonymous reviewer for suggesting this more general approach.
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fact, this particular choice of auxiliary random variables is optimal when the side-information

is stochastically degraded.

C. Rate-Distortion with Degraded Side-Information

The side-information, as defined by q, is said to be degraded if X 
 Yt 
 Yt−1 
 · · ·
 Y1 [q]

forms a Markov chain. The side-information q is said to be stochastically degraded if there

exists a pmf q′ on X × Y ∗ where X 
 Yt 
 Yt−1 
 · · · 
 Y1 [q′] forms a Markov chain and

q(x, yl) = q′(x, yl) for every (x, yl) ∈ X × Yl and l ∈ [t]. If R(d)[q] and R(d)[q′] are the

respective d-admissible rate regions for q and q′, then this condition and Proposition 3 ensures

that R(d)[q] = R(d)[q′]. Thus, it is sufficient to consider degraded side-information.

When the side-information is degraded, R(d) can be characterised using t auxiliary random

variables. These variables are U[1,t], U[2,t], . . ., U{t}, and the corresponding subsets of decoders

are [1, t], [2, t], . . ., {t}. To formally define these variables using the notation of Section II-B,

choose |USj
| = 1 whenever Sj 6= [l, t] for some l ∈ [t], and let Pdeg(d) denote the resultant

set of p ∈P that satisfy properties (P1) and (P2).

Proposition 8: If X 
 Yt 
 Yt−1 
 · · ·
 Y1 [q] forms a Markov chain, then

R(d) = min
p∈Pdeg(d)

t∑
l=1

Ip
(
X;U[l,t]

∣∣Yl, U[1,t], U[2,t], . . . , U[l−1,t]
)
, (12)

where the cardinality of each set U[l,t] is bound by

∣∣U[l,t]

∣∣ ≤ ∣∣X ∣∣ l−1∏
l′=1

∣∣U[l′,t]

∣∣− 1 + t− l +
(t− l + 1)(t− l + 2)

2
.

The converse theorem for this result can be found on [5, Pgs. 733-734]. Note, however, that the

use of R0(d) in [5, Thm. 3] is incorrect. For example, the side-information used in Example ??

is trivially degraded.

Finally, we note that the Markov chain X
Yt
Yt−1
· · ·
Y1 [q] appears to be essential for the

converse theorem [5, Pgs. 733-734]. In contrast, the coding theorem that proves the admissibility

of rates approaching (12) is less dependent on this assumption. Indeed, this Markov chain can

be disregarded provided there is an appropriate increase in rate. For example, the functional

min
p∈Pdeg(d)

t∑
l=1

max
l′∈[l,t]

Ip
(
X;U[l,t]

∣∣Yl′ , U[1,t], . . . , U[l−1,t]
)
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is an upper bound for R(d). We will extend this idea in the next section to give an inner bound

for R(d).

III. MAIN RESULTS FOR R(d)

A. An Inner Bound for R(d)

We now present a new inner bound for R(d). This bound will require an auxiliary random

variable for each non-empty subset of decoders. For this purpose, arrange the non-empty subsets

of [t] into an ordered list v = S1,S2, . . . ,S2t−1 with decreasing cardinality. That is, |Sj| ≥ |Sk|

whenever j ≤ k. Let V denote the set of all such lists.

Fix v ∈ V . Let US1 , US2 , . . ., US2t−1
be finite alphabets and define U ∗

v , US1 × US2 × · · ·

× US2t−1
. Let Pv denote the set of all distributions on U ∗

v ×X ×Y ∗ whose (X ×Y ∗)-marginal

is equal to q; that is, p
(
x, y1, . . . , yy

)
= q
(
x, y1, . . . , yy

)
.

As before, each p ∈Pv specifies a joint distribution for (2t − 1)-auxiliary random variables.

We denote these variables by USj
, j = 1, 2, . . . , 2t − 1, where USj

takes values from USj
. Let

A , {US1 , US2 , . . . , US2t−1
}, and define

A −
Sj
,
{
USi
∈ A : i < j, Si + Sj

}
and

A ⊃
Sj
,
{
USi
∈ A : Si ⊃ Sj

}
.

We note that the union of A −
Sj

and A ⊃
Sj

is the set of all those auxiliary random variables

associated with subsets that appear before Sj in v. Let us further define

A +
Sj
,
{
USk
∈ A : k > j, Sk ∩Sj 6= ∅

}
,

A †
Sj
,

USi
∈ A −

Sj
:
∃USk

∈ A +
Sj
,

Si ∩Sk 6= ∅

 and

A ‡
Sj ,l
,
{
USi
∈ A †

Sj
: Si 3 l

}
when l ∈ Sj .

Finally, let Pv(d) denote the set of all p ∈ Pv satisfying properties (P1) and (P2) from

Section (II-B).

Our inner bound for R(d) will be built using the following functional. For each subset Sj ⊆ [t]

and l ∈ [t] such that Sj ∩ [l] 6= ∅, let

Φp

(
Sj, l

)
, Ip

(
X,A †

Sj
;USj

∣∣A ⊃
Sj

)
− min

l′∈Sj∩[l]
Ip
(
USj

; A ‡
Sj ,l′ , Yl′

∣∣A ⊃
Sj

)
. (13)
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Finally, for each p ∈Pv(d), define6

Rp,v(d) ,

r ∈ Rt
+ :

l∑
i=1

ri ≥
∑

Sj ⊆ [t],

Sj ∩ [l] 6= ∅

Φp

(
Sj, l

)
, ∀l ∈ [t]

 ,

and let

Rin(d) , co

⋃
v∈V

⋃
p∈Pv(d)

Rp,v(d)

 ,

where co(·) denotes the closure of the convex hull.

Theorem 1: If d ∈ Rt
+, then every rate tuple within Rin(d) is d-admissible; that is,

Rin(d) ⊆ R(d) .

Our proof of this result is given in Appendix A.

B. Stochastically Degraded Side-Information

Assuming that the side-information is stochastically degraded, Tian and Diggavi gave a single-

letter characterisation of R(d) in [6, Thm. 1] (see Proposition 1). We now show that the forward

(coding) part of this result can be obtained as a special case of Theorem 1.

