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Coding for High-Density Recording on a 1-D
Granular Magnetic Medium

Arya Mazumdar, Alexander Barg, Navin Kashyap

Abstract—In terabit-density magnetic recording, several bits
of data can be replaced by the values of their neighbors in the
storage medium. As a result, errors in the medium are dependent
on each other and also on the data written. We consider a simple
one-dimensional combinatorial model of this medium. In our
model, we assume a setting where binary data is sequentially
written on the medium and a bit can erroneously change to
the immediately preceding value. We derive several properties
of codes that correct this type of errors, focusing on boundson
their cardinality.

We also define a probabilistic finite-state channel model of the
storage medium, and derive lower and upper estimates of its
capacity. A lower bound is derived by evaluating the symmetric
capacity of the channel, i.e., the maximum transmission rate
under the assumption of the uniform input distribution of th e
channel. An upper bound is found by showing that the original
channel is a stochastic degradation of another, related channel
model whose capacity we can compute explicitly.

I. I NTRODUCTION

One of the challenges in achieving ultra-high-density mag-
netic recording lies in accounting for the effect of the granular-
ity of the recording medium. Conventional magnetic recording
media are composed of fundamental magnetizable units, called
“grains”, that do not have a fixed size or shape. Information is
stored on the medium through a write mechanism that sets the
magnetic polarities of the grains [8]. There are two types of
magnetic polarity, and each grain can be magnetized to take
on exactly one of these two polarities. Thus, each grain can
store at most one bit of information. Clearly, if the boundaries
of the grains were known to the write mechanism and the
readback mechanism, then it would be theoretically possible
to achieve a storage capacity of one information bit per grain.

There are two bottlenecks to achieving the one-bit-per-
grain storage capacity: (i) the existing write (and readback)
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technologies are not capable of setting (and reading back) the
magnetic polarities of a region as small as a single grain; and
(ii) the write and readback mechanisms are typically unaware
of the shapes and positions of the grains in the medium. In
current magnetic recording technologies, writing is generally
done by dividing the magnetic medium into regularly-spaced
bit cells, and writing one bit of data into each of these bit
cells. The bit cells are much larger in size compared to the
grains, so that each bit cell comprises many grains. Writinga
bit into a bit cell is then a matter of uniformly magnetizing all
the grains within the cell; the effect of grains straddling the
boundary between two bit cells can be neglected.

Recently, Wood et al. [9] proposed a new write mechanism,
that can magnetize areas commensurate to the size of individ-
ual grains. With such a write mechanism and a corresponding
readback mechanism in place, the remaining bottleneck to
achieving magnetic recording densities as high as 10 Terabits
per square inch is that the write and readback mechanisms do
not have precise knowledge of the grain boundaries.

The authors of [9] went on to consider the information loss
caused by the lack of knowledge of grain boundaries. A sample
simulation considered a two-dimensional magnetic medium
composed of 100 randomly shaped grains, and subdivided into
a 14×14 grid of uniformly-sized bit cells. Bits were written in
raster-scan fashion onto the grid. At thekth step of the write
process, if any grain had more than a 30% (in area) overlap
with the bit cell to be written at that step, then that grain was
given the polarity value of thekth bit. The polarity of a grain
could switch multiple times before settling on a final value.
With a readback mechanism that reported the polarity value
at the centre of each bit cell, their simulation recorded the
proportion of bits that were reported with the wrong polarity.
A similar simulation, but with a slightly different assumption
on the underlying grain distribution, was reported in [6].

The authors of [9] also considered a simple channel that
modeled a one-dimensional granular medium, and computed
a lower bound on the capacity of the channel. The one-
dimensional medium was divided into regularly-spaced bit
cells, and it was assumed that grain boundaries coincided with
bit cell boundaries, and that the grains had randomly selected
lengths equal to 1, 2 or 3 bit cells. The polarity of a grain is
set by the last bit to be written within it. The effect of this is
that the last bit to be written in the grainoverwritesall bits
previously written within the same grain.

In this paper, we restrict ourselves to the one-dimensional
case, and consider a combinatorial error model that corre-
sponds to the granular medium described above. The medium
comprisesn bit cells, indexed by the integers from 1 ton. The
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granular structure of the medium is described by an increasing
sequence of positive integers,1 = j1 < j2 < · · · < js ≤ n,
whereji denotes the index of the bit cell at which theith grain
begins. Note that the length of theith grain isℓi = ji+1 − ji
(we setjs+1 = n+ 1 to be consistent).

The effect of a given grain pattern on ann-bit block of
binary datax = (x1, x2, . . . , xn) to be written onto the
medium is represented by an operatorφ that acts uponx to
produceφ(x) = (y1, y2, . . . , yn), which is the binary vector
that is actually recorded on the medium. For notational ease,
our model assumes that it is thefirst bit to be written within
a grain that sets the polarity of the grain. Thus, for indices
j within the ith grain, i.e., for ji ≤ j < ji+1, we have
yj = xji . This means that theith grain introduces an error
in the recorded data (i.e., a situation whereyj 6= xj ) precisely
when xj 6= xji for some j satisfying ji < j < ji+1. In
particular, grains of length 1 do not introduce any errors.

As an example, consider a medium divided into 15 bit cells,
with a granular structure consisting of grains of lengths 1 and
2 only, with the length-2 grains beginning at indices 3, 6, 8
and 13. The grains in the medium would transform the vector
x = (100001000010000) to (100001100010000) and the vec-
tor x = (000101011100010) to φ(x) = (000001111100000).
Note thatφ(x) 6= x iff a 01 or a 10 falls within some grain.
In particular,φ(φ(x)) = φ(x) for anyx.

In this paper, we consider only the case of granular media
composed of grains of length at most 2. Even this simplest pos-
sible case brings out the complexity of the problem of coding
to correct errors caused by this combinatorial model. Most of
the results we present can be extended straightforwardly tothe
case of magnetic media with a more general grain distribution.

Note that in a medium with grains of length at most 2, it
is precisely the length-2 grains that can cause bit errors. We
denote byΦn,t the set of operatorsφ corresponding to all such
media withn bit cells and at mostt grains of length equal to 2.
Then, forx ∈ {0, 1}n, we letΦn,t(x) = {φ(x) : φ ∈ Φn,t},
and call two vectorsx1,x2 ∈ {0, 1}n t-confusableif

Φn,t(x1) ∩ Φn,t(x2) 6= ∅.
A binary codeC of lengthn is said to correctt grain errors
if no two distinct vectorsx1,x2 ∈ C are t-confusable.

In Sections II and III of this paper, we study properties
of t-grain-correcting codes. We derive several bounds on the
maximum size of a length-n binary code that correctst
grain errors. Our lower bounds are based on either explicit
constructions or existence arguments, while our upper bounds
are based on the count of runs of identical symbols in a vector
or on a clique partition of the “confusability graph” of the
space{0, 1}n. We also briefly consider list-decodable grain-
correcting codes, and derive a lower bound on the maximum
cardinality of such codes by means of a probabilistic argument.

In Section IV, we consider a scenario in which the locations
of the grains are available to either the encoder or the decoder
of the data, and derive estimates of the size of codes in this
setting.

In Section V, we consider a probabilistic channel model
that corresponds to the one-dimensional combinatorial model
of errors discussed above, calling it the “grains channel”.We

again confine ourselves to length-2 grains. Our objective isto
estimate the capacity of the channel. For a lower bound on
the capacity we restrict our attention to uniformly distributed,
independent input letters which corresponds to the case of
symmetric information rate(symmetric capacity or SIR) of
the channel. We are able to find an exact expression for the
SIR as an infinite series which gives a lower bound on the
true capacity. To estimate capacity from above, we relate the
grains channel to an erasure channel in which erasures never
occur in adjacent symbols, and are otherwise independent. We
explicitly compute the capacity of this erasure channel, and
observe that the grains channel is a stochastically degraded
version of the erasure channel. The capacity of the erasure
channel is thus an upper bound on the capacity of the grains
channel.

We would like to acknowledge a concurrent independent
paper by Iyengar, Siegel, and Wolf [4] which contains some
of our results from Section V. The authors of [4] considered
a more general channel model that includes our probabilistic
model of the grains channel as a particular case. Their paper
contains results that cover our Propositions 11 and 18, as well
as our Theorem 13. However, a major contribution of ours that
cannot be found in [4] is our Theorem 16, in which we give
an exact expression for the SIR of the grains channel.

Throughout the paper,h(x) = −x log2 x− (1−x) log2(1−
x) denotes the binary entropy function.

II. CONSTRUCTIONS OF GRAIN-CORRECTING CODES

As observed above, when the length of the grains does
not exceed 2, bit errors are caused only by length-2 grains.
Furthermore, it can only be the second bit within such a grain
that can be in error. Thus, any code that can correctt bit-flip
errors (equivalently, a code with minimum Hamming distance
at least 2t+1) is at-grain-correcting code. In particular,t-
grain-correcting codes whose parameters meet the Gilbert-
Varshamov bound (see e.g. [7, p. 97]) are guaranteed to exist.
But we can sometimes do better than conventional error-
correcting codes by taking advantage of the special nature of
grain errors.

