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Abstract

This paper focuses on studying the fundamental performance limits and linear
dispersion code design for the MIMO-ARQ slow fading channel. Optimal average rate
of well-known HARQ protocols is analyzed. The optimal design of space-time coding
for the MIMO-ARQ channel is discussed. Information-theoretic measures are used
to optimize the rate assignment and derive the optimum design criterion, which is
then used to evaluate the optimality of existing space-time codes. A different design
criterion, which is obtained from the error probability analysis of space-time coded
MIMO-HARQ, is presented. Examples are studied to reveal the gain of ARQ feedback
in space-time coded MIMO systems.

Index Terms: Space-time code, Hybrid ARQ, Multiple-antenna channels, Linear Dispersion
Code.

1 Introduction

Hybrid ARQ (HARQ) techniques combine the automatic-repeat-request (ARQ) feedback
with the forward error correction (FEC) codes to achieve better reliability and higher

∗The material in this paper was presented in part at the 42nd Annual Asilomar Conference on Signals,
Systems, and Computers, Pacific Grove, CA, USA, Oct. 2008.

†Cong Shen is with the Department of Electrical Engineering, University of California Los Angeles
(UCLA), Los Angeles, CA 90095, USA. Email: congshen@ee.ucla.edu. Michael P. Fitz was with the De-
partment of Electrical Engineering, University of California Los Angeles (UCLA), Los Angeles, CA 90095,
USA. He is now with Northrop Grumman Space Technology, Redondo Beach, CA 90278, USA. Email:
Michael.Fitz@ngc.com.

1

http://arxiv.org/abs/0905.4091v1


throughput [1]. They are widely used in most of the contemporary communication sys-
tems, as the delay tolerance of many data services allows using retransmission to recover
erroneous packets. A good summary of the progress of HARQ schemes is presented in [2].
From an information-theoretic perspective, HARQ systems can be viewed as channel with
sequential feedback, and there has been some research on the fundamental limits of this chan-
nel. An information-theoretic throughput and delay analysis of several HARQ schemes in
a Gaussian collision channel is presented in [3]. Throughput analysis of incremental redun-
dancy HARQ in the block-fading additive white Gaussian noise (AWGN) channel is carried
out in [4]. Optimal average rate performance of a scalar slow fading channel with ARQ
feedback is done in [5, 6].

Most of the aforementioned research is restricted to scalar channels. A natural question
is how to incorporate the design of HARQ into multiple-input-multiple-output (MIMO)
systems, and it has sparked many research activities. Most existing literature regarding
MIMO-HARQ design falls into the following two categories. One is the information-theoretic
analysis, for which the focus is on extending the Diversity-Multiplexing Tradeoff (DMT)
framework [7] to consider ARQ feedback [8–10]. The other is the joint design of MIMO
transmission and ARQ feedback. Receiver processing of ARQ retransmissions is studied
in [11,12]. It has been shown that multiple ARQ packets combining is non-trivial in a MIMO
setting, especially when soft-output is desired [13]. For the transmitter design, two different
approaches have been taken to exploit the additional spatial degrees of freedom. One is to
study the bits/symbols rearrangement for retransmissions to exploit diversity [14–17], and
the other is to explore linear precoder design [18, 19].

Despite the many efforts in studying MIMO-HARQ design, there are still some important
problems left unanswered. From the perspective of information-theoretic analysis, the DMT-
based approach focuses only on the high Signal-to-Noise Ratio (SNR) asymptotics and gives
the tradeoff between multiplexing gain (pre-log), diversity gain (error exponent) and ARQ
delay. It also requires a family of space-time codes (STC) whose rates scale with the SNR.
In practice, however, one is also interested in designing a fixed-rate STC that operates well
within a range of finite SNRs. It is unclear what is the optimal MIMO-HARQ throughput
in this scenario, and how to design the optimal STC to achieve it. For the practical HARQ
retransmission protocol design, the aforementioned works provide separate and ad hoc de-
signs. There is no general framework that unifies the existing results and guides the optimal
design.

This paper is devoted to solving these problems. We begin by introducing the system
model in Sec. 2. The performance limits of existing HARQ protocols in a MIMO setting
are investigated in Sec. 3. Sec. 4 studies the fundamental average rate limit of STC-based
MIMO-HARQ protocols, and gives the optimal STC design criterion. Many existing STCs
are re-visited under this framework, both analytically and numerically. A different approach
based on the error probability analysis is given in Sec. 5, where the so-called n-th pairwise
error probability plays a key role in the analysis. Optimal STC design criterion based on
the error probability analysis is proposed and exemplary STCs are studied. Finally, Sec. 6
concludes the paper.
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Throughout the paper the following notations will be used. Matrices and vectors are denoted
with bold capital and lowercase letters, respectively. A(i, j) is the (i, j)-th element of the
matrix A, and a(i) is the i-th element of the vector a. E[·] denotes the expectation of a
random variable. a∗ denotes the conjugate of the complex number a, Re {a} is the real part
of a, and at is the transpose of vector a. We use Tr (A) and ||A||F to denote the trace
and Frobenius norm of matrix A, respectively. AH and conj (A) are the Hermitian and the
conjugate of the complex matrix A, respectively. The Kronecker product operation of two
matrices is denoted by ⊗, and vec (·) is the vectorization operation. Finally, |W| denotes
the cardinality of the set W.

2 System model

In this section, the MIMO channel model with ARQ feedback is described, and existing
HARQ protocols that will be analyzed in Sec. 3 are introduced.

2.1 MIMO channel with ARQ feedback

This paper studies a single-user multiple-antenna wireless system equipped with Lt transmit
and Lr receive antennas. It is assumed that there is an error-free and delay-free ARQ
feedback link, which indicates to the transmitter the successful decoding by acknowledgement
(ACK) and failed decoding by negative acknowledgement (NACK). The maximum number
of ARQ transmissions is denoted by N , which is also called the maximum allowable ARQ
rounds in the literature. With this constraint, if after a total of N transmissions the receiver
still cannot decode the message successfully, no further attempt will be tried and a decoding
failure is declared.

It is assumed there is a very large pool of information messages available at the trans-
mitter. As soon as the transmission of current message (including possible retransmis-
sions) is done, the next message is encoded and transmitted immediately. Consider a set
of uniformly distributed messages W. For the transmission of each message, the infor-
mation message w ∈ W is sent to a MIMO-HARQ encoder, which generates N matrix
sub-codewords {Xn(w)}Nn=1, each corresponds to one ARQ round. Sub-codeword Xn(w) will
be transmitted in the n-th ARQ round if the decoding fails at the (n− 1)-th round. Denote
X(n)(w)

.
= [X1(w), · · · ,Xn(w)], ∀n = 1, · · · , N , which is the overall codeword after the n-th

ARQ round. The receiver performs optimum decoding based on all the received packets in
ARQ round 1, · · · , n. Each sub-codeword satisfies Xn(w) ∈ CLt×Ln/rn , where Ln/rn denotes
the length of the sub-codeword, rn is determined by the “coding rate” of the space-time
structure as rn

.
= Kn

Tn
where Kn and Tn are the number of symbols and the time slots per

space-time codeword, respectively, and Ln is the capacity-achieving channel code length.
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With this model, the overall transmission rate in the n-th ARQ round is

R(n) =
log2 |W|
∑n

i=1 Li/ri
, ∀n = 1, · · · , N. (1)

The MIMO channel H ∈ CLr×Lt is assumed to be a random matrix with independent and
identically distributed (i.i.d.) complex circularly symmetric Gaussian entries with unit vari-
ance. The channel matrix H is assumed to be constant within the channel coherence time
(Tc symbols), and changes independently to a different value in the next coherence block.
Depending on the relationship between Tc and {Ln/rn}Nn=1, different MIMO-HARQ mod-
els have been studied in the literature [8, 10]. In this work, a slow fading MIMO channel
model is considered, where Tc ≫ ∑N

n=1 Ln/rn. This means the MIMO channel remains
unchanged throughout all possible retransmissions. This models the worst-case scenario
compared to [8, 10], as there is no time diversity to exploit by retransmissions.

With the described model, the received signal corresponding to the n-th transmission can
be written as

Yn =

√

SNR

Lt
HXn + Zn (2)

and the overall received signal after the n-th ARQ round is

Y(n) =

√

SNR

Lt
HX(n) + Z(n), (3)

where Y(n) .
= [Y1, · · · ,Yn] and X(n), Z(n) are similarly defined; the additive noise Z(n) has

i.i.d. entries Z(n)(i, j) ∼ CN (0, 1). The overall transmit codewords X(N)(w) are normalized
to satisfy the average power constraint1

1
∑N

n=1 Ln/rn
E||X(N)(w)||2F ≤ Lt (4)

where the expectation is over all possible codewords. Therefore, the average SNR per receive
antenna is SNR. The receiver is assumed to have perfect knowledge ofH. This is a reasonable
assumption since the slowly varying nature of the channel helps receiver channel estimation.
The transmitter is assumed to have no knowledge of H prior to the transmission, but it
should be noted that ARQ retransmissions essentially inform partial CSI to the transmitter
in a sequential fashion [6]. Fig. 1 illustrates the system model under consideration.

