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“Rewiring” Filterbanks for Local Fourier Analysis:
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Abstract— This article describes a series of new results outlin-
ing equivalences between certain “rewirings” of filterbank system
block diagrams, and the corresponding actions of convolution,
modulation, and downsampling operators. This gives rise to a
general framework of reverse-order and convolution subband
structures in filterbank transforms, which we show to be well
suited to the analysis of filterbank coefficients arising from
subsampled or multiplexed signals. These results thus provide
a means to understand time-localized aliasing and modulation
properties of such signals and their subband representations—
notions that are notably absent from the global viewpoint
afforded by Fourier analysis. The utility of filterbank rewirings
is demonstrated by the closed-form analysis of signals subject
to degradations such as missing data, spatially or temporally
multiplexed data acquisition, or signal-dependent noise, such as
are often encountered in practical signal processing applications.

Index Terms— Aliasing, likelihood methods, modulation, mul-
tiplicative noise, sampling, signal enhancement, time-frequency
analysis, wavelets.

I. INTRODUCTION

Since the earliest days of signal and waveform analysis,
engineers have recognized the wide utility of parameterized
families of filters: convolution operators that are directly rep-
resented by finite-length sequences of real numbers. Parallel
banks of such finite-impulse-response filters, including short-
time Fourier and wavelet transforms, have long been a canoni-
cal tool for analyzing signals, images, and other data sets that
arise in a variety of applications across scientific fields [1],
[2]. The purpose of this article is to further expand filterbank
theory and practice by developing a general framework of
reverse-order and convolution subband structures in filterbank
transforms. It describes a series of new results outlining
equivalences between certain “rewirings” of filterbank block
diagrams, and the “localized” aliasing and modulation prop-
erties of sampled signals and their subband representations,
which we describe below.

Sampled signals are typically acquired as linear functionals
of the underlying data object of interest, which in turn is
defined with respect to a continuous variable such as time or
space. The actions of the convolution operators that comprise
filterbanks are studied through their Fourier transforms, under
the correspondence of element-wise multiplication on the dual
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group. Since sampling a continuous-time function periodizes
its Fourier transform, however, care must be taken that no
information is lost in the process. Indeed, in the absence of
additional assumptions, it is not in general possible to recover
signals that have aliased; that is, signals whose Fourier trans-
forms are supported on intervals so large that this periodization
mixes distinct Fourier coefficients.

As the bandwidth of any function is directly determined
by its global smoothness, Fourier analysis does not lend
itself to a meaningful analysis of signals whose smoothness
varies and hence are not low-pass everywhere. In contrast,
parallel banks of convolution operators with finite support are
fundamentally local in nature. It is well known, for instance,
that the flexibility afforded by wavelets to adapt to the local
regularity of functions is essential in yielding the sparsity
properties necessary for effective signal and image analysis,
as well as contemporary signal acquisition techniques such as
compressed sensing [3]–[8].

Filterbanks are hence essential engineering tools for data
analysis. However, definitions of aliasing and frequency mod-
ulation in the global, Fourier context preclude the closed-form
filterbank analysis of signals subject to missing data, spatially
or temporally multiplexed acquisition, or signal-dependent
noise effects. While it is well known how to apply filterbanks
to analyze, modify, and enhance signals that are free from
aliasing or modulatory effects, the literature presently lacks a
unified filterbank theory for these settings.

In this work we develop a set of results necessary to fully
understand and exploit the local aliasing and modulation prop-
erties of sampled signals and their subband representations.
Though our motivation stems from signal processing problems
typically encountered in practice (such as those mentioned
above, to which we return at the end of the article), our re-
sults are more general, showing equivalences between certain
“rewirings” of filterbank block diagrams, and the correspond-
ing actions of convolution, modulation, and downsampling
operators. Our primary contributions are the introduction and
analysis of two cardinal rewiring mechanisms—reverse-order
subband structure (ROSS) and subband convolution structure
(SCS)—by which filterbank subbands are coupled together to
describe the relationship between localized aliasing, modula-
tion, and convolution.

The framework we introduce is distinct from work involving
signal recovery methods [3]–[8] and sampling theorems [9]–
[12] in the extant literature. Such work has successfully char-
acterized sufficient conditions for exact reconstruction when
filterbank theory is used to restrict the class of signals under
consideration, or to specify the fundamental compressibility of
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(a) x (b) xm (c) xs

(d) x̂ (e) x̂m (f) x̂s

Fig. 1. Pictorial illustrations of modulation and sampling in both the time
(a-c) and frequency (d-f) domains.

its members. In contrast, this article employs filterbank theory
to describe the data acquisition and sampling process itself,
rather than any properties of a given signal class. Notions
of localized aliasing and localized modulation are intimately
connected with the ROSS and SCS analyses that we introduce
below, and are also complementary to other well-understood
concepts in filterbank analysis.

The article is organized as follows. In the remainder of
Section I we introduce key definitions and filterbank nota-
tion, and provide a simple example of local aliasing and
local modulation that motivates our subsequent analysis. In
Section II we introduce our first “rewiring” notion—that of
reverse-order subband structure—and derive corresponding
expressions for the filterbank coefficients corresponding to
a subsampled signal. In Section III we build on this work
to introduce the notion of subband convolution structure—
our second means of filterbank rewiring—and show how it
leads to a convolution theorem particularly suited to the local
modularity of the filterbank transform. We conclude with a
discussion in Section IV where we consider the practical
use of these two notions in problems involving missing data,
multiplexed signal acquisition, and signal-dependent noise.

A. Key Definitions and Filterbank Notation

Throughout, let x ∈ `2(Z) be a real-valued sequence
indexed by n ∈ Z. Subsampling is the operation of replacing
every odd-numbered element of x by zero, and hence the
subsampled sequence xs is defined element-wise as

xs[n] :=

{
x[n] if n even,
0 if n odd.

