arxiv:1012.1895v1 |[cs.IT] 8 Dec 2010

Coding for High-Density Recording on a 1-D
Granular Magnetic Medium
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Abstract—In terabit-density magnetic recording, several bits technologies are not capable of setting (and reading baek) t
of data can be replaced by the values of their neighbors in the magnetic polarities of a region as small as a single graid; an
storage medium. As a result, errors in the medium are dependd (ii) the write and readback mechanisms are typically unawar

on each other and also on the data written. We consider a simgl f the sh d it f th ins in th di |
one-dimensional combinatorial model of this medium. In our O tN€ SNAPEs and positions ot the grains in the medium. in

model, we assume a setting where binary data is sequentially CUrrent magnetic recording technologies, writing is galgr
written on the medium and a bit can erroneously change to done by dividing the magnetic medium into regularly-spaced

the immediately preceding value. We derive several propeies it cells, and writing one bit of data into each of these bit
of codes that correct this type of errors, focusing on bound®n cells. The bit cells are much larger in size compared to the

their cardinality. . that h bit cell ) . Wri
We also define a probabilistic finite-state channel model ofie  9'@INS, SO that each bit cell comprises many grains. vrang

storage medium, and derive lower and upper estimates of its Dit into a bit cell is then a matter of uniformly magnetizinig a
capacity. A lower bound is derived by evaluating the symmetic  the grains within the cell; the effect of grains straddlimg t
capacity of the channel, i.e., the ma.ximum.tra{nsnjission r& poundary between two bit cells can be neglected.
under the assumption of t_he uniform mput_dlstnbutlon of_ t_h e Recently, Wood et al[[9] proposed a new write mechanism,
channel. An upper bound is found by showing that the original . . S
channel is a stochastic degradation of another, related clmnel that can mag_netlze areas _Commensu_rate to the size of 'nd“_/'d
model whose capacity we can compute explicitly. ual grains. With such a write mechanism and a corresponding
readback mechanism in place, the remaining bottleneck to
achieving magnetic recording densities as high as 10 Tisrabi
per square inch is that the write and readback mechanisms do
One of the challenges in achieving ultra-high-density magot have precise knowledge of the grain boundaries.
netic recording lies in accounting for the effect of the grian- The authors of [9] went on to consider the information loss
ity of the recording medium. Conventional magnetic reaogdi caused by the lack of knowledge of grain boundaries. A sample
media are composed of fundamental magnetizable unitedcalsimulation considered a two-dimensional magnetic medium
“grains”, that do not have a fixed size or shape. Informatson composed of 100 randomly shaped grains, and subdivided into
stored on the medium through a write mechanism that sets te1 x 14 grid of uniformly-sized bit cells. Bits were written in
magnetic polarities of the grains|[8]. There are two types @#ster-scan fashion onto the grid. At thth step of the write
magnetic polarity, and each grain can be magnetized to tgk®cess, if any grain had more than a 30% (in area) overlap
on exactly one of these two polarities. Thus, each grain caith the bit cell to be written at that step, then that grairswa
store at most one bit of information. Clearly, if the bouridar given the polarity value of théth bit. The polarity of a grain
of the grains were known to the write mechanism and thguld switch multiple times before settling on a final value.
readback mechanism, then it would be theoretically possilith a readback mechanism that reported the polarity value
to achieve a storage capacity of one information bit pemgrait the centre of each bit cell, their simulation recorded the
There are two bottlenecks to achieving the one-bit-pgsroportion of bits that were reported with the wrong potarit
grain storage capacity: (i) the existing write (and readtpacA similar simulation, but with a slightly different assurigut

on the underlying grain distribution, was reported 6].
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granular structure of the medium is described by an inangasiagain confine ourselves to length-2 grains. Our objective is
sequence of positive integers,= j; < j» < -+ < js < n, estimate the capacity of the channel. For a lower bound on
wherej; denotes the index of the bit cell at which tith grain  the capacity we restrict our attention to uniformly distitiéd,
begins. Note that the length of thith grain is¢; = j,.1 — j; independent input letters which corresponds to the case of
(we setjs+1 = n + 1 to be consistent). symmetric information ratdsymmetric capacity or SIR) of
The effect of a given grain pattern on anbit block of the channel. We are able to find an exact expression for the
binary dataxz = (x1,22,...,2,) to be written onto the SIR as an infinite series which gives a lower bound on the
medium is represented by an operatothat acts uponr to true capacity. To estimate capacity from above, we relage th
produce¢(x) = (y1,y2,---,Yn), Which is the binary vector grains channel to an erasure channel in which erasures never
that is actually recorded on the medium. For notational ,easecur in adjacent symbols, and are otherwise independent. W
our model assumes that it is tffiest bit to be written within explicitly compute the capacity of this erasure channetl an
a grain that sets the polarity of the grain. Thus, for indicesbserve that the grains channel is a stochastically dedrade
j within the ith grain,i.e, for j; < j < j;4+1, we have version of the erasure channel. The capacity of the erasure
y; = x;. This means that théth grain introduces an error channel is thus an upper bound on the capacity of the grains
in the recorded data.€., a situation wherg; # x;) precisely channel.
when z; # z;, for somej satisfyingj; < j < jiy1. In We would like to acknowledge a concurrent independent
particular, grains of length 1 do not introduce any errors. paper by lyengar, Siegel, and Wolf| [4] which contains some
As an example, consider a medium divided into 15 bit cellsf our results from Section V. The authors &f [4] considered
with a granular structure consisting of grains of lengths:d aa more general channel model that includes our probabilisti
2 only, with the length-2 grains beginning at indices 3, 6, fiodel of the grains channel as a particular case. Their paper
and 13. The grains in the medium would transform the vectoontains results that cover our Propositibnk 11[add 18, #s we
x = (100001000010000) to (100001100010000) and the vec- as our Theoreiin 13. However, a major contribution of ours that
tor = (000101011100010) to ¢(x) = (000001111100000). cannot be found inJ4] is our Theoregml16, in which we give
Note thato(x) # x iff a 01 or a 10 falls within some grain. an exact expression for the SIR of the grains channel.
In particular,¢(¢(x)) = ¢(x) for any x. Throughout the papeh,(z) = —zlog, 2 — (1 — ) logy (1 —
In this paper, we consider only the case of granular media denotes the binary entropy function.
composed of grains of length at most 2. Even this simplest pos
sible case brings out the complexity of the problem of coding I
to correct errors caused by this combinatorial model. Mést o
the results we present can be extended straightforwardheto As observed above, when the length of the grains does
case of magnetic media with a more general grain distributionot exceed 2, bit errors are caused only by length-2 grains.
Note that in a medium with grains of length at most 2, iEurthermore, it can only be the second bit within such a grain
is precisely the length-2 grains that can cause bit erroes. \Wat can be in error. Thus, any code that can cortdyt-flip
denote byd,, ; the set of operatorg corresponding to all such errors (equivalently, a code with minimum Hamming distance
media withn bit cells and at mostgrains of length equal to 2. at least 2t+1) is a-grain-correcting code. In particulaf;
Then, forz € {0,1}", we let®,, ,(z) = {¢(x) : ¢ € ®,,,}, grain-correcting codes whose parameters meet the Gilbert-

CONSTRUCTIONS OF GRAINCORRECTING CODES

and call two vectorsey, x5 € {0,1}™ t-confusablef Varshamov bound (see e.@l [7, p. 97]) are guaranteed ta exist
But we can sometimes do better than conventional error-
Pt (1) N P e(w2) 7 0. correcting codes by taking advantage of the special nature o

A binary codeC of lengthn is said to correct grain errors grain errors.
if no two distinct vectorse,, z» € C aret-confusable. Observe that the first bit to be written onto the medium can

