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MIMO Detection for High-Order QAM Based

on a Gaussian Tree Approximation
Jacob Goldberger and Amir Leshem

Abstract

This paper proposes a new detection algorithm for MIMO communication systems employing high

order QAM constellations. The factor graph that corresponds to this problem is very loopy; in fact, it is

a complete graph. Hence, a straightforward application of the Belief Propagation (BP) algorithm yields

very poor results. Our algorithm is based on an optimal tree approximation of the Gaussian density of

the unconstrained linear system. The finite-set constraintis then applied to obtain a loop-free discrete

distribution. It is shown that even though the approximation is not directly applied to the exact discrete

distribution, applying the BP algorithm to the loop-free factor graph outperforms current methods in

terms of both performance and complexity. The improved performance of the proposed algorithm is

demonstrated on the problem of MIMO detection.

Index Terms

Integer Least Squares, High-order QAM, MIMO communicationsystems, MIMO-OFDM systems.

I. INTRODUCTION

Finding a linear least squares fit to data is a well-known problem, with applications in almost every

field of science. When there are no restrictions on the variables, the problem has a closed form solution.

In many cases, a-priori knowledge on the values of the variables is available. One example is the existence

of priors, which leads to Bayesian estimators. Another example of great interest in a variety of areas is

when the variables are constrained to a discrete finite set. This problem has many diverse applications

such as the decoding of multi-input-multi-output (MIMO) digital communication systems. In contrast to

the continuous linear least squares problem, this problem is known to be NP hard [8].
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We consider a MIMO communication system withn transmit antennas andm receive antennas. The

tap gain from transmit antennai to receive antennaj is denoted byHij . In each use of the MIMO

channel a vectorx = (x1, ..., xn)
⊤

is independently selected from a finite set of pointsA according to

the data to be transmitted, so thatx ∈ An. The received vectory is given by:

y = Hx+ ǫ (1)

The vectorǫ is an additive noise in which the noise components are assumed to be zero mean, statistically

independent Gaussians with a known varianceσ2I. Them×n matrixH is comprises i.i.d. elements drawn

from a complex normal distribution of unit variance. The MIMO detection problem consists of finding

the unknown transmitted vectorx given H and y. The task, therefore, boils down to solving a linear

system in which the unknowns are constrained to a discrete finite set. It is convenient to reformulate

the complex-valued model into a real valued one. It can be translated into an equivalent double-size

real-valued representation that is obtained by considering the real and imaginary parts separately:




Re(y)

Im(y)



 =





Re(H) −Im(H)

Im(H) Re(H)









Re(x)

Im(x)



+





Re(ǫ)

Im(ǫ)





Hence we assume hereafter thatH has real values without any loss of generality. The maximum likelihood

(ML) solution is:

x̂ = arg min
x∈An

‖Hx− y‖2 (2)

However, going over all the|A|n vectors is unfeasible when eithern or |A| are large.

A simple sub-optimal solution, known as the Zero-Forcing algorithm, is based on a linear decision

that ignores the finite set constraint:

z = (H
⊤

H)−1
H

⊤

y (3)

and then, neglecting the correlation between the symbols, finding the closest point inA for each symbol

independently:

x̂i = argmin
a∈A

|zi − a| (4)

This scheme performs poorly due to its inability to handle ill-conditioned realizations of the matrix

H. Somewhat better performance can be obtained by using a minimum mean square error (MMSE)

Bayesian estimation on the continuous linear system. Lete be the mean symbol energy. We can partially

incorporate the information thatx ∈ An by using the prior Gaussian distributionx ∼ N (0, eI). The

MMSE estimation becomes:

E(x|y) = (H
⊤

H+
σ2

e
I)−1

H
⊤

y (5)
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and then the finite-set solution is obtained by finding the closest lattice point in each component indepen-

dently. A vast improvement over the linear approaches described above can be achieved by the V-BLAST

algorithm that is based on sequential decoding with optimalordering [11].

These linear type algorithms can also easily provide probabilistic (soft-decision) estimates for each

symbol. However, there is still a significant gap between thedetection performance of the V-BLAST

algorithm and the performance of the ML detector.

