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Abstract

The fully connected K-user interference channel is studied in a multipath environ-
ment with bandwidth W . We show that when each link consists of D physical paths,
the total spectral efficiency can grow linearly with K. This result holds not merely in
the limit of large transmit power P , but for any fixed P , and is therefore a stronger
characterization than degrees of freedom. It is achieved via a form of interference
alignment in the time domain. A caveat of this result is that W must grow with K,
a phenomenon we refer to as bandwidth scaling. Our insight comes from examining
channels with single path links (D = 1), which we refer to as line-of-sight (LOS)
links. For such channels we build a time-indexed interference graph and associate the
communication problem with finding its maximal independent set. This graph has
a stationarity property that we exploit to solve the problem efficiently via dynamic
programming. Additionally, the interference graph enables us to demonstrate the ne-
cessity of bandwidth scaling for any scheme operating over LOS interference channels.
Bandwidth scaling is then shown to also be a necessary ingredient for interference
alignment in the K-user interference channel.

1 Introduction

The problem of communicating efficiently in wireless adhoc networks has received much
attention of late, the focus being on how to deal with interference in a shared medium.
Traditional approaches based on orthogonalizing users (eg. TDMA or FDMA) or reusing
the spectrum (eg. CDMA, certain modes of 802.11) suffer from poor spectral efficiency. In
particular as the number of users in the system grows, the spectral efficiency of each link
vanishes. More recent approaches include using multi-hop [1], distributed MIMO [2], [3],
and interference alignment [4], [5], [6]. This work belongs to the latter category. Interference
alignment is a technique that uses appropriate precoding to compact interfering signals into
small dimensional subspaces at each receiver. At the same time, the subspace occupied by
the data remains linearly independent of the interference. It was first applied to a multiple
MIMO base station problem in [4] and shown to be capable of achieving multiplexing
gains distinctly greater than those achievable using conventional signalling schemes. The
technique was then extended in [6] to show that there were exactly 4M/3 degrees of freedom
in the MIMO X channel (two MIMO transmitters each desiring to send data to two MIMO
receivers) with M > 1 antennas at each transceiver. Following this, a more sophisticated
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interference alignment technique was developed in [5] for the K-user interference channel
with an infinite number of independently faded sub-channels, and used to demonstrate that
contrary to conventional wisdom, the total degrees of freedom of the channel is K/2.

Whilst the last approach demonstrates the potential benefits that interference alignment
techniques can provide, it suffers from a number of limitations. Perhaps the foremost is
that whilst a degrees of freedom characterization is useful in the high SNR limit, it may
not be meaningful at moderate SNR’s. This stems from the fact that degrees of freedom
characterizes the asymptotic slope of the spectral efficiency curve and not its actual value.
In particular, it is unclear whether at any fixed SNR the total spectral efficiency of the
system is increasing in proportion to K, or increasing at all. The point here is that [5]
does not contain a scaling law result the likes of [1] and [2], that is, it does not tell us what
happens to the system capacity as more users enter the fray. We address this question by
constructing a communication scheme that achieves a scaling of system capacity arbitrarily
close to linear.

There is another key limitation. It is natural to interpret the parallel channels used
in the interference alignment scheme of [5] as corresponding to sub-channels in the fre-
quency domain. This is due to various difficulties associated with realizing the scheme over
independently faded parallel channels in time, most notably the very rapid and accurate
channel measurement that must take place, and the substantial delay incurred. But in
order for a large number of frequency channels to undergo independent fading, significant
scattering/multipath is required.

In this work we examine the K-user interference channel with limited multipath. We
start by assuming each of the K2 links consists only of a single physical path with complex
gain hij and delay τij seconds. This model is a good representation for a line-of-sight
(LOS) channel. Following this we generalize to the case where each link consists of D
physical paths. We illustrate a simple and elegant representation of interference alignment
in the time domain, in terms of aligning symbols on a time-indexed interference graph.
This interference graph proves to be an extremely useful tool for both conceptualizing
and solving various problems relating to interference in LOS channels. We identify the
problem of communicating on the LOS interference channel with the problem of finding
a maximal independent set in the interference graph, and show how this problem can be
solved efficiently using dynamic programming principles. The simplicity of this approach
makes it quite versatile and potentially capable of being extended to tackle a variety of
related problems.

For the remainder of this work power spectral density (PSD) is used in place of signal-
to-noise ratio, as we will later wish to compare schemes that use different bandwidths.
Depending on the link delays, it may be possible to achieve a spectral efficiency as high
as 1

2
log2(1 + |hii|2PSD/N0) bps/Hz for each user i, regardless of the number of interferers.

This is exactly half the spectral efficiency achievable in the absence of interference. We
characterize the precise channel conditions for which this is possible and show that they
occur in at least 1/16 of all scenarios for the 3-user interference channel.

This of course, says little about the typical gains one can expect by aligning interference
in the time domain. To address this question, we treat the link delays as independent
and uniformly distributed random variables in [0, Td), where Td is the delay-spread of the
channel. Previous work such as [4], [5], [6] has focused on degrees of freedom as a metric
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for performance, which is a measure of the scaling of spectral efficiency with PSD when
the power spectral density is large. We focus on the scaling of spectral efficiency with K
when the number of users is large. The main result of this work is the construction of a
communication scheme that achieves a spectral efficiency arbitrarily close to O(1) log2(1 +
|hii|2PSD/N0) for each user i as K → ∞. Thus our result characterizes the best possible
scaling of spectral efficiency with K for any fixed PSD, as compared with [4], [5], [6], where
the best possible scaling of spectral efficiency with PSD, for any fixed K, is characterized.
In this sense, our characterization has a similar flavor to characterizations of scaling laws
for wireless adhoc networks such as [1], [2], however, our scheme requires no cooperation
between users.

A caveat of our result is that the bandwidth must scale sufficiently with K. Interpreting
the parallel channel model of [5] in the frequency domain, one sees that the bandwidth
there must also scale with K. Interestingly enough, the bandwidth scaling required for our
scheme is essentially the same as that required in [5], namely O(K2K2

). However, whereas
the scheme in [5] requires coding over blocks of length O(K2K2

), which creates significant
encoding and decoding complexity issues as well as substantial delay, our scheme requires
no block coding, and consequently does not incur any delay or suffer from complexity issues.

Essentially, in order to align interference into a small dimensional subspace and keep
it linearly independent of the data subspace, a high degree of resolvability of the received
signals is required. We establish this concretely for the LOS channel in the context of
the interference graph, showing that if the bandwidth scales sub-linearly with K, then the
total spectral efficiency of the system (the sum of all users spectral efficiencies) will scale
sublinearly, and hence almost all of the users will witness vanishing spectral efficiencies as
K increases.

This suggests that the greatest performance gains can be reaped in systems with large
delay spreads. Perhaps the best example of such a system is the backbone of a mesh net-
work, used to wirelessly connect rural areas. Such systems are well approximated by a
LOS model, have large delay spreads, and are relatively static, making channel measure-
ment simpler and more accurate.

The structuring of the rest of the paper is as follows. In section 2 we describe the
model of the K-user LOS interference channel. Section 3 provides a summary of the main
result concerning the achievability of non-vanishing spectral efficiencies as the number of
users grows. The time-indexed interference graph is introduced in section 4. In the same
section we present an algorithm for optimizing the spectral efficiency efficiently via dynamic
programming. We also address the questions of bandwidth scaling, and of characterizing
the class of channels for which the spectral efficiency can reach its maximum value. In
section 5 we present our construction that establishes the main result. Following this, in
section 6, we establish the relationship between time and frequency domain interference
alignment techniques. Section 7 contains further discussion, extensions and open problems.

2 Model

We consider the K-user interference channel in which there are K transmitters and K
receivers. Transmitter i wishes to send data to receiver i but its transmission constitutes
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interference at all other receivers. We often refer to each tx-rx pair as a user. There are
thus K2 links in total, K direct links and K(K − 1) cross-links. Each link consists of a
single physical path. Denote the gain and delay (in seconds) of the link between transmitter
j and receiver i by hij ∈ C and τij ∈ [0,∞), respectively. We assume the hij and τij are
fixed for the duration of communication. Denote the signal transmitter j sends by xj(t).
Then the baseband signal at the ith receiver is

yi(t) =
K
∑

j=1

hijxj(t− τij) + zi(t)

where the zi(t) are i.i.d. white noise processes with power spectral density N0 Watts/Hz.
Denote the carrier frequency fc and the bandwidth that the signals xj(t) are constrained to
lie in by W Hz. Assuming the use of ideal sinc pulses, the passband signal after sampling
is given by

yi[m] =

K
∑

j=1

hije
−2πfcτij

∞
∑

l=0

sinc(l − τijW )xj [m− l] + zi[m]

where the zi[m] are i.i.d. CN (0, N0W ). We use the following conventional approximation
for the sinc pulse,

sinc(t) ≈
{

1, if −1/2 < t < 1/2;
0, otherwise,

see page 27 of [7]. Let lij denote the integer round-off of the real number τijW . This leads
to

yi[m] =

K
∑

j=1

hije
−2πfcτijxj [m− lij] + zi[m].

In a wireless model one typically makes an assumption about the statistics of the chan-
nel. For example, in a channel with ISI, the tap coefficients are often modeled as i.i.d.
Rayleigh random variables. In models where there is a dominant path, Rician random
variables are used instead. Likewise in this work we make a statistical assumption on the
channel, but limit this statistical assumption only to the link delays, taking the τij to be
i.i.d. uniform in [0, Td), where Td denotes the delay-spread of the channel in seconds. This
means that if we define L to be one plus the integer round off of TdW , the lij are i.i.d.
uniform in {0, . . . , L − 1}. No assumption is made on the link gains hij , other than they
all being non-zero.

We refer to this as the K-user line-of-sight (LOS) interference channel, as this is the
most common scenario giving rise to such a model.