2.2 Hybrid ARQ strategies

HARQ incorporates FEC coding into ARQ feedback to enhance the retransmission perfor-
mance. Depending on transmitter’s retransmission strategy and receiver’s decoding from

1The transmit power constraint will be discussed in more detail when the optimal LDC design for MIMO-
HARQ is presented in Sec. 4.
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Figure 1: The MIMO-HARQ system model.

multiple packets, several efficient protocols have been proposed and studied. In this work,
two traditional stop-and-wait HARQ protocols are considered:

1) Incremental Redundancy (IR). This is a code combining scheme [20]. At the trans-
mitter, information message is encoded into an overall codeword of length

∑N
n=1 Ln,

and then the codeword is serially punctured into N sub-codewords each with length Ln.
These sub-codewords are mapped into the transmit matrix codewords [X1, · · · ,XN ].
At the n-th transmission, Xn is sent through the channel as additional (when n > 1)
redundancy symbols to reduce the transmission rate. The receiver tries to decode the
message based on all the packets it receives up until round n.

2) Chase Combining (CC). This belongs to the category of diversity combining [20].
Upon each retransmission request, the transmitter simply repeats the same packet:
Xn = X1, ∀n = 2, · · · , N . Different diversity combining schemes can be used at the
receiver, among which the Chase combining [21], which essentially is a maximum ratio
combining of all the received packets in the scalar channel, gives the best performance.

These well-known HARQ protocols will be analyzed in a MIMO setting and the optimal
performance is reported in Section 3.

Traditional HARQ protocols are designed to extract time diversity in a scalar fading channel.
The performance depends critically on the channel variation over retransmissions. The
slow fading channel model considered in this work allows no time diversity for the HARQ
protocols to exploit, and hence packet-combining-based schemes have limited performance
[6]. Multiple antenna system provides additional dimensions for spatial diversity, which is
not effectively exploited by traditional protocols. On the other hand, although provides
the best performance, IR has higher complexity due to the generation of rate-compatible
channel codes or the rateless codes. Both problems call for the design of HARQ protocols
that jointly consider the space-time structure to exploit spatial diversity and low-complexity
ARQ retransmissions. This is the focus of Section 4 and 5.

The figure of merit in this paper is the long-term throughput, and an information-theoretic
view is taken for the MIMO-HARQ design problem. The throughput of a HARQ protocol is
defined [20] as the average number of bits accepted by the receiver in the time it takes to send

5



the data packet. As discussed in [6], how to compute the throughput depends on the specific
applications and the assumptions on how to use the channel. Typical derivation involves
the evaluation of average transmission time. Renewal theory has been successfully applied
to this problem [3, 22]. However, this formulation leads to the problem that the empirical
channel distribution does not match the true channel statistics, and the reason is that the
length of channel uses is determined by the instantaneous channel state. This problem
has been discussed in [6, 23], and it has been shown [6] that for some applications, average
rate [24–26] gives the long-term successful communication rate and is a more reasonable
metric. The average rate is chosen as the performance measure in this work.

3 Performance limits of existing HARQ protocols

This section studies the optimal average rate performance where the existing HARQ proto-
cols are directly applied in a vector channel. We will first derive the average rate for general
HARQ systems, and then apply the result to IR and CC. The general average rate expression
is a fundamental result and will also be useful in developing optimal space-time HARQ in
Section 4.

Before analyzing the average rate, some important events are defined and the associated
probabilities are studied. Due to the randomness of the channel matrix H and the limit N
on the ARQ deadline, the successful communication rate R is a random variable. Define two
events for ARQ round n, ∀n = 1, · · · , N :

An = Decoding at the end of ARQ round n is successful; (5)

Sn = ARQ round n is activated. (6)

There are two important observations about these events, both originated from an informa-
tion theoretic viewpoint2. First, a decoding failure is equivalent to a channel outage, i.e., the
instantaneous channel capacity cannot support the current transmission rate. This is be-
cause long-blocklength capacity-achieving channel coding “averages out” the additive noise.
Thus one has

Pr {An} = Pr
{

C(n)
(

H(n)
eq

)

≥ R(n)
}

. (7)

where C(n)(H
(n)
eq ) is the equivalent channel capacity at ARQ round n; R(n) is the overall

communication rate at round n, which is given in Equation (1). The second observation is
that additional transmissions can only increase the successful decoding probability, via either
increasing C(n)(H

(n)
eq ) or reducing R(n), or both. This observation suggests

An−1 ⊆ An, (8)

and hence

Pr {Sn} = Pr
{

A1, · · · ,An−1

}

= Pr
{

An−1

}

. (9)

2As one will see in Sec. 5, finite coding length leads to some different conclusions for the HARQ design.
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These observations play an important role in analyzing the information-theoretic perfor-
mance limits of MIMO-HARQ.

With the definitions (5) and (6), the successful communication rate R can be expressed as

R =

{

R(n), if {Sn,An}, ∀n = 1, · · · , N
0, if AN

(10)

=

{

R(n), if
{

An−1,An

}

, ∀n = 1, · · · , N
0, if AN

(11)

where the second equality comes from (9), and the convention Pr {A0} = 0 is used. The
average rate is then

R̄ =

N
∑

n=1

R(n)Pr
{

An−1,An

}

(12)

=
N
∑

n=1

R(n)Pr
{

C(n−1)
(

H(n−1)
eq

)

< R(n−1), C(n)
(

H(n)
eq

)

≥ R(n)
}

, (13)

where we define R(0) = ∞ (since the denominator in (1) is zero) and C(0) (Heq) = 0. A
different expression can be obtained if one notices that

Pr
{

An−1,An

}

= Pr {An} − Pr {An−1} , (14)

which is true since An−1 ⊆ An. The average rate expression (12) then can be written as

R̄ =

N
∑

n=1

R(n) (Pr {An} − Pr {An−1})

=
N
∑

n=1

(

R(n) − R(n+1)
)

Pr {An} (15)

=

N
∑

n=1

(

R(n) − R(n+1)
)

Pr
{

C(n)
(

H(n)
eq

)

≥ R(n)
}

, (16)

where we define R(N+1) = 0 (since the retransmission stops after the n-th round). It should
be noted that the term R(n)−R(n+1) denotes the rate decrease in the (n+1)-th transmission.

The equivalent channel capacity C(n)(H
(n)
eq ) at ARQ round n is determined not only by the

instantaneous channel matrix H, but also by the specific HARQ protocol and the transmit
covariance matrices {Ki}ni=1, where Ki is the transmit covariance matrix at ARQ round i
and could be different over retransmissions. As one shall see in the sequel, these degrees of
freedom shall be carefully exploited in the MIMO-HARQ protocol design.

With the general average rate expressions (13) and (16), we proceed to study IR and CC,
respectively.
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3.1 Incremental Redundancy

The average rate for general IR can be obtained directly from (16):

R̄ir =

N
∑

n=1

(

R(n) −R(n+1)
)

Pr
{

C
(n)
ir

(

H
(n)
eq, ir

)

≥ R(n)
}

, (17)

and the remaining problem is to analyze the capacity of IR after each ARQ round. The
capacity for a given MIMO channel H and total transmit covariance matrix K is known to
be [27]

Cmimo (H,K) = log det
(

ILr
+HKHH

)

(18)

where K has to satisfy the power constraint3

Tr (K) ≤ SNR. (19)

Assuming transmit covariance matrix Kn is used in ARQ round n, the overall IR capacity
where different portions have different covariance matrices is a TDMA-type one:

C
(n)
ir

(

H
(n)
eq, ir

)

=

∑n
i=1Cmimo (H,Ki)Li/ri

∑n
i=1 Li/ri

=

n
∑

i=1

(

R(n)

R(i)
− R(n)

R(i−1)

)

Cmimo (H,Ki) . (20)

where (20) is obtained from (1).

The general IR average rate maximization problem can now be formulated as

maximize
{Kn,Rn}

N
n=1

∑N
n=1

(

R(n) −R(n+1)
)

Pr
{

∑n
i=1

(

R(n)

R(i) − R(n)

R(i−1)

)

Cmimo (H,Ki) ≥ R(n)
}

subject to R(N) ≥ 0
R(n) ≤ R(n−1), ∀n = 1, · · · , N
Tr (Kn) ≤ SNR, ∀n = 1, · · · , N

(21)

Solving this problem is extremely difficult, which comes mainly from the search of optimal
covariance matrices {Kn}Nn=1. Evaluating the objective function in Problem (21) requires the
distribution of MIMO capacity Cmimo (H,K) as a function of the covariance matrix K, which
is an unsolved problem. In fact, even the simpler problem of finding the optimal covariance
matrix that minimizes the outage probability is still open.