Many alternative methods have been proposed to approach theML detection performance. The sphere

decoding (SD) algorithm finds the exact ML solution by searching the nearest lattice point. [8], [25],

[5], [28]. Although the SD reduces computational complexity compared to the exhaustive search of ML

solution, sphere decoding is not feasible for high-order QAM constellations. While sphere decoding

has been empirically found to be computationally very fast for small to moderate problem sizes (say, for

n < 20 for 16-QAM), the sphere decoding complexity would be prohibitive for largen, higher order QAM

and/or low SNRs [14]. Another family of MIMO decoding algorithms is based on semidefinite relaxation

(e.g. [31], [27], [18]). Although the theoretical computational complexity of semidefinite relaxation is

a low degree polynomial, in practice the running time is veryhigh. Thus, there is still a need for low

complexity detection algorithms that perform well.

This study attempts to solve the MIMO decoding problem usingthe Belief Propagation (BP) paradigm.

It is well-known (see e.g. [26]) that a straightforward implementation of the BP algorithm to the MIMO

detection problem yields very poor results since there are alarge number of short cycles in the underlying

factor graph. In this study we introduce a novel approach to utilize the BP paradigm for MIMO detection.

The proposed variant of the BP algorithm is both computationally efficient and achieves near optimal

results. A preliminary version of this paper appears in [10]. The paper proceeds as follows. In Section II

we discuss previous attempts to apply variants of the BP algorithm to the MIMO decoding problem. The

proposed algorithm which we dub ‘The Gaussian-Tree-Approximation (GTA) Algorithm’ is described in

Section III. Experimental results are presented in SectionIV.

II. T HE LOOPY BELIEF PROPAGATION APPROACH

Given the constrained linear systemy = Hx+ ǫ, and a uniform prior distribution onx, the posterior

probability function of the discrete random vectorx given y is:

p(x|y) ∝ exp(− 1

2σ2
‖Hx− y‖2) , x ∈ An (6)

The notation∝ stands for equality up to a normalization constant. Observing that‖Hx−y‖2 is a quadratic

expression, it can be easily verified thatp(x|y) is factorized into a product of two- and single-variable
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potentials:

p(x1, .., xn|y) ∝
∏

i

ψi(xi)
∏

i<j

ψij(xi, xj) (7)

such that

ψi(xi) = exp(− 1

2σ2
y

⊤

hixi) (8)

ψij(xi, xj) = exp(− 1

σ2
h

⊤

i hjxixj)

wherehi is the i-th column of the matrixH. Since the obtained factors are simply a function of pairs,

we obtain a Markov Random Field (MRF) representation [34]. In the MIMO application the (known)

matrix H is randomly selected and therefore, the MRF graph is usuallya completely connected graph

(see an MRF graph illustration in Fig. 1).

x
1

x
2

x
3

x
4

x
5

x
6

x
7

Fig. 1. The MRF undirected graphical model corresponds to the MIMO detection problem withn = 7.

The Belief Propagation (BP) algorithm aims to solve inference problems by propagating information

throughout this MRF via a series of messages sent between neighboring nodes (see [29] for an excellent

tutorial on BP). In the sum-product variant of the BP algorithm applied to the MRF (7), the message

from xj to xi is:

mj→i(xi) =
∑

xj∈A

(ψj(xj)ψij(xi, xj)
∏

k 6=i,j

mk→j(xj)) , xi ∈ A (9)

In each iteration messages are passed along all the graph edges in both edge directions. In every

iteration, an estimate of the posterior marginal distribution (‘belief’) for each variable can be computed

DRAFT



5

by multiplying together all of the incoming messages from all the other nodes:

bi(xi) = ψi(xi)
∏

k 6=i

mk→i(xi) , xi ∈ A (10)

A variant of the sum-product algorithm is the max-product algorithm in which the summation in Eq.