There is a straightforward extension of this model to the case where each link consists
of D physical paths, such that the ith received signal is

yi(t) =
K
∑

j=1

D
∑

d=1

hij,dxj(t− τij,d) + zi(t).

Here hij,d ∈ C and τij,d ∈ [0,∞) are the complex gain and delay of the dth physical path
between transmitter j and receiver i. This leads to the following generalization of the
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passband model after sampling

yi[m] =

K
∑

j=1

D
∑

d=1

hij,de
−2πfcτij,dxj [m− lij,d] + zi[m].

The natural extension of our statistical assumption for the LOS channel is to treat the
delays lij,d as i.i.d. uniform in {0, . . . , L − 1}. In doing so we are assuming independent
delays not just across physical paths of different links, but also across the physical paths
corresponding to the same link.

We refer to this as the K-user D-path interference channel.

3 Preview of Main Result

Theorem 3.1. For any ǫ > 0, there exists a communication scheme on the K-user LOS
interference channel such that if W > (2K(K−1))K(K−1)+ǫ, the expected spectral efficiency
of user i tends to

1

(K(K − 1))ǫ
log2

(

1 + |hii|2
PSD

N0

)

(1)

as K → ∞.

Section 5 is devoted to proving this result. Here the expectation of spectral efficiency
is taken over the random direct delays lii. Roughly speaking this result says that as K
scales, it is possible for each user to communicate at a spectral efficiency arbitrarily close
to O(1) log2(1+

PSD

N0
), so long as the bandwidth scales as fast as O((2K(K−1))K(K−1)). In

other words, communication at spectral efficiencies that vanish arbitrarily slowly with K
is possible if the bandwidth scales sufficiently. In this result, and throughout this work, we
assume that all cross delays lij for i 6= j are known at all transmitters and receivers. This
result is of a similar nature to the scaling laws of [2], in that we show the growth of system
capacity with the number of users is arbitrarily close to linear. Unfortunately, as is the
case in [5], the required bandwidth scaling is great. A result presented later on (theorem
4.2) addresses the question of whether bandwidth scaling is necessary.

For the case where each link consists of D physical paths we have the following gener-
alization.

Theorem 3.2. For any ǫ > 0, there exists a communication scheme on the K-user D-path
interference channel such that if W > (2DK(DK − 1))DK(DK−1)+ǫ, the expected spectral
efficiency of user i tends to

1

(DK(DK − 1))ǫ
log2

(

1 + max
d∈{1,...,D}

|hii,d|2
PSD

N0

)

(2)

as K → ∞.

As is evident from the statement of the theorem, there is a tradeoff between the number
of physical paths per link and the bandwidth scaling required. Again, the question of
whether this bandwidth scaling is necessary is addressed in a result presented later on.
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t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 

x3(t)

x2(t)

x1(t)

etc... 

Figure 1: The interference graph associated with the LOS channel with direct-delays l11 =
0, l22 = 0, l33 = 0 and cross-delays l21 = 3, l31 = 1, l12 = 1, l32 = 4, l13 = 3, l23 = 0.

4 The Interference Graph

The key insight leading to theorem 3.1 comes from formulating the communication problem
in a graph theoretical setting. We start with an example. Consider a 3-user LOS interfer-
ence channel where the direct links are all zero, i.e. l11 = 0, l22 = 0 and l33 = 0, and the
cross-links are say, l21 = 3, l31 = 1, l12 = 1, l32 = 4, l13 = 3, l23 = 0. Choose a length T for
the communication block. Create a directed graph G3,T (l12, l13, l21, l23, l31, l32) = (V, E) as
follows. Let the vertex set be

V = {v1(0), . . . , v1(T − 1)} ∪ {v2(0), . . . , v2(T − 1)} ∪ {v3(0), . . . , v3(T − 1)}.

The vertex vi(t) represents the tth time slot for the ith transmitter. Form the edge set
E as follows. Add a directed edge e21(0) starting from vertex v1(0) and ending at vertex
v2(l21) = v2(3). This represents the fact that, owing to a delay of 3 time slots, a transmission
during time slot 0 by transmitter 1 arrives at receiver 2 during time slot 3. Also add a
directed edge e31(0) starting from v1(0) and ending at v3(l31) = v3(1). This represents the
fact that, owing to a delay of 1 time slot, a transmission during time slot 0 by transmitter
1 arrives at receiver 3 during time slot 1. Likewise add directed edges e12(0) and e32(0)
from vertex v2(0) to v1(l12) = v1(1) and v3(l32) = v3(4), respectively, and directed edges e13
and e23 from vertex v3(0) to v1(l13) = v1(3) and v2(l23) = v2(0), respectively. This set of
six edges encapsulates all of the interference generated by transmissions during time slot 0.
As the channel is time-invariant the same interference structure applies for later time slots.
Thus for each t = 1, 2, . . . , T − 1 add a directed edge from v1(t) to v2(t + l21), provided
t + l21 ≤ T , a directed edge from v1(t) to v3(t+ l31), provided t + l31 ≤ T , a directed edge
from v2(t) to v1(t + l12), provided t+ l12 ≤ T , etc... See figure 1 for an illustration.

In this example all direct delays were zero, whereas in general this is not the case.
However as each transmitter j can merely offset it’s transmitted sequence xj [m] by −ljj ,
we can effectively assume without loss of generality that ljj = 0. More concretely we define
the normalized cross-delays

l′ij , lij − ljj.

Note that l′ij ∈ {−L + 1, . . . , L − 1}, that is, it is possible for l′ij to be negative. At this
point one may wonder why the interference graph need be directed, since the feasibility of
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t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 

x3(t)

x2(t)

x1(t)

etc... 

maximal independent set 

Figure 2: A feasible transmit pattern corresponds to an independent set. The vertices of a
maximal independent set are shaded. For a symmetric channel, the maximal independent
set maximizes total spectral efficiency.

a given transmit pattern is independent of edge direction. The answer is it need not be,
but we define it as such to aid in conceptualizing the problem.

In general we have

Definition 4.1. The time-indexed interference graph (or simply interference graph for
short) of length T associated with the K-user LOS interference channel with normalized
cross-delays {l′ij}i 6=j, is the directed graph GK,T ({l′ij}i 6=j) = (V, E) where

V =

K
⋃

j=1

{vj(1), . . . , vj(T )}

E =
K
⋃

i=1

K
⋃

j=1,j 6=i

{eij(1), . . . , eij(T − l′ij)},

with edge eij(t) stemming from vertex vj(t) and ending at vertex vi(t + l′ij).

This graph has KT vertices and approximately K(K − 1)T edges. As a transmission
during time slot t is interfered with by one time slot at each other user, and itself interferes
with one time slot at each other user, each vertex has both in-degree K− 1 and out-degree
K − 1. To reduce the notational burden, we often refer to the graph GK,T ({l′ij}i 6=j) simply
as G, where the parameters of the interference graph are implicit.

One can similarly define a time-indexed interference graph for the D-path interference
channel, but in the interest of brevity and clarity we do not discuss it here.

A transmit pattern is a subset of time slots during which data symbols are sent, one data
symbol being sent per time slot. A transmit pattern is called feasible if each data symbol
is received during a time slot that contains no interference from other transmissions. Thus
a feasible transmit pattern corresponds to an independent set on the interference graph.
Occasionally we will drop the adjective “feasible” when it is clear that the transmit pattern
in question is such. As each data symbol arriving at receiver i during a time slot containing
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no interfering symbol, is capable of conveying log2(1 + |hii|2 PSD

N0
) bps/Hz, user i’s spectral

efficiency will be

Ri = Ni log2

(

1 + |hii|2
PSD

N0

)

,

where Ni is the number of vertices in {vi(1), . . . , vi(T )} that are in the independent set.
Let us assume for the meantime that hii = 1 for all i. Then the total spectral efficiency is
directly proportional to the size of the independent set. Thus the problem of designing a
communication scheme to maximize total spectral efficiency reduces to finding the maximal
independent set of the interference graph. Denote the size of the maximal independent set
of a graph G (called the independence number) by α(G). Then the maximum total spectral
efficiency for a graph G is

α(G) log2
(

1 +
PSD

N0

)

.

For the preceding example, the maximal independent set is illustrated in figure 2. When-
ever an independent set contains two vertices that possess a mutual neighbor, the interfer-
ence generated by these two transmissions aligns at the mutual neighboring vertex. This
is interference alignment in the time domain. For the example in figure 2, the neighbors of
each unshaded vertex are all shaded, that is, data transmissions occur at all neighbors of an
unshaded vertex. This is not always the case. Suppose we use a TDMA based communica-
tion scheme where user 1 transmits on consecutive time slots for a long period whilst users
2 and 3 remain silent. Then after a small guard interval user 2 transmits on consecutive
time slots whilst users 1 and 3 remain silent. Finally user 3 transmits, and then back to
user 1 and so on. In this round robin scheme, each unshaded vertex is connected to only a
single shaded one and no interference alignment occurs.

The problem of finding the maximal independent set is a well-known NP-hard problem,
meaning that for an arbitrary graph, there is no known algorithm capable of solving the
problem in time sub-exponential in the number of vertices. Knowing this it may appear
that finding an optimal transmit pattern requires a computation time that is exponential in
the block length T , however the interference graph is not an arbitrary graph. In particular
it is stationary in the sense that, ignoring boundary effects, the structure of the graph is
invariant to time shifts. In the next section we present an algorithm that exploits this
property to find the maximum independent set in linear time. More generally, when the
link gains hii are arbitrary the algorithm solves the problem of finding an independent set
that maximizes spectral efficiency. We refer to this set as the optimal independent set.

