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A Random Matrix–Theoretic Approach to Handling
Singular Covariance Estimates

Thomas L. Marzetta, Gabriel H. Tucci and Steven H. Simon

Abstract—In many practical situations we would like to es-
timate the covariance matrix of a set of variables from an
insufficient amount of data. More specifically, if we have a set
of N independent, identically distributed measurements of an M
dimensional random vector the maximum likelihood estimate is
the sample covariance matrix. Here we consider the case where
N < M such that this estimate is singular (non–invertible)
and therefore fundamentally bad. We present a radically new
approach to deal with this situation. Let X be the M ×N data
matrix, where the columns are the N independent realizations
of the random vector with covariance matrix Σ. Without loss of
generality, and for simplicity, we can assume that the random
variables have zero mean. We would like to estimate Σ from
X . Let K be the classical sample covariance matrix. Fix a
parameter 1 ≤ L ≤ N and consider an ensemble of L × M
random unitary matrices, {Φ}, having Haar probability measure
(isotropically random). Pre– and post–multiply K by Φ, and by
the conjugate transpose of Φ respectively, to produce a non–
singular L × L reduced dimension covariance estimate. A new
estimate for Σ, denoted by covL(K), is obtained by a) projecting
the reduced covariance estimate out (to M ×M ) through pre–
and post–multiplication by the conjugate transpose of Φ, and
by Φ respectively, and b) taking the expectation over the unitary
ensemble. Another new estimate (this time for Σ−1), invcovL(K),
is obtained by a) inverting the reduced covariance estimate,
b) projecting the inverse out (to M × M ) through pre– and
post–multiplication by the conjugate transpose of Φ, and by
Φ respectively, and c) taking the expectation over the unitary
ensemble. We show that the estimate cov is equivalent to diagonal
loading. Both estimates invcov and cov retain the original
eigenvectors and make nonzero the formerly zero eigenvalues.
We have a closed form analytical expression for invcov in terms
of its eigenvector and eigenvalue decomposition. We motivate
the use of invcov through applications to linear estimation,
supervised learning, and high–resolution spectral estimation. We
also compare the performance of the estimator invcov with
respect to diagonal loading.

Index Terms—Singular Covariance Matrices, Random Matri-
ces, Limiting Distribution, Sensor Networks, Isotropically Ran-
dom, Stiefel Manifold, Curse of Dimensionality

I. INTRODUCTION

The estimation of a covariance matrix from an insufficient
amount of data is one of the most common multivariate
problems in statistics, signal processing, and learning theory.
Inexpensive sensors permit ever more measurements to be
taken simultaneously. Thus the dimensions of feature vec-
tors are growing. But typically the number of independent
measurements of the feature vector are not increasing at a
commensurate rate. Consequently, for many problems, the
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sample covariance matrix is almost always singular (non–
invertible). More precisely, given a set of independent multi-
variate Gaussian feature vectors, the sample covariance matrix
is a maximum likelihood estimate. When the number of feature
vectors is smaller than their dimension then the estimate is
singular, and the sample covariance is a fundamentally bad
estimate in the sense that the maximum likelihood principle
yields a non–unique estimate having infinite likelihood. The
sample covariance finds linear relations among the random
variables when there may be none. The estimates for the larger
eigenvalues are typically too big, and the estimates for the
small eigenvalues are typically too small.

The conventional treatment of covariance singularity artifi-
cially converts the singular sample covariance matrix into an
invertible (positive–definite) covariance by the simple expedi-
ent of adding a positive diagonal matrix, or more generally, by
taking a linear combination of the sample covariance and an
identity matrix. This procedure is variously called “diagonal
loading” or “ridge regression” [12], [10]. The resulting covari-
ance has the same eigenvectors as the sample covariance, and
eigenvalues which are uniformly scaled and shifted versions
of the sample covariance eigenvalues. The method of Ledoit
and Wolf [7] automatically chooses the combining coefficients
for diagonal loading.

We propose a radically different alternative to diagonal load-
ing which is based on an ensemble of dimensionality reducing
random unitary matrices. The concept is that the unitary matrix
multiplies the feature vectors to produce shortened feature vec-
tors, having dimension significantly smaller than the number
of feature vectors, which produce a statistically meaningful
and invertible covariance estimate. The covariance estimate
is used to compute an estimate for the ultimate quantity or
quantities of interest. Finally this estimate is averaged over
the ensemble of unitary matrices. We consider two versions
of this scheme which we call cov and incov. We show that the
estimate cov is equivalent to diagonal loading. Both estimates
invcov and cov retain the original eigenvectors and make
nonzero the formerly zero eigenvalues. We have a closed form
analytical expression for invcov in terms of its eigenvector
and eigenvalue decomposition. We motivate the use of invcov
through applications to linear estimation, supervised learning,
and high–resolution spectral estimation. We also compare the
performance of the estimator invcov with respect to diagonal
loading.

Throughout the paper we will denote by A∗ the complex
conjugate transpose of the matrix A. IN will represent the
N×N identity matrix. We let Tr be the non–normalized trace
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for square matrices, defined by,

Tr(A) :=

N∑
i=1

aii,

where aii are the diagonal elements of the N ×N matrix A.
We also let tr be the normalized trace, defined by tr(A) =
1
NTr(A).

II. NEW APPROACH TO HANDLING COVARIANCE
SINGULARITY

We begin with a set of N independent identically distributed
measurements of an M dimensional random vector where
N < M . We introduce an ensemble of L×M random unitary
matrices, such that L ≤ N . The unitary matrix multiplies
the feature vectors to produce a set of N feature vectors
of dimension L from which we obtain an invertible sample
covariance matrix. The dimensionality reduction process is
reversible (i.e., no information is thrown away) provided it
is done for a sufficient multiplicity of independent unitary
matrices. The key question is what to do with the ensemble
of reduced dimension covariance estimates.

A. Notation and sample covariance

We are given a M×N data matrix, X , the columns of which
comprise N independent identically distributed realizations
of a random vector. For convenience we assume that the
random vector is zero-mean. We also will assume that the
random vector is circularly-symmetric complex. The sample
covariance is

K =
1

N
XX∗. (1)

We are interested in the case where N < M . Consequently
the sample covariance is singular with rank equal to N .

B. Dimensionality–reducing ensemble

We introduce an ensemble of L×M random unitary matri-
ces, Φ where L ≤ N and ΦΦ∗ = IL, where IL is the L× L
identity matrix. The multiplication of the data matrix by the
unitary matrix results in a data matrix of reduced dimension,
L × N , which in turn produces a statistically meaningful
sample covariance matrix provided that L is sufficiently small
compared with N ,

1

N
ΦXX∗Φ∗ = ΦKΦ∗. (2)

We need to specify the distribution of the random unitary
matrix. One possibility would be to use a random permutation
matrix, the effect of which would be to discard all but L of
the M components of the data vectors. Instead we utilize the
Haar measure (sometimes called the “isotropically random”
distribution [11]). A fundamental property of the Haar distri-
bution is its invariance to multiplication of the random unitary
matrix by an unrelated unitary matrix. Specifically, let p(Φ) be
the joint probability density for the components of the unitary
matrix, and let Θ be any unrelated M×M unitary matrix (i.e.,

either Θ is deterministic, or it is statistically independent of
Φ). Then Φ has Haar measure if and only if for all unitary Θ

p(ΦΘ) = p(Φ). (3)

Compared with the random permutation matrix, the Haar
measure is more flexible as it permits linear constraints to
be imposed.

C. Two nonsingular covariance estimates
The generation of the ensemble of reduced-dimension co-

variance estimates (2) is well–motivated. It is less obvious
what to do with this ensemble. We have investigated two
approaches: cov which yields directly a non–singular estimate
for the M ×M covariance matrix, and invcov which yields
directly an estimate for the inverse M×M covariance matrix.