To make progress, this paper will focus on the isotropic Gaussian input distribution over all
transmit antennas:

Kn = K =
SNR

Lt
ILt

. (22)

3The constraint (19) assumes that each ARQ round consumes the same average power. One can also
dynamically allocate power among ARQ rounds, which leads to a different power constraint and average
rate expression. The case for scalar fading channel has been addressed in [6].
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This is by no means the optimal solution but very easy to deal with and widely assumed in
literature. With (22) the IR capacity is the mutual information of a MIMO channel with
isotropic Gaussian input distribution:

C
(n)
ir

(

H
(n)
eq, ir

)

= Cmimo

(

H,
SNR

Lt
ILt

)

= log det

(

ILr
+

SNR

Lt

HHH

)

, (23)

and the IR average rate maximization problem becomes

maximize
{Rn}

N
n=1

∑N
n=1

(

R(n) −R(n+1)
)

Pr
{

Cmimo

(

H, SNR
Lt

ILt

)

≥ R(n)
}

subject to R(N) ≥ 0
R(n) ≤ R(n−1), ∀n = 1, · · · , N.

(24)

For the remaining of this paper, the isotropic Gaussian input distribution is assumed unless
the covariance matrix is explicitly specified.

3.2 Chase Combining

In CC, each retransmission effectively increases the number of receive antennas by Lr via the
repetition of previous packet. Thus after ARQ round n, the equivalent system is a (Lt, nLr)
MIMO with an equivalent channel matrix

H(n)
eq, cc = 1n ⊗H, (25)

and

C(n)
cc

(

H(n)
eq, cc

)

=
1

n
Cmimo

(

H(n)
eq, cc,K

)

. (26)

Meanwhile, since each retransmission is a simple packet repetition, the effective rate after
ARQ round n is

R(n) =
R

n
, (27)

where R is the rate in ARQ round 1. Hence, the general CC average rate maximization
problem is formulated as

maximize
K,R

∑N
n=1

R
n
Pr
{

Cmimo

(

H
(n−1)
eq, cc ,K

)

< R,Cmimo

(

H
(n)
eq, cc,K

)

≥ R
}

subject to R ≥ 0
Tr (K) ≤ SNR.

(28)

Note that due to the simple packet repetition in retransmissions, only one covariance ma-
trix K and one rate parameter R need to be optimized. If the isotropic Gaussian input
distribution is assumed, the problem becomes (R ≥ 0 can be dropped):

maximize
R

N
∑

n=1

R

n
Pr

{

Cmimo

(

H(n−1)
eq, cc ,

SNR

Lt

ILt

)

< R,Cmimo

(

H(n)
eq, cc,

SNR

Lt

ILt

)

≥ R

}

. (29)
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Further simplification is possible if one notices that

(H(n)
eq, cc)(H

(n)
eq, cc)

H = (1n ⊗H)(1T
n ⊗HH)

= 1n1
T
n ⊗HHH, (30)

and

Cmimo

(

H(n)
eq, cc,

SNR

Lt
ILt

)

= log det

(

InLr
+

SNR

Lt
1n1

T
n ⊗HHH

)

. (31)

3.3 Examples

To evaluate the performance of IR and CC, several exemplary MIMO configurations are
considered and the corresponding optimal average rate performance (24) (29) is compared
in this section.

We start with the case of Lr = 1 (MISO)4, which is easy to analyze as the received signal
expands only one spatial dimension, and hence the capacity distribution would be easy to
obtain. For a (Lt, 1) MISO system, the capacity (23) becomes

Cmimo

(

hT ,
SNR

Lt

ILt

)

= log

(

1 +
SNR

Lt

Lt
∑

i=1

|hi|2
)

. (32)

Define

gLt

.
=

Lt
∑

i=1

|hi|2, (33)

the distribution of Cmimo

(

hT , SNR
Lt

ILt

)

is then completely characterized by the random vari-

able gLt
. If the attention is restricted to a Gaussian channel with hi ∼ CN (0, 1), then gLt

follows a Chi-square distribution with 2Lt degrees of freedom and it has a PDF

f(g) =
1

Γ (Lt)
gLt−1e−g, g ≥ 0, (34)

where Γ (Lt) =
∫∞

0
tLt−1e−tdt is the Gamma function. The CDF of gLt

, FG(g)
.
= Pr {gLt

≤ g} =
∫∞

0
f(t)dt, can also be calculated and a closed-form expression is given in [28]. The CDF of

the MISO capacity then reduces to

Pr

{

Cmimo

(

hT ,
SNR

Lt
ILt

)

≤ R

}

= Pr

{

gLt
≤ (2R − 1)Lt

SNR

}

= FG

(

(2R − 1)Lt

SNR

)

. (35)

The equivalent IR channel capacity is given in (32), and the average rate with isotropic
Gaussian input distribution for IR can now be re-written as

R̄ir =
N
∑

n=1

(

R(n) − R(n+1)
)

(

1− FG

(

(2R − 1)Lt

SNR

))

. (36)

4The case of SIMO (Lt = 1) can be similarly analyzed.
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Figure 2: The optimal average rate performance of IR and CC in a (Lt = 2, Lr = 1) MISO
Gaussian channel with different N .

As for CC, the interesting observation is that the impact of each retransmission on the overall
capacity is only to increase the receive SNR to SNRn = nSNR. Thus,

C(n)
cc

(

H(n)
eq, cc

)

=
1

n
log

(

1 +
nSNR

Lt
gLt

)

, (37)

and the average rate becomes

R̄cc =

N
∑

n=1

R

n

(

FG

(

(2R − 1)Lt

(n− 1)SNR

)

− FG

(

(2R − 1)Lt

nSNR

))

. (38)

Unfortunately, such analytically tractable expressions are unavailable for the general MIMO
channel, and we have resorted to numerical methods to solve the optimization problems.
Fig. 2 and Fig. 3 give the numerical results of Problems (24) (29) for (Lt = 2, Lr = 1) MISO
and (Lt = 2, Lr = 2) MIMO systems, respectively. The ergodic capacity and the optimal
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Figure 3: The optimal average rate performance of IR and CC in a (Lt = 2, Lr = 2) MIMO
Gaussian channel.

average rate of the no-feedback scheme are natural upper and lower bounds of the ARQ
schemes [6], respectively, and they are plotted for reference. As one can see from the figures,
IR performs better than the CC and no-feedback scheme and is close to the ergodic capacity.
Moreover, the optimal average rate continues to increase as more ARQ rounds are allowed.
In fact, the average rate of IR can be proved to asymptotically achieve the ergodic capacity,
regardless of the fading distribution [6, Lemma 2]. On the other hand, the performance of
CC is very limited, and increasing the maximum allowable ARQ rounds N brings almost
negligible gain to the optimal average rate.
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4 Optimal LDC design: a mutual information analysis

The previous section discusses the traditional IR and CC protocols and evaluates their per-
formance. The IR protocol has excellent average rate thanks to two properties that allow
full utilization of the ARQ retransmission. The first is the flexibility in rate assignment
{Rn}Nn=1, which can be accomplished by either the rate-compatible channel code via punc-
turing [4,29–34] or the recently developed rateless code [35–37]. On the other hand, the CC
protocol has only one rate parameter R to optimize, and each retransmission can reduce the
rate by only an integer fraction. However, one should note that the advantage of IR rate
assignment comes at the cost of complicated packetization: each transmission could have
very different packet length, which is undesirable in practice. From this perspective, CC is
preferred as each retransmission is a simple repetition of the previous packet. The second
property is that each transmission in IR is capacity-achieving, provided that the channel
coding and space-time transmission are carefully designed. For CC, however, it is clear from
(26) that such capacity optimality is not valid in general, due to the repetition nature of this
protocol. This also contributes to its poor performance.

This section introduces the MIMO-HARQ design based on STC, which combines the advan-
tages of both IR and CC. The STC-based protocol has the IR capacity-achieving property
for each retransmission, while still enjoys the repetition nature of CC. Information-theoretic
tools will be used in this section for the STC design of MIMO-HARQ. In Section 5, this
design problem will be revisited from the decoding error probability perspective.

The idea can be best understood from the following simple example. Consider Lt = 2, Lr = 1
and N = 2. For such configuration, the celebrated Alamouti code gives

X =

[

s1 −s∗2
s2 s∗1

]

= [x1,x2] . (39)

The traditional use of Alamouti code would transmit X in two channel uses. With ARQ
feedback, however, one can separately transmit the first and second column. To be more
specific, x1 is sent first. The receiver gets y1 = h1s1+h2s2+z1 and jointly decodes (s1, s2) in
a maximum-likelihood (ML) manner. In case the first decoding attempt fails, a NACK will
be sent back to the transmitter asking for the transmission of the second column x2. With
both columns transmitted, the receiver can perform the usual Alamouti decoding to recover
s1 and s2 in the second decoding attempt.