Observe that the first bit to be written onto the medium can
never be in error in the grain model. So, we can construct
t-grain-correcting codesC of lengthn as follows: take a code
C′ of length n − 1 that can correctt bit-flip errors, and set
C = (0|C′) ∪ (1|C′). Here, for b ∈ {0, 1}, (b|C′) refers to
the set of vectors obtained by prefixingb to each codevector
of C′. For example, whenn = 2m, we can takeC′ to be
the binary Hamming code of length2m − 1, yielding a 1-
grain-correcting codeC of size |C| = 2n/n. Note that2n/n
exceeds the sphere-packing (Hamming) upper bound, i.e., is
greater than the cardinality of the optimal binary single-error-
correcting code of lengthn = 2m.

More generally, again whenn is a power of 2, we can take
C′ to be a binary BCH code of lengthn − 1 that correctst
bit-flip errors. The above construction then yields at-grain-
correcting codeC of lengthn and size|C| ≥ 2n/nt.

We next describe a completely different, and remarkably
simple, construction of a length-n grain-correcting code that
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correctsanynumber of grain errors. For even integersn = 2m,
m ≥ 1, define the codeRn ⊂ {0, 1}n as the set

{(x1x2 . . . x2m) ∈ {0, 1}n : xi−1 = xi for all even indicesi}.
(1)

Note that when a codevector fromRn is written onto a
medium composed of grains of length at most 2, the bits at
even coordinates remain unchanged. Indeed, a bit at an even
index i could be in error only if a grain starts at indexi− 1,
causing the bit at indexi − 1 to overwrite the bit at index
i. However, the two bits are identical by construction. Thus,
Rn is a code of size2n/2 that corrects an arbitrary number of
grain errors. This construction can be extended to odd lengths
n = 2m+ 1, m ≥ 1, as follows:Rn = (0|R2m) ∪ (1|R2m).

III. B OUNDS ON THE SIZE OF GRAIN-CORRECTING CODES

Let M(n, t) denote the maximum size of a length-n binary
code that ist-grain-correcting. The constructions of the pre-
vious section show thatM(n, t) ≥ 2⌈n/2⌉ for any n and t,
andM(n, t) ≥ 2n/nt whenn is a power of 2. In an attempt
to determine the tightness of these lower bounds, we derive
below some upper bounds onM(n, t).

A. Upper Bounds Based on Counts of Runs

Denote byr(x) the number of runs (maximal subvectors
of consecutive identical symbols) in the vectorx ∈ {0, 1}n.
As remarked in Section I, a single grain can changex to a
different vector if and only if the grain straddles the boundary
between two successive runs inx. Thus, |Φn,1(x)| = 1 +
(r(x) − 1) = r(x). For t ≥ 2, the number|Φn,t(x)| is not
readily expressible in a closed form. Nevertheless, we have
the following lemma.

Lemma 1

|Φn,t(x)| ≥ 1 +

t
∑

i=1

1

i!

i−1
∏

j=0

(r(x)− 1− 3j).

Proof : The right-hand side is a worst-case count of the number
of ways in whichi ≤ t length-2 grains can be placed so that
each grain straddles the boundary between successive runs in
x. The first grain can be placed inr(x)− 1 ways; after that,
in the worst case (which happens when the first grain falls in
the middle of a 1010 or 0101), the next grain can be placed
in (r(x)− 1)− 3 ways; and so on.

This leads to the following upper bound onM(n, t).

Theorem 2 For any fixed value oft,

M(n, t) ≤ 2n

nt
(t! 2t + 2 + o(1)),

whereo(1) denotes a term that goes to 0 asn→∞.

Proof : Let C be at-grain-correcting code of lengthn, and let

C1 =
{

x ∈ C : |r(x)− n/2| ≤
√

nt log2 n
}

.

For anyx ∈ C1, we have from Lemma 1,

|Φn,t(x)| ≥
1

t!
(r(x)− 1− 3(t− 1))t

≥ 1

t!
(n/2−

√

nt log2 n− 1− 3(t− 1))t (2)

SinceC1 itself is t-grain-correcting, we also have

2n ≥
∣

∣

∣

⋃

x∈C1

Φn,t(x)
∣

∣

∣
=

∑

x∈C1

|Φn,t(x)|. (3)

It follows from (2) and (3) that

|C1| ≤
2n+tt!

nt
(1 + o(1)).

Now, letC2 = C\C1. We shall bound from above the size ofC2
by the number of vectorsx ∈ {0, 1}n such that|r(x)−n/2| ≥
√

nt log2 n. Defineψ : {0, 1}n → {0, 1}n−1 by setting

ψ((x1, x2, . . . , xn)) = (x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn)
where ⊕ denotes modulo-2 addition. Then,r(x) =
wH(ψ(x)) + 1, wherewH(·) denotes Hamming weight. For
any given vectory ∈ {0, 1}n−1, there are exactly two vectors
x1,x2 = 1⊕ x1 such thatψ(x1) = ψ(x2) = y. Therefore,

|C2| ≤ 2|{y ∈ F
n−1
2 : |wH(y) + 1− n/2| ≥

√

nt log2 n}|

≤ 4

n/2−
√

nt log2 n
∑

i=0

(

n− 1

i

)

≤ 4 exp
{

(n− 1)h
(1

2
− 2

√

nt log2 n− 1

2(n− 1)

)}

,

whereh(z) = −z log2 z − (1 − z) log2(1 − z) is the binary
entropy function. Sinceh(12 − x) ≤ 1− 2

ln 2x
2,

|C2| ≤ 4 exp
{

(n− 1)− 2

ln 2

(2
√

nt log2 n− 1)2

4(n− 1)

}

≤ 2n+1n−t.

We conclude by noting that|C| = |C1|+ |C2|.
For fixedt, the upper bound of the above theorem is within

a constant multiple of the lower boundM(n, t) ≥ 2n/nt,
stated earlier as being valid whenn is a power of 2.

The bound of Theorem 2 is not useful whent grows linearly
with n, say,t = nτ for τ ∈ (0, 1/2]. In this case, we define

R(τ) = lim sup
n→∞

log2M(n, ⌊nτ⌋)
n

. (4)

An upper bound onR(τ) for small τ can be established by
an argument similar to the proof of the previous theorem.

Proposition 3 Let x∗ = x∗(τ) be the smallest positive solu-
tion of the following equation:

h
(1− x

2

)

+
1− x
4

h
( 4τ

1− x
)

= 1.

For τ ≤ 0.0706, the following bound holds true:

R(τ) ≤ h
(1− x∗

2

)

. (5)

Proof : The proof relies on a coarser estimate of|Φn,t(x)|
than the one in Lemma 1. Consider the boundaries between the
(2i−1)-th and2i-th runs inx, i = 1, 2, . . . , ⌊r(x)/2⌋. Length-
2 grains can be independently placed across these boundaries,
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leading to the lower bound

|Φn,t(x)| ≥
t

∑

i=0

(⌊r(x)/2⌋
i

)

. (6)

For t = ⌊τn⌋, let C be at-grain-correcting code. For some
δ > 0, let

C1 =
{

x ∈ C : r(x)/2 ≥
⌊n

4
(1 − δ)

⌋}

The bound (6) implies that for eachx ∈ C1

|Φn,t(x)| ≥
t

∑

i=0

(⌊n4 (1− δ)⌋
i

)

.

From the above and (3), we obtain

|C1| ≤
2n

∑t
i=0

(⌊n
4 (1−δ)⌋

i

)
.

The size of the remaining subset of vectorsC2 = C\C1 does
not exceed the number of all vectorsx with r(x) ≤ n

2 (1− δ),
i.e.,

|C2| ≤
⌊n

2 (1−δ)⌋
∑

i=0

(

n− 1

i

)

≤ 2nh(
1−δ
2 ).

Therefore,

|C| ≤ min
δ>0

{ 2n
∑t

i=0

(⌊n
4 (1−δ)⌋

i

)
+ 2nh(

1−δ
2 )

}

.

Whenτ ≤ 1−δ
8 , or equivalently,δ ≤ 1− 8τ , the dominant

term in the sum in the denominator above is
(⌊n

4 (1−δ)⌋
⌊τn⌋

)

, which

is bounded below by 1√
8n

2
n(1−δ)

4 h( 4τ
1−δ ). From this, we obtain

R(τ) ≤ min
0<δ≤1−8τ

max
{

1− 1− δ
4

h
( 4τ

1− δ
)

, h
(1− δ

2

)}

(7)
Now, for 1 − 8τ to be positive, we needτ < 1/8. For any

fixed τ ∈ [0, 1/8), andδ ∈ [0, 1−8τ ], the functionf(δ) = 1−
1−δ
4 h

(

4τ
1−δ

)

is an increasing function ofδ, while the function

g(δ) = h(1−δ
2 ) is a decreasing function ofδ. At δ = 0, we

haveg(δ) ≥ f(δ). If, at δ = 1−8τ , we haveg(δ) ≤ f(δ), then
it follows that the minimum overδ in (7) is achieved when
f(δ) = g(δ). In other words, the minimizing value ofδ in this
case is precisely thex∗ in the statement of the proposition. It
is readily verified that atδ = 1− 8τ , we haveg(δ)− f(δ) =
h(4τ) + 2τ − 1, which is negative whenτ ≤ 0.0706.

Bound (5) is plotted in Fig. 1, along with the asymptotic
version of the Gilbert-Varshamov lower bound, which, as
observed in Section II, is also valid for grain-correcting codes.
The methods of the next subsection yield upper bounds on
R(τ) for any τ ≤ 1/2, but these are harder to evaluate than
the bound of Proposition 3.