1) cov : If we project the L × L covariance (2) out to a
M × M covariance using the same random unitary matrix,
and then take the expectation over the unitary ensemble, we
obtain the following:

covL(K) = EΦ

(
Φ∗(ΦKΦ∗)Φ

)
. (4)

This expectation can be evaluated in closed form (either by
evaluating fourth moments, or by using Schur polynomials as
shown later):

covL(K) =
L

(M2 − 1)M

[
(ML−1)K+(M−L)Tr(K)IM

]
.

(5)
Thus the procedure cov is equivalent to diagonal loading for
a particular pair of loading parameters. The dimensionality
parameter, L, determines the amount of diagonal loading. It
is reasonable to re-scale the covariance expression (5) by
the factor M/L because the dimensionality reduction yields
shortened feature vectors whose energy is typically L/M times
the energy of the original feature vectors. Note that we use the
term energy to denote the ‖x‖22 of a vector x. If the covariance
is scaled in this manner then the trace of the sample covariance
is preserved.

Although it is both interesting and surprising that cov is
equivalent to diagonal loading, we instead pursue an approach
which is better motivated and which promises more com-
pelling action.

2) invcov: We first invert the L×L covariance (2) (which
is invertible with probability one), project out to M×M using
the same unitary matrix, and then take the expectation over the
unitary ensemble to obtain the following:

invcovL(K) = EΦ

(
Φ∗(ΦKΦ∗)−1Φ

)
. (6)

The estimate invcov (as well as cov) preserves the eigen-
vectors. In other words, if we perform the eigenvector and
eigenvalue decomposition,

K = UDU∗, (7)

where D is the M ×M diagonal matrix, whose diagonals are
the eigenvalues, ordered from largest to smallest, and U is
the M ×M unitary matrix of eigenvectors, then we prove (in
Section IV) that

invcovL(K) = U invcovL(D)U∗. (8)
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Therefore it is enough to compute invcovL(D). We also show
that invcovL(D) is a diagonal matrix. Moreover, we show that
if D = diag(DN , 0M−N ) where DN = diag(d1, . . . , dN ) is
the matrix with the non–zero entries. The matrix invcovL(D)
is a diagonal matrix that can be decomposed as

invcovL(D) = diag(λ1, . . . , λN , µIM−N ).

In other words all the zero–eigenvalues are transformed to
a non–zero constant µ. In Section VI we prove an exact
expression for the entries of invcovL(D). More specifically
we prove that

µ = Tr
[
E
(
(X∗DNX)−1

)]
where the average is taken over the ensemble of all N × L
Gaussian random matrices X with independent and complex
entries with zero mean and unit variance. Proposition 1 (in
Section VI) gives us an explicit formula for µ. On the other
hand, using Lemma 1 (in the same Section) we prove that

λk =
∂

∂dk

∫
ΩL,N

Tr log(Φ∗DNΦ) dφ.

where ∫
ΩL,N

Tr log(Φ∗DNΦ) dφ

can be explicitly computed using Theorem 1 in Section VI.
Therefore, given D we obtain close form expressions for all
the entries of the matrix invcovL(D) for every M,N and L.

In Section VIII using Free Probability techniques we prove
asymptotic formulas for the entries of invcovL(D) for large
values of N .

We focus the remainder of the paper on some potential
applications of invcov, the derivation of its fundamental prop-
erties, and how to compute it.

III. POTENTIAL APPLICATIONS OF invcov

Typically neither the covariance matrix nor its inverse is of
direct interest. Rather some derived quantity is desired. Here
we discuss three potential applications where invcov arises in
a natural way.

A. Design of a linear estimator from training data

The problem is to design a minimum mean square linear
estimator for a Mx× 1 random vector x given an observation
of a My×1 random vector y. Exact statistics are not available;
instead we have to work with statistics that are estimated from
a set of training data. If the statistics were available then the
optimum estimator would be (assuming that the vectors have
zero–mean)

x̂(y) = KxyK
−1
y y, (9)

where Ky is the covariance matrix of vector y and Kxy is the
cross–covariance matrix of vectors x and y. In this case, the
mean-square error is

MMSE = E
(
(x̂(y)− x) (x̂(y)− x)

∗)
= Kx −KxyK

−1
y Kyx. (10)

For the design of the estimator we have training data compris-
ing N independent joint realizations of x and y: X (Mx×N )
and Y (My ×N ), where N < My .

We introduce an ensemble of L×My isotropically random
unitary matrices, Φ, where L ≤ N . We reduce the dimen-
sionality of the observed vector, y → Φy, and the training
set, Y → ΦY , and we estimate the relevant covariances as
follows,

Kx,Φy =
1

N
XY ∗Φ∗, (11)

KΦy =
1

N
ΦY Y ∗Φ∗. (12)

We estimate x given the reduced observation Φy by treating
the covariance estimates (11) and (12) as if they were correct:

x̂(Φy) = Kx,ΦyK
−1
ΦyΦy

= XY ∗Φ∗ (ΦY Y ∗Φ∗)
−1

Φy. (13)

The mean-square error of this estimator conditioned on the
random unitary matrix, Φ, is found by taking an expectation
with respect to the training data, {X,Y }, the observation, y,
(which is independent of the training data), and the true value
of the unknown vector, x:

E
{

[x̂(Φy)− x] [x̂(Φy)− x]
∗ | Φ

}
= (14)[

Kx −KxyΦ∗ (ΦKyΦ∗)
−1

ΦKyx

] [
1 + E

(
tr
(
(V ∗V )−1

) )]
where V is a N × L random matrix comprising independent
CN(0,1) random variables. We note the asymptotic result,

E
(

tr
(
(V ∗V )−1

) ) N,L→∞−→ L

N − L
. (15)

The mean–square error (14) is equal to the product of two
terms: the mean-square error which results from performing
estimation with a reduced observation vector and with exact
statistics available, and a penalty term which account for
the fact that exact statistics are not available. The first term
typically decreases with increasing dimensionality parameter,
L, which the second term increases with L.

Instead of performing the estimation using one value of
the dimensionality-reducing matrix, Φ, one can average the
estimator (13) over the unitary ensemble:

x̂(y) = EΦ

(
x̂(Φy)

)
= XY ∗EΦ

(
Φ∗(ΦY Y ∗Φ∗)−1Φ

)
y

= XY ∗ · invcovL(Y Y ∗) · y. (16)

Jensen’s inequality implies that the ensemble-averaged estima-
tor (16) has better performance than the estimator (13) that is
based on a single realization of Φ,

E
([

EΦ(x̂(Φy))− x
]
·
[
EΦ(x̂(Φy))− x

]∗) ≤
EΦ

(
E
(

[x̂(Φy)− x] [x̂(Φy)− x]
∗ ))

. (17)
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B. Supervised learning: Design of a quadratic classifier from
training data

The problem is to design a quadratic classifier from labeled
training data. Given an observation of a M × 1 zero-mean
complex Gaussian random vector, the classifier has to choose
one of two hypotheses. Under hypothesis Hj , j = 0, 1, the
observation is distributed as CN(0,Kj), j = 0, 1. If the two
covariance matrices were known the optimum classifier is a
“likelihood ratio test” [15],

−x∗
(
K−1

1 −K−1
0

)
x

H1

>
<
H0

γ, (18)

where γ is a threshold. Instead the covariances have to be
estimated from two M × N matrices of labeled training
data, Xj , j = 0, 1, each of which comprises N < M
independent observations of the random vector under their
respective hypotheses.

