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Abstract

We provide a systematic study of the problem of finding the source of a rumor
in a network. We model rumor spreading in a network with a variant of the popular
SIR model and then construct an estimator for the rumor source. This estimator
is based upon a novel topological quantity which we term rumor centrality. We
establish that this is an ML estimator for a class of graphs. We find the follow-
ing surprising threshold phenomenon: on trees which grow faster than a line, the
estimator always has non-trivial detection probability, whereas on trees that grow
like a line, the detection probability will go to 0 as the network grows. Simulations
performed on synthetic networks such as the popular small-world and scale-free
networks, and on real networks such as an internet AS network and the U.S. elec-
tric power grid network, show that the estimator either finds the source exactly
or within a few hops of the true source across different network topologies. We
compare rumor centrality to another common network centrality notion known as
distance centrality. We prove that on trees, the rumor center and distance center
are equivalent, but on general networks, they may differ. Indeed, simulations show
that rumor centrality outperforms distance centrality in finding rumor sources in
networks which are not tree-like.

1 Introduction
In the modern world the ubiquity of networks has made us vulnerable to new types of
network risks. These network risks arise in many different contexts, but share a com-
mon structure: an isolated risk is amplified because it is spread by the network. For
example, as we have witnessed in the recent financial crisis, the strong dependencies
or ‘network’ between institutions have led to the situation where the failure of one (or
few) institution(s) have led to global instabilities. In an electrical power grid network,
an isolated failure could lead to a rolling blackout. Computer viruses utilize the Internet
to infect millions of computers everyday. Finally, malicious rumors or misinformation
can rapidly spread through existing social networks and lead to pernicious effects on
individuals or society. In all of these situations, a policy maker, power network opera-
tor, Internet service provider or victim of a malicious rumor, would like to identify the
source of the risk as quickly as possible and subsequently quarantine its effect.

In essence, all of these situations can be modeled as a rumor spreading through a
network, where the goal is to find the source of the rumor in order to control and prevent
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these network risks based on limited information about the network structure and the
‘rumor infected’ nodes. In this paper, we shall take important initial steps towards a
systematic study of the question of identifying the rumor source based on the network
structure and rumor infected nodes, as well as understand the fundamental limitations
on this estimation problem.

1.1 Related Work
Prior work on rumor spreading has primarily focused on viral epidemics in popula-
tions. The natural (and somewhat standard) model for viral epidemics is known as the
susceptible-infected-recovered or SIR model [1]. In this model, there are three types
of nodes: (i) susceptible nodes, capable of being infected; (ii) infected nodes that can
spread the virus further; and (iii) recovered nodes that are cured and can no longer be-
come infected. Research in the SIR model has focused on understanding how the struc-
ture of the network and rates of infection/cure lead to large epidemics [2],[3],[4],[5].
This motivated various researchers to propose network inference techniques for learn-
ing the relevant network parameters [6],[7],[8],[9],[10]. However, there has been little
(or no) work done on inferring the source of an epidemic.

The primary reason for the lack of such work is that it is quite challenging. To
substantiate this, we briefly describe a closely related (and much simpler) problem of
reconstruction on trees [11],[12], or more generally, on graphs [13]. In this problem one
node in the graph, call it the root node, starts with a value, say 0 or 1. This information
is propagated to its neighbors and their neighbors recursively along a breadth-first-
search (BFS) tree of the graph (when the graph is a tree, the BFS tree is the graph).
Now each transmission from a node to its neighbor is noisy – a transmitted bit is flipped
with a small probability. The question of interest is to estimate or reconstruct the value
of the root node, based on the ‘noisy’ information received at nodes that are far away
from root. Currently, this problem is well understood only for graphs that are trees
or tree-like, after a long history. Now the rumor source identification problem is, in
a sense harder, as we wish to identify the location of the source among many nodes
based on the infected nodes – clearly a much noisier situation than the reconstruction
problem. Therefore, as the first step, we would like to understand this problem on trees.

1.2 Our Contributions
In this paper, we take initial steps towards understanding the question of identifying
the rumor source in a network based on (rumor) infected nodes. Specifically, we start
by considering a probabilistic model of rumor spreading in the network as the ground
truth. This model is based on the SIR model which is well studied in the context
of epidemiology, as mentioned earlier. It is the natural rumor spreading model with
minimal side information. Therefore, such a model provides the perfect starting point
to undertake the systematic study of such inference problems.

The question of interest is to identify the source of the rumor based on information
about the infected nodes as well as the underlying network structure using the prior in-
formation about the probabilistic rumor spreading model. In the absence of additional
information (i.e. a uniform prior), clearly the maximum likelihood (ML) estimator
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minimizes the estimation error. Therefore, we would like to identify (a) a computa-
tionally tractable representation of the ML estimator if possible, and (b) evaluate the
detection probability of such an estimator.

Now obtaining a succinct, useful characterization of an ML estimator for a gen-
eral graph seems intractable. Therefore, following the philosophical approach of re-
searchers working on the reconstruction problem mentioned above and on the efficient
graphical model based inference algorithm (i.e. Belief Propagtation), we address the
above questions for tree networks.

We are able to obtain a succinct and computationally efficient characterization of
the ML estimator for the rumor source when the underlying network is a regular tree.
We are able to characterize the correct detection probability of this ML estimator for
regular trees of any given node degree d. We find the following phase transition. For
d = 2, i.e. when the network is a linear graph (or a path), the asymptotic detection
probability is 0. For d ≥ 3, i.e. when the network is an expanding tree, the asymptotic
detection probability is strictly positive. For example, for d = 3, we identify it to be
1/4.

As the next step, we consider non-regular trees. The ML estimator of regular trees
naturally extends to provide a rumor source estimator for non-regular trees. However,
it is not necessarily the ML estimator. We find that when a non-regular tree satisfies a
certain geometric growth property (see 4.4 for the precise definition), then the asymp-
totic detection probability of this estimator is 1. This suggests that even though this
computationally simple estimator is not the ML estimator, its asymptotic performance
is as good as any other (and hence the ML) estimator.

Motivated by results for trees, we develop a natural, computationally efficient heuris-
tic estimator for general graphs based on the ML estimator for regular trees. We per-
form extensive simulations to show that this estimator performs quite well on a broad
range of network topologies. This includes synthetic networks obtained from the small-
world model and the scale-free model as well as real network topologies such as the
U.S. electric power-grid and the Internet. In summary, we find that when the network
structure (irrespective of being a tree) is not too irregular, the estimator performs well.

The estimator, which is ML for regular trees, can be thought of as assigning a non-
negative value to each node in a tree. We call this value the rumor centrality of the
node. In essence, the estimator chooses the node with the highest rumor centrality as
the estimated source, which we call the rumor center of the network. There are various
notions of network centralities that are popular in the literature (cf. [14],[15]). There-
fore, in principle, each of these network centrality notions can act as rumor source
estimators. Somewhat surprisingly, we find that the source estimator based on the pop-
ular distance centrality notion is identical to the rumor centrality based estimator for
any tree. Therefore, in a sense our work provides theoretical justification for distance
centrality in the context of rumor source detection.

Technically, the method for establishing non-trivial asymptotic detection for regu-
lar trees with d ≥ 3 is quite different from that for geometric trees. Specifically, for
regular trees with d ≥ 3, we need to develop a refined probabilistic estimation of the
rumor spreading process to establish our results. Roughly speaking, this is necessary
because the rumor process exhibits high variance on expanding trees (due to exponen-
tial growth in the size of the neighborhood of a node with distance) and hence standard
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concentration based results are not meaningful (for establishing the result). On the
other hand, for geometric trees the rumor process exhibits sharp enough concentration
(due to sub-exponential growth in the size of the neighborhood of a node with dis-
tance) for establishing the desired result. This also allows us to deal with heterogeneity
in the context of geometric trees. Similar technical contrasts between geometric and
expanding structures are faced in analyzing growth processes on them. For example,
in the classical percolation literature precise ‘shape theorems’ are known for geometric
structures (e.g. d-dimensional grids) [16, 17, 18, 19, 20, 21]. However, little is known
in the context of expanding structures. Indeed, our techniques for analyzing regular
(expanding) trees do overcome such challenges. Developing them further for general
expanding graphs (non-regular trees and beyond) remain an important direction for
future research.

Finally, we note that calculating the rumor centrality of a node is equal to comput-
ing the number of possible linear extensions of a given partial order represented by the
tree structure rooted at that particular node. Subsequently, our algorithm leads to the
fastest known algorithm for computing the number of possible linear extensions in this
context (see [22] for the best known algorithm in the literature).

1.3 Organization
In Section 2, the probabilistic model for rumor spreading and the derivation of the
source estimator is presented. Section 3 studies properties of this estimator and presents
an efficient algorithm for its evaluation. Section 4 presents results about the effective-
ness of the estimator for tree networks in terms of its asymptotic detection probability.
Section 5 shows the effectiveness of the estimator for general networks by means of
extensive simulations. Section 6 provides detailed proofs of the result presented in
Section 4. We conclude in Section 7 with directions for future work.

2 Rumor Source Estimator
In this section we start with a description of our rumor spreading model and then we
define the maximum likelihood (ML) estimator for the rumor source. For regular tree
graphs, we equate the ML estimator to a novel topological quantity which we call
rumor centrality. We then use rumor centrality to construct rumor source estimators for
general graphs.

2.1 Rumor Spreading Model
We consider a network of nodes modeled as an undirected graph G(V,E), where V is
a countably infinite set of nodes and E is the set of edges of the form (i, j) for some i
and j in V . We assume the set of nodes is countably infinite in order to avoid boundary
effects. We consider the case where initially only one node v∗ is the rumor source.

We use a variant of the common SIR model for the rumor spreading known as the
susceptible-infected or SI model which does not allow for any nodes to recover, i.e.
once a node has the rumor, it keeps it forever. Once a node i has the rumor, it is able
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to spread it to another node j if and only if there is an edge between them, i .e. if
(i, j) ∈ E. Let τij be the time it takes for node j to receive the rumor from node i once
i has the rumor. In this model, τij are independent and have exponential distribution
with parameter (rate) λ. Without loss of generality, assume λ = 1.