B. Upper Bounds Based on Clique Partitions

A clique partitionof a graphG is a partition(V1, . . . , Vk)
of its vertex setV such that the subgraph induced by eachVj ,
j = 1, . . . , k, is a clique ofG. Let χ̄(G) denote the smallest
size (number of parts) of any clique partition ofG.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.45

0.55

0.65

0.75

0.85

0.95

1

τ

R
(τ

)

 

 

clique partition upper bound
proposition 3 upper bound
max(GV,0.5) lower bound

Fig. 1. Upper and lower bounds on the asymptotic coding rate of grain-
correcting codes.

Let G(n, t) be a confusability graph of the code space,
defined as follows: the vertex set ofG(n, t) is {0, 1}n, and
two distinct verticesx,x′ are joined by an edge iff they are
t-confusable. For notational simplicity, we denoteχ̄(G(n, t))
by χ̄n,t. We do not assume thatt is an integer; for non-integer
values oft, we setχ̄n,t = χ̄n,⌊t⌋.

To state our next result, we need to extend the definition
of M(n, t) as follows:M(0, t) = 1 for all t.

Proposition 4 Form ≤ n ands ≤ t,
M(n, t) ≤ χ̄m,sM(n−m, t− s).

Proof : Let C ⊆ {0, 1}n be at-grain-correcting code of size
|C| = M(n, t), and let (V1, . . . , Vk) be a clique partition
of G(m, s) of size k = χ̄m,s. For j = 1, . . . , k, define
Cj = {(c1, . . . , cn) ∈ C : (c1, . . . , cm) ∈ Vj}. As theVj ’s form
a partition of{0, 1}m, theCj ’s form a partition ofC. Therefore,
it is enough to show that|Cj | ≤M(n−m, t−s) for all j. Let
C′j = {(cm+1, . . . , cn) : ∃ (c1, . . . , cm, cm+1, . . . , cn) ∈ Cj}.
The canonical projection mapπ : Cj → C′j is a bijection; to
see this, it is enough to show thatπ is injective. Ifπ(c) = π(ĉ)
for c, ĉ ∈ Cj , then c = (c1, . . . , cm, cm+1, . . . , cn) and
ĉ = (ĉ1, . . . , ĉm, cm+1, . . . , cn) for some (c1, . . . , cm) and
(ĉ1, . . . , ĉm) in Vj . But, since the subgraph induced byVj
forms a clique inG(m, s), we have that(c1, . . . , cm) and
(ĉ1, . . . , ĉm) are s-confusable. Thus, we see thatc, ĉ are s-
confusable (and hencet-confusable sinces ≤ t) unlessc = ĉ.
Hence,π is a bijection, so that|Cj | = |C′j|.

We further claim thatC′j ⊆ {0, 1}n−m is a (t − s)-grain-
correcting code, which would show that|Cj | = |C′j| ≤M(n−
m, t− s). Indeed, consider any pair of distinct wordsc′,d′ ∈
C′j. There exist distinct codewords(a′, c′) and (b′,d′) in Cj .
By definition of Cj , a′ andb′ ares-confusable. So, ifc′ and
d′ were(t−s)-confusable, then(a′, c′) and(b′,d′) would be
t-confusable, which cannot happen for distinct codewords in
Cj. Hence,C′j is a (t− s)-grain-correcting code.

If n/m ≥ t/s (or equivalently,t/n ≤ s/m), then repeated
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application of the above proposition yields

M(n, t) ≤ (χ̄m,s)
⌊t/s⌋

M(n−m⌊t/s⌋, t− s⌊t/s⌋),
from which we obtain the following corollary.

Corollary 5 If t/n ≤ s/m, then

M(n, t) ≤ (χ̄m,s)
⌊t/s⌋

2n−m⌊t/s⌋.

It is difficult to determineχ̄m,s exactly for arbitrarym, s.
Upper bounds on̄χm,s can be found by explicit constructions
of clique partitions ofG(m, s). Observe that for anyy ∈
{0, 1}m, the setΦ−1

m,s(y) := {x ∈ {0, 1}m : y ∈ Φm,s(x)}
forms a clique inGm,s. Thus, clique partitions of sizek can
be found by identifying sequencesy1, . . . ,yk ∈ {0, 1}m such
that the setsΦ−1

m,s(yj), j = 1, . . . , k, cover{0, 1}m. Note that

the setsVj = Φ−1
m,s(yj) \

(

⋃

i<j Vi

)

, j = 1, . . . , k, then form

a clique partition ofG(m, s). We implemented the greedy
algorithm described below to find such a list of sequences
y1, . . . ,yk, and hence, a clique partitionV1, . . . , Vk.

Algorithm 1 A greedy algorithm for finding clique partitions
in G(m, s).

1: determine the setsΦ−1
m,s(y) for all y ∈ {0, 1}m;

2: setB(y) = Φ−1
m,s(y) for all y ∈ {0, 1}m,

setk = 0;
3: while there exists ay such thatB(y) is non-emptydo
4: k← k + 1 ;
5: find ayk such that|B(yk)| = maxy∈{0,1}m |B(y)|;

6: setVk = B(yk);
7: for eachy ∈ {0, 1}m
8: B(y)← B(y) \ Vk;
9: return V1, . . . , Vk.

Table I lists upper bounds on̄χm,s obtained via our im-
plementation of the greedy algorithm. The underlined entries
in the table are known to be exact values ofχ̄m,s, obtained
either from the fact that̄χm,s ≥ M(m, s) ≥ 2⌈m/2⌉, or from
specialized arguments that we omit here.

From Corollary 5 and Table I, we can obtain a suite of
upper bounds onM(n, t) valid for various ranges ofn andt;
for example, the entry for(m, s) = (10, 1) in the table yields
that M(n, t) ≤ 236t2n−10t for t/n ≤ 1/10. The following
upper bound onR(τ), which was defined in (4), is also a
direct consequence of Corollary 5.

Corollary 6 Form, s such thatτ ≤ s/m,

R(τ) ≤ 1− τ
(

m

s
− 1

s
log2 χ̄m,s

)

.

When used in conjunction with Table I, the above corollary
gives useful upper bounds onR(τ). For instance, using the
table entry for(m, s) = (16, 4), we find thatR(τ) ≤ 1 −
τ(4 − 1

4 log2 662) ≈ 1 − 1.657τ for τ ≤ 1/4. Figure 1 plots
the minimum of all the upper bounds onR(τ) obtainable from
Corollary 6 and the entries of Table I.

Setting s = τm in Corollary 6, we obtainR(τ) ≤
1
m log2 χ̄m,τm, and hence,

R(τ) ≤ inf
m

1

m
log2 χ̄m,τm = lim

m→∞
1

m
log2 χ̄m,τm. (8)

The last equality above follows from Fekete’s lemma (see e.g.
[5, p. 85]), noting thatf(m) = log2 χ̄m,rm is a subadditive
function, i.e.,f(m+ n) ≤ f(m) + f(n). The bound in (8) is
presently only of theoretical interest, as the infimum (or limit)
on the right-hand side is difficult to evaluate in general.

C. A List-Decoding Lower Bound

We briefly venture into the territory of list-decoding in this
section, and give a lower bound on the achievable coding rate
of a list-L-decodable code. Recall that in the list-decoding
setting, the decoder is allowed to produce a list of up toL
codewords. Formally, a codeC is list-L t-grain-correctingif
for any vectorx ∈ {0, 1}n, |{c ∈ C : x ∈ Φn,t(c)}| ≤ L. In
words, for any received vectorx ∈ {0, 1}n, there are at most
L codewords that could get transformed tox by the action of
an operatorφ ∈ Φn,t.

We will find the following definition useful in what is to
follow. For φ ∈ Φn,t, let eφ be the vector(e1, . . . , en) ∈
{0, 1}n, with ej = 1 iff φ has a length-2 grain beginning at
the (j − 1)th bit cell. DefineEn,t = {eφ : φ ∈ Φn,t}. Note
that En,t consists of all binary “error vectors” of lengthn
and Hamming weight at mostt such that the first coordinate
is always0 and no two1’s are adjacent. An easy counting
argument shows that

|En,t| =
t

∑

i=0

(

n− i
i

)

. (9)

Denote byM(n, t;L) the maximum size of a list-L t-grain-
correcting code of lengthn, and define for0 ≤ τ ≤ 1/2,

R(τ ;L) = lim inf
n→∞

log2M(n, ⌊nτ⌋;L)
n

.

Proposition 7 We have

M(n, t;L) ≥ 2nL/(L+1)

∑t
i=0

(

n−i
i

) ,

and hence,

R(τ ;L) ≥ L

L+ 1
− (1− τ)h

( τ

1− τ
)

for τ ≤ 1
2 −

√
5

10 ≈ 0.2764.