We can assume that X 
 Yt 
 Yt−1 
 · · · 
 Y1 [q] forms a Markov chain. Recall Pdeg(d)

from Section II-C. Each p ∈ Pdeg specifies a joint distribution for t non-degenerate auxiliary

random variables. These variables are U[1,t], U[2,t], . . ., U{t} and the associated subsets are [1, t],

[2, t], . . ., {t}, respectively. We can ignore the degenerate random variables in A , so that for all

l ∈ [1, t] we have

A ⊃
[l,t] =

{
U[1,t], U[2,t], . . . , U[l−1,t]

}
, (14a)

A †
[l,t] = ∅ and (14b)

A ‡
[l,t],l′ = ∅ ∀l′ ∈ [l, t]. (14c)

6One can invoke the Support Lemma [2, Pg.310] to upper bound the cardinality of each set USj . Note, these bounds will

depend on the particular choice of list v.
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On combining the Markov chain (U[1,t], U[2,t], . . . , U{t}) 
 X 
 (Y1, Y2, . . . , Yt) [p] with the

Markov chain X 
 Yt 
 Yt−1 
 · · ·
 Y1 [p], we obtain the following Markov chains:

U[l,t] 

(
A ⊃

[l,t], Yl′
)


 Yl [p], ∀ l′ ∈ [l, t] . (15)

On substituting (14a), (14b) and (14c) into (13), we obtain

Φp([l, t], j) = Ip

(
X;U[l,t]

∣∣∣A ⊃
[l,t]

)
− min

l′∈[l,j]
Ip

(
U[l,t];Yl′

∣∣∣A ⊃
[l,t]

)
. (16)

The second term on the right hand side of (16) can be rewritten as

min
l′∈[l,j]

Ip

(
U[l,t];Yl′

∣∣∣A ⊃
[l,t]

)
= Hp

(
U[l,t]

∣∣∣A ⊃
[l,t]

)
− max

l′∈[l,j]
Hp

(
U[l,t]

∣∣∣A ⊃
[l,t], Yl′

)
= Hp

(
U[l,t]

∣∣∣A ⊃
[l,t]

)
− max

l′∈[l,j]
Hp

(
U[l,t]

∣∣∣A ⊃
[l,t], Yl′ , Yl

)
(17)

= Hp

(
U[l,t]

∣∣∣A ⊃
[l,t]

)
−H

(
U[l,t]

∣∣∣A ⊃
[l,t], Yl

)
(18)

= Ip

(
U[l,t];Yl

∣∣∣A ⊃
[l,t]

)
, (19)

where (17) follows from the Markov chain (15), and (18) follows since

Hp

(
U[l,t]

∣∣∣A ⊃
[l,t], Yl

)
≥ Hp

(
U[l,t]

∣∣∣A ⊃
[l,t], Yl′ , Yl

)
, ∀l′ ∈ [l, j] .

On combining (16) and (19), we get

Φp([l, t], j) = Ip

(
X;U[l,t]

∣∣∣A ⊃
[l,t]

)
− Ip

(
U[l,t];Yl

∣∣∣A ⊃
[l,t]

)
= Ip

(
X,A ⊃

[l,t];U[l,t]

)
− Ip

(
U[l,t];Yl,A

⊃
[l,t]

)
. (20)

From (14a) and since U[l,t] 
 (X,A ⊃
[l,t]) 
Yl [p] forms a Markov chain, (20) further simplifies to

Φp([l, t], j) = Ip

(
X;U[l,t]

∣∣∣U[1,t], U[2,t], . . . , U[l−1,t], Yl

)
. (21)

Finally, substituting (21) into the definition of Rp,v(d) proves the d-admissibility of every rate

tuple r ∈ Rt
+ for which there exists some p ∈Pdeg(d) with

j∑
i=1

ri ≥
j∑
l=1

Ip

(
X;U[l,t]

∣∣∣U[1,t], U[2,t], . . . , U[l−1,t], Yl

)
,

for j = 1, 2, . . . , t.
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C. Side-Information Scalable Source Coding

If t = 2 and the side-information is degraded (X 
 Y2 
 Y1[q]), then an optimal compression

strategy should satisfy the distortion constrains of decoder 2 after the distortion constraints of

decoder 1 have been satisfied. See, for example, Section II-C. However, this ordering may not be

optimal when the side-information is not degraded. This observation led Tian and Diggavi in [7,

Thm. 1] (see Proposition 2) to propose and study the side-information scalable source coding

problem. In the context of this paper, this problem is a special case of the successive-refinement

problem where X 
 Y1 
 Y2 [q] is assumed to form a Markov chain. We now show that this

result can be obtained as a special case of Theorem 1.

Choose the list v as follows: S1 = {1, 2}, S2 = {1} and S3 = {2}. For each p ∈Pv(d1, d2),

we have the chains X
Y1 
Y2 [p] and (U12, U1, U2)
X
 (Y1, Y2), therefore (13) simplifies to

Φp({1, 2}, 1) = Ip(X;U12)− Ip(U12;Y1)

= Ip(X;U12|Y1)

Φp({1, 2}, 2) = Ip(X;U12)− min
l′∈{1,2}

Ip(U12;Yl′)

= Ip(X;U12)− Ip(U12;Y2)

= Ip(X;U12|Y2)

Φp({1}, 1) = Ip(X;U1|U12)− Ip(U1;Y1|U12)

= Ip(X;U1|U12, Y1)

Φp({1}, 2) = Ip(X;U1|U12, Y1)

Φp({2}, 2) = Ip(X;U2|U12)− Ip(U2;Y2|U12)

= Ip(X;U2|U12, Y2) .

On substituting these equalities into the definition of Rv,p(d1, d2), it can been seen from Theo-

rem 1 that any rate pair (r1, r2) satisfying

r1 ≥ Φp({1, 2}, 1) + Φp({1}, 1)

= Ip(X;U12|Y1) + Ip(X;U1|U12, Y1)

= Ip(X;U1, U12|Y1) ,
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and

r1 + r2 ≥ Φp({1, 2}, 2) + Φp({1}, 2) + Φp({2}, 2)

= Ip(X;U12|Y2) + Ip(X;U1|U12, Y1) + Ip(X;U2|U12, Y2)

= Ip(X;U2, U12|Y2) + Ip(X;U1|U12, Y1)

for some p ∈ Pv(d1, d2) is d-admissible. This condition matches the desired inner bound [7,

Thm. 1] (Proposition 2).