(9) is replaced by a maximization over all the symbols inA. In a loop-free MRF graph the sum-

product algorithm always converges to the exact marginal probabilities (which corresponds in the case

of MIMO detection to a soft decision probability of each symbol p(xi|y)). In a loop-free MRF graph the

max-product variant of the BP algorithm always converges tothe most likely configuration [23] (which

corresponds to ML decoding in our case). For loop-free graphs, BP is essentially a distributed variant

of dynamic programming. The BP message update equations only involve passing messages between

neighboring nodes. Computationally, it is thus straightforward to apply the same local message updates

in graphs with cycles. In most such models, however, this loopy BP algorithm will not compute exact

marginal distributions; hence, there is almost no theoretical justification for applying the BP algorithm

(one exception is that, for Gaussian graphs, if BP converges, then the means are correct [30]). However,

the BP algorithm applied to loopy graphs has been found to have outstanding empirical success in many

applications, e.g., in decoding LDPC codes [9]. The performance of BP in this application may be

attributed to the sparsity of the graphs. The cycles in the graph are long, hence the graph has tree-like

properties, so that messages are approximately independent and inference may be performed as though

the graph was loop-free. The BP algorithm has also been used successfully in image processing and

computer vision (e.g. [7]) where the image is represented bya grid-structured MRF that is based on local

connections between neighboring nodes.

However, when the graph is not sparse, and is not based on local grid connections, loopy BP almost

always fails to converge. Unlike the sparse graphs of LDPC codes, or grid graphs in computer vision

applications, the MRF graphs of MIMO channels arecompletely connected graphsand therefore the

associated detection performance is poor. This has prevented the BP from being an asset for the MIMO

problem. Fig. 2 shows an example of a BPSK MIMO system based onan8×8 matrix andA = {−1, 1}
(see Section IV for a detailed description of the simulationset-up). As can be seen in Fig. 2, the BP

decoder based on the MRF representation (7) has very poor results. Standard techniques to stabilize the

BP iterations such as damping the message updates [21] do nothelp here. Even applying more advanced

versions of BP (e.g. Generalized BP and Expectation Propagation) to inference problems on complete

MRF graphs yields poor results [19]. The problem here is not in the optimization method but in the cost

function that needs to be modified to yield a good approximatesolution.
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Fig. 2. Decoding results for8× 8 BPSK real valued system,A = {−1, 1}.

There have been several recent attempts to apply BP to the MIMO detection problem with good results

(e.g. [15], [22], [12], [16]). However, in these methods thefactorization of the probability function is

done in such a way that each factor corresponds to a single linear equation. This leads to a partition of the

probability function into factors each of which is a function of all the unknown variables. This results in

an exponential computational complexity when computing the BP messages. Shental et. al [26] analyzed

the case where the matrixH is relatively sparse (and has a grid structure) (see Fig. 3).They showed

that even under this restricted assumption the BP still doesnot perform well. As an alternative method

they proposed the generalized belief propagation (GBP) algorithm that does work well on the sparse

matrix if the algorithm regions are carefully chosen. Thereare situations where the sparsity assumption

makes sense (e.g. 2D intersymbol interference (ISI) channels). However, in the MIMO channel model

we assume that the channel matrix elements are i.i.d. and Gaussian; hence we cannot assume that the

channel matrixH is sparse.

Fig. 3. The MRF grid model corresponds to5× 5 2D intersymbol interference (ISI) channels.
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In the recent years there were also several attempts to applyBP for densely connected graphs (mainly

Gaussian graphs) [20], [3], [2], [15], [22].

III. T HE GAUSSIAN TREE APPROXIMATION ALGORITHM

Our approach is based on an approximation of the exact probability function:

p(x1, .., xn|y) ∝ exp(− 1

2σ2
‖Hx− y‖2) , x ∈ An (11)

that enables a successful implementation of the Belief Propagation paradigm. Since the BP algorithm is

optimal on loop-free factor graphs (trees) a reasonable approach is finding an optimal tree approximation

of the exact distribution (11). Chow and Liu [6] proposed a method to find a tree approximation of a

given distribution that has the minimal Kullback-Leibler (KL) divergence to the true distribution. They

showed that the optimal tree can be learned efficiently via a maximum spanning tree whose edge weights

correspond to the mutual information between the two variables corresponding to the edges endpoints.

The problem is that the Chow-Liu algorithm is based on the two-dimensional marginal distributions.

However, finding the marginal distribution of the probability function (11) is, unfortunately, NP hard and

it is (equivalent to) our final target.