2.2 Rumor Source Estimator: Maximum Likelihood (ML)
Let us suppose that the rumor starting at a node, say v∗ at time 0 has spread in the
network G. We observe the network at some time and find N infected nodes. By
definition, these nodes must form a connected subgraph of G. We shall denote it by
GN . Our goal is to produce an estimate, which we shall denote by v̂, of the original
source v∗ based on the observation GN and the knowledge of G. To make this estima-
tion, we know that the rumor has spread in GN as per the SI model described above.
However, a priori we do not know from which source the rumor started. Therefore, we
shall assume a uniform prior probability of the source node among all nodes of GN .
With respect to this setup, the maximum likelihood (ML) estimator of v∗ with respect
to the SI model given GN minimizes the error probability, i.e. maximizes the correct
detection probability. By definition, the ML estimator is

v̂ ∈ arg max
v∈GN

P(GN |v), (1)

where P(GN |v) is the probability of observing GN under the SI model assuming v is
the source, v∗. Thus, ideally we would like to evaluate P(GN |v) for all v ∈ GN and
then select the one with the maximal value (ties broken uniformly at random).

2.3 Rumor Source Estimator: ML for Regular Trees
In general, evaluation of P(GN |v) may not be computationally tractable. Here we shall
show that for regular trees, P(GN |v) becomes proportional to a quantity R(v,GN )
which we define later and call rumor centrality. TheR(v,GN ) is a topological quantity
and is intimately related to the structure of GN .

Now to evaluate P(GN |v) when the underlying graph is a tree, essentially we wish
to find the probability of all possible events that result inGN afterN nodes are infected
starting with v as the source under the SI model. To understand such events, let us
consider a simple example as shown in Figure 1 with N = 4. Now, suppose node 1
was the source, i.e. we wish to calculate P(G4|1). Then there are two disjoint events
or node orders in which the rumor spreads that will lead to G4 with 1 as the source:{

1, 2, 3, 4
}

and
{

1, 2, 4, 3
}

. However, due to the structure of the network, infection
order

{
1, 3, 2, 4

}
is not possible. Therefore, in general to evaluate P(GN |v), we need

to find all such permitted permutations and their corresponding probabilities.
Let Ω(v,GN ) be the set of all permitted permutations starting with node v and

resulting in rumor graph GN . We wish to determine the probability P(σ|v) for each
σ ∈ Ω(v,GN ). To that end, let σ =

{
v1 = v, v2, . . . , vN

}
. Let us define, Gk(σ) as
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the subgraph (of GN ) containing nodes
{
v1 = v, v2, . . . , vk

}
for 1 ≤ k ≤ N . Then,

P
(
σ
∣∣ v) =

N∏
k=2

P
(
kth infected node = vk

∣∣ Gk−1(σ), v
)
. (2)

Each term in the product on the right hand side in (2), can be evaluated as follows.
Given Gk−1(σ) (and source v), the next infected node could be any of the neighbors
of nodes in Gk−1(σ) which are not yet infected. For example, in Figure 1 G2 is {1, 2}
when the source is assumed to be 1. In that case, the next infected node could be any
one of the 4 nodes: 3, 4, 5 and 6. Now due to the memoryless property of exponential
random variables and since all infection times on all edges are independent and iden-
tically distributed (i.i.d.), it follows that each of these nodes is equally likely to be the
next infected node. Therefore, each one of them has probability 1/4. More generally, if
Gk−1(σ) has nk−1(σ) uninfected neighboring nodes, then each one of them is equally
likely to be the next infected node with probability 1/nk−1(σ). Therefore, (2) reduces
to

P
(
σ
∣∣ v) =

N∏
k=2

1

nk−1(σ)
. (3)

Given (3), now the problem of computing P
(
σ
∣∣ v) boils down to evaluating the size

of the rumor boundary nk−1(σ) for 2 ≤ k ≤ N . To that end, suppose the kth added
node to Gk−1(σ) is vk(σ) with degree dk(σ). Then it contributes dk(σ)−2 new edges
(and hence nodes in the tree) to the rumor boundary. This is because, dk(σ) new edges
are added but we must remove the edge along which the recent infection happened,
which is counted twice. That is, nk(σ) = nk−1(σ) + dk(σ)− 2. Subsequently,

nk(σ) = d1(σ) +

k∑
i=2

(di(σ)− 2). (4)

Therefore,

P
(
σ
∣∣ v) =

N∏
k=2

1

d1(σ) +
∑k
i=2(di(σ)− 2)

. (5)

For a d regular tree, since all nodes have the same degree d, it follows from (5) that
every permitted permutation σ has the same probability, independent of the source.
Specifically, for any source v and permitted permutation σ

P
(
σ
∣∣ v) =

N−1∏
k=1

1

dk − 2(k − 1)

≡ p(d,N).

From above, it follows immediately that for a d regular tree, for any GN and candidate
source v, P

(
GN

∣∣ v) is proportional to |Ω(v,GN )|. Formally, we shall denote the
number of distinct permitted permutations |Ω(v,GN )| by R(v,GN ).
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Figure 1: Example network where the rumor graph has four nodes.

Definition 1. Given a graph G and vertex v of G, we define R(v,G) as the total
number of distinct permitted permutations of nodes of G that begin with node v ∈ G
and respect the graph structure of G.

In summary, the ML estimator for a regular tree becomes

v̂ ∈ arg max
v∈GN

P
(
GN

∣∣ v)
= arg max

v∈GN

∑
σ∈Ω(v,GN )

P
(
σ
∣∣ v)

= arg max
v∈GN

R(v,GN )p(d,N)

= arg max
v∈GN

R(v,GN ) (6)

with ties broken uniformly at random.

2.4 Rumor Source Estimator: General Trees
As (6) suggests, the ML estimator for a regular tree can be obtained by simply eval-
uating R(v,GN ) for all v. However, as indicated by (5), such is not the case for a
general tree with heterogeneous degree. This is because in the regular tree, all per-
mitted permutations were equally likely, whereas in a general tree, different permitted
permutations have different probabilities. To form an ML estimator for a general tree
we would need to keep track of the probability of every permitted permutation. This
could be computationally quite expensive because of the exponential number of terms
involved. Therefore, we construct a simple heuristic to take into account the degree
heterogeneity.

Our heuristic is based upon the following simple idea. The likelihood of a node is
a sum of the probability of every permitted permutation for which it is the source. In
general, these will have different values, but it may be that a majority of them have a
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common value. We then need to determine this value of the probability of the com-
mon permitted permutations. To do this, we assume the nodes receive the rumor in a
breadth-first search (BFS) fashion. Roughly speaking, this corresponds to the fastest
or most probable spreading of the rumor.

To calculate the BFS permitted permutation probability, we construct a sequence of
nodes in a BFS fashion, with the source node fixed. For example, consider the network
in Figure 2. If we let node 2 be the source, then a BFS sequence of nodes would be
2, 1, 3, 4, 5 and the probability of this permitted permutation is given by (5).

If we define the BFS permitted permutation with node v as the source as σ∗v , then
the rumor source estimator becomes (ties broken uniformly at random)

v̂ ∈ arg max
v∈GN

P
(
σ∗v
∣∣ v)R(v,GN ). (7)

We now consider an example to show the effect of the BFS heuristic. For the network
in Figure 2, the corresponding estimator value for node 1 is

P(σ∗1)R(1, GN ) =

(
1

4

)4

4!

= 6

(
1

4

)3

and for node 2 it is

P(σ∗2)R(2, GN ) =
1

2

(
1

4

)3

3!

= 3

(
1

4

)3

.

For comparison, the exact likelihood of node 1 is

P(GN |1) =P({1, 2, 3, 4, 5}|1) + P({1, 2, 3, 5, 4}|1)

+ P({1, 2, 4, 3, 5}|1) + · · ·+ P({1, 5, 4, 3, 2}|1)

=24

(
1

4

)4

=6

(
1

4

)3

and for node 2 it is
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P(GN |2) =P({2, 1, 3, 4, 5}|2) + P({2, 1, 3, 5, 4}|2)

+ P({2, 1, 4, 3, 5}|2) + P({2, 1, 4, 5, 3}|2)

+ P({2, 1, 5, 3, 4}|2) + P({2, 1, 5, 4, 3}|2)

=6
1

2

(
1

4

)3

=3

(
1

4

)3

.

In this case we find that the BFS heuristic equals the true likelihood for both nodes.
Second, node 1 is only twice as likely as node 2 to be the source. However, if we look
at the ratio of the rumor centralities of the nodes we find

R(1, GN )

R(2, GN )
=

4!

3!

= 4.

Thus, the rumor centrality of node 1 is four times as large as that of node 2. What
is happening is that without the BFS heuristic, rumor centrality is being fooled to al-
ways select higher degree nodes because it assumes all nodes have the same degree.
Therefore, if a node only has a few infected neighbors (such as node 2), rumor cen-
trality assumes that the node was not immediately infected and consequently did not
have time to infect its neighbors. However, the BFS heuristic tries to compensate for
the tendency of rumor centrality to favor higher degree nodes.

Indeed, as we shall see in Section 5, this heuristic is an improvement over the naive
extension of the estimator (6) for networks with very heterogeneous degree distribu-
tions. That is, biasing as per P

(
σ∗v
∣∣ v) in (7) is better than the unbiased version of

it.

2.5 Rumor Source Estimator: General Graphs
The ML estimator for a general graph, in principle can be computed by following a
similar approach as that for general trees. Specifically, it corresponds to computing the
summation of the likelihoods of all possible permitted permutations given the network
structure. This could be computationally prohibitive. Therefore, we propose a simple
heuristic.

To that end, note that even in a general graph the rumor spreads along a spanning
tree of the observed graph corresponding to the first time each node receives the ru-
mor. Therefore, a reasonable approximation for computing the likelihood P(GN |v)
is as follows. First, suppose we know which spanning tree was involved in the rumor
spreading. Then, using this spanning tree, we could apply the previously developed
tree estimator. However, it is the lack of knowledge of the spanning tree that makes the
rumor source estimation problem complicated.

