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Abstract

The mutual information between a complex-valued channel input and its complex-valued output is decomposed

into four parts based on polar coordinates: an amplitude term, a phase term, and two mixed terms. Numerical results

for the additive white Gaussian noise (AWGN) channel with various inputs show that, at high signal-to-noise ratio

(SNR), the amplitude and phase terms dominate the mixed terms. For the AWGN channel with a Gaussian input,

analytical expressions are derived for high SNR. The decomposition method is applied to partially coherent channels

and a property of such channels called “spectral loss” is developed. Spectral loss occurs in nonlinear fiber-optic

channels and it may be one effect that needs to be taken into account to explain the behavior of the capacity of

nonlinear fiber-optic channels presented in recent studies.

Index Terms

Mutual information, channel capacity, partially coherentchannels, phase noise.

I. I NTRODUCTION

The information encoded in complex-valued signals has two degrees of freedom which are commonly taken to

be the signal’s two quadratures – its real and imaginary parts. Alternatively, the signal can be decomposed into its

polar coordinates – amplitude and phase. Historically, thefirst digital modulation constellations with two degrees

of freedom were a combination of one-dimensional amplitudemodulation (AM) and phase modulation (PM) [1].

Quadrature amplitude modulation (QAM), i. e., amplitude modulation of two orthogonal carriers, was not described

until 1962, with the most significant progress in understanding made in the 1970s [2, Sec. 1.2].

The decomposition of complex-valued signals into their real and imaginary parts is the method of choice when the

sub-channels transporting them have identical form and noise statistics. In particular, this is the case for the AWGN

B. Goebel, G. Kramer and N. Hanik are with the Institute for Communications Engineering, Technische Universität München, 80290 Munich,

Germany (e-mail: bernhard.goebel@tum.de).

R.-J. Essiambre and P. J. Winzer are with Alcatel-Lucent, Bell Labs, Holmdel, NJ 07733, USA.

May 30, 2018 DRAFT

http://arxiv.org/abs/1003.6091v3


2

channel, e. g., with circularly symmetric Gaussian or square QAM input. In contrast, the “old-fashioned” AM-PM

view can be useful when physical effects act differently on the different sub-channels. Examples are systems that

clip the amplitude (e. g., nonlinear amplifiers) or systems that introduce phase noise (e. g., phase-locked loops or

certain nonlinear optical fiber effects). However, even forchannels that introduce equal impairments to the signal’s

quadratures (such as the complex-valued AWGN channel), theAM-PM view may be preferable if this facilitates

the input description, for instance for ASK-PSK modulationschemes.

Decomposing signals using polar coordinates motivates decomposing the mutual information between the channel

input and output using polar coordinates. We choose a decomposition that results in four terms: two partial channels,

each with one degree of freedom (an amplitude and a phase channel), and two mixed terms that govern the

exchange of mutual information across the sub-channels. Weexplain and discuss this method in Section II. We

illustrate our results by applying the decomposition to thecomplex-valued AWGN channel. In Section III, we derive

analytical expressions for the AWGN channel with average power constraint (Gaussian input) and with constant

power constraint (phase-modulated input). In addition, wepresent decomposition results for discrete ASK/PSK and

QAM constellations.

The second part of the paper deals with partially coherent channels, which are essentially AWGN channels with

additional phase noise. Such channels motivate the development of the polar decomposition method described in

this paper. The earliest information-theoretic results onchannels with reduced degrees of freedom, e. g., transmitters

or receivers that are limited to amplitude modulation (AM) or phase modulation (PM), date back to 1953 [3]. Some

time later, partially coherent channels became an important research topic in the context of phase jitter induced by

phase demodulation [4]. Good modulation schemes for such channels were presented in [5]. To this date, little is

known about the capacity-achieving input for partially coherent channels [6]. We discuss partially coherent channels

in Section IV and derive an effect we call “spectral loss”. Atthe end of that section, we use the capacity of fiber-

optic communication channels as one application of our results. Finally, in Appendix A we review results from

directional statistics that are useful for understanding phase noise and other circular random processes.