We introduce an ensemble of L × M random unitary
matrices, Φ, where L ≤ N . For a given Φ we reduce the
dimension of both sets of training data and then estimate the
reduced covariance matrices,

Kj =
1

N
ΦXjX

∗
j Φ∗, j = 0, 1. (19)

For any Φ we could implement a likelihood ratio test based
on the estimated reduced covariances (19) and the reduced
observation, Φx. Alternatively we could base the hypothesis
test on the expectation of the log–likelihood ratio with respect
to the unitary ensemble,

−x∗EΦ

(
Φ∗
(
(ΦX1X

∗
1 Φ∗)−1 − (ΦX0X

∗
0 Φ∗)−1

)
Φ
)
x =

−x∗ (invcovL(X1X
∗
1 )− invcovL(X0X

∗
0 ))x

H1

>
<
H0

γ. (20)

This classifer is of the “naive Bayes” type [16], in which
statistical dependencies (in this case the individual likelihood
ratios are not statistically dependent) are ignored in order to
simplify the construction of the classifier.

C. Capon MVDR spectral estimator

The Capon MVDR (minimum variance distortionless re-
sponse) spectral estimator estimates power as a function of
angle-of-arrival given N independent realizations of a M -
dimensional measurement vector from an array of sensors [17].
Let X be the M ×N vector of measurements, M < N , and
let the “steering vector”, a, be the M dimensional unit vector
which describes the wavefront at the array. The conventional
power estimate, as a function of the steering vector, is

Pconv = a∗Ka, (21)

where K is the sample covariance matrix. The Capon MVDR
power estimate is

PCapon =
1

a∗K−1a
. (22)

A justification for the Capon estimator is the following: one
considers the estimated covariance matrix to be the sum of
two terms, the first corresponding to power arriving from the
direction that is specified by the steering vector, and the second
corresponding to power arriving from all other directions,

K = P · aa∗ +Kother. (23)

It can be shown that the Capon power estimate (22) is equal to
the largest value of power P such that, in the decomposition
(23), Kother is nonnegative definite [1]. In other words the de-
composition (23) is nonunique, and the Capon power estimate
is an upper bound on the possible value that the power can
take.

We deal with the singularity of the covariance matrix by
introducing an ensemble of L × M unitary matrices, Φ.
Since we are looking for power that arrives from a particular
direction we constrain the unitary matrices to preserve the
energy of the steering vector, i.e., a∗Φ∗Φa = a∗a = 1. This
is readily done through a Householder unitary matrix, Q, such
that

Q =

[
a∗

A⊥

]
, (24)

where A⊥ is a M − 1 ×M unitary matrix whose rows are
orthogonal to a. We represent the ensemble Φ as follows:

Φ =

[
a∗

ΘA⊥

]
, (25)

where Θ is a L − 1 × M − 1 isotropically random unitary
matrix. We now use the constrained unitary matrix Φ to reduce
the dimensionality of the sample covariance matrix and the
steering vector, we compute the Capon power estimate from
the reduced quantities, and finally we average the power with
respect to the unitary ensemble [2]:

P̂ = EΦ

[
1

a∗Φ∗ (ΦKΦ∗)
−1

Φa

]
(26)

= a∗Ka− a∗KA∗⊥ invcovL−1(A⊥KA
∗
⊥)A⊥Ka

where

invcovL−1(A⊥KA
∗
⊥) = EΘ

(
Θ∗ (ΘA⊥KA

∗
⊥Θ∗)

−1
Θ
)
.

(27)

D. Distantly related research

Our approach to handling covariance singularity is based
on an ensemble of dimensionality–reducing random unitary
matrices. Here we mention some other lines of research which
also involve random dimensionality reduction.

1) Johnson–Lindenstauss Lemma: In qualitative terms, the
Johnson–Lindenstrauss Lemma [13] has the following impli-
cation: the angle between two vectors of high dimension tends
to be preserved accurately when the vectors are shortened
through multiplication by a random unitary dimensionality–
reducing matrix.



5

2) Compressive Sampling or Sensing: Compressive sam-
pling or sensing permits the recovery of a sparsely-sampled
data vector (for example, obtained by multiplying the original
vector by a random dimensionality–reducing matrix), provided
the original data vector can be linearly transformed to a
domain in which it has sparse support [14]. Compressive
sampling utilizes only one dimensionality–reducing matrix.
In contrast our approach to handling covariance singularity
utilizes an ensemble of random dimensionality–reducing ma-
trices.

IV. DERIVATION OF SOME BASIC PROPERTIES OF invcov

In this Section we state and prove two basic and fundamen-
tal properties of invcovL(K). We perform the eigenvector and
eigenvalue decomposition,

K = UDU∗, (28)

where D is the M ×M diagonal matrix, whose diagonals are
the eigenvalues, ordered from largest to smallest, and U is the
M ×M unitary matrix of eigenvectors.

A. Eigenvectors of sample covariance are preserved
We substitute the eigenvalue decomposition (7) into the

expression (6) for invcovL(K) to obtain the following:

invcovL(K) = EΦ

(
Φ∗ (ΦKΦ∗)

−1
Φ
)

= EΦ

(
U(ΦU)∗ (ΦUDU∗Φ∗)

−1
(ΦU)U∗

)
= UEΦ

(
Φ∗ (ΦDΦ∗)

−1
Φ
)
U∗

= U invcovL(D)U∗ (29)

where we have used the fundamental definition of the isotropic
distribution (3), i.e. that the product ΦU has the same dis-
tribution as Φ. We intend to show that invcovL(D) is itself
diagonal. We utilize the fact that a matrix A is diagonal if and
only if, for all diagonal unitary matrices, Ω, ΩAΩ∗ = A. Let
Ω be a diagonal unitary matrix, we have

Ω invcovL(D) Ω∗ =

= EΦ

(
(ΦΩ∗)∗

(
(ΦΩ∗)ΩDΩ∗(ΦΩ∗)∗

)−1
(ΦΩ∗)

)
= EΦ

(
Φ∗
(
ΦDΦ∗

)−1
Φ
)

= invcovL(D) (30)

where we used the fact that ΦΩ∗ has the same distribution as
Φ, and that ΩDΩ∗ = D. Therefore we have established that
the final expression in (29) is the eigenvector/eigenvalue de-
composition of invcovL(K), for which the eigenvector matrix
is U and the diagonal matrix of eigenvalues is invcovL(D).
Hence, we need only consider applying invcov to diagonal
matrices.

B. The zero-eigenvalues of the sample covariance are con-
verted to equal positive values

When the rank of the covariance matrix is equal to N < M ,
the eigenvalue matrix of K has the form

D =

[
DN 0
0 0M−N

]
. (31)

We want to establish that the last M − N eigenvalues of
invcovL(K) are equal. To that end we introduce a unitary
matrix, Ξ,

Ξ =

[
IN 0
0 PM−N

]
, (32)

where PM−N is an arbitrary M −N ×M −N permutation
matrix. We now pre– and post–multiply invcovL(D) by Ξ and
Ξ∗ respectively: it will be shown that this does not change the
diagonal matrix, so consequently the last M −N eigenvalues
are equal. We have

Ξ invcovL(D) Ξ∗ = Ξ EΦ

(
Φ∗(ΦDΦ∗)−1Φ

)
Ξ∗

= EΦ

(
Φ∗(ΦΞDΞ∗Φ∗)−1Φ

)
= EΦ

(
Φ∗(ΦDΦ∗)−1Φ

)
= invcovL(D), (33)

where we used the fact that ΦΞ∗ has the same distribution as
Φ, and that ΞDΞ∗ = D.

V. FUNCTIONAL EQUATION

In this Section we will prove a functional equation for the
inverse covariance estimate invcovL(K).