4.1 Finding the maximal independent set efficiently

In this section we concentrate on the LOS channel, but the ideas can be extended to the D-
path channel. Given an interference graph G we now illustrate how dynamic programming
principles can be employed to compute the maximal independent set efficiently. Let each
vertex vj(t) ∈ {0, 1} with vj(t) = 1 if vj(t) is included in the transmit pattern, that is, if a
data symbol is transmitted by user j during time slot t, and vj(t) = 0 otherwise. There is
a slight abuse of notation here as we have used vj(t) to represent both an element of the
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t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 

x3(t)

x2(t)

x1(t)

etc... 

State at t = 4  

Figure 3: The LOS interference channel of figure 1. The state at time t = 4 is a function
of the shaded vertices, each taking on one of two values.

vertex set V and an indicator function for whether or not a data symbol is transmitted by
transmitter j during time slot t.

Concretely stated, the optimization problem we will solve is

min
{vj(t)} ∈ {0, 1}KT

s.t. vi(s) + vj(t) ≤ 1, ∀(vi(s), vj(t)) ∈ E

−
K
∑

j=1

rj

(

T−1
∑

t=0

vj(t),

)

(3)

where ri = log2(1+ |hii|2 PSD /N0). This is the problem of finding the optimal independent
set. This cost is just the sum of the spectral efficiencies of the users weighted by the number
of data symbols they send. We use a negative sign so as to justify the description of this
metric as a cost, i.e. something we are trying to minimize. In the event that all direct
gains are equal, rj is independent of j and the problem reduces to finding the maximal
independent set of G.

To solve this problem efficiently, we start by defining

l∗j , max{max
i

l′ij,max
i

−l′ji}.

This is the length of the longest edge that connects a vertex at a time t, to a vertex belonging
to user j for time ≤ t. When all the l′ij are positive, l∗j simply represents the longest edge
stemming from user j. In the example of figure 1, l∗1 = 3, l∗2 = 4 and l∗3 = 3. When some of
the l′ij are negative, l∗j represents the longest edge connecting user j to another user in the
forward time direction. Thus the total amount of memory in the system is maxj l

∗
j . If this

seems somewhat contrived, recall that although the interference graph is a directed graph,
it need not be defined as such, as the effect of vertex vi(t) causing interference at vertex
vj(t

′) is identical to the effect of vertex vj(t
′) causing interference at vertex vi(t). What

matters for the dynamic programming formulation in this section, is not whether vi(t) is
causing interference with vj(t

′) or vice versa, but whether t > t′, t = t′ or t < t′. In our
algorithm we move through vertices in order of increasing time t. The state of the system
at time t is defined by those vertices at times ≤ t that are connected to vertices at times
≥ t.

9



t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 

x3(t) 

x2(t) 

x1(t) 

State at t = 3 

etc… 

Figure 4: A LOS interference channel with normalized cross delays l′21 = 0, l′31 = 1, l′12 = 2,
l′32 = 0, l′13 = 1 and l′23 = −2. The state at time t = 2 is a function of the shaded vertices.

More precisely, define the state vector at time t to be

s(t) = [v1(t) · · · v1(t− l∗1) · · · vK(t) · · · vK(t− l∗K)]
T . (4)

This is the collection of all vertices at times ≤ t, that interfere with, or are interfered with
by vertices at times ≥ t. Figure 3 illustrates which vertices are included in the state vector.

As each vj(t) takes on one of two values, the state space consists of at most 2
PK

j=1(l
∗
j+1)

possible states. Some states may be infeasible because two of their vertices are connected
by an edge. Thus define the state space as the space of all feasible states

S =
{

s1, . . . , s|S|
}

with each si ∈ {0, 1}
PK

j=1(l
∗
j+1). Each state in S corresponds to an independent set in the

subgraph made up of vertices in s(t). Thus there are typically far fewer than 2
PK

j=1(l
∗
j+1)

states. A second example is given in figures 4 and 5. In this example there are a total of
28 states as shown in figure 5.

For notational convenience we label the elements of si as such

si = [s
(1,0)
i · · · s(1,l

∗
1)

i · · · s(K,0)
i s

(K,t−l∗K)
i ]T .

Denote the set of feasible state transitions from a ∈ S to b ∈ S by

F =
{

(a,b) : b(j,k+1) = a(j,k), for j = 1, . . . , K and k = 0, . . . , l∗j − 1
}

For the example of figures 4 and 5 the set of feasible state transitions is

S = {(s1, s2), (s1, s8), (s1, s11), (s2, s3), . . . }

With the state space clearly defined, it is straightforward to derive the actual algorithm,
which is akin to the Viterbi algorithm. It begins by initializing the costs to zero, that is

csj (0) = 0,
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Figure 5: An illustration of the entire state space S for the example of figure 4. For each
state, both the state vector is given and the corresponding independent set shaded.
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for all sj ∈ S. Each iteration of the algorithm involves finding the minimum cost path
entering each state. At times t = 1, . . . , T compute

si∗(t, sj) = arg min
si ∈ S

(si, sj) ∈ F

csi(t− 1),

for each sj ∈ S, which is the minimum cost state at time t−1 from which we can transition
into state sj at time t. Then compute

csj (t) = c
si∗(t,sj)(t− 1)−

K
∑

k=1

rks
(k,0)
j ,

for each sj ∈ S, which is the minimum cost of a path that ends up at state sj at time t.
When time t = T is finally reached, compute

s∗(T ) = argmin
si∈S

csi(T ),

which is the optimal termination state. The optimal independent set is then found by
working backwards. Start by setting the T th column of vertices v1(T ), . . . , vK(T ) according
to s∗(T ). That is, set vj(T ) = [s∗i (T )]

(j,0) for j = 1, . . . , K. Then set the T − 1th column
according to si∗(T, s

∗(T )), that is, set vj(T − 1) = [s∗i (T, s
∗(T ))](j,0) for j = 1, . . . , K.

Continue by setting vj(T − 2) = [s∗i (T − 1, s∗i (T, s
∗(T )))](j,0), etc...

We now briefly examine the complexity of this algorithm. As the state space consists

of all independent sets of a subgraph defined by 2
PK

j=1(l
∗
j+1) vertices, given a set of delays

l′ij , it takes O(2
PK

j=1(l
∗
j+1)) time steps to enumerate. Once this is done, the algorithm

takes O(T |S|) time steps to solve problem (3). Roughly speaking, l′ij = O(L), and |S| =
O(LK logLK). Thus the algorithm takes

O(TLK logLK) +O(2LK)

time steps to compute the optimal independent set.
As the state space defined in equation 4 is finite, for large T the optimal independent set

will have a periodic form with period less than or equal to the number of states |S|. Thus,
if there is no restriction on how large T can be, once the period of the maximal independent
set is found, we can simply set T equal to it, without compromising optimality. In this
case, the entire problem can be solved in

O(LK logLK2LK logLK) +O
(

2LK) = O((LK)LK+1 logLK
)

time steps.

4.2 Bandwidth scaling

Theorem 3.1 shows that if the bandwidth scales sufficiently quickly with K, the spectral
efficiency per user can be made to vanish arbitrarily slowly. A natural question to ask
is whether it is necessary for the bandwidth to scale with K, in order for this desirable
property to hold. The following converse result establishes that this is indeed the case.
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Theorem 4.2. If the bandwidth scales sufficiently slowly with K such that

lim
K→∞

logW

log K
logK

= 0

then

lim
K→∞

logα(G)/T
logK

= 0 (5)

with probability one.

As the total spectral efficiency

K
∑

i=1

Ri ≤
α(G)
T

log2

(

1 + max
i

|hii|2
PSD

N0

)

theorem 4.2 implies

lim
K→∞

log
(

∑K
i=1Ri

)

logK
= 0,

which is equivalent to limK→∞Ri = 0 for almost all users i ∈ {1, . . . , K}.
Roughly speaking the above result says that if the bandwidth scales slower thanO(K/ logK),

then the spectral efficiency resulting from any feasible transmit pattern will vanish as
K → ∞. Note there is a gap between this converse result and the achievability result of
theorem 3.1. Theorem 3.1 demonstrates that it is sufficient for the bandwidth to scale like
O((2K(K − 1))K(K−1)), but theorem 4.2 shows that it is necessary for the bandwidth to
scale only as fast as O(K/ logK). This establishes that the slowest possible bandwidth
scaling lies somewhere between O(K/ logK) and O((2K(K − 1))K(K−1)). It is unclear,
which if any of these bounds is tight.

Proof. Remove those edges that connect vertices of different time slots in the interference
graph, (vi(t), vj(t

′)) for t′ 6= t. This provides an upper bound on the independence number.
Now consider a single column V(t) = {v1(t), . . . , vK(t)} of this graph in isolation. For any
pair of vertices in V(t), there exists an edge connecting them independently with probability
1 − (1 − 1/L)2 (probability 1/L for each of the two possible directions). Thus the graph
consisting of vertices V(t) and the random subset of edges connecting them, is precisely
the Erdős-Rényi graph GK,1−(1−1/L)2 . A well known result (see for example [8]) is that

lim
n→∞

α(Gn,p)

logn
=

2

log(1/(1− p))

with probability one. Hence the independence number of GK,2/L satisfies

lim
n→∞

α(GK,2/L)

logK
=

2

log(1/(1− 1/L)2)

≤ L.
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As L is directly proportional to W , if limK→∞ logW/ log K
logK

= 0 then the same limit
applies for L and

lim
K→∞

logα(GK,2/L)

logK
= 0.

Now as the independence number of the interference graph satisfies α(G) ≤ Tα(GK,2/L),
equation (5) follows.

4.3 When is the maximal independent set maximal?

We now turn to the problem of analysis. Ideally we would like a simple characterization
of the size of the maximal independent set in terms of the parameters of the system,
K, T , and the normalized cross-delays l′ij. It is unclear if such a characterization exists.
Instead we present two results. The first characterizes when the independence number is
equal to its maximum possible value, and shows how the maximal independent set can be
found almost instantly in this event. The second, which is theorem 3.1, demonstrates that
surprisingly large independent sets exist on average, when both the number of users and
the bandwidth are sufficiently high. In this section we present the former result, in the next
section we present the latter. What we will be revealed in this section is that the problem
of determining whether or not the independence number is equal to its maximum possible
value, is a group theoretic one.