IV. MAIN RESULTS FOR THE WYNER-ZIV PROBLEM WITH t-DECODERS

A. An Upper Bound for R(d)

Recall Figure 3 and the rate-distortion function R(d).

Theorem 2:

R(d) ≤ min
v ∈ V ,

p ∈Pv(d)

2t−1∑
j=1

[
Ip
(
X,A †

Sj
;USj

∣∣A ⊃
Sj

)
− min

l′∈Sj

Ip
(
USj

; A ‡
Sj ,l′ , Yl′ |A

⊃
Sj

)]
. (22)

We note the following special cases where this upper bound known to be tight. For one decoder,

the right hand side of (22) gives the Wyner-Ziv formula (2). For t-decoders and degraded side-

information, the right hand side of (22) is equal to the right hand side of (12). (Set |USj
| = 1

whenever Sj 6= [l, t] for some l ∈ [t], and following the reasoning given in Section III-B.) In

fact, this upper bound is tight whenever X 
 Yα1 
 Yα2 
 · · · 
 Yαt , where αl, l = 1, 2, . . . , t

each take unique values from [t] (see Remark 2). Most importantly, however, this bound avoids

those problems suffered by R0(d) in Example 3.

B. Proof of Theorem 2

The following lemma will be useful for the proof of Theorem 2.

Lemma 1: Suppose p ∈Pv(d), and recall the functional Φp(Sj, l) defined in (13). For every

Sj ⊆ [t] and l, l′ ∈ [t] such that Sj ∩ [l] 6= ∅ and Sj ∩ [l′] 6= ∅, we have:

(i) Φp(Sj, l) ≤ Φp(Sj, l
′) when l′ > l, and

(ii) Φp(Sj, l) ≥ 0.
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Proof: The fact that Φp(Sj, l) ≤ Φp(Sj, l
′) follows because Sj ∩ [l] ⊆ Sj ∩ [l′]. To see

that Φp(Sj, l) ≥ 0, consider the following. Let

l̃ , argmin
i∈Sj∩[l]

Ip
(
USj

; A ‡
Sj ,i

, Yi
∣∣A ⊃

Sj

)
,

then

Φp

(
Sj, l

)
≡ Ip

(
X,A †

Sj
;USj

∣∣A ⊃
Sj

)
− Ip

(
USj

; A ‡
Sj ,l̃

, Yl̃
∣∣A ⊃

Sj

)
= Ip

(
X,A †

Sj
, Yl̃;USj

∣∣A ⊃
Sj

)
− Ip

(
USj

; A ‡
Sj ,l̃

, Yl̃
∣∣A ⊃

Sj

)
(23)

= Ip
(
X,A ⊃

Sj
,A †

Sj
, Yl̃;USj

)
− Ip

(
USj

; A ⊃
Sj
,A ‡

Sj ,l̃
, Yl̃
)

(24)

≥ 0 , (25)

where (23) follows because Yl̃ 
 (X,A ⊃
Sj
,A †

Sj
) 
 USj

[p] forms a Markov chain, (24) follows

from the chain rule for mutual information, and (25) follows from A †
Sj
⊇ A ‡

Sj ,l̃
.

We now prove Theorem 2. First, note that the minimum on the right hand side of (22) exists.

Suppose that v and p achieve this minimum, and choose any r ∈ R+ such that

r ≥
2t−1∑
j=1

[
Ip
(
X,A †

Sj
;USj

∣∣A ⊃
Sj

)
− min

l′∈Sj

Ip
(
USj

; A ‡
Sj ,l′ , Yl′|A

⊃
Sj

)]
. (26)

In the following, we prove the d-admissibility of r using Theorem 1.

Consider the successive refinement problem shown in Figure 4, the corresponding d-admissible

rate region R(d) (defined in Section II-A), and the inner bound Rin(d) given in Theorem 1.

In particular, consider the region Rp,v(d), where v and p achieve the aforementioned minimum.

Define the t-tuple r̃ , (r, 0, 0, . . . , 0). It is clear that r ≥ R(d) iff r̃ ∈ R(d), therefore the result

will follow if it can be shown that r̃ ∈ Rp,v(d).

For every l ∈ [t], we have

l∑
i=1

r̃i ≥
2t−1∑
j=1

[
Ip
(
X,A †

Sj
;USj

∣∣A ⊃
Sj

)
− min

l′∈Sj

Ip
(
USj

; A ‡
Sj ,l′ , Yl′ |A

⊃
Sj

)]
=
∑

Sj⊆[t]

Φp

(
Sj, t

)
(27)

≥
∑

Sj ⊆ [t],

Sj ∩ [l] 6= ∅

Φp

(
Sj, t

)
(28)
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≥
∑

Sj ⊆ [t],

Sj ∩ [l] 6= ∅

Φp

(
Sj, l

)
, (29)

where (27) follows from (13), and Lemma 1 gives (28) and (29). From Theorem 1 we have that

r̃ ∈ Rv,p(d) and r̃ ∈ R(d), therefore r ≥ R(d). �

Remark 1: Theorem 2 is a consequence of the inner bound Rin(d) given in Theorem 1.

Like R(d), Rin(d) depends on the successive-refinement decoding order: if we interchange the

decoders (keeping the same side-information and distortion constraints at each decoder), then

the resulting inner bound Rin(d) will change. One might, therefore, be inspired to pursue a

stronger version of Theorem 2 wherein the choice of successive-refinement order is optimized.

Note, however, that the proof of Theorem 2 requires only the bound for r1 + r2 + · · · + rt in

Rp,v(d), and this bound is independent of the successive-refinement decoding order.

V. LOSSLESS SOURCE CODING WITH PRIVATE MESSAGES

In Proposition 7, we reviewed a broadcast problem wherein X is reconstructed losslessly at

every decoder. This lossless problem can be easily solved as a variant of existing work by Slepian

and Wolf [17, Thm. 2]; Sgarro [8, Thm. 2]; or Bakshi and Effros [18, Thm. 1]. In this section,

we consider a more complex scenario wherein each decoder is required to decode one part of

X losslessly.