In Sections Il and Il of this paper, we study propertiegever be in error in the grain model. So, we can construct
of ¢-grain-correcting codes. We derive several bounds on th@rain-correcting code$ of lengthn as follows: take a code
maximum size of a length- binary code that corrects C’ of lengthn — 1 that can correct bit-flip errors, and set
grain errors. Our lower bounds are based on either expli€it= (0|C") U (1|C’). Here, forb € {0,1}, (b|C’) refers to
constructions or existence arguments, while our upper é®urthe set of vectors obtained by prefixingo each codevector
are based on the count of runs of identical symbols in a vec®r C'. For example, whem = 2™, we can takeC’ to be
or on a clique partition of the “confusability graph” of thethe binary Hamming code of lengtl™ — 1, yielding a 1-
space{0,1}". We also briefly consider list-decodable graingrain-correcting cod€ of size |C| = 2" /n. Note that2"/n
correcting codes, and derive a lower bound on the maximugxceeds the sphere-packing (Hamming) upper bound, i.e., is
cardinality of such codes by means of a probabilistic argutmegreater than the cardinality of the optimal binary singlese

In Section 1V, we consider a scenario in which the locatiorgorrecting code of length = 2™.
of the grains are available to either the encoder or the dacod More generally, again when is a power of 2, we can take
of the data, and derive estimates of the size of codes in thisto be a binary BCH code of length — 1 that corrects
setting. bit-flip errors. The above construction then yieldg-grain-

In Section V, we consider a probabilistic channel modebrrecting code of lengthn and size|C| > 2" /n'.
that corresponds to the one-dimensional combinatorialehod We next describe a completely different, and remarkably
of errors discussed above, calling it the “grains chann&®. simple, construction of a length-grain-correcting code that



correctsanynumber of grain errors. For even integers- 2m, Since(; itself is t-grain-correcting, we also have
m > 1, define the cod&®,, ¢ {0,1}" as the set

. 22 | |J Puil@)| = 3 [@ni(@)]. @3)
{(z122 ... 22m) € {0,1}" : 2,1 = z; for all even indices}. 2eCy 2eCy

1)

Note that when a codevector frorR,, is written onto a It follows from (@) and [) that
medium composed of grains of length at most 2, the bits at C1| < (14 o(1)).
even coordinates remain unchanged. Indeed, a bit at an even )
index+ could be in error only if a grain starts at indéx- 1, Now, letCy = C\C:. We shall bound from above the size@f
causing the bit at index — 1 to overwrite the bit at index py the number of vectors {0,1}™ such thatr(x)—n/2| >

i. However, the two bits are identical by construction. Thug,/nt log, n. Definew : {0,1}" — {0,1}"' by setting
R, is a code of siz&"/2 that corrects an arbitrary number of

grain errors. This construction can be extended to odd fengt ¥((1,22, ..., @n)) = (21 w2, 2 © 23, .., Zp1 @ Tn)
n=2m+1,m2=1, as follows:R,, = (0|R2m) U (1{R2m).-  where @ denotes modulo-2 addition. Then(z) =
wyg(Y(x)) + 1, wherewy () denotes Hamming weight. For
I1l. BOUNDS ON THE SIZE OF GRAINCORRECTING CODES any given vecton € {0,1}"~!, there are exactly two vectors
Let M (n,t) denote the maximum size of a lengthbinary 1, x2 = 1 @ x; such that)(x,) = ¥ (x2) = y. Therefore,
code that ist-grain-correcting. The constructions of the pre-

2n+tt|

n—1 ., _
vious section show that/(n,t) > 2/"/21 for any n andt, G2l < 2{y €Fy™ : lwm(y) +1-n/2| = y/ntlogy n}|
and M (n,t) > 2" /n' whenn is a power of 2. In an attempt n/2myntlogan
to determine the tightness of these lower bounds, we derive < 4 Z ( . )
below some upper bounds dd (n,t). i=0 !
1 2y/ntlogan—1

< _ vV es -

A. Upper Bounds Based on Counts of Runs - 46Xp{(n 1)h(2 2(n—1) )}’

of consecutive identical symbols) in the vecterc {0,1}".  entropy function. Sincé(L —x) <1 Za?
As remarked in Section I, a single grain can chaagt a "
different vector if and only if the grain straddles the boand 1Co|

Denote byr(x) the number of runs (maximal subvectorgyhere h(z) = —zlog, z — (1 — z)log, (1 — z) is the binary

2 (2y/ntlogyn — 1)?

: . < 4 ) }
between two successive runs in Thus, |®, ()] = 1 + - eXp{(n ) In2 4(n—1)

(r(x) —1) = r(x). Fort > 2, the number®,, ,(x)| is not < ontlp—t

readily expressible in a closed form. Nevertheless, we have )

the following lemma. We conclude by noting thdt| = |C1| + |C2|. 1

Lemma 1 For fixedt, the upper bound of the above theorem is within

. a constant multiple of the lower bountl/ (n,t) > 2"/n!,
1B, (2)] > 1+ Zl' H(r(w) —1-3)). stated earlier as being val|o-l whenis a power of 2. .
=1 " iso The bound of Theorefd 2 is not useful whiegrows linearly
Proof : The right-hand side is a worst-case count of the numbeith n, say,t = nr for 7 € (0, /2]. In this case, we define
of ways in whichi < ¢ length-2 grains can be placed so that o log, M(n, |n7])
each grain straddles the boundary between successiverruns i R() = lim sup —=22 ’
x. The first grain can be placed ifz) — 1 ways; after that, nree "
in the worst case (which happens when the first grain falls An upper bound onR(7) for small ~ can be established by
the middle of a 1010 or 0101), the next grain can be placed argument similar to the proof of the previous theorem.
in (r(z) — 1) — 3 ways; and so on. 1
This leads to the following upper bound dd(n, t).

Theorem 2 For any fixed value off, Proposition 3 Letz* = z*(7) be the smallest positive solu-
tion of the following equation:

(4)

2n
M(n,t) < — (12" +2+0(1)),

h(l—x) 1—xh( 4t ) _1
whereo(1) denotes a term that goes to Orass oco. 2 4 -z '

ForT < 0.0706, the following bound holds true:
Proof : Let C be at-grain-correcting code of length, and let T= 9

— 1—az*
Ci={xeC:|r(x)—n/2| < \/ntlogyn}. R(T)Sh( B ) (®)
For anyx € C;, we have from LemmAl 1,
1 . Proof : The proof relies on a coarser estimate |@f, ,(x)|
Pni(@)] 2 (r(z) —1-3(t-1)) than the one in Lemnid 1. Consider the boundaries between the

1 (2i—1)-th and2i-th runs inz, i = 1,2, ..., |r(x)/2]. Length-
> E(R/Q —/ntlogyn —1-3(t—1))" (2) 2 grains can be independently placed across these bousdarie



leading to the lower bound

t " —clique partition upper bound
|r(xz)/2] 095N\ it i
w)| > E ; . (6) ._‘_‘proposmon 3 upper bound
‘ 2 b max(GV,0.5) lower bound

1
-
Fort = [n], letC be at-grain-correcting code. For some %8t
1
1

0 >0, let
n ~0.75 1
- : 92> L— 1-6 J } ORI
o ={zec:r@)2=|70-9) 2
The bound[(B) implies that for each e C; 0.65- \
21— [
> 4 . '
2l Z ( > 055 Y
From the above and](3), we obtain e it s
|C | - 2" 0'450 0.65 011 o.is oiz o.é5 013 0.55 014 0.;15 0.5
1= s, (LO-a0y T

The size of the remaining subset of vect@ss= C\C; does Fig. 1. Upper and lower bounds on the asymptotic coding rétgrain-
not exceed the number of all vectaeswith r(z) < %(1—4), ~correcting codes.

ie.,

L5 (1-9)]

Ca| < Z <nf 1) < onh(3?), Let G(n,t) be a confusability graph of the code space,
i—0 ¢ defined as follows: the vertex set 6f(n,t) is {0,1}", and
two distinct verticese, «’ are joined by an edge iff they are
N t-confusable. For notational simplicity, we dengté(n, t))
Ic| < mm{% + onh(45*) } by x».:- We do not assume thais an integer; for non-integer
5>0 LH o (L“( - ”) values oft, we sety, ; = Xn,|1-
When7 < 122 or equivalentlys < 1 — 87, the dominant f'lj's)[(itatt;a aosufrolr;g\)/(vtsrjj?(l)t’t;lvi ??g?;ﬁ textend the definition
term in the sum in the denomlnator above{ (1 5 ) which ’ ' e '

(U=8) p (ar, Proposition 4 Form <n ands < t,

Therefore,

is bounded below by—2 5). From thls we obtain

M(n,t) < Xm,s M(n—m,t—s).
. 1-96 4T 1-6

(r) <, min max{l - h(l = 5)ah( 5 )} Proof : Let C C {0,1}" be at-grain-correcting code of size