(Note that this is distinct from downsampling, a dilation of the
index set of x to yield x[2n], such that odd-numbered sam-
ples are “dropped” and only even-numbered ones retained.)
Equivalently, xs[n] is an arithmetic average of x[n] and its
frequency-modulated version xm[n] := (−1)nx[n].:

xs[n] =
1
2

(x[n] + xm[n]) .

(a) One-level filterbank structure

(b) One-level complementary filterbank structure

Fig. 2. One-level filterbank (a) and its complementary structure (b).
Diagram (a) represents analysis and synthesis filters {g0, g1} and {h0, h1},
respectively, as well as filterbank coefficient sets {vx

0 , vx
1 } resulting from

the action of the analysis convolution operator and subsequent downsampling
on a sequence x. Reversing the downsampling procedure and applying the
synthesis filters yields a “reconstructed” sequence xr . Diagram (b) represents
filters g̃i, h̃i “complementary” to (a), obtained by swapping the roles of g
and h, respectively, and then applying an affine transformation.

Figures 1(a)-(c) serve as a reminder to illustrate how samples
in x and xm with opposite signs cancel out to yield xs; we
shall frequently refer back to them later.

Let x̂ denote the discrete-time Fourier transform of x, with
ω ∈ R/2π its corresponding normalized angular frequency.
Then it follows that x̂m(ω) = x̂(ω − π) and

x̂s(ω) =
1
2

[
x̂(ω) + x̂(ω − π)

]
. (1)

Here we see that when the bandwidth of x—i.e., the support of
x̂—is sufficiently large, x̂(ω) and x̂m(ω) are indistinguishable
in x̂s(ω); as shown in Figures 1(d)-(g), their supports overlap
in the Fourier domain. This phenomenon is called aliasing;
in the absence of additional information, aliased portions of x
cannot be recovered from x̂s(ω) alone.

The Fourier transform is a fundamentally global operation;
modulation and aliasing mix non-local information from the
sequence x. In contrast, a filterbank maps a sequence x
to some alternative representation by way of localized fil-
terbank coefficients (“analysis”), and subsequently yields a
linear reconstruction xr (“synthesis”); well-known examples
include short-time Fourier and wavelet representations. As
the analysis operator acts linearly, we write its action as
an inner product, calling it a filter when it is a convolution
operator parameterized by translation along a sublattice of Z,
as is the case considered here. If this convolution operator
is represented by the actions of a finite-length, real-valued
sequences in `2(Z), then we refer to a real-valued, finite-
impulse-response analysis filter g and corresponding synthesis
filter h. Figure 2(a) illustrates a basic filterbank structure, with
two analysis filters {g0, g1} and two synthesis filters {h0, h1}.
We denote by {vx0 , vx1} the corresponding filterbank coefficient
sequences, defined as follows.

Definition 1.1 (Filterbank Coefficient Sequence): We call
vxi ∈ `2(Z) a one-level filterbank coefficient sequence
corresponding to x if

vxi [n] :=
(
gi[m] ?m x[m]

)
[2n], (2)
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where the summation in the discrete convolution ?m is per-
formed over the index m, and the subsequent notion of
downsampling by two is reflected by the index set {2n : n ∈
Z}.
This composition of convolution and dilation implies in turn
that

v̂xi (ω) =
1
2

[
ĝi

(ω
2

)
x̂
(ω

2

)
+ ĝi

(ω
2
− π

)
x̂
(ω

2
− π

)]
,

(3)

and the set of transform coefficients {vxi [n]}n∈Z is collectively
referred to as the ith filterbank subband. Typically g0 and
h0 are smooth (i.e., low-pass) filters, while g1 and h1 have
zero average. Thus, vx0 provides a measure of local low-
frequency energy concentration, while vx1 captures local high-
frequency energy, with temporal localization provided by
the finite support of {gi, hi}i∈Z2 . A filterbank’s joint time-
frequency resolution can be fine-tuned by recursively nesting
copies of the basic one-level transform structure illustrated in
Figure 2(a), yielding the multi-level filterbank structures that
we consider later in Section II-C.

Note that the Fourier representation of (3) implies the
superposition of shifted copies of the resultant filtered spectra,
which in general will give rise to aliasing of the type illustrated
in Figure 1(f). It is thus natural to ask for conditions under
which this aliasing will cancel—a prerequisite for the exact
reconstruction of any input sequence x ∈ `2(Z) from its
filterbank coefficients, such that xr = x in the diagram of
Figure 2(a). To this end we arrive at the following well-known
definition, which stems from global properties of the Fourier
transform.

Definition 1.2 (Perfect Reconstruction Filterbank): A per-
fect reconstruction filterbank {gi, hi}i∈Z2 admits for all x ∈
`2(Z) the relation

x̂(ω) := ĥ0(ω)v̂x0 (2ω) + ĥ1(ω)v̂x1 (2ω) = x̂(ω). (4)

Equivalently, as shown in Figure 2(a), we have for all n ∈ Z
that

xr[2n] =
(
h0[2m] ?m vx0 [m]

)
[n]

+
(
h1[2m] ?m vx1 [m]

)
[n] = x[2n]

xr[2n+ 1] =
(
h0[2m+ 1] ?m vx0 [m]

)
[n]

+
(
h1[2m+ 1] ?m vx1 [m]

)
[n] = x[2n+ 1].

As described earlier, the sequences of operations correspond-
ing to the forward transform step in (2) and the reconstruction
step in (4) are commonly referred to as the analysis and
synthesis filterbanks, respectively.

Remark 1.1 (Haar Filterbank Transform): Perhaps the
most well-known example of a perfect reconstruction
filterbank is given by the so-called Haar transform, which
may be defined in terms of its z-transform as:∑

n

gi[n]z−n =1 + (−1)iz,

∑
n

hi[n]z−n =
1
2

[
(−1)i + z−1

]
.

(5)

Note that g0 and g1 in (5) amount to the sum and difference
of neighboring samples, respectively, and it is clear that
the original sequence x[n] is easily recoverable from the
corresponding sequences of filterbank coefficients.

Important and well-known results associated with Definition
1.2 established the following (see, e.g., [1]) .