We assume in this section that the direct gains are all equal so that the optimal inde-
pendent set is equivalent to the maximal independent set. Owing to the absence of some
edges, the boundary of the interference graph has a slightly different structure than it’s
interior. In order to circumvent this problem, we let T → ∞ so that these boundary effects
are negligible.

Definition 4.3. The independence rate of sequence of interference graphs

GK,1({l′ij}i 6=j),GK,2({l′ij}i 6=j), . . .

is

IR(GK({l′ij}i 6=j)) , lim
T→∞

α(GK,T ({l′ij}i 6=j))

T
.

We write IR(GK) for short. Start with the following observation.

Lemma 4.4. For any number of users K and any channel {l′ij}i 6=j

IR(GK) ≤
K

2
.

This means that for large T we can only include at most half the vertices of the interference
graph in any feasible transmit pattern. We now ask, when is the independence rate exactly
equal to K/2? The following result succinctly answers this question for K = 3. Define

l , l′31 + l′13 + l′32 + l′21 + l′12 + l′23

l1 , l′13 + l′32 + l′21

l2 , l′21 + l′12

l3 , l′31 + l′13.
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If li 6= 0, define γi to be the exponent of 2 in the prime factorization of li, that is li = 2γiβi

where βi represents the rest of the prime factorization. If li = 0 then define γi = ∞.
Similarly if l 6= 0, define γ to be the exponent of 2 in the prime factorization l, i.e. l = 2γβ.
If l = 0 then define γ = ∞.

Theorem 4.5. IR(G3) = 3/2 if and only if γ1 < γ2, γ1 < γ3 and γ1 < γ, in which case
there are exactly 2gcd(l1,l2/2,l3/2,l/2) feasible transmit patterns achieving it.

To clarify, if for example both γ1 = ∞ and γ2 = ∞, then the above conditions are not
satisfied and IR(G) < 3/2. This theorem provides a necessary and sufficient condition such
that all users can transmit half the time without interfering with one another. The most
probable way this condition can be met is if l1 is an odd number, and l, l2 and l3 are all
even numbers. Each of these events roughly occurs independently with probability 1/2,
hence the probability all four occur simultaneously is 1/16. Thus with probability & 1/16
there exists a feasible transmit pattern enabling all users to transmit half the time without
interfering with one another. There are of course other ways in which our condition can be
met, for example, if l1 is even, but not a multiple of 4, and l, l2 and l3 are all multiples of
4, however this, and all other configurations satisfying the condition of theorem 4.5 likely
occur with probability much less than 1/16. The proof of theorem 4.5 is given in the
appendix.

Example 4.6. For the channel in figure 11, we have l = 2 and l1 = 1, l2 = 2, l3 =
2. This means γ = 1, γ1 = 0, γ2 = 1, γ3 = 1, so a feasible transmit pattern achieving
independence number 3/2 exists. As gcd(l1, l2/2, l3/2, l/2) = 1 there are only two feasible
transmit patterns: the first is shown in the figure as a sequence of shaded vertices, the second
is obtained by complementing the transmit pattern, i.e. unshading the shaded vertices, and
shading the unshaded ones.

How does theorem 4.5 generalize for an arbitrary number of users, K? Define a cycle
on the interference graph to be the indices of a tuple of edges with connecting vertices,
that start and end on the same row. For example ((1, 2), (2, 3), (3, 1)) and ((3, 2), (2, 3)) are
examples of cycles forK = 3. The length of a cycle is the sum of the normalized cross-delays
associated with it. For example, the cycle ((1, 2), (2, 3), (3, 1)) has length l′12 + l′23 + l′31.

Define the set of cycles containing an even number of terms as

Ye = {((i1, i2), (i2, i3), . . . , (i2n, i1)) : i1 6= i2 6= · · · 6= i2n and ij ∈ {1, . . . , K}} ,

and the set of cycles containing an odd number of terms as

Yo = {((i1, i2), (i2, i3), . . . , (i2n+1, i1)) : i1 6= i2 6= · · · 6= i2n+1 and ij ∈ {1, . . . , K}} .

Then we claim it can be shown that

Claim 4.7. IR(GK) = K/2 if and only if the exponents of 2 in the prime factorizations of
the lengths of all cycles containing an odd number of terms, are the same, and this exponent
is strictly less than the exponent of 2 in the prime factorization of the length of every cycle
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containing an even number of terms. That is, the exponent of 2 in the prime factorization
of

∑

(i,j)∈Yo

l′ij,

is the same for all Yo ∈ Yo, and this value is strictly less than the exponent of 2 in the
prime factorization of

∑

(i,j)∈Ye

l′ij ,

for any Ye ∈ Ye.

5 Achieving Non-Vanishing Spectral Efficiency

We now prove theorem 3.1 by presenting a construction with expected spectral efficiency
that can be made to vanish arbitrarily slowly as K → ∞. First, a high-level overview of the
proof. The idea is to construct a transmit pattern that has close to O(1) independence rate
as K → ∞. At the heart of the transmit pattern is a generalized arithmetic progression.
If the bandwidth scales appropriately with the number of users then this progression will
have desirable interference alignment properties, but care has to be taken in constructing
a transmit pattern out of it. In particular, the progression will be very sparse, meaning
that many identical versions of this progression must be interleaved, each with a different
timing offset. The trick to making the analysis work is to use a randomization argument
to show that a good set of offsets exists.

Proof. (of Theorem 3.1) First some notation that will be used throughout the proof. Let

N , K(K − 1)

and

A ,
L

NN+ǫ
.

We use ⊕ to denote addition modulo L. Let

T ,

{

⊕

1≤i 6=j≤K

αijlij : {αij}i 6=j ∈ {0, . . . , N − 1}N
}

.

This is the set of all linear combinations of the cross-delays (not normalized) with integer
coefficients ranging from 0 to N . Define

S ,
A
⋃

a=1

(ma ⊕ T )

See figure 6 for an illustration. Each user transmits one data symbol at each time slot in
the set

X ,
∞
⋃

k=0

(S + kL).
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0 L-1time slots 

S

T + m1 mod L 

T + m2 mod L 

T + m3 mod L 

m1
m2

m3

Figure 6: The construction S is formed by interleaving a sufficient number of generalized
arithmetic progressions T with random offsets mi. The colored bars indicate time slots
during which data symbols are sent.

The above construction corresponds to concatenating data blocks S of length L. The
modulo L addition used in constructing S and T , ensures a seamless transition at the block
boundaries. This is illustrated in figure 7. The construction is defined in this seemingly
convoluted way in order to make the analysis simple and elegant. However there is an easier
way of conceptualizing this construction: take multiple copies of the generalized arithmetic

progression
{

∑

1≤i 6=j≤K αijlij : {αij}i 6=j ∈ {0, . . . , N − 1}N
}

, and throw them down on the

infinite time axis with offsets m1, . . . , mA, L+m1, . . . , L+mA, 2L+m1, . . . , 2L+mA, . . . .
Although this construction is periodic with period L, locally, the offsets of these progressions
will appear as a Poisson process with intensity A/L = 1/NN+ǫ. As there are NN points in
each progression, the density of points in X will be 1/N ǫ and hence the spectral efficiency
will go to zero with K like 1/(K(K − 1))ǫ.

We will show that there exists a choice of

(m1, . . . , mA) ∈ {0, . . . , L− 1}A

such that the expected spectral efficiency of this scheme approaches (2) as K → ∞. More
specifically, we show that for the above construction, at each receiver the expected fraction
of time slots containing a data symbol but no interference is large. Each such data symbol
is then able to convey log2(1 + |hii|2 PSD /N0) bps/Hz of information and the expected
spectral efficiency achieved by the scheme for user i is the fraction of such time slots
multiplied by log2(1 + PSD /N0).

Since our construction X consists of a concatenation of identical blocks of length L, we
analyze its performance over a single block extending from time slot 0 to L−1. At receiver
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0 L time slots 

S S+L S+2L 

2L 3L

etc…

X

Figure 7: The construction X is formed by concatenating blocks of S. The modulo L
structure of S ensures a seamless transition from block to block.

i the set of time slots containing interference is

Fi ,
K
⋃

j=1,j 6=i

(S ⊕ lij) . (6)

Denote the number of time slots at receiver i, that contain a data symbol from trans-
mitter i, but no interference by Si , |{t ∈ (S ⊕ lii)\Fi}|. Then conditioning on the cross
delays we have

ESi =
1

LK(K−1)

∑

{lij}i6=j

E{lii}i [Si|{lij}i 6=j ]. (7)

Define

s(k) ,

{

1, if k ∈ S
0, otherwise.

That is, s(k) = 1 if a transmission takes place at time slot k, and zero otherwise. Similarly
define

fi(k) ,

{

1, if k ∈ Fi

0, otherwise.