Let W1, W2, . . ., Wt be finite alphabets, and consider the problem shown Figure 5. In the nomen-

clature of previous sections, set X , W1 × W2 × · · · × Wt, X , (W1, W2, . . . , Wt), and let

(W1, W2, . . ., Wt, Y1, W2, . . ., Wt) be drawn iid according to q(w1, w2, . . . , wt, y1, y2, . . . , yt).

It is required that decoder l reconstructs Wl with vanishing probability of symbol error. To this

end, set X̂l , Wl and define the average symbol error probability at decoder l to be

P l
e ,

1

n

n∑
i=1

P l
e,i

where P l
e,i , E[δl(W1,i,W2,i, . . . ,Wt,i, Ŵl,i)],

δl
(
w1, w2, . . . , wt, ŵl

)
,

 0, if wl = ŵl

1, otherwise,
(30)
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Fig. 5. Lossless Source Coding with Private Messages. The encoder compresses (W1,W2, . . . ,Wt) to (M1,M2, . . . ,Mt).

It is required that decoder l uses M1 through Ml together with Yl to produce a lossless replica Ŵl of Wl. In Theorem 3, we

give an explicit characterisation of the R(0, 0, . . . , 0) for degraded side-information (W1, W2, . . . , Wt) 
 Yt 
 Yt−1 
 · · ·

 Y1.

defines the probability of error for the ith-symbol.

A computable characterisation of R(0, 0, . . . , 0) has yet to be found. A direct application of

Theorem 1 yields an inner bound for R(0, 0, . . . , 0); however, it is not clear if this bound is

tight. The next theorem shows that this bound is tight when the side-information is degraded.

Although this result is a special case of Proposition 1, we state it here in an explicit form –

without auxiliary random variables – to highlight the generality of this problem.

Theorem 3: If (W1, W2, . . . , Wt) 
 Yt 
 Yt−1 
 · · · 
 Y1 [q] and δl is given by (30), then

R(0, 0, . . . , 0) =

{
r ∈ Rt

+ :
l∑

k=1

rk ≥
l∑

k=1

H
(
Wk

∣∣W1,W2, . . . ,Wk−1, Yk
)}

The lossless one-channel version of Theorem 3 follows immediately.

Corollary 3.1: If (W1, W2, . . . , Wt) 
 Yt 
 Yt−1 
 · · · 
 Y1 [q] and δl is given by (30),

then

R(0, 0, . . . , 0) =
t∑
l=1

H
(
Wl

∣∣W1,W2, . . . ,Wl−1, Yl
)
.

August 24, 2021 DRAFT



24

Remark 2: The lossless problems considered in this section are equivalent to the concept

of deterministic distortion measures [7], [19], wherein certain functions {φi(X)} of the source

X are to be reconstructed with vanishing symbol error probability at the receivers. If t = 2,

Z1 = φ1(X) is to be reconstructed at receiver 1, Z2 = φ2(X) is to be reconstructed at receiver

2, and the side-information is reversibly degraded (i.e. X 
 Y1 
 Y2 [q] forms a Markov chain),

then Tian and Diggavi have shown that [7, Cor. 4]

R(0, 0) = H(Z2|Y2) +H(Z1|Y1, Z2) .

This result is consistent with Corollary 3.1 in the following sense. The achievability of Corol-

lary 3.1 follows from Theorem 2 by setting USj
= Wl whenever Sj = [l, t] for some l ∈ [t] and

USj
= constant otherwise. The bound in Theorem 2 is equal to the rate-distortion function R(d)

for every order of degraded side-information. For example, suppose that X 
 Yαt 
 Yαt−1 
 · · ·


 Yα1 [q] forms a Markov chain, where αl, l = 1, 2, . . . , t each take unique values from [t]. This

markov condition is simply a relabelling of the degradedness considered in Section II-C, so it is

appropriate to choose the t non-trivial auxiliary random variables to be U[α1,αt], U[α2,αt], . . ., U{αt},

where [αi, αt] = {αi, αi+1, . . . , αt}. Thus, we can set U[αi,αt] = Wαi to restate Corollary 3.1 for

an arbitrary order of degraded side-information.

Tian and Diggavi also characterise the successive-refinement region R(0, 0) in [7, Thm. 4]

for t = 2 and reversibly degraded side-information. This result is not captured by Theorem 3,

and it would be interesting to see if a similar result can be obtained for t-receivers and arbitrary

ordering of degraded side-information.

Proof: The forward (coding) part follows from by setting Ul = Wl in Proposition 1. The

converse theorem requires some work and is given below. For brevity, we use the following

notation: M≤l , {M1,M2, . . . ,Ml}, W≤l , {W1,W2, . . . ,Wl} and Y≤l , {Y1,Y2, . . . ,Yl}.
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By definition, we have
l∑

k=1

(
rk + ε

)
≥ 1

n

l∑
k=1

log2 |Ml| (31)

≥ 1

n
H
(
M≤l

)
(32)

≥ 1

n
I
(
W≤l,Y≤l;M≤l

)
(33)

=
1

n

l∑
k=1

I
(
Wk,Yk;M≤l

∣∣W≤k−1,Y≤k−1
)

(34)

≥ 1

n

l∑
k=1

I
(
Wk;M≤l

∣∣W≤k−1,Y≤k
)

(35)

=
1

n

l∑
k=1

[
H
(
Wk

∣∣W≤k−1,Y≤k
)
−H

(
Wk

∣∣M≤l,W≤k−1,Y≤k
)]

(36)

=
1

n

l∑
k=1

n∑
i=1

[
H
(
Wk,i

∣∣W≤k−1,Y≤k,Wk,1,Wk,2, . . . ,Wk,i−1
)

−H
(
Wk,i

∣∣M≤l,W≤k−1,Y≤k,Wk,1,Wk,2, . . . ,Wk,i−1
)]

(37)

≥
l∑

k=1

H
(
Wk

∣∣W1,W2, . . . ,Wk−1, Yk
)
− 1

n

l∑
k=1

n∑
i=1

H
(
Wk,i

∣∣Ŵk,i

)
(38)

≥
l∑

k=1

H
(
Wk

∣∣W1,W2, . . . ,Wk−1, Yk
)
− 1

n

l∑
k=1

n∑
i=1

[
h
(
P k
e,i

)
+ P k

e,i log2 |Wk|
]

