arXiv:1309.1286v1 [cs.IT] 5 Sep 2013

On a Family of Circulant Matrices for
Quasi-Cyclic Low-Density Generator Matrix
Codes

Marco Baldi,Member, IEEE Federico Bambozzi, and Franco Chiaralugkember, IEEE

Abstract

We present a new class of sparse and easily invertible aintuahatrices that can have a sparse inverse though
not being permutation matrices. Their study is useful indbsign of quasi-cyclic low-density generator matrix
codes, that are able to join the inner structure of quadiecygodes with sparse generator matrices, so limiting
the number of elementary operations needed for encodingul@nt matrices of the proposed class permit to hit
both targets without resorting to identity or permutatioatrices that may penalize the code minimum distance
and often cause significant error floors.

Index Terms

Low-density generator matrix (LDGM) codes, low-densityriyacheck (LDPC) codes, quasi-cyclic (QC)
codes, sparse circulant matrices.

|. INTRODUCTION

Low-Density Parity-Check (LDPC) codes are extremely effitiin regard to decoding algorithms, based on
the message passing principle, that exploit the sparseenatuheir parity-check matrices to achieve excellent
performance with low complexity [1], [2].

On the other hand, the generator matéix of an LDPC code is usually dense and, when it is used for
encoding, this gives a complexity that is quadratic in theckllength. To reduce the encoding complexity,
several solutions have been proposed in the past. Among, theame techniques aim at exploiting the sparse
nature of the parity-check matrild also in the encoding stage. This can be easily achieved Whemits
a sparse representation in lower triangular form. Whendbiss not occur, aApproximate Lower Triangular
(ALT) version of H could be obtained by performing only row and column pernoiet [3]. Alternatively, the
ALT form of the parity-check matrix can be ensured by a progesign [4].
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A different technique for low complexity encoding of LDPCdas is represented by iterative encoding [5].
According to such an approach, the parity bits correspantlineach information vector are considered as
erasures, and recovered by means of the message passirdpidémochannels with erasures. In order for
iterative encoding to be successful, the nodes associatdtetparity bits must not contain a stopping set; so
the structure of the parity-check matrix must be constidif®r this reason, the design of iterative encodable
codes with good performance could represent a challenge [6]

One of the most effective approaches for reducing the engatimplexity is given by Low-Density Generator
Matrix (LDGM) codes [7]. For such code& is also sparse and this permits to reduce significantly theuain
of processing required at the encoder.

In [8], LDGM codes with a very sparse generator matrix weresidered, and their performance estimated.
It was verified that an LDGM code with Tanner graph containitegreet variable nodes exhibits high error
floors. In the same paper and in [9], it was demonstrated thegtet floors can be substantially reduced by
serially concatenating two (or more) of these codes, at dis¢ @f an increased complexity. In the concatenated
scheme, the component codes could be selected in such a aHigviothe usage of the same decoder structure
for both of them [10], but serial concatenation still has seguences on complexity and latency.

LDGM codes are a wide family of codes, including, for exammencatenated single parity-check codes
[11]. They also provide the core for Repeat Accumulate (Réges, that can be seen as the serial concatenation
of an outer LDGM code and an inner accumulator [12]. RA co@gsasent an alternative solution to the usage
of two serially concatenated LDGM codes for reducing therfioor. Variants of RA codes, as Irregular RA
(IRA) codes [13] and Accumulate-RA (ARA) codes [14], can noye performance of RA codes, and it has
been proved they can also be capacity-achieving codes [15].

Recently, an increasing interest has been devoted to @yatic Low-Density Parity-Check (QC-LDPC)
codes, whose parity-check and generator matrices are tbbyeirculant blocks. Such structure of the matrices
allows the usage of very simple encoding circuits, basedhift registers, that exploit the quasi-cyclic nature
of the codes [16]. A widespread family of QC-LDPC matrices fammed by circulant permutation blocks [17].
Codes having this form have also been included in the amenidfoe mobility of the IEEE 802.16 standard
[18]. Several encoding schemes are suggested in the sthraiar to the almost lower triangular form of the
matrices, the solution in [3] has a nearly-linear complexithe number of operations required can be further
reduced by suitable processing [19].

So, even for QC-LDPC codes, a common approach to exploisspaatrices for encoding is to find parity-
check matrices having an almost lower triangular form [18]Q]. In fact, the quasi-cyclic property facilitates
the hardware implementation of the encoder, but compléiityerms of number of elementary operations) still
depends on the density of the matrix used for encoding. Hewew find almost lower triangular parity-check
matrices is not possible in several cases. Moreover, whepdhity-check matrix of a QC-LDPC code is formed
by circulant blocks that are not permutation matrices, threesponding generator matrix is usually dense. This
occurs when the row (column) weight of each non-null ciratilelock in the parity-check matrix is greater
than one, and can be found, for example, in the QC-LDPC codgsoped for near-Earth missions by the
Consultative Committee for Space Data Systems (CCSDS) [28]. Another interesting family of QC-LDPC

codes having circulant blocks with row (column) weight deedhan one are those based on Difference Families



and their variants [22], [23]. The structure of the parityeck matrix of these codes is as follows:
H= [H0|H1|"'|HN1;*1]7 (1)

i.e., it consists of a row ofV, sparse circulant blocks, each with size= N/N,, whereN is the code length.
Provided that at least one of ti&; blocks is of full rank, the code rate gV, — 1)/N,. Despite their very
simple structure, codes having this form can be able to aelgeod performance, especially for moderate/high
code rates.

For codes having a parity-check matrix in the form (1), a bewnsity generator matrix can be found if one
of the H; blocks is replaced with an x n identity matrix or cyclic permutation matrix. This way, hewer,
the minimum distance of the code is penalized, and beconsssth&an or equal to the lowest row (column)
weight of the non-identityH; blocks, increased by.

In this paper, we define a new class of sparse circulant neatribat we calt)-unitary (the reason for such
notation will be explained afterwards). These matrices singple to design, easily invertible and can have
a sparse inverse, though not being circulant permutatiomicea. Furthermore, they can be free of length-
cycles; so, we propose to use them for constructing theypehieck matrix in the form (1). By replacing one
of the H; blocks with ay-unitary matrix, the density of the code generator matrix ba rendered very low
while maintaining a good minimum distance.

The features of the new class of matrices are derived by dixtgithe theory of orthogonal circulant matrices
([24], [25]), that are a special case of circulant matricasthat cannot be used for the design of QC-LDPC
codes. This is explained in Section Il, which is devoted tmirel basic definitions and properties. The
unitary circulant matrices are introduced in Section Ilhase conditions for the absence of lendthycles are
explicitly stated. Section IV presents some families ofnigas that are free of length-<ycles, while Section
V discusses the inversion issues. The inversion method weoge has complexity that depends mainly on the
matrix weight and is basically independent of the matrixesinoreover, availability of explicit expressions for
the inverse matrix permits us to estimate its density. Inti8ecv/I, examples of usage af-unitary circulant

matrices in LDGM codes are given. Finally, Section VII card#s the paper.

II. CIRCULANT MATRICES: NOTATION AND PROPERTIES

The general structure of anx n circulant matrixA defined over the Galois field of order GF(p), is as

follows:
Qg ay a2 -+ Ap—1
Gp—-1 QAo a1 -+ Gp-2
A= ; 2)
aq az az - aq

wherea;, € GF(p), i =0...n—1. Thus,A is described by one of its rows (typically the first one), ttleeos
being obtained as cyclically shifted versions of such rawthie following, we will denote by¥ [A] the number
of non-zero symbols in each row (or column) Af

A simple isomorphism exists between the ring, of n x n circulant matrices oveGF(p) and the ring

R, = GF(p)[z]/(z™ — 1) of the polynomials ovelZF (p) modulo (z™ — 1). Let us consider the following



n x n circulant permutation matrix:

(01 0 0
00 1 0
T=1|: : 1 "~ 1. 3)
000 - 1
(100 - 0|

It it easy to verify that the circulant matrix (2) can be waittas:
n—1
A = Z aiTi, (4)
=0
whereT? = T" = I. This relationship is the basis to establish the isomorphigefined by the following map:
n—1 n—1
O Z a; T — Z a;ix’ = a(x), (5)
=0 =0

that transforms matrices into polynomials modgl# — 1). The minimal polynomial ofT is T™ —1I. According
to this isomorphism, we can work, when more convenient, widlynomials instead of matrices. So, from now
on, a matrixA will be equivalently denoted by the polynomia(x); Wa] is the weight ofa(xz) (number of
its non-zero coefficients) and it coincides witthi[A]. According to (5), the polynomialt(x) is specified by
its coefficients(ag, ai, ..., an—1).