Proof : For a vectorx ∈ {0, 1}n let us define

B(x) = {z ∈ {0, 1}n : x ∈ Φn,t(z)}.
Note thatB(x) ⊆ {x ⊕ e : e ∈ En,t}, so that |B(x)| ≤
|En,t| =

∑n
i=1

(

n−i
i

)

.
Let us construct the code by choosingM codewords ran-

domly and uniformly with replacement from{0, 1}n. For a
fixed vectory ∈ {0, 1}n, call the choice of anyL + 1 code-
words c1, . . . , cL+1 ‘bad’ if c1, . . . , cL+1 ∈ B(y). Clearly,
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m
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

s
1 2 4 6 10 18 36 66 122 236 428 834 1574 3008 5716 11014
2 4 8 12 18 30 54 92 162 284 530 948 1730 3210
3 8 16 24 34 56 88 138 238 418 716 1266
4 16 32 44 64 98 156 248 392 662

TABLE I
UPPER BOUNDS ONχ̄m,s OBTAINED BY COMPUTER SEARCH; THE UNDERLINED TABLE ENTRIES ARE KNOWN TO BE EXACT VALUES OFχ̄m,s .

the expected number of bad choices for a random codeC is
less than or equal to

2n
(

M

L+ 1

)(
∑t

i=0

(

n−i
i

)

2n

)L+1

<
(

M

t
∑

i=0

(

n− i
i

)

)L+1

2−nL.

Take M = 2nL/(L+1)/
∑t

i=0

(

n−i
i

)

, then the ensemble-
average number of bad(L+1)-tuples is less than 1. Therefore
there exists a code of sizeM in which all the (L + 1)-
tuples of codewords are good. This implies the lower bound
onM(n, t;L).

The bound onR(τ ;L) follows from the observation that
(

n−i
i

)

increases withi for i ≤ 1
10 (5n+3−

√
5n2 + 10n+ 9).

Thus, as long ast/n ≤ 1
2 −

√
5

10 , the asymptotics of the
summation

∑t
i=0

(

n−i
i

)

is determined by the term
(

n−t
t

)

.

We do not at present have a useful upper bound on
M(n, t;L).

IV. GRAIN PATTERN KNOWN TO ENCODER/DECODER

In this section, we assume that the user of the recording
system is capable of testing the medium and acquiring infor-
mation about the structure of its grains. This information is
used for the writing of the data on the medium or performing
the decoding. Specifically, we assume again a medium with
n bit cells and at mostt grains of length 2, but now the
locations of the grains are available either to the decoder but
not the encoder of the data (Scenario I) or, conversely, to the
encoder but not the decoder (Scenario II). Accordingly, let
Mi(n, t), i = 1, 2, be the maximum number of messages that
can be encoded and decoded without error in each of the two
scenarios. Also, for0 ≤ τ ≤ 1/2, let

Ri(τ) = lim inf
n→∞

log2Mi(n, ⌊nτ⌋)
n

, i = 1, 2,

be the coding rate achievable in each situation whent grows
proportionally withn, with constant of proportionalityτ .

For the analysis to follow, we need to recall the definition
of En,t from Section III-C, and the fact (9) that|En,t| =
∑t

i=0

(

n−i
i

)

.

A. Scenario I

Here, we assume that the locations of the grains are known
to the decoder of the data but are not available at the time of
writing on the medium. A codeC is said to correctt grains

known to the receiver ifφ(x1) 6= φ(x2) for any two distinct
vectorsx1,x2 ∈ C and anyφ ∈ Φn,t.

An obvious solution for the decoder is to consider as
erasures the positions that could be in error, so the encodercan
rely on at-erasure-correcting code. Therefore, by the argument
of the Gilbert-Varshamov bound,M1(n, t) ≥ 2n∑

t
i=0 (

n

i)
, and

hence,R1(τ) ≥ 1 − h(τ). However, this lower bound can be
improved, as our next proposition shows.

Proposition 8 We have

M1(n, t) ≥
2n

∑t
i=0

(

n−i
i

) .

Hence,R1(τ) ≥ 1− (1− τ)h( τ
1−τ ) for τ ≤ 1

2 −
√
5

10 ≈ 0.2764.

Proof : We shall construct a codeC of size at least2n/|En,t|
by a greedy procedure. We begin with an empty set, choose
an arbitrary vectorx1 and include it inC. Having picked
x1, . . . ,xi−1, for somei ≥ 1, we choosexi so that

xi /∈
i−1
⋃

j=1

{xj ⊕ e : e ∈ En,t}.

We stop when such a choice is not possible. At that point, we
will have constructed a codeC that satisfies|C| · |En,t| ≥ 2n.

We claim thatC correctst grains known to the receiver.
Suppose not; then there exists a grain patternφ ∈ Φn,t

such thatφ(xi) = φ(xj) for some xi,xj ∈ C, i > j.
Equivalently,xi ⊕ e = xj ⊕ e′ for some error vectorse, e′

with supp(e), supp(e′) ⊆ supp(eφ), where supp(·) denotes the
support of a vector. We then havexi = xj ⊕ (e ⊕ e′) with
e⊕ e′ ∈ En,t, which contradicts the construction ofC.

As in the proof of Proposition 7, the bound onR1(τ)

follows from the observation that whent/n ≤ 1
2 −

√
5

10 , the
asymptotics of the summation

∑t
i=0

(

n−i
i

)

is determined by
the term

(

n−t
t

)

.

B. Scenario II

This scenario is similar in spirit to the channel with
localized errorsof Bassalygo et al. [1]. In that setting, both
the transmitter and the receiver know that all butt positions
of the codevector will remain error-free, and the coordinates
of the t positions which can (but need not) be in error are
known to the transmitter but not the receiver. Thus, in our
Scenario II, the encoder may rely on codes that correct
localized errors, which according to [1] gives the bound
R2(τ) ≥ 1− h(τ). Again, this bound can be improved.
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Proposition 9 We have

M2(n, t) ≥
1

2n

2n
∑t

i=0

(

n−i
i

) .

Hence,R2(τ) ≥ 1− (1− τ)h( τ
1−τ ) for τ ≤ 1

2 −
√
5

10 ≈ 0.2764.

Proof : We show that when the encoder knows the error
locations, then it can successfully transmit

M ≥ 1

2n

2n

|En,t|
(10)

messages to the decoder, which proves the claimed lower
bound onM2(n, t). We follow the proof of Theorem3 of
[1].

Given a messagei ∈ {1, . . . ,M} to be transmitted, the
transmitter will use knowledge of the grain patternφ (with
eφ ∈ En,t) to encodei using a suitably chosen vector from a
set of binary vectorsX i = {xij : j = 1, . . . , n}. A vectorxi

j

is said to begood for e ∈ En,t if for any i 6= i′ and for any
j′ we have,

dH(xi
j ⊕ e,xi

j) < dH(xi
j ⊕ e,xi′

j′),

wheredH(·, ·) denotes Hamming distance. The family of sets
X i, i = 1, . . . ,M , is good if for any i ∈ {1, . . . ,M} and for
anye ∈ En,t, there exists a vectorxi

j ∈ X i that is good fore.
A good family of setsX i, i = 1, . . . ,M , enables the encoder
to transmit any message in{1, . . . ,M} with perfect recovery
by the decoder. Indeed, given the grain patternφ, the encoder
chooses for transmission of messagei a vector inX i that is
good foreφ.

Thus, we only need to show that forM satisfying (10)
there exists a good family of setsX i = {xij : j = 1, . . . , n},
i = 1, . . . ,M . There are2n

2M families ofM setsX i, each
containing at mostn binary vectors of lengthn. Of these, the
number of families that arenot good does not exceed

M · |En,t| · ((M − 1)n|En,t|)n · 2n
2(M−1).

If M satisfies (10) with equality, then this number is less than
2n

2M . Therefore, there exists a good family of setsX i.
The argument for the lower bound onR2(τ) is the same as

that given forR1(τ) in the proof of Proposition 8, since the
extra multiplicative factor of12n does not affect the asymptotic
behavior.

To summarize, we obtain a lower bound onRi(τ), i = 1
or 2, of the form

Ri(τ) ≥ max
{

0.5, 1− (1− τ)h( τ

1 − τ )
}

.

This is because the rate-1/2 codeRn defined in (1) is still
viable in the context of Scenarios I and II. A straightforward
upper boundRi(τ) ≤ 1−τ follows from the fact thatM1(n, t)
andM2(n, t) cannot exceed2n−t, which is simply the one-
bit-per-grain upper bound.

V. CAPACITY OF THE GRAINS CHANNEL

Thus far in this paper, we have considered a combinatorial
model of the one-dimensional granular medium, and given
various bounds on the rate oft-grain-correcting codes. We

will now switch to a parallel track by defining a natural
probabilistic model of a channel corresponding to the one-
dimensional granular medium with grains of length at most 2
(the “grains channel”). This is a binary-output channel that can
make an error only at positions where a length-2 grain ends.
In fact, error events are data-dependent: an error occurs ata
position where a length-2 grain ends if and only if the channel
input at that position differs from the previous channel input.
Our goal is to estimate the Shannon-theoretic capacity for the
grains channel model. Let us proceed to formal definitions.

Supposex = x1x2.. . . . andy = y1y2.. . . . denote the input
and output sequence respectively, withxi, yi ∈ {0, 1} for all i.
We further define the sequenceu = u1u2.. . . ., whereui = 1
(resp.ui = 0) indicates that a length-2 grain ends (resp. does
not end) at positioni. We takeu to be a first-order Markov
chain, independent of the channel inputx, having transition
probabilitiesP (ui|ui−1) as tabulated below (for somep ∈
[0, 1]):

ui = 0 ui = 1
ui−1 = 0 1− p p
ui−1 = 1 1 0

. (11)

The grains channel makes an error at positioni (i.e., xi 6= yi)
if and only if ui = 1 andxi 6= xi−1. To be precise,

yi = xi ⊕ (xi ⊕ xi−1)ui, (12)

where the operations are being performed modulo 2. Equiva-
lently,

yi =

{

xi if ui = 0

xi−1 if ui = 1.
(13)

We will find it useful to define the error sequencez =
z1, z2, z3, . . ., wherezi = xi ⊕ yi. Thus,

zi = ui(xi ⊕ xi−1). (14)

The casei = 1 is not covered by the above definitions. We
will include it once we define a finite-state model of the grains
channel.