That is, fi(k) = 1 if there is interference during time slot k at receiver i and zero otherwise.
Conditioned on the cross delays, Si is the correlation function between the set of transmit
times S and the set of interference free times F c

i , evaluated at an offset of lii, specifically

Si(lii) =
L−1
∑

k=0

s(k ⊕ lii)(1− fi(k))
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Thus

E{lii}i [Si|{lij}i 6=j] =
1

L

L−1
∑

lii=0

Si(lii)

=
1

L

L−1
∑

lii=0

L−1
∑

k=0

s(k ⊕ lii)(1− fi(k))

=
1

L

L−1
∑

k=0

(1− fi(k))

L−1
∑

lii=0

s(k ⊕ lii)

=
1

L

L−1
∑

k=0

(1− fi(k))

L−1
∑

lii=0

s(lii)

=
1

L

L−1
∑

k=0

(1− fi(k))|S|

= |S|
(

1− |Fi|
L

)

where in the above sequence of equations we have used the identities |S| ≡∑L−1
k=0 s(k) and

|Fi| ≡
∑L−1

k=0 fi(k). Substituting back into equation (7) we find the fraction of time slots at
receiver i containing data but no interference is

ESi

L
=

1

LK(K−1)

∑

{lij}i6=j

|S|
L

(

1− |Fi|
L

)

. (8)

The above expression makes intuitive sense as if we uniformly select a time slot at random
from {0, . . . , L− 1}, then conditioned on the {lij}i 6=j , the quantity |S|/L is the probability
this time slot contains a data symbol, and 1− |Fi|/L is the probability it does not contain
an interference symbol. We now compute appropriate bounds on the terms |S| and |Fi|.
From equation (6) we have

Fi =
⋃

j 6=i

(S ⊕ lij)

=
⋃

j 6=i

([

A
⋃

a=1

(ma ⊕ T )

]

⊕ lij

)

=

A
⋃

a=1

[

⋃

j 6=i

(T ⊕ lij)

]

⊕ma

But
⋃

j 6=i

(T ⊕ lij) ⊂
{

⊕

1≤i 6=j≤K

αijlij : {αij}i 6=j ∈ {0, . . . , N}N
}

,
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and this set has at most (N + 1)N elements. This is the interference alignment property.
Hence

|Fi|
L

≤ A
1

L

∣

∣

∣

∣

∣

⋃

j 6=i

(T ⊕ lij)

∣

∣

∣

∣

∣

≤ A(N + 1)N

L

<
(N + 1)N

NN+ǫ

= N−ǫ

(

1 +
1

N

)N

< eN−ǫ.

We now bound |S|. We first show that |T | = NN almost surely as N → ∞. In order to
have |T | < NN , there must exist two sets of coefficients {αij}i 6=j 6= {αij}′i 6=j both elements
of {0, . . . , N − 1}N , satisfying

⊕

i 6=j

αijlij =
⊕

i 6=j

α′
ijlij.

This is equivalent to requiring there to exist some {αij}i 6=j ∈ {−N + 1, . . . , N − 1}N\0
satisfying

⊕

i 6=j

αijlij = 0.

Using the union bound we have

Pr
(

|T | < NN
)

= Pr

(

∃{αij}i 6=j ∈ {−N + 1, . . . , N − 1}N\0 s.t.
⊕

i 6=j

αijlij = 0

)

≤
∑

{αij}i6=j∈{−N+1,...,N−1}N

Pr

(

⊕

i 6=j

αijlij = 0

)

.

As conditioned on all cross delays other than l12, there is at most one value of l12 that
satisfies

∑

i 6=j αijlij = 0, and the cross delays are uniformly distributed over {0, . . . , L− 1},
we have

Pr
(

|T | < NN
)

≤
∑

{αij}i6=j∈{−N+1,...,N−1}N

1

L

=
(2N)N

L

≤ (2N)N

(2N)N+ǫ

= (N)−ǫ

→ 0
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O(NN) time slots 

O([2N]N) time slots 

NN distinct pointsoverall density of points = O(2-N)

Figure 8: An illustration of the generalized arithmetic progression T without the modulo
L wrap around. There are NN points spread over O((2N)N) time slots, however almost all
points are concentrated at the center in a width of O(NN). Hence the density of points is
O(2−N).

as N → ∞ (or equivalently, as K → ∞).
At this point it should start to become clear why it is that in this particular construction

the bandwidth must scale like (2N)N . From the above calculation we see that in order to
make all the points in the generalized arithmetic progression T distinct, we require the lij to
be large. How large? It may seem that as there are NN integers in T , the minimum being
0 and the maximum being roughly the same order as lij, we require lij = O(NN). However,
the structure of the generalized arithmetic progression is such that the bulk of its points
are concentrated around the center, such that we actually require at least lij = O((2N)N)
to separate these center points out, as the above calculation shows. But such a large
order of lij makes T very sparse, in fact if lij = O((2N)N) then T ’s density is a mere
O(2−N). So to fill in the gaps we interleave multiple sequences T . How many? O(2N). In
general if lij = O(L) then we must interleave O(L/NN) = A sequences. This explanation
is illustrated in figure 8

We now use a probabilistic argument to demonstrate the existence of a good choice of
(m1, . . . , mA). Let ma ∼ i.i.d. U({0, . . . , L− 1}). Let

t(k) ,

{

1, if k ∈ T
0, otherwise.

and

ta(k) ,

{

1, if k ∈ ma ⊕ T
0, otherwise.

Thus ta(k) = t(k ⊕ma). Then we can write

s(k) = t1(k) + t2(k)(1− t1(k)) + t3(k)(1− t2(k))(1− t1(k))

+ · · ·+ tA(k)(1− tA−1(k))× · · · × (1− t1(k)).

This expression says that k ∈ S if k ∈ m1 ⊕ T , or if k /∈ m1 ⊕ T but k ∈ m2 ⊕ T , or if
k /∈ m1 ⊕ T and k /∈ m2 ⊕ T but k ∈ m3 ⊕ T , etc... We can write the above expression
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alternatively as

s(k) = t1(k) + (1− t1(k))(t2(k) + (1− t2(k))(t3(k) + . . . ))

= t(k ⊕m1) + (1− t(k ⊕m1))(t(k ⊕m2) + (1− t(k ⊕m2))(t(k ⊕m3) + . . . ))

Then taking the expectation over the distribution of m1, . . . , mA

E|S|
L

=
1

L
E

L−1
∑

k=0

s(n)

=
1

L
E

L−1
∑

k=0

t(k ⊕m1) + (1− t(k ⊕m1))(t(k ⊕m2)

+ (1− t(k ⊕m2))(t(k ⊕m3) + . . . ))

=
1

LA+1

L−1
∑

mA=0

· · ·
L−1
∑

m1=0

L−1
∑

k=0

t(k ⊕m1) + (1− t(k ⊕m1))(t(k ⊕m2)

+ (1− t(k ⊕m2))(t(k ⊕m3) + . . . ))

=
1

LA+1

L−1
∑

k=0

L−1
∑

mA=0

· · ·
L−1
∑

m1=0

t(k ⊕m1) + (1− t(k ⊕m1))(t(k ⊕m2)

+ (1− t(k ⊕m2))(t(k ⊕m3) + . . . ))

=
1

LA+1

L−1
∑

k=0

L−1
∑

mA=0

· · ·
L−1
∑

m2=0

|T |+ (L− |T |)t(k ⊕m2)

+ (L− |T |)(1− t(k ⊕m2))(t(k ⊕m3) + . . . ))

=
1

LA+1

L−1
∑

k=0

L−1
∑

mA=0

· · ·
L−1
∑

m2=0

|T |+ |T |(L− |T |)

+ (L− |T |)2(t(k ⊕m3) + . . . ))

...

=
|T |
L

A−1
∑

a=0

(

1− |T |
L

)a

= 1−
(

1− |T |
L

)A

→ 1−
(

1− NN

L

)
L

NN+ǫ

a.s.

→ 1− e−
NN

L
L

NN+ǫ

→ N−ǫ.
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Substituting back into equation (8)

ESi

L
=

1

LK(K−1)

∑

{lij}i6=j

N−ǫ
(

1− eN−ǫ
)

= N−ǫ
(

1− eN−ǫ
)

→ N−ǫ

as N → ∞ (or equivalently K → ∞). As each data symbol that is received without inter-
ference is capable of reliably communicating log2(1 + |hii|2PSD/N0) bps/Hz, the expected
spectral efficiency of each user i goes to

1

(K(K − 1))ǫ
log2

(

1 + |hii|2PSD/N0

)

as K → ∞.

The proof of theorem 3.2 is a straightforward extension of the previous.

Proof. (of Theorem 3.2) Assume without loss of generality that argmaxd |hii,d|2 = 1 for all
users i. If each receiver i treats physical paths 2, 3, . . . , D from transmitter i as interference,
then the received signals in theK user D path interference channel are statistically identical
to those of the DK-user LOS interference channel. Thus the achievability result of theorem
3.1 carries over to the D path channel with K replaced by DK, and |hii|2 replaced by
maxd∈{1,...,D} |hii,d|2.

6 Frequency Domain Interpretation

In this section we reconcile the time domain version of interference alignment presented in
this paper, and the frequency domain results of [5]. Specifically we show how the three-user
construction of [5] has a simple time domain structure for the LOS interference channel.

To begin, we need to transform the LOS model into the frequency domain. For this we
use an OFDM architecture summarized in figure 9. Transmitter j has a stream of complex
data symbols to send {xj[0], xj [1], . . . } to receiver i. These are broken up into blocks of
length n. Consider a single block denoted x = [xj [0], . . . , xj [n−1]]T . To send this block the
transmitter computes the M-length vector xj = Vjxj, where Vj ∈ CM×n is an encoding
matrix to be specified later. Let lmax , maxi,j lij . To send xj , tx j computes its IDFT and
appends a cyclic prefix of length lmax. Each receiver removes the cyclic prefix and computes
the DFT. Specifically

x̃j =

(

0lmax×(M−lmax) Ilmax×lmax

IM×M

)

F∗
M×Mxj

and
yj = FM×M

(

0M×lmax IM×M

)

ỹj
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xj[0]

xj[n-1]

add

cyclic

prefix

remove 

cyclic

prefix

channel

IDFT DFTVj
ZF

equalizer

[0]x̂ j

1]-[nx̂ j

Figure 9: Illustration of the OFDM architecture used to reconcile the time and frequency
domain versions of interference alignment.

where FM×M is the M ×M DFT matrix,

FM×M =
1√
M















1 1 1 · · · 1
1 ej2π/M ej2π·2/M · · · ej2π·(n−1)/M

1 ej2π·2/M ej4π·(n−1)θ · · · ej2π·2(n−1)/M

...
...