II. A POLAR DECOMPOSITION OFMUTUAL INFORMATION

Consider a channel with complex-valued input

X = Xq · eX∢ , Xq ∈ [0,∞), X∢ ∈ [−π, π) (1)

and output

Y = Yq · e Y∢ , Yq ∈ [0,∞), Y∢ ∈ [−π, π), (2)

where the notationXq, Yq (amplitudes) andX∢, Y∢ (phase angles) reminds us of what parts of the signal these

variables refer to. (We use lower-case fontsxq to denote a realization and calligraphic fontsXq to denote the support

of the random variableXq.)
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The mutual informationI(X ;Y ) between this channel’s input and output can be expanded by repeatedly applying

the chain rule of mutual information [7, p. 22] as

I(X ;Y ) = I(Xq, X∢;Yq, Y∢)

= I(Xq;Yq, Y∢) + I(X∢;Yq, Y∢|Xq)

= I(Xq;Yq)
︸ ︷︷ ︸

Amplitude term

+ I(X∢;Y∢|Xq)
︸ ︷︷ ︸

Phase term

+ I(Xq;Y∢|Yq)
︸ ︷︷ ︸

Mixed term I

+ I(X∢;Yq|Xq, Y∢)
︸ ︷︷ ︸

Mixed term II

. (3)

The expansion (3) can be interpreted as decomposing the complex-valued channel with two degrees of freedom

(amplitude and phase) into two sub-channels with one degreeof freedom each.

The first sub-channel, represented by the amplitude term of the mutual information

I(Xq;Yq) =

∫

Xq

p(xq)

∫

Yq

p(yq|xq) log
p(yq|xq)

p(yq)
dyqdxq (4)

conveys only the amplitude of the signal and is unaffected byimpairments such as phase noise.

The second sub-channel is characterized by the phase term ofthe mutual information

I(X∢;Y∢|Xq) =

∫

Xq

p(xq)I(X∢;Y∢|xq)dxq

=

∫

Xq

p(xq)

∫∫

X∢,Y∢

p(x∢, y∢|xq) log
p(x∢, y∢|xq)

p(x∢|xq), p(y∢|xq)
dx∢dy∢dxq

=

∫

Xq

p(xq)

∫

X∢

p(x∢|xq)

∫

Y∢

p(y∢|x∢, xq) log
p(y∢|x∢, xq)

p(y∢|xq)
dy∢dx∢

︸ ︷︷ ︸

I(X∢;Y∢|xq)

dxq

= EXq
{I(X∢;Y∢|Xq = xq)} , (5)

whereEX {f(X=x)} denotes the expectation off(X) with respect to the random variableX that takes on the

valuesx. Eq. (5) can be paraphrased in words as the information that can be obtained about theinput phaseby

observing theoutput phase, given that theinput amplitudeis already known. This term is significantly affected by

phase noise, but agnostic to amplitude distortions such as clipping as long as the input amplitude is known.

After separating the complex-valued channel into an amplitude and a phase part, the two mixed terms (I and

II) in (3) yield the “cross information” between these two sub-channels. Mixed term I represents the amount of

information about theinput amplitudethat can be drawn from theoutput phasein addition to what has already been

learnt about theinput amplitudeby observing theoutput amplitude. Finally, mixed term II yields the information

about theinput phasethat can be obtained from observation of theoutput amplitudegiven theinput amplitudeand

the output phase.

The polar decomposition of mutual information can be helpful in understanding the characteristics of the

channel input, e. g., concerning symbol constellations, and transmission impairments. Moreover, the decomposition

significantly simplifies the computation of the mutual information in cases where the mixed terms are zero or

negligibly small. The computation ofI(X ;Y ) then reduces to evaluating the conditional probability densities in (4)
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and (5), which are often known. Even if the mixed terms do not vanish, the two main terms yield a lower bound

on the mutual information (and can hence be used to get a lowerbound on capacity).