(39)

≥
l∑

k=1

H
(
Wk

∣∣W1,W2, . . . ,Wk−1, Yk
)
−

l∑
k=1

[
h
(
P k
e

)
+ P k

e log2 |Wk|
]

(40)

≥
t∑
l=1

H
(
Wl

∣∣W1,W2, . . . ,Wl−1, Yl
)
−
[
l h(ε) + ε log2 |W1| |W2| · · · |Wl|

]
, (41)

where (31) through (37) follow from standard Shannon inequalities; (38) follows because (W1,

. . ., Wt, Y1, . . ., Yt) is iid, Wk 
 (W1, W2, . . ., Wk−1, Yk) 
 (Y1, Y2, . . ., Yk−1) forms a

Markov chain; conditioning reduces entropy and Ŵk,i is a function of M1,M2, . . . ,Mk and Yk;

(39) follows from Fano’s Inequality where h(·) is the binary entropy function [3]; (40) follows

from the concavity of h(·) and Jensen’s inequality; (41) follows by assuming ε is small (i.e.

0 < P k
e < ε < 1/2). Finally, l h(ε) + ε log2 |W1| |W2| · · · |Wl| → 0 as ε→ 0.
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VI. CONCLUSION

We studied the rate-distortion function R(d) and the rate region R(d) for the problems shown

in Figures 3 and 4, respectively. In [5, Thm. 2], Heegard and Berger claimed that a certain

functional, R0(d), is an upper bound for R(d). By way of a counterexample, we demonstrated

that R0(d) is not an upper bound for R(d). In Theorem 2, we gave a new upper bound for

R(d). This bound followed from a new inner bound for R(d) that we presented in Theorem 1.

Finally, we gave an explicit characterisation of the rates needed to losslessly reconstruct private

messages at each decoder (assuming degraded side-information) in Theorem 3.
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APPENDIX A

PROOF OF THEOREM 1

Fix v ∈ V and p ∈Pv(d) arbitrarily. It is sufficient to prove the d-admissibility of rate tuples

within Rp,v(d). (The d-admissibility of tuples within Rin(d) follows by standard time-sharing

arguments.) Our proof uses a random-coding argument that is based on the concept of ε-letter

typical sequences7. This argument employs (2t−1)-randomly generate codebooks; one codebook

for every non-empty subset of receivers. The encoder selects a codeword from each codebook

and sends some information (the bin indices of each codeword) to the decoders. Each decoder

tries to recover those codewords where it is a member of the corresponding subset. To help

elucidate the main ideas of the proof, we present the special case of four decoders as a series

of examples in parallel to the main proof.

For notational convenience, we impose the natural ordering on the elements of each subset

Sj , and we let Sj[i] denote the ith-smallest element of Sj . For example, if Sj = {1, 3, 5}, then

Sj[1] = 1, Sj[2] = 3 and Sj[3] = 5.

7We have reviewed the relevant ε-letter typical results in Appendix B for convenience; a more detailed treatment can be found

in [20].
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A. Code Construction

For each subset Sj , construct an |Sj|-layer nested codebook in the following manner. For

each vector-valued index kSj
, (kSj ,1, kSj ,2, . . . , kSj ,|Sj |, k

′
Sj

), where

kSj ,i = 1, 2, . . . , 2nRSj ,i , i = 1, 2, . . . , |Sj| ,

k′Sj
= 1, 2, . . . , 2

nR′Sj ,

generate a length n codeword uSj
(kSj

) ∈ U n
Sj

by selecting n symbols from USj
in an iid

manner using p(uSj
) – the USj

-marginal of p. The values of RSj ,i and R′Sj
will be defined

shortly.

Example 4 (4-Decoders Code Construction): Choose the list v as follows: S1 = {1, 2, 3, 4},

S2 = {1, 2, 3}, S3 = {1, 2, 4}, S4 = {1, 3, 4}, S5 = {2, 3, 4}, S6 = {1, 2}, S7 = {1, 3},

S8 = {1, 4}, S9 = {2, 3}, S10 = {2, 4}, S11 = {3, 4}, S12 = {1}, S13 = {2}, S14 = {3} and

S15 = {4}. Figure 6 shows the 3-layer nested codebook associated with the subset {1, 2, 3}.

In the first layer, there are 2nR123,1 bins (labelled with the index k123,1) each of which contain

2n(R
′
123+R123,2+R123,3) codewords. The set of codewords inside a particular layer one bin define

the second layer of the codebook. Specifically, each layer one index k123,1 ∈ [2nR123,1 ] identifies

2nR123,2 layer two bins. These bins are labelled with the index k123,2, and each bin contains

2n(R
′
123+R123,3) codewords. Similarly, each pair k123,1 ∈ [2nR123,1 ] and k123,2 ∈ [2nR123,2 ] identifies

2nR123,3 layer three bins. There are 2n(R
′
123) codewords in each one of the layer three bins.

B. Encoding

Encoding proceeds sequentially over (2t − 1)-stages using ε-letter typical-set encoding rules.

For this purpose, choose 0 < ε0 < ε1 < · · · < ε2t to be arbitrarily small real numbers. The

encoder is given x ∈X n. At encoding stage j it selects the codebook with label Sj and looks

for an index vector kSj
where the corresponding codeword uSj

(kSj
) is εj-letter typical with x

and

u⊃Sj
,
{
uSi

(kSi
) : i < j, Si ⊃ Sj

}
, and (42a)

u†Sj
,
{
uSi

(kSi
) : i < j, Si + Sj, ∃Si′ , i

′ > j, Si′ ∩Sj 6= ∅, Si ∩Si′ 6= ∅
}
. (42b)
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Fig. 6. 4-Decoders Example: Figure shows the nested bin structure for the codebook S2 = {1, 2, 3}.

If successful8, the encoder sends the bin index kSj ,i over channel Sj[i] for every i = 1, 2, . . . , |Sj|.

If unsuccessful, the encoder sends kSj ,i = 1 over each of these channels.

Note the correspondence between the sets u⊃Sj
and u†Sj

and the sets of auxiliary random

variables U ⊃
Sj

and U †
Sj

, respectively. Finally, note that when |Sj| ≥ 3, then u⊃Sj
∪ u†Sj

=

{uSi
(kSi

) : i < j}; that is, the encoder chooses uSj
(kSj

) to be jointly typical with every

codeword it has previously selected. The situation is more complex when |Sj| ≤ 2.