A length+4 cycle in matrixA is a closed rectangular path linking non-zero elementsliéittp, this means that
a length4 cycle exists when two rows have a pair of non-zero symboleeasame positions (i.e., belonging to
the same columns). Obviously, each matrix can have manibolos of this kind, depending on the distribution
of the non-zero symbols. It is easy to verify that lendtioycles in matrixA do not appear if and only if
the distances between any pair of non-zero symbols in eaglofahe matrix are different from each other
(explicitly, we say that the matrix has no repeated distah®o, ifd; ,, represents the distance (mojbetween
the i-th andk-th non-zero elements, it must log;, = 0;, if and only if i = j andk = [.

Orthogonal circulant matrices are a special case of cintutatrices, for whichA - A” = 1. So, the inverse

of an orthogonal matrix coincides with its transpose. THeoWwing theorem holds:

Theorem I1.1 An orthogonal circulant matriA over GF(p), with W[A] > 1, has always length-cycles.
Proof: Let us suppose that matrix (2) is orthogonal; then, the ipmeduct between it$-th andj-th rows

must be 0, fori # j. Without loss of generality, let us consider 0; the following condition must be satisfied:
apQn—j + a1Gn—j+1 + o+ apapy .+ Gp—-10n—j5—-1 = 0,

where all subscripts are mod If a column of A has at least two non-zero elements (which means it is not a
permutation matrix, the latter being a particular case,afanterest for the present analysis), say anda,,,

with m = (v —j) modn, thena,a,, # 0. Condition above implies there exists at least another teym, # 0,

with a,, belonging to the same row af,, anda, to the same row of.,,,, andy = (w — j) modn. Therefore,

ay, Gm, a4y anda, define a lengtht cycle, sincev —m = w —y = j modn. [ |

Because of Theorem II.1, orthogonal circulant matricehwikight greater than 1 are not suitable for the

design of QC-LDPC codes. However, starting from the theayetbped in previous literature (see [24] and



[25]) for the study and characterization of orthogonal iant matrices, it is possible to define a new class of

matrices that, instead, can be free of lengtbycles. This is done in the following section.

I11. 9)-UNITARY CIRCULANT MATRICES

A. Definition and properties

Let us considern = ps, with s an integer, and the rin§, = GF(p)[y]/(y* —1). Let us define the following

map from the ringR,, to the ring R,:
n—1 s—1
b Z a;x' — Zukyk,
=0 k=0

p—1

uk:Zak+st, vk € {0,1,...,s —1}.
t=0

The map transforms elements Bf, into elements ofR,, according to the specified rule.

where

Example 1
Let us considery; : Ry — R over GF(2). The elements oR, are:

(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),
(0,1,0,0),(0,1,0,1),(0,1,1,0),(0,1,1,1),
(1,0,0,0),(1,0,0,1),(1,0,1,0),(1,0,1,1),

(1,1,0,0),(1,1,0,1),(1,1,1,0), (1,1,1,1).

So:

$2((0,0,0,0)) = ¥5((0,1,0,1)) = ¥3((1,0,1,0)) =
= ¢3((1,1,1,1)) = (0,0),

$2((1,0,0,0)) = ¥3((0,0,1,0)) = ¥2((1,1,0,1)) =
= ¢3((0,1,1,1)) = (1,0),

$2((0,1,0,0)) = 43((0,0,0,1)) = ¥2((1,1,1,0)) =
= ¢3((1,0,1,1)) = (0, 1),

¥2((1,1,0,0)) = 43((0,1,1,0)) = ¢2((1,0,0,1)) =
= ¢3((0,0,1,1)) = (1,1)

The same elements can also be written in polynomial form:
by 0) :wg(x+x3) :¢§(1+x2) :¢§(1+x+x2+x3) =0,
s 1) :w;*(:ﬁ) :¢§(1+x+x3) :¢§1(x+:v2 +:v3) =1,

x) :1/);1(173) :¢§(1+x+x2) :w§(1+x2 +:v3) =z,

(6)

(7)

o]

It is known [24] thatyP* is an homomorphism, with kerné{er(¢r*) = IP*, whereI?® = (z* — 1) € R,

denotes the ideal generated fy — 1). I?® is completely described by the following formula:

n—1 p—1
a(z) = Z a;zt € 1" = Zakths =0,
i=0 t=0

(8)



forall k € {0,1,...,5 —1}.

Generalizing (6), we can consider = pqs and the maplp”fs : Rpas — Ryrs, With 0 < r < ¢ and
Ker( giz) = Igfﬁ = (at's 1) (if r =g, pqé is the identity map). From a computational point of view, the
map ;’Zi corresponds to iterating; (- ) times the elementary mapping froR),:, to R,:-14, with ¢ > ¢ > r.

Noting by «(c(x)) the result of the single mapping, applied to the polynomial), we should write:
Pa@)) = el R (). ).
Let us denote by -, the identity element of?,-,. The following definition holds:
Definition: A circulant matrix in M, is a -unitary circulant matrix if its polynomiak(z) € Rpas, for
somer < ¢, satisfies the condition:
pri(a(@) = L. 9)
y-unitary matrices, so defined, form a subset of the matrice¥j., that in the following will be denoted

by \IJ” 5. Itis evident that, if a matrivA € \Iﬂ” . for a givenr, then it satisfies the Condltlonjpt (a(x)) = 1pes

forany0 <t <r.

Example 2
Let us considep = 2, r =0, ¢ = 1 ands = 4 (hence,n = 2s = 8). The following polynomials with weight 3 satisfy the
conditiony§ = 14 = (1,0,0,0); so, they defineb-unitary circulant matrices of siz@x 8: (ao, a1, az, as, a4, as, as, a7) =
(1,1,0,0,0,1,0,0),(1,0,0,1,0,0,0,1), (0,1,0,0,1, 1,0,0), (0,0,0,1,1,0,0, 1), (1,0,1,0,0,0,1,0), (0,0, 1,0, 1,0, 1, 0).
<

For the sake of simplicity, and because this work aims atgaésgy binary codes, from now on we will set
p = 2. Moreover, as we are mainly interested in considering gparatrices, it is often convenient to denote
a(x) by the positions; of its W[a] non-zero elementsl (< j < Wla]), that isa(x) = (b1; b2; ...; byw(a])n-

For the subsequent analysis, it will be essential to congfkeinverse mapping—!. This is schematically
shown in Fig. 1, where the case of/aunitary circulant matrix is considered. Basically, thedrse mapping

(12,31, (a(z)))~! adds toa(z) an element of the ideal?,*

5214 In the following, this will be indicated as

{a(x) + I2,%,}. Moreover, because of (8), for any(z) € 12,%, , it is easy to verify thafw(z)]? = 0, and

2q—1g7

vice versa. So, if we define the map: R, — R, asnla(x)] = [a(z)])?, it follows thatw(z) € I2,%, <

29—1g

w(z) € Ker(n). By iterating the reasoning, and denotingonsecutive applications efasn", it follows that:
Ker(22.,) = Ker(n"). (10)

This property can be used to demonstrate the equivalenaebet(9) and a condition on the powersadf).
For simplifying the notation, in the following we will sefta(z)]* = a*(z). So, in particularg=*(z) = [a~*(z)]?
will denote thez-power of the polynomiak—!(x), that corresponds to the inverse matAix . The following

lemma holds:

Lemma I11.1 Forn = 2%s anda(x) € R, a? () = laes & w2q o(a(@) = 1ag—rg, With 0 < 7 < q.