Let K be an M ×M sample covariance matrix K of rank
N . Since K is positive definite there exists U an M × M
unitary and D an M ×M diagonal matrix of rank N such
that K = UDU∗. Fix L ≤ N . We would like to compute,

invcovL(K) = E(Φ∗(ΦKΦ∗)−1Φ) (34)

where Φ is an L × M unitary matrix and the average is
taken with respect to the isotropic measure. Let Z be an
L ×M Gaussian random matrix with complex, independent
and identically distributed entries with zero mean and variance
1. It is a well known result in random matrix theory (see [6])
that we can decompose Z = CΦ where C is an L×L positive
definite and invertible matrix (with probability one). Hence,
Z∗(ZKZ∗)−1Z = Φ∗(ΦKΦ∗)−1Φ. Therefore,

invcovL(K) = E
(
Z∗(ZKZ∗)−1Z

)
. (35)

Moreover, as shown in the previous Section

invcovL(K) = UE
(
Z∗(ZDZ∗)−1Z

)
U∗. (36)

Therefore it is enough to compute E(Z∗(ZDZ∗)−1Z). De-
compose Z as Z = [X,Y ] where X is L × N and Y is
L×(M−N). Now performing the block matrix multiplications
and taking the expectation we obtain that invcovL(D) is equal
to[

E(X∗(XDNX
∗)−1X) 0

0 E(Y ∗(XDNX
∗)−1Y )

]
(37)

where D = diag(DN , 0M−N ) and DN an N × N diagonal
matrix of full rank.

Let us first focus on the N×N matrix E(X∗(XDNX
∗)−1X),

denote this matrix by

ΛL(DN ) := E(X∗(XDNX
∗)−1X). (38)
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Let W be the matrix W = XD
1/2
N . Then

ΛL(DN ) = E(X∗(XDNX
∗)−1X) (39)

= D
−1/2
N E(W ∗(WW ∗)−1W )D

−1/2
N

and

E(W ∗(WW ∗)−1W ) = lim
γ→0

E
[
W ∗(γIL +WW ∗)−1W

]
= IN − lim

γ→0
E
[(
IN +

1

γ
W ∗W

)−1
]
.

Therefore it is enough to compute

lim
γ→0

E
[(
IN +

1

γ
W ∗W

)−1]
which is equal to

lim
γ→0

D
−1/2
N E

[(
D−1
N +

1

γ
X∗X

)−1]
D
−1/2
N .

Let us decompose X∗X = ΩDxΩ∗ where Ω is an N × N
unitary matrix and Dx is an N × N diagonal matrix of
rank L. Then Dx = diag(D0, 0N−L). It is a straightforward
calculation to see that

D
−1/2
N E

[(
D−1
N +

1

γ
X∗X

)−1]
D
−1/2
N

it is equal to

D
−1/2
N E

[
Ω
(

Ω∗D−1
N Ω +

1

γ
Dx

)−1

Ω∗
]
D
−1/2
N .

Doing the block matrix decomposition

Ω∗D−1
N Ω =

[
A11 A12

A21 A22

]
where A11 is L× L and A22 is (N − L)× (N − L) we see
that(

Ω∗D−1
N Ω +

1

γ
Dx

)−1

=

[
A11 + 1

γD0 A12

A21 A22

]−1

=

[
X Y
Z W

]
where X =

(
A11+ 1

γD0−A12A
−1
22 A21

)−1
, Y = −XA12A

−1
22 ,

Z = −A−1
22 A21X and W = A−1

22 +A−1
22 A21XA12A

−1
22 . Since

limγ→0X = 0 we see that

lim
γ→0

(
Ω∗D−1

N Ω +
1

γ
Dx

)−1

=

[
0 0
0 A−1

22

]
.

Putting all the pieces together we obtain that

ΛL(DN ) = D−1
N −D

−1
N ·E

(
Ω

[
0 0
0 A−1

22

]
Ω∗

)
·D−1

N (40)

where Ω is an isotropically distributed N ×N unitary matrix
and

Ω∗D−1
N Ω =

[
A11 A12

A21 A22

]
.

Let us decompose the unitary matrix Ω as Ω = [Ω1 Ω2], where
Ω1 is N×L and Ω2 is N×(N−L) matrix. Then Ω∗1Ω1 = IL

and Ω∗2Ω2 = IN−L isotropically distributed unitaries. It is an
easy calculation to see that

E

(
Ω

[
0 0
0 A−1

22

]
Ω∗

)
= E

(
Ω2

(
Ω∗2D

−1
N Ω2

)−1
Ω∗2

)
= ΛN−L(D−1

N ). (41)

Therefore, using equation (40) and equation (41) we found the
following functional equation

DNΛL(DN ) +D−1
N ΛN−L(D−1

N ) = IN . (42)

Remark 1: Here we list a few results on ΛL(DN ).
1) If N = L then DNΛN (DN ) = IN and therefore

ΛN (DN ) = D−1
N .

2) It is not difficult to see, and well known result on random
matrices, see [6], that ΛL(IN ) = L

N IN . Therefore,

ΛL(αIN ) =
L

αN
IN . (43)

Hence,

αINΛL(αIN ) + α−1INΛN−L(α−1IN ) = IN

which agrees with equation (42).
3) Tr(DNΛL(DN )) = Tr(E(DNX

∗(XDNX
∗)−1X)) =

L where in the last equality we used the trace property.

As we saw in Equation (37) the other important term in
invcovL(D) is

E(Y ∗(XDNX
∗)−1Y ).

Let us define µ > 0 as

µ := Tr
[
E((XDNX

∗)−1)
]
. (44)

Since X and Y are Gaussian independent random matrices it
is clear that

E(Y ∗(XDNX
∗)−1Y ) = Tr

[
E((XDNX

∗)−1)
]
IM−N

= µIM−N ,

where IM−N is the identity matrix of dimension M − N .
Putting all the pieces together we see that the estimate
invcovL(D) is equal to

invcovL(D) = diag(ΛL(DN ), µIM−N ). (45)

VI. FCOV EXACT FORMULA

In this Section we will prove an exact and close form expres-
sion for the entries of invcovL(D). We will treat separately
the entries of ΛL(DN ) and the constant term µ. As a matter
of fact the analysis developed in this Section will allow us to
obtain close form expressions for more general averages.

Recall that we say a matrix A is said to be normal if it
commutes with its conjugate transpose AA∗ = A∗A. Given a
normal matrix A and f : C → C a continuous function we
can always define f(A) using functional calculus. Being more
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precise we know by the spectral Theorem that exist U unitary
and D = diag(d1, . . . , dN ) such that

A = UDU∗.

We then define
f(A) = UDfU

∗

where Df = diag(f(d1), . . . , f(dN )). In particular, let D be
as before and let f be a continuous function, we will obtain
an exact expression for

fcovL(D) := E
(

Φ∗f(ΦDΦ∗)Φ
)

(46)

where Φ is an L×N unitary isotropically random. Note that
our covariance estimate invcovL(D) is a particular case of the
last expression when f(x) = x−1.

Let ΩL,N = {Φ ∈ CN×L : Φ∗Φ = IL} be the Stiefel
manifold with the isotropic measure dφ. By equation (18) in
[3] we know that∫

ΩL,N

sλ(Φ∗DNΦ)dφ =
sλ(DN )sλ(IL)

sλ(IN )
(47)

where sλ is the Schur polynomial associated with the partition
λ. The latter are explicitly defined for any N × N matrix A
in terms of the eigenvalues a1, . . . , aN as

sλ(A) = sλ(a1, . . . , aN ) =
det(a

N+λj−j
i )Ni,j=1

det(aN−ji )Ni,j=1

, (48)

with λ being a partition, i.e. a non–increasing sequence of
non–negative integers λj . For an introduction to the theory of
symmetric functions and properties of the Schur polynomials
see [4] and [5].