N 7) |IC| = M(n,t), and let (V4,...,V%) be a clique partition
Now, for 1 — 87 to be positive, we need < 1/8. For any of G(m,s) of size k = X, Forj = 1,... k, define
fixedT € [0,1/8), and§ € [0,1—87], the functionf(§) = 1— C; ={(c1,...,¢cn) €C: (c1,...,cm) € V;}. AstheV}’s form
ﬂh(4_f is an increasing function af, while the function & partition of{0, 1}, theC,’s form a partition ofC. Therefore,
! -0 : . . it is enough to show thd€,;| < M (n—m,t—s) forall j. Let
g(d) = h(l%‘s) is a decreasing function of. At § = 0, we ¢ = {(c o) : Hj(c_ . c’ ) e'C-}
haveg(d) > f(8). If, at§ = 1—87, we havey(d) < f(8),then —j — V\omdliee-otn) @ 247 - o Tmo Bmogids - 7w ) = =i
: - ) : . The canonical projection map : C; — C’ is a bijection; to
it follows that the minimum oveb in (7) is achieved when see this, it is enough to show thats iniective lfr(c) = m(2)
f(0) = g(d). In other words, the minimizing value &fin this g ) ' -

case is precisely the* in the statement of the proposition. It Ifor ¢t € CJ' thene = (e1,. .-, m, Cmit,--, cn) AN
. . o ¢ = (¢1,...,¢ém,Cm+1,...,Cq) for some(cy,...,c,) and
is readily verified that ab = 1 — 87, we haveg(d) — f(d) = . .
S . (é1,...,¢y) in V;. But, smce the subgraph induced by
h(47) + 27 — 1, which is negative whem < 0.0706. 1 . J
forms a cligue inG(m,s), we have that(cq,...,¢,) and

Bound [5) is plotted in Figldl, along with the asymptoti¢é, ..., ¢, ) are s-confusable. Thus, we see thatc are s-
version of the Gilbert-Varshamov lower bound, which, asonfusable (and henceconfusable since < t) unlessc = é.
observed in Sectidnlll, is also valid for grain-correctimgles. Hence,r is a bijection, so thafC,| = |C’|.

The methods of the next subsection yield upper bounds or\We further claim thaC; C {0,1}"~"™ is a (¢ — s)-grain-

R(7) for any 7 < 1/2, but these are harder to evaluate thacorrecting code, which Would show thidl;| = |C}| < M (n—
the bound of Propositiof 3. m,t — s). Indeed, consider any pair of distinct wordsd' €

C}. There exist distinct codewords’, ¢’) and (b',d’) in C;.
B. Upper Bounds Based on Clique Partitions By definition of C;, @’ andb’ are s-confusable. So, it’ and

A clique partitionof a araphe is a partition(V: v d’ were(t — s)-confusable, thefia’, ¢’) and (', d’) would be

'\ clique partit grapnt- 1 partiti (Vi,..., V) t-confusable, which cannot happen for distinct codewords in
of its vertex sef” such that the subgraph induced by e&gh C;. Hence,C! is a (t — s)-grain-correcting codes
j=1,...,k, is a clique ofG. Let x(G) denote the smallest

size (number of parts) of any clique partition Gf If n/m > t/s (or equivalentlyt/n < s/m), then repeated



application of the above proposition yields Setting s = 7m in Corollary [B, we obtainR(r) <

L 1og, Xm.~m, and hence,
]\/[(’I’L,t) S (Xm,s)Lt/SJM(TL _mLt/SJ,t— S\_t/SJ), m 089 Xm,

— e _ .1 -
from which we obtain the following corollary. R(r) < inf —logy Xmrm = N — 108y Xom,rm-  (8)
Corollary 5 If t/n < s/m, then The last equality above follows from Fekete’s lemma (see e.g
N . [5, p. 85]), noting thatf(m) = logs Xm.rm IS @ subadditive
M (n,t) < (Xom,s)/* 2nmmlt/s), function, i.e.,f(m +n) < f(m) + f(n). The bound in[(B) is

presently only of theoretical interest, as the infimum (onit)

It is difficult to determiney,, s exactly for arbitrarym, s. on the right-hand side is difficult to evaluate in general.
Upper bounds ory,, s can be found by explicit constructions
of clique partitions ofG(m, s). Observe that for any € ) )
{0,1}™, the setd;! (y) :== {x € {0,1}™ : y € B,,, ,(x)} C. A List-Decoding Lower Bound
forms a clique inG,, . Thus, clique partitions of sizé can e briefly venture into the territory of list-decoding in shi
be found by identifying sequences. ...,y € {0,1}™ such section, and give a lower bound on the achievable coding rate
that the set®,.! (y;), j = 1,..., k, cover{0, 1}™. Note that of a list-L-decodable code. Recall that in the list-decoding
the setsV; = @' (y;)\ (U;,; Vi), 5 =1,..., k, then form setting, the decoder is allowed to produce a list of upLto

a clique partition ofG(m,s). We implemented the greeO|ycodewords. Formally, a code is list-L t-grain-correctingif

algorithm described below to find such a list of sequencé any vectorz € {0,1}", {c € C: @ € ®,4(c)}| < L. In
Y1, -, Y, and hence, a clique partition, .. ., V. words, for any received vectar € {0,1}", there are at most

L codewords that could get transformedatdyy the action of

Algorithm 1 A greedy algorithm for finding clique partitions &1 OPErato € @y, ;. _ o _ _
in G(m, s). We will find the following definition useful in what is to

follow. For ¢ € ®,,,, let e, be the vector(ey,...,e,) €
{0,1}", with e¢; = 1 iff ¢ has a length-2 grain beginning at
the (j — 1)th bit cell. Defineé,,, = {ey : ¢ € ®,,,}. Note

1: determine the set®,! (y) for all y € {0,1}"™;
2: setB(y) = @' (y) for all y € {0,1}",

3 \?ver:ife:tr?;ere exists a such thatB(y) is non-emptydo that £, ; consists of all binary “error vectors” of length

4: e bt ¥y y P and Hamming weight at mostsuch that the first coordinate
) ) ' . is always0 and no twol’s are adjacent. An easy counting

5: find ay, such that B(y,,)| = maxye 0,13 |B(y)l; argument shows that

6 setVy = B(y,); tin—i

7 for eachy € {0,1}™ [Enel = Z ( i ) ©)

8: B(y) < B(y) \ Vi; =0

9: return V4,..., V. Denote byM (n, t; L) the maximum size of a list- ¢-grain-

correcting code of length, and define fo) < 7 < 1/,

Table[] lists upper bounds oR,, s obtained via our im- .. . logo M(n,|nT];L)
plementation of the greedy algorithm. The underlined eatri R(7; L) = lim inf " :
in the table are known to be exact valuesygf s, obtained
either from the fact thag,,, , > M (m,s) > 2/™/21, or from Proposition 7 We have
specialized arguments that we omit here.

From Corollary[d and Tablg I, we can obtain a suite of M(n,t;L) > = —,
upper bounds o/ (n,t) valid for various ranges of andt; >izo (nz l)
for example, the entry fofm, s) = (10,1) in the table yields gnq hence,
that M (n,t) < 236t27719 for ¢/n < 1/10. The following I
upper bound onR(r), which was defined in[{4), is also a R(;L) > —— — (1 —T)h( T )
direct consequence of Corollary 5. L+1 l1-7

forr <1 — Y3 ~0.2764.

2nL/(L+1)

Corollary 6 Form, s such that < s/m,
Proof : For a vectorz € {0,1}" let us define

— m 1 _
R(r)<1-7 (Z — 5 los Xw) : B(a) = {z € {0,1)" : & € By 4(2)).