The idea behind this scheme is that if the channel matrix is “nice”, it may be unnecessary
to send a full-diversity ST codeword5. The first transmission, which only sends x1, is an
aggressive attempt to exploit the channel. If the random channel is not good enough, we step
back to the Alamouti scheme, with the help of ARQ feedback. It should be mentioned that
HARQ schemes jointly considering STC and packet retransmission has been studied in the
literature, e.g., [15,17], but none of the designs are from an information-theoretic perspective

5This is further discussed at the end of Sec. 5.
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and hence do not give the best performance one can hope from STC-based HARQ. On the
other hand, the information-theoretic studies of such schemes [8, 10] are mostly focused on
the high SNR diversity-multiplexing-delay tradeoff and do not study the optimal STC design
for a finite SNR.

4.1 General framework

The Linear Dispersion Code (LDC), proposed by Hassibi and Hochwald [38], is a general
STC design that incorporates most of the known STBCs as special cases. This tool is used
and a LDC framework is formulated to study the performance of STCs for the MIMO-HARQ
design. Consider a (Lt, Lr) MIMO system. For each LDC codeword K modulated complex
symbols are transmitted, and T is used to denote the maximum number of time intervals
of the LDC codeword for all ARQ rounds, i.e., T =

∑N
n=1 Tn. A LDC codeword can be

expressed as a linear combination of the symbols6

X =

K
∑

k=1

αkAk + jβkBk

=
K
∑

k=1

skCk + s∗kDk, (40)

where sk = αk + jβk are the modulated symbols, and Ak,Bk,Ck,Dk ∈ CLt×T are the LDC
spreading matrices with

Ak = Ck +Dk,

Bk = Ck −Dk. (41)

For the HARQ transmission with a maximum N rounds, the overall LDC codeword X shall
be divided into N sub-codewords

X = [X1,X2, · · · ,XN ] , (42)

where Xn ∈ CLt×Tn is for transmission at ARQ round n. The LDC spreading matrices can
be similarly divided

Ak = [Ak,1,Ak,2, · · · ,Ak,N ] ,

Bk = [Bk,1,Bk,2, · · · ,Bk,N ] , (43)

or

Ck = [Ck,1,Ck,2, · · · ,Ck,N ] ,

Ck = [Dk,1,Dk,2, · · · ,Dk,N ] , (44)

6As our focus is to study the mutual information of the LDC structure with HARQ, the effect of channel
coding length Ln is irrelevant and is ignored in the discussion.
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where Ak,n,Bk,n,Ck,n,Dk,n ∈ CLt×Tn . Defining

T (n) =

n
∑

i=1

Ti, (45)

A
(n)
k = [Ak,1,Ak,2, · · · ,Ak,n] ,

B
(n)
k = [Bk,1,Bk,2, · · · ,Bk,n] ,

C
(n)
k = [Ck,1,Ck,2, · · · ,Ck,n] ,

D
(n)
k = [Dk,1,Dk,2, · · · ,Dk,n] , (46)

the accumulated receive signal after the n-th transmission can be written as

Y(n) =

√

SNR

Lt
HX(n) + Z(n), (47)

with

X(n) = [X1,X2, · · · ,Xn]

=

K
∑

k=1

αkA
(n)
k + jβkB

(n)
k (48)

=
K
∑

k=1

skC
(n)
k + s∗kD

(n)
k . (49)

The capacity of the signal model (47) is denoted as C
(n)
ld (H), which is determined by the LD

structure (48) or (49). Meanwhile, notice that the effective rate for ARQ round n is

R(n) =
R

T (n)
, (50)

where R is the channel coding rate, which is a design parameter. Now directly applying the
general result (16), the average rate of LDC-based MIMO-HARQ can be expressed as

R̄ld =

N
∑

n=1

(

R(n) − R(n+1)
)

Pr
{

C
(n)
ld (H) ≥ R(n)

}

=
N
∑

n=1

RTn+1

T (n)T (n+1)
Pr

{

C
(n)
ld (H) ≥ R

T (n)

}

(51)

where we use the convention T (N+1) .
= ∞ such that R(N+1) = 0, and TN+1/T

(N+1) = 1.

The general problem of average rate maximization for LDC-based MIMO-HARQ can be
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formally casted as

maximize
R,{An,Bn,Tn}

N
n=1

∑N
n=1

RTn+1

T (n)T (n+1)Pr
{

C
(n)
ld (H) ≥ R

T (n)

}

subject to R ≥ 0
Tn is a positive integer
∑N

n=1 Tn = T

Tr
(

∑K
k=1

(

Ak,nA
H
k,n +Bk,nB

H
k,n

)

)

= 2LtTn, ∀n = 1, · · · , N.

(52)

Notice that C
(n)
ld (H) implicitly relies on {Ai,Bi, Ti}ni=1. The power constraint in Problem

(52) will be discussed in more detail in Section 4.4.

4.2 Design criterion

Directly solving Problem (52), either analytically or numerically, is difficult, but there are
some key properties that will help guide the optimal LDC design. The first observation is
that the average rate is monotonic with the LDC capacity, and an achievable upper bound
is the capacity of the MIMO channel. This leads to the following design criterion for the
LDC design of MIMO-HARQ.

Criterion 1 (Capacity-based LDC design criterion) The LDC should satisfy

C
(n)
ld (H) = Cmimo

(

H,
SNR

Lt
ILt

)

(53)

for any ARQ round n = 1, · · · , N .

Notice that the intuition behind this criterion is that each LDC transmission should create
an equivalent MIMO channel that is capacity lossless. Under the constraint of isotropic
Gaussian distribution, this criterion gives the largest capacity for each transmission, which
then minimizes the probability of decoding failure for any given R and {Tn}Nn=1.

With Criterion 1, the original Problem (52) is greatly simplified, as the dependence on
{An,Bn}Nn=1 disappears. The problem becomes how to find the optimal R and {Tn}Nn=1

that maximizes the average rate. In most of the remaining work a special case of Tn = 1,
∀n = 1, · · · , N is considered. There are two reasons to focus on this special situation.

1) Optimizing over all possible combinations of {Tn}Nn=1 is complex even for moderate N .
This requires solving a single-variable optimization problem for each possible combina-
tion of {Tn}Nn=1 satisfying

∑N
n=1 Tn = T and Tn being a positive integer. The optimal

solution may change with respect to the operating SNR or the channel distribution.
In practice {Tn}Nn=1 may be pre-determined with the choice of LDC, which leaves only
one variable R to optimize over.
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2) Choosing Tn = 1 ensures that each ARQ round is of minimum delay, which is an
important advantage. Meanwhile, this minimum delay may also result in the best
throughput, as it is empirically observed as a good balance between Tn+1

T (n)T (n+1) and

Pr
{

C
(n)
ld (H) ≥ R

T (n)

}

. Intuitively, large Tn will result in a marginal gain in the decoding

successful probability, but a significant decrease of the multiplicative coefficient.

To summarize, we give the following corollary.

Corollary 1 Assume isotropic Gaussian input distribution over all available transmit an-
tennas. For a given set of {Tn}Nn=1, the optimal average rate of a LDC-based MIMO-HARQ
protocol is

R̄∗
ld = max

R

N
∑

n=1

RTn+1

T (n)T (n+1)
Pr

{

Cmimo

(

H,
SNR

Lt

ILt

)

≥ R

T (n)

}

. (54)

In the special case of Tn = 1, ∀n = 1, · · · , N , the optimal average rate becomes

R̄∗
ld = max

R

N−1
∑

n=1

R

n(n+ 1)
Pr

{

Cmimo

(

H,
SNR

Lt

ILt

)

≥ R

n

}

+
R

N
Pr

{

Cmimo

(

H,
SNR

Lt

ILt

)

≥ R

N

}

.

(55)

Criterion 1 and Corollary 1 are based on the mutual information of the equivalent MIMO
channel. To more conveniently evaluate the optimality of any given LDC structure, it is help-
ful to develop a criterion that explicitly relies on the LDC spreading matrices {Ck,Dk}Kk=1,
which lead to Theorem 1.

Theorem 1 Assume Lr ≥ Lt and K = LtT . Define

U(n) =
[

vec
(

C
(n)
1

)

, · · · , vec
(

C
(n)
K

)]

,

V(n) =
[

vec
(

D
(n)
1

)

, · · · , vec
(

D
(n)
K

)]

, (56)

and

F(n) =

[

U(n) V(n)

conj
(

V(n)
)

conj
(

U(n)
)

]

. (57)

The LDC-based HARQ protocol {Ck,n,Dk,n}Nn=1
K
k=1 leads to the optimal average rate perfor-

mance if and only if

F(n)F(n)H = I2LtT (n), (58)

for all n = 1, · · · , N .

The proof follows almost directly from [39, Theorem 5.3.1]. The challenge is that Theorem
1 requires to consider K > LtT

(n) for each n = 1, · · · , N − 1, while [39, Theorem 5.3.1]
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only holds for K = LtT . However, a careful study of the proof of [39, Theorem 5.3.1] shows

that F(n)F(n)H = I2LtT (n) would be necessary and sufficient for the LDC to be average rate
optimal.