We circumvent the issue of not knowing the underlying spanning tree as follows.
We assume that if node v ∈ GN was the source, then the rumor spreads along a breadth
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1

2 3

5 4

Figure 2: Example network where rumor centrality with the BFS heuristic equals the
likelihood P(GN |v). The rumor infected nodes are in red and labeled with numbers.

first search (BFS) tree rooted at v, Tbfs(v). The intuition is that if v was the source,
then the BFS tree would correspond to the fastest (intuitively, most likely) spread of
the rumor. Therefore, effectively we obtain the following rumor source estimator for a
general rumor graph GN :

v̂ ∈ arg max
v∈GN

P
(
σ∗v
∣∣ v)R(v, Tbfs(v)). (8)

In the above ties are broken uniformly at random as before. Also, like in (7), the σ∗v
represents the BFS ordering of nodes in the tree Tbfs(v).

For example, consider the network in Figure 3. The BFS trees for each node are
shown. Using the expression for R(v,GN ) from Section 3.1, the general graph esti-
mator values for the nodes are

P
(
σ∗1
∣∣ 1
)
R(1, Tbfs(1)) =

1

4 ∗ 6 ∗ 8 ∗ 10

5!

20

P
(
σ∗2
∣∣ 2
)
R(2, Tbfs(2)) =

1

4 ∗ 6 ∗ 8 ∗ 10

5!

30

P
(
σ∗3
∣∣ 3
)
R(3, Tbfs(3)) =

1

4 ∗ 6 ∗ 8 ∗ 10

5!

20

P
(
σ∗4
∣∣ 4
)
R(4, Tbfs(4)) =

1

4 ∗ 6 ∗ 8 ∗ 10

5!

10

P
(
σ∗5
∣∣ 5
)
R(5, Tbfs(5)) =

1

4 ∗ 6 ∗ 8 ∗ 10

5!

40
.

Node 4 maximizes this value and would be the estimate of the rumor source for this
network. We will show with simulations that this general graph estimator performs well
on different network topologies.
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1 2

345

1 2

3

45

Figure 3: Example network with a BFS tree for each node shown. The rumor infected
nodes are shown in red.

3 Rumor Centrality: Properties & Algorithm
The quantity R(v,GN ) plays an important role in each of the rumor source estimators
(6), (7) and (8). Recall that R(v,GN ) counts the number of distinct ways a rumor
can spread in the network GN starting from source v. Thus, it assigns each node of
GN a non-negative number or score. We shall call this number, R(v,GN ), the rumor
centrality of the node v with respect toGN . The node with maximum rumor centrality
will be called the rumor center of the network. Indeed, the rumor center is the ML
estimation of the rumor source for regular trees.

This section describes ways to evaluate R(v,GN ) efficiently when GN is a tree. It
also describes an important property of rumor centrality that will be useful in establish-
ing our main results later in the paper. Further, we discuss a surprising relation between
the rumor center and the so called distance center of a tree. Finally, we remark on the
relation between rumor centrality and the number of linear extensions of a partially
ordered set described by a tree graph.

3.1 Rumor Centrality: Succinct Representation
LetGN be a tree graph. Define T vu as the number of nodes in the subtree rooted at node
u, with node v as the source. To illustrate this notation, a simple example is shown in
Figure 4. Here T 1

2 = 3 because there are 3 nodes in the subtree with node 2 as the root
and node 1 as the source. Similarly, T 1

7 = 1 because there is only 1 node in the subtree
with node 7 as the root and node 1 as the source.

We now can count the permitted permutations of GN with v as the source. In the
following analysis, we will abuse notation and use T vu to refer to both the subtrees and
the number of nodes in the subtrees. Recall that we are looking for permitted permuta-
tions ofN nodes ofGN . That is, we haveN slots in a given permitted permutation, the
first of which must be the source node v. The question is, how many distinct ways can
we fill the remaining N − 1 slots. The basic constraint is due to the causality induced
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24
3

5

6

7

T
1

2 T
1

7

Figure 4: Illustration of subtree variable T vu .

by the tree graph that a node u must come before all the nodes in its subtree T vu . Given
a slot assignment for all nodes in T vu subject to this constraint, there are R(u, T vu ) dif-
ferent ways in which these nodes can be ordered. This suggests a natural recursive
relation between the rumor centrality R(v,GN ) and the rumor centrality of its imme-
diate children’s subtrees R(u, T vu ) with u ∈ child(v). Here child(v) represents the set
of all children of v in treeGN assuming v as its root. Specifically, there is no constraint
between the orderings of the nodes of different subtrees T vu with u ∈ child(v). This
leads to the following relation.

R(v,GN ) = (N − 1)!
∏

u∈child(v)

R(u, T vu )

T vu !
. (9)

To understand the above expression, note that the number of ways to partitionN−1
slots for different subtrees is (N − 1)!

∏
u∈child(v)

1
Tvu ! , and the partition corresponding

to T vu , u ∈ child(v) leads to R(u, T vu ) distinct orderings, thus resulting in (9).
If we expand this recursion (9) to the next level of depth in GN we obtain

R(v,GN ) = (N − 1)!
∏

u∈child(v)

R(u, T vu )

T vu !

= (N − 1)!
∏

u∈child(v)

(T vu − 1)!

T vu !

∏
w∈child(u)

R(w, T vw)

T vw!

= (N − 1)!
∏

u∈child(v)

1

T vu

∏
w∈child(u)

R(w, T vw)

T vw!
.

A leaf node l will have have 1 node and 1 permitted permutation, so R(l, T vl ) = 1. If
we continue this recursion until we reach the leaves of the tree, then we find that the
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1

2 3

4 5

Figure 5: Example network for calculating rumor centrality.

number of permitted permutations for a given tree GN rooted at v is

R(v,GN ) = (N − 1)!
∏

u∈GN\v

1

T vu

= N !
∏
u∈GN

1

T vu
. (10)

In the last line, we have used the fact that T vv = N . We thus end up with a simple
expression for rumor centrality in terms of the size of the subtrees of all nodes in GN .

As an example of the use of rumor centrality, consider the network in Figure 5.
Using the rumor centrality formula, we find that the rumor centrality of node 1 is

R(1, G) =
5!

5 ∗ 3
= 8.

Indeed, there are 8 permitted permutations of this network with node 1 as the source,
which we list below.

{1, 3, 2, 4, 5}, {1, 2, 3, 4, 5}, {1, 2, 4, 3, 5}, {1, 2, 4, 5, 3},
{1, 3, 2, 5, 4}, {1, 2, 3, 5, 4}, {1, 2, 5, 3, 4}, {1, 2, 5, 4, 3}.

3.2 Rumor Centrality via Message-Passing
In order to find the rumor center of an N node tree GN , we need to first find the rumor
centrality of every node in GN . To do this we need the size of the subtrees T vu for all
v and u in GN . There are N2 of these subtrees. Therefore, a naive algorithm can lead
to Ω(N2) operations. We shall utilize a local relation between the rumor centrality
of neighboring nodes in order to calculate it in O(N) computation in a distributed,
message-passing manner.
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To this end, consider two neighboring nodes u and v in GN . All of their subtrees
will be the same size except for those rooted at u and v. In fact, there is a special
relation between these two subtrees.

T vu = N − Tuv . (11)

For example, in Figure 4, for node 1, T 1
2 has 3 nodes, while for node 2, T 2

1 has N −T 1
2

or 4 nodes. Because of this relation, we can relate the rumor centralities of any two
neighboring nodes.

R(u,GN ) = R(v,GN )
T vu

N − T vu
. (12)

This result is the key to our algorithm for calculating the rumor centrality for all nodes
in GN . We first select any node v as the source node and calculate the size of all of
its subtrees T vu and its rumor centrality R(v,GN ). This can be done by having each
node u pass two messages up to its parent. The first message is the number of nodes in
u’s subtree, which we call tupu→parent(u). The second message is the cumulative product
of the size of the subtrees of all nodes in u’s subtree, which we call pupu→parent(u). The
parent node then adds the tupu→parent(u) messages together to obtain the size of its own
subtree, and multiplies the pupu→parent(u) messages together to obtain its cumulative sub-
tree product. These messages are then passed upward until the source node receives the
messages. By multiplying the cumulative subtree products of its children, the source
node will obtain its rumor centrality, R(v,GN ).

With the rumor centrality of node v, we then evaluate the rumor centrality for the
children of v using equation (12). Each node passes its rumor centrality to its children
in a message we define as rdownu→u′ for u′ ∈ child(u). Each node u can calculate its rumor
centrality using its parent’s rumor centrality and its own subtree size T vu . We recall that
the rumor centrality of a node is the number of permitted permutations that result in
GN . Thus, this message-passing algorithm is able to count the (exponential) number
of permitted permutations for every node in GN using only O(N) computations. The
pseudocode for this message-passing algorithm is included for completeness.

3.3 A Property of Rumor Centrality
The following is an important characterization of the rumor center in terms of the sizes
of its local subtrees. As we shall see, this will play a crucial role in establishing our
main results about the performance of rumor centrality as an estimator for tree graphs.

Proposition 1. Given an N node tree, if node v∗ is the rumor center, then any subtree
with v∗ as the source must have the following property:

T v
∗

v ≤
N

2
. (13)

If there is a node u such that for all v 6= u

Tuv ≤
N

2
(14)

then u is a rumor center. Furthermore, a tree can have at most 2 rumor centers.
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Algorithm 1 Rumor Centrality Message-Passing Algorithm
1: Choose a root node v ∈ GN
2: for u in GN do
3: if u is a leaf then
4: tupu→parent(u) = 1

5: pupu→parent(u) = 1
6: else
7: if u is root v then
8: ∀ v′ ∈ child(v): rdownv→v′ = N !

N
∏

j∈child(v)

pupj→v

9: else
10: tupu→parent(u) =

∑
j∈child(u)

tupj→u + 1

11: pupu→parent(u) = tupu→parent(u)

∏
j∈child(u)

pupj→u

12: ∀ u′ ∈ child(u): rdownu→u′ = rdownparent(u)→u
tup
u→parent(u)

N−tup
u→parent(u)

13: end if
14: end if
15: end for

Proof. We showed that for a tree with N total nodes, for any neighboring nodes u and
v,

T vu = N − Tuv . (15)

For a node v one hop from v∗, we find

R(v, T )

R(v∗, T )
=
T v
∗

v∗ T
v∗

v

T vv∗T
v
v

=
T v
∗

v

(N − T v∗v )
.