Proof: If ¥2%. (a(x)) = ly-r, a(x) must be in the fornu(z) = b(z) +w(z), whereb(z) is a monomial
mapped intolyq—, by ¥2°, andw(z) € 12, . It follows from its definition thatb(z) = (j297"s),,
jefo,1,...,2" — 1}, sob* (z) = (0),, = 1,,. Due to (10),w? () = 0, soa? (z) = b (z) + w? (x) = 1,.

The reverse implication follows by the same argument. |



® 1,=(0), =4,

W)

@ ({0.5hkgskissk, sk, tssk +55.5k, +5) =a,(x)
(vi)'

® ({(),s,2s,3s};k0 +{0,25 )55k, + {0, 25 1 ko +5+{0,25 )55k, +5+{0,25};
Bosews by +285. 50, +25), = a,(x)

(vs)'

Figure 1. Inverse mapping representation fop-anitary circulant matrix {a, b, ..., ¢} means that all the listed options are possible).

The coincidence established by Lemma 1.1 between polyatsm(z) such thate? (z) = 1.4, and
2's. (a(z)) = 15—, Will be recalled in the following (as in the proofs of TheoreM1 and V.2).

249="s

B. Existence of length-cycles

Let us consider = 1 andr = 0; the -unitary matrices, defined by (9), form the subg&t. From (7) we
derive that, in order to have, = 1, that is necessary to have € W24, eithera, or a; must be different from

zero. Based on this evidence, we can formulate the following

Theorem 111.1 Forn = 25, a matrix A € 2%, with W[A] > 1, has lengtht cycles.

Proof: Taking into account (6) and (7), to have € 2%, W[A] should be necessarily odd. Hence, the
polynomial a(xz) must have an odd number of non-zero coefficients. Startiom iy = 1 or a, = 1, the
matrix weight become$l’[A] = 3 by adding, for anyk : 0 < k < s, a non-zero coefficient;, and a non-
zero coefficientu ; therefore, the distance/2 betweena, anday is equal to the distance betweep,
anday, (repeated distance) and, as explained in Section Il, thisdseason for the appearance of a length-
cycle between any row of the matrix and isshifted version. Such repeated distance is always prément
depending on the value df, other repeated distances can appear. SimilarlyJfgA] > 3, the additional
non-zero coefficients are always at distamg, and therefore contribute to increase the multiplicity loit

repeated distance. [ ]

Example 3

The matrices generated by the polynomials in the Example/@ lemgth4 cycles. In fact, considering the non-zero elements,
we can verify that the polynomidli, 1,0, 0,0, 1,0, 0), (1,0,0,1,0,0,0,1), (0,1,0,0,1,1,0,0) and(0,0,0,1,1,0,0,1)
have 1 repeated distance:(2 = 4), while the polynomialg1,0,1,0,0,0,1,0) and (0,0, 1,0, 1,0, 1,0) have3 repeated

distances , 4 and6). o



In order to find matrices free of lengtheycles, the following theorem is useful:

Theorem I11.2 Forn = 29s, with ¢ > 1, a matrixA € ¥2"¢ can be free of lengti-cycles forilW[A] < 2¢—1;
on the other hand, matriA has length4 cycles forW[A] > 2¢ — 1.

Proof: Let us consider at first the cage= 2, that isn = 4s. By applyingys? to the polynomiak(z) we
obtain a polynomiat/(z) that defines a matriA’. Obviously, we havéV[A] > W[A’]. So, whenWV[A] = 3,
it must beW[A’] < 3 and odd. In the cas®’[A’] = 1, matrix A certainly has length-cycles. This is because
Theorem IIl.1 can be applied.

In the caséV[A’] = 3, instead, it must be’(z) = (0; k; k+5)2s Ora’(z) = (s; k; k+s)25. By considering the
first case (demonstration is similar for the second one), avet(z) = ({0, 2s}; k+{0,2s}; k+s+{0,2s} )45
by examining the structure of these polynomials, it is easyetrify that, except for some values bfin relation
with the value ofs, the corresponding matrices do not exhibit repeated disgnand therefore they are free
of length4 cycles.

When W[A] > 3, matrix A has always length-cycles. For example, wheW[A] = 5, three cases are
possible:

i) W[A'] =5; thena(z) = ({0,s,2s,3s}; ko +{0,2s}; k1 + {0, 2s}; ko + s+ {0, 2s}; k1 + s + {0, 25} ) 4s,
and it is easy to verify that, regardless the valuespoéndk;, these polynomials always exhibit repeated
distances.

i)y W[A'] =3; thena(x) = ({0,s,2s,3s}; ko + {0,2s}; ko + s + {0, 2s}; ho; ho + 28)4s, and the repeated
distance2s = n/2 appears, which is due to the symbols 1 at positibpgnd hg + 2s.

i) W[A'] = 1; thena(z) = ({0,s,2s,3s}; ho; h1; ho + 2s; b1 + 2s)45, and there are multiple repeated
distances equal to/2.
The analysis can be immediately extended to the cas& [&f] > 5, where the same conclusions hold.

Now let us consider the general case wijtty 2. Based on the demonstration above, it is clear that a negessa
condition for havingA free of length4 cycles is thai?’[A] = WW[A'], where A’ is the matrix relative to the
polynomiala’(z) = ¥2,%, (a(z)). In fact, in all cases wher#/[A] > W[A'], the additional elements ia(z)
must necessarily be at distaneg2, thus generating a repeated distance. In order to compileterbof, we can
proceed by induction from small matrices to larger onesyubgh the application of the inverse mapping. Let
us suppose that'(z) defines a matrixA’, with n’ = 29- 15, free of lengthd cycles. According to the induction
hypothesis, its weight i$V[A’] < 2(¢ — 1) — 1. Let us consider this relationship with the equality sige.(i
we assume the maximum weight). It is not difficult, by apptyithe inverse mappingngjfls(a(x)))—l, to
obtain a polynomiak(z) defining a matrixA with the same weight oA’ and also free of lengthi-cycles.
For example, the rightmost (or leftmost) part«fr) can be coincident witl'(x) (but this is not, obviously,
the only solution).

If we now consider another polynomiat! (), defining a matrixA” with n” = 2¢=1s but weightiW[A"] =
2q — 1, according to the induction hypothesis, surely it has reggbdistances (and, therefore, lendtiycles).
Actually, it is not difficult to design a matriA” that contains only one repeated distance. To this purpose,
it suffices to start fronu/(z) and to add two elements at distaneé/2 = n/4. When applying the inverse

mapping(y2,®, ,(a”(z))) "}, these two elements translate into elements(ir) that are at distance/4 in their



turn. This demonstrates that a matex can exist, withn = 29s and W[A] = 2¢ — 1, that is free of lengtht
cycles. An explicit rule for its construction will be given iTheorem IV.1.

If, always starting froma’(z), the number of added elements is four instead of two, the hedfj A"
becomesW[A"”] = 2¢ + 1. Because of the definition af-unitary matrix, these further elements must be
placed in positions that necessarily introduce (at leasttreer repeated distance. By applying the inverse
homomorphism, two (or more) repeated distances’{®) will translate into one (or more) repeated distance
in a(x), and matrixA will certainly contain lengtht cycles. The same reasoning obviously applies for larger
weights, so that we can conclude that a mathix with n = 2%s and W[A] > 2¢ — 1, has always length-

cycles.

IV. DESIGN OF%-UNITARY CIRCULANT MATRICES FREE OF LENGTH4 CYCLES

Theorem 111.2 states thap-unitary binary circulant matrices can exist, that are foédength4 cycles and
have an arbitrary odd weight (through a proper choicg)oHowever, it does not provide an explicit structure
for these matrices. The latter can be found on the basis @f ¢fieorems, that will be given next.