III. D ECOMPOSITION OF THEAWGN CHANNEL

We next apply the decomposition (3) to the complex-valued AWGN channel

Y = X +N, N ∼ NC

(
0, 2σ2

n

)
, (6)

with the power constraintE
{
|X |2

}
≤ Ps. This channel’s signal-to-noise ratio (SNR), stated here for later reference,

is
Ps

2σ2
n

(7)

or (in dB)

10 · log10
(

Ps

2σ2
n

)

. (8)

A. Gaussian Input

1) Amplitude term:The first term in the decomposition isI(Xq;Yq) = h(Yq) − h(Yq|Xq). The capacity of

the AWGN channel (6) with average power constraint is maximized byX ∼ NC (0, Ps) [7, p. 242]. SinceN ∼
NC

(
0, 2σ2

n

)
, the channel output is Gaussian distributed,Y ∼ NC

(
0, Ps + 2σ2

n

)
. Then,Yq =

√

ℜ{Y }2 + ℑ{Y }2

follows a Rayleigh distribution with parameter(Ps + 2σ2
n)/2 [8, p. 45]:

p(yq) =
2yq

Ps + 2σ2
n

· exp
(

− y2q
Ps + 2σ2

n

)

. (9)

The differential entropy of the output amplitude in bits is [7, p. 487]

h(Yq) =
1

2
log2(Ps + 2σ2

n) +
1

ln 2
+

γ

2 ln 2
− 1, (10)

whereγ ≈ 0.577 is theEuler constant.

Calculatingh(Yq|Xq) requires knowledge ofp(yq|xq), which is a Ricean distribution [8, p. 47]:

p(yq|xq) =
yq
σ2
n

· exp
(

−x2
q + y2q
2σ2

n

)

· I0
(
xqyq
σ2
n

)

, (11)

whereI0(.) is the modified Bessel function of the first kind with order zero. It can be seen that forxq=0, the Ricean

distribution turns into a Rayleigh distribution; forPs = 0, (9) and (11) are equal. Using the general form (11) of the

conditional PDF, the integration required to calculateh(Yq|Xq) is intractable. A significant simplification is obtained

when the channel’s SNR (7) is large. In this limit of large arguments of the Bessel function (xqyq/σ
2
n ≫ 1), we

can useI0(z) → ez/
√
2πz [9, p. 377]. The Ricean PDF (11) then turns into the Gaussian PDF

p(yq|xq) ≈
1

σn

√
2π

· exp
(

− (yq − xq)
2

2σ2
n

)

. (12)

In deriving (12), we dropped a factor
√

yq/xq which decays to1 asymptotically with increasing SNR. With (12),

the conditional differential entropy can be calculated as

h(Yq|Xq) ≈
1

2
log2(2πeσ

2
n). (13)
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Finally, using (13) and (10), an asymptotic approximation for the amplitude term is

I(Xq;Yq) = h(Yq)− h(Yq|Xq)

≈ 1

2
log2

(

1 +
Ps

2σ2
n

)

− 1

2
log2 π +

1 + γ

2 ln 2
− 1

≈ 1

2
log2

Ps

2σ2
n

−1

2
log2 π +

1+ γ

2 ln 2
− 1

︸ ︷︷ ︸

≈−0.69

, Ps ≫ 2σ2
n. (14)

2) Phase term:The phase termI(X∢;Y∢|Xq) = h(Y∢|Xq) − h(Y∢|X∢, Xq) is calculated similarly. For any

input amplitudexq, the output phase is uniformly distributed in[−π, π), so the first conditional entropy is easily

found to be

h(Y∢|Xq) = −
∫

Xq

∫

Y∢

p(xq, y∢) log2 p(y∢|xq)dy∢dxq

= −
∫

Xq

p(xq)

∫ π

−π

p(y∢|xq) log2 p(y∢|xq)dy∢

︸ ︷︷ ︸

− log2(2π)

dxq

= log2(2π). (15)

Similarly, we can write

h(Y∢|X∢, Xq) = −
∫∫

Xq,X∢

p(xq, x∢) ·
∫ π

−π

p(y∢|xq, x∢) log2 p(y∢|xq, x∢)dy∢

︸ ︷︷ ︸

−h(Y∢|xq,x∢)

dxqdx∢. (16)

The conditional entropyh(Y∢|xq, x∢) is not affected by the constant phase shiftx∢, so that we can assumex∢=0

without loss of generality and write the conditional phase PDF as [8], [10], [11]

p(y∢|xq, x∢ = 0) =
1

2π
exp

(

− x2
q

2σ2
n

)

+
xq cos y∢

2
√

π2σ2
n

· exp
(

−x2
q (sin y∢)

2

2σ2
n

)

· erfc

(

−xq cos y∢
√

2σ2
n

)

. (17)

The PDF (17) is periodic with a period of2π; integrating it over any contiguous2π interval yields one. Such

circular PDFs are reviewed in Appendix A.