When v is two hops from v∗, all of the subtrees are the same except for those rooted at
v, v∗, and the node in between, which we call node 1. Figure 6 shows an example. In
this case, we find

R(v, T )

R(v∗, T )
=

T v
∗

v T v
∗

1

(N − T v∗1 ) (N − T v∗v )
.

Continuing this way, we find that in general, for any node v in T ,

R(v, T )

R(v∗, T )
=

∏
i∈P(v∗,v)

T v
∗

i

(N − T v∗i )
(16)

where P(v∗, v) is the set of nodes in the path between v∗ and v, not including v∗.
Now imagine that v∗ is the rumor center. Then we have

R(v, T )

R(v∗, T )
=

∏
i∈P(v∗,v)

T v
∗

i

.

(
N − T v

∗

i

)
≤ 1 (17)
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For a node v one hop from v∗, this gives us that

T v
∗

v ≤
N

2
. (18)

For any node u in subtree T v
∗

v , we will have T v
∗

u ≤ T v
∗

v − 1. Therefore, (18) will hold
for any node u ∈ T . This proves the first part of Proposition 1.

Now assume that the node v∗ satisfies (18) for all v 6= v∗. Then the ratios in (16)
will all be less than or equal to 1. Thus, we find that

R(v, T )

R(v∗, T )
=

∏
i∈P(v∗,v)

T v
∗

i

(N − T v∗i )
≤ 1. (19)

Thus, v∗ is the rumor center, as claimed in the second part of Proposition 1.
Finally, assume that v∗ is a rumor center and that all of its subtrees satisfy T v

∗

v <
N/2. Then, any other node v will have at least one subtree that is larger thanN/2, so v∗

is the unique rumor center. Now assume that v∗ has a neighbor v such that T v
∗

v = N/2.
Then, T vv∗ = N/2 also, and all other subtrees T vu < N/2, so v is also a rumor center.
There can be at most 2 nodes in a tree with subtrees of size N/2, so a tree can have at
most 2 rumor centers.

3.4 Rumor Centrality vs. Distance Centrality
Here we shall compare rumor centrality with distance centrality that has become pop-
ular in the literature as a graph based score function for various other applications. To
start with, we recall the definition of distance centrality. For a graph G, the distance
centrality of node v ∈ G, D(v,G), is defined as

D(v,G) =
∑
j∈G

d(v, j) (20)
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where d(v, j) is the shortest path distance from node v to node j. The distance center
of a graph is the node with the smallest distance centrality. Intuitively, it is the node
closest to all other nodes. On a tree, we will show the distance center is equivalent to
the rumor center. Therefore, by establishing correctness of rumor centrality for tree
graphs, one immediately finds that such is the case for distance centrality.

We will prove the following proposition for the distance center of a tree.

Proposition 2. On an N node tree, if vD is the distance center, then, for all v 6= vD

T vDv ≤ N

2
. (21)

Furthermore, if there is a unique rumor center on the tree, then it is equivalent to the
distance center.

Proof. Assume that node vD is the distance center of a tree T which has N nodes. The
distance centrality of vD is less than any other node. We consider a node v` which is `
hops from vD, and label a node on the path between v` and vD which is h hops from
vD by vh. Now, because we are dealing with a tree, we have the following important
property. For a node j which is in subtree T vDvh but not in subtree T vDvh+1

, we have
d(v`, j) = d(vD, j) + d− 2h. Using this, we find

D(vD, T ) ≤D(v`, T )∑
j∈T

d(vD, j) ≤
∑
v∈T

d(v`, j)

≤
∑
j∈T

d(vD, j) + `(N − T vDv1 )+

(`− 2)(T vDv1 − T
vD
v2 ) + ...+ (`− 2`)(T vDv` )∑̀

h=1

T vDvh ≤
∑̀
h=1

(N − T vDvh ). (22)

If we consider a node v1 adjacent to vD, we find the same condition we had for the
rumor center. That is,

T vDv1 ≤
N

2
. (23)

For any node u in subtree T vDv1 , we will have T vDu ≤ T vDv1 − 1. Therefore, (23) will
hold for any node u ∈ T . This proves the first half of Proposition 2.

If vD is a rumor center, then, it also satisfies (23) as previously shown. Thus, when
unique, the rumor center is equivalent to the distance center on a tree. This proves the
second half of Proposition 2.

Now in contrast to trees, in a general non-tree network, the rumor center and dis-
tance center need not be equivalent. Specifically, we shall define rumor centrality for
a general graph to be the node with maximal value of rumor centrality on its own BFS
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Rumor center

Distance center

Figure 7: A network where the distance center does not equal the general graph rumor
center.

tree. Stated more precisely, the rumor center of a general graph is the node v̂ with the
following property (ties broken uniformly at random):

v̂ ∈ arg max
v∈GN

R(v, Tbfs(v)). (24)

In a general graph, as can be seen in Figure 7, this general graph rumor center is not
always equivalent to the distance center as it was for trees. We will see later that the
general graph rumor center will be a better estimator of the rumor source than the
distance center. The intuition for this is that the distance center is evaluated using only
the shortest paths in the graph, whereas the general graph rumor centrality utilizes more
of the network structure for estimation of the source.

3.5 Rumor Centrality and Linear Extensions of Posets
The rumor graph on a network can be viewed as a partially ordered set, or poset, of
nodes if we fix a source node as the root and consider the network to be directed, with
edges pointing from the node that had the rumor to the node it infected. These directed
edges impose a partial order on the nodes. We have referred to any permutation of
the nodes which satisfies this partial order as a permitted permutation. However, it is
also known as a linear extension of the poset. It is known that counting the number of
linear extensions of a poset is in general a very hard problem (specifically, it falls in
the complexity class #P-complete [23]). However, on trees, counting linear extensions
becomes computationally tractable. To the best of our knowledge, the fastest known
algorithm for counting linear extensions on a tree requires O(N2) computation [22].
In contrast, the message-passing algorithm we presented in Section 3.2 required only
O(N) computation.
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4 Main Results: Theory
This section examines the behavior of the detection probability of the rumor source
estimators for different graph structures. We establish that the asymptotic detection
probability has a phase-transition effect: for linear graphs it is 0, while for trees which
grow faster than a line it is strictly greater than 0. We will use different proof techniques
to establish these results for trees with different rates of expansion.

4.1 Linear Graphs: No Detection
We first consider the detection probability for a linear graph, which is a regular tree of
degree 2. We will establish the following result.

Theorem 1. Define the event of correct rumor source detection after time t on a lin-
ear graph as Ct. Then the probability of correct detection of the ML rumor source
estimator, P(Ct), scales as

P(Ct) = O

(
1√
t

)
.

As can be seen, the linear graph detection probability scales as t−1/2, which goes
to 0 as t goes to infinity. The intuition for this result is that the estimator provides very
little information because of the linear graph’s trivial structure.

4.2 Regular Expander Trees: Non-Trivial Detection
We next consider detection on a regular degree expander tree. We assume each node
has degree d > 2. For d = 2, the tree is a line, and we have seen that the detection
probability goes to 0 as the network grows in size. For a regular tree with d > 2 we
obtain the following result.

Theorem 2. Define the event of correct rumor source detection by the ML rumor
source estimator after time t on a regular tree with degree d > 2 as Ct. Then there
exists a constant αd > 0 for all d > 2 so that

0 < αd ≤ lim inf
t

P(Ct) ≤ lim sup
t

P(Ct) ≤
1

2
.

Unlike linear graphs, when d > 2 then there is enough ‘complexity’ in the network
that allows us to perform detection of the rumor source with strictly positive probability
irrespective of t (or size of the rumor network). The above result also says that the
detection probability is always upper bounded by 1/2 for any d > 2.

4.3 Degree 3 Regular Expander Trees: Exact Detection Probabil-
ity

For regular trees of arbitrary degree d > 2, Theorem 2 states that the detection happens
with strictly positive probability irrespective of the size of the network. However, we
are unable to evaluate the exact asymptotic detection probability as t→∞. For d = 3,
however we are able to obtain the exact value.
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Theorem 3. Define the event of correct rumor source detection under the ML rumor
source estimator after time t on a regular expander tree with degree d = 3 as Ct. Then

lim
t

P(Ct) =
1

4
.

4.4 Geometric Trees: Correct Detection
The above stated results cover the case of regular trees. We now consider the detection
probability of our estimator in non-regular trees. As a candidate class of such trees,
we consider trees that grow polynomially. We shall call them geometric trees. These
non-regular trees are parameterized by constants α, b, and c, with 0 < b ≤ c. We fix a
source node v∗ and consider each neighboring subtree of v∗. Let d∗ be the degree of
v∗. Then there are d∗ subtrees of v∗, say T1, . . . , Td∗ . Consider the ith such subtree Ti,
1 ≤ i ≤ d∗. Let v be any node in Ti and let ni(v, r) be the number of nodes in Ti at
distance exactly r from the node v. Then we require that for all 1 ≤ i ≤ d∗ and v ∈ Ti

brα ≤ ni(v, r) ≤ crα. (25)

The condition imposed by (25) states that each of the neighboring subtrees of the source
should satisfy polynomial growth (with exponent α > 0) and regularity properties. The
parameter α > 0 characterizes the growth of the subtrees and the ratio c/b describes the
regularity of the subtrees. If c/b ≈ 1 then the subtrees are somewhat regular, whereas
if the ratio is much greater than 1, there is substantial heterogeneity in the subtrees.

We note that unlike in regular trees, in a geometric tree the rumor centrality is not
necessarily the ML estimator due to the heterogeneity. Nevertheless, we can use it as
an estimator. Indeed, as stated below we find that the rumor centrality based estimator
has an asymptotic detection probability of 1. That is, it is as good as the best possible
estimator.

Theorem 4. Consider a geometric tree as described above with parameters α > 0,
0 < b ≤ c that satisfy (25) for a node v∗ with degree dv∗ ≥ 3. Let the following
condition be satisfied

dv∗ >
c

b
+ 1.