Property 1.1 (Alias Cancellation Equivalence): The set
{gi, hi}i∈Z2 is a perfect reconstruction filterbank if and only
if

2 = ĝ0(ω)ĥ0(ω) + ĝ1(ω)ĥ1(ω) (6)

0 = ĝ0(ω)ĥ0(ω − π) + ĝ1(ω)ĥ1(ω − π) (7)
Property 1.2 (Analysis-Synthesis Symmetry): If finite-

impulse-response filters {gi, hi}i∈Z2 comprise a perfect
reconstruction filterbank, then there exist a ∈ R \ {0} and
b ∈ Z such that

ĝi(ω) = (−1)1−iaej(2b+1)ωĥ1−i(ω − π).
Remark 1.2: The condition of (7) in Property 1.1 guaran-

tees that the aliased components in vx0 and vx1 cancel, so
the impulse response of the overall filterbank structure in
Figure 2(a) is equal to one-half of the expression of (6); i.e.,
everywhere constant and equal to unity. Property 1.2 makes
explicit the fact that an analysis filterbank uniquely defines
its corresponding synthesis filterbank. These properties serve
as the foundation for the reverse-order subband filterbank
structure that we introduce in Section II below.

B. Motivating Example for Filterbank “Rewiring”

The preceding section has served to introduce the basic
notions of filterbank theory that we shall employ here. Before
continuing, it is instructive to consider a simple motivating
example based on the simplest case of the Haar filterbank
transform. In essence, we will see that “rewiring” filterbank
diagrams such as those in Figure 3 can be related to the actions
of convolution, modulation, and downsampling operators. In
subsequent sections we develop these properties formally, and
show how they yield new insights into important practical
problems.

To begin, consider the symmetric Hadamard matrix

Φ =
[
1 1
1 −1

]
which maps two-dimensional vectors to the corresponding
sums and difference of their components, and thus serves to
define the (unnormalized) one-level Haar filterbank. Note that
Φ−1 = 1

2Φ, and consider two systems of linear equations in
Φ that will serve to illustrate the concepts of reverse-order
and convolution subband structure:[

q
r

]
=Φ

[
a
b

]
,

[
s
t

]
= Φ

[
c
d

]
.

Example 1.1 (Reverse-Ordering and Subsampling):
Consider the first system of equations above, and suppose
that we replace b with −b, yielding a “modulated” version of
[a, b]T . We then observe that the Haar transform of [a,−b]T
results in a reverse-ordering of q and r, which play the roles
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of low-pass and high-pass components, respectively:[
1 1
1 −1

] [
a
−b

]
=

1
2

[
1 1
1 −1

] [
1 1
−1 1

] [
q
r

]
=
[
r
q

]
.

Since summing [a, b]T and its modulated version corresponds
to subsampling, we next compute the Haar transform of
[a, 0]T , and observe that this results in an arithmetic averaging
of q and r:[

1 1
1 −1

] [
a
0

]
=

1
2

[
1 1
1 −1

]([
a
b

]
+
[
a
−b

])
=

1
2

[
q + r
q + r

]
.

We see from this simple example that the “swapping” and
the “combining” of low-pass and high-pass components are
reminiscent of modulation and aliasing in the traditional
Fourier sense, as illustrated respectively in Figures 1(e) and
1(f).

Example 1.2 (Convolution and Pointwise Multiplication):
Now consider the element-wise product of the vectors [a, b]T

and [c, d]T . The Haar transform of this product [ac, bd]T is:[
1 1
1 −1

] [
ac
bd

]
=

1
4

[
1 1
1 −1

] [
(q + r)(s+ t)
(q − r)(s− t)

]
=

1
4

[
(q + r)(s+ t) + (q − r)(s− t)
(q + r)(s+ t)− (q − r)(s− t)

]
=

1
2

[
qs+ rt
qt+ sr

]
.

The symmetry of qs+rt and qt+sr suggests a kind of cyclic
convolution of [q, r]T and [s, t]T . In fact, we will see in Section
III that our filterbank rewiring techniques recover precisely this
notion of group structure, in direct analogy to global Fourier
analysis. In Section IV, these ideas will reappear in the context
of analysis of signals subject to multiplicative noise corruption.

II. REVERSE-ORDER SUBBAND STRUCTURE AND
LOCALIZED ALIASING

Having introduced the necessary definitions and given two
brief examples, we now begin our technical development of
filterbank “rewiring.” Bearing in mind the examples considered
above, we introduce in Section II-A below the notion of
complementary filterbanks, and then employ them to obtain
the following results in Section II-B: the reverse-ordering of
subband structure that results from modulation, and local-
ized aliasing that stems from averaging the low- and high-
frequency filterbank coefficients. In Section II-C we extend
these results to the setting of multi-level filterbanks.

A. Complementary Filterbanks
Definition 2.1: (Complementary Filterbanks and Filterbank

Coefficients): Let {gi, hi}i∈Z2 be a perfect reconstruction
filterbank. Then we define the complementary filterbank
{g̃i, h̃i}i∈Z2 as follows:

g̃i[n] :=ahi[n+ (2b+ 1)]

h̃i[n] :=a−1gi[n− (2b+ 1)],

where a and b are chosen to satisfy Property 1.2 of perfect
reconstruction filterbank, and we call wxi [n] a one-level com-
plementary filterbank coefficient corresponding to a sequence

x if

wxi [n] :=
(
g̃i[m] ?m x[m]

)
[2n].

The following important property of complementary filter-
banks follows directly from Properties 1.1 and 1.2 of perfect
reconstruction filterbanks.

Proposition 2.1 (Complementarity & Perfect Reconstruction):
If the set {gi, hi}i∈Z2 is a perfect reconstruction filterbank,
then so is {g̃i, h̃i}i∈Z2 .

Proof: Appealing to Property 1.2, we see that Fourier
transforms of g̃i and h̃i respectively yield

ˆ̃gi(ω) =aej(2b+1)ωĥi(ω)
ˆ̃
hi(ω) =a−1e−j(2b+1)ω ĝi(ω).