If the channel SNR is low and we havex2
q ≪ 2σ2

n, the phase becomes uniformly distributed. On the other hand,

whenx2
q ≫ 2σ2

n, (17) can be approximated by the Gaussian PDF [8, p. 273]

p(y∢|xq, x∢ = 0) ≈ xq√
2πσn

· exp
(

− y2
∢

2σ2
n/x

2
q

)

. (18)

With this approximation, the inner entropy integral in (16)can be approximated as

h(Y∢|xq, x∢) ≈
1

2
· log2

(

2πe · σ
2
n

x2
q

)

, x2
q ≫ 2σ2

n, (19)
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and the entropy (16) becomes

h(Y∢|X∢, Xq) =

∫

X∢

p(x∢) ·
∫

Xq

p(xq|x∢) · h(Y∢|xq, x∢)dxqdx∢

=

∫ π

−π

p(x∢)dx∢ ·
∫ ∞

0

p(xq) · h(Y∢|xq, x∢)dxq

≈
∫ ∞

0

xq

Ps/2
· exp

(

−x2
q

Ps

)

· 1
2
log2

(

2πe · σ
2
n

x2
q

)

dxq

=
1

2
log2

2σ2
n

Ps
+

1 + γ

2 ln 2
+

1

2
log2 π, Ps ≫ 2σ2

n. (20)

The separation of the integrals (second equality) is possible becauseh(Y∢|xq, x∢) is independent ofx∢. In the

same line, we usedp(xq|x∢)=p(xq), which is a Rayleigh distribution.

Finally, the decomposition phase term can be approximated from (15) and (20):

I(X∢;Y∢|Xq) = h(Y∢|Xq)− h(Y∢|X∢, Xq)

≈ log2(2π)−
1

2
log2

2σ2
n

Ps
− 1 + γ

2 ln 2
− 1

2
log2 π

=
1

2
log2

Ps

2σ2
n

+
1

2
log2 π − 1 + γ

2 ln 2
+ 1, Ps ≫ 2σ2

n. (21)

3) Mixed terms:For the AWGN channel with Gaussian input,mixed term Iin the decomposition is always zero.

To prove this, observe thatp(y∢)=p(y∢|xq)=p(y∢|xq, yq)=1/(2π) within any2π interval and zero outside. Then,

we obtain the conditional entropies

h(Y∢|Yq) = −
∫ ∞

0

p(xq)

∫ π

−π

p(y∢|xq) log2 p(y∢|xq)dy∢

︸ ︷︷ ︸

− log
2
(2π)

dxq =

∫ ∞

0

p(xq)dxq · log2(2π)

= log2(2π) (22)

and

h(Y∢|Yq, Xq) = −
∫∫ ∞

0

p(xq, yq)

∫ π

−π

p(y∢|xq, yq) log2 p(y∢|xq, yq)dy∢

︸ ︷︷ ︸

− log
2
(2π)

dxqdyq

=

∫∫ ∞

0

p(xq, yq)dxqdyq · log2(2π) = log2(2π), (23)

and so

I(Xq;Y∢|Yq) = h(Y∢|Yq)− h(Y∢|Yq, Xq) = 0. (24)

Mixed term II, I(X∢;Yq|Xq, Y∢), reaches its (numerically calculated) maximum value of approximately 0.08

bits/symbol at10 log10(Ps/(2σ
2
n))=1 dB and tends to zero for large SNRs.

The results of the decomposition for the AWGN channel with Gaussian input are shown in Fig. 1. The depicted

curves were obtained from numerical integration of the mutual information integrals; markers indicate the analytical

approximations (14) and (21). Observe that the amplitude and phase terms are the main contributors to the

channel capacity, whereas mixed term II (shown in the inset)is negligibly small. It can be seen that the analytical
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Fig. 1. Mutual information decomposition terms as a function of SNR in dB (8) for the AWGN channel with Gaussian input. Lines show

numerical results, markers correspond to analytical approximations (14) and (21). The inset shows the magnified curve of mixed term II.

approximations are accurate at SNRs of approximately 15 dB and higher. At high SNRs, both mixed terms are

(exactly or near) zero and the amplitude and phase terms add up to the full capacity, as expected from (14) and

(21).