Suppose the rumor starts spreading from node v∗ at time 0 as per the SI model. Let the
event of correct rumor source detection with the rumor centrality based estimator after
time t in this scenario be denoted as Ct. Then

lim inf
t
P(Ct) = 1.

This theorem says that α = 0 and α > 0 serve as a threshold for non-trivial
detection: for α = 0, the graph is essentially a line graph, so we would expect the
detection probability to go to 0 as t → ∞ based on Theorem 1, but for α > 0 the
detection probability converges to 1 as t→∞.
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Figure 8: Rumor centrality detection probability for regular trees (left) and geometric
trees (right) vs. number of nodes N . The dotted lines are plots of N−1/2.

5 Simulation Results
This section provides simulation results for our rumor source estimators on different
network topologies. These include synthetic topologies such as the popular scale-free
and small-world networks, and also real topologies such as the Internet and the U.S.
electric power grid.

5.1 Tree Networks
The detection probability of rumor centrality versus network size for different trees
is show in Figure 8. As can be seen, the detection probability decays as N−1/2 as
predicted in Theorem 1 for the graphs which grow like lines (d = 2 and α = 0).

For regular degree trees we see that the detection probability is less than 1/2 and
for d ≥ 3 it does not decay to 0, as predicted by Theorem 2. In fact, the detection
probabilities appear to converge to asymptotic values. This value is 1/4 for d = 3 as
predicted by Theorem 3, and seems to increase by smaller amounts for d = 4, 5, 6.

For geometric trees with α > 0, we see that the detection probability does not
decay to 0 and is very close to 1 as predicted by Theorem 4.

5.2 Synthetic Networks
We performed simulations on synthetic small-world [24] and scale-free [25] networks.
These are two very popular models for networks and so we would like our rumor source
estimator to perform well on these topologies. For both topologies, the underlying
graph contained 5000 nodes and in the simulations we let the rumor spread to 400
nodes.

Figures 9 and 10 show an example of rumor spreading in a small-world and a
scale-free network. The graphs show the rumor infected nodes in white. Also shown
are the histograms of the estimator error for three different estimators. The estimators
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are distance centrality, rumor centrality on a BFS tree, and rumor centrality on a BFS
tree with the BFS heuristic. For comparison, we also show with a dotted line a smooth
fit of the histogram for the error from randomly choosing the source from the 400
node rumor network. As can be seen, for both networks, the histogram for the random
guessing is shifted to the right of the estimator histograms. Thus, the centrality based
estimators are a substantial improvement over random guessing for both small-world
and scale-free networks.

The distance centrality estimator performs very similarly to the rumor centrality
estimator. However, we see that on the small-world network, rumor centrality is better
able to correctly find the source (0 error) than distance centrality (16% correct detection
versus 2%). For the scale-free network used here, the average ratio of edges to nodes
in the 400 node rumor graphs is 1.5 and for the small-world network used here, the
average ratio is 2.5. For a tree, the ratio would be 1, so the small-world rumor graphs
are less tree-like. This may explain why rumor centrality does better than distance
centrality at correctly identifying the source on the small-world network.

The BFS heuristic leads to two visible effects. First, as can be seen for the scale-
free network, we have a larger correct detection probability. Scale-free networks have
power-law degree distributions, and thus contain many high degree hubs. The BFS
heuristic works well in these types of networks because it was precisely designed for
networks with heterogeneous degree distributions.

The second effect of the BFS heuristic is that larger errors become more likely.
For both networks, the histograms spread out to higher errors. We see that for net-
works with less heterogeneous degree distributions, such as the small-world network,
the BFS heuristic is actually degrading performance. It may be that for more regular
networks, the BFS heuristic amplifies the effect any slight degree heterogeneity and
causes detection errors.

5.3 Real Networks
We performed simulations on an Internet autonomous system (AS) network [26] and
the U.S electric power grid network [25]. These are two important real networks so we
would like our rumor source estimator to perform well on these topologies. The AS
network contained 32,434 nodes and the power grid network contained 4941 nodes. In
the simulations we let the rumor spread to 400 nodes.

Figures 11 and 12 show an example of rumor spreading in both of these networks.
Also shown are the histograms of the estimator error for three different estimators. The
estimators are distance centrality, rumor centrality on a BFS tree, and rumor centrality
on a BFS tree with the BFS heuristic. For comparison, we also show with a dotted line
a smooth fit of the histogram for the error from randomly choosing the source from
the 400 node rumor network. As with the synthetic networks, the histogram for the
random guessing is shifted to the right of the estimator histograms. Thus, on these real
networks, the centrality based estimators are a substantial improvement over random
guessing for both small-world and scale-free networks.

We see that rumor centrality and distance centrality have similar performance, but
for the power grid network, rumor centrality is better able to correctly find the source
than distance centrality (3% correct detection versus 0%). For the power grid network,
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Figure 9: Histograms of the error for distance centrality, rumor centrality, and rumor
centrality with BFS heuristic estimators on a 400 node rumor network on a small-world
network. The dotted line is a smooth fit of the histogram for randomly guessing the
source in the rumor network. An example of a rumor graph (infected nodes in white)
is shown on the right.

the average ratio of edges to nodes in the 400 node rumor graphs is 4.2, and for the AS
network the average ratio is 1.3. Thus, the rumor graphs on the power grid network
are less tree-like. Similar to the small-world networks, this may explain why rumor
centrality outperforms distance centrality on the power grid network.

The BFS heuristic improves the correct detection probability for the AS network.
This is due to the fact that the AS network has many high degree hubs, similar to
scale-free networks. However, in the powergrid network, the BFS heuristic spreads out
the histogram to higher errors. Again, this may be due to the fact that the powergrid
network does not have as much degree heterogeneity as the AS network, and the BFS
heuristic is amplifying weak heterogeneities, similar to small-world networks.

6 Proofs
This section establishes the proofs of Theorems 1-4. All of them utilize rumor central-
ity as the estimator to obtain the desired conclusion. To study the property of the rumor
centrality, we shall utilize the property of rumor center as established in Proposition 1
crucially.

6.1 Proof of Theorem 1
We consider the spread of the rumor in a line network starting from a source, say v∗. We
shall establish that for any time t > 0, the probability of the rumor center being equal
to v∗ decays as O(1/

√
t). Since a line is a regular graph and hence the rumor center

is the ML estimator, it follows that the detection probability of any estimator decays as
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Figure 10: Histograms of the error for distance centrality, rumor centrality, and rumor
centrality with BFS heuristic estimators on a 400 node rumor network on a scale-free
network. The dotted line is a smooth fit of the histogram for randomly guessing the
source in the rumor network. An example of a rumor graph (infected nodes in white)
is shown on the right.

O(1/
√
t). This is because in the absence of any prior information (or uniform prior)

the ML estimator minimizes the detection error (cf. see [27]).
Now rumor spreading in a line graph is equivalent to 2 independent Poisson pro-

cesses with rate 1 beginning at the source and spreading in opposite directions. We
refer to these processes as N1(t) and N2(t) with N1(0) = N2(0) = 0.

It follows from results of Section 3.3 that the rumor center of a line is the center
of the line: if the line has an odd number of nodes then the rumor center is uniquely
defined, else there are two rumor centers. Thus, we will correctly detect the source
with probability 1 if the two Poisson processes on each side of the source have exactly
the same number of arrivals and with probability 1/2 if one of the Poisson processes is
one less than the other. Then, the probability of the event of correct detection at time t,
Ct is given by

P(Ct) = P(N1(t) = N2(t))

+
1

2

(
P(N1(t) = N2(t) + 1) + P(N1(t) + 1 = N2(t))

)
=

∞∑
k=0

(
e−t

tk

k!

)2

+

(
e−t

tk

k!

)2
t

k + 1
.

Let ak = e−2tt2k/(k!)2 and bk = akt/(k + 1). Then

P(Ct) =

∞∑
k=0

ak + bk.
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Figure 11: Histograms of the error for distance centrality, rumor centrality, and rumor
centrality with BFS heuristic estimators on a 400 node rumor network on the U.S. elec-
tric power grid network. The dotted line is a smooth fit of the histogram for randomly
guessing the source in the rumor network. An example of a rumor graph (infected
nodes in white) is shown on the right.

We shall show that both
∑
k ak and

∑
k bk are bounded as O(1/

√
t). This will con-

clude the proof of Theorem 1.
To that end, first we consider summation of aks. Let us consider the ratios of the

successive terms:
ak
ak−1

=

(
t

k

)2

.

This ratio will be greater than 1 as long as k ≤ t and beyond that it will be less than 1.
Thus, ak is maximum for k = btc. By Stirling’s approximation, it follows that

log(abtc) = −2btc+ 2btc log(btc)− 2 log(btc!)
= −2btc+ 2btc log(btc)− 2btc log(btc)

+ 2btc − log(btc) + Θ(1)

= − log(btc) + Θ(1).

Therefore, abtc = Θ
(
1/btc

)
. Given this, we shall bound all aks relative to abtc to

obtain bound of O(1/
√
t) on

∑
k ak.

To that end, since ak is decreasing for k ≥ btc, we have that for any k′ ≥ btc,

k′+
√
t∑

k=k′

ak ≤
√
tak′ .

Similary, since for k ≤ btc, ak is increasing we have that for any k′ ≤ btc −
√
t,

k′+
√
t∑

k=k′

ak ≤
√
tak′+

√
t.
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Figure 12: Histogram of the error for distance centrality, rumor centrality, and rumor
centrality with BFS heuristic estimators on a 400 node rumor network on an Internet
autonomous system (AS) network. The dotted line is a smooth fit of the histogram for
randomly guessing the source in the rumor network. An example of a rumor graph
(infected nodes in white) is shown on the right.