Example 5 (4-Decoders Encoding): Table I lists the fifteen encoding sets u⊃Sj
and u†Sj

and

Figure 7 depicts the index to channel assignments for the four decoder example. In stage 1,

8If there are two-or-more such codewords, we assume that the encoder selects one codeword arbitrarily and sends the

corresponding indices.
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Subset Sj u⊃Sj
, û⊃Sj

u†Sj
û‡Sj ,l

S1 = {1, 2, 3, 4} ∅ ∅ ∅
S2 = {1, 2, 3} {uS1} ∅ ∅

S3 = {1, 2, 4} {uS1} {uS2}
û‡S3,1

= {uS2}
û‡S3,2

= {uS2}
û‡S3,4

= ∅

S4 = {1, 3, 4} {uS1} {uS2 ,uS3}
û‡S4,1

= {uS2 ,uS3}
û‡S4,3

= {uS2}
û‡S4,4

= {uS3}

S5 = {2, 3, 4} {uS1} {uS2 ,uS3 ,uS4}
û‡S5,2

= {uS2 ,uS3}
û‡S5,3

= {uS2 ,uS4}
û‡S5,4

= {uS3 ,uS4}

S6 = {1, 2} {uS1 ,uS2 ,uS3} {uS4 ,uS5}
û‡S6,1

= {uS4}
û‡S6,2

= {uS5}

S7 = {1, 3} {uS1 ,uS2 ,uS4} {uS3 ,uS5 ,uS6}
û‡S7,1

= {uS3 ,uS6}
û‡S7,3

= {uS5}

S8 = {1, 4} {uS1 ,uS3 ,uS4} {uS2 ,uS5 ,uS6 ,uS7}
û‡S8,1

= {uS2 ,uS6 ,uS7}
û‡S8,4

= {uS5}

S9 = {2, 3} {uS1 ,uS2 ,uS5}
{uS3 ,uS4 ,uS6 ,uS7 ,

uS8}
û‡S9,2

= {uS3 ,uS6}
û‡S9,3

= {uS4 ,uS7}

S10 = {2, 4} {uS1 ,uS3 ,uS5}
{uS2 ,uS4 ,uS6 ,uS7 ,

uS8 ,uS9}
û‡S10,2

= {uS2 ,uS6 ,uS9}
û‡S10,4

= {uS4 ,uS8}

S11 = {3, 4} {uS1 ,uS4 ,uS5}
{u‡S2

,uS3 ,uS7 ,uS8 ,

u‡S9
,uS10}

û‡S11,3
= {uS2 ,uS7 ,uS9}

û‡S11,4
= {uS3 ,uS8 ,uS10}

S12 = {1} {uS1 ,uS2 ,uS3 ,uS4 ,

uS6 ,uS7 ,uS8}
∅ ∅

S13 = {2} {uS1 ,uS2 ,uS3 ,uS5 ,

uS6 ,uS9 ,uS10}
∅ ∅

S14 = {3} {uS1 ,uS2 ,uS4 ,uS5 ,

uS7 ,uS9 ,uS11}
∅ ∅

S15 = {4} {uS1 ,uS3 ,uS4 ,uS5 ,

uS8 ,uS10 ,uS11}
∅ ∅

TABLE I

THE TABLE LISTS THE FIFTEEN ENCODING SETS u⊃Sj
AND u†Sj

AS WELL AS THE DECODING SETS û⊃Sj
AND û‡Sj

FOR THE

FOUR DECODER EXAMPLE.
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X
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Y4
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X̂2

X̂3

X̂4
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kS1,2, kS2,2, kS3,2, kS5,1

kS6,2, kS9,1, kS10,1, kS13,1

kS1,3, kS2,3, kS4,2, kS5,2

kS7,2, kS9,2, kS11,1, kS14,1

kS1,4, kS3,3, kS4,3, kS5,3

kS8,2, kS10,2, kS11,2, kS15,1

March 9, 2010 DRAFT

Fig. 7. 4-Decoders Example: Assignment of bin indices to channels. Subsets are S1 = {1, 2, 3, 4}, S2 = {1, 2, 3}, S3 =

{1, 2, 4}, S4 = {1, 3, 4}, S5 = {2, 3, 4}, S6 = {1, 2}, S7 = {1, 3}, S8 = {1, 4}, S9 = {2, 3}, S10 = {2, 4}, S11 = {3, 4},
S12 = {1}, S13 = {2}, S14 = {3} and S15 = {4}. Bin index kSj ,i is sent over channel Sj [i].

the encoder considers subset S1 and looks for an index vector kS1 such that the corresponding

codeword uS1(kS1) is jointly typical with x. (The sets u⊃S1
and u†S1

are empty – see Table I.) The

resulting indices kS1,1, kS1,2, kS1,3 and kS1,4 are sent over channels 1, 2, 3 and 4, respectively.

In the eleventh encoding stage, takes the codebook for S11 = {3, 4} and looks for a index vector

kS11 = (kS11,1, kS11,2, k
′
S11

) such that the corresponding codeword uS11(kS11) is jointly typical

with x, uS1(kS1) through to uS5(kS5) and uS7(kS7) through to uS10(kS10). (Note, that this

codeword need not be jointly typical with uS6(kS6).) The resulting indices kS11,1, kS11,2 are

sent over channels 3 and 4, respectively.

C. Decoding

Consider decoder l. Like the encoding procedure, decoder l forms its reconstruction X̂l of

X using (2t − 1)-decoding stages. Recall, this decoder recovers every bin index transmitted on

channels 1 through l; it does not have access to any index transmitted on channels l+ 1 through

t.
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In stage j decoder l considers subset Sj . If l /∈ Sj , then it does nothing and moves to

decoding stage j + 1. If l ∈ Sj , then the decoder forms a reconstruction uSj
(k̂Sj

) of the

codeword uSj
(kSj

), which was selected by the encoder, using the following procedure. Note,

decoder l will have reconstructed the following codewords in decoding stages 1 through j − 1:

û⊃Sj
,
{
uSi

(k̂Si
) : i < j, Si ⊃ Sj

}
, and (43a)

û‡Sj ,l
,
{
uSi

(k̂Si
) : i < j, Si 3 l, Si + Sj

}
. (43b)

Note the correspondence between the decoding sets in (43) and the sets of auxiliary random

variables A ⊃
Sj

and A ‡
Sj ,l

.