The grains channel as we have defined above is a special
case of a somewhat more general “write channel” model
considered in [4].

A. Discrete Finite-State Channels

For easy reference, we record here some important facts
about discrete finite-state channels. The material in this section
is substantially based upon [3, Section 4.6].

A stationary discrete finite-state channel (DFSC)has an
input sequencex = x1, x2, x3, . . ., an output sequencey =
y1, y2, y3, . . ., and a state sequences = s1, s2, s3, . . .. Each
xn is a symbol from a finite input alphabetX , eachyn is
a symbol from a finite output alphabetY, and each statesn
takes values in a finite set of statesS. The channel is described
statistically by specifying a conditional probability assignment
P (yn, sn|xn, sn−1), which is independent ofn. It is assumed
that, conditional onxn andsn−1, the pairyn, sn is statistically
independent of all inputsxj , j < n, outputsyj, j < n, and
statessj , j < n−1. To complete the description of the channel,
an initial states0, also taking values inS, must be specified.
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For a DFSC, we define thelower (or pessimistic) capacity
C = limn→∞ Cn, and upper (or optimistic) capacityC =
limn→∞ Cn, where

Cn = n−1 max
Qn(xn)

min
s0∈S

I(xn;yn | s0)

Cn = n−1 max
Qn(xn)

max
s0∈S

I(xn;yn | s0).

In the above expressions,I(xn;yn | s0) is the mutual
information between the length-n input xn = (x1, . . . , xn)
and the length-n outputyn = (y1, . . . , yn), given the value of
the initial states0, and the maximum is taken over probability
distributionsQn(xn) on the inputxn. The limits in the above
definitions ofC andC are known to exist. Clearly,Cn ≤ Cn

for all n, and thus,C ≤ C. The capacitiesC andC have an
operational meaning in the usual Shannon-theoretic sense —
see Theorems 4.6.2 and 5.9.2 in [3].

The upper and lower capacities coincide for a large class
of channels known asindecomposablechannels. Roughly, an
indecomposable DFSC is a DFSC in which the effect of the
initial states0 dies away with time. Formally, letq(sn | xn, s0)
denote the conditional probability that thenth state issn,
given the input sequencexn = (x1, . . . , xn) and initial state
s0. Evidently,q(sn | xn, s0) is computable from the channel
statistics. A DFSC is indecomposable if, for anyǫ > 0, there
exists ann0 such that for alln ≥ n0, we have

|q(sn | xn, s0)− q(sn | xn, s′0)| ≤ ǫ
for all sn, xn, s0 ands′0. Theorem 4.6.3 of [3] gives an easy-
to-check necessary and sufficient condition for a DFSC to be
indecomposable: for some fixedn and eachxn, there exists a
choice forsn (which may depend onxn) such that

min
s0

q(sn | xn, s0) > 0. (15)

We note here that the channels we consider in the subsequent
sections are indecomposable except in very special cases. For
these special cases, it can still be shown thatC = C holds.

We make a few comments about DFSCs for whichC = C
holds. We denote byC the common value ofC andC. ThisC,
which we refer to simply as thecapacityof the DFSC, can be
expressed alternatively. If we assign a probability distribution
to the initial state, so thats0 becomes a random variable, then
C = limn→∞ Cn, where

Cn =
1

n
max

Qn(xn)
I(xn;yn | s0). (16)

Clearly,Cn ≤ Cn ≤ Cn for all n, so thatC, as defined above,
is indeed the common value ofC and C. Note that this is
independent of the choice of the probability distribution on
s0.

A further simplification to the expression for capacity is
possible. Since|I(xn;yn) − I(xn;yn | s0)| ≤ log2 |S| (see,
for example, [3, Appendix 4A, Lemma 1]), we in fact have

C = lim
n→∞

1

n
max

Qn(xn)
I(xn;yn). (17)

The capacity of a DFSC is difficult to compute in general.
A useful lower bound that is sometimes easier to compute (or

at least estimate) is the so-calledsymmetric information rate
(SIR) of the DFSC:

R = lim
n→∞

1

n
I(xn;yn), (18)

where the input sequencex is an i.i.d. Bernoulli(1/2) random
sequence.

B. First results

It is easy to see that the grains channel is a DFSC, where
the nth statesn is the pair(un, xn), which takes values in
the finite setS = {(0, 0), (0, 1), (1, 0), (1, 1)}. Again, for
completeness, we assume an initial states0 that takes values
in S.1

Proposition 10 The grains channel is indecomposable forp <
1.

Proof : We must check that the condition in (15) holds. We
take n = 1 and s1 = (0, x1). Then,mins0 q(s1 | x1, s0) =
minj∈{0,1} P (u1 = 0 | u0 = j) = 1− p > 0.

As a consequence of the above proposition, the equality
C = C holds for the grains channel whenp < 1. In fact, this
equality also holds for the grains channel whenp = 1, as the
following result shows.

Proposition 11 For the grains channel withp = 1, we have
C = C = 1/2.

Proof : We have, with probability 1,

u = u1, u2, u3, u4, u5, u6, . . .

=

{

0, 1, 0, 1, 0, 1, . . . if u0 = 1

1, 0, 1, 0, 1, 0, . . . if u0 = 0.

Thus, once the initial states0 = (u0, x0) is fixed, the output
y of the grains channel is a deterministic function of the input
x:

y = y1, y2, y3, y4, y5, y6, . . .

=

{

x1, x1, x3, x3, x5, x5, . . . if s0 = (1, x0)

x0, x2, x2, x4, x4, x6, . . . if s0 = (0, x0).

Therefore, for any fixeds ∈ S, we haveH(yn | xn, s0 =
s) = 0, and hence,I(xn;yn | s0 = s) = H(yn | s0 = s). If
xn is a sequence of i.i.d. Bernoulli(1/2) random variables, then
mins∈S H(yn | s0 = s) = H(yn | s0 = (0, x0)) = ⌊n/2⌋.
It follows that Cn ≥ ⌊n/2⌋

n , so thatC ≥ 1/2. On the other
hand, for any input distributionQn(xn), and anys ∈ S, we
haveH(yn | s0 = s) ≤ ⌈n/2⌉. Consequently,Cn ≤ ⌈n/2⌉

n ,
and hence,C ≤ 1/2. We conclude thatC = C = 1/2.

In view of the two propositions above, the capacity of the
grains channel is defined by (17). From here onward, we

1To be strictly faithful to the granular medium we are modeling, we should
restricts0 to take values only in{(1, 0), (1, 1)}, so thatu0 = 1. This would
imply u1 = 0, meaning that no length-2 grain ends at the first bit cell of the
medium, corresponding to physical reality. But this makes no difference to
the asymptotics of the channel, and in particular, to the channel capacity.
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denote this capacity byCg, and use the notationCg(p) when
the dependence onp needs to be emphasized. It is difficult to
compute the capacityCg exactly, so we will provide useful
upper and lower bounds. We note here for future reference the
trivial bound obtained from Proposition 11:

Cg(p) ≥ Cg(1) = 1/2. (19)

C. Upper Bound: BINAEras

Consider a binary-input channel similar to the binary era-
sure channel, except that erasures in consecutive positions
are not allowed. Formally, this is a channel with a binary
input sequencex = x1, x2, x3, . . ., with xi ∈ {0, 1} for all
i, and a ternary output sequencey = y1, y2, y3, . . ., with
yi ∈ {0, 1, e} for all i, wheree is an erasure symbol. The
input-output relationship is determined by a binary sequence
u = u1, u2, u3, . . ., which is a first-order Markov chain, inde-
pendent of the input sequencex, with transition probabilities
P (ui|ui−1) as in (11). We then have

yi =

{

xi if ui = 0

e if ui = 1
(20)

SinceP (ui = 1 | ui−1 = 1) = 0, adjacent erasures do not
occur, so we term this channel the binary-input no-adjacent-
erasures (BINAEras) channel. To describe the channel com-
pletely, we define an initial statez0 taking values in{0, e}.

The BINAEras channel is a DFSC for whichC = C holds,
and its capacity, which we denote byCe(p), can be computed
explicitly.

Theorem 12 For the BINAEras channel with parameterp ∈
[0, 1], we haveC = C = Ce(p) , 1

1+p .

Intuitively, the average erasure probability of a symbol equals
p̃ = p

1+p , and the capacityCe(p) equals1− p̃. A formal proof
is given in Appendix A.

We claim that the grains channel is a stochastically degraded
BINAEras channel. Indeed, the grains channel is obtained by
cascading the BINAEras channel with a ternary-input channel
defined as follows: the input sequencey = y1, y2, y3, . . .,
yi ∈ {0, 1, e}, is transformed to the output sequencey′ =
y′1, y

′
2, y

′
3, . . . according to the rule

y′i =

{

yi if yi 6= e

yi−1 if yi = e
(21)

To cover the case wheny1 = e, we sety′1 equal to some
arbitraryy0 ∈ {0, 1}. It is straightforward to verify, via (20),
(21) and the fact thatP (ui = 1 | ui−1 = 1) = 0, that
the cascade of the BINAEras channel with the above channel
has an input-output mappingxi 7→ y′i given by the equation
obtained by replacingyi with y′i in (13). This immediately
leads to the following theorem.