(8)

By substitution, we verify that (6) and (7) hold for
{g̃i, h̃i}i∈Z2 :

ˆ̃g0(ω)ˆ̃h0(ω) + ˆ̃g1(ω)ˆ̃h1(ω)

=
(
aej(2b+1)ωĥ0(ω)

)(
a−1e−j(2b+1)ĝ0(ω)

)
+
(
aej(2b+1)ωĥ1(ω)

)(
a−1e−j(2b+1)ĝ1(ω)

)
= 2

ˆ̃g0(ω)ˆ̃h0(ω − π) + ˆ̃g1(ω)ˆ̃h1(ω − π)

=
(
aej(2b+1)ωĥ0(ω)

)(
a−1e−j(2b+1)ĝ0(ω − π)

)
+
(
aej(2b+1)ωĥ1(ω)

)(
a−1e−j(2b+1)ĝ1(ω − π)

)
= 0.

Hence by Property 1.1, the set {g̃i, h̃i}i∈Z2 comprises a perfect
reconstruction filterbank.
Figure 2(b) illustrates this complementary filterbank structure,
along with the corresponding complementary coefficients wxi .
It is natural to ask if a filterbank can be its own complement,
and to this end we have the following.

Definition 2.2 (Self-Complementary Filterbank): We call a
filterbank {gi, hi}i∈Z2 self-complementary if

vxi [n] = (−1)1−iwxi [n]. (9)
Returning now to Remark 1.1, we note the following.

Proposition 2.2 (Self-Complementarity of Haar Filterbank):
The Haar filterbank is self-complementary.

Proof: It follows from (5) that the Haar filterbank
satisfies the following symmetry:

ĝi(ω) = (−1)iej(2b+1)ω ĝ∗i (ω),

with a = 1
2 and b = −1. Applying Property 1.2 of perfect

reconstruction filterbanks in turn yields

(−1)iej(2b+1)ω ĝ∗i (ω) =(−1)1−iaej(2b+1)ωĥ1−i(ω − π)

ĝ∗i (ω) =− aĥ1−i(ω − π). (10)

The well-known identity ĝi(ω) = (−1)iej(2b+1)ω ĝ∗1−i(ω − π)
of Smith and Barnwell [13] applies; and upon substituting this
into (10), we obtain the desired result:

ĝi(ω) =(−1)iej(2b+1)ω(−aĥi(ω))

=(−1)1−i ˆ̃gi(ω).
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Fig. 3. Illustration of Theorem 1, with the left side showing a modulated
signal xm[n] and the right side showing reverse-ordering of the comple-
mentary filterbank. The low- and high-frequency filterbank subbands for the
modulated signal behave like the high- and low-frequency complementary
filterbank subbands for the original signal, respectively.

As we show below, complementary filterbanks play a key
role in the reverse-ordering of subband structure induced by
modulation.

B. Reverse-Order Subband Structure

Figure 3 illustrates the reversal of subband ordering that
results when x is modulated by π to yield xm: the low-
frequency filterbank coefficient for the modulated signal
(vxm

0 [n]) behaves like the high-frequency complementary fil-
terbank coefficient for the original signal (wx1 [n]), and vice-
versa. As may be seen by comparing Figure 3 with Figure 1,
this filterbank subband “role-reversal” is consistent with the
Fourier interpretation of modulation by π; in both cases, the
low- and high-frequency components are swapped, modulo-
2π. We formalize this notion as follows:

Theorem 1 (Reverse-Order Subband Structure (ROSS)): If
the set {gi, hi}i∈Z2 is a perfect reconstruction filterbank, then

vxm
i [n] = (−1)iwx1−i[n]. (11)

Proof: Modulation of x by π implies that we have that

v̂xm
i (ω) =

1
2

[
ĝi

(ω
2

)
x̂m

(ω
2

)
+ ĝi

(ω
2
− π

)
x̂m

(ω
2
− π

)]
=

1
2

[
ĝi

(ω
2

)
x̂
(ω

2
− π

)
+ ĝi

(ω
2
− π

)
x̂
(ω

2

)]
.

By Property 1.2 of perfect reconstruction filterbanks and
Definition 2.1,

ĝi(ω) = (−1)1−iaej(2b+1)ωĥ1−i(ω − π)

= (−1)i ˆ̃g1−i(ω − π)
v̂xm
i (ω)

=
(−1)i

2

[
ˆ̃g1−i

(ω
2

)
x̂
(ω

2

)
+ ˆ̃g1−i

(ω
2
− π

)
x̂
(ω

2
− π

)]
= (−1)iŵx1−i(ω). (12)

Applying Property 1.1 of perfect reconstruction filterbanks
to (12) immediately yields the following important corollary.

Corollary 2.1 (Modulation induced by ROSS): Suppose
the set {gi, hi}i∈Z2 is a perfect reconstruction filterbank.
Then

0 =ˆ̃g1(ω)ĥ0(ω)− ˆ̃g0(ω)ĥ1(ω),

2 =ˆ̃g1(ω)ĥ0(ω − π)− ˆ̃g0(ω)ĥ1(ω − π).
Remark 2.1 (Filterbank Interpretation of ROSS Modulation):

An intuitive interpretation of Corollary 2.1 is that exchanging
the low- and high-frequency filterbank subbands results
in modulation. To see this, consider reconstruction of the

Fig. 4. Illustration of Corollary 2.1: exchange of low- and high-frequency
filterbank subbands results in modulation (compare to the standard comple-
mentary filterbank structure of Figure 2(b)).