Given the above two inequalities, it will suffice to bound abtc+`√t and abtc−`√t for all
` ≥ 0 relate to abtc. For this, consider the following. For k ≥ btc,

ak+
√
t

ak
=

 t
√
t∏√t

j=1(k + j)

2

=

√
t∏

j=1

(
1 +

j + (k − t)
t

)−2

(a)

≤

√
t∏

j=1

(
1 +

j − 1

t

)−2

(b)

≤

√
t∏

j=1

e−
(j−1)
t

= e
− 1

2 + 1
2
√
t

≤ e− 1
3 ,

for t ≥ 36. In above (a) follows from k ≥ btc ≥ t− 1, (b) follows from 1 + x ≥ ex/2
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for x ∈ [0, 1] and j ≤
√
t. Similarly, for k ≥ btc −

√
t

ak+
√
t

ak
=

 t
√
t∏√t

j=1(k + j)

2

=

√
t∏

j=1

(
1 +

j + (k − t)
t

)−2

(c)

≥

√
t∏

j=1

(
1 +

j

t

)−2

(d)

≥

√
t∏

j=1

e−
j
t

≥ e− 1
2 ,

where (c) follows from k ≤ btc ≤ t and (b) from 1 + x ≤ ex for x ≥ 0. From above,
it follows that

abtc+`
√
t ≤ e

−`/3abtc,

abtc−`
√
t ≤ e

−`/2abtc.

Using all of the above discussion, it follows that for t ≥ 36,

∞∑
k=1

ak ≤
√
tabtc

( ∞∑
`=0

e−`/3 + e−`/2
)

= O
(
abtc
√
t
)

= O(1/
√
t).

In a very similar manner, it can be shown that
∑
k bk = O(1/

√
t). Therefore, it follows

that the probability of correct detection is bounded as O(1/
√
t) in a line graph. This

completes the proof of Theorem 1.

6.2 Proof of Theorem 2
We wish to establish that given a d ≥ 3 regular tree, the probability of correct detection
of the source using rumor centrality, irrespective of t, is uniformly lower bounded by a
strictly positive constant, αd > 0 and upper bounded by 1/2.

To find the lower bound on the detection probability, we shall utilize Proposition 1
which states the following. The source node has d subtrees and let Nj(t) ≥ 0, 1 ≤
j ≤ d, be the number of rumor infected nodes in the jth subtree at time t. If all Nj(t)
are strictly less than half the total number of rumor infected nodes at time t, then the
source is the unique rumor center. Using this implication of Proposition 1, we obtain
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the following bound on the event of correct detection Ct:ω∣∣∣ max
1≤i≤d

Nj(t, ω) ≤ 1

2

d∑
j=1

Nj(t, ω)

 ⊆ Ct. (26)

Therefore, by lower bounding the probability of the event on the left in (26), we shall
obtain the desired lower bound P(Ct). Since Nj(t) are independent and identically
distributed due to regularity of tree, we shall find the marginal distribution of Nj(t).
Now finding the precise ‘closed form’ expression form the probability mass function
of Nj(t) for all d ≥ 3 seems challenging. Instead, we shall obtain something almost
close to that.

To that end, consider N1(t). Let Tn, n ≥ 1, denote be the time between n − 1st
node getting infected and nth getting infected in N1(t). Since the source node is con-
nected to the root of the first subtree via the edge along with rumor starts spreading as
per an exponential distribution of rate 1, it follows that T1 has an exponential distri-
bution of rate 1. Once the first node gets infected in the subtree, the number of edges
along with the rumor can spread further is d − 1 = 1 + (d − 2). More generally,
every time a new node gets infected, it brings in new d− 1 edges and removes 1 edge
along with rumor can spread in the subtree. Now the spreading time along all edges is
independent and identically distributed as per an exponential distribution of rate 1 and
exponential random variables have the ‘memoryless’ property: if X is an exponential
random variable with rate 1, then P(X > ζ+η|X > η) = P(X > ζ) for any ζ, η ≥ 0.
From above, we can conclude that Tn equals the minimum of 1 + (d − 2)(n − 1) in-
dependent exponential random variables of rate 1. By the property of the exponential
distribution, this equals an exponential random variable of rate 1 + (d − 2)(n − 1).
Now let Sn be the total time for n nodes to get infected in the subtree, that is

Sn =

n∑
i=1

Ti (27)

We state the following Lemma which states the precise density of Sn and some of its
useful properties. It’s proof is presented later in the section.

Lemma 1. The density of Sn for a degree d regular tree, fSn(t) is given by

fSn(t) =

{
e−t for n = 1(∏n−1

i=1

(
1 + 1

ai

))
e−t(1− e−at)n−1 for n ≥ 2,

(28)

where a = d−2. Further, let τn = 1
a

(
log(n)+log( 3

4a )
)

and tn = 1
a log((n−1)a+1).

Then

0. τn ≤ tn−1 ≤ tn for all n ≥ 2.

1. For all n ≥ 1 and t ∈ (0, tn),

dfSn(t)

dt
> 0.
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2. There exists finite constants Ba, Ca > 0 so that

lim inf
n

fSn(τn) ≥ Ba, and lim sup
n

fSn(tn) ≤ Ca.

3. There exists γ ∈ (0, 1) so that for all t ∈ (0, tn)

lim sup
n

fS(d−1)n
(t)

fSn(t)
≤ (1− γ).

Next we use Lemma 1 to obtain a lower bound on P(Ct). For this, define Dn(t) as
the event under which all the d subtrees have between n and (d − 1)n infected nodes
at time t. That is,

Dn(t) =

d⋂
j=1

{n ≤ Nj(t) ≤ (d− 1)n} , for n ≥ 0. (29)

Under Dn(t) for any n ≥ 0, it follows that Nj(t) ≤ 1
2

∑d
j′=1Nj′(t) for all 1 ≤ j ≤ d.

That is, event Ct holds. Therefore,

P(Ct) ≥ sup
n≥0

P(Dn(t)). (30)

Therefore, to uniformly lower bound P(Ct) and establish Theorem 2, it is sufficient to
find n(t) so that P(Dn(t)(t)) ≥ αd > 0 for all t large enough. To that end, we shall
first study how to bound P(Dn(t)). Under Dn(t), we have n ≤ Nj(t) ≤ (d − 1)n
for 1 ≤ j ≤ d. Now consider N1(t). For n ≤ N1(t) ≤ (d − 1)n, it must be that the
nth node in it must have got infected before t and the (d − 1)n + 1st node must have
got infected after t. Using this along with the independent and identical distribution of
Nj(t) for 1 ≤ j ≤ d, we obtain

P
(
Dn(t)

)
= P

( d⋂
j=1

n ≤ Nj(t) ≤ (d− 1)n
)

= P
(
n ≤ N1(t) ≤ (d− 1)n

)d
= P

(
Sn ≤ t < S(d−1)n

)d
=
(
P
(
Sn ≤ t

)
−P

(
S(d−1)n ≤ t

))d
=

(∫ t

0

fSn(τ)− fS(d−1)n
(τ) dτ

)d
(31)

We shall use Lemma 1 to uniformly lower bound (31) by a strictly positive constant
αd > 0 for all t large enough. To that end, consider a large enough t and hence n ≥ 2
large enough so that using Lemma 1, we have for any given small enough δ ∈ (0, 1):
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(a) τn ≤ tn−1 ≤ t ≤ tn, (b) fSn(τn) ≥ Ba(1 − δ), (c) fSn(tn) ≤ Ca(1 + δ) and (d)
fS(d−1)n

(t) ≤
(
1− γ(1− δ)

)
fSn(t) for all t ∈ (0, tn). Then using γ′ = γ(1− δ),∫ t

0

(fSn(τ)− fS(d−1)n
(τ)) dτ

≥
∫ t

0

(
fSn(τ)−

(
1− γ′

)
fSn(τ)

)
dτ

≥ γ′
∫ t

0

fSn(τ) dτ

≥ γ′
(∫ tn

τn

fSn(τ) dτ −
∫ tn

tn−1

fSn(τ) dτ
)

≥ γ′
(
fSn(τn)(tn − τn)− fSn(tn)(tn − tn−1)

)
≥ γ′(1− δ)Ba

1

a
log
(4

3

)
− γCa(1 + δ)

1

a
log
( (n− 1)a+ 1

(n− 2)a+ 1

)
.

Above we have used the fact that for n ≥ 1, tn−τn ≥ 1
a log 4a

3 and a = d−2 ≥ 1. As
t→∞, the corresponding n so that τn ≤ tn−1 ≤ t ≤ tn increases to∞ as well. Since
the choice of δ ∈ (0, 1) is arbitrary, from above along with (30) and (31), it follows
that

lim inf
n

P(Ct) ≥
(1

a
γBa log

(4

3

))d
4
= αd > 0.

Next, we consider the upper bound of 1/2. This bound can be obtained by using
symmetry arguments. First imagine that the rumor has spread to two nodes. First,
because of the memoryless property of the spreading times, the spreading process es-
sentially resets after the second node is infected, so we can treat these two nodes as
just a single, enlarged rumor source. Second, because of the regularity of the tree, the
rumor boundary is symmetric about these two nodes, as shown in Figure 13. Therefore,
within this enlarged rumor source, the estimator will not be able to distinguish between
these two nodes due to symmetry. For example, in Figure 13, the estimator will select
node 1 or node 2 with equal probability. In the best scenario, the estimator will detect
this enlarged rumor source exactly with probability 1. This happens for example, when
the rumor network only has 2 nodes as in Figure 13. Then due to symmetry, the prob-
ability of correctly detecting the source is 1/2 since each node in the enlarged rumor
source is chosen with equal probability. The probability of the estimator detecting the
enlarged source is no greater than 1 ever, so the correct detection probability can never
be greater than 1/2.

This completes the proof of Theorem 2.

Proof of Lemma 1. We derive the density by induction. For n = 1, we trivially have

fS1
(t) = e−t. (32)
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1 2

Figure 13: Symmetric 2 node rumor network in a regular tree.

Now, inductively assume that fSn has the form as claimed in Lemma 1. That is,

fSn(τ) = C(n)e−τ
(
1− e−aτ

)n−1
, for τ ≥ 0,

with C(n) =
∏n−1
i=1

(
1 + 1

ai

)
. Now Sn+1 = Sn + Tn+1; Tn+1 is independent of Sn

and has exponential distribution with rate 1 + (d− 2)n = 1 + an. Therefore,

fSn+1(t) =

∫ t

0

fSn(τ)fTn+1(t− τ) dτ

= C(n)(1 + an)

∫ t

0

e−τ (1− e−aτ )n−1e−(1+an)(t−τ) dτ

= C(n+ 1)ane−(1+an)t
(∫ t

0

eanτ (1− e−aτ )n−1 dτ
)
.