When used in conjunction with Tat I, the above corollariote thatB(x) C {x © e : e € &, .}, so that|B(x)| <
gives useful upper bounds afi(7). For instance, using the [£..:] = >0 (7).
table entry for(m,s) = (16,4), we find thatR(r) < 1 — Let us construct the code by choosing codewords ran-
T(4 — %logg 662) ~ 1 — 1.6577 for 7 < 1/4. Figure[1 plots domly and uniformly with replacement frorf0,1}". For a
the minimum of all the upper bounds dt{7) obtainable from fixed vectory € {0,1}", call the choice of anyl + 1 code-

Corollary[6 and the entries of Tadlk I. words ¢y, ...,cr4+1 ‘bad’ if ¢1,...,er4+1 € B(y). Clearly,
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TABLE |
UPPER BOUNDS ONYm,s OBTAINED BY COMPUTER SEARCH THE UNDERLINED TABLE ENTRIES ARE KNOWN TO BE EXACT VALUES OF/m,s-

the expected number of bad choices for a random ebée known to the receiver if)(x1) # ¢(x2) for any two distinct

less than or equal to vectorszi, x2 € C and anyg € &, ;.
t meiy s L+l An obvious solution for the decoder is to consider as
2n( M ) (M) erasures the positions that could be in error, so the encader
L+1 2" rely on at-erasure-correcting code. Therefore, by the argument
v tn—i L+127HL of the Gilbert-Varshamov bound\/; (n,t) > tL(n)’ and
< ( = ( { )) ' hence,R,(7) > 1 — h(7). However, this lower bound can be

. . improved, as our next proposition shows.
Take M = 2nb/(L+1 /5~ ("77), then the ensemble-

average number of bad +1)-tuples is less than 1. ThereforeProposition 8 We have

there exists a code of siz&/ in which all the (L + 1)- N

tuples of codewords are good. This implies the lower bound M (n,t) > %

on M(n,t; L). im0 ("7)
The bound onR(r; L) follows from the observation that

; —(1— T 1_ V5
(") increases withi for i < 15 (5n+3 —v/5n2 + 10n +9). Henceli;(r) = 1—(1-7)h(:Z7) forT < 5 — 5 ~ 0.2764.

Thus, as long ag/n < : - §7 the asymptotics of the Proof : We shall construct a codg of size at leas2™/|E,, ;|
summationzf:O ("7) is determined by the terrfi";*). 1 by a greedy procedure. We begin with an empty set, choose

an arbitrary vectorr; and include it inC. Having picked
M\(NetdLo) not at present have a useful upper bound M. ... x,_,, for somei > 1, we chooser; so that
n,t; .

i—1
x; ¢ U{ccj De:ecyi}
V. GRAIN PATTERN KNOWN TO ENCODERDECODER =1
In this section, we assume that the user of the recordiig stop when such a choice is not possible. At that point, we

system is capable of testing the medium and acquiring infagill have constructed a code that satisfiegC| - [£,.¢] > 2".
mation about the structure of its grains. This informatien i We claim thatC correctst grains known to the receiver.
used for the writing of the data on the medium or performinguppose not; then there exists a grain pattérne D, 4
the decoding. Specifically, we assume again a medium wilich that¢(x;) = ¢(x;) for somex;,x; € C, i > j.
n bit cells and at most grains of length 2, but now the Equivalently,z; & e = x; ¢ €' for some error vectorg, e’
locations of the grains are available either to the decoder yith supge), supge’) C supfeg), where supp) denotes the
not the encoder of the data (Scenario I) or, conversely,@o tSupport of a vector. We then hawe = x; O (e ® €') with
encoder but not the decoder (Scenario Il). Accordingly, letg e’ &+, Which contradicts the construction 6f
M;(n,t),i= 1,2, be the maximum number of messages that As in the proof of Propositiofi]7, the bound aR, (7)

can be encoded and decoded without error in each of the twflows from the observation that whern < % _ \1/_05’ the

scenarios. Also, fob < 7 < 1/2, let asymptotics of the summatiop.’_, (") is determined by
log, M; the term (™ %). 1
R,(r) = liminf 02220 ln7)) ")
n— oo n

be the coding rate achievable in each situation whgnows B. Scenario Il
proportionally withn, with constant of proportionality. This scenario is similar in spirit to the channel with

For the analysis_ to follow, we need to recall the deﬁnitioﬂ)calized errorsof Bassalygo et al[]1]. In that setting, both
of &, from Section[Il-C, and the facti9) thaf.:| = e transmitter and the receiver know that all butositions

t n—u
i ( i ) of the codevector will remain error-free, and the coordisat
of the ¢ positions which can (but need not) be in error are
A. Scenario | known to the transmitter but not the receiver. Thus, in our

Scenario I, the encoder may rely on codes that correct
Walized errors, which according to1[1] gives the bound
EQ(T) > 1 — k(7). Again, this bound can be improved.

Here, we assume that the locations of the grains are kno
to the decoder of the data but are not available at the time
writing on the medium. A cod€ is said to correct grains



Proposition 9 We have will now switch to a parallel track by defining a natural

1 on probabilistic model of a channel corresponding to the one-
Ma(n,t) > o~ iy dimensional granular medium with grains of length at most 2
2 i=o ( i ) (the “grains channel”). This is a binary-output channet ttem

HenceR,(t) > 1—(1—7)h(Z=) forT < 1 — V5~ 0.2764. Make an error only at positions where a length-2 grain ends.
Proof :© We s;ow that whelniTthe enc_oofer Ii(r)wows the err(I)rr1 fact, error events are data-dependent: an error occuais at
Iocatioﬁs then it can successfully transmit position where a length-2 grain ends if and only if the ch&nne

input at that position differs from the previous channelunp

M > 12 (10) Our goal is to estimate the Shannon-theoretic capacityhfer t
~ 2n|& ] grains channel model. Let us proceed to formal definitions.
messages to the decoder, which proves the claimed lowePUPPOSe = z122..... andy = y;ys..... denote the input
bound onMa(n, t). We follow the proof of Theoreng of and output sequence respectively, withy; < {0, 1} for all .
. We further define the sequenee= wjus... .., whereu; =1

..M} to be transmitted, the (resp.u; = 0) indicates that a length-grain ends (resp. does

transmitter will use knowledge of the grain pattesn(with not end) at position. We takewu to be a first-order Markov

es € £,.0) 10 encodei using a suitably chosen vector from Lhain, i_ndependent of the channel inpeit having transition
probabilities P(u;|u;—1) as tabulated below (for some €

Given a message € {1,..

set of binary vectorst” = {z} : j = 1,...,n}. A vector x} _
is said to begoodfor e € &, if for any i # i’ and for any [0,1]):
47" we have, _ | ui=0 w=1
, u—1=0] 1—-p p . (11)
dH(:B;-@e,QB;-) <dH(£B§»EB6,£B§/), ui—1 =1 1 0

wheredy (-, -) denotes Hamming distance. The family of set§he grains channel makes an error at positigne., z; # y;)
X' i=1,...,M, is goodif for any i € {1,..., M} and for if and only if u; =1 andx; # x; . To be precise,
anye € &, ., there exists a vectcu;‘é- € X' that is good fore.

A good family of setst?, i = 1,..., M, enables the encoder yi =i (20 © i1 Jus, (12)

to transmit any message i, ..., M} with perfect recovery where the operations are being performed modulo 2. Equiva-

by the decoder. Indeed, given the grain patigrthe encoder lently,

chooses for transmission of message vector inX* that is x; if u;=0

good fore,. FT Ve ifu =1 (13)
Thus, we only need to show that fav/ satisfying [I0)

there exists a good family of sefg! = {x;‘_ cj=1,...,n}, We will find it useful to define the error sequenee =

i=1,...,M. There ar2”’M families of M setsX?, each ?1+%273;--- Wherez; = z; ©y;. Thus,

containing at most binary vectors of length. Of these, the 2= ui (@ D xi_q). (14)

number of families that areot good does not exceed . o
The casei = 1 is not covered by the above definitions. We

n  ogn?(M-— o . . 7. .
M - |En ] - (M = D)n|Ep )" - 27 M, will include it once we define a finite-state model of the gsain

If M satisfies[(Z0) with equality, then this number is less thathannel. . ) . .
9n*M Therefore, there exists a good family of saté The grains channel as we have defined above is a special

The argument for the lower bound dby(r) is the same as case of a _somewhat more general “write channel” model
that given forR, (7) in the proof of Propositiof]8, since theconsidered in([A].
extra multiplicative factor ofzin does not affect the asymptotic

behavior. 1 A. Discrete Finite-State Channels
To summarize, we obtain a lower bound &)(7), i = 1 For easy reference, we record here some important facts
or 2, of the form about discrete finite-state channels. The material in #g§@n

is substantially based uponl [3, Section 4.6].
A stationary discrete finite-state channel (DFS®ps an