Fig. 5. Illustration of Corollary 2.2, with the left side showing x[n] subject to
subsampling and the right side showing the corresponding aliasing structure.
Filterbank coefficients corresponding to the subsampled signal are arithmetic
averages of complementary low- and high-frequency coefficients.

complementary filterbank coefficients with reverse-order
subbands, as illustrated in Figure 4:

x̂r(ω) = ĥ0(ω)ŵx1 (2ω)− ĥ1(ω)ŵx0 (2ω)

=
1
2
ĥ0(ω)

[
ˆ̃g1(ω)x̂(ω) + ˆ̃g1(ω − π)x̂(ω − π)

]
− 1

2
ĥ1(ω)

[
ˆ̃g0(ω)x̂(ω) + ˆ̃g0(ω − π)x̂(ω − π)

]
=

1
2
x̂(ω)

[
ĥ0(ω)ˆ̃g1(ω)− ĥ1(ω)ˆ̃g0(ω)

]
+

1
2
x̂(ω − π)

[
ĥ0(ω)ˆ̃g1(ω − π)− ĥ1(ω)ˆ̃g0(ω − π)

]
= x̂(ω − π).

We also obtain a filterbank interpretation of the aliasing
induced by subsampling, in analogy to the Fourier decom-
position of (1). As shown in Figure 5, filterbank coefficients
corresponding to the subsampled signal xs[n] are arithmetic
averages of low- and high-frequency coefficients correspond-
ing to x[n], in analogy to the symmetry about π/2 visible in
the Figure 1(f).

Corollary 2.2 (Localized Aliasing): If the set {gi, hi}i∈Z2

is a perfect reconstruction filterbank, then by linearity and
Theorem 1,

vxs
i [n] =

1
2

(
vxi [n] + (−1)iwx1−i[n]

)
.

Furthermore, this modulation implies the filterbank subband
symmetry vxs

i [n] = (−1)iwxs
1−i[n].

As can be seen in Figure 5, localized aliasing occurs when
vxi [n] and wx1−i[n] are both simultaneously nonzero and hence
indistinguishable in vxs

i [n]. Unlike the global Fourier aliasing
illustrated in Figure 1, however, this aliasing is confined to a
temporally localized region that depends on the local regularity
of x.
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C. Extension to Multi-Level Setting

Multi-level filterbank analysis corresponds to a recursive
application of convolution and downsampling operators to
successive sets of filterbank coefficients. To index the cor-
responding subbands, we adopt binary vector notation for
indices as follows. Let i = (iI-1, . . . , i1, i0)T ∈ Z2

I and
i′ = (iI-1, . . . , i1, 1 − i0)T , and recalling vxi [n] and wxi [n]
from Definitions 1.1 and 2.1, define the corresponding I-level
recursions:

vxi [n] :=
(
giI-1 ?mI-1

(
. . .
(
gi1 [m1] ?m1

(
gi0 [m0]

?m0 x[m0]
)
[2m1]

)
[2m2] . . .

)
[2mI-1]

)
[2n]

(13)

wxi [n] :=
(
giI-1 ?mI-1

(
. . .
(
gi1 [m1] ?m1

(
g̃i0 [m0]

?m0 x[m0]
)
[2m1]

)
[2m2] . . .

)
[2mI-1]

)
[2n].

(14)

Here ik ∈ Z2 indexes the analysis filters used in the kth-level
decomposition (i.e. g0 or g1), and i′ corresponds to a high
(low) frequency subband when i is a low (high) frequency
subband. Note here that the complementary filters g̃0 and g̃1
are used only in the 0th-level decomposition in (14). The
corresponding perfect reconstruction extension of (4) to the
case of an I-level filterbank is

x̂r(ω) :=
∑

i

v̂xi (2Iω)
I−1∏
k=0

ĥik(2kω). (15)

Then, in parallel to our earlier development, the results of
Theorem 1 and Corollary 2.2 extend to the multi-level setting
as follows.

Theorem 2 (Multi-Level ROSS): Suppose the set
{gi, hi}i∈Z2 is a perfect reconstruction filterbank, and
let i ∈ Z2

I . Then,

vxm

i =(−1)i0wxi′ [n];

vxs

i =(−1)i0wxs

i′ [n] =
1
2

(
vxi [n] + (−1)i0wxi′ [n]

)
.

Using the same example shown in Figure 1, Figure 6 illustrates
this localized aliasing in the multi-level filterbank setting. Note
that although the subsampled example signal is subject to
aliasing in a global sense (Figure 1(f)), the corresponding
vxi [n] may be recovered from vxs

i [n] whenever wxi′ [n] = 0.
Theorem 2 simplifies when self-complimentarity is taken into
account, illustrated also in Figure 7.

Corollary 2.3 (Multi-Level Self-Complementary ROSS): If
the set {gi, hi}i∈Z2 is a perfect reconstruction filterbank that
is also self-complementary, then

vxi [n] =(−1)1−i0wxi [n],
vxm

i [n] =vxi′ [n];

vxs

i [n] =
1
2

(
vxi [n] + vxm

i [n]
)

=
1
2

(
vxi [n] + vxi′ [n]

)
.

Remark 2.2 (Extension to Discrete Wavelet Transform):
The above results can easily be adapted to discrete wavelet
transforms, which employ the same fundamental building
blocks as perfect reconstruction filterbanks [1], [2]. As an
example, the filterbank rewiring associated with the wavelet
transform of a subsampled signal xs[n] is illustrated in Figure
8; we leave the details as an easy exercise for the reader.

(a) vx
i (b) vxm

i (c) vxs
i (d) wx

i

Fig. 6. Pictorial illustration of localized aliasing in the 2-level filterbank
domain, as indicated by Theorem 2. Parts (a-c) show filterbank coeffi-
cients sequences corresponding to Fig. 1(a-c), respectively, with (d) the
complementary sequence corresponding to Fig. 1(a). From top to bottom,
the ordering of the four subbands represented in each subfigure is i =
(0, 0), (1, 0), (1, 1), (0, 1). “Rewiring” is evident in comparing (b) with (d),
and vx

i [n] is exactly recoverable from vxs
i [n] whenever wx

i′ [n] = 0.