To form its reconstruction uSj
(k̂Sj

), decoder l takes the bin indices{
kSj ,i; i = 1, 2, . . . , |[l] ∩Sj|

}
from channels 1 through l. It then looks for an index vector k̃Sj

, with k̃Sj ,i = kSj ,i for all

i = 1, 2, . . . , |[l] ∩Sj|, such that the corresponding codeword u(k̃Sj
) is εj+1-letter typical with

yl as well as the codewords in (43) that were decoded in the first (j − 1)-stages:(
û⊃Sj

, û‡Sj ,l
, uSj

(k̃Sj
),yl

)
∈ T (n)

εj+1
(p). (44)

Note that there are

exp2

n
R′Sj

+

|Sj |∑
i=|[l]∩Sj |+1

RSj ,i


codewords in the bin specified by the indices {kSj ,i : i = 1, 2, . . . , |[l]∩Sj|}. If one or more of

these codewords satisfy this typicality condition, then decoder l selects one arbitrarily and sets

k̂Sj
= k̃Sj

. If there is no such codeword, it sets each of the unknown indices equal to 1.

Example 6 (4-Decoders Decoding): Consider the second decoder (l = 2). In stage one, take

kS1,1 (from channel 1) and kS1,2 (from channel 2) and look for a vector k̃S1 = (kS1,1, kS1,2,

k̃S1,3, k̃
′
S1

) such that the corresponding codeword uS1(k̃S1) is typical with y2. Similarly, in stage

nine take kS9,1 (from channel 2) and look for k̃S9 = (kS9,1, k̃S9,2, k̃
′
S9

) such that the correspond-

ing codeword uS9(k̃S9) is jointly typical with y2 and uS1(k̂S1), uS2(k̂S2), uS3(k̂S3), uS5(k̂S5)

and uS6(k̂S6), which were decoded during stages one through six. Finally, in stage thirteen take

kS13,1 (from channel 2) and look for k̃S13 = (kS12,1, k̃
′
S13

) such that the corresponding codeword

uS13(k̃S6) is jointly typical with y2 and uS1(k̂S1), uS2(k̂S2), uS3(k̂S3), uS5(k̂S5), uS6(k̂S6),

uS9(k̂S9) and uS10(k̂S10), which were decoded during stages one through ten.
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D. Error Analysis: Encoding

The coding scheme is based on ε-letter typical set encoding and decoding techniques. As such,

the distortion criteria at each decoder will not be satisfied when (x,y1,y2, . . . ,yt) /∈ T (n)
ε0 (p).

We denote this event by E1. From Lemma 2, the probability of this event may be bound by

Pr [E1] ≤ δ1 (n, ε0, µ(p)) ,

where δ1 (n, ε0, µ(p))→0 as n→∞.

Assume E1 does not occur. Let E2,Sj
denote the event that the encoder fails to find an εj-letter

typical codeword during stage j of encoding procedure given that it found an εi-letter typical

codeword for every stage i ∈ [j−1]. From Lemma 3 and the inequality (1−x)t ≤ e−tx we have

Pr
[
E2,Sj

]
=

[
1− Pr

[(
u⊃Sj

,u†Sj
,USj

(kSj
),x
)
∈ T (n)

εj+1
(p)
]]2n

(
R′Sj

+
∑|Sj |
i=1

RSj ,i

)

≤ exp

(
−
(
1− δ2

)
2
n

(
R′Sj

+
∑|Sj |
i=1 RSj ,i

)
· 2
−n
(
I
(
A ⊃Sj

,A †Sj
,X;USj

)
+2εjH(USj)

))
(45)

where we have written the function δ2 (n, εj−1, εj, µ(p)) as δ2 for compact representation.

Let E2 denote the event where a typical codeword cannot be found at any one of the encoding

stages. By the union bound we get the following upper bound for Pr[E2]:

Pr [E2] ≤
2t−1∑
j=1

exp

[
−
(
1− δ2

)
2
n

(
R′Sj

+
∑|Sj |
i=1 RSj ,i

)
· 2
−n
[
I
(
A ⊃Sj

,A †Sj
,X;USj

)
+2εjH(USj)

]]
.

Finally, note that if

R′Sj
+

|Sj |∑
i=1

RSj ,i > I
(
A ⊃

Sj
,A †

Sj
, X;USj

)
+ 2εjH

(
USj

)
(46)

for every j = 1, 2, . . . , 2t − 1, then Pr[E2]→ 0 as n→∞.

E. Error Analysis: Decoding

Assume E1 and E2 do not occur. Consider decoder l and a non-trivial decoding stage j where

Sj 3 l. Let Dl,Sj
be the event that it cannot find a unique codeword that satisfies the typicality

condition (44) given that at every stage i < j (where Si 3 l) it found a unique codeword u(k̂Si
)

satisfying this typicality condition.
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By the Markov lemma (Lemma 4), the probability that the codewords ûSj
(kSj

), û⊃Sj
, u‡Sj ,l

are not jointly typical with yl is small for large n:

Pr
[
Yl /∈ T (n)

εj+1

(
p | û⊃Sj

, û‡Sj ,l
uSj

(kSj
),x
)]
≤ δ2 (n, εj, εj+1, µ(p)) .

An upper bound for the probability that there exists one or more codewords uSj
(k̃Sj

) 6=

uSj
(kSj

), which satisfy (44), is

Pr

⋃
Kj

{
û⊃Sj

, û‡Sj ,l
,yl,uSj

(k̃Sj
)
}
∈ T (n)

εj+1
(p)


< exp2

[
n
(
R′Sj

+

|Sj |∑
i=|[l]∩Sj |+1

RSj ,i − I
(
USj

; A ⊃
Sj
,A ‡

Sj ,l
, Yl
)

+ 2εj+1H
(
USj

))]
, (47)

where we have taken the union over

Kj =
{
k̃Sj
6= kSj

, {k̃Sj ,i = kSj ,i}
|{1,2,...,l}∩Sj |
i=1

}
.