This is because the ratg: code R, defined in [[1) is still INPUt sequence = 1,2, 23, ..., an output sequencg =
viable in the context of Scenarios | and II. A straightfordiar¥1: ¥2: Y3, - and a state sequence= sy, s, s3,.... Each

upper boundg; (v) < 1—7 follows from the fact tha\/; (n,) &n IS @ Symbol from a finite input alphabét, eachy, is
and Mo (n, t) cannot excee@"*, which is simply the one- & symbol from a finite output alphabgt and each state,
bit-per-grain upper bound. takes values in a finite set of stat8sThe channel is described

statistically by specifying a conditional probability agsment
P(Yn, 5n|Zn, $n_1), Which is independent af. It is assumed
that, conditional orx;,, ands,,_1, the pairy,, s,, is statistically
Thus far in this paper, we have considered a combinatoriatlependent of all inputs;, j < n, outputsy;, j < n, and
model of the one-dimensional granular medium, and givestatess;, j < n—1. To complete the description of the channel,
various bounds on the rate efgrain-correcting codes. We an initial states,, also taking values i&, must be specified.

R,(r) > max {0.5, 1-(1- T)h(L)}.

1—7

V. CAPACITY OF THE GRAINS CHANNEL



For a DFSC, we define thiewer (or pessimistif capacity at least estimate) is the so-callesgmmetric information rate
C = lim, o C,,, and upper (or optimistig capacityC' = (SIR) of the DFSC:
lim,, 00 C,, Where

1
R= lim —I(z";y"), (18)
C,=n""' max min I(x";y" | so) n—oo n
— . Q@) soes oo where the input sequeneeis an i.i.d. Bernoulli{/2) random
Cn=n Ql?(i’ﬁ)ﬁﬂléfé](‘” 1y" | s0). sequence.
In the above expressiond,(z";y"™ | so) is the mutual )
information between the length-input " = (z1,...,%,) B. First results
and the length: outputy™ = (y1,...,y.), given the value of It is easy to see that the grains channel is a DFSC, where

the initial stateso, and the maximum is taken over probabilitthe nth states,, is the pair(u,, z,), which takes values in
distributionsQ™ («™) on the inputz”. The limits in the above the finite setS = {(0,0),(0,1),(1,0),(1,1)}. Again, for
definitions of C andC' are known to exist. Clearlyy, < C,, completeness, we assume an initial stafehat takes values
for all n, and thusC < C. The capacities’ andC have an In S

operational meaning in the usual Shannon-theoretic sense —

see Theorems 4.6.2 and 5.9.2[in [3]. Proposition 10 The grains channel is indecomposableifer

The upper and lower capacities coincide for a large clads
.Of channels known amd(_ecomposabllehan.nels. Roughly, an pyoof - \we must check that the condition in{15) holds. We
indecomposable DFSC is a DFSC in which the effect of tr}g _ - . -
I . o ken =1 ands; = (0,21). Then,ming, q(s1 | x1,80) =
initial states, dies away with time. Formally, lef(s,, | ", s0) . Plus =0 up—=j)=1—p>0. 1
denote the conditional probability that theh state iss,, g€{0.1} ! 0 '
given the input sequence™ = (z1,...,z,) and initial state ~ As a consequence of the above proposition, the equality
s0. Evidently, ¢(s,, | ", s¢) is computable from the channelC = C holds for the grains channel when< 1. In fact, this
statistics. A DFSC is indecomposable if, for any 0, there equality also holds for the grains channel whe# 1, as the
exists anng such that for alln > ng, we have following result shows.

!
la(sn [ ", 50) —q(sn [ 2", 50)| <€ Proposition 11 For the grains channel with = 1, we have

for all s, 2", so ands). Theorem 4.6.3 of]3] gives an easy-L = C =1
to-check necessary and sufficient condition for a DFSC to bg . . . .
indecomposable: for some fixedand eache”, there exists a Qroof - We have, with probability 1,

choice fors,, (which may depend or:™) such that U = U, U, U3, Ug, U5, UG, - - -
min g(s, | 2", s9) > 0. (15) ~)0,1,0,1,0,1,... ifu=1
’ 1,0,1,0,1,0,... if ug=0.

We note here that the channels we consider in the subsequent

sections are indecomposable except in very special cages. Fhus, once the initial state, = (uo, o) is fixed, the output

these special cases, it can still be shown tHat C holds. vy of the grains channel is a deterministic function of the inpu
We make a few comments about DFSCs for which=- C'  Z:

holds. We denote bg' the common value of andC'. ThisC,

which we refer to simply as theapacityof the DFSC, can be

expressed alternatively. If we assign a probability distiion _ {50175017503,173,17575057 .. ifso = (1,20)

Y=Y1,Y2,Y3,Y4,Ys5, Y6, - - -

to the initial state, so thaty becomes a random variable, then
C = lim,_,+ C,, Where

X0, X2, To, Ta, Ta, Ty ... 1t S0 = (0,20).

Therefore, for any fixeds € S, we haveH (y" | ", sy =
C, = 1 max I(z";y" | so). (16) s) =0, and hence/(z";y" | so = s) = H(y" | so = s). If
n Q") ™ is a sequence of i.i.d. Bernoulli¢) random variables, then
Clearly,C, < C, < C,, forall n, so thatC, as defined above, Minses H(y" | so = f) = H(y" | so = (0,20)) = [n/2].
is indeed the common value @ and C. Note that this is !t follows thatC, > ===, so thatC > 1/2. On the other
independent of the choice of the probability distributiom ohand, for any input distributio®)” (z"), and anys € S, we
50. have H(y" | so = s) < [n/2]. Consequently(’,, < ("nﬂ
A further simplification to the expression for capacity i€Nd hence(’ < 1/2. We conclude tha€ = C'=1/2. 1

possible. Sincel(z";y") — I(z";y" | so)| < log;|S| (see,  In view of the two propositions above, the capacity of the
for example, [[3, Appendix 4A, Lemma 1]), we in fact have grains channel is defined by {17). From here onward, we

. 1
C = lim — max I(z";y"). a7) 170 be strictly faithful to the granular medium we are modgliwe should
n—oo . Qnr(zn) restrictsg to take values only i{(1,0), (1,1)}, so thatug = 1. This would

. s e . imply w1 = 0, meaning that no length-2 grain ends at the first bit cell ef th
The capacity of a DFSC is difficult to compute In genera’nedium, corresponding to physical reality. But this makesdifference to

A useful lower bound that is sometimes easier to compute (@& asymptotics of the channel, and in particular, to thexsbhcapacity.



denote this capacity bg'¢, and use the notatiofi¢(p) when therefore tempting to bound the capacity of the grains cblnn
the dependence gnneeds to be emphasized. It is difficult tdby the capacity of the binary channel witlonadjacent errors
compute the capacitg’® exactly, so we will provide useful Such a channel is defined similarly to the BINAEras channel:
upper and lower bounds. We note here for future reference the channel noise is controlled by a first-order Markov clehnn
trivial bound obtained from Propositign]11: w (@), andy; = x; © u; for all i > 1. The capacity of this
. channel is computed as in the BINAEras case and equals

CE(p) 2 C5(1) = 1. (19) h(p)/(1+p), whereh(p) denotes the binary entropy function.
However, a closer examination convinces one that this éyant
C. Upper Bound: BINAEras does not provide a valid lower bound f6r8(p).