Denote by (n− k, 1k) the partition (n− k, 1, 1, . . . , 1) with k
ones. One of the properties of the Schur polynomials is that

Tr(An) =

N−1∑
k=0

(−1)ks(n−k,1k)(A) (49)

Using equation (47) and (49) we see that∫
ΩL,N

Tr
(

(Φ∗DNΦ)n
)
dφ

is equal to
L−1∑
k=0

(−1)k
s(n−k,1k)(DN )s(n−k,1k)(IL)

s(n−k,1k)(IN )
. (50)

The constant s(n−k,1k)(Ip) = (n+p−k−1)!
k!(p−k−1)!(n−k−1)!n see [4].

Therefore,

s(n−k,1k)(IL)

s(n−k,1k)(IN )
=

(n+ L− (k + 1))!

(n+N − (k + 1))!
· (N − (k + 1))!

(L− (k + 1))!
.

(51)

For each p ≥ 0 consider the operator I(p) defined in xn by
I(p)(xn) = xn+p

(n+1)...(n+p) . This extends linearly and continu-
ously to a well defined linear operator I(p) : C[0, r]→ C[0, r]
where C[0, r] are the continuous functions in the interval [0, r].
Now we are ready to state the main Theorem of this Section.

Theorem 1: Let DN be an N ×N diagonal matrix of rank
N . For any continuous (complex or real valued) function f ∈
C[dmin, dmax] ∫

ΩL,N

Tr
(
f(Φ∗DNΦ)

)
dφ (52)

is equal to

L−1∑
k=0

(N − (k + 1))!

(L− (k + 1))!
· det(Gk)

det(∆(DN ))

where ∆(DN ) is the Vandermonde matrix associated to DN

and Gk is the matrix defined by replacing the (k+ 1) row of
the Vandermonde matrix ∆(DN ), {dN−(k+1)

i }ni=1, by the row{
I(N−L)(x(L−(k+1))f(x))|x=di

}N
i=1

.

Proof: By linearity and continuity (polynomials are dense
in the set of continuous functions) it is enough to prove (52)
in the case f(x) = xn. By (50) and (51) we know that∫

ΩL,N

Tr
(

(Φ∗DNΦ)n
)
dφ

is equal to

L−1∑
k=0

(−1)k c
(N,L)
k · s(n−k,1k)(DN ) (53)

where

c
(N,L)
k :=

(N − (k + 1))!

(L− (k + 1))!
· (n+ L− (k + 1))!

(n+N − (k + 1))!
.

By definition of the Schur polynomials (see [4])

s(n−k,1k)(DN ) =
det(Sk)

det(∆(DN ))

where the ith–column of the matrix Sk is

dN−1+n−k
i

dN−2+1
i

dN−3+1
i

...
d
N−(k+1)+1
i

d
N−(k+2)
i

...
d
N−(N−1)
i

1


.

Doing k row transpositions on the rows of the matrix Sk we
obtain a new matrix S̃k where the ith–column of this new
matrix is
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dN−1
i

dN−2
i

dN−3
i

...
dN−ki

d
N+n−(k+1)
i

d
N−(k+2)
i

...
d
N−(N−1)
i

1



.

Note that this matrix S̃k is identical to ∆(DN ) except of the
(k+1) row which was replaced by the row {dN+n−(k+1)

i }Ni=1

instead of {dN−(k+1)
i }Ni=1 as in ∆(DN ). Therefore,∫

ΩL,N

Tr
(

(Φ∗DNΦ)n
)
dφ

is equal to
L−1∑
k=0

c
(N,L)
k · det(S̃k)

det(∆(DN ))
. (54)

Now and using the fact that

I(N−L)(xn+L−(k+1))
∣∣
x=di

=
(n+ L− (k + 1))!

(n+N − (k + 1))!
d
N+n−(k+1)
i

we obtain that

Gk =
(n+ L− (k + 1))!

(n+N − (k + 1))!
· S̃k.

Putting all the pieces together we obtain that∫
ΩL,N

Tr((Φ∗DNΦ)n) dφ

is equal to
L−1∑
k=0

(N − (k + 1))!

(L− (k + 1))!
· det(Gk)

det(∆(DN ))
.

The next Proposition gives us, in particular, an exact and close
form expression for the term µ in equation (44) discussed
previously.

Proposition 1: Let DN be an N × N diagonal matrix of
rank N . Let 1 ≤ L < N and X be an N × L Gaussian
random matrix with independent and identically distributed
entries with zero mean and variance 1. Then∫

ΩL,N

Tr((Φ∗DNΦ)−1) dφ = (N − L) · det(G)

det(∆(DN ))
(55)

and

µ := E
[
Tr
(
(X∗DNX)−1

)]
=

det(G)

det(∆(DN ))
(56)

where G is the matrix constructed by replacing the Lth row
of the Vandermonde matrix by the row(

d
N−(L+1)
1 log(d1), . . . , d

N−(L+1)
N log(dN )

)
.

Proof: Let 1 ≤ L < N and let us consider f(x) = x−1

then for each 0 ≤ k ≤ L− 2 we see that

I(N−L)(xL−(k+1)x−1)
∣∣
x=di

=
d
N−(k+2)
i

(L− k − 1) . . . (N − k − 2)

since this is a multiple of the (k+2)th row of the Vandermonde
matrix ∆(DN ) we see that det(Gk) = 0 for all 0 ≤ k ≤ L−2.

It is not difficult to see that for k = L− 1

I(N−L)(x−1)
∣∣
x=di

=
d
N−(L+1)
i log(di)

(N − (L+ 1))!
.

Therefore using Theorem 1 we see that∫
ΩL,N

Tr((Φ∗DNΦ)−1) dφ = (N − L) · det(G)

det(∆(DN ))
(57)

where G is constructed by replacing the Lth row of the
Vandermonde matrix by the row(

d
N−(L+1)
1 log(d1), . . . , d

N−(L+1)
N log(dN )

)
.

Now we will prove the second part of the Proposition. Given
X an N × L random matrix as in the hypothesis we can
decompose X as

X = ΦC

where Φ is an isotropically random N × L unitary and C is
a positive definite L × L independent from Φ (see Section
2.1.5 from [6]). The matrix C is invertible with probability 1.
Hence,

(X∗DNX)−1 = (CΦ∗DNΦC)−1 = C−1(Φ∗DNΦ)−1C−1.

Therefore,

E
[
Tr
(
(X∗DNX)−1

)]
= E

[
Tr
(
C−1(Φ∗DNΦ)−1C−1

)]
= E

[
Tr
(
C−2(Φ∗DNΦ)−1

)]
where in the second equality we used the trace property. Recall
from random matrix theory that if A,B are independent n×n
random matrices then

E
[
Tr(AB)

]
=

1

n
E
[
Tr(A)

]
E
[
Tr(B)

]
.

Since the matrix C is independent with respect to Φ and DN

we conclude that

E
[
Tr
(
(X∗DNX)−1

)]
is equal to

1

L
E
[
Tr
(
C−2

)]
E
[
Tr
(
(Φ∗DNΦ)−1

)]
.

Let DN = IN then (X∗DNX)−1 = (X∗X)−1 = C−2 and it
is known (see Lemma 2.10 [6]) that

E
[
Tr
(
C−2

)]
=

L

N − L
.

Putting all the pieces together we see that

µ := E
[
Tr
(
(X∗DNX)−1

)]
=

det(G)

det(∆(DN ))
(58)

finishing the proof.
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A. Application of the Main Results to covL(D)

Using Theorem 1 we can compute several averages over the
Stiefel manifold. As an application let us compute

covL(D) =

∫
ΩL,M

Φ(Φ∗DΦ)Φ∗ dφ = diag(t1, . . . , tM ).