To overcome this obstacle, our approach is based on applyingthe Chow-Liu algorithm on the distri-

bution corresponding to the unconstrained linear system. This distribution is Gaussian and therefore it is

straightforward in this case to compute the two-dimensional marginal distributions. Given the Gaussian

tree approximation, the next step of our approach is to applythe finite-set constraint and utilize the

Gaussian tree distribution to form a discrete loop free approximation ofp(x|y) which can be efficiently

globally maximized using the BP algorithm. To motivate thisapproach we first apply a simplified version

to derive the zero-forcing decoding algorithm (4) described in Section I.

Let z(y) = (H
⊤

H)−1
H

⊤

y be the least-squares estimator (3) andC = σ2(H
⊤

H)−1 is its variance. It

can be easily verified thatp(x|y) (11) can be written as:

p(x|y) ∝ f(x; z, C) =
1

√

(2π)n|C|
exp(−1

2
(z − x)

⊤

C−1(z − x)) (12)

wheref(x; z, C) is a Gaussian density with meanz and covariance matrixC. f(x; z, C) can be viewed

as a posterior distribution ofx assuming a non-informative prior. Now, instead of marginalizing the true

distributionp(x|y), which is an NP hard problem, we approximate it by the productof the marginals of

the Gaussian densityf(x; z, C):

f(x; z, C) ≈
∏

i

f(xi; zi, Cii) =
∏

i

1√
2πCii

exp(−(zi − xi)
2

2Cii

) (13)
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At this stage we apply the finite-set constraint. From the Gaussian approximation (13) we can extract a

discrete approximation:

p̂(x|y) ∝
∏

i

exp(−(zi − xi)
2

2Cii

) , x ∈ An (14)

Since this joint probability function is obtained as a product of marginal probabilities, we can address

each variable separately:

p̂(xi = a|y) ∝ exp(−(zi − a)2

2Cii

) , a ∈ A (15)

Taking the most likely symbol we obtain the sub-optimal Zero-Forcing solution (4).

Motivated by the simple product-of-marginals approximation described above, we suggest approximat-

ing the discrete distributionp(x|y) via a tree-based approximation of the Gaussian distribution f(x; z, C).

Although the Chow-Liu algorithm was originally stated for discrete distributions, one can verify that it

also applies for the Gaussian case. For the sake of completeness we give a detailed derivation below.

A. Finding the optimal Gaussian tree approximation

We represent ann-node tree graph by the loop-free parent relations{p(i)}ni=1 such thatp(i) is the

parent node ofi. To simplify notation we do not separately describe the rootnode. The parent of the

root is implicitly assumed to be the empty set. A distribution g(x1, ..., xn) is described by a tree{p(i)}
if it can be written asg(x) =

∏n
i=1 g(xi|xp(i)). We start with a formula for the KL divergence between

a Gaussian distributionf(x) and a distributiong(x) defined on the same space that is represented by a

tree graphical model.

Theorem 1: Let f(x) = f(x1, ..., xn) be a multivariate Gaussian distribution and letg(x) =
∏n

i=1 g(xi|xp(i))
be another distribution that is represented by a loop-free graphical model (tree). The KL divergence

betweenf andg is:

D(f ||g) =

n
∑

i=1

D(f(xi|xp(i))||g(xi|xp(i))) (16)

−h(x) +
n
∑

i=1

(h(xi)− I(xi;xp(i)))

such thatI is the mutual information andh is the differential entropy, based on the distributionf(x).
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Proof: The definition of the KL divergence implies:

D(f ||g) =

∫

f log f −
∫

f(x)

n
∑

i=1

log g(xi|xp(i))

= −h(x)−
n
∑

i=1

∫

f(xi, xp(i)) log g(xi|xp(i))

= −h(x) +
n
∑

i=1

∫

f(xi, xp(i)) log
f(xi|xp(i))
g(xi|xp(i))

−
n
∑

i=1

∫

f(xi, xp(i)) log f(xi|xp(i))

= −h(x) +
n
∑

i=1

D(f(xi|xp(i))||g(xi|xp(i)))

−
n
∑

i=1

(

I(xi;xp(i))− h(xi)
)

�

From Eq. (16) it can be easily seen that if we fix a tree graph{p(i)}ni=1, the tree distribution whose KL

divergence tof(x) is minimal is g(x) =
∏n

i=1 f(xi|xp(i)). In other words, the best tree approximation

of f(x) is constructed from the conditional distributions off(x). For that tree approximation we have:

D(f ||
n
∏

i=1

f(xi|xp(i))) = −h(x) +
n
∑

i=1

h(xi)−
n
∑

i=1

I(xi;xp(i)) (17)

Moreover, since in Eq. (17)h(x) andh(xi) do not depend on the tree structure, the tree topology{p(i)}
that best approximatesf(x) is the one that maximizes the sum:

n
∑

i=1

I(xi;xp(i)) (18)

A spanning tree of a graph is a subgraph that contains all the vertices and is a tree. Now suppose the

edges of the graph have weights. The weight of a spanning treeis simply the sum of weights of its edges.

Eq. (18) reveals that the problem of finding the best tree approximation of the Gaussian distributionf(x)

can be reduced to the well-known problem of finding the maximum spanning tree of the weightedn-node

graph where the weight of thei-j edge is the mutual information betweenxi andxj [6]. It can be easily

verified that the mutual information between two r.v.xi andxj that are jointly Gaussian is:

I(xi;xj) = − log(1− ρ2ij) (19)

whereρij is the correlation coefficient betweenxi andxj.

There are several algorithms to find a minimum spanning tree.They all utilize a greedy approach. In

this work we use the Prim algorithm [24] which is efficient andvery simple to implement. The Prim
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algorithm begins with some vertexv in a given graph, defining the initial set of verticesT . Then, in

each iteration, we choose a minimum-weight edge(u, v), connecting a vertexv in the setT to the vertex

u outside of setT . Then vertexu is brought in toT . This process is repeated until a spanning tree

is formed. We can use a heap to remember, for each vertex, the smallest edge connecting the current

sub-treeT with that vertex. The complexity of the Prim’s algorithm, that finds the minimum spanning

tree of ann-vertex graph isO(n2).

We note in passing that since the Prim algorithm is based on a greedy approach, it only relies on the

order of the weights and not on their exact values. Hence, applying a monotonically increasing function

on the graph weights does not change the topology of the optimal tree. To find the optimal Gaussian

tree approximation we can, therefore, use the weightsρ2ij instead ofI(xi;xj) = − log(1 − ρ2ij). The

optimal Gaussian tree is, therefore, the one that maximizesthe sum of the square correlation coefficients

between adjacent nodes. To summarize, the algorithm that finds the best Gaussian tree approximation is

as follows. Definex1 as the root. Then find the edge connecting a vertex in the tree to the vertex outside

the tree, such that the corresponding square correlation coefficient is maximal and add the edge to the

tree. Continue this procedure until a spanning tree is obtained.

B. Applying BP on the tree approximation

Let f̂(x) be the optimal Chow-Liu tree approximation off(x; z, C) (12). We can assume, without loss

of generality, thatf̂(x) is rooted atx1. f̂(x) is a loop-free Gaussian distribution onx1, ..., xn, i.e.

f̂(x) = f(x1; z, C)

n
∏

i=2

f(xi|xp(i); z, C) , x ∈ Rn (20)

where p(i) is the ‘parent’ of thei-th node in the optimal tree. The Chow-Liu algorithm guarantees

that f̂(x) is the optimal Gaussian tree approximation off(x; z, C) in the sense that the KL divergence

D(f ||f̂) is minimal.

Given the Gaussian tree approximation, the next step of our approach is to apply the finite-set constraint

to form a discrete loop free approximation ofp(x|y) which can be efficiently globally maximized using

the BP algorithm. Our approximation approach is, therefore, based on replacing the true distribution

p(x|y) with the following approximation:

p̂(x1, ..., xn|y) ∝ f̂(x) = f(x1; z, C)

n
∏

i=2

f(xi|xp(i); z, C) , x ∈ An (21)

The probability functionp̂(x|y) is a loop free factor graph. Hence the BP algorithm can be applied

to find its most likely configuration. We next derive the messages of the BP algorithm that is applied
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Input: A constrained linear LS problem:Hx+ ǫ = y, a noise levelσ2 and a finite symbol setA
whose the mean symbol energy is denoted bye.