Consider a binary-input channel S|m|lar o the _bmary ©'%. Lower Bound: The Symmetric Information Rate
sure channel, except that erasures in consecutive pasition

are not allowed. Formally, this is a channel with a binary !N this section, we derive an exact expression for the SIR of
input sequencer = 1,2, 3, ..., with z; € {0,1} for all the grains channel, which gives a lower bound on the capacity

i, and a ternary output sequenge = yi,vs, s, ..., with Of the channel. In accordance with the definition of dIRI (18),
y; € {0,1,€} for all i, wheree is an erasure symbol. The@Ssume thab.is an i.i.d. Bernoulli{/2) randqm sequence. With
input-output relationship is determined by a binary seqaenth's assumption, the state sequencis a first-order Markov

u = uy,ug, us, . .., which is a first-order Markov chain, inde-chain. Also, each output symbg), is easily verified to be a
pendent of the input sequenae with transition probabilities Bernoulli(/2) random variable (bu,, is not independent of
P(u;|u;—1) as in [I1). We then have Yn—1)- o _
We also assume that the initial statg is a random
o {xl if u; =0 (20) variable distributed according to the stationary distitnu
Yi = e ifu=1 of the Markov chain, so that the sequenges a station-

) ) ary Markov chain. It follows that the output sequenge
Since P(u; = 1 | u;—1 = 1) = 0, adjacent erasures do notis 5 stationary random sequence, so that the entropy rate
occur, so we term this channel the bingry-input no-adjacelﬁ(y) = Timy, o % H(y") exists. Itis also worth noting here
erasures (BINAEras) channel. To describe the channel cofRat the initial distribution assumed of causes the Markov
pletely, we define an initial state, taking values in{0,e}.  chain v to be stationary as well. In particular, the random

The BINAEras channel is a DFSC for which = C' holds, yariaplesu;, i > 0, all have the stationary distribution given

and its capacity, which we denote b}f (p), can be computed by P(u; = 0) = —— and P(u; = 1) = 2.
explicitly. We have P p
s 1 n n

Theorem 12 For the BINAEras channel with parameterc RE = lim —I(z"y") (22)
[0,1], we haveC = C = C*(p) £ 5. Haeu) — N o . -

(" y") = H(y") — H(y"[z") = H(y") — H(z"|z")
Intuitively, the average erasure probability of a symbalag (23)
p = - and the capacit¢’¢(p) equalsl —p. A formal proof . .
b= Tip P b As noted aboveH (Y) = lim,_ + H(y") exists. In fact,

is given in Appendix A.
We claim that the grains channel is a stochastically degta
BINAEras channel. Indeed, the grains channel is obtained

defined as foII_ows: the input sequenge= y1,92,¥s,- - - grains channel is given by
yi € {0,1,e}, is transformed to the output sequenge=

Yy
Jye can give an exact expression faf(Y") in terms of an
E\)l;inite series.

v, yh, ys, . .. according to the rule 1 = !
H(Y) = T > nB) [T -8,
i p) = -
! yl If yl 7& e (21) j=2 k=2
P e fui=e where
To cover the case whep, = e, we sety) equal to some 5 :=Prlyjy1=1]y;=yj-1=--=y2=0,91 =1]

arbitraryyo € {0,1}. It is straightforward to verify, via[{20),

@) and the fact thaP(u; — 1 | ui s — 1) — 0, that is given by the following recursion3, = %(1 — p), and for

the cascade of the BINAEras channel with the above chanrr‘.g 3, . _
. . ;o : _ 1 /1-(+p)Bi
has an input-output mapping — y; given by the equation Bj = o\ T, (24)
obtained by replacing; with y; in (I3). This immediately g1
leads to the following theorem. The lengthy proof of this proposition is given in Appendix B.

Remark: The following explicit expression fop;,j > 2

Theorem 13 Forp € [0, 1], we haveC®(p) < C®(p) = 13-  can be proved by induction frorfi (24):

Remark:We remark that any code that corre¢tsonadjacent 8, = 2((19—)j - (19+)j) (25)
substitution errors (bit flips) also correatgyrain errors. It is g (3+B +p)(197)j -(3-B +p)(19+)-7'
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whered. =1 — 228 and B = \/p? + 6p + 1. C(p)

1.0
Our next result shows théitm,, ., H(z" | ™) also exists, 0 95
and gives an exact expression for it, again in terms of an [
infinite series. Appendix B contains a proof of this result. 0.81
Proposition 15 When x is an ii.d. uniform Bernoulli se- 0.7
quence, we have 06!
1 2N /1= (—p) i

lim H(z" | ") = TP/ ZZ”h(J), 0.5 |
e L+p = I+p i

p

0.2 0.4 0.6 0.8 1.0
Together,[(2R),[(23), and Propositidng 14 15 provide an (a) Bounds onC%(p). The gray area shows the gap between the
exact expressiofor the SIR of the grains channel. This, along  'ower bound of Theorei 16 and the upper bound of Thedreim 13.
with the trivial bound [(IB), yields the following lower bodn R%(p)
on the capacityC. 1.0

Theorem 16 The capacityC%(p) > max(!/2, R%(p)), where 0.9%\
Rs(p) is the SIR of the grains channel and is given by the ’
following expression:

‘ 0.7
R = :
RE(p) = ——— S X (B - —
) z<1+p>§{ @) [T0 -0 o5
_prh(l—(—p)j)}_ 0'5; |
27 1+p i ‘ L L L L p
0.2 0.4 0.6 0.8 1.0

with 3; as in (24) orl(Zb). . _
(b) The symmetric information rat&e (p).

In Figure[2, we plot the upper and lower bounds@H(p)
stated in Theorenis 113 and]16 as well as the vaIuBﬂtﬁo) Fig. 2. Plots of the upper and Iower_bounds on the capacit)hefgrains
from Theoreni 16. Observe that the SIR is a strict lower bouﬁrdannelcg(p)’ and the SIR of the grains chann¥ (p0, as functions op.
on the capacity, at least fér56 < p < 1, whenR8(p) < 1/2.

The plots are obtained by numerically evaluatiRg(p) by
truncating its infinite series at some large valugj ofWe give
here a somewhat crude, but useful, estimate of the error inWe end with a few remarks on the zero-error capacity of the
truncating this series at some indgx- .J, with J > 2. Define grains channel. We are interested in the maximum zero-error

E. Zero-Error Capacity

the partial sums information rate,Ry(n), achievable over the grains channel
; _ with parametep € [0, 1] and inputz™. The case whep =0
1+p/2 (L= (—p) is trivi i i
s, = +p/ erh( (—p) ) (26) is trivial (the channel introduces no errors), so we conside
1+p — 1+p p > 0.
! S i1 The zero-error analysis depends on the initial statef the
1 channel. Suppose thag is such thatPr[u; = 1] > 0. Then
Ty, = —— > h(b; 1- 27 . o
7 2(1+p) z_; (%) 1}:[2( Br) 27) the state sequenag™ = 1,0,1,0,...,(n mod 2) is realized
= B with some positive probability. Corresponding to this stat
and note that the/th partial sum of theR®(p) series is sequence, we havg" = L0, T2, X2, T4, .., Ta|n/2)- THUS,
preciselyT; — 5. at most |n/2] bits can be transmitted without error across

this realization of the channel. Henc&(n) < 1 [n/2].
This zero-error information rate can actually be achieved.
Consider the binary length-code R,, defined in [[1) which
has 217/2] codewords. When a codeword from,, is sent
acrossany realization of the grains channel, the bits at even
coordinates remain unchanged. Thus,/2]| bits of infor-
mation can be transmitted without error, which proves that

Ro(n) = L [n/2].

Proposition 17 The errorlR9(p) — (T'y — Sy)| in truncating
the R&(p) series at an index= J, with J > 2, is at most

— | 29— 4 o—L(J+1)/2] |
T (e |

In particular, for any € [0, 1], the truncation error is at most
9—J 4 o-LUJ+1)/2]

We defer the proof to Appendix B. On the other hand, suppose that the initial stgtés such
The plot of RY(p) in Figure[2(a) was generated usidg= thatPr[u; = 1] = 0. Then, the worst-case channel realization
15 terms of the infinite series, so the plotted curve is withiis caused by the state sequene® = 0,1,0,1,...,(1 + n

0.004 of the trueRk® curve for allp. mod 2). In this case, the channel is such that the first coor-



11

dinate of the input sequence is always received withoutrerre,_; = 0) = (1 — p)/2. This yields H(y; | ui—1 = 1) <
at the output. A slight modification of the preceding argutmen(p) + 1 — p. Putting all the inequalities together, we find that
now shows thato(n) = + [n/2].