Theorem 1 considers the general LDCs that allow the conjugation operation. This is a key
feature in some codes, e.g., Orthogonal STBC, but it has been argued [40] that there is not
always a significant gain over complex LDCs, in which no conjugation operation is allowed.
Hence, it is instructive to give the design criterion for complex LDCs, which follows directly
from Theorem 1.

Corollary 2 For a complex LDC

X(n) =

K
∑

k=1

skC
(n)
k (59)

with Lr ≥ Lt and K = LtT , it is average rate optimal if and only if

U(n)U(n)H = ILtT (n), (60)

for all n = 1, · · · , N .

4.3 Evaluating existing LDCs

Previous sections analyzed the optimal average rate performance of LDC-based MIMO-
HARQ and proposed the design criterion of the corresponding space-time structure. This
section will attempt to use this general framework to evaluate existing LDC structures and
their usage in the MIMO-HARQ setting. Although Theorem 1 and Corollary 2 provide
straightforward means to evaluate given LDCs, we shall proceed to study the equivalent
MIMO channel capacity and use Criterion 1 whenever it is feasible and simple. Directly
evaluating the equivalent MIMO channel capacity and comparing to the physical channel
capacity shed light on the (sub)optimality of the LDC. We will start with the simple MISO
Lt = 2, Lr = 1, N = 2 setting, in which analytical (sub)optimality can be rigorously shown.
For the more complicated MIMO settings, numerical simulations are performed as a main
tool to evaluate existing LDCs.

4.3.1 MISO Lt = 2, Lr = 1, N = 2

This is the simplest MISO setting, in which the celebrated Alamouti code was invented [41].
The following LDC-based HARQ protocols are studied.

Spatial Multiplexing with Repetition:
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This is the multiple-antenna version of the CC scheme. Spatial multiplexing vector x =
[x(1),x(2)]t is repeated upon a NACK, and the overall codeword after N = 2 transmissions
is

[

x(1) x(1)
x(2) x(2)

]

. (61)

Since ARQ round 1 is a spatial multiplexing, it is capacity-optimal:

C(1)
sm

(

ht
)

= Cmimo

(

[

h(1) h(2)
]

,
SNR

2
ILt

)

= log

(

1 +
SNR

2
g2

)

, (62)

where g2 is defined in (33). The simple repetition in ARQ round 2, however, leads to a
capacity loss:

C(2)
sm

(

ht
)

=
1

2
Cmimo

([

h(1) h(2)
h(1) h(2)

]

,
SNR

2
ILt

)

=
1

2
log (1 + SNRg2)

=
1

2
Cmimo

(

ht, SNRILt

)

< Cmimo

(

ht,
SNR

2
ILt

)

, (63)

for SNR > 0, which proves the strict suboptimality of this protocol.

Antenna Switching (AS):

This scheme activates only one antenna at a time, and rotates the active antenna to achieve
spatial diversity. The overall codeword is

[

x 0
0 x

]

. (64)

This is apparently a low-rate suboptimal scheme with

C(1)
as

(

ht
)

= log (1 + SNRg1) < Cmimo

(

ht,
SNR

2
ILt

)

(65)

C(2)
as

(

ht
)

=
1

2
log (1 + SNRg2) < Cmimo

(

ht,
SNR

2
ILt

)

(66)

and hence neither transmission is capacity-optimal.

Alamouti Code:
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The overall codeword after N = 2 transmissions is
[

x(1) −x(2)∗

x(2) x(1)∗

]

. (67)

The first transmission is a spatial multiplexing, which is optimal. It is also well known that
the overall Alamouti structure also achieves the channel capacity [38]. Hence,

C
(1)
Alamouti

(

ht
)

= C
(2)
Alamouti

(

ht
)

= Cmimo

(

ht,
SNR

2
ILt

)

, (68)

and this protocol satisfies Criterion 1.

Cyclic Delay Diversity (CDD):

CDD was proposed in an OFDM setting [42] but the code itself presents an interesting
space-time structure. It cyclically rotates the previously transmit column such that each
symbol is sent from different antennas in different times slots. The overall codeword in the
(Lt = 2, Lr = 1) MISO is

[

x(1) x(2)
x(2) x(1)

]

. (69)

ARQ round 1 again is a spatial multiplexing, and hence is optimal. For ARQ round 2, the
equivalent channel matrix is

Heq, cdd =

[

h(1) h(2)
h(2) h(1)

]

, (70)

and

C
(2)
cdd

(

ht
)

=
1

2
log det

(

I2 +
SNR

2
Heq, cddH

H
eq, cdd

)

=
1

2
log det

[

1 + SNR
2
g2 SNR Re {h(1)h(2)∗}

SNR Re {h(1)h(2)∗} 1 + SNR
2
g2

]

=
1

2
log

(

1 +
SNR

2
|h(1) + h(2)|2

)

+
1

2
log

(

1 +
SNR

2
|h(1)− h(2)|2

)

≤ log

(

1 +
SNR

2

(

|h(1)|2 + |h(2)|2
)

)

= Cmimo

(

ht,
SNR

2
ILt

)

. (71)

This suggests that the CDD-based protocol is suboptimal.

Numerical Simulations:

In addition to the previous analysis, numerical optimization is performed to obtain the
average rates of several LDCs and the results are reported in Fig. 4. Optimal LDC, which
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Figure 4: The optimal average rate performance of several existing LDCs in a (Lt = 2, Lr =
1, N = 2) Gaussian MISO-HARQ channel.

satisfies Criterion 1, and IR are plotted as references. It is interesting to observe that
although both AS and CDD are analytically proved to be sub-optimal, the average rate
performance of CDD is very close to the optimum (almost negligible performance loss),
while AS is extremely sub-optimal. This is no surprise as CDD utilizes the spatial degrees
of freedom in a more efficient way than AS. SM-based repetition gives the performance of
CC and is not far away from the optimal LDC-based protocol. Alamouti, as predicted in
the analysis, is the optimal LDC.

4.3.2 Full MIMO

Analytically proving (sub)optimality becomes infeasible in most of the full MIMO settings,
as the comparison of mutual information of a given LDC {An,Bn}Nn=1 to the MIMO channel
capacity is difficult to make even for moderate N . This section thus focuses on numerical
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Figure 5: The optimal average rate performance of several existing LDCs in a (Lt = 2, Lr =
2, N = 2) Gaussian MIMO-ARQ channel.

simulations to get insight on existing LDCs.

Fig. 5 plots three well-known LDCs in a (Lt = 2, Lr = 2) MIMO channel with N = 2: the
Golden Code (Golden) [43], Damen, Tewfik and Belfiore’s code (DTB) [44], and Hassibi and
Hochwald’s LD code (HH) [38, Equation (31)]. These three LDCs are known in the literature
to be capacity optimal, and in fact it can be proven7 that they satisfy Corollary 2 or Theorem
1, and is average rate optimal as well (the first column of the codeword is capacity lossless).
Similar to the mutual information maximization approach of LDC design [38], typically there
exist many LDCs that satisfy Criterion 1. In practice, one can search among these codes to
further consider other criteria [40], such as the diversity and coding gain.

For a (Lt = 4, Lr = 2) MIMO-HARQ system, Figs. 6 and 7 give the simulation results forN =
2 and N = 4, respectively. The LDCs under consideration are: Orthogonal STBC (OSTBC)

7This can be done by direcly verifying Corollary 2 or Theorem 1 using their corresponding LDC spreading
matrices.
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Figure 6: The optimal average rate performance of several existing LDCs in a (Lt = 4, Lr =
2, N = 2) Gaussian MIMO-ARQ channel.

[45, Chapter 7.6], Diveristy Embedded STC (DE) [46], ABBA code [47], Double ABBA
code (DABBA) [48], Jafarkhani’s quasi-orthogonal STBC (J-QOSTBC) [49], Papadias and
Foschini’s QOSTBC (PF-QOSTBC) [50], Ran, Hou and Lee’s QOSTBC (RHL-QOSTBC)
[51], and Double Space-Time Transmit Diversity (DSTTD) [52]. CC, IR and optimal LDC
are again plotted as reference curves.

Most existing LDCs for Lt = 4 are obtained using Lt = 2 LDCs as building blocks, which
use 2 time slots. Hence, unlike other examples in this paper, the HARQ protocols for N = 2
use T1 = T2 = 2 and the results are reported in Fig. 6. The first observation is that even
the optimal LDC has an average rate that is very close to CC. This suggests that with
this specific configuration, one should not expect much average rate gain from LDC over
simple repetition protocol. However, a well designed LDC-based protocol may have other
advantages, such as diversity gain and simple decoding. The second conclusion is that among
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Figure 7: The optimal average rate performance of several existing LDCs in a (Lt = 4, Lr =
2, N = 4) Gaussian MIMO-ARQ channel.
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all the LDCs, only DSTTD performs close to the optimal LDC8. Among the other LDCs,
five (ABBA, DABBA, DE, J-QOSTBC and PF-QOSTBC) have very similar optimal average
rate, while RHL-QOSTBC is worse and OSTBC gives the worst performance. The extreme
suboptimality of OSTBC is again due to its low-rate property (rate 3/4).