Theorem 13 Forp ∈ [0, 1], we haveCg(p) ≤ Ce(p) = 1
1+p .

Remark:We remark that any code that correctst nonadjacent
substitution errors (bit flips) also correctst grain errors. It is

therefore tempting to bound the capacity of the grains channel
by the capacity of the binary channel withnonadjacent errors.
Such a channel is defined similarly to the BINAEras channel:
the channel noise is controlled by a first-order Markov channel
u (11), andyi = xi ⊕ ui for all i ≥ 1. The capacity of this
channel is computed as in the BINAEras case and equals1−
h(p)/(1+p), whereh(p) denotes the binary entropy function.
However, a closer examination convinces one that this quantity
does not provide a valid lower bound forCg(p).

D. Lower Bound: The Symmetric Information Rate

In this section, we derive an exact expression for the SIR of
the grains channel, which gives a lower bound on the capacity
of the channel. In accordance with the definition of SIR (18),
assume thatx is an i.i.d. Bernoulli(1/2) random sequence. With
this assumption, the state sequences is a first-order Markov
chain. Also, each output symbolyn is easily verified to be a
Bernoulli(1/2) random variable (butyn is not independent of
yn−1).

We also assume that the initial states0 is a random
variable distributed according to the stationary distribution
of the Markov chain, so that the sequences is a station-
ary Markov chain. It follows that the output sequencey
is a stationary random sequence, so that the entropy rate
H(Y ) := limn→∞

1
n H(yn) exists. It is also worth noting here

that the initial distribution assumed ons0 causes the Markov
chain u to be stationary as well. In particular, the random
variablesui, i ≥ 0, all have the stationary distribution given
by P (ui = 0) = 1

1+p andP (ui = 1) = p
1+p .

We have

Rg = lim
n→∞

1

n
I(xn;yn) (22)

I(xn;yn) = H(yn)−H(yn|xn) = H(yn)−H(zn|xn)
(23)

As noted above,H(Y ) = limn→∞
1
n H(yn) exists. In fact,

we can give an exact expression forH(Y ) in terms of an
infinite series.

Proposition 14 The entropy rate of the output process of the
grains channel is given by

H(Y ) =
1

2(1 + p)

∞
∑

j=2

h(βj)

j−1
∏

k=2

(1− βk),

where

βj := Pr[yj+1 = 1 | yj = yj−1 = · · · = y2 = 0, y1 = 1]

is given by the following recursion:β2 = 1
2 (1 − p), and for

j ≥ 3,

βj =
1

2

(

1− (1 + p)βj−1

1− βj−1

)

. (24)

The lengthy proof of this proposition is given in Appendix B.

Remark:The following explicit expression forβj , j ≥ 2
can be proved by induction from (24):

βj =
2((ϑ−)

j − (ϑ+)
j
)

(3 +B + p)(ϑ−)
j − (3−B + p)(ϑ+)

j
(25)
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whereϑ± = 1− 1∓B
p andB =

√

p2 + 6p+ 1.

Our next result shows thatlimn→∞H(zn | xn) also exists,
and gives an exact expression for it, again in terms of an
infinite series. Appendix B contains a proof of this result.

Proposition 15 When x is an i.i.d. uniform Bernoulli se-
quence, we have

lim
n→∞

H(zn | xn) =
1 + p/2

1 + p

∞
∑

j=2

2−jh
(1− (−p)j

1 + p

)

.

Together, (22), (23), and Propositions 14 and 15 provide an
exact expressionfor the SIR of the grains channel. This, along
with the trivial bound (19), yields the following lower bound
on the capacityCg.

Theorem 16 The capacityCg(p) ≥ max(1/2, Rg(p)), where
Rg(p) is the SIR of the grains channel and is given by the
following expression:

Rg(p) =
1

2(1 + p)

∞
∑

j=2

{

h(βj)

j−1
∏

k=2

(1− βk)

− 2 + p

2j
h
(1− (−p)j

1 + p

)

}

.

with βj as in (24) or (25).

In Figure 2, we plot the upper and lower bounds onCg(p)
stated in Theorems 13 and 16 as well as the value ofRg(p)
from Theorem 16. Observe that the SIR is a strict lower bound
on the capacity, at least for0.56 ≤ p < 1, whenRg(p) < 1/2.

The plots are obtained by numerically evaluatingRg(p) by
truncating its infinite series at some large value ofj. We give
here a somewhat crude, but useful, estimate of the error in
truncating this series at some indexj = J , with J ≥ 2. Define
the partial sums

SJ =
1 + p/2

1 + p

J
∑

j=2

2−jh
(1− (−p)j

1 + p

)

(26)

TJ =
1

2(1 + p)

J
∑

j=2

h(βj)

j−1
∏

k=2

(1− βk) (27)

and note that theJ th partial sum of theRg(p) series is
preciselyTJ − SJ .

Proposition 17 The error|Rg(p) − (TJ − SJ)| in truncating
theRg(p) series at an indexj = J , with J ≥ 2, is at most

1

1 + p

[

(1 + p/2) 2−J + 2−⌊(J+1)/2⌋
]

.

In particular, for anyp ∈ [0, 1], the truncation error is at most
2−J + 2−⌊(J+1)/2⌋.

We defer the proof to Appendix B.
The plot ofRg(p) in Figure 2(a) was generated usingJ =

15 terms of the infinite series, so the plotted curve is within
0.004 of the trueRg curve for allp.

0.2 0.4 0.6 0.8 1.0
p

0.5

0.6

0.7

0.8

0.9

1.0
Cg
HpL

(a) Bounds onCg(p). The gray area shows the gap between the
lower bound of Theorem 16 and the upper bound of Theorem 13.

0.2 0.4 0.6 0.8 1.0
p

0.5

0.6
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HpL

(b) The symmetric information rateRg(p).

Fig. 2. Plots of the upper and lower bounds on the capacity of the grains
channelCg(p), and the SIR of the grains channelRg(p0, as functions ofp.

E. Zero-Error Capacity

We end with a few remarks on the zero-error capacity of the
grains channel. We are interested in the maximum zero-error
information rate,R0(n), achievable over the grains channel
with parameterp ∈ [0, 1] and inputxn. The case whenp = 0
is trivial (the channel introduces no errors), so we consider
p > 0.

The zero-error analysis depends on the initial states0 of the
channel. Suppose thats0 is such thatPr[u1 = 1] > 0. Then,
the state sequenceun = 1, 0, 1, 0, . . . , (n mod 2) is realized
with some positive probability. Corresponding to this state
sequence, we haveyn = x0, x2, x2, x4, . . . , x2⌊n/2⌋. Thus,
at most ⌊n/2⌋ bits can be transmitted without error across
this realization of the channel. Hence,R0(n) ≤ 1

n ⌊n/2⌋.
This zero-error information rate can actually be achieved.
Consider the binary length-n codeRn defined in (1) which
has 2⌊n/2⌋ codewords. When a codeword fromRn is sent
acrossany realization of the grains channel, the bits at even
coordinates remain unchanged. Thus,⌊n/2⌋ bits of infor-
mation can be transmitted without error, which proves that
R0(n) =

1
n ⌊n/2⌋.

On the other hand, suppose that the initial states0 is such
thatPr[u1 = 1] = 0. Then, the worst-case channel realization
is caused by the state sequenceun = 0, 1, 0, 1, . . . , (1 + n
mod 2). In this case, the channel is such that the first coor-
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dinate of the input sequence is always received without error
at the output. A slight modification of the preceding argument
now shows thatR0(n) =

1
n ⌈n/2⌉.

We have thus proved the following result.

Proposition 18 Consider a grains channel with parameterp >
0. If the initial states0 is such thatPr[u1 = 1] > 0, then
R0(n) =

1
n ⌊n/2⌋; otherwise,R0(n) =

1
n ⌈n/2⌉.

In any case, the zero-error capacity of the channel isC0 =
limn→∞R0(n) = 1/2.

APPENDIX A: PROOF OFTHEOREM 12

Observe first that the BINAEras channel is indecomposable
for p < 1. Indeed, for this channel, the condition in (15)
reduces to showing that for some fixedn, there exists a
choice forun such thatminu0 P (un|u0) > 0. This condition
clearly holds forn = 1 andu1 = 0: minj∈{0,1} P (u1 = 0 |
u0 = j) = 1 − p > 0, providedp < 1. We deal with the
indecomposable case in this appendix; whenp = 1, the proof
for C = C = 1/2 follows, mutatis mutandis, the proof of
Proposition 11.

When the channel is indecomposable, we haveC = C = C.
We will show thatC = 1

1+p . Choose the distribution onu0
to be the stationary distribution of the Markov processu, so
thatP (u0 = 0) = 1

1+p andP (u0 = 1) = p
1+p . Consequently,

u is a stationary process, and in particular, for alli ≥ 1, we
haveP (ui = 0) = 1

1+p andP (ui = 1) = p
1+p .