We now introduce the sets of polynomials we will use to degigrity-check matrices of QC-LDGM codes.
To make more explicit the notation, we will often put, in th@léwing, ¢ = m + 2 and assume, = 2™*2s,
The sets of interest can be described by polynomials hawiegtructure (11), wherer > 0, 0 < kg < 5,0 <

k1 <2s,..,0 <k, < 2™s, k; # kj, Vi # j andc;, d; are integer coefficients) < ¢;, d; < 2m 1%
a(x) =(c_18; ko + co28; k1 + c14s; .. 5k + cn 2™ s;
ko + s+ do2s; k1 + 2s + di4s; .. .

kpm +2Ms + dm2m+18)2m+2s. (12)

—om+2

The set of matrices (11) will be denoted By *; clearly=2"""s c w2""*s. A matrix in 22" "¢ can be
free of length4 cycles under a suitable choice of thgs (we note this is coherent with Theorem [11.2). The

following theorem holds:

Theorem V.1 Let us considen = 2125, The matrix;
a(x) = (0;ko; k1; ooy ki Ko + 83 k1 4 285 o5k + 27 8) s (12)

with 0 < kg < k1 < ... < kp, kiy1 > 2k; ands > 2k,,, is free of length4 cycles.

Proof: We note thata(x) € Egmﬁs. Proof is immediate by calculating all possible distancesmeen
symbols 1 ina(x). Because of the geometric progression, when fixing the tidteron thei-th position, the
distances); ;, with j < 4, are all different one each other and always greater thamligtancesy;_; 5, with
k < i— 1. Moreover, because of the assumption on the value, @idependently ofn, it is alwaysd; ; < J;;
for ¢ > j. As an example, the distance between the first and the lagtopois 3 - 2"'s — k,,, > 2""s + k,,,, the
latter being the distance between the last and the firstiposiimilarly for the other distances. This ensures

that repeated distances cannot exist(m). [ |
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Since the weight ofi(z) in (12) is W{[a] = 2m + 3, Theorem IV.1 gives an explicit rule to design matrices

free of length4 cycles with such a weight.

Example 4
Let us setm = 1, s = 7 andn = 225 = 56 and choosé:y = 1 andk; = 3. The following matrix:
a(x) = (0;1;3;8;17)56
is free of lengthd cycles. S

Obviously, we cannot say that (12) is the only structure ablensure the absence of lengtltycles. Even
more,a(z) could have the structure (12) but without satisfying thatiehships between thg’s ands specified

by the theorem, while remaining free of lengtheycles.

Example 5
Let us consider the matrix:
a(z) = (0515 3,7;12; 25; 51) 176,
that has the structure (12) with = 2,ko = 1,k1 = 3, k2 = 7, ands = 11 < 2k». It is possible to verify, through explicit
calculation, that this matrix is free of lengtheycles. o

It is important to note that the interest on the structure) (&justified by its simplicity and the possibility
of fast matrix inversion through the procedure describeth@next section.

In Section V we also derive bounds on the weight of the invefse-unitary matrix, and we show that its
actual weight can be very low with respect to the matrix sMereover, the bounds we derive on the weight
of the inverse do not depend on the matrix size; so, such ceatare able to provide encoding complexity
that is linear in the code length. These are the reasonsuwhgitary matrices are of interest for the design of
QC-LDPC codes in the form of LDGM codes.

V. 1)-UNITARY MATRIX INVERSION

A standard algorithm for inverting an x n circulant matrix exploits the fact that any matrix of thigpéy
can be made diagonal through the so-called Fourier mattiis permits for a very fast inversion. The main
limitation of this approach is that, when operating in a rifg, inversion is possible if and only if» andn
are coprime. In addition, it is also necessary to find an estéenof the ring, in such a way as to guarantee the
presence of: roots in the unit circle, as required by the implementatibithe fast Fourier transform. These

limitations can be overcome by exploiting the isomorphisstneen matrices and polynomials [26].

A. Explicit evaluation of the inverse matrix
For a matrixA with n = 2s (i.e.,q = 1) satisfying the condition)?* = 1,, Lemma .1 impliesa?(z) = 15,
and therefores ! (x) = a(x), which means thafA coincides with its inverse. This result permits to prove the

following:

Theorem V.1 If n = 4s (i.e., ¢ = 2) and Ay € ¥?* then,Va(z) € {ao(z) + I35}, the following relationship
holds:a(z) + a=!(z) = w(z), wherew(z) € I3¢ is independent of the choice ofx).
Proof: As 41 = 1,, from Lemma Ill.1 we haveud(x) = 145. This impliesa?(z) - a3(x) = 145 and

thena3(z) = ay*(z). By applying the mappis to both sides of the equality, because of the homomorphism
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properties, one findB/33 (ao(2))]? = [¢43(ag ' (z))]2. To verify this equalityao(z) andag ' (z) must differ by

an element belonging to the ideg?, i.e., it must be:
ao(z) + {ag ' () +wo(z)} = 0,

for somew () € 135. Similarly, by considering another element(z) € {ao(x) + I35} # ao(x) we shall find
awi (z) € I3% such that:

a1 () + {ay*(z) + wi(2)} = 0.

So:
ag() + ag ' (2) + wo(x) = a1 (z) + a7 (2) + w1 (2).

To demonstrate thaby(x) = wy(x) = w(x) (that is, uniqueness ab(z)) it is sufficient to prove that:
ao(z) + ag H(x) = ay(x) +a; ' (2).
For this purpose, we observe that(x) € {ao(z) + I35} can be always written as follows:
a1 (z) = ao(x) + wa(x).

Then, the above equality is verified if and only if:

ay () = ao(x) + wo(x) + wa(z).

But this relationship is certainly true. In fact, by usingwte have, as necessary:

ar(z)ay (x) = [ao(z) + w2 (x)] [ao(x) + wo(x) + wa(x)]

= aj(x) + ao(z)wo(z)

= ao(z)ag (z) = 1lus

having exploited the fact that?(z) = 0 and wo(x)ws2(z) = 0 (this is because, by definition, the non-zero

elementsw(z) € I35 are of typeb(z) (2% + 1), whereb(x) is a polynomial with the maximum order 2s). ®

For the matrices satisfying the hypotheses of Theorem Weljriverse matrix can be found by addiagx)
to a(x); w(z) can be calculated by inverting one matrix of the &ef(x) + I3}, and using it for all matrices
of the set.

Theorem V.1 can be extended as follows:

Theorem V.2 If n = 2725 and Ag € W2""°* then,Va(z) € {ao(x) + [2n,.*}, the following relationship

holds:

m—1

o} (2) = (a®" (2) + w(@)) [] o* (). (13)

=0
wherew(z) € I2..,,* is independent of the choice fz).
Proof: Proceeding like in the demonstration of Theorem V.1, we eantisat, by Lemmallll.1, 'rfpﬁm+25(a0(:c)) =
1, then

agmﬂ () = lgm+2, — a%MH(x) = a62m+1(x).
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From this:

and then:

27n+2 27n+2 2

[uais@d” @) = [e3tiste™ @)

This equality is satisfied by assuming:
ay?" (@) = ag" (x) + w(x),

for w(x) € I2..,*. The same holds for any othefz) € {ao(z)+I2n1.*}, and the polynomials(z) is unique
(demonstration as in Theorem V.1). Replacingz) by a(x), to obtaina~!(z), we need to multiply both sides

of the above relationship by:

from which (13) is derived. [ ]

B. Fast inversion

Eq. (13) provides a direct method for the computation of thesiise of ay-unitary circulant matrix, that
can be much faster than more conventional methods. The kiey pibthe procedure is the calculation of the
polynomialw(z). Multiplying both sides of (13) by:(z), we see thatv(z) can be obtained, in general, as the
solution of the following equation:

" ()w(z) =1+ a®"" (x). (14)

However, for the matrices in the ensemElﬁ"“s, that has been defined in Section IV, Eq. (14) can be directly
solved.

More precisely, it can be verified that, for these matrices,
a®" (2) =2 (c_18: ko + co2s; ky; (15)
ko + s+ do2s; k1 + 25((1 + 0im,0)))2m-+2s, (16)

whered; ; is the Kronecker delta function, and

2m+1

(z) = 2™ (c_15;ko + 0255 ko + 5 + dp28)gme2,. a7)

By replacing (16) and (17) in (14), the expressionugfr) can be explicitly found and then, through (13),
the polynomial of the inverse,~!(z), can also be obtained.