III. SUBBAND CONVOLUTION STRUCTURE AND
LOCALIZED MODULATION

In the previous section, we introduced and studied the
reverse-ordering of subband structure induced by subsampling,
for the case of general perfect reconstruction filterbanks.
Furthermore, we saw that this structure simplified considerably
when self-complimentarity was taken into account. In this
section, we show that the symmetry of the Haar filterbank
transform also affords a characterization of Fourier group
duality and convolution. As a special case, we recover the
multi-level ROSS structure of Corollary 2.3, thereby linking
the ROSS results of Section II and the subband convolution
structure (SCS) we introduce below.

A. Subband Convolution Structure

Recall the multi-level filterbank decomposition of (13), in
which ik ∈ Z2 indexes pairs of analysis filters used for the
kth level decomposition. Below, we prove the duality of time-
domain multiplication and subband convolution of filterbank
coefficients in this context.

Theorem 3 (Subband Convolution): Let vxi , v
y
i be I-level

Haar filterbank coefficient sequences corresponding to x and
y, respectively, with vxyi [n] that of the element-wise product
xy. Then, letting ~ denote cyclic convolution, we have the
relation(

vxj ~j v
y
j

)
i
[n] :=

1
2I
∑

j

vxi+j [n]vyj [n] = vxyi [n].
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Fig. 7. Illustration of Corollary 2.3. Filterbank coefficients corresponding to the subsampled signal are arithmetic averages of reverse-order coefficients.
Localized aliasing thus occurs when vx

i [n] and wx
i′ [n] are both supported simultaneously and hence indistinguishable in vxs

i [n].

Fig. 8. An example of ROSS-based wavelet analysis, with the left side showing x[n] subject to subsampling, and the right side showing the corresponding
aliasing structure.

Proof: By the Fourier representation of (15), the product
x[n] · y[n] can be analyzed as:

(̂x · y)(ω) = x̂r(ω) ?ω ŷr(ω)

=

[∑
i

v̂xi (2Iω)
I−1∏
k=0

ĥik(2kω)

]
?ω

∑
j

v̂xj (2Iω)
I−1∏
k=0

ĥjk(2kω)


=
∑

i

∑
j

∫ π

−π
v̂xi (2Iν)v̂xj

(
2I(ω − ν)

)

·

[
I−1∏
k=0

ĥik(2kν)ĥjk
(
2k(ω − ν)

)]
dν.

(16)

It follows from the definition of the Haar filterbank transform
in (5) that

ĥik(2kν)ĥjk
(
2k(ω − ν)

)
=

1
4

[
(−1)ik + e−j2

kν
] [

(−1)jk + e−j2
k(ω−ν)

]
=

1
2

[
ĥik+jk(2kω) + (−1)ike−j2

kν ĥik+jk

(
2k(ω − 2ν)

)]
.

Substituting this expression into (16) for k = 0,

(̂x · y)(ω) =
1
2

∑
i

∑
j

∫ π

−π
v̂xi (2Iν)v̂xj

·
(
2I(ω − ν)

)[I−1∏
k=1

ĥik(2kν)ĥjk
(
2k(ω − ν)

)]
·
[
ĥi0+j0(ω) + (−1)i0e−jν ĥi0+j0(ω − 2ν)

]
dν

=
1
2

∑
i

∑
j

ĥi0+j0(ω)
∫ π

−π
v̂xi (2Iν)v̂xj

(
2I(ω − ν)

)

·

[
I−1∏
k=1

ĥik(2kν)ĥjk
(
2k(ω − ν)

)]
dν,

where we have used the fact that
∫ π
−π e

−j2kν f̂(ν)dν = 0 for
all f̂(ν) ∈ L(R/2−kπ) whenever k ≥ 0, as e−j(2

kν−π)f̂(ν −
2−kπ) = −e−j2kν f̂(ν). By recursion over k, the above
reduces to

(̂x · y)(ω) =
1

2K
∑

i

∑
j

[
K−1∏
k=0

ĥik+jk(2kω)

]

·
∫ π

−π
v̂xi (2Iν)v̂xj

(
2I(ω − ν)

)
·

[
I−1∏
k=K

ĥik(2kν)ĥjk
(
2k(ω − ν)

)]
dν

=
1

2K+1

∑
i

∑
j

[
K∏
k=0

ĥik+jk(2kω)

]

·
∫ π

−π
v̂xi (2Iν)v̂xj

(
2I(ω − ν)

)
·

[
I−1∏

k=K+1

ĥik(2kν)ĥjk
(
2k(ω − ν)

)]
dν

= · · · = 1
2I
∑

i

∑
j

[
I−1∏
k=0

ĥik+jk(2kω)

]
·
[
v̂xi (2Iω) ?ω v̂

y
j (2Iω)

]
.

(17)

Note that (17) takes the form of a multi-level inverse filterbank
transform, as per (15). As the Haar filterbank transform is one-
to-one and onto, vxyi is thus uniquely defined by

v̂xyi (ω) =
1
2I
∑

j

[
v̂xi+j(ω) ?ω v̂

y
j (ω)

]
,

which agrees with the claim of the theorem.

Figure 9 illustrates the corresponding “rewiring” of filter-
bank subbands, in which vxi [n] and vyi [n] are coupled together
to yield vxy0 [n], and vxi′ [n] and vyi [n] are combined to produce
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Fig. 9. Illustration of Theorem 3, showing the correspondence between
time-domain multiplication and “logical convolution” of filterbank subbands.

vxy1 .
Remark 3.1 (Logical Convolution): By restricting x and y

be finite-dimensional, we recover the so-called logical con-
volution theorem [14] as a special case of Theorem 3. This
is easily seen by considering an order-2I Walsh sequence
~φi ∈ R2I

and its Abelian structure:

diag(~φi)~φj = ~φi+j , i, j ∈ {Z2}I . (18)

Orthogonality of the Walsh basis sets implies that any ~x ∈ R2I

can be expanded in terms of its Walsh-Hadamard coefficients〈
~φi, ~x

〉
= ~φTi ~x as ~x = 2−I

∑
j

〈
~φj , ~x

〉
~φj , and hence the

group homomorphism of (18) yields the desired relation for
all ~x, ~y ∈ R2I

:〈
~φi, diag(~x)~y

〉
=

1
22I

∑
j,j′

〈
~φj , ~x

〉〈
~φj′ , ~y

〉〈
~φi, diag(~φj)~φj′

〉
=

1
2I
∑

j

〈
~φj , ~x

〉〈
~φi+j , ~y

〉
.