Observe that

I(xn;yn | u0) = H(yn | u0)−H(yn | xn, u0)

(a)
= H(yn | u0)−H(un | xn, u0)

(b)
= H(yn | u0)−H(un | u0),

with equality (a) above due to the fact that, givenxn, the
sequencesyn and un uniquely determine each other, and
equality (b) becauseun is independent ofxn. Furthermore,
sinceu is a stationary first-order Markov process, we have
H(un | u0) =

∑n
n=1H(un | un−1) = nH(u1 | u0) = nh(p)

1+p .
Hence,

Cn = n−1 max
Qn(xn)

H(yn | u0)−
h(p)

1 + p
. (28)

Now, H(yn | u0) =
∑n

i=1H(yi | yi−1, u0). Sinceyi−1

completely determinesui−1, we have by the data processing
inequality [2, Theorem 2.8.1],

H(yi | yi−1, u0) ≤ H(yi | ui−1, u0)

We further have

H(yi | ui−1, u0) ≤ H(yi | ui−1)

= H(yi | ui−1 = 0)
p

1 + p
+H(yi | ui−1 = 1)

1

1 + p

Givenui−1 = 1, yi is a binary random variable (sinceui = 0
with probability 1), and thus,H(yi | ui−1 = 1) ≤ 1. On the
other hand, we haveP (yi = e | ui−1 = 0) = P (ui = 1 |
ui−1 = 0) = p, and so the conditional entropyH(yi | ui−1 =
0) is maximized whenP (yi = 0 | ui−1 = 0) = P (yi = 1 |

ui−1 = 0) = (1 − p)/2. This yieldsH(yi | ui−1 = 1) ≤
h(p)+ 1− p. Putting all the inequalities together, we find that

H(yn | u0) =
n
∑

i=1

H(yi | yi−1, u0)

≤ n
( p

1 + p
+ (h(p) + 1− p) 1

1 + p

)

= n
(1 + h(p)

1 + p

)

It is not difficult to check that the above in fact holds with
equality when the input sequencexn is an i.i.d. sequence of
Bernoulli(1/2) random variables. Thus,

n−1 max
Qn(xn)

H(yn | u0) =
1 + h(p)

1 + p
.

Plugging this into (28), we obtain thatCn = 1
1+p for all n,

and hence,C = 1
1+p .

APPENDIX B: PROOFS OFPROPOSITIONS14, 15AND 17

B.1. Proof of Proposition 14

Since limn→∞
1
nH(yn) = limi→∞H(yi+1 | yi), we need

show that the latter limit equals the expression in the statement
of the proposition. We will work with the identity

H(yi+1 | yi) =
∑

b∈{0,1}i

H(yi+1 | yi = b) Pr[yi = b].

From the channel input-output relationship given by (13) and
the fact that the inputx is an i.i.d. Bernoulli(1/2) sequence, it
is clear thatPr[yi = b] = Pr[yi = b̄], whereb̄ = b + 1n is
the sequence obtained by flipping each bit inb. It then also
follows thatH(yi+1 | yi = b) = H(yi+1 | yi = b̄), since
Pr[yi+1 = 1 | yi = b] = Pr[yi+1 = 0 | yi = b̄]. Hence,

H(yi+1 | yi) = 2
∑

b∈B

H(yi+1 | yi = b) Pr[yi = b], (29)

whereB = {(bi, . . . , b1) ∈ {0, 1}i : bi = 0} is the set of
all binary length-i sequences that have a 0 in the leftmost
coordinate.

Fix i ≥ 2. Define, for2 ≤ j ≤ i, the events

Bj = {yi : (yi, yi−1, . . . , yi−j+1) = 0j−11},
which, together with the event{yi = 0i}, form a partition of
B. Here,0j−11 is shorthand for thej-tuple (0, . . . , 0, 1). We
record two facts aboutBj . First,

Pr[yi ∈ Bj ] = Pr[(yi, yi−1, . . . , yi−j+1) = 0j−11]

= Pr[(yj , yj−1, . . . , y1) = 0j−11], (30)

the last equality stemming from the fact thaty is stationary.
Second, by the following lemma,

H(yi+1 | yi = b) = h(Pr[yi+1 = 1 | yi = b]) (31)

is invariant overBj .

Lemma 19 Forb ∈ Bj , Pr[yi+1 = 1 | yi = b] equals

1/2Pr[uj = 0 | (yj−1, yj−2, . . . , y2) = 0j−2, (u1, x1) = (0, 0)].
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Proof : The proof relies upon the following claim :
Suppose thatyk−1 = b; then, with probability 1, we
haveyk = b̄ if and only if sk := (uk, xk) = (0, b̄).

Indeed, even without the assumption onyk−1, the “if” part
holds trivially. For the “only if” part, assume thatyk−1 = b
andyk = b̄. Note that ifuk = 1, then with probability 1, we
haveuk−1 = 0. Hence, by way of (13), we haveyk = xk−1 =
yk−1. However,yk−1 6= yk by assumption; so we must have
uk = 0. Consequently,yk = xk, so thatxk = b̄.

Consider anyb ∈ Bj . From the claim, we have

Pr[yi+1 = 1|yi = b] = Pr[(ui+1, xi+1) = (0, 1)|yi = b]

= 1/2Pr[ui+1 = 0|yi = b],

where we have used the fact thatxi+1 is independent ofyi.
Note that, in the eventyi = b, we haveyi−j+2 = 0 and
yi−j+1 = 1, so that by the claim again,

Pr[ui+1 = 0|yi = b] = Pr[ui+1 = 0|yi = b, si−j+2 = (0, 0)].

Now, given the channel statesi−j+2 = (0, 0), the ran-
dom variablesui+1, yi, yi−1, . . . , yi−j+2 are conditionally
independent of the past outputyi−j+1. Furthermore, given
si−j+2 = (0, 0), the random variableyi−j+2 is uniquely
determined:yi−j+2 = 0. Hence,

Pr[ui+1 = 0 | yi = b, si−j+2 = 0] =

Pr[ui+1 = 0 | (yi, . . . , yi−j+3) = 0j−2, si−j+2 = 0].

Finally, by the joint stationarity ofy and u, the right-hand
side above is equal to

Pr[uj = 0 | (yj−1, yj−2, . . . , y2) = 0j−2, s1 = 0],

which is what we needed to show.
In the statement of Proposition 14, we definedβj =

Pr[yj+1 = 1 | (yj , yj−1, . . . , y1) = 0j−11]. Note that if we
set i = j in Lemma 19, we get

βj = 1/2Pr[uj = 0 | (yj−1, . . . , y2) = 0j−2, (u1, x1) = (0, 0)].
(32)

From (29)–(32), and Lemma 19, we have

H(yi+1 | yi) = 2

i
∑

j=2

h(βj) Pr[(yj , . . . , y1) = 0j−11]

+ 2H(yi+1 | yi = 0i) Pr[yi = 0i].(33)

The term at the end of the above expression vanishes as
i→∞, as we show below for completeness.

Lemma 20 lim
i→∞

H(yi+1 | yi = 0i) Pr[yi = 0i] = 0.

Proof : Since0 ≤ H(yi+1 | yi = 0i) ≤ 1, it is enough to
show thatPr[yi = 0i] = 0 converges to 0. For this, observe
that for anyj, if yj = 0, then(xj−1, xj) 6= (1, 1). Hence, if
yi = 0i, then(x1, x2) 6= (1, 1), (x3, x4) 6= (1, 1), and so on.
Thus,Pr[yi = 0i] ≤ (3/4)⌊i/2⌋, which suffices to prove the
lemma.

So, lettingi→∞ in (33), we obtain

H(Y ) = 2

∞
∑

j=2

h(βj) Pr[(yj , yj−1, . . . , y1) = 0j−11]. (34)

The proof of Proposition 14 will be complete once we prove
the next two lemmas.

Lemma 21 Forj ≥ 2, we have

Pr[(yj , yj−1, . . . , y1) = 0j−11] =
1

4(1 + p)

j−1
∏

k=2

(1− βk)

Proof : From the definition ofβj , we readily obtain

Pr[(yj , . . . , y1) = 0j−11] =
[

j−1
∏

k=2

(1− βk)
]

· Pr[(y2, y1) = (0, 1)].

We must show thatPr[(y2, y1) = (0, 1)] = 1
4(1+p) .

We write

Pr[(y2, y1) = (0, 1)] =
∑

(a,b)∈{0,1}2

Pr[(y2, y1) = (0, 1) | (u2, u1) = (a, b)]

× Pr[(u2, u1) = (a, b)].

Clearly,Pr[(u2, u1) = (1, 1)] = 0. Also,Pr[(y2, y1) = (0, 1) |
(u2, u1) = (1, 0)] = 0, since, given(u2, u1) = (1, 0) we
must havey2 = x1 = y1, by virtue of (13). Next, given
(u2, u1) = (0, 0), we have(y2, y1) = (x2, x1), and since
(x2, x1) is independent of(u2, u1), we find that

Pr[(y2, y1) = (0, 1) | (u2, u1) = (0, 0)]

= Pr[(x2, x1) = (0, 1)] = 1/4.

By a similar argument,Pr[(y2, y1) = (0, 1) | (u2, u1) =
(0, 1)] = 1/4. Hence,

Pr[(y2, y1) = (0, 1)] = (1/4) Pr[u2 = 0] =
1

4(1 + p)
,

as desired.