The conclusions are different in the case of N = 4, in which each ARQ round sends one
column of the overall ST codeword matrix. From Fig. 7, there is a notable gain of optimal
LDC over CC. Meanwhile, none of the above LDCs9 are optimal, which calls for the search
of novel LDCs that approach the performance of optimal LDC.

4.4 Remarks

Remark 1 Power Constraint

We would like to constrain the long-term average transmit power in Problem (52). Two
different types of power constraints can be considered.

1) Each ARQ round has the same power.

In this constraint, regardless of how many transmissions actually take place, the overall
transmit power is constant due to the equal power allocation over ARQ rounds. The
power constraint in the original problem (52) falls into this category:

Tr

(

K
∑

k=1

(

Ak,nA
H
k,n +Bk,nB

H
k,n

)

)

= 2LtTn, ∀n = 1, · · · , N. (72)

Note that with this constraint, each transmit antenna or each time slot can have dif-
ferent transmit power. Also the real and imaginary parts of the transmit constellation
can have unequal power.

Similar to [38], more stringent power constraint can be posed to replace (72):

Tr
(

Ak,nA
H
k,n

)

= Tr
(

Bk,nB
H
k,n

)

=
LtTn

K
, (73)

or

Ak,nA
H
k,n = Bk,nB

H
k,n =

Tn

K
ILt

, (74)

where (73) ensures real and imaginary parts are transmitted with the same power, while
(74) further forces energy to be spread equally in all spatial and temporal dimensions.
These power constraints can be incorporated into Problem (52).

8It should be noted that DSTTD is in fact capacity suboptimal.
9DSTTD only uses two time slots and thus cannot be used with N = 4.
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2) Dynamic power allocation among ARQ rounds.

Instead of always having a constant power for each ARQ round, one can further allow
power allocation among the N ARQ rounds. For example, giving more power to ARQ
round 1 will increase the probability that the first transmission succeeds. However
this comes at the price of decreasing the power of potential ARQ rounds 2 to N , if
the overall average transmit power is kept constant. There is a serious challenge to
maintain a constant average power. The reason is that except for the first transmission,
ARQ rounds 2 to N happen only with a non-one probability. This challenge has been
addressed in the scalar channel case [6], and the solution is to average the power
consumption with respect to the channel fading distribution.

Assuming that ARQ round n has a total transmit power ρn, the actually consumed
power ρ is a random variable with PMF

ρ =







Pn
i=1 ρiTi

Pn
i=1 Ti

, if A1, · · · ,An−1,An; ∀n = 1, · · · , N − 1
PN

i=1 ρiTi
PN

i=1 Ti
, if A1, · · · ,AN−1.

(75)

Note that dynamic power allocation also affects the equivalent MIMO channel capacity
after ARQ round n: C

(n)
ld (H) is a TDMA-type one where different portions of the code

have different power [6].

To maintain an average total transmit power SNR, (ρ1, · · · , ρN) should satisfy

N−1
∑

n=1

∑n
i=1 ρiTi
∑n

i=1 Ti

Pr
{

A1, · · · ,An−1,An

}

+

∑N
i=1 ρiTi
∑N

i=1 Ti

Pr
{

A1, · · · ,AN−1

}

= 1. (76)

Remark 2 Chase, LDC, and IR

Let us revisit the average rate for IR (24), CC (29), and LDC (52). It is straightforward to
verify that if the rate assignment in IR is

R(n) =
R

T (n)
, T (n) is a positive integer, ∀n = 1, · · · , N, (77)

the average rate expression of IR and LDC will be the same, provided that Criterion 1 is
satisfied. This demonstrates that the advantages of IR over LDC is the flexibility in rate
assignment for each ARQ round, which comes at the cost of unequal packetization.

In reality, nevertheless, the freedom in rate assignment of IR is very limited due to practical
limitations. Considerations such as packetization or slotted multi-user transmission usually
ask for constant-length retransmissions, which leads to the same IR rate assignment as in
LDC. With this constraint, the optimal average rates of IR and LDC are the same. In such
cases, LDC has the potential advantage of receiver complexity over IR. Recall that IR requires
code combining at the receiver – punctured codeword symbols need to be combined with the
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previous transmissions for another decoding. LDC-based protocol, on the other hand, only
needs packet-level combining. Thus, the receiver complexity is shifted from channel decoding
to front-end demodulation/detection. If the LDC is well designed, such detection complexity
can be moderate, e.g., the Alamouti code. This can be an important advantage of LDC.

At the same time, LDC can also be viewed as an enhanced CC scheme. The reason is that
in the LDC-based protocol each retransmission is essentially just a repetition of previously
transmitted symbols – no new information is sent. However, the “repetition” in LDC is
handled in a smart way such that the equivalent channel capacity is increased to approach
the MIMO channel capacity, while the simple repetition CC scheme suffers from capacity loss.
This can also be explained from the diversity perspective, which will be further developed
in Sec. 5. The CC protocol naively repeats the same codeword upon each NACK, which
cannot efficiently exploit the spatial diversity. A good LDC-based HARQ protocol spreads
out the symbols onto different antennas upon each retransmission request to better exploit
the spatial diversity. This becomes especially important in a quasi-static fading channel, as
there is no time diversity to exploit.

Remark 3 Switching Between Multiplexing and Diversity

Compared to the STC-based HARQ scheme, there is a similar work [53] on switching be-
tween multiplexing and diversity, which is worth some comments. It is easy to see that
the Alamouti example essentially performs a switching between multiplexing and diversity,
just as [53] does. However, one can see that the ARQ-feedback-based approach is supe-
rior to the method in [53]. With ARQ feedback one actually sets the default choice to be
full multiplexing. Hence, data communication takes place without even knowing whether
one should use multiplexing or diversity. Switching to the diversity scheme only happens
whenever necessary. This is possible because full multiplexing is embedded in any diversity
schemes, which is not exploited in [53]. For the scheme in [53], the transmitter needs to
wait for the feedback to inform which scheme to use before the data communication can take
place. Another advantage of our approach is that ARQ feedback informs the decoding status
to the transmitter, and the decision of switching to diversity scheme is made only when the
receiver fails to decode the full multiplexing transmission. This is better than the selection
criteria of [53], which use the minimum Euclidean distances and Demmel condition number
of the MIMO channel to make the decision. Notice that the ultimate goal is to improve the
decoding error performance, and hence decoding failure should be the best decision metric
to determine switching. Our approach directly relies on the decoding error event, while [53]
uses some indirect performance measures, which can only approximate the decoding error
event.
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5 Optimal LDC design: an error probability analysis

Space-time codes design has followed two related but different paths. The original approach
is from the viewpoint of detection theory. The focus is on studying the pariwise error
probability (PWEP) [54–57], which has led to the well-known rank and determinant criteria
that use diversity and coding gain to compare different STCs. A different approach is from
the standpoint of information theory. It views STC as a modulation and study the optimal
structure that preserves the channel mutual information [38, 58]. There are also works that
combine these two views [39,53]. The previous section investigated the optimal LDC design
from an information-theoretic point of view. In this section, an error probability analysis of
the optimal LDC-based HARQ protocol is performed, and the corresponding design criterion
is presented.

5.1 n-th pairwise error probability

Assume that the signal vector s = [s1, · · · , sK ]t is chosen from a uniformly distributed set S
with cardinality M :

S = {s0, · · · , sM−1} . (78)

The probability of a decoding error after the n-th ARQ round can be written as

P (n)
e =

1

M

M−1
∑

j=0

Pr
{

s(1) 6= sj , · · · , s(n) 6= sj |sj was sent
}

(79)

=
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M
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∑

j=0

Pr











M−1
⋃
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· · ·
M−1
⋃
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Q
(1)
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< 0, · · · , Q(n)
in,j < 0

}
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(80)

≤ 1

M

M−1
∑

j=0

M−1
∑

i1=0
i1 6=j

· · ·
M−1
∑

in=0
in 6=j

E

[

Pr
{

Q
(1)
i1,j

< 0, · · · , Q(n)
in,j

< 0|H, sj

}]

(81)

where (81) comes from the traditional union bound [59], sj is the transmitted vector, s(n)

is the detected vector after ARQ round n, Q
(n)
i,j is the pairwise decision metric in the n-th

ARQ round, which is defined in the following. The optimum ML decoding rule for deciding
between two possible codewords X(n)(si) and X(n)(sj) for a given channel realization H and
the receiver observation Y(n) is

||Y(n) −
√

SNR

Lt
HX(n)(si)||2F

si

<
>
sj

||Y(n) −
√

SNR

Lt
HX(n)(sj)||2F . (82)

Define the ML metric

V
(n)
i = ||Y(n) −

√

SNR

Lt

HX(n)(si)||2F , (83)
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Figure 8: An example illustrating different error events in different ARQ rounds. sj (red) is
transmitted, and s(n) is the ML detector output at ARQ round n, which are all erroneous
(blue).

and Q
(n)
i,j is defined as

Q
(n)
i,j

.
= V

(n)
i − V

(n)
j . (84)

For n = 1, (81) reduces to the traditional union bound for STC:

Pe ≤
1

M

M−1
∑

j=0

M−1
∑

i=0
i 6=j

E [Pr {Qi,j < 0|H, sj}] . (85)

For Rayleigh fading,

Pr {Qi,j < 0|H, sj} = Q

(
√

d2E(i, j)

2

)

(86)

where d2E(i, j) is the squared Euclidean distance between two received codewords Y
(n)
i and

Y
(n)
j , with Y

(n)
i

.
=
√

SNR
Lt

HX(n)(si). Tools such as the Chernoff bound [55, 56] or the tighter

bound in [57] can be applied. Meanwhile, assuming high SNR would further simplify the
upper bound and it has led to the rank and determinant criteria.