(59)
First let us note that the same proof in Lemma 2 gives us the
following result.

Lemma 1: Let f be a differentiable function in the interval
[dmin, dmax] where dmin = min{di} and dmax = max{di}.
Then the following formula holds,

∂

∂dk

∫
ΩL,N

Tr
(
f(Φ∗DNΦ)

)
dφ (60)

is equal to [∫
ΩL,N

Φf ′(Φ∗DNΦ)Φ∗ dφ

]
kk

where Akk means the (k, k) entry of the matrix A.

Let D an M ×M diagonal matrix of rank N and let L ≤ N .
By equation (59) and Lemma 1 we know that

tk =
1

2
· ∂

∂dk

∫
ΩL,M

Tr
(

(Φ∗DΦ)2
)
dφ.

Since∫
ΩL,M

Tr
(

(Φ∗DΦ)2
)
dφ =

L

M
· L+ 1

M + 1
s(2,0)(D)

− L

M
· L− 1

M − 1
s(1,1)(D)

where

s(2,0)(D) =

M∑
i=1

d2
i +

∑
i<j

didj

and
s(1,1)(D) =

∑
i<j

didj .

Then
∂s(2,0)(D)

∂dk
= Tr(D) + dk and

∂s(1,1)(D)

∂dk
= Tr(D)− dk.

Therefore, tk is equal to

1

2
· L
M

[
L+ 1

M + 1

(
dk + Tr(D)

)
− L− 1

M − 1

(
Tr(D)− dk

)]
,

hence

tk =
L

M

[
M − L
M2 − 1

Tr(D) +
ML− 1

M2 − 1
dk

]
.

Therefore,

covL(D) =

∫
ΩL,M

Φ(Φ∗DΦ)Φ∗ dφ

=
L

M

[
M − L
M2 − 1

Tr(D) · IM +
ML− 1

M2 − 1
·D

]
.

B. Application of the Main Results to invcovL(D)

As we mention in the introduction and subsequent Sec-
tions the problem we are mainly interested is to compute
invcovL(D) when D is an M × M diagonal matrix of
rank N and L ≤ N . Let D = diag(DN , 0M−N ) where
DN = diag(d1, . . . , dN ). As we previously saw invcovL(D)
is a diagonal matrix that can be decomposed as

invcovL(D) = diag(ΛL(DN ), µIM−N )

where

ΛL(DN ) =

∫
ΩL,N

Φ(Φ∗DNΦ)−1Φ∗ dφ = diag(λ1, . . . , λN )

and
µ = Tr

[
E
(
(X∗DNX)−1

)]
where the average is taken over the ensemble of all N × L
Gaussian random matrices X with independent and complex
entries with zero mean and unit variance.

Using Lemma 1 we see that

λk =
∂

∂dk

∫
ΩL,N

Tr log(Φ∗DNΦ) dφ.

where ∫
ΩL,N

Tr log(Φ∗DNΦ) dφ

can be explicitly computed using Theorem 1. On the other
hand, Proposition 1 gives us an explicit formula for µ. There-
fore, given D we obtained close form expressions for all the
entries of the matrix invcovL(D) for every M,N and L.

C. Small Dimension Example

In this subsection we will compute invcovL(D) for a small
dimensional example. Let M = 4, N = 2 and L = 1 and
D = diag(d1, d2, 0, 0). Hence following our previous notation
D2 = diag(d1, d2). Let us first consider the case d1 = d2 = d.
In this case using equation (43) and equation (77) we see that

invcov1(D) = diag(d−1/2, d−1/2, d−1, d−1).

The more interesting case is d1 6= d2. Applying Theorem 1
and Lemma 1 we see that

invcov1(D) = diag(λ1, λ2, µ, µ)

where

λi =
∂

∂di

∫
Ω1,2

Tr log(Φ∗D2Φ) dφ

=
∂

∂di

(
det(H)

det(∆(D2))

)
where

∆(D2) =

[
d1 d2

1 1

]
and

H =

[
d1 log d1 − d1 d2 log d2 − d2

1 1

]
.
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Doing the calculations we see that

λ1 =
d2 log d2 − d2 log d1 + d1 − d2

(d1 − d2)2
(61)

and
λ2 =

d1 log d1 − d1 log d2 + d2 − d1

(d1 − d2)2
. (62)

On the other hand using Proposition 1

µ = Tr
[
E((XD2X

∗)−1)
]

=
det(G)

det(∆(D2))

where

G =

[
log d1 log d2

1 1

]
.

Therefore,

µ =
log d1 − log d2

d1 − d2
. (63)

To summarize, computation of invcov is facilitated by first
taking the eigenvector and eigenvalue decomposition of the
sample covariance matrix and then applying invcov to the
diagonal eigenvalue matrix. At that point there are three
alternatives: a straight Monte Carlo expectation, the asymptotic
expressions (76) and (83), or the closed form analytical
expressions according to Proposition 1 and Theorem 1.

VII. PRELIMINARIES ON THE LIMIT OF LARGE RANDOM
MATRICES

A random matrix is a measurable map X , defined on some
probability space (Ω, P ) and which takes values in a matrix
algebra, Mn(C) say. In other words, X is a matrix whose
entries are (complex) random variables on (Ω, P ). One often
times identifies X with the probability measure X(P ) it
induces on Mn(C) and forgets about the underlying space
(Ω, P ). Random matrices appear in a variety of mathematical
fields and in physics too. For a more complete and detailed
discussion of random matrix limits and free probability see
[21], [20], [18], [19] and [6]. Here we will review only some
key points.

Let us consider a sequence {AN}N∈N of self–adjoint N×N
random matrices AN . In which sense can we talk about the
limit of these matrices? It is evident that such a limit does not
exist as an ∞×∞ matrix and there is no convergence in the
usual topologies. What converges and survives in the limit are
the moments of the random matrices. Let A = (aij(ω))Ni,j=1

where the entries aij are random variables on some probability
space Ω equipped with a probability measure P . Therefore,

E(trN(AN )) :=
1

N

N∑
i=1

∫
Ω

aii(ω) dP (ω) (64)

and we can talk about the k–th moment E(trN(AkN )) of our
random matrix AN , and it is well known that for nice random
matrix ensembles these moments converge for N → ∞. So
let us denote by αk the limit of the k–th moment,

αk := lim
N→∞

E(trN(AkN )). (65)

Thus we can say that the limit consists exactly of the collection
of all these numbers αk. However, instead of talking about a
collection of numbers we prefer to identify these numbers as
moments of some random variable A. Now we can say that our
random matrices AN converge to a variable A in distribution
(which just means that the moments of AN converge to the
moments of A). We will denote this by AN → A.

One should note that for a self–adjoint N × N matrix
A = A∗, the collection of moments corresponds also to a
probability measure µA on the real line, determined by

trN (Ak) =

∫
R
tk dµA(t). (66)

This measure is given by the eigenvalue distribution of A, i.e.
it puts mass 1

N on each of the eigenvalues of A (counted with
multiplicity):

µA =
1

N

N∑
i=1

δλi
, (67)

where λ1, . . . , λN are the eigenvalues of A. In the same way,
for a random matrix A, µA is given by the averaged eigenvalue
distribution of A. Thus, moments of random matrices with
respect to the averaged trace contain exactly that type of
information in which one is usually interested when dealing
with random matrices.