Lemma 22 β2 = 1
2 (1 − p), and forj ≥ 3, βj satisfies the

recursion in (24).

Proof : From (32), we have

β2 = 1/2Pr[u2 = 0 | (u1, x1) = (0, 0)]

= 1/2Pr[u2 = 0 | u1 = 0] = 1/2(1 − p).

For convenience, define, forj ≥ 2, Ej =
{(yj−1, yj−2, . . . , y2) = 0j−2, (u1, x1) = (0, 0)}, so
that βj = (1/2) Pr[uj = 0 | Ej ] = (1/2)(1 − γj), where
γj := Pr[uj = 0 | Ej ]. We shall show that forj ≥ 3,

γj =
p(1− γj−1)

1 + γj−1
. (35)

which is equivalent to the recursion in (24).
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So, letj ≥ 3 be fixed. We start with

γj =
∑

b∈{0,1}
Pr[uj = 1 | uj−1 = b] Pr[uj−1 = b | Ej ]

= p · Pr[uj−1 = 0 | Ej ]

= p · Pr[uj−1 = 0 | yj−1 = 0, Ej−1]

= p · Pr[yj−1 = 0 | uj−1 = 0, Ej−1](1− γj−1)

Pr[yj−1 = 0 | Ej−1]

where we have usedPr[uj−1 = 0 | Ej−1] = 1− γj−1 for the
last equality.

Given uj−1 = 0, we haveyj−1 = xj−1, and sincexj−1

is independent ofuj−1 andEj−1, the numerator in the last
expression above evaluates to1/2(1− γj−1). Thus,

γj = p ·
1/2(1− γj−1)

Pr[yj−1 = 0 | Ej−1]
(36)

Turning to the denominator, we writePr[yj−1 = 0 | Ej−1] as
∑

b∈{0,1}
Pr[yj−1 = 0 | uj−1 = b, Ej−1] Pr[uj−1 = b | Ej−1]

= 1/2(1 − γj−1) + Pr[yj−1 = 0 | uj−1 = 1, Ej−1] · γj−1

(37)

We claim thatPr[yj−1 = 0 | uj−1 = 1, Ej−1] = 1. Indeed,
givenuj−1 = 1, we haveyj−1 = xj−2. Furthermore, we must
haveuj−2 = 0 with probability 1, so thatxj−2 = yj−2. Thus,
given uj−1 = 1, we must haveyj−1 = yj−2 with probability
1. But note that the eventEj−1 impliesyj−2 = 0: if j = 3, this
follows from (u1, x1) = (0, 0), and if j ≥ 4, this is contained
within (yj−2, . . . , y2) = 0j−3. Thus, givenuj−1 = 1 and
Ej−1, we haveyj−1 = yj−2 = 0 with probability 1.

So, carrying on from (37), we get

Pr[yj−1 = 0 | Ej−1] = 1/2(1− γj−1) + γj−1 = 1/2(1+ γj−1)

Feeding this back into (36), we obtain

γj = p ·
1/2(1− γj−1)
1/2(1 + γj−1)

which is the desired recursion (35).
This concludes the proof of Proposition 14.

B.2. Proof of Proposition 15

We break the proof into two parts. We first show that

lim
n→∞

1

n
H(zn | xn) =

∞
∑

j=2

2−jH(uj | u1) (38)

and subsequently, we prove that
∞
∑

j=2

2−jH(uj |u1) =
1 + p/2

1 + p

∞
∑

j=2

2−j h
(1− (−p)j

1 + p

)

. (39)

To show (38), we start with

H(zn | xn) =

n
∑

i=1

H(zi | z1, . . . , zi−1,x
n).

From (14), it is evident thatzi is independent ofxj for j > i.

Hence,

H(zn | xn) =

n
∑

i=1

H(zi | z1, . . . , zi−1,x
i).

As a result, by the Cesàro mean theorem,

lim
n→∞

1

n
H(zn | xn) = lim

i→∞
H(zi | z1, . . . , zi−1,x

i),

provided the latter limit exists.

To evaluateH(zi | z1, . . . , zi−1,x
i), we define the events

A0 = {xi : xi = xi−1},
Aj = {xi : xi 6= xi−1 = · · · = xi−j 6= xi−j−1}, 1 ≤ j ≤ i−2,
andAi−1 = {xi : xi 6= xi−1 = · · · = x1}. These events
partition the space{0, 1}i to which xi belongs. Sincex is
an i.i.d. uniform Bernoulli sequence, we havePr[xi ∈ Aj ] =
(1/2)j+1 for 0 ≤ j ≤ i− 2, andPr[xi ∈ Ai−1] = (1/2)i−1.

Now, if xi ∈ A0, then by (14), we havezi = 0.
Consequently,H(zi | z1, . . . , zi−1,x

i ∈ A0) = 0.

If xi ∈ Aj for somej ∈ [1, i − 2], then we havezi = ui,
zi−1 = · · · = zi−j+1 = 0, andzi−j = ui−j . Thus,

H(zi | z1, . . . , zi−1,x
i ∈ Aj)

= H(ui | z1, . . . , zi−j−1, ui−j ,x
i ∈ Aj)

(a)
= H(ui | ui−j)

(b)
= H(uj+1 | u1).

Equality (a) above is due to the fact thatu is a first-
order Markov chain independent ofx, while equality (b)
is a consequence of the stationarity ofu (which is itself a
consequence of the stationarity of the state sequences).

Finally, if xi ∈ Ai−1, thenzi = ui andzi−1 = · · · = z2 =
0. Thus,

H(zi | z1, . . . , zi−1,x
i ∈ Ai−1) = H(ui | z1).

Therefore,

H(zi | z1, . . . , zi−1,x
i)

=
i−1
∑

j=0

H(zi | z1, . . . , zi−1,x
i ∈ Aj) Pr[x

i ∈ Aj ]

=
i−2
∑

j=1

H(uj+1 | u1) 2−j−1 +H(ui | z1) 2−i+1.

Letting i→∞, we obtain (38).

It remains to prove (39). For this, note first thatH(uj |
u1) = H(uj | u1 = 0)Pr[u1 = 0] +H(uj | u1 = 1)Pr[u1 =
1]. Furthermore, sinceu1 = 1 impliesu2 = 0 with probability
1, we have, for allj ≥ 2,

H(uj | u1 = 1) = H(uj | u2 = 0) = H(uj−1 | u1 = 0),

the last equality following from the stationarity ofu. Hence,
∞
∑

j=2

2−jH(uj | u1 = 1) =

∞
∑

j=2

2−j H(uj−1 | u1 = 0)

=
1

2

∞
∑

j=2

2−jH(uj | u1 = 0)
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sinceH(u1 | u1 = 0) = 0. Putting it all together, we find that
∞
∑

j=2

2−j H(uj | u1)

= (Pr[u1 = 0] +
1

2
Pr[u1 = 1])

∞
∑

j=2

2−j H(uj | u1 = 0)

=
1 + p/2

1 + p

∞
∑

j=2

2−j H(uj | u1 = 0).

Finally, observe thatH(uj | u1 = 0) = h
( 1−(−p)j

1+p

)

, as it
can be shown (for example, by induction) thatPr(uj = 0 |
u1 = 0) = 1−(−p)j

1+p for all j ≥ 1. This proves (39), and with
this, the proof of Proposition 15 is complete.

B.3. Proof of Proposition 17

The error in truncating theRg(p) series at the indexj = J
is

|Rg(p)− (TJ − SJ)|
≤ |H(Y )− TJ |+ | lim

n→∞
H(zn | xn)− SJ |. (40)

It is easy to bound the second term in (40):

| lim
n→∞

H(zn | xn)− SJ |

=
1 + p/2

1 + p

∞
∑

j=J+1

2−jh
(1− (−p)j

1 + p

)

≤ 1 + p/2

1 + p

∞
∑

j=J+1

2−j

=

(

1 + p/2

1 + p

)

2−J . (41)

Turning our attention to the first term in (40), we see that

|H(Y )− TJ | =
1

2(1 + p)

∞
∑

j=J+1

h(βj)

j−1
∏

k=2

(1− βk)

≤ 1

2(1 + p)

∞
∑

j=J+1

j−1
∏

k=2

(1− βk). (42)

Now, from the recursion (24), we readily get fork ≥ 3,

1− βk =
1

2

(

1− (1 − p)βk−1

1− βk−1

)

,

and hence,

(1− βk)(1 − βk−1) =
1

2
[1− (1− p)βk−1] ≤

1

2
.

Consequently, ifj = 2m for somem ≥ 1, then

j−1
∏

k=2

(1− βk) =
m−1
∏

k=1

(1− β2k+1)(1 − β2k) ≤ (1/2)m−1,

and if j = 2m+ 1 for somem ≥ 1, then

j−1
∏

k=2

(1− βk) ≤
m−1
∏

k=1

(1− β2k+1)(1 − β2k) ≤ (1/2)m−1.

Upon replacing the bound in (42) by the looser

1

2(1 + p)

∞
∑

j=2⌊(J+1)/2⌋

j−1
∏

k=2

(1 − βk)

so that the summation starts at an even indexj, routine
algebraic manipulations now yield

|H(Y )− TJ | ≤
1

1 + p

∞
∑

m=⌊(J+1)/2⌋
(1/2)m−1

=

(

1

1 + p

)

2−⌊(J+1)/2⌋.

Plugging this and (41) into (40), we obtain Proposition 17.
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