...
. . .

...
1 ej2π·(M−1)/M ej2π·2(M−1)θ · · · ej2π·(M−1)(n−1)/M















.

The result is a length M sequence

yi[k] =
K
∑

j=1

hije
−j2π(fcτij+klij/M)xj [k] + zi[k]

for k = 0, . . . ,M − 1. Let θij , lij/M . Then in matrix form

yi =
K
∑

j=1

HijVjxj + zi

where the link matrices are

Hij = hije
−j2πfcτij















1
e−j2π·θij

e−j2π·2θij

. . .

e−j2π·(M−1)θij















. (9)

Choose W sufficiently large such that the lij are distinct. Note that M needs to be much
larger than lmax in order for the overhead from the cyclic prefix to be small. Also, M
must not have any of the lij as divisors, else the channel matrices will lose rank. Let

H , h−1
ij e

j2πfcτijH and T , H12H
−1

21 H23H
−1

32 H31H
−1

13 . Let w = [1 · · · 1]T . Choose the
encoding matrices as follows

V1 = H
−1

31 H32T
2V

V2 = TV

V3 = H
−1

13 H12V
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where
V = [w Tw T2w · · · Tn−1w]

and let
n = (M − 1)/2.

where M will be chosen to be an odd number. This is the three user construction of [5],
but note the channel matrices Hij do not consist of M independently faded tones. Rather,
all tones are derived from a single parameter lij . Define

θ = θ12 − θ21 + θ23 − θ32 + θ31 − θ13

l = l12 − l21 + l23 − l32 + l31 − l13

Then

V =
1√
M















1 1 1 · · · 1
1 ej2π·θ ej2π·2θ · · · ej2π·(n−1)θ

1 ej2π·2θ ej2π·4θ · · · ej2π·2(n−1)θ

...
...

...
. . .

...
1 ej2π·(M−1)θ ej2π·2(M−1)θ · · · ej2π·(M−1)(n−1)θ















. (10)

Lemma 6.1. If M is prime the columns of V are a permuted subset of the columns of
FM×M , i.e.

V = FM×Mπl,M (11)

where πl,M is an M × n permutation matrix, i.e. each column of πl,M is a unique column
of IM×M .

Proof. Consider the matrix element V(2, k) = ej2πkl/M/
√
M = ej2π·(kl mod M)/M/

√
M for

some k ∈ {0, . . . ,M − 1}. Let M be prime. Then the set

{1, ej2π/M , ej2π·2/M , . . . , ej2π·(M−1)/M}

together with the multiplication operation forms a group. Thus each V(2, k) corresponds
to a unique FM×M(2, k′) for some k′ ∈ {0, . . . ,M − 1}. Now observe that V(j, k) =
V(2, k)(j−1) and FM×M(j, k′) = FM×M(2, k′)(j−1). Thus FM×M(j, k′) = VM×M(j, k). In
other words each column of V corresponds to a unique column of FM×M , which establishes
the result.

Lemma 6.1 enables us to write the encoding matrices Vj in a revealing form. Define

Γ1 , H
−1

31 H32T
2 (12)

Γ2 , T (13)

Γ3 , H
−1

13 H12. (14)

Then

x̃j =

(

0lmax×(M−lmax) Ilmax×lmax

IM×M

)

F∗
M×MΓjFM×Mπl,Mxj .
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Examining the above expression reveals that the encoding operation for tx j corresponds
to transmitting consecutive data symbols l time slots apart, but cyclicly wrapped around
such that roughly half of all time slots contain data symbols and no two data symbols share
the same time slot. As the operation F∗

M×MΓjFM×M corresponds to delaying the input
stream, the entire transmission sequence is just offset by this amount.

Based on equations (12)-(14) we can define the delay dj for user j’s transmission se-
quence as

d1 , 2l12 − 2l21 + 2l23 − l32 + l31 − 2l13

d2 , l12 − l21 + l23 − l32 + l31 − l13

d3 , l12 − l13.

Then we see that transmitter j will send its first symbol xj[1] in time slot dj mod M , its
second symbol xj [2] in time slot dj+ l mod M , its third in time slot dj +2l mod M , etc...
The last symbol will be sent at time dj + (n − 1)l mod M . More precisely transmitter j
sends

x̃j [m] =

{

xj [k], if m = kl + dj mod M for some k
0, otherwise

at times m = 0, 1, . . . ,M − 1.
The manner by which this transmission scheme achieves interference alignment is now

simple to understand. Tx 1, transmits it’s first data symbol x1[1], such that it arrives at
rx 3 at the same time as tx 2’s first data symbol x2[1]. Tx 2 transmits x2[1] such that it
arrives at the same time as x3[1] at rx 1. Tx 3 transmits x3[1] such that it arrives at rx 2
at the same time as x1[2], etc... See example 6.3 and figure 10.

From figure 10 it is clear how decoding should be performed —receivers merely decode
each data symbol by looking at the time slot in which it was received. But let us reconcile
this with the decoding methodology of [5], where the received sequence is passed through
a ZF equalizer. This corresponds to projecting the vector yj onto the subspace orthogonal
to the interference. At the first receiver

y1 =
(

H11V1 H12U
)

(

x1

xg

)

+ z1

where
U = [w Tw T2w · · · Tnw].

and xg represents a combination of interfering symbols from the 2nd and 3rd users. It is
straightforward to see that we can write the space orthogonal to U as

Uc = FM×Mπc
l,M

where πc
l,M is a permutation matrix orthogonal to πl,M in the sense that πc

l,M
∗πl,M = 0.

Simply put, Uc is a matrix whose columns are those columns of FM×M that are not present
in V. Thus the first receiver computes x̂1 = G∗

1y1 where

G∗
1 = (Uc∗H−1

12 H11V1)
−1Uc∗H−1

12 .
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If we write out the decoder in detail

G∗
1y1 =

(πc
l,M

∗F∗
M×MH−1

12 H11Γ1FM×Mπl,M)−1πc
l,M

∗F∗
M×MH−1

12 FM×M

(

0M×lmax IM×M

)

ỹj

we see that the first few operations correspond to removing the cyclic prefix, delaying the
resulting stream by l12 and then selecting the interference free subset of this. The last
operation is in general undefined, as the matrix we invert may not be full rank. However
in certain scenarios the matrix equals identity and is then invertible.

The reason for this phenomenon is that the last operation corresponds to recovering
the data from the interference free subspace, which may contain fewer than n dimensions
of xj . In the case of many independently faded OFDM sub-channels such as is assumed in
[5], one could always project the subspace spanned by the data onto the interference free
subspace without losing information, however for single path channels each data dimension
is either orthogonal or overlapping with an interference dimension.

The scenario in which the above decoder is well defined (i.e. data and interference
subspaces are orthogonal) is given by the following condition.

Lemma 6.2. If

l11 = d1 + nl mod M

l22 = d2 + nl mod M

l33 = d3 + nl mod M

then the interference subspace is orthogonal to the data subspace.

Thus if each of the direct delays takes on a single, specific value, the signal space will be
orthogonal to the interference space at each of the receivers and we will be able to decode
all data symbols.

Example 6.3. Suppose the link delays are l11 = 0, l22 = 5, l33 = 9, l12 = 5, l13 = 4, l21 = 4,
l23 = 6, l31 = 5, l32 = 4. Then d1 = 7, d2 = 4 and d3 = 1. Also l = 5−4+6−4+5−4 = 4.
Note that for illustrative purposes the direct delays have been precisely chosen such that
the data and interference subspaces are orthogonal. Choose the data block length M to be
the prime 13, and use a cyclic prefix of length 9. The total length of cyclic prefix plus
data block is 21. Then tx 1 will transmit its 0th data symbol, namely x1[0], in time slot
d1 mod M = 7 mod 13 = 7. It’s second data symbol x1[1] will be transmitted in time slot
l + d1 mod M = 4 + 7 mod 13 = 11. It’s third data symbol x1[2] will be transmitted in
time slot 2l + d1 mod M = 15 mod 13 = 2, etc.. These data symbols will arrive at rx 2
delayed by l21 = 4 time slots. Thus x1[0] will appear as interference at rx 2 during time slot
7 + 4 = 11, x1[1] will appear as interference during time slot 11 + 4 = 15, etc... Similarly
tx 1’s data symbols will arrive at rx 3 delayed by l31 = 5 time slots. Similarly one can do
the same computation for tx 2’s and tx 3’s data symbols.