Example 1: Let us consider the basic example of random
matrix theory. Let GN be an N × N self-adjoint random
matrix whose upper–triangular entries are independent zero-
mean random variables with variance 1

N and fourth moments
of order O( 1

N2 ). Then the famous Theorem of Wigner can be
stated in our language as

GN → s, where s is a semicircular random variable,
(68)

where semicircular just means that the measure µs is given
by the semicircular distribution (or, equivalently, the even
moments of the variable s are given by the Catalan numbers).

Example 2: Another important example in random matrix
theory is the Wishart ensemble. Let X be an N ×K random
matrix whose entries are independent zero-mean random vari-
ables with variance 1

N and fourth moments of order O( 1
N2 ).

As K,N →∞ with K
N → β,

X∗X → xβ , (69)

where xβ is a random variable with the Marcenko–Pastur law
µβ with parameter β.

The empirical cumulative eigenvalue distribution function
of an N ×N self–adjoint random matrix A is defined by the
random function

FNA (ω, x) :=
#{k : λk ≤ x}

N

where λk are the (random) eigenvalues of A(ω) for each
realization ω. For each ω this function determines a probability
measure µN (ω) supported on the real line. These measures
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{µN (ω)}ω define a Borel measure µN in the following way.
Let B ⊂ R be a Borel subset then

µN (B) := E
(
µN (ω)(B)

)
.

A new and crucial concept, however, appears if we go over
from the case of one variable to the case of more variables.

Definition 1: Consider N × N random matrices
A

(1)
N , . . . , A

(m)
N and variables A1, . . . , Am (living in some

abstract algebra A equipped with a state ϕ). We say that

(A
(1)
N , . . . , A

(m)
N )→ (A1, . . . , Am)

in distribution if and only if

lim
N→∞

E
(

trN

(
A

(i1)
N · · ·A(ik)

N

))
= ϕ(A(i1) · · ·A(ik)) (70)

for all choices of k, 1 ≤ i1, . . . , ik ≤ m.

The A1, . . . , Am arising in the limit of random matrices are
a priori abstract elements in some algebra A, but it is good to
know that in many cases they can also be concretely realized
by some kind of creation and annihilation operators on a full
Fock space. Indeed, free probability theory was introduced by
Voiculescu for investigating the structure of special operator
algebras generated by these type of operators. In the beginning,
free probability had nothing to do with random matrices.

Example 3: Let us now consider the example of two in-
dependent Gaussian random matrices G(1)

N , G
(2)
N (i.e., each of

them is a self–adjoint Gaussian random matrix and all entries
of G(1)

N are independent from all entries of G(2)
N ). Then one

knows that all joint moments converge, and we can say that

(G
(1)
N , G

(2)
N )→ (s1, s2), (71)

where Wigner’s Theorem tells us that both s1 and s2 are
semicircular. The question is: What is the relation between
s1 and s2? Does the independence between G

(1)
N and G

(2)
N

survive in some form also in the limit? The answer is yes and
is provided by a basic theorem of Voiculescu which says that
s1 and s2 are free. For a formal definition of freeness and
more results in free probability see [21], [20], [18] and [19].

VIII. ASYMPTOTIC RESULTS

In practical application when the values of M and N are too
large the expressions of the previous Section could be difficult
to evaluate and we need simpler mathematical formulas. It is
for this reason that in this Section we will provide asymptotic
results for the entries of invcovL(D). As we previously saw
invcovL(D) is equal to[

E(X∗(XDNX
∗)−1X) 0

0 E(Y ∗(XDNX
∗)−1Y )

]
where D = diag(DN , 0M−N ) and DN an N × N di-
agonal matrix of full rank. In this Section we will get
asymptotic results for both terms E(X∗(XDNX

∗)−1X) and
E(Y ∗(XDNX

∗)−1Y ) as N,L→∞ with limN→∞
N
L = β.

Recall that µ > 0 was defined as

µ = Tr
[
E((XDNX

∗)−1)
]
. (72)

As we already observed, if X and Y are Gaussian independent
random matrices it is clear that

E(Y ∗(XDNX
∗)−1Y ) = Tr

[
E((XDNX

∗)−1)
]
IM−N

= µIM−N .

Let us introduce the η–transform of an N ×N random matrix
A as,

ηA(γ) :=
1

N
Tr
[
E((1 + γA)−1)

]
for γ > 0.

Analogously, given ν a probability measure on R we can
define the η–transform of ν as

ην(γ) =

∫
R

1

1 + γt
dν(t).

It is not difficult to see that

lim
γ→∞

ην(γ) = ν({0})

and
lim
γ→∞

γην(γ) =

∫
R
t−1dν(t).

Consider D = (DN )N∈N a collection of diagonal N × N
diagonal matrices such that DN converge in distribution to a
probability measure ν, i.e. for all k ≥ 0

lim
N→∞

1

N
E
(

Tr(Dk
N )
)

=

∫ ∞
0

tk dν(t).

Let (XN )N∈N be a sequence of L × N complex Gaus-
sian random matrices with standard i.i.d. entries. Then by
Theorem 2.39 in [6] we know that 1

LXNDNX
∗
N converges

in distribution (moreover, almost surely) as as N,L → ∞
with limN→∞

N
L = β to a probability distribution whose η–

transform satisfies

β(1− ην(γη)) = 1− η(γ) (73)

where ην is the η–transform of the limit in distribution of D =
(DN )N∈N. Note that limγ→∞ η(γ) = 0 and limγ→∞ γη(γ) =
µ. Therefore, taking limit as γ goes to infinity on both sides
of equation (73) we get

ην(µ) =
β − 1

β
(74)

since by definition and the convergence in distribution for N
sufficiently large we have that

ην(µ) ≈ 1

N
Tr
[
E(1 + µDN )−1

]
(75)

and
N − L
N

≈ β − 1

β
.

The symbol ≈ denotes that equality holds in the limit.

Using equation (74) and equation (75) we obtain

N − L
N

≈ 1

N

N∑
k=1

1

1 + µdk
(76)
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where DN = diag(d1, . . . , dN ). Note that this equation
implicitly and uniquely defines µ > 0.

Remark 2: 1) If N = L then µ = ∞ (which is not
surprising).

2) If d1 = . . . = dN = α then µ =
α−1TrE((XX∗)−1). Using Lemma 2.10 from [6] we
know that TrE((XX∗)−1) = L

N−L . Therefore for this
case

µ =
L

α(N − L)
(77)

which agrees exactly (without the approximation) with
equation (76).

Now we will compute the asymptotics of the other, and
more complicated, term

ΛL(DN ) = E(X∗(XDNX
∗)−1X) = diag(λ1, . . . , λN ).

Lemma 2: Let f be a differentiable function on the interval
[dmin, dmax] where dmin = min{di} and dmax = max{di}.
Then the following formula holds

∂

∂dk
E
[
Tr(f(XDX∗))

]
= E

[
X∗f ′(XDX∗)X

]
kk
. (78)

Proof: It is enough to prove this Lemma for the case f is
a polynomial and by linearity it is enough to prove it for the
case f(x) = xn. Let Ek be the N ×N matrix whose entries
are all zero except the entry Ekk which is equal to 1. Note that
∂
∂dk

(D) = Ek. If f(x) = xn then f(XDX∗) = (XDX∗)n

and for each k it is easy to see that

∂

∂dk
(XDX∗)n =

n−1∑
i=0

(XDX∗)iXEkX
∗(XDX∗)n−(i+1).

Therefore,

Tr

(
∂

∂dk
f(XDX∗)

)
= nTr

(
XEkX

∗(XDX∗)n−1
)

= Tr
(
EkX

∗f ′(XDX∗)XEk

)
=

(
X∗f ′(XDX∗)X

)
kk

where we use the trace property and the fact that E2
k = Ek.

Taking expectation on both sides we finish the proof.