Algorithm:

• Computez = (H
⊤

H+ σ2

e
I)−1

H
⊤

y andC = σ2(H
⊤

H+ σ2

e
I)−1.

• Denote:

f(xi; z, C) = exp(−1

2

(xi − zi)
2

Cii

)

f(xi|xj ; z, C) = exp(−1

2

((xi − zi)− Cij/Cjj(xj − zj))
2

Cii − C2
ij/Cjj

)

• Compute maximum spanning tree of then-node graph where the weight of thei-j edge is

the square of the correlation coefficient:ρ2ij = C2
ij/(CiiCjj)

Assume the tree is rooted at node ‘1’ and denote the parent of node i by p(i).

• Apply BP on the loop free distribution:

p̂(x1, ..., xn|y) ∝ f(x1; z, C)

n
∏

i=2

f(xi|xp(i); z, C) x1, ..., xn ∈ A

to find the (approx. to the) most likely configuration.

Fig. 4. The Gaussian Tree Approximation (GTA) Algorithm.

on p̂(x|y). An optimal BP schedule, when applied to a tree, requires passing a message once in each

direction of each edge [17]. The BP messages are first sent from leaf variables ‘downward’ to the root.

The computation begins at the leaves of the graph. Each leaf variable node sends a message to its parent.

Each vertex waits for messages from all of its children before computing the message to be sent to its

parent. The ‘downward’ BP message from a variablexi to its parent variablexp(i) is computed based on

all the messagesxi received from its children:

mi→p(i)(xp(i)) =
∑

xi∈A

f(xi|xp(i); z, C)
∏

j|p(j)=i

mj→i(xi) (22)

If xi is a leaf node in the tree then the message is simply:

mi→p(i)(xp(i)) =
∑

xi∈A

f(xi|xp(i); z, C) (23)

The ‘downward’ computation terminates at the root node.

Next, BP messages are sent ‘upward’ back to the leaves. The computation begins at the root of the

graph. Each vertex waits for a message from its parent beforecomputing the messages to be sent to each
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of its children. The ‘upward’ BP message from a parent variable xp(i) to its child variablexi is computed

based on the ‘upward’ messagexp(i) received from its parentxp(p(i)) and from ‘downward’ messages

that xp(i) received from all the siblings ofxi:

mp(i)→i(xi) =
∑

xp(i)∈A

f(xi|xp(i); z, C)mp(p(i))→p(i)(xp(i))× (24)

∏

{j|j 6=i,p(j)=p(i)}

mj→p(i)(xp(i)) , xi ∈ A

If xp(i) is the root of the tree then the message is simply:

mp(i)→i(xi) =
∑

xp(i)∈A

f(xi, xp(i); z, C)× (25)

∏

{j|j 6=i,p(j)=p(i)}

mj→p(i)(xp(i)) , xi ∈ A

After the downward-upward message passing procedure is completed we can compute the ‘belief’ at

each variable which is the product of all the messages sent tothe variable from its parent and from its

children (if there are any).

beliefi(xi) = mp(i)→i(xi)
∏

j|p(j)=i

mj→i(xi) , xi ∈ A (26)

In the casexi is the root node, the ‘belief’ computed is as follows:

beliefi(xi) = f(xi; z, C)
∏

j|p(j)=i

mj→i(xi) , xi ∈ A (27)

Since the approximated distribution̂p(x|y) (21) is loop free, the general Belief Propagation theory

guarantees that (the normalized) belief vector is exactly the marginal distribution̂p(xi|y) of the approxi-

mated distribution̂p(x|y) (21). To obtain a hard-decision decoding we choose the symbol whose posterior

probability is maximal:

x̂i = argmax
a

beliefi(a) , a ∈ A (28)

Above we described the sum-product version of the BP algorithm that computes the marginal prob-

abilities p̂(xi|y). A variant of the sum-product algorithm is the max-product algorithm in which the

summation in Eq. (22)-(25) is replaced by a maximization over all the symbols inA. The max-product

algorithm finds the most likely pattern of the approximationp̂(x|y). We did not observe any significant

performance difference using either the sum-product or themax-product variants for decoding MIMO

systems presented in the experiment section. The max-product is more computationally efficient since

the BP messages can be entirely computed in the log-domain.
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C. An MMSE version of a tree approximation