The details are given in figure 10. In part (a) of the figure the cyclic prefix has been
omitted for illustrative purposes. It is incorporated into the picture in part (b). The red
shaded boxes contain data symbols, the grey shaded boxes contain interference symbols.
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x2(4) x2(3) x2(1) x2(5) x2(0) x2(2) 

x3(1) x3(0) x3(5) x3(4) x3(2) x3(3) 

x1(0) x1(5) x1(4) x1(3) x1(1) x1(2) 

x3(1) x3(0) x3(5) x3(4) x3(2) x3(3) 

x1(0) x1(5) x1(4) x1(3) x1(1) x1(2) 

RX 1 

RX 2 

RX 3 

time slot 

x2(4) x2(3) x2(1) x2(5) x2(0) x2(2) 

x3(1) x3(0) x3(5) x3(4) x3(2) x3(3) 

x1(0) x1(5) x1(4) x1(3) x1(1) x1(2) 

x2(4) x2(3) x2(1) x2(5) x2(0) x2(2) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

(a)

RX 1 

RX 2 

RX 3 

time slot 

x3(1) x3(0) x3(5) x3(4) x3(3) x3(1) x3(0) x3(5) x3(4) x3(2) x3(3) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

x3(1) x3(0) x3(5) x3(4) x3(2) x3(3) x3(5) x3(2) 

x1(0) x1(5) x1(4) x1(3) x1(1) x1(2) x1(4) x1(1) 

x2(4) x2(3) x2(1) x2(5) x2(0) x2(2) x2(1) x2(5) x2(2) 

x3(1) x3(0) x3(5) x3(4) x3(2) x3(3) x3(2) 

x2(4) x2(3) x2(1) x2(5) x2(0) x2(2) x2(1) x2(5) x2(2) 

x1(0) x1(5) x1(4) x1(3) x1(1) x1(2) 

x1(0) x1(5) x1(4) x1(3) x1(1) x1(2) x1(4) x1(1) 

x2(4) x2(3) x2(1) x2(5) x2(0) x2(2) x2(5) x2(2) 

 (b) 

Figure 10: Illustration of 3 user interference alignment scheme of [5] in the time domain.
See example 6.3 for a description. (a) Received sequences with the cyclic prefix omitted.
(b) Received sequences incorporating the cyclic prefix.
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Notice the interference alignment property manifests itself as an overlapping of interfering
data symbols. The shaded, but unlabeled boxes represent symbols belonging to the next
OFDM block. The black box outlines those time slots that are used for decoding. The 9
time slots prior to these are discarded when the cyclic prefix is removed. The 9 unboxed
time slots to the right of the black outline will also be discarded, but during the next OFDM
block.

6.1 K-user channels

In the previous section we demonstrated that for three-user LOS channels, the frequency
domain scheme of [5] has a simple analog in the time domain that works well when the
block length is chosen to be a prime number, and the direct delays take on particular
values. One would imagine that an analogous scheme for K > 3 users would therefore
also exist and work well. This is not the case. In fact for the LOS interference channel
with more than three users, the alignment scheme of [5] has various shortcomings which
result in it achieving zero degrees of freedom in total. Our construction (in section 5)
is inspired by the use of a generalized arithmetic progression in [5], but circumvents the
schemes shortcomings by:

1. Truncating the generalized arithmetic progression appropriately.

2. Interleaving many replicas of the progression, with random offsets.

3. Scaling the bandwidth with K.

For example, to understand why truncation is necessary, recall the precoding matrices
used in for the K-user channel in [5] are of the form

Vj = SjB

for j = 2, . . . , K, where the matrix B is composed of the column vectors in the set

B =











∏

i,j∈{2,3,...,K},i 6=j,(i,j)6=(2,3)

(H
−1

i1 HijSj)
αij



w : αij ∈ {0, 1, . . . , n− 1}







,

and Sj = H
−1

1j H13H
−1

23 H21. Observing equation (9), write the link matrices in the form

Hij = Zlij ,

where

Z ,















1
e−j2π·/M

e−j2π·2/M

. . .

e−j2π·(M−1)/M















.
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Then we have

B =
{

Z
P

i,j∈{2,3,...,K},i6=j,(i,j) 6=(2,3) αij l̃ijw : ∀αij ∈ {0, 1, . . . , n− 1}
}

.

where lij = −lij + lij − l1j + l13 − l23 + l21. For sufficiently large n we will be able to find
many pairs ({αij}, {α′

ij}) such that

∑

i,j∈{2,3,...,K},i 6=j,(i,j)6=(2,3)

αij l̃ij =
∑

i,j∈{2,3,...,K},i 6=j,(i,j)6=(2,3)

α′
ij l̃ij.

Thus the precoding matrices will loose rank as many of their columns will be repeats of
previous ones. This phenomenon of repeated elements is common in generalized arithmetic
progressions over integer fields. See for example [9]. How much rank will be lost? Observe
that the largest exponent of Z in B will be no greater than (n−1)((K−1)(K−2)−1)max lij .
But there are n(K−1)(K−2)−1 columns in B. Thus as n → ∞ the rank of B will scale only
like O(n) due to repeated columns, whilst the dimension of the space scales like roughly
O(n(K−1)(K−2)−1). Hence the total degrees of freedom goes to zero unless the progression
is truncated.

6.2 Bandwidth Scaling Revisited

The final issue we address in terms of reconciling time and frequency domain interpreta-
tions, is that of bandwidth scaling. We now demonstrate that bandwidth scaling is required
in the scheme of [5] when the physical channel model is brought into the picture.

Theorem 6.4. In a multipath fading channel with L taps, if the bandwidth satisfies

lim
K→∞

logW

log((K − 1)(K − 2)− 1)(K−1)(K−2)−3
= 0,

then the total degrees of freedom achieved by the K-user interference alignment scheme of
[5] goes to zero as K → ∞.

This means that the bandwidth must scale at least as fast as O(((K − 1)(K − 2) −
1)(K−1)(K−2)−3) which is roughly the same scaling that is required in theorem 3.1, namely
O(K2K2

).

Proof. For a general multipath channel with L taps, the link matrices are of the form

Hij =
L−1
∑

l=0

aij,lZ
l.

Using the commutativity of the diagonal Hij matrices we can write

Vj = Sj





∏

i,j∈{2,3,...,K},i 6=j,(i,j)6=(2,3)

Hi1H1jH23





−n

C,
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where the matrix C is composed of the column vectors in the set

C =

{





∏

i,j∈{2,3,...,K},i 6=j,(i,j)6=(2,3)

(Hi1H1jH23)
n−αij (HijH13H21)

αij



w :

αij ∈ {0, 1, . . . , n− 1}
}

.

In [5] the minimum scaling of n with K required is

lim
K→∞

log n

log(K − 1)(K − 2)− 1
> 0.

Each of the Hij matrices is a polynomial of degree at most L−1 in the matrix Z. Thus
each column of C is a polynomial of degree at most 6n(L− 1)((K − 1)(K − 2)− 1) in the
matrix Z. This means the maximum rank of C is 6n(L − 1)((K − 1)(K − 2)− 1) + 1, as
any c polynomials of degree ≤ d that are in general position, are linearly dependent for
c > d+1. The total number of rows in C however, is at least n(K−1)(K−2)−1. Thus the total
degrees of freedom is no more than

6n(L− 1)((K − 1)(K − 2)− 1)

n(K−1)(K−2)−1
.

which goes to zero as K → ∞, unless L (and hence W ) scales like

lim
K→∞

logL

log((K − 1)(K − 2)− 1)(K−1)(K−2)−3
> 0.

7 Discussion and Conclusion

We demonstrated in section 4.2 that if the bandwidth scales sub-linearly in K, then the
independence rate of the interference graph goes to zero as K → ∞, and in section 5,
that if the bandwidth scales like O((2K(K− 1))K(K−1)), then the independence rate scales
arbitrarily close to O(K). This brings us to an interesting open question. How does the
independence rate scale in the intermediate regime where O(K/ logK) < W < O((2K(K−
1))K(K−1))? What about the D-path channel?

There are several variations of the LOS interference channel for which the interference
graph techniques discussed in this work are applicable, and for which further study is
warranted. These were alluded to earlier. For instance, the partial connected interference
channel is a more accurate model of an extended wireless adhoc network. It is possible that
for such channels, a bandwidth scaling much less than O((2K(K − 1))K(K−1)) is sufficient
in order for the independence rate to scale arbitrarily close O(K). It is not clear how one
would approach the problem of showing this if it were true, or disproving it otherwise. An
interference channel with one dominant path per link and several sub-dominant ones, is also
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an interesting candidate for investigation. This D-path channel is commonly encountered
in practice. It is possible that an optimization problem similar to 3, but allowing for signal
and interference to overlap, can be formulated for this scenario. It would be interesting
to study whether time-domain based interference alignment can provide gains in this case.
Presumably, for fixed W , as the dominance of one physical path over the others diminishes,
so too will the performance improvement.

Lastly we discuss some interesting fringe benefits associated with the communication
schemes presented in this work. Whereas interference alignment in the frequency domain
requires coding over very long blocks, which results in substantial delay due to the necessity
of buffering data symbols at the encoder and received symbols at the decoder, no such delay
is required for the time-indexed interference graph techniques detailed above. Data symbols
are transmitted as soon as an appropriate time slot is reached, and detected when received.
The only delay incurred is that stemming from the use of an error correction code. In the
same respect, the encoding and decoding complexity are greatly reduced. Thus delay and
complexity issues are non-existent.

Subspace conditioning issues are also non-existent. Interference alignment in the fre-
quency domain, although performing well at very high-PSD, suffers at moderate PSD if
the data and interference subspaces are close to one another. Time domain interference
alignment techniques are free from this problem as the data and interferences subspaces
are orthogonal by design.
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9 Appendix

9.1 Proof of Theorem 4.5

First suppose l 6= 0. From the interference graph form l infinite chain graphs G ′
0, . . . ,G ′

l−1.
These graphs will be functions of K and {lij}i 6=j but for notational brevity we omit this
notation. The ith chain graph G ′

i has vertex and edges sets

V ′
i = {v′i(0), v′i(1), . . . }

E ′
i = {e′i(0), e′i(1), . . . }.