As a corollary we obtain.

Corollary 1: If

ΛL(DN ) = E(X∗(XDNX
∗)−1X) = diag(λ1, . . . , λN )

then λk = ∂
∂dk

E
[
Tr log(XDNX

∗)
]
.

Before continuing let us define the Shannon transform of
a probability distribution. Given ν a probability distribution
supported in R we define

ϑν(γ) =

∫
R

log(1 + γt)dν.

It is easy to see that limγ→∞ ϑν(γ)− log(γ) =
∫
R log(t)dν.

Consider, as before, D = (DN )N∈N a collection of diag-
onal N × N diagonal matrices such that DN converge in
distribution to a probability measure ν. Let (XN )N∈N be a
sequence of L×N complex Gaussian random matrices with
standard i.i.d. entries. Then by equation 2.167 in [6] we know
that 1

LXNDNX
∗
N converges in distribution (moreover, almost

surely) as as N,L→∞ with limN→∞
N
L = β to a probability

distribution ηβ whose Shannon–transform ϑ satisfies

ϑ(γ) = βϑν(γη(γ))− log η(γ) + η(γ)− 1. (79)

Subtracting log(γ) on both sides and taking the limit γ →∞
we obtain ∫ ∞

0

log(t) dνβ = βϑν(µ)− log(µ)− 1. (80)

For N and L sufficiently large∫ ∞
0

log(t) dνβ = lim
L→∞

1

L
E
[
Tr log

( 1

L
XNDNX

∗
N

)]
(81)

≈ 1

L

(
E
[
Tr log(XNDNX

∗
N )
]
− L log(L)

)
and

βϑν(µ) = β lim
N→∞

1

N
E
[
Tr log(1 + µDN )

]
(82)

≈ β

N

N∑
k=1

log(1 + µdk).

Hence, for N sufficiently large

E
[
Tr log(XNDNX

∗
N )
]
≈

N∑
k=1

log(1 + µdk) + L log
( L
eµ

)
.

Taking partial derivatives on both sides with respect to dk we
obtain

λk ≈
∂µ

∂dk
·
N∑
i=1

di
1 + µdi

+
µ

1 + µdk
− L

µ

∂µ

∂dk
. (83)

IX. SIMULATIONS

In this Section we present some of the simulations per-
formed. Let Σ be a 100 × 100 true covariance matrix with
Toeplitz with entries Σi,j = exp(− 1

3 |i − j|). Assume we
take N = 50 measurements and we want recover Σ to the
best of our knowledge. After performing the measurements
we construct the sample covariance matrix Kx. In Figure
1 and 2 we can see the eigenvalues of the true matrix,
the eigenvalues of the sample covariance matrix (raw data)
and the eigenvalues of the new matrix after performing the
randomization to the sample covariance for different values
of L. In other words we are comparing the eigenvalues of
Σ, Kx and of invcovL(Kx)−1 for different values of L.
Recall that invcovL(Kx) is an estimate for Σ−1 and therefore
invcovL(Kx)−1 is an estimate for Σ. We also performed the
same experiment for the case that the true covariance matrix
is a multiple of the identity. This corresponds to the case in
which the sensors are uncorrelated. See Figure 3 and 4.

Let A be an N ×N matrix we define the Frobenius norm
as ‖A‖2 = 1

N2 Tr(A∗A). In Figure 5, 6 and 7 we compare the
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Fig. 1. Comparison of the eigenvalues of the true covariance matrix and
sample covariance matrix vs. invcov estimate. The conventional eigenvalue
estimate gives 50 eigenvalues that are precisely zero, which is not correct.
Our invcov estimate is much closer to the actual eigenvalue distribution.

performance of our estimator with the more standard estimator
of Ledoit and Wolf [7]. The experiment was performed with a
60× 60 true covariance matrix Σ with Toeplitz entries Σi,j =
exp(− 1

β |i−j|) and N = 30. We compute the Frobenius norm
‖Σ− invcovL(Kx)−1‖2 for the different values of L and we
compare it with ‖Σ −KLW ‖2. We use β = 10, 50 and 100.
We can see that our method outperform Ledoit and Wolf for
a big range of the parameter L. We also note that in the three
cases L = 20 is the optimum.

X. COMMENTS

Our investigation indicates that the new method presented in
this article is interesting and promising from the mathematical
point of view, as well as the practical one. Even though we
were able to find the asymptotics formulas as well as close
form expressions for invcovL, and more generally for fcovL,
both estimates for Σ−1 and f(Σ), there is a natural question
still unanswered. How to find the optimum L? For instance
assume we know that the matrix Σ is an M × M Toeplitz
distributed with entries Σi,j = exp(− 1

β |i− j|) with unknown
β. How does the optimum L depends on M and N? In the
simulations presented in Section IX we see that for M = 60,
N = 30 the optimum L is equal to 20 and it seems to be
independent on the value of β. We believe that this a question
interesting to explore.

Fig. 2. Comparison of the eigenvalues of the true covariance matrix and
sample covariance matrix vs. invcov estimate

Fig. 3. Comparison of the eigenvalues of the true covariance matrix and
sample covariance matrix vs. invcov estimate
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Fig. 4. Comparison of the eigenvalues of the true covariance matrix and
sample covariance matrix vs. invcov estimate

Fig. 5. Performance comparison with respect to Ledoit and Wolf for β = 10.
The horizontal blue line is the performance of the LW estimate, our invcov
estimate outperforms LW for L between 15 and 22.
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Fig. 6. Performance comparison with respect to Ledoit and Wolf for β = 50

Fig. 7. Performance comparison with respect to Ledoit and Wolf for β = 100

APPENDIX A
AVERAGE OVER THE PERMUTATION MATRICES

In this Appendix we study what happen if we substitute the
average over the isotropically random unitary matrices by the
set of permutation matrices. Let D be an N × N diagonal
matrix with D = diag(d1, . . . , dN ) and L ≤ N . We will
denote ep the orthonormal vector 1×N in CN whose entries
are zero except at the p th–coordinate that is 1. A permutation
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matrix is a L×N matrix of the form

Φ =


ep1
ep2

...
epL

 where pi 6= pj for i 6= j.

Theorem 2: Let D be a diagonal matrix as before. Then

E
[
Φ∗(ΦDΦ∗)−1Φ : Φ L×N permutation

]
=
L

N
D−1.

Proof: We will first show that

ΦDΦ∗ = diag( dp1 , dp2 , . . . , dpL).

Given 1 ≤ p ≤ N then ep ·D = dp ep. Therefore,

ΦDΦ∗ =


dp1ep1
dp2ep2

...
dpLepL

( eTp1 eTp2 . . . eTpL
)

= diag( dp1 , dp2 , . . . , dpL).

Hence,

(ΦDΦ∗)−1 = diag( d−1
p1 , d

−1
p2 , . . . , d

−1
pL ).

Thus,

Φ∗(ΦDΦ∗)−1Φ =

L∑
i=1

d−1
pi e

T
piepi . (84)

Note that Ep := eTp ep is the matrix that has all entries zero
except at the (p, p) entry which is 1. The total number of
different permutation matrices is N !

(N−L)! . Therefore,

E [Φ∗(ΦDΦ∗)−1Φ] =
(N − L)!

N !
·
∑

(p1,...,pL)

[
L∑
i=1

d−1
pi Epi

]
where the first sum is running over all the possible permutation
matrices. The number of permutation matrices that have ep as
one of their rows is (N−1)!L!

(L−1)!(N−L)! . Hence,

E[Φ∗(ΦDΦ∗)−1Φ] =
(N − L)!

N !

(N − 1)!L!

(L− 1)!(N − L)!
·D−1

=
L

N
D−1.
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