On the basis of the previous expressions, it could seemcthat= 0,1,2,3, ¢o = 0,1 anddy, = 0,1, in
all their possiblel6 combinations, define as many different situations. Acydtlis possible to verify, even
through explicit calculation, that the structure«ofz) depends only on the value of ;.

In detail, for evenc_; (thatis,c_; =0, 2), we have:

w(z)e = 2™ (2ko; 3ko; 3ko + 85 2ko + 28; 3ko + 25; 3ko + 35)n (18)
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while, for oddc_; (thatis,c_; = 1, 3), we have:
w(x), = 2™(ko;3ko;s; ko + 852k + s;3ko + 83 ko + 2s;
3ko + 2s;3s; ko + 385 2ko + 3s; 3k + 38)n. (19)

It is interesting to note thai(z) is independent of:;. It can be easily proved thal’[¢>" + w] < 11; this
result will be useful in the following (see Appendix A, in piaular).

According to (18) and (19), we see that, for computing:), we can always refer to the case= 0, as the
effect of m > 0 simply results in multiplying the polynomial so obtained ®¥. The values of_;, ¢, and
do determine the structure af(z) and, eventually, that of ~*(z). Form = 0, however, it is possible to verify
that the following combinations:c( 1, co,dp) = (0,0,0), (1,1,0), (2,1,1) and @,0,1) are equivalent, in the
sense they define polynomials that differ by a cyclic shiftsef n/4 positions, or a multiple of it. Precisely,
these polynomials ar€0; ko; s + ko)as, (S; 8 + ko325 + ko)as, (28325 + ko; 3s + ko)as and (ko; 3s; 3s + ko) as
respectively. Similarly, @0, 1), (1,0,0), (2,1,0) and @8,1,1) are also equivalent, and the same holds for
combinations @, 1,0), (1,1, 1), (2,0,1), (3,0,0) and for combinations( 1, 1), (1,0, 1), (2,0,0), (3,1,0). For
any equivalent set, only one matrix must be considered.dt) fatwo polynomials differ by a right shift of
positions, their inverses differ by a left shift efpositions as well.

When required, in the following we will focus on the choiee = 0, that is the first matrix of each equivalent

set.

C. Comparison with Euclid’s algorithm

The inverse of a matrix satisfying the assumptions of Thmoké2 can be easily found by using (13).
This reflects in a computation algorithm that, in many casan,be significantly faster than more conventional
approaches for matrix inversion. In this subsection, iripalar, we give some examples of comparison between
the proposed approach and the more classic Euclid’s dhgorit

A distinctive feature of the proposed approach, againsti@Esi@lgorithm, is that it exhibits a much weaker
dependence on the matrix size. In fact, the complexity of approach is mainly influenced by the matrix
weight. This can make the proposed procedure highly effedti the case of large and sparse matrices, like
those of interest for LDPC code design.

Some numerical examples are given in Table | for differefues ofn and different weight$V [a]. The table
shows the average time required for a single matrix inversiging Euclid’s algorithm and the new algorithm.
For each considered case, the processing time values havedieained by simulating the inversion of a

suitably large set of matrices (assumed to be the same fordigorithms) randomly chosen in the ensemble

:27n+28

—s

Both inversion algorithms were implemented in PARI/GP [2¥} exploiting optimized libraries for polyno-
mials over finite fields. The source code was profiled by cargid only the operation of inversion, without any
accessory function, as those for loading matrices andngtogsults. All simulations ran on a fixed hardware
and the numerical values have been normalized with respebetaverage inversion time required by Euclid’s
algorithm on matrices witm = 128 and Wa] = 3, that was0.87 ms on the hardware adopted. Only small

values ofW[a] have been considered. From the table we see that the progéssie required by the new
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Table |
NORMALIZED AVERAGE TIME FOR MATRIX INVERSION USINGEUCLID’ S ALGORITHM AND THE NEW ALGORITHM

n 128 256 512 1024 2048 4096 8192
Wla] =3
Euclids alg. | 1.00  1.96 4.19 9.13 22.88 60.59 174.39
New alg. 0.22 0.22 0.23 0.24 0.23 0.23 0.23
Wla] =5
Euclid’s alg. | 3.17 9.99 32.07 108.89 552.78 2145.35 9511.17
New alg. 0.52 0.55 0.58 0.59 0.57 0.61 0.60
Wla]l =7
Euclid’s alg. | 4.33 13.98 50.11 196.99 941.40  4083.91 1676977
New alg. 2.29 2.96 3.79 4.47 4.86 5.33 5.45
Wla] =9
Euclid's alg. | 491 16.25 60.21 232.80 1069.89 4802.12 2007641
New alg. 4.64 9.53 21.86 34.40 44.08 86.63 94.11

algorithm is smaller than that required by Euclid’s aldumit for the considered weights, that are of interest for

the design of LDPC codes.

D. Weight of the inverse matrix

Another important consequence of the availability of esipexpressions foiw(x), and then fora=!(z), is

the possibility to estimate the weight of the inverse matffix this purpose, the following theorems hold:

Theorem V.3 Forn = 4s, the matrices irE2* with W[a] = 3, free of length4 cycles, haves < W[a~1] <9.
Proof: Let us consider the first combination of each equivalentthat,hasc_; = 0. Because of Theorem
V.1, by using (16) and (18) withn = 0, we obtain:

a Y (x) = (0;ko + co2s;2ko; ko + s + do2s; 3ko;
3ko + s;2kg + 2s; 3ko + 2s; 3ko + 38)45.

Depending on the values &f, ands, at most four positions can be coincident two by two; themfthe weight
of a=!(x) is between 5 and 9 (the latter when no positions are cointiden

For W[a] > 3 the weight of the inverse is destined to increase and theuatiah of a range of variability
for W[a~!'] becomes more difficult as well. In Section VI, however, whigre proposed theory will be applied
for the design of LDGM codes, we will limit to considé¥ [a] < 5 (i.e.,m = 0 andm = 1), as this weight is
large enough to ensure the achievement of good performance.

Similarly to Theorem V.3, that holds fon = 0, an upper bound foWW[a~!] in the case ofn = 1 can be

found through explicit calculation. More precisely, sitagtfrom (13) and using the properties of the matrices
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in =% it is easy to find:
a7 (2) = (a*(x) + w(x))a(z) =
(0; 2ko; 4ko; 6ko; 2k1; 2s + 2ko; 4s + 2ky; 25 + 6ko; 4s + 4ko;
4s + 6ko; 65 + 6ko; ko; 3ko; bko; Tko; 2k1 + ko; 2s + 3ko;
4s + 2ky + ko; 2s + Tko; 4s + Bko; 4s + Tko; 6s + Tko; kq;
2ko + ki;4ko + k1;3k1;4s + 3k 4s + 4ko + ki1; s + ko;
s+ 3ko; s + bko; s+ Tko; s + 2k1 + ko; 3s + 3ko;
55 + 2k1 + ko; 3s + Tko; bs + 5ko; 5s + Tko; 7s + Tko;
2s + k1;2s + 4ko + k1;2s + 3k1; 4s + 2ko + kq;

65 + 3k1; 65 + 4ko + k1)ss, (20)

that providesiW[a~!] < 45. Obviously, this upper bound has a sense only f@ufficiently large § > 6);
otherwise, the upper bound would be greater than

Depending on the values &f, andk, the upper bound can be lower. This occurs when some terni0)n
become equal and, therefore, annul each other. As an exafople = 3k, the maximum weight i21.

Moreover, depending on the value gfthe actual weight of the inverse can be smaller.