Expanding (1− e−aτ )n−1 =
∑
i

(
n−1
i

)
(−1)ie−aiτ and integrating, we obtain

∫ t

0

eanτ (1− e−aτ )n−1dτ =

n−1∑
i=0

(
n− 1

i

)
(−1)i

ea(n−i)t − 1

a(n− i)

=
1

an

n−1∑
i=0

(
n

i

)
(−1)i

(
ea(n−i)t − 1

)
.
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From this and above, we obtain

fSn+1(t)

= C(n+ 1)e−(1+an)t
n−1∑
i=0

(
n

i

)
(−1)i

(
ea(n−i)t − 1

)
= C(n+ 1)e−t

n−1∑
i=0

(
n

i

)
(−1)i

(
e−ait − e−ant)

= C(n+ 1)e−t
(( n∑

i=0

(
n

i

)(
− e−at)i)−

(
− e−at)n)

− C(n+ 1)e−te−ant
(( n∑

i=0

(
n

i

)
(−1)i

)
− (−1)n

)
= C(n+ 1)e−t

(
(1− e−at)n − (−e−at)n + (−e−at)n

)
= C(n+ 1)e−t(1− e−at)n.

This is precisely the form claimed by Lemma 1. This completes the induction step
and establishes the form of density of Sn as claimed. Next we establish four properties
claimed in Lemma 1.

Property 0. Let n ≥ 8. Clearly, tn−1 ≤ tn as a = d − 2 ≥ 1 for d ≥ 3. Now for
n ≥ 8, we have an/4 ≥ 2a − 1. Therefore, (n − 2)a + 1 ≥ 3an/4. Therefore, it
follows that τn ≤ tn−1.

Property 1. Consider any n ≥ 1 and t ∈ (0, tn) with tn = 1
a log((n− 1)a+ 1). Now

t < tn

⇒ t <
1

a
log((n− 1)a+ 1)

⇒ 0 < e−at((n− 1)a+ 1)− 1

⇒ 0 <
dfSn(t)

dt
.

In above, we have used the form of fSn established earlier.

Property 2. Our interest is in obtaining uniform upper bound on fSn(tn) and uniform
lower bound on fSn(τn). To that end, let us start with the following standard inequality.

1 +
1

a
log n ≥ 1

a

n−1∑
i=1

1

i

≥ log

(
n−1∏
i=1

(
1 +

1

ai

))

≥ 1

a

n−1∑
i=1

(
1

i
− 1

i2

)
≥ 1

a
log(n− 1)− ζ(2)

a
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where ζ(2) =
∑∞
i=1 i

−2 = π2/6. Recall that C(n) =
∏n−1
i=1

(
1 + 1

ai

)
. Therefore,

from above we have
en

1
a ≥ C(n) ≥ (n− 1)

1
a e−

ζ(2)
a . (33)

Recalling τn = 1
a log 3n

4a and from above, fSn(τn) can be lower bounded as

fSn(τn) = C(n)e−τn
(
1− e−aτn

)n−1

= C(n)
( 4a

3n

) 1
a
(

1− 4a

3n

)n−1

≥ e−
ζ(2)
a

(4a(n− 1)

3n

) 1
a
(

1− 4a

3n

)n−1

.

Now the term e−
ζ(2)
a is strictly positive constant; (n−1

n )
1
a → 1 as n → ∞; and

(
1 −

4a
3n

)n−1 → e−
4a
3 as n→∞. Therefore, it follows that

lim inf
n→∞

fSn(τn) ≥ e−
ζ(2)
a

(4a

3

) 1
a

e−
4a
3

4
= Ba > 0.

Similarly, for tn = 1
a log((n− 1)a+ 1),

fSn(tn) = C(n)e−tn
(
1− e−atn

)n−1

= C(n)
( 1

(n− 1)a+ 1

) 1
a
(

1− 1

(n− 1)a+ 1

)n−1

≤ e
( n

(n− 1)a+ 1

) 1
a
(

1− 1

(n− 1)a+ 1

)n−1

n→∞−→ ea−
1
a e−

1
a

4
= Ca <∞.

Thus
lim sup

n
fSn(tn) ≤ Ca < ∞. (34)

Property 3. To establish this property, recall that for m ≥ 2

log fSm(t) =

m−1∑
i=1

log
(

1 +
1

ai

)
− t

+ (m− 1) log
(

1− e−at
)
.
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Therefore (using a = d− 2)

log

(
fS(d−1)n

(t)

fSn(t)

)

=

(a+1)n−1∑
i=n

log

(
1 +

1

ai

)
+ an log(1− e−at)

≤ 1

a

( (a+1)n−1∑
i=n

1

i

)
+ an log(1− e−at)

≤ 1

a

(
log
( (a+ 1)n

n

))
+ an log(1− e−at).

=
1

a
log(a+ 1) + an log(1− e−at).

For t ∈ (0, tn), e−at ≥ e−atn and hence

e−at ≥ e−atn =
1

(n− 1)a+ 1
≥ 1

na
,

since a ≥ 1. Therefore, for t ∈ (0, tn) we have

log

(
fS(d−1)n

(t)

fSn(t)

)
≤ 1

a
log(a+ 1) + an log

(
1− 1

an

)
(x)

≤ 1

a
log(a+ 1) + an

(
− 1

an
+

1

2a2n2

)
≤ 1

a
log(a+ 1)− 1 +

1

2an
,

where (x) follows from log(1− x) ≤ −x + x2/2 for all x ∈ (0, 1) and an ≥ 1. Now
1

2an → 0 as n → ∞; log(a + 1) − a is a decreasing function in a ≥ 0 and for a = 1,
it is log 2− 1 ≤ 1/6. Therefore, it follows that there exists a γ ∈ (0, 1) so that for any
a ≥ 1,

lim sup
n→∞

log

(
fS(d−1)n

(t)

fSn(t)

)
≤ 1

a
log(a+ 1)− 1

≤ log(1− γ).

This completes the proof of Lemma 1.

6.3 Proof of Theorem 3
We are interested in degree d = 3 regular tree. By Proposition 1, the event of correct
detection at time t, Ct is such thatω∣∣∣ max

j∈1,2,3
Nj(t, ω) ≤ 1

2

3∑
j=1

Nj(t, ω)

 ⊆ Ct (35)
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and

Ct ⊆

ω∣∣∣ max
j∈1,2,3

Nj(t, ω) ≤ 1

2

( 3∑
j=1

Nj(t, ω)
)

+ 1

 .

If we knew the exact form for the distribution of the number of arrivals at time t, Nj(t)
for 1 ≤ j ≤ 3, then we could bound the probability of Ct explicitly. For regular
trees with degree 3, this is indeed possible. To that end, by Lemma 1 we find that
the distribution of the time for n nodes to get rumor infected in the jth subtree, for
1 ≤ j ≤ 3 is given by

fSn(t) = ne−t(1− e−t)n−1, for n ≥ 1.

Now in order for there to be exactly n rumor infected nodes in the jth subtree by time
t, the nth node must get infected before t and n + 1st node must get infected after t.
Therefore, the distribution of Nj(t), for 1 ≤ j ≤ 3, is

P
(
Nj(t) = n

)
= P

(
Sn ≤ t

)
−P

(
Sn+1 ≤ t

)
=

∫ t

0

ne−τ (1− e−τ )n−1dτ

−
∫ t

0

(n+ 1)e−τ (1− e−τ )ndτ

= e−t(1− e−t)n,

for n ≥ 1. Indeed,

P
(
Nj(t) = 0

)
= P(S1 > t) = e−t.

If we denote e−t by p then the above becomes

P
(
Nj(t) = n

)
= p(1− p)n, for n ≥ 0. (36)

That is, Ni(t) has a geometric distribution with parameter p = e−t. Next we evaluate
lower bound on P(Ct) using (35). To that end defineHnt as

Hnt =

ω ∣∣∣
3∑
j=1

Nj(t, ω) = n
⋂

max
j=1,2,3

Nj(t, ω) ≤ n

2

 .

Then from (35)
∞⋃
n=0

Hnt ⊆ Ct. (37)
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Therefore, using the fact that the spreading on subtrees happens independently, we
obtain

P(Ct) ≥
∞∑
n=0

∑
n1,n2,n3∈Hnt

3∏
j=1

P (Nj(t) = nj)

=

∞∑
n=0

∑
n1,n2,n3∈Hnt

p3(1− p)n1+n2+n3

= p3
∞∑
n=0

(1− p)n
∑

n1,n2,n3∈Hnt

1. (38)

The sum over the nj’s require us to count the number of states inHnt . It follows that

|Hnt | ≥ 3!× |{(n1, n2, n3) : n3 < n2 < n1 ≤ n/2}|
= 6|{(n1, n2, n3) : n3 < n2 < n1 ≤ n/2}|.

Now when n3 < n2 < n1 ≤ n/2, it must be that n/3 ≤ n1 ≤ n/2; for a given such
n1, (n − n1)/2 ≤ n2 < n1 and n3 = n − n1 − n2. Using these relations, it follows
that the number of such (n1, n2, n3) triples are n2

48 +O(n). Therefore, |Hnt | is at least
n2

8 +O(n). Using this, we obtain

P
(
Ct
)
≥ p3

( ∞∑
n=0

(1− p)n
(n2

8
+O(n)

))
=

1

8
p3(1− p)2

( ∞∑
n=0

(n+ 2)(n+ 1)(1− p)n
)

+ p3(1− p)O
( ∞∑
n=0

n(1− p)n−1
)

+ p3O
( ∞∑
n=0

(1− p)n
)

=
p3(1− p)2

8

2

p3
+ p3(1− p)O

(
p−2
)

+ p3O
(
p−1
)

=
(1− p)2

4
+O

(
p(1− p) + p2

)
.

Now since p = e−t, as t→∞, p→ 0. Therefore, we obtain that

lim inf
t→∞

P(Ct) ≥
1

4
.

In a very similar manner, using (36) it follows that

P
(
Ct
)
≤ p3

( ∞∑
n=0

(1− p)n
(n2

8
+O(n)

))
=

(1− p)2

4
+O

(
p(1− p) + p2

)
,
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where p = e−t. Therefore,

lim sup
t→∞

P(Ct) ≤
1

4
.