B. Localized Modulation and Connection to Reverse-Ordered
Subband Structure

We conclude this section by interpreting the result of
Theorem 3 in terms of amplitude modulation and sampling.

Remark 3.2 (Multi-Level ROSS for Haar Filterbank Transform):
Suppose that we set vy(0,...,0,0)[n] = vy(0,...,0,1)[n] = 2I−1 for
all n, and vyi [n] = 0 otherwise, thus yielding a Dirac comb.
Then Theorem 3 agrees precisely with Corollary 2.3:(

vxj ~j v
y
j

)
i
[n] =

1
2

(
vxi [n] + vxi′ [n]

)
.

Remark 3.3 (Generalized Subsampling): More generally,
suppose y[n] ∈ {0, 1} is a sampling mask of any kind.
Then it may be seen from Figure 9 that the subsampled
signal x[n]y[n] is aliased if vx0 [n]vy0 [n] and vx1 [n]vy1 [n] (or,
vx0 [n]vy1 [n] and vx0 [n]vy1 [n]) are simultaneously supported.

Remark 3.4 (Localized Modulation): Consider Figure 9
again and suppose at time n = 0, we have that vy0 [n] = 0
and vy1 [n] = 1. Then vx0 [n] is “modulated” to vxy1 [n]. This
is similar to Fourier amplitude modulation, in which case
the energy of the modulated signal is concentrated around
a chosen carrier frequency; however, a representation based
on Theorem 3 is amenable to temporally local processing.
For example, suppose at time n = 1, we take vy0 [n] = 1 and
vy1 [n] = 0; then vx0 [n] is mapped to vxy0 [n] instead of vxy1 [n].
In other words, this filterbank interpretation of localized
modulation—illustrated in Figure 10—is ideal for tracking
modulation when the “carrier” y[n] is allowed to change over
time.

(a) vx
i (b) vy

i (c) vxy
i

Fig. 10. Pictorial illustration of localized modulation in 2-level filterbank
domain. Time-domain multiplication of x and y, represented by their filter-
bank coefficients in (a) and (b), results in subband convolution, shown in (c);
“rewiring” is evident in comparing (a) and (c). Exact recovery of vx

i [n] from
vxy

i [n] is possible when the supports of vx
i+j [n] are mutually exclusive for

all i and j corresponding to nonzero vx
i [n] and vy

j [n].

Formally, we are concerned with characterizing a sum
z[n] =

∑
k xk[n]yk[n] of modulated sequences xk. When the

“envelope function” yk[n] is chosen carefully, then it follows
from Theorem 3 that these signals are recoverable.

Proposition 3.1 (Localized Amplitude Modulation):
Suppose yk[n] is defined by a sequence of index
values jk ∈ {Z2}I and Haar filterbank coefficients:
vyk

i [n] = δ(i, jk[n]). Then xk[n] is recoverable from
z[n] =

∑
k xk[n]yk[n] when the supports of vxk

i+jk[n][n] are
mutually exclusive for all i and k.

Proof: By the subband convolution result of Theorem 3,

vzi [n] =
∑
k

vxkyk

i [n] =
∑
k

(
vxk

j ~j v
yk

j

)
i
[n] =

∑
k

vxk

i+jk[n][n]

However, by the assumed mutual exclusivity of the supports
of vxk

i+jk[n][n], it follows that

vzi [n] =
{
vxk

i+jk[n][n] if there exists k with nonzero vxk

i+jk[n]

0 otherwise,

and thus we conclude that vxk

i [n] = vzi+jk[n][n] whenever
vvk

i [n] is nonzero.

IV. DISCUSSION: IMPLICATIONS FOR SIGNAL ANALYSIS

The preceding two sections have explored properties of
reverse-order and convolution subband structure (ROSS and
SCS) in filterbanks, and shown their relation to the concepts
of localized aliasing and modulation. We now discuss the
practical implications of these results for signal analysis, and
provide two brief demonstrations that “rewiring” filterbank
diagrams in the manner of ROSS and SCS can enable new
solutions to problems involving subsampled data corrupted by
additive or multiplicative noise. As many scientific and engi-
neering applications give rise to inverse problems involving
subsampled and/or noisy data, and since filterbanks are the
tool of choice for many signal and image processing tasks, it
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is natural to analyze the data likelihoods resulting from these
problems directly in the filterbank coefficient domain.

A. Filterbank-Domain Likelihoods via ROSS and SCS

While data likelihoods often do not admit straightforward
closed-form expressions through traditional filterbank analysis,
the ROSS and SCS concepts provide a new way to characterize
signals subject to aliasing or signal-dependent noise effects
directly in the filterbank coefficient domain, by virtue of the
associated filterbank rewiring techniques. The expression of
filterbank data likelihoods is key to solving signal recon-
struction and enhancement problems in this context; as signal
acquisition models, these likelihoods may be coupled with
regularization terms that encourages parsimony as a means of
signal modeling, reflected through prior probability densities
on filterbank coefficients, or equivalently through terms that
explicitly penalize complexity. To this end, the following two
corollaries show how explicit likelihood formulations follow
directly from application of the ROSS and SCS concepts
introduced earlier.

Corollary 4.1 (Noisy, Subsampled Data Likelihood): Fix
x ∈ `2(Z) as the signal of interest, and let ξ comprise
samples of white Gaussian noise of variance σ2. Suppose
then that we observe subsampled, noisy data y = xs + ξs
and subsequently apply a unitary filterbank transform; then
it follows from the localized aliasing relation of Theorem 2
that the analysis filterbank coefficients of y satisfy

vyi [n] =
vxi [n] + (−1)i0wxi′ [n]

2
+
vξi [n] + (−1)i0wξi′ [n]

2
,

and hence each admits a Normal likelihood with mean(
vxi [n] + (−1)i0wxi′ [n]

)
/2 and variance σ2/2.