The performance analysis of MIMO-HARQ, however, is much more involved. The first
complication comes from (81). Unlike STC where only the PWEP is needed, analyzing
MIMO-HARQ requires the n-th pairwise error probability (n-PWEP):

Pr
{

Q
(1)
i1,j

< 0, · · · , Q(n)
in,j

< 0|H, sj

}

, (87)

in which the decision metrics
{

Q
(l)
il,j

}n

l=1
are correlated random variables. The complication

is also intuitively understandable. The error event under consideration is when all the n
decoding attempts are erroneous. However, the decoding errors in different ARQ rounds
could be very different (especially for short codes), depending on the channel realization and
instantaneous noise. Fig. 8 is one such example.
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To analyze the n-PWEP, let us start with the statistics of Q
(n)
i,j . To simplify the derivation,

define

D
(n)
i,j

.
=

√

SNR

Lt
H
(

X(n)(si)−X(n)(sj)
)

, (88)

and

y
(n)
i

.
= vec

(

Y
(n)
i

)

,

d
(n)
i,j

.
= vec

(

D
(n)
i,j

)

= y
(n)
i − y

(n)
j ,

z(n)
.
= vec

(

Z(n)
)

. (89)

Now conditioning on H and assuming sj is transmitted, we have

Q
(n)
i,j = ||D(n)

i,j + Z(n)||2F − ||Z(n)||2F
= ||D(n)

i,j ||2F + 2Re
{

Tr
(

D
(n)
i,j Z

(n)H
)}

(90)

= d
(n)
E (i, j)

2
+W

(n)
i,j (91)

where d
(n)
E (i, j)

2
= ||D(n)

i,j ||2F is the squared Euclidean distance, andW
(n)
i,j

.
= 2Re

{

Tr
(

D
(n)
i,j Z

(n)H
)}

.

It is easy to see that W
(n)
i,j is a real Gaussian random variable

W
(n)
i,j = Tr

(

D
(n)
i,j Z

(n)H +D
(n)
i,j

H
Z(n)

)

= z(n)
H
d
(n)
i,j + d

(n)
i,j

H
z(n), (92)

with

E[W
(n)
i,j ] = 0, (93)

E[W
(n)
i,j

2
] = E

[

z(n)
H
d
(n)
i,j + d

(n)
i,j

H
z(n)
]

= E

[

2z(n)
H
d
(n)
i,j d

(n)
i,j

H
z(n)
]

= 2d
(n)
E (i, j)

2
, (94)

which uses the fact that Z(n) has complex circularly symmetric Gaussian entries with unit
variance.

The n-PWEP now becomes

Pr
{

Q
(1)
i1,j

< 0, · · · , Q(n)
in,j

< 0|H, sj

}

= Pr
{

W
(1)
i1,j

< −d
(1)
E (i1, j)

2
, · · · ,W (n)

in,j
< −d

(n)
E (in, j)

2|H, sj

}

.

(95)
Notice that

w(n) .
=
(

W
(1)
i1,j

, · · · ,W (n)
in,j

)t

(96)
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is an n-dimensional real Gaussian random vector. Thus, the only remaining problem is to
obtain the statistics of w(n). It is easy to get the mean

E[w(n)] = 0. (97)

As for the covariance matrix E[w(n)2], the focus is on

Rw(n)(k, l)
.
= E[W

(k)
ik ,j

W
(l)
il,j

], ∀l ≥ k (98)

due to its symmetric property. The important observation is that

z(l) = vec
(

Z(l)
)

= vec
([

Z(k),Zl−k

])

=

[

z(k)

zl−k

]

(99)

and

d
(l)
il,j

= y
(l)
il

− y
(l)
j

=

[

y
(k)
il

− y
(k)
j

yil,l−k − yj,l−k

]

=

[

d
(k)
il,j

dil,j,l−k

]

. (100)

Hence

Rw(n)(k, l) = E

[(

z(k)
H
d
(k)
ik,j

+ d
(k)
ik ,j

H
z(k)
)(

z(l)
H
d
(l)
il,j

+ d
(l)
il,j

H
z(l)
)]

= 2Re
{

E

[

d
(k)
ik,j

H
z(k)

(

d
(l)
il,j

H
z(l)
)∗]}

, (101)

which again uses the circularly symmetric property of the i.i.d complex Gaussian random
matrix Z. The following derivation is straightforward:

E

[

d
(k)
ik,j

H
z(k)

(

d
(l)
il,j

H
z(l)
)∗]

= E

[

d
(k)
ik ,j

H
z(k)

(

d
(k)
il,j

H
z(k) + dil,j,l−k

Hzl−k

)∗]

= E

[

d
(k)
ik ,j

H
z(k)

(

d
(k)
il,j

H
z(k)
)∗]

(102)

= d
(k)
ik ,j

H
E

[

z(k)z(k)
H
]

d
(k)
il,j

= d
(k)
ik ,j

H
d
(k)
il,j

=
〈

D
(k)
ik,j

,D
(k)
il,j

〉

F
(103)

where for matrices A and B of the same dimension,

〈A,B〉F
.
= Tr

(

ABH
)

(104)
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is the Frobenius inner product [60], which induces the Frobenius norm. Equation (102) is
because z(k) and zl−k are independent.

Now the covariance matrix Rw(n) is fully characterized as

Rw(n)(k, l) = 2Re
{〈

D
(k)
ik,j

,D
(k)
il,j

〉

F

}

, ∀l > k (105)

Rw(n)(k, k) = ||D(k)
ik,j

||2F , (106)

Rw(n)(k, l) = Rw(n)(l, k), ∀l < k, (107)

and we conclude
w(n) ∼ N (0,Rw(n)). (108)

The n-dimensional joint Gaussian PDF of w(n) is

fw(n) (w) =
1

(2π)n/2
√

detRw(n)

exp

(

−1

2
wtRw(n)

−1w

)

. (109)

In the existing literature of Gaussian tail distribution, much attention has been paid to
either one- or two-dimensional Q functions [28]. It is clear that to analyze MIMO-HARQ
with deadline N , one needs a general definition of the n-dimensional Q function for a real
Gaussian random vector x ∼ N (0,Rx) (assuming zero mean without loss of generality)

Qn (x,Rx)
.
=

1

(2π)n/2
√
detRx

∫ ∞

x(1)

· · ·
∫ ∞

x(n)

exp

(

−1

2
wtRx

−1w

)

dw. (110)

Finally, the union bound on P
(n)
e in (81) becomes

P (n)
e ≤ 1

M

M−1
∑

j=0

M−1
∑

i1=0
i1 6=j

· · ·
M−1
∑

in=0
in 6=j

EH

[

Qn

(

d
(n)
E

2
,Rw(n)

)]

, (111)

where

d
(n)
E

2 .
=
(

d
(1)
E (i1, j)

2
, · · · , d(n)E (in, j)

2
)t

. (112)

5.2 Design criterion

The previous section studies the detection error probability after the n-th ARQ round. Using
the traditional union bound shifts the focus to the n-PWEP. With the help of n-dimensional
Q function and the distribution of the decision metrics, the n-PWEP is successfully cal-
culated. However, the resulting union bound expression is complex and does not provide
insight into the optimal LDC design. This section is devoted to developing the LDC-based
HARQ design criterion from the detection error probability point of view. More specifically,
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the focus in on studying the diversity order of LDC-based HARQ10. The main result is stated
in the following theorem.

Theorem 2 The optimum diversity order for any LDC-based HARQ protocol satisfies

div
∗
n = Lr min{T (n), Lt} (113)

for any ARQ round n, ∀n = 1, · · · , N .

Proof: The following upper bound is straightforward:

Pr
{

A1, · · · ,An

}

≤ Pr
{

An

}

. (114)

Using this bound, the error probability (79) can be bounded as

P (n)
e ≤ 1

M

M−1
∑

j=0

Pr
{

s(n) 6= sj |sj was sent
}

. (115)

The right hand side of (115) is in fact the detection error probability of a STC with codeword

X = X(n) ∈ CLt×T (n)
. The achievable diversity order for such STC is well-known to be

Lr min{T (n), Lt}. Hence
div

∗
n ≥ Lr min{T (n), Lt}. (116)

On the other hand, the fundamental diversity order offered by the MIMO-ARQ channel has
been established in [8, 9], which leads to

div
∗
n ≤ Lr min{T (n), Lt}. (117)

Combining (116) and (117) completes the proof.