This concludes the proof of Theorem 3.

6.4 Proof of Theorem 4
The proof of Theorem 4, as before, uses the characterization of rumor center provided
by Proposition 1. That is, we wish to show that for all t large enough, the probabil-
ity of the event that the size of the d∗ rumor infected sub-trees of the source v∗ are
essentially ‘balanced’ (cf. (26)) with high enough probability. To establish this, we
shall use coarse estimations on the size of each of these sub-trees using the standard
concentration property of the Poisson process along with geometric growth. This will
be unlike the proof for regular trees where we had to necessarily delve into very fine
detailed probabilistic estimates of the size of the sub-trees to establish the result. This
relatively easier proof for geometric trees (despite heterogeneity) brings out the fact
that it is fundamentally much more difficult to analyze expanding trees than geometric
structure as expanding trees do not yield to generic concentration based estimations as
they necessarily have very high variances.

To that end, we shall start by obtaining sharp estimations on the size of each of
the rumor infected d∗ sub-trees of v∗ for any given time t. Now initially, at time 0
the source node v∗ has the rumor. It starts spreading along its d∗ children (neighbors).
Let Ni(t) denote the size of the rumor infected subtree, denoted by Gi(t), rooted at
the ith child (or neighbor) of node v∗. Initially, Ni(0) = 0. The Ni(·) is a Poisson
process with time-varying rate: the rate at time t depends on the ‘boundary’ of the tree
as discussed earlier. Due to the balanced and geometric growth conditions assumed
in Theorem 4, the following will be satisfied: for small enough ε > 0 (a) every node
within a distance t (1− ε) of v∗ is in one of theGi(t), and (b) no node beyond distance
t (1 + ε) of v∗ is in any of the Gi(t). Such a tight characterization of the ‘shape’ of
Gi(t) along with the polynomial growth will provide sharp enough bound on Ni(t)
that will result in establishing Theorem 4. This result is summarized below with its
proof in the Appendix.

Theorem 5. Consider a geometric tree with parameters α > 0 and 0 < b ≤ c as
assumed in Theorem 4 and let the rumor spread from source v∗ starting at time 0.
Define ε = t−1/2+δ for any small 0 < δ < 0.1. Let G(t) be the set of all rumor
infected nodes in the tree at time t. Let Gt be the set of all sub-trees rooted at v∗

(rumor graphs) such that all nodes within distance t(1− ε) from the v∗ are in the tree
and but no node beyond distance t(1 + ε) from v∗ beyond to the tree. Then

P(Gt ∈ Gt) = 1−O
(
e−t

δ)
t→∞−→ 1.

Define Et as the event that Gt ∈ Gt. Under event Et, consider the sizes of the sub-
trees Ni(t) for 1 ≤ i ≤ d∗. Due to the polynomial growth condition and Et, we obtain
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the following bounds on each Ni(t) for all 1 ≤ i ≤ d∗:

t(1−ε)−1∑
r=1

brα ≤ Ni(t)

≤
t(1+ε)−1∑
r=1

crα.

Now bounding the summations by Reimann’s integrals, we have∫ L−1

0

rαdr ≤
L∑
r=1

rα ≤
∫ L+1

0

rαdr.

Therefore, it follows that under event Et, for all 1 ≤ i ≤ d∗

b

1 + α

(
t(1− ε)− 2

)α+1 ≤ Ni(t) ≤
c

1 + α

(
t(1 + ε)

)α+1
.

In the most ‘unbalanced’ situation, d∗−1 of these sub-trees have minimal size Nmin(t)
and the remaining one sub-tree has size Nmax(t) where

Nmin(t) =
b

1 + α

(
t(1− ε)− 2

)α+1
,

Nmax(t) =
c

1 + α

(
t(1 + ε)

)α+1
.

Since by assumption c < b(d∗ − 1), there exists γ > 0 so that c < (1 + γ)b(d∗ − 1).
Therefore, for choice of ε = t−1/2+δ for some δ ∈ (0, 0.1), we have

(d∗ − 1)Nmin(t)

Nmax(t)
=
b(d∗ − 1)

c

( t− t 1
2 +δ − 2

t+ t
1
2 +δ

)α+1

(i)
>

1

1 + γ

(1− t− 1
2 +δ − 2

t

1 + t−
1
2 +δ

)α+1

> 1,

for t large enough since the second term in inequality (i) goes to 1 as t → ∞. From
this, it immediately follows that under event Et for t large enough

max
1≤i≤d∗

Ni(t) <
1

2

d∗∑
i=1

Ni(t).

Therefore, by Proposition 1 it follows that the rumor center is unique and equals v∗.
Therefore, for t large enough Et ⊂ Ct. From above and Theorem 5

lim inf
t

P
(
Ct
)
≥ lim

t
P
(
Et
)

= 1.
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7 Conclusion and Future Work
This paper has provided, to the best of the authors’ knowledge, the first systematic
study of the problem of finding rumor sources in networks. Using the well known SIR
model, we constructed an estimator for the rumor source in regular trees, general trees,
and general graphs. We defined the ML estimator for a regular tree to be a new notion
of network centrality which we called rumor centrality and used this as the basis for
estimators for general trees and general graphs.

We analyzed the asymptotic behavior of the rumor source estimator for regular trees
and geometric trees. For linear graphs, it was shown that the detection probability goes
to 0 as the network grows in size. However, for trees which grew faster than lines, it was
shown that there was always non-trivial detection probability. This analysis highlighted
the different techniques which must be used for networks with expansion versus those
with only polynomial growth. Simulations performed on synthetic graphs agreed with
these tree results and also demonstrated that the general graph estimator performed
well in different network topologies, both synthetic (small-world, scale-free) and real
(AS, power grid).

On trees, we showed that the rumor center is equivalent to the distance center.
However, these were not equivalent in a general network. Also, it was seen that in
networks which are not tree-like, rumor centrality is a better rumor source estimator
than distance centrality.

The next step of this work would be to better understand the effect of the BFS
heuristic on the estimation error and under what precise conditions it improves or de-
grades performance. Another future direction would be to generalize the estimator to
networks with a heterogeneous rumor spreading rate.

8 Appendix A: Proof of Theorem 5
We recall that Theorem 5 stated that the rumor graph on a geometric tree is full up to a
distance t(1−ε) and does not extend beyond t(1+ε), for ε = t−1/2+δ for some positive
δ ∈ (0, 0.1). To establish this, we shall use the following well known concentration
property of the unit rate Poisson process. We provide its proof later for completeness.

Theorem 6. Consider a unit rate Poisson process P (·) with rate 1. Then there exists a
constant C > 0 so that for any γ ∈ (0, 0.25),

P
(∣∣P (t)− t

∣∣ ≥ γt) ≤ 2e−
1
4 tγ

2

.

Now we use Theorem 6 to establish Theorem 5. Recall that the spreading time
along each edge is an independent and identically distributed exponential random vari-
able with parameter 1. Now the underlying network graph is a tree. Therefore for any
node v at distance r from source node v∗, there is a unique path (of length r) connect-
ing v and v∗. Then, the spread of the rumor along this path can be thought of as a unit
rate Poisson process, say P (t), and node v is infected by time t if and only if P (t) ≥ r.
Therefore, from Theorem 6 it follows that for any node v that is at distance t(1− ε) for
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ε = t−
1
2 +δ for some δ ∈ (0, 0.1),

P
(
v is not rumor infected

)
≤ 2e−

1
4 tε

2

= 2e−
1
4 t

2δ

.

Now the number of such nodes at distance t(1 − ε) from v∗ is at most O(t1+α) (fol-
lows from arguments similar to those in the proof of Theorem 4). Therefore, by an
application of union bound it follows that

P
(
a node at distance t(1− ε) from v∗ isn’t infected

)
= O

(
tα+1e−

1
4 t

2δ
)

= O
(
e−t

δ
)
.

Using similar argument and another application of Theorem 6, it can be argued that

P
(
a node at distance t(1 + ε) from v∗ is infected

)
= O

(
e−t

δ
)
.

Since the rumor is a ‘spreading’ process, if all nodes at distance r from v∗ are infected,
then so are all nodes at distance r′ < r from v∗; if all nodes at distance r from v∗ are
not infected then so are all nodes at distance r′ > r from v∗. Therefore, it follows that
with probability 1−O(e−t

δ

), all nodes at distance up to t(1− ε) from v∗ are infected
and all nodes beyond distance t(1 + ε) from v∗ are not infected. This completes the
proof of Theorem 5.

9 Appendix B: Proof of Theorem 6
We wish to prove bounds on the probability of P (t) ≤ t(1 − γ) and P (t) ≥ t(1 + γ)
for a unit rate Poisson process P (·). To that end, for θ > 0 it follows that

P
(
P (t) ≤ t(1− γ)

)
= P

(
− θP (t) ≥ −θt(1− γ)

)
= P

(
e−θP (t) ≥ e−θt(1−γ)

)
≤ eθt(1−γ)E

[
e−θP (t)

]
= eθt(1−γ)et(e

−θ−1),

where the last equality follows from the fact that P (t) is a Poisson random variable
with parameter t. That is,

P
(
P (t) ≤ t(1− γ)

)
≤ inf
θ>0

eθt(1−γ)+te−θ−t.

The minimal value of the exponent in the right hand side above is achieved for value
of θ = − log(1 − γ). For this value of θ, using the fact that γ ∈ (0, 0.25) and the
inequality log(1− γ) ≥ −γ − 3γ2/4 for γ < 1/3, it follows that

P
(
P (t) ≤ t(1− γ)

)
≤ e− 1

4 tγ
2

.
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Next, to establish the bound on the probability of P (t) ≥ t(1 + γ), using similar
argument it follows that

P
(
P (t) ≥ t(1 + γ)

)
≤ inf
θ>0

et
(
−θ(1+γ)+(eθ−1)

)
.

The right hand side is minimized for θ = log(1 + γ). Using log(1 + γ) ≥ γ − γ2/2
for γ ≤ 0.5 it follows that

P
(
P (t) ≥ t(1 + γ)

)
≤ e− 1

4 tγ
2

.

This completes the proof of Theorem 6.
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