Example 6
Let us consider the matrix of the Example 4. By applying (48, find w(z) = (4; 6; 20; 32; 34; 48)5¢. Then, using (13),
the inverse matrix is obtained as:

a”'(z) = (a(z) +w(@))a(z)

((0; 2; 6; 16; 34)56 + (4; 6; 20; 32; 34; 48)56) -

(0513 3;8; 17)56

(0525 4; 165 20; 32; 48)56 - (0; 15 3; 8; 17)56
= (1;2;4;7;8;9;10; 12; 16; 20; 23; 24; 28; 32; 35; 37
40; 48; 51) 56.
Thus W a™'] = 19, which is smaller than the upper bound. o

Another interesting issue concerns the distribution ofitiverse matrix weight. Fom = 1, some examples
are shown in Table I, where we have reported the (per ceotjlémce of each weight, estimated through a
Montecarlo simulation ofil00,000 matrices of each size. We see that, for- 16, the weight spectrum has
a maximum at the upper bound. The convergence to the upp&dbeonfirmed by the trend of the average
value (W[a~']), becomes more and more evident for increasingince further elisions in the expression
above become less and less probable. Explicitly, this m#zats for very largen, the upper bound gives the
actual weight for an increasing fraction of the inverse mas.

In Appendix A, a bound on the weight of the inverse is derivedthe casen > 1.
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Table Il

WEIGHT DISTRIBUTION OF THE INVERSE MATRICES IN THE CASE OFn = 1, FOR DIFFERENT VALUES OFs

Wla™'] | s=16 s=64 s=256 s=1024
0.04 0 0 0

0.08 0.01 0 0

0.08 0.01 0 0

11 0.04 0.01 0 0
13 0.67 0.03 0 0
15 0.93 0.07 0.01 0
17 0.93 0.06 0 0
19 1.04 0.07 0.01 0
21 3.22 0.91 0.23 0.05
23 4.51 1.14 0.29 0.07
25 7.10 1.15 0.27 0.06
27 4.10 0.84 0.17 0.05
29 2.89 0.63 0.16 0.05
31 0.46 0.03 0 0
33 2.29 0.12 0.01 0
35 16.77 4.03 1.00 0.23
37 11.60 4.97 1.33 0.34
39 10.02 3.17 0.81 0.20
41 20.62  10.80 3.05 0.77
43 8.99 6.63 1.93 0.48
45 3.62  65.32 90.73 97.70
(Wla=) | 34.95  42.40 44.35 44.84

VI. 1-UNITARY MATRICES IN LDGM CODES
A. Code features

The LDGM codes considered in [8] are systematic codes witleggor matrixG = [I|P], whereP is a
K x (N — K) sparse matrix andl is the K’ x K identity matrix. The parity-check matrix of these codes ban
expressed a#l = [P7|I], where the identity matrix has siZé&V — K) x (N — K) and superscript denotes
transposition. So, matriH is also sparse, and this permits the application of stanalgatithms for decoding
of LDPC codes.

The weakness of these codes is the existence, in the Tarayan,@f N — K coded (parity) bit nodes with
degreel. This implies that the messages propagated from the drdeded bits to their corresponding check
bits are always the same and are not affected by the decoldjogtam. As a consequence, these codes exhibit
high error floors, which require resorting to serial conoat®n of two LDGM codes [9].

It is reasonable to think that the performance of LDGM codesh in single and concatenated configuration,
can be improved by replacing the identity matrix ki, that is responsible for the ordéreoded bits, with
some other sparse matrix having weight larger thaSo, contrary to [8], our starting point is the parity-check
matrix.

Let us consider (1). By assuming that at least one ofHheblocks ¢ = 0... N, — 1), e.g., the last block,
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is of full rank, the generator matri& can be obtained as:
— T
(HNz—l ’ HO)

(HX/iq ’ Hl)T

G=|1 ; (21)

(Hyl_, - Hy,2)"
so, it is formed by aK x K identity matrix (remind that is the information length) followed by a column
of K, = N, — 1 circulant blocks with size: = N/N,. MatricesG andH are related through the expression
H-GT =o0.

We observe that the LDGM codes in [8] and [9] can be interpratea special case of the codes with (1) and
(21), whereH y,_1 = I. The choice of the identity matrix gives the lowest possiléasity of the generator
matrix, but at the expense of the code minimum distance. Astioreed, this reflects on high error floors. We
will denote such codes adentity (or I1-based) QC-LDGM codes in the following.

The alternative choice we propose consists in usin@I&s_:, a-unitary block with suitable weight (greater
than1). We have seen in Section V thatunitary matrices, properly designed, can have sparseseseso
producing LDGM codes in the specified sense. They ensureezayding and good decoding features without
penalizing the distance properties. We will denote suctesay-unitary QC-LDGM codes in the following,
and we will compare their performance and complexity witbseh of I-based codes both in analytical and
numerical terms.

In order to avoid the existence of lengtteycles in the Tanner graph associated to eaamitary QC-LDGM
code, we adopt-unitary matrices in the form (12) a&d,_1. They are designed by randomly choosing the
ko ...k, parameters, with the constrairis< kg < k1 < ... < ky,, ands > 2k,,, (see Theorem IV.1). Though
the further constraink;; > 2k; has not always been imposed, matrices free of ledgtigeles have been
found for all the considered choices of code parameters.sEfection ofiy-unitary matrices has been done
by aiming at reducing the weight of the inverse matrix witlspect to the bounds found in Section V-D, as
much as possible. The circulant blocKs, i € {0, 1,..., N, — 2}, have been designed on a random basis, by
avoiding the introduction of length-cycles with they-unitary block and between each couple of them.

All codes we consider can be treated as LDPC codes, and d#¢bdsugh standard belief propagation
algorithms. We adopt the log-likelihood ratios sum-pradalgorithm (LLR-SPA) [28].

In order to compare performance gfunitary QC-LDGM codes with that of-based QC-LDGM codes,
we first refer to transmission over the Binary Symmetric Gler{(BSC). Then, we will give some examples
of performance over the Additive White Gaussian Noise (AW@Kannel, where we will also assess the

concatenated scheme proposedIfbased codes [8], [9].

B. Minimum distance and multiplicity

In order to estimate the minimum distance and its multipliéor 1-based and)-unitary codes, we can refer
to previous literature. For parity-check matrices in therf@l), it is proved in [29] thatyi,j : 0 < i < j < Ny,
there exists a codeword of weight [H;H;] < W[H;| 4+ W[H,]; so, the code minimum distance can be upper
bounded as follows:

din < min_ {W[H;] + W[H;]} = duin- (22)

T 0<i<ji< N
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Based on these arguments, we can also obtain a (loose) l@uedmon the number of weighls,;,, codewords
as follows:

Py = {i,j: WH] + WH,] = dmin;0 < i < j < Ny }|. (23)

dmin
Each of the; low weight codewords involves a different pair of circuldtcks(i, j); so, it cannot coincide
with a cyclically shifted version of another of such codetnWe denote each of them aoa weight pattern
in the following. The numbeP;  of low weight patterns can be easily estimated starting fioertwo smallest

block weights and their block multiplicity:

Wi = min W[H];

0<i< Ny
Wy = Ognz;g}\[b {W[H;] : W[H;] > W1}; (24)
N1 = |{I‘IZ W[Hl] :W1}|;

Based on (24)F; = can be estimated as follows:

NQ, lf N1 = 1;
P = (25)
(), i Ny > 1

2
Due to the quasi-cyclic nature of the codes, each ofithe low weight patterns can give rise, at most,ito
cyclically shifted versions of itself that are still vali@dewords. So, an estimate of the weight;, codewords
multiplicity can be expressed as:

A ~n-P (26)

dmin dmin®
For the codes considered in Section VI-D, we have found 22} folds with the equality sign and we have
verified (25) by analyzing undetected errors (or decodesrgyrthat occur due to transitions of the received
codeword to near codewords during Montecarlo simulatidnsalmost all cases, we have found a number
of different low weight patterns exactly coincident withathpredicted by (25). The only exception was the
(8192, 7168) ¢-unitary code, for which onl\21 different low weight patterns (out di8 predicted by (25))

were found.

C. Complexity assessment

In order to comparé-based withy-unitary QC-LDGM codes under the complexity viewpoint, weed to
estimate both their encoding and decoding requirements.