�

Theorem 2 leads to the following diversity-driven LDC design criterion for MIMO-HARQ.

Criterion 2 (Error-probability-based LDC design criterion) The LDC should satisfy
that after the n-th ARQ round, ∀n = 1, · · · , N , the optimum detector has a diversity order
Lr min{T (n), Lt}.

10In this work, the diversity order is defined as

div
.
= − lim

SNR→∞

logPe(SNR)

log SNR

for a fixed-rate STC. This is the traditional definition of diversity, which is different from the one defined
in [7] and many following DMT papers.
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This design criterion has some practical advantages over the capacity-based Criterion 1, as
it is quite intuitive and easy to check. Meanwhile, it is also observed that those LDC-based
HARQ protocols that satisfy Criterion 1 also tend to satisfy this diversity criterion.

Traditional STC design focuses on both the diversity and coding gain. A typical design
would use full diversity as a constraint and then search for good coding gain. Our effort has
been only on diversity due to the following two reasons. The first is that coding gain for
MIMO-HARQ is not easy to define or compute, due to the complication in the n-PWEP.
Theoretically, each ARQ round is equivalent to a STC X = X(n) ∈ CLt×T (n)

, for which the
coding gain can be computed. It is unclear how to optimize these N correlated coding gains
simultaneously. The second reason is that coding gain can be obtained from outer channel
code as well. The diversity gain, however, has to be exploited by the proper LDC design.
This is because the quasi-static channel is considered, and the only source of diversity is
from the spatial domain.

5.3 Numerical Examples and Discussions

To gain more insight into the LDC-HARQ design based on the error probability analysis, we
return to the Alamouti example (39) for N = 2. Studying this simple example leads some
interesting observations, which reveals the significance of ARQ feedback in different settings.

A software simulation system for (Lt = 2, Lr = 1) MISO i.i.d. Gaussian quasi-static fad-
ing channel with maximum ARQ rounds N = 2 is built. Alamouti-based protocol (39) is
implemented, as well as the traditional repetition scheme (CC). Maximum-likelihood de-
coding is performed for both ARQ rounds, which gives the optimal decoding performance.
We consider both uncoded and coded transmission with a Gray-coded QPSK constellation
on each antenna. For the coded case, the standard 64-state rate-1/2 binary convolutional
code11 with octal generators (133, 171) is implemented at the transmitter, which is followed
by a standard row-in-column-out block interleaver. Each coded packet consists of 100 sym-
bols. The receiver implements ML soft-output detectors with exact bit log-likelihood ratio
(LLR) computation concatenated with a bit deinterleaver and a soft-input Viterbi algorithm
convolutional decoder. Finally, it should be emphasized that as discussed in [6], the ran-
dom channel generation in the simulation guarantees that the empirical channel distribution
matches the true one.

Fig. 9 reports both the packet error rate and the average rate performance as a function of the
average receive SNR. As has been analytically predicted in this work, the traditional ARQ
approach which simply repeats the previous packet is significantly inferior to the Alamouti-
based protocol in all settings. There is a clear diversity loss for the CC protocol, which also
results in the degraded average rate performance. It should be remarked that the gains of
Alamouti-based HARQ over CC are not only in packet error rate and average rate, but also

11The rate loss due to the termination bits is ignored.
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in the receiver soft-output ML detection complexity. Alamouti detector orthogonalizes the
two transmitted symbols for independent bit LLR generation, while the CC protocol does
not render such simple detector but an equivalent 2× 2 MIMO system has to be formed to
generate bit LLR, which is of higher complexity.

In general, the gains of HARQ protocols over direct transmission without ARQ feedback are
two fold:

1) throughput;

2) decoding error probability.

The interesting observation from Fig. 9 is that these gains behave quite differently in different
system configurations. The average rate gain for using ARQ feedback is remarkable for all
considered protocols12, as can be seen in Fig. 9(b). However, the packet error rate gain of
the two considered HARQ protocols over no-ARQ transmission is distinguishable for the
uncoded case, but is almost negligible for the coded one, even if the channel coding is not
capacity-approaching and the block length is short. This can be explained from a joint
consideration of the mutual information analysis in Sec. 4 and the error probability analysis
in Sec. 5. Let us take N = 2 as an example. The decoding error probability of using ARQ is

Parq = Pr
{

A1,A2

}

, (118)

as compared to the no-ARQ case

Pno-arq = Pr
{

A2

}

. (119)

Hence, the gain of HARQ is

Pno-arq − Parq = Pr
{

A2

}

− Pr
{

A1,A2

}

= Pr
{

A1,A2

}

(120)

≥ 0.

Notice that the event {A1,A2} means the receiver has a correct decoding in the first ARQ
round, but it makes an incorrect decoding as it performs decoding based on both packets.
This event is possible in the uncoded case, as there is a good probability that the noise
realization in round 1 is small (hence the decoding is correct), but very large in the second
round such that the decoding based on both transmissions fail. Recall that the channel
transfer matrix keeps constant over ARQ rounds and hence the only source for this to
happen is the noise realization. This explains the gain in the uncoded case. However, as the
channel coding is implemented and the packet length is increased, the impact of finite noise
realizations will eventually vanish. In fact, for the capacity-approaching coded transmission

12Some uncoded average rates seem to be better than coded ones in low SNR. This is because the coded
packet is longer than the uncoded one, which counteracts the benefit from (short) channel coding.
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Figure 9: Performance comparison of two HARQ protocols (Alamouti and CC, N = 2) and
no ARQ, with both uncoded and BICM coded transmissions in a (Lt = 2, Lr = 1) MISO
Gaussian channel. Fig. 9(a): Packet Error Rate (PER) versus SNR. Fig. 9(b): Average Rate
(bits per channel use) versus SNR.
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as discussed in Sec. 3 and 4, the noise realizations will be totally averaged out, which leads
to Equation (8) and hence

Pr
{

A1,A2

}

= 0. (121)

In summary, even with a relatively strong channel code with reasonably long block length,
the two information-theoretic observations in Sec. 3 are generally valid, and the ARQ re-
transmission leads to only an average rate gain but very little error probability gain. On the
other hand, very short coding length makes the ARQ retranmission even more beneficial, as
the decoding error probability is improved prominently in addition to the average rate gain.

One might notice that there is only one degree of freedom for a (Lt = 2, Lr = 1) MISO
channel, but two independent symbols are sent in the first ARQ round. This observation
reveals the essence of the HARQ gains. The concept of degrees of freedom is from the
ergodic capacity, which averages over the channel distribution. For a certain subset of all
possible channel realizations (together with appropriate noise realizations if the finite noise
impacts the decoding), sending two independent symbols per channel use can result in a
successful transmission. In this case, the spectral efficiency is doubled compared to the no-
ARQ transmission, which is reflected in the average rate gain. If the channel realization is
“bad”, the second round transmission switches the entire protocol back to the normal STC
transmission.

6 Conclusions

This paper studies the fundamental performance of Hybrid ARQ protocols in a multiple-
antenna channel. Unlike previous works that focus on the high SNR asymptotics, a general
framework to optimize the average rate for any HARQ protocol with fixed SNR is presented.
This general result is then applied to study two well-adopted HARQ protocols, incremental
redundancy and packet combining (Chase). Space-time coded HARQ transmission is inves-
tigated under this framework, in which the capacity-based LDC design criterion is derived.
Several existing LDCs are evaluated with this criterion, both analytically and numerically.
A different design criterion based on the error probability analysis of LDC-HARQ is also
presented. Numerical examples reveal different types of advantages of LDC-HARQ, and
how they vary in different settings.

There are several interesting problems that have not been addressed in this work, which
are the subjects of potential future work. For several MIMO and ARQ configurations, the
existing LDCs are proved to be optimal in terms of average rate. However, there are some
other settings where none of the known codes approach the optimal performance, e.g., the
(Lt = 4, Lr = 2, N = 4) configuration in Fig. 7. Numerical design/search of optimal codes
(e.g., similar to the approach in [38]) is an interesting research topic. Another possible
direction is to incorporate the receiver decoding complexity into the LDC design criteria.
Recall that the Alamouti-based protocol enjoys benefits of not only optimal average rate,
excellent error performance, but also easy decoding in each ARQ rounds. Similarly, one can
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ask for the LDC to not only satisfy the design criteria presented in this work, but also has
the “fast-decodable” property [61] for X(n) in each ARQ round n. One might have noticed
that for the LDC-based protocol to work, the channel has to remain constant over different
ARQ rounds, which is the assumption of this paper. For time-varying channels, protocols
exploiting both time and spatial diversity should be considered, and how to efficiently design
the corresponding protocol could be another interesting problem.
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