Applying the union bound we get

Pr
[
Dl,Sj

]
< δ2 + exp2

[
n

(
R′Sj

+

Sj∑
i=|[l]∩Sj |

RSj ,i

)
− n

(
I
(
USj

; A ⊃
Sj
,A ‡

Sj ,l
, Yl

)
− 2εj+1H(USj

)

)]
.

Thus, if

R′Sj
+

|Sj |∑
i=|[l]∩Sj |+1

RSj ,i < I
(
USj

; A ⊃
Sj
,A ‡

Sj ,l
, Yl)− 2εj+1H

(
USj

))
(48)

then Pr[Dl,Sj
]→ 0 as n→∞.

F. Rate Constraints

Consider decoder l and any subset Sj where l ∈ Sj . On combining the rate constraints (46)

and (48) we get
|S∩[l]|∑
i=1

RS ,i > I
(
X,A ⊃

Sj
,A †

Sj
;US

)
− I
(
USj

; A ⊃
Sj
,A ‡

Sj ,l
, Yl
)

= I
(
X,A †

Sj
;US

∣∣A ⊃
Sj

)
− I
(
USj

; A ‡
Sj ,l

, Yl
∣∣A ⊃

Sj

)
. (49)

Since εj and εj+1 may be selected arbitrarily small, we can ignore the 2(εj + εj+1)H(Sj) term.
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Consider the other decoders in [l] ∩Sj . Since RSj ,i ≥ 0 for all i, it must be true that

|[l]∩S |∑
i=1

RSj ,i > max
l̃∈[l]∩Sj

[
I
(
X,A †

Sj
;USj

∣∣A ⊃
Sj

)
− I
(
USj

; A ‡
Sj ,l̃

, Yl̃
∣∣A ⊃

Sj

)]
= I
(
X,A †

Sj
;USj

∣∣A ⊃
Sj

)
− min

l̃∈[l]∩Sj

I
(
USj

; A ‡
Sj ,l̃

, Yl̃
∣∣A ⊃

Sj

)
; (50)

that is, the rate constraint for decoder l must be at least as large as the rate constraint for decoder

l̃ (for every l̃ ∈ [l] ∩Sj).

The rate constraint (50) is valid for any set Sj where l ∈ Sj . For such subsets, define

l∗ , maxi∈[l]∩Sj
i. Since l∗ ∈ Sj and [l∗] ∩Sj = [l] ∩Sj , it follows that (50) is also valid for

any set Sj where [l] ∩Sj 6= ∅.

Finally, consider the sum rate
∑l

i=1Ri for the first l channels. By construction, we have that

l∑
i=1

Ri =
∑

Sj⊆[t]

Sj∩[l] 6=∅

|[l]∩Sj |∑
i=1

RSj ,i . (51)

Substituting the rate constraint (50) into (51) yields the desired result.

APPENDIX B

ε-LETTER TYPICALITY

For ε ≥ 0, a sequence xn ∈ X n is said to be ε-letter typical with respect to a discrete

memoryless source (X , pX) if∣∣∣∣ 1nN(a|xn)− pX(a)

∣∣∣∣ ≤ ε · pX(a) ∀a ∈X ,

where N(a|xn) is the number of times the letter a occurs in the sequence xn. The collection of

all ε-letter typical sequences is denoted by T (n)
ε (pX).

In a similar fashion, a pair of sequences xn and yn are said to jointly ε-letter typical with

respect to a discrete memoryless two source (X × Y , pXY ) if∣∣∣∣ 1nN(a, b|xn, yn)− pXY (a, b)

∣∣∣∣ ≤ ε · pXY (a, b) ∀(a, b) ∈X × Y ,

where N(a, b|xn, yn) is the number of times the pair of letters (a, b) occurs in the pair (xn, yn).

The collection of all joint ε-typical sequence pairs is denoted by T (n)
ε (pXY ).

Given (X × Y , pXY ) and xn ∈X n, the set

T (n)
ε (pXY | xn) =

{
yn : (xn, yn) ∈ T (n)

ε (pXY )
}
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is called the set of conditionally ε-letter typical sequences.

Let µ(X , pX) = min{pX(x) : x ∈ support(pX)} and define

δ1 (n, ε, µ(pX)) = 2|X | · e−nε2µ(pX).

Note, δ
(
n, ε, µ(pX)

)
→ 0 as n→∞.

Lemma 2 (Theorem 1.1, [20]): Suppose Xn is emitted by a discrete memoryless source (X , pX).

If 0 < ε ≤ µ(pX), then

1− δ1 (n, ε, µ(pX)) ≤ Pr
[
Xn ∈ T (n)

ε (pX)
]
≤ 1 .

Now consider a discrete memoryless two-source (X × Y , pXY ), let

δ2
(
n, ε1, ε2, µ(pXY )

)
= 2|X ||Y | · e−n

(ε2−ε1)2
1+ε1

µ(pXY )
,

and note that δ2
(
n, ε1, ε2, µ(pX)

)
→ 0 as n→∞.

Lemma 3 (Theorem 1.3, [20]): Suppose Y n is emitted by (Y , pY ) where pY is equal to the

Y -marginal of pXY . If 0 < ε1 < ε2 ≤ µ(pXY ) and xn ∈ T (n)
ε1 (pX), then

(1− δ2 (n, ε1, ε2, µ(pXY ))) 2−n(I(X;Y )+2ε2H(Y ))

≤ Pr
[
Y n ∈ T (n)

ε2
(pXY | xn)

]
≤ 2−n(I(X;Y )−2ε2H(Y )).

Finally, a direct consequence of Lemma 3 for Markov sources is the following result.

Lemma 4 (Markov Lemma [20]): Suppose (Xn, Y n, Zn) is emitted by a discrete memoryless

three-source (X ×Y ×Z , pXY Z) where X
Y 
Z. If 0 < ε1 < ε2 ≤ µ(pXY Z) and (xn, yn) ∈

T
(n)
ε1 (pXY ), then

Pr
[
Zn ∈ T (n)

ε2
(pXY Z | xn, yn) | Y n = yn

]
= Pr

[
Zn ∈ T (n)

ε2
(pXY Z | xn, yn) | Xn = xn, Y n = yn

]
≥ 1− δ2 (n, ε1, ε2, µ(pXY Z)) .
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