We have thus proved the following result. H(y" | uo) = ZH(% |yt ug)
i=1
Proposition 18 Consider a grains channel with parameter D 1
0. If the initial states, is such thaPr[u; = 1] > 0, then = n(l +p + (h(p) +1-p) 1 —|—p)
Ro(n) = L |n/2]; otherwiseRy(n) = L [n/2]. 1+ h(p)
In any case, the zero-error capacity of the channélis= = ”( 1+p )

) o
limn 00 Ro(n) = /2. It is not difficult to check that the above in fact holds with

equality when the input sequene# is an i.i.d. sequence of
APPENDIXA: PROOF OFTHEOREMILZ Bernoulli(t/2) random variables. Thus,

Observe first that the BINAEras channel is indecomposable 1+ h(p)
for p < 1. Indeed, for this channel, the condition in15) n~' max H(y™ | ug) = TP
reduces to showing that for some fixed there exists a Q") I+p
choice foru,, such thatmin,, P(un,|ug) > 0. This condition Plugging this into[[28), we obtain that, = ﬁ for all n,
clearly holds forn = 1 andu; = 0: minje(o,13 P(ur = 0|  and hence( =
up = j) = 1—p > 0, providedp < 1. We deal with the
indecomposable case in this appendix; whea 1, the proof
for C = C = 1/2 follows, mutatis mutandisthe proof of

_1
1+p”

APPENDIX B: PROOFS OFPROPOSITIONSIZ,[IBAND [IT7

Propositior L. B.1. Proof of Propositiofi 14
When the channel is indecomposable, we h@ve C = C. Sincelim,, %H(y”) = lim; oo H(yiy1 | ¥°), we need
We will show thatC' = ——. Choose the distribution on, show that the latter limit equals the expression in the state

1+
to be the stationary distrigution of the Markov processso of the proposition. We will work with the identity

that P(ug = 0) = ﬁ and P(ug = 1) = 1%5. Consequently,

w is a stationary process, and in particular, forialt 1, we H(yisr | y') = Z _H(yi“ |y"=b)Prly’ =b].
have P(u; = 0) = = and P(u; = 1) = . bef01}!
Observe that From the channel input-output relationship given byl (13) an

the fact that the input is an i.i.d. Bernoulli{/2) sequence, it

Ha"sy™ | uo) = H(y" | uo) — H(y™ | 2", uo) is clear thatPr[y’ = b] = Pr[y’ = b], whereb = b+ 1" is

@ H(y™ | uo) — H(u" | €™, up) the sequence obtained by flipping each bitinit then _also
®) . . follows that H(yi+1 | ¥* = b) = H(yi+1 | ' = b), since
= H(y" | ug) — H(u" | ), Prlyi1 = 1| y" = b] = Prlyis1 = 0| y' = b]. Hence,

with equality (a) above due to the fact that, givefi, the H(yisr | y') =2 Z H(yii1 |y’ = b)Prly’ = b], (29)
sequencegy™ and u™ uniquely determine each other, and beB ’
equality (b) because™ is independent ofc™. Furthermore,

sincew is a stationary first-order Markov process, we ha¥here B = {(bi,...,b1) € {0,1}" : b; = 0} is the set of
Hu" [uo) = X", H(un | un_1) = nH(uy | ug) = n»)  all binary lengthé sequences that have a 0 in the leftmost
= 2in=1 n | Un—1) = =

47" coordinate.

Hence, . .
Fix ¢ > 2. Define, for2 < j <, the events

- h(p)
_ 1 n _ i .
C’n—n QIE(E:C)%)H(:U |UO) —1+p. (28) Bj :{y . (yiayifla---,yi7j+1):()] 11}’
Now, H(y™ | uo) = >0, H(y; | y"~, up). Sincey’~! which, together with the everfty’ = 0'}, form a partition of
completely determinea’—!, we have by the data processing3. Here,07~'1 is shorthand for the-tuple (0,...,0,1). We
inequality [2, Theorem 2.8.1], record two facts abouB;. First,

H(yi |y o) < H(yi | w1, u) Prly’ € Bj] = Pr((yi,¥i-1,-- - Yi—ji1) = 077 11]
= Pr[(ijyj—lv"-vyl) :Oj_ll]v (30)

the last equality stemming from the fact thatis stationary.
Second, by the following lemma,

We further have
H(yi | w'™" uo) < H(yi | uia)
p 1
=H(yi|ui-1=0)——+H(yi [ wi-1 =1)7—— i i
(i | wia )l—i—p (i | wia )1+p H(yiy1 |y = b) = h(Prlyit1 = 1] y" = b]) (31)
Givenu,;_1 = 1, y, is a binary random variable (sinege =0 s invariant overB,;.
with probability 1), and thusH (y; | u;—1 = 1) < 1. On the

other hand, we havé’(y; = e | u;—1 = 0) = P(u; = 1| Lemma 19 Forb € B;, Prly;y1 = 1 | y' = b] equals
u;—1 = 0) = p, and so the conditional entropg¥ (y; | u;—1 = L,
0) is maximized whenP(y; = 0 | u;_y = 0) = P(y; = 1| Y2Prlu; =0[ (yj—1,95-2,- -, 92) = 0777, (ur,21) = (0,0)].



Proof : The proof relies upon the following claim :
Suppose thai,—; = b; then, with probability 1, we
havey,, = b if and only if s, := (ug,zx) = (0,b).

Indeed, even without the assumption gpn_;, the “if” part

holds trivially. For the “only if” part, assume that,_1 = b

andy; = b. Note that ifu, = 1, then with probability 1, we

haveuy_; = 0. Hence, by way of(13), we havg, = =1 =

yr—1. However,y,_1 # yx by assumption; so we must have Pr[(y;,y;_1, ..

uy, = 0. Consequentlyy;, = zy, so thatz;, = b.
Consider anyb € B;. From the claim, we have

Pr{(uis1, iv1) = (0,1)|y" = b
Y2 Pruir = 0y’ = b),

Prlyi+1 = 1|y’ = b]

where we have used the fact that,; is independent of/’.
Note that, in the eveny? b, we havey;_j;» = 0 and
Yi—j+1 = 1, so that by the claim again,

Prluip1 = 0ly" = b] = Prlujs1 = 0]y’ = b, si—j12 = (0,0)].

Now, given the channel state;_;1» = (0,0), the ran-
dom variablesu; 1, vi, Yi—1,...,Yi—j+2 are conditionally
independent of the past outpyt—7*!. Furthermore, given
si—j+2 = (0,0), the random variabley;_;+o is uniquely
determinedy;_; 2 = 0. Hence,

Priuis1 =0y =b,si_j40=0] =
Prluir = 0| (yi, -, 4ijs) = 0772, sijpa = 0],

Finally, by the joint stationarity ofy and u, the right-hand
side above is equal to

Prlu; = 0| (yj—1,Yj-2,...,y2) = 0772 51 = 0],

which is what we needed to show.

In the statement of Proposition ]14, we defingd =
Pr[yj+1 =1 | (yj,yjfl,. --7y1) = Ojill]. Note that if we
seti = j in Lemmal19, we get

ﬁj = 1/2PI’[Uj =0 | (yj—la e ,yg) = O'j_z, (ul,xl) = (0,0)]
(32)
From [29)(3R), and Lemn{all9, we have

= 23 (B Prl(ys---pn) = 0071

Jj=2

+ 2H (yiq1 | Yyl = Oi) Pr[yi = Oi].(33)

H(yix1 | y")
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The proof of Proposition 14 will be complete once we prove
the next two lemmas.

Lemma 21 Forj > 2, we have

j—1
L) =001 = ﬁ kl;[z(l — Br)

Proof : From the definition of3;, we readily obtain

Pri(yj,....y1) = 0011] =
-1
[H(l = Br)| - Pr(y2, 1) = (0,1)].
k=2
We must show thaPr[(ys,y1) = (0,1)] = ﬁ.
We write

Pr{(y2,y1) = (0,1)] =
Z Pf[(yz,yl) = (0’ 1) | (uQvul) = (avb)]
(a,b)e{0,1}2
x Pr[(u2,u1) = (a,b)].

Clearly,Pr{(us,u1) = (1,1)] = 0. Also, Pr[(y2,y1) = (0,1) |

(uz,u1) = (1,0)] = 0, since, given(us,ui) = (1,0) we

must havey, = z; = y;, by virtue of [13). Next, given
(ug,u1) = (0,0), we have(yz,y1) = (x2,21), and since
(z2,21) Is independent ofus, u1), we find that

Pr((y2,41) = (0,1) | (u2,u1) = (0,0)]
= Pr{(z2,21) = (0,1)]

/4.