This is an undirected graph with edge e′i(j) joining vertices v′i(j) and v′i(j + 1). We now
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e'i(5) e'i(0) 

e'i(1) 

e'i(3) 
e'i(4) 

e'i(2) 

…

v'0(0) …

(c) chain graphs 

(a) interference graph 

v0(0)

v0(1)

v0(2)

& v0(6) 

v0(4)

& v1(1) 

v1(0), … , v1(7) 

v2(0), … , v2(7) 

v3(0), … , v3(7) 

(b) one cycle of interference 

v'0(1) v'0(2) v'0(3) v'0(4) v'0(5) v'0(6) v'0(7) v'0(8) v'0(9) 

v'1(0) v'1(1) v'1(2) v'1(3) v'1(4) v'1(5) v'1(6) v'1(7) v'1(8) v'1(9) 

Figure 11: (a) A segment of the interference graph. Each row of vertices corresponds to
the transmission opportunities for each of the users. The shaded vertices correspond to a
feasible transmit pattern achieving an independence rate of 3/2. A few of the vertices are
labeled with their equivalent vertices in the chain graphs. In this example the normalized
cross delays are l′21 = 0, l′31 = 1, l′12 = 2, l′32 = 0, l′13 = 1 and l′23 = −2. Thus l =
0 + 1 + 2 + 0 + 1 − 2 = 2 meaning that each cycle of interference moves two time slots
to the right as illustrated in (b), which shows a single cycle from the interference graph,
containing all six directed edges. (c) The corresponding chain graphs. As l = 2, there
are two chains. A pair of twin vertices connected by a dashed line in the chain graphs,
correspond to the same vertex in the original interference graph.

associate the chain graphs with the interference graph. Let

v′i(6k) = v3(kl + i)

v′i(6k + 1) = v1(kl + i+ l′31)

v′i(6k + 2) = v3(kl + i+ l′31 + l′13)

v′i(6k + 3) = v2(kl + i+ l′31 + l′13 + l′32)

v′i(6k + 4) = v1(kl + i+ l′31 + l′13 + l′32 + l′21)

v′i(6k + 5) = v2(kl + i+ l′31 + l′13 + l′32 + l′21 + l′12)

where the vk(t) are the vertices in the original interference graph. See figure 11 for an
illustration. Note that the mapping from the interference graph to the l chain graphs is
not one-one. In particular, each vertex in the interference graph is associated with a pair
of vertices in the set of chain graphs. Paired vertices are called twins as they correspond to
the same vertex from the original interference graph. We now think of a feasible transmit
pattern as a collection of vertices from the set of chain graphs. However, note that if a
feasible transmit pattern results in a particular vertex (from the set of chain graphs) being
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included in the independent set, its twin will also be included. Likewise if a feasible transmit
pattern results in a particular vertex being excluded, its twin will also be excluded. The
key to characterizing the set of channels for which an interference rate of 3/2 is achievable
lies in understanding which pairings are favorable, and which are not.

The pairings can be succinctly described by the following three equations

v′i(6k) = v′i−l3 mod l(6(k + ⌊l3/l⌋) + 2) (15)

v′i(6k + 1) = v′i−l1 mod l(6(k + ⌊l1/l⌋) + 4) (16)

v′i(6k + 3) = v′i−l2 mod l(6(k + ⌊l2/l⌋) + 5) (17)

for i = 0, . . . , l − 1 and k = 0, 1, . . . .
In order to achieve an independence rate of 3/2, half of all vertices must be included

in the transmit pattern. Denote the transmit pattern by T . Because in each chain, all
neighboring vertices are connected by an edge, this is only possible if in each chain, every
second node is included in the transmit pattern. For each chain there are two ways of doing
this, either v′i(2k) ∈ T for all k, or v′i(2k + 1) ∈ T for all k. Let ci denote the phase of the
ith chain. If the former condition holds, we say the chain is in phase and write ci = I. If
the latter holds we say the chain is out of phase and write ci = O. In the entire graph there
are only 2l combinations we need to examine, corresponding to all possible inphase/out of
phase assignments for the l chains. A feasible transmit pattern achieving independence rate
3/2 exists if and only if each chain admits an I or O assignment and the assignment of I’s
and O’s to the l chains does not violate conditions (15)-(17). Thus we wish to characterize
those channels for which such an I/O assignment can be found.

At this point we consider an example. Suppose l divides l1. We claim an independence
rate of 3/2 is not achievable. To see this argue by contradiction. Assume that c0 = I. As l
divides l1, we have l1mod l = 0 and condition (16) pairs vertex v0(1) with vertex v0(6k

′+4)
for some integer k′. But these vertices lie an odd distance apart on the same chain, so
working backwards we see that we must have c0 = O, a contraction. So suppose instead
that c0 = 0. Using the same logic as before we arrive at c0 = I, again a contradiction.
Thus the independence rate is less than 3/2.

From this example we see that condition (15) tells us if c0 = I then we must also
have c−l3 mod l = I, as vertices v′0(0) and v′−l3 mod l(6⌊l3/l⌋ + 2) are an even distance apart.
Continuing this logic we see that we must also have c−l1 mod l = O, and c−l2 mod l = I. We
can also conclude something else, as c−l1 mod l = O, we must have c−2l1 mod l = I by condition
(16). Continuing further, we must have c−2l1−l2 mod l = I by condition (17) and so on.

By this point it should be clear that conditions (15)-(17) are satisfied if and only if for
all integers k1, k2, k3,

c2k1l1+k2l2+k3l3 mod l 6= c(2k1+1)l1+k2l2+k3l3 mod l (18)

Let P(l) denote the group consisting of integers {0, . . . , l − 1} together with the addition
modulo l operation. Consider the set of chains c2k1l1+k2l2+k3l3 mod l for all integers k1, k2, k3.
This set forms a subgroup of P(l) with generator gcd(2l1, l2, l3). We denote this subgroup
by Pgcd(2l1,l2,l3)(l). It has gcd(2l1, l2, l3, l) − 1 cosets other than itself. The set of chains
c(2k1+1)l1+k2l2+k3l3 mod l for all integers k1, k2, k3, forms coset number l1 modgcd(2l1, l2, l3, l).
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But as
2l1mod gcd(2l1, l2, l3, l) = 0,

either l1mod gcd(2l1, l2, l3, l) equals gcd(l1, l2/2, l3/2, l/2), or 0. If it is zero, condition (18)
above is violated. This occurs if and only if l1 is a multiple of gcd(2l1, l2, l3, l). Alternatively
if it equals gcd(l1, l2/2, l3/2, l/2) then we can choose the phases of half the cosets, namely
cosets

0, 1, ..., gcd(l1, l2/2, l3/2, l/2)− 1

arbitrarily, and still satisfy (18). For this reason we refer to the chains

c0, c1, ..., cgcd(l1,l2/2,l3/2,l/2)−1

as seed chains. This means that there are 2gcd(l1,l2/2,l3/2,l/2) possible solutions that achieve
independence rate 3/2. So what does it mean for l1 to not be a multiple of gcd(2l1, l2, l3, l)?
It means that

gcd(l1, 2l1, l2, l3, l) 6= gcd(2l1, l2, l3, l).

In other words

gcd(l1, l2, l3, l) 6= gcd(2l1, l2, l3, l).

It is shown in lemma 9.1 that the above inequality is equivalent to having γ1 < γ2, γ1 < γ3
and γ1 < γ. This establishes theorem 4.5 for l 6= 0.

Now suppose l = 0. This proof is a slight modification of the previous. From the
interference graph from an infinite number of cycle graphs G ′

0,G ′
1, . . . . The ith cycle graph

G ′
i has vertex and edge sets

V ′
i = {v′i(0), v′i(1), v′i(2), v′i(3), v′i(4), v′i(5)}

E ′
i = {e′i(0), e′i(1), e′i(2), e′i(3), e′i(4), e′i(5)},

where edge e′i(j mod 6) joins vertices vi(j mod 6) and vi(j+1 mod 6), for j = 0, 1, 2, 3, 4, 5.
Notice that for l 6= 0 we created a finite number of chain graphs, each with an infinite num-
ber of vertices, whereas for l = 0 we create an infinite number of cycle graphs, each with a
finite number of vertices. We now associate the cycle graphs with the interference graph.
Let

v′i(0) = v3(i)

v′i(1) = v1(i+ l′31)

v′i(2) = v3(i+ l′31 + l′13)

v′i(3) = v2(i+ l′31 + l′13 + l′32)

v′i(4) = v1(i+ l′31 + l′13 + l′32 + l′21)

v′i(5) = v2(i+ l′31 + l′13 + l′32 + l′21 + l′12)

where vk(t) are the vertices in the original interference graph. As before, the mapping from
interference graph to the indefinite number of cycle graphs is not one-one. Each vertex in
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the interference graph is associated with a pair of vertices in the set of cycle graphs. The
pairings are described by the following three equations

v′i(0) = v′i−l3
(2)

v′i(1) = v′i−l1
(4)

v′i(3) = v′i−l2(5)

We want to assign each cycle graph i a phase, either ci = I or ci = O and we need to
find necessary and sufficient conditions for a feasible assignment. Similarly to equation 18,
the condition we are after is

c2k1l1+k2l2+k3l3 6= c(2k1+1)l1+k2l2+k3l3

for all integers k1, k2, k3. By this point it should be clear, based on the proof for the l 6= 0
case, that the above condition is equivalent to

gcd(l1, l2, l3) 6= gcd(2l1, l2, l3).

This inequality is equivalent to having γ1 < γ2 and γ1 < γ3. Thus we see that the conditions
for l = 0 case are the same as the l 6= 0 case if we set γ = ∞. This establishes the result
in general.

Lemma 9.1. gcd(l1, l2, l3, l) 6= gcd(2l1, l2, l3, l) if and only if γ1 < γ2, γ1 < γ3 and γ1 < γ.

Proof. Suppose

gcd(l1, l2, l3, l) 6= gcd(2l1, l2, l3, l)

⇒ gcd(2γ1β1, 2
γ2β2, 2

γ3β3, 2
γβ) 6= gcd(2γ1+1β1, 2

γ2β2, 2
γ3β3, 2

γβ)

⇒ gcd(2γ1 , 2γ2 , 2γ3, 2γ) gcd(β1, β2, β3, β) 6= gcd(2γ1+1, 2γ2 , 2γ3 , 2γ) gcd(β1, β2, β3, β)

⇒ min(γ1, γ2, γ3, γ) 6= min(γ1 + 1, γ2, γ3, γ).

This can only hold if γ1 < γ2, γ1 < γ3 and γ1 < γ. The proof in the opposite direction is
identical.
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