The MMSE Bayesian approach (5) is known to be better than the zero-forcing solution (4). In

MMSE we partially incorporate the information thatx ∈ An by using the prior Gaussian distribution

x ∼ N (0, eI). In a similar way we can consider a Bayesian version of the proposed Gaussian tree

approximation. We can partially incorporate the information thatx ∈ An by using the prior Gaussian

distributionx ∼ N (0, eI) such thate = 1
|A|

∑

a∈A a
2. This yields the posterior Gaussian distribution:

f(x|y)(x|y) =
1

√

(2π)nV (x|y)
× (29)

exp(−1

2
(x−E(x|y))⊤(H⊤

H+
σ2

e
I)(x− E(x|y))

such thatE(x|y) = (H
⊤

H+ σ2

e
I)−1

H
⊤

y andV (x|y) = (H
⊤

H+ σ2

e
I)−1. The MMSE method is obtained

by approximating the unconstrained posterior distribution f(x|y)(x|y) by a product of marginals. In our

approach we use, instead, the best loop-free Gaussian approximation. We can apply the Chow-Liu tree

approximation on the Gaussian distribution (29) to obtain a‘Bayesian’ Gaussian tree approximation for

p(x|y). This way we partially use the finite set constraint when we search for the best tree approximation

of the true discrete distributionp(x|y). This is likely to yield a better approximation of the discrete

distributionp(x|y) than the tree distribution which is based on the unconstrained distributionf(x; z, C).

To summarize, our solution to the MIMO decoding problem is based on applying BP on a discrete

version of the Gaussian tree approximation of the Bayesian version of the continuous least-square solution.

We dub this method “The Gaussian-Tree-Approximation (GTA)Algorithm”. The GTA algorithm is

summarized in Fig. III-B. We next compute the complexity of the GTA algorithm. The complexity of

computing the covariance matrix(H
⊤

H+ σ2

e
I)−1 is O(n3), the complexity of the Chow-Liu algorithm

(based on Prim’s algorithm for finding the minimum spanning tree) isO(n2) and the complexity of the

BP algorithm isO(|A|2n).

IV. EXPERIMENTAL RESULTS

In this section we provide simulation results for the GTA algorithm over various MIMO systems. The

channel matrix comprised i.i.d. elements drawn from a zero-mean complex normal distribution of unit

variance. We used500, 000 realizations of the channel matrix and each matrix was used once for sending

a message. The performance of the proposed algorithm is shown as a function of the variance of the

additive noiseσ2. The signal-to-noise ratio (SNR) is defined as10 log10(Es/N0) whereEs/N0 =
ne
σ2 (n

is the number of variables,σ2 is the variance of the Gaussian additive noise, ande is the mean symbol
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Fig. 5. Comparison of various detectors in12× 12 system, 16-QAM symbols.

energy). We compared the performance of the GTA method to theV-BLAST (MMSE-SIC) algorithm

with optimal ordering for the successive interference cancelation [11], and to the Schnorr-Euchner variant

of sphere decoding (SE-SD) with infinite radius [1], [25]. Weused sorting of the channel matrix using the

SQRD algorithm [33] and regularization [32], which substantially reduces the computational complexity.

We also implemented the SDR detector suggested by Sidiropoulos and Luo [27]. Recently it was

shown [18] that for the cases of 16-QAM and 64-QAM this SDR based method is equivalent to the

SDR based detection method suggested by Weisel, Eldar and Shamai [31]. The SDRs were solved using

the CSDP package [4]. In the SDR Gaussian randomization step, 100 independent randomizations were

implemented. All the MIMO detection algorithms were implemented in C for efficiency.

Fig. 5 shows MIMO detection performance for a12×12 MIMO system using 16-QAM. The methods

that are shown are V-BLAST, GTA, SDR and sphere-decoding. Inthis case the SDR outperforms both

the V-BLAST and the GTA methods. However, in this case it is still feasible to compute the optimal

maximum-likelihood algorithm using the sphere decoding algorithm.