By a similar argumentPr[(y2,y1) = (0,1) | (ug,u1) =
(0,1)] = /4. Hence,

Pr{(y2,41) = (0,1)] = (1/4) Prluz = 0] =

41+ p)’
as desired.l

Lemma 22 5, = %(1 —p), and forj > 3, 5, satisfies the
recursion inl(24).

The term at the end of the above expression vanishes as

1 — oo, as we show below for completeness.
Lemma 20 lim H(y;11 | y* = 0") Prly’ = 0] = 0.
71— 00

Proof : Since0 < H(y;11 | y* = 0%) < 1, it is enough to

Proof : From [32), we have

show thatPr[y’ = 0] = 0 converges to 0. For this, observe

that for anyj, if y; = 0, then(z;_1,z;) # (1,1). Hence, if
y' = 0%, then(xq,22) # (1,1), (z3,24) # (1,1), and so on.

Thus, Prly’ = 07] < (3/4)L"/2), which suffices to prove the that 3;
7v; == Pr[u; = 0| E;]. We shall show that foy > 3,

lemma. 1
So, lettingi — oo in (33), we obtain

H(Y) =2 h(B)) Prl(y;,y5-15--,y1) = 0" 11]. (34)

Jj=2

62 = 1/2PI‘[U2 =0 | (ul,xl) = (0,0)]
YaPrlug =0 |u; =0 = 12(1 —p).
For convenience, define, forj > 2, E; =
{(yj—layj—Qa"'ayQ) = 0J_21 (ulaxl) = (070)}1 SO

(Y/2) Prlu; = 0 | Ej]

= = (Y2)(1 — ~,), where

_p—v-1)

= 35
J 1471 (35)

which is equivalent to the recursion in_{24).
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So, letj > 3 be fixed. We start with
Z Priu; =1 | uj_1 = b] Prluj_1 =b| Ej]
be{0,1}
= p-Prluj1 =0/ Ej]
= p-Prluj—1=0]y;—1 =0,E;_1]
. Prlyj—1 =0 uj—1=0,E1](1 —vj-1)
Prlyj—1 =0 Ej_1]

where we have useBru; 1 =0 | E;_1] =1—,_; for the

Hence,

n

H(zn | wn) = ZH(Z’L | Zlv"'az’iflawi)'

=1
As a result, by the Cesaro mean theorem,

Y=

1
lim — H(z" |2") = lim H(z | z1,..
n—oo N 1—r00

provided the latter limit exists.

<y Zi—1, wi)a

To evaluateH (z; | z1,...,2i_1, "), we define the events

last equality. ;
equatty . Ag={x' 1 x; = 21},
Givenu;_; = 0, we havey;_; = z;_1, and sincex;_; .
is independent ofi;_; and E;_1, the numerator in the lastA; = {z' :x; # 21 = =2 #xi—j_1}, 1 < j <i-2,
expression above evaluatesifo(1 — ~v;_1). Thus, -
P fo(l —7;-1) and A; 1 = {&" : x; # x;—1 = --- = x1}. These events

el =)
Prly; 1 = 0] Ej]

Turning to the denominator, we writery; 1 =0 | E;_1] as

> Prly; 1 =0uj 1 =0b,E; 1] Prlu; 1 =b| B4

partition the spacg0,1}? to which z? belongs. Sincer is
an i.i.d. uniform Bernoulli sequence, we habe[z’ € A;] =
(1/2)71 for 0 < j <i—2, andPr[z’ € A;_1] = (1/2)"" L.
Now, if ¢ € Ao, then by [I#), we have;; = 0.
ConsequentlyH (z; | z1,...,zi_1,x' € Ag) = 0.

(36)

V=P

be{0.1} If ' € A; for somej € [1,i — 2], then we havey; = u;,
= Y21 =) +Prlyjo1 =0 wjor =L, Ejal %1 4 =...= 2 ., =0, andz_; = u,_;. Thus,
37 ,
. ( ) H(zi|21,...,zi_1,wZ€Aj)
We claim thatPr[y,—1 = 0 | u;—1 = 1, Ej_1] = 1. Indeed, = H(ui| 21, 25—j1,ui_j, @ € A;)
givenu;_; = 1, we havey;_; = z;_». Furthermore, we must @ ®) ‘

haveu;_» = 0 with probability 1, so that;_» = y;_». Thus, = Huiluiy) = H(ujpr|w).
givenw;, = 1, we must havey; 1 = y;—» with probability gqyajity (a) above is due to the fact that is a first-

1. But note that the evedi;_, impliesy;» = 0:if j = 3,this  5rger Markov chain independent of, while equality (b)
follows from (uy,z1) = (0,0), and if j > 4, this is contained s 5 consequence of the stationarity @f(which is itself a

within (y;_2,...,y2) = 0°73. Thus, givenu;_; = 1 and
Ej_1, we havey;_1 = y;_» = 0 with probability 1.

So, carrying on from[{37), we get
Prlyj—1 =0 Ej1] = Y2(1 —vj—1) +vj-1 = Y/2(1 +7-1)
Feeding this back intd (36), we obtain

Yl =)
RV ey

which is the desired recursioh (353
This concludes the proof of Propositibn] 14.

B.2. Proof of Propositiofi 15

We break the proof into two parts. We first show that

n—oo N

lim = H(z" @) =3 27 H(uy |w)  (38)
j=2

and subsequently, we prove that

= 1 2
> 27 H(uglu) = -/
par 1+p

To show [38), we start with

o0 ;

Zzﬂ'h(%). (39)

Jj=2

Hz"|a") = ZH(ZZ | 21, 0y zim1, 2™).
i=1

From [I3), it is evident that; is independent of:; for j > i.

consequence of the stationarity of the state sequepce

Finally, if 2' € A;_1, thenz; = u; andz;_; = -+ = 25 =
0. Thus,
H(z; | 21, .. L zil,xt e Ai—1) = H(u; | 21).
Therefore,
H(zi | 21,5 2i-1, :cz)

i—1
ZH(ZZ | AT .,zi,l,cci S AJ)Pr[:cl S AJ]
=0

1—2
D H(ujgn |wn) 2777 4 H(u | 21) 27

Jj=1

Letting i — oo, we obtain [3B).

It remains to prove[(39). For this, note first thAt(u; |
ui) = H(uj | ug = 0)Prlug = 0]+ H(u; | w1 =1)Prluy =
1]. Furthermore, since; = 1 impliesus = 0 with probability
1, we have, for allj > 2,

H(’U,j | Uy = 1) ZH(U7 | u9 :O) :H(uj_l |U1 ZO),

the last equality following from the stationarity of. Hence,

o0 o0

> 2 Hu |un=1) = Y 277 H(uj1 | u1=0)

=2 j=2

I~ _;
= 522 JH(’UJJ'|’U,1:O)

Jj=2
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since H (u; | u; = 0) = 0. Putting it all together, we find that Upon replacing the bound ifi_(42) by the looser

ZQ_jH(u.j|u1) 1 Z H 1-B)

201 +p) J=2[(J+1)/2] k=2

1 N -
= (Prfu; = 0] + §pr[ul — 1])22 I H(uj |uy =0) SO that the summation starts at an even ingexroutine

= algebraic manipulations now yield
o 1 —+ p/2 1 — m—1
- T > 27 H(u; | uy =0). HY)-T)| < T > ()
J=2 =1(J+1)/2]
Finally, observe thaff (u; | u; = 0) = h(%‘zfj)j), as it = ( > 9~ LI+D/2]
can be shown (for example, by induction) tHat(u; = 0 | I+p

uy = 0) = 15525 for all j > 1. This proves((39), and with Plugging this and[{41) intd (40), we obtain Proposition 17.

this, the proof of PropositioR 15 is complete. ACKNOWLEDGEMENT. Navin Kashyap would like to thank

Bane Vasic for bringing to his attention the problem consde
B.3. Proof of Propositiofi 17 in this work. The authors would like to thank Haim Permuter

. . ) _ for helpful discussions.
The error in truncating th&e(p) series at the index = J

is
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