Corollary 4.2 (Multiplicative Noise Data Likelihood):
Suppose instead that the observation model y[n] =
x[n] + x[n]ξ[n] is in force. Then the subband convolution
structure of Theorem 3 implies the filterbank coefficient
relation

vyi [n] =vxi [n] +
(
vxj [n] ~j v

ξ
j [n]

)
i
,

and hence the likelihood form of vyi [n] is multivariate Normal
with mean vxi [n], where the covariance of vyi [n] and vyj [n] is
given by σ2(vxk ~k v

x
k)i+j .

B. Proof of Concept: Application to Image Interpolation and
Denoising

The likelihood expressions of Corollaries 4.1 and 4.2
above extend straightforwardly to the case of separable two-
dimensional filterbank transforms, which in turn are typically
employed in imaging applications. Thus, to illustrate the
practical applicability of these results, we now undertake two
proof-of-concept experiments that are representative of prob-
lems frequently encountered in digital imaging, and for which
our ROSS and SCS characterizations—in contrast to standard
approaches—yield closed-form likelihood expressions for the
corresponding filterbank coefficients.

The first of these—image interpolation in the presence
of noise—is made difficult by the fact that low- and high-
frequency filterbank subbands interact with one another as well
as with the noise itself; the “rewiring” expression of Corollary
4.1 in turn provides a closed-form likelihood expression for the
filterbank coefficients. In the second experiment, we consider
the similarly difficult problem of mitigating multiplicative
noise; in this case, Corollary 4.2 yields the corresponding
likelihood.

As filterbank coefficients of images typically exhibit sparsity
[15], one natural approach to utilize these likelihoods through
a Bayesian framework, in which transform coefficients of the
underlying image x are modeled as random variables vXi [n]
taking zero-mean, symmetric, and unimodal “heavy-tailed”
distributions that exhibit super-Gaussian tail behavior [16],
[17]. We assume such a prior distribution here, and evaluate
posterior means numerically via Monte Carlo averages.

We follow typical practice in approximating the overall joint
posterior distribution of all filterbank coefficients by a product
of marginal distributions, where each marginal posterior is
associated with a particular subband. In turn, the `2-optimal
estimator of filterbank coefficients vXi [n] corresponding to the
ith subband given the corresponding data coefficients vyi [n] is
given by

E[vXi |v
y
i ] =

∫
vxi p(v

y
i |vxi )p(vxi )dvxi
p(vyi )

; (19)

the corresponding synthesis filterbank in turn allows recon-
struction of the estimated image.

We first consider a well-known 8-bit test image that has been
artificially downsampled and degraded with additive white
Gaussian noise of variance 400 to yield a signal-to-noise ratio
(SNR) of 16.77 dB relative to xs (or 1.22 dB relative to x),
as shown in Figures 11(a) and 11(b). Figure 11(c) shows the
corresponding image reconstruction, which retains much of
sharpness of the image edges and textures while suppressing
noise, resulting in an SNR gain of 3.81 dB. For purposes
of comparison, Figure 11(d) shows the result of the recently
proposed simultaneous interpolation and denoising method of
[18], which yields an SNR gain of 3.55 dB; this reconstruction
exhibits edges that are more strongly preserved, but at the
expense of greater smoothing of image textures.

In our second experiment, we consider a synthetic aperture
radar (SAR) image, available at www.sandia.gov/radar; as may
be seen from Figure 12(a), such images suffer from the effects
of multiplicative noise [19]. Figure 12(b) shows the enhanced
image resulting from a “rewiring” approach, which exhibits
reduced noise in smooth and textured regions, and avoids the
introduction of artifacts. In contrast, Figure 12(c) illustrates the
standard approach: application of a logarithmic transformation
to the data, followed by an additive denoising technique (here
the well-known method of [16]) and subsequent exponentia-
tion of the result. Not only are Bayes optimality properties
of [16] lost in the exponentiation transformation back to the
pixel domain, but also substantial artifacts are seen to result
from this standard approach.
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(a) Original test image (b) Subsampled, noisy test image

(c) “Rewiring” reconstruction (d) Reconstruction via the method of [18]

Fig. 11. Example of noisy image interpolation via the ROSS technique of Section II: The first row shows a full-resolution 8-bit test image (a), along with
a subsampled version that has been degraded with additive white Gaussian noise of variance 400 (b). The bottom row shows a posterior mean reconstruction
based on the filterbank-domain likelihood of Corollary 4.1 and a heavy-tailed prior distribution on filterbank coefficients (c), along with a reconstruction
according to the recently proposed method of [18], shown for comparison (d).

C. Concluding Remarks

In conclusion, we have shown in this article how filterbank
“rewirings,” corresponding to compositions of convolution,
modulation, and downsampling operators, admit expressions
of localized aliasing and modulation, in directly analogy to the
global setting of Fourier analysis. In addition to establishing a
number of results that formalize reverse-order and convolution
subband structures in filterbank transforms in Sections II and
III, respectively, we have demonstrated in this section how
these concepts in turn enable the establishment of closed-

form likelihood functions for the direct filterbank analysis
of signals subject to degradations such as missing data, spa-
tially or temporally multiplexed data acquisition, or signal-
dependent noise, such as are often encountered in practical
signal processing applications.
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(a) SAR image showing “speckled noise” (b) “Rewiring” enhancement (c) Enhancement via the method of [16], applied
after logarithmic transformation

Fig. 12. Example of multiplicative noise mitigation via the SCS technique of Section III: Panel (a) shows a portion of SAR imagery data in which
noise is visibly present. Panel (b) shows an enhancement based on the filterbank-domain likelihood of Corollary 4.2 and a heavy-tailed prior distribution on
filterbank coefficients, with panel (c) showing for comparison an enhancement according to the method of [16], designed for additive noise and applied after
a variance-stabilizing logarithmic transformation.
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