The SD-SE is the favorite detection method when the problem size is small or moderate. In this case the

SD-SE can always yield the exact ML solution at acceptable computational cost. In large size problems,

however, there is still a need for good approximation methods. Fig. 6 shows the SER versus SNR and

worst case execution time versus SNR for the12 × 12 system using 64-QAM. Fig. 7 shows the same

experimental results for the16× 16 system using 64-QAM. To assess the computational complexity we

used a measure of the worst case rather than the average case since in online applications we have to

decode within a specified time. The choice between executiontime or number of floating point operations

DRAFT



15

is debatable. The differences in running time between the methods we implemented was in orders of

magnitude and running time is easier to appreciate.
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Fig. 6. 12× 12 system, 64-QAM symbols. (a) SER versus SNR, (b) max seconds for decoded symbol vector versus SNR.
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Fig. 7. 16× 16 system, 64-QAM symbols. (a) SER versus SNR, (b) max seconds for decoded symbol vector versus SNR.

As can be seen from Figs. 6 and 7, the performance of the GTA algorithm in high SNR is significantly

better than the V-BLAST. The computational complexity of GTA is comparable to V-BLAST and it is

two orders of magnitude better than SDR. We note in passing that the performance of the SDR method

[27] in these 64-QAM cases is worse than that of MMSE-SIC and the computational complexity is much
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higher. From the derivation of the SDR method it can be seen that the relaxation becomes more crude

as at higher constellations.

We next show the performance of several variants of the GTA algorithm. The GTA algorithm differs

from the ZF, MMSE and MMSE-SIC algorithms in several ways. The first is a Markovian approximation

of f(x; z, C) instead of an approximation based on a product of independent densities. The second

aspect is the use of an optimal tree. To clarify the contribution of each component we modified the GTA

algorithm by replacing the Chow-Liu optimal tree by the tree1 → 2 → 3, ...,→ n. We call this method

the ‘Line-Tree’. As can be seen from Fig. 8, using the optimaltree is crucial to obtain improved results.

Fig. 8 also shows the results of the non-Bayesian variant of the GTA algorithm. As can be seen, the

Bayesian version yields better results. Fig. 8 shows the symbol error rate (SER) versus SNR for a20×20,

|A| = 4, real MIMO system. The performance of the GTA method and its variants was compared to the

MMSE and the MMSE-SIC algorithms.
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Fig. 8. Comparative results of MMSE, MMSE-SIC and variants of the GTA for 20× 20 real system ,A = {±1,±3}.

V. CONCLUSION

We proposed a novel MIMO detection technique based on the principle of a tree approximation of the

Gaussian distribution that corresponds to the continuous linear problem. The proposed method outper-

forms previously suggested MIMO decoding algorithms in high order QAM constellation, as demonstrated

in simulations. Although the proposed method yields improved results, the tree approximation we applied

may not be the best one (finding the best tree for the integer constrained linear problem is NP hard). It is

left for future research to search for a better discrete treeapproximation for the constrained linear least
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squares problem. This paper dealt with a tree approximationapproach, more complicated approximations

such as multi-parent trees could improve performance and can potentially provide a smooth performance-

complexity trade-off.

While the method provides excellent performance, it is worthwhile mentioning that the method provides

a-posteriori probabilities for each variable that can be used to improve performance. This is done by

applying a Schnorr-Euchner sphere decoding algorithm [25], where we order the symbols according

to their a-posteriori probabilities. This can lead to very close to optimal performance in a significantly

reduced complexity. It is because that by computing the a-posteriori probabilities, we have a much higher

probability of finding the true solution during the first search, therefore significantly reducing the search

radius.

There are several important applications of the proposed technique. We comment here on combining

it into communication systems with coding and interleaving. It is useful both for single carrier and

OFDM systems. It can serve as a MIMO decoder for wireless communication systems. Using the a-

posteriori probability distribution of the symbols we can easily compute the a-posteriori probability and

the likelihood ratio for the bits. The technique can be combined with MIMO-OFDM system with bit

interleaved coded modulation or with trellis coded modulation by joint coding of over all frequency tones

of the OFDM system, and running the decoder for each tone independently.

In this paper we focused on the MIMO detection problem. The proposed method, however, can be

applied to solve constrained linear least squares problemswhich is an important issue in many fields.

A main concept in the GTA model is the interplay between discrete and Gaussian models. Such hybrid

ideas can be considered also for discrete inference problems other than least-squares.
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