An exact complexity evaluation should be referred to a sjpeichplementation, and depends on a variety of
factors as the degree of parallelization, the routing egfias and the memory occupation. All these aspects are
influenced by the hardware architecture adopted and thgrdebbices. On the contrary, we need a complexity
measure independent of the final implementation, but saamfienough for a fair comparison between different
codes.

For this reason, we express complexity in terms of the nurabelementary operations needed for encoding
and decoding. Such number is strictly related to the dergfitgymbol 1 in the generator and parity-check
matrices, and allows to compare complexity of differenteoavithout referring to any specific hardware or

software implementation.
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As a measure of encoding complexity, we consider the numbelementary operations needed to calculate
each redundancy bit. So, encoding complexity can be exgiessthe average column weight in the 1&st K

columns of the generator matrix in systematic form:

N—-1
i= w i
Cenc = %a (27)

whereV [g;] denotes the Hamming weight of tii¢h column of G.

We consider generator matrices in the form (21); so, thensolweight in their lastvV — K columns is
constant and coincident with the sum of the Hamming weights @w (or column) ofH ' | - Ho, Hy' | -
Hy,....Hy | -Hy, o

For anl-based QC-LDGM code i, —; is an identity block, and the Hamming weights of the blockshie
non-identity part ofG coincide with those of the firsv, — 1 blocks of H. If they all have row (or column)
weight X, it results inCe,,. = (N, — 1) X. For a-unitary QC-LDGM code, instead, the weight of the last
N — K columns ofG is greater. However, it remains significantly smaller thiaat tof a generic code, whose
generator matrix is dense. In the latter case, (27) givesnandéing complexity approximately equal 16,/2,
and this number can be extremely large for rather long codes.

As for decoding complexity, we consider that belief progamadecoding algorithms work on the Tanner
graph, exchanging messages along its edges. Thus, as areedsiecoding complexity, we can use the
number of messages exchanged by belief propagation pedeé@dut per iteration, that coincides with the
average Hamming weight of the parity-check matrix columindormula:

_ i Wi

Cdec - # ) (28)

whereW [h;] denotes the Hamming weight of thieh column ofH. In the parity-check matrix of a regular
I-based QC-LDGM code, the firgtV, — 1) blocks have column weighk, while the last block has column
weight 1. So, for these code/je. = [(Ny — 1) X + 1]/ Np.

D. Code examples

In this section, we consider some examples of codes havirty{glieck matrices in the form (1) and compare
the performance achieved lybased () and-unitary (C,) QC-LDGM codes.

The parameters of the considered codes are summarized la MabMatrix Hy,_; is specified by the
positions of the non-zero coefficients in its represengagislynomial. The table also provides the weights of
the other blocks ofH. As expected]-based codes exhibit the lowest encoding complexity, bist ith paid
in terms of error correction performance, as will be showrthia following. This can also be argued by
the minimum distance values, reported in Table Ill, togetli¢h the corresponding multiplicity. Farbased
codesdni, Simply coincides with the lowest column weight in the lefshpart of the parity-check matrixy(
columns), augmented bly For-unitary codes, instead, the minimum distance can be higiner this reflects
into lower error floors. The minimum distance of the codes #&ir minimum weight codewords multiplicity

have been estimated as explained in Section VI-B.
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Table Il

PARAMETERS OF THE CONSIDERED-BASED (C7) AND %-UNITARY (C;,) QC-LDGM CODES

Case | Code(V, K) n W[H;],i=0,1,...,N, =1 | Hy, 1 WHE ] | dwin | Agyy | Cenc | Caee

1 C1(2560, 2048) 512 {6,6,6,6,1} (0) 1 7 2048 24 5
Cy (2560, 2048) 512 {5,5,5,5,5} (0;8;24;72;152) 19 10 5120 338 5
C¢(1248,936) 312 {5,5,5,1} (0) 1 6 936 15 4

2 C* (1248, 936) 312 {7,6,6,1} (0) 1 7 624 19 5
Cy (1248, 936) 312 {5,5,5,5} (0;3;9;42;87) 21 10 1872 261 5
C¢(1880, 1504) 376 {5,5,5,5,1} (0) 1 6 1504 20 4.2

3 C*(1880,1504) 376 {6,6,6,6,1} (0) 1 7 1504 24 5
Cy (1880, 1504) 376 {5,5,5,5,5} (0;6;18;53;112) 21 10 3760 366 5
C¢(8192, 7168) 1024 | {5,5,5,5,5,5,5,1} (0) 1 6 7168 35 4.5

4 C*(8192,7168) 1024 | {6,6,6,6,5,5,5,1} (0) 1 6 3072 39 5
Cy (8192, 7168) 1024 | {5,5,5,5,5,5,5,5} (0; 325 160; 224; 480) | 15 10 28672 525 5
C'r (10000, 5000) | 5000 | {5,1} (0) 1 6 5000 5 3

5 C'1 (5000, 4500) 500 {4,4,3,3,3,3,3,3,3,1} (0) 1 4 3500 29 3
Cy (5000, 4500) 500 {3,3,3,3,3,3,3,3,3,3} (0;3;128) 9 6 22500 | 243 3
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Figure 2. (a) BER and (b) FER performance of QC-LDGM code$ Wit = 2560 and K = 2048 over the BSC.

1) Casel: As a first example, we have considered two codes with length= 2560 and dimension
K = 2048, having parity-check matrices formed by a row 8f = 5 circulant blocks with sizé512. Their
error correction performance has been assessed over theaB&Eig. 2 reports the simulated BER and FER
curves.

The simulated FER curves confirm that the performance of/thmitary code is better with respect to that of
the I-based code, even for transition probabilities within thewdation scope. The same is not equally evident
in the BER curves, since their intersection should occuny low error rates.

The improvement in performance is paid in terms of compyexit fact, though both codes have the same
decoding complexity, the-unitary code exhibits higher encoding complexity. Thatikiis LDGM character,
however, encoding complexity is still considerably smatlen that of a generic code, that, in this case, would

be, approximately/2 = 1024.
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Figure 3. (a) BER and (b) FER performance of QC-LDGM code$ it = 1248 and K = 936 over the BSC.

2) Case2: As a second example, we have considered the parameters chtthe/4 "A" IEEE 802.16e
standard LDPC code with factor 52 [18], that has lengthV = 1248 and dimensionk’ = 936. A QC-LDGM
code has been designed, denoted’@$1248, 936), that has a parity-check matrix formed by thig x 312
circulant blocks with weightX = 5, followed by a312 x 312 identity matrix. We have then considered a
secondl-based code, denoted &% (1248, 936), that has3 blocks with higher weight, in such a way as to
increase its minimum distance. In order to compare the eater performance and complexity of these two
[-based QC-LDGM codes with those of/aunitary code, we have designed the code denotet,&$248, 936),
having a parity-check matrix formed by all weightlocks, the last of which is 812 x 312 ¢-unitary circulant
matrix. Fig. 3 reports the simulated performance of thes#esmver the BSC. As for other examples in the
following, the firstl-based QC-LDGM code has the same weight of non-identityksl@s they-unitary code.
The second-based QC-LDGM code, instead, has non-identity blocks witheased weight in order to have
the same decoding complexity as theunitary code.

From Fig. 3 we see that the twebased QC-LDGM codes have rather high error floors. The cedegded
by using they-unitary matrix, instead, is able to achieve better perfomoe in the error floor region. This
results from the FER curve, showing a more favorable slofpe Jame is not equally evident in the BER
curve, that, however, exhibits a better slope when trargariss simulated over the AWGN channel (see Fig.
4).

3) Case3: Another relevant example can be obtained by consideringain@meters of the codes used in the
Digital Video Broadcasting - Return Channel Satellite (DRES) standard [30]. Actually, the current version
of the standard uses a turbo code and not an LDPC code. Thedndoder consists of a double binary circular
recursive systematic convolutional code, combined withoptimized two-level interleaver and a puncturing
map to deal with variable rates. However, the possibilityeplace the turbo code with LDPC codes has been
explored in recent literature, and encouraging result® leeen obtained [31], [32].

Figure 5 shows the performance of three codes with MPEGZrimdton block size (that is 188 bytes) and
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Figure 4. (a) BER and (b) FER performance of QC-LDGM code$ it = 1248 and K = 936 over the AWGN channel.

10" 10 rm

oK +X
1074 % \+\;§
\+§>§< 104 \\><
10° A +\%

XA 1074 +\X

\
+\+
N
10°4 \
5 10%4 %\ +\
N X %
1074 \\+\ \% \
e PG W
B X& \ 5 B K \+
. |—+— C’(1880, 1504) % 10°4—+— C?(1880, 1504)
10°4 .
—%— C7(1880, 1504) —x— C°(1880, 1504) X
—x— C,(1880, 1504) —x— C,(1880, 1504)
10°L— ; : : i 10° ; : : i
2 3 4 5 6 2 3 4 5 6
E/N, [dB] E/N, [dB]
(@) (b)

Figure 5. (a) BER and (b) FER performance of QC-LDGM code$ Wit = 1880 and K = 1504 over the AWGN channel.

code rated/5. For all codes, the parity-check matrix has the structujewith N, = 5 andn = 376; so the
code has lengthv. = 1880 and dimensionk = 1504. The first code is an-based QC-LDGM code and it
is denoted as”'7(1880,1504). Its parity-check matrix is formed by four circulant blockd, ..., Hs, with
weight X = 5, followed by an identity matrix. The second cod#,(1880, 1504), is still anl-based QC-LDGM
code, but its parity-check matrix includes weighblocks. The third code is insteadvyaunitary QC-LDGM
code, with a parity-check matrix formed hy, = 5 circulant blocks with weighb, the last of which is a
1-unitary circulant matrix. From the figure we see that, alsahis case)-based QC-LDGM codes exhibit a

significant error floor, while the-unitary code has simulated curves with a more favorablgesfor increasing

signal-to-noise ratio.
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Figure 6. (a) BER and (b) FER performance of QC-LDGM code$ Wit = 8192 and K = 7168 over the AWGN channel.

4) Case4: A fourth example is shown in Fig. 6 for codes witi = 8192, K = 7168 and code rate
7/8. These parameters are of interest, as they are very clodes$e adopted in a well known LDPC code
proposed for near-Earth space missions by the Consult@twemittee for Space Data Systems (CCSDS) [21].
We compare the performance of three QC-LDGM codes havinigypetreck matrices formed by a row 6f
circulant blocks with size: = 1024. The first code(C'7(8192,7168), is anl-based QC-LDGM code with all
non-identity blocks having weighit. The second cod&;? (8192, 7168), is also anl-based QC-LDGM code,
but its parity-check matrix includes weightblocks. The third code is insteadyaunitary QC-LDGM code,
with a parity-check matrix formed by all weightblocks. From the figure we see that the latter code has good
performance, with steep slope of the curves and low error.fldte twol-based codes, on the contrary, exhibit
a rather high error floor.

5) Caseb5: A common solution for reducing the error floor in LDGM codegépresented by the adoption
of concatenated schemes, formed by an outer high-rate LD&Gé tllowed by an inner low-rate LDGM code
[8], [9]. Decoding is accomplished by using two belief prgpion decoders in serial concatenation: first, the
inner code is decoded starting from channel informatioantthea posteriorimessages it produces are used
asa priori information to initialize the outer decoder.

By this procedure, the error floor of a single low-rate LDGMleacan be often significantly reduced, at the
cost of increased complexity due to the serial concatematiowever, we have verified that, also in concatenated
schemes, the adoption gfunitary codes can help to improve performance. As an exeym# have considered
a (10000, 5000) inner QC-LDGM code having parity-check matrix formed by@)0 x 5000 circulant block
with weight 5, followed by a5000 x 5000 identity matrix. Such code, denoted @5(10000, 5000) in Table
[, has been used in serial concatenation with two différ@®00,4500) outer codes, both described by a
parity-check matrix in the form of a row of tef00 x 500 circulant blocks. The first outer code, denoted as
C1(5000,4500), is anl-based QC-LDGM code, characterized by: two circulant bdoskth weight4, seven
circulant blocks with weighs and one identity block. The second code, denoted,@$000, 4500), is described
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Figure 7. (a) BER and (b) FER performance over the AWGN chaoh@C-LDGM codes of Casé.

by 10 circulant blocks with weigh8, the last one being &-unitary block. Their parameters have been chosen
in such a way as to obtain the same decoding complexity fdr botles.

As we notice from Fig. 7, cod€';(10000,5000), when used alone, has quite poor error correction per-
formance, and the adoption of the concatenated schemellgcallaws to improve it. On the other hand,
simulations show that including thg-unitary code in the concatenated scheme has positivetefecthe error
floor: it permits to improve further the performance withpest to the adoption of an outebased QC-LDGM

code.

VIlI. CONCLUSION

The first goal of this paper was to define a new class of sparsel@nt matrices, namegl-unitary matrices,
that are easily invertible and whose inverse can be sparsagh not being permutation matrices. We have
shown that, under suitable choices, these matrices carebeofrlength4 cycles.

These features make thieunitary matrices a smart element for the design of QC-LDGides, that are able
to join the inner structure of quasi-cyclic codes with théstence of a sparse representation of the generator
matrix. This ensures low complexity but also error floor parfance better than that offered by other codes of
the same class.

We have shown that good codes based/emnitary matrices can be designed, with the code length ated r

adopted for relevant applications like WiMax, DVB-RCS am@éce missions.

APPENDIXA

A BOUND ON THE WEIGHT OF THE INVERSE FORn > 1.

Theorem A.1 Forn = 225, m > 1, the matrices irE2" "¢ with W[a] = 2m + 3, whose inverse can be

computed by using Theorem V.2, have

Wla™ '] < 11(2m +3) ﬁ(% + 3).
k=2

(29)
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Proof: Let us consider (13). Based on the expressions in Section weBknow that:
Wla?" +w] <11.

On the other hand, it is easy to find:

9i 2m + 3 for i =0,
Wla® ] = (30)
2m +5 —2i fori > 0.

Therefore:
m—1

Wa?" +w] [ wla*]

Wia™!]

IN

~.

-1
< 11@2m+3) [T @m+5—2i)

3

3

Il
-

and, through simple algebra, (29) is finally obtained.
|

It should be noticed that the upper bound (29) can be looggerding on the matrix structure, the actual
weight of the inverse can be much smaller.

Example 7
Let us consider the matrix of the Example 5, that is charaedrbym = 2. Its inverse, computed through (13), results in:

a lz) = (a'(2) +w(2))a’(z)a(z)
= (0;1;2;8;12; 14; 15; 16; 17; 19; 20; 24; 28; 32; 36;
39;40; 43; 44; 48; 56; 60; 63; 68; 72; 80; 84; 87; 92;
96; 103; 105; 107; 108; 120; 127; 131; 132; 144; 151,
156; 168; 175)176

and, thereforeW[a‘l] = 43. On the other hand, the upper bound in this case gﬁVé&‘l] < 539, that exceeds the value
of n. It should be observed, however, that the polynomi@l) (as well asa™'(x)) can be scaled in such a way as to
maintain the weight with a larger size. For example, we cdinee

a(z) = S8xa(z)=28%(0;1;3;7;12;25;51)176 =
= (0;8;24; 56; 96; 200; 408) 1408
such thata' (z as the same features ofx ut a lower density. oreover, Its inverse has the same w “(x). ¢
h thata’ h h f b | density. M its i h h igh~*

It is also meaningful to compare the upper bound (29) with tthe upper bound determined through a

numerical search. Examples are shown in Table Vet m < 4.

Table IV
ESTIMATED AND TRUE UPPER BOUND ON THE WEIGHT OF THE INVERSE MARIX FOR SOME VALUES OFm

Upper bound estimate (29)  True upper boubd

m
2 539 269
3 6237 1873
4 83853 14969
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As already observed fan = 1, the upper bound becomes smaller if specific relationshigh&den thek;'s

are established. As an example, for= 2, k; = 3ko and ky = 4ko we find W{a=1] < 75.
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