It is noteworthy that the complex Gaussian input, which maximizes I(X ;Y ), does not maximize the single

decomposition terms independently. The amplitude termI(Xq;Yq), for instance, is maximized by a “half-Gaussian”

rather than a Rayleigh distribution at large SNRs, see Section IV-B.

B. Phase-modulated Input

The termsconstant-intensity, constant-envelopeor ring modulation are used in the literature to characterize the

input of a system which encodes information only in the phaseof the transmitted signal. Results on the capacity

of constant-intensity channels in the presence of AWGN havebeen reported over a period of 50 years, e. g., [3],

[11]–[14]. The capacity of a channel constrained to constant intensity (“continuous PSK”) is an upper limit on the

rates achievable with discrete PSK constellations.

An important detail in the definition of phase-modulated AWGN channels is whether the receiver has access

to amplitude and phase of the received signal or to the phase only. Although it has been observed [11] that both

capacities are equal in the limit of large SNRs, evaluating the capacity difference at lower SNR values has remained

an open problem.

Performing a polar decomposition (3) of the phase-modulated AWGN channel is the key to shed light on this
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question. As no information is encoded inXq =
√
Ps = const., the amplitude term and the mixed term I of the

decomposition equal zero.

As expected for a phase-modulated system, the phase term conveys the greatest share of the transmitted informa-

tion. In the absence of amplitude modulation, this term can be written asI(X∢;Y∢|Xq=
√
Ps) = h(Y∢)−h(Y∢|X∢).

The capacity-achieving input distribution is uniform in[−π, π) [12]. Hence,Y∢ is uniformly distributed, too, and

h(Y∢) = log2(2π). To calculateh(Y∢|X∢), the entropy integral has to be solved for the conditional phase PDF

(17). An asymptotic approximation can be found for large SNRs, where (17) can be replaced by its Gaussian

approximation (18). The conditional differential entropyh(Y∢|X∢) then approaches (19), and the decomposition

phase term becomes

I(X∢;Y∢|Xq =
√

Ps) = h(Y∢)− h(Y∢|X∢)

≈ log2(2π)−
1

2
· log2

(

2πe · σ
2
n

Ps

)

=
1

2
· log2

(
4π

e
· Ps

2σ2
n

)

≈ 1

2
· log2

Ps

2σ2
n

+ 1.1 bits, Ps ≫ 2σ2
n. (25)

Hence, the capacity of the phase-modulated AWGN channel is approximately 1.1 bits/symbol larger than half that

of the AWGN channel with Gaussian input for large SNRs.

Finally, mixed term II,I(X∢;Yq|Xq=
√
Ps, Y∢), represents the (small) amount of information that can be gained

by receiving the signal amplitude and phase rather than the phase only. Fig. 2 shows the decomposition terms as a

function of SNR; the phase term markers indicate the asymptotic approximation (25), which is accurate at SNRs

greater than 15 dB.

C. Discrete Input Constellations

In practical communication systems, the input consists of points from a discrete alphabet rather than of continuous

values. Performing the polar decomposition for these discrete inputs is useful in two ways:

• The decomposition can help to adapt constellations to certain channel characteristics. For example, it may be

beneficial for channels impaired by strong phase noise to re-arrange the points of a constellation in a way that

the amplitude term is increased at the expense of the phase term. While the overall capacity may be hardly

affected in the absence of phase noise, an increased capacity is obtained in the presence of phase noise. An

example for this situation can be found in [15], where 8-PSK is compared to 8-OOK-PSK (7-PSK plus a point

at the origin) and 8-star-QAM in the presence of fading and phase noise. The decomposition could help to

accelerate this search for good constellations and possibly to make it more systematic.

• When determining the mutual information numerically, the computational complexity can be significantly

reduced by calculating the amplitude and phase terms ratherthan the full mutual information. This approach

requires both mixed terms to be negligibly small.

In the following, decomposition results are given for some exemplary modulation schemes.
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Fig. 2. Mutual information decomposition terms as a function of SNR in dB (8) for the AWGN channel with constant-intensity (continuous

ring) input. Lines show numerical results, markers correspond to analytical approximation (25).

1) Modulation using one degree of freedom:As examples of modulation schemes where either amplitude or

phase are modulated, Fig. 3 shows the decomposition ofon-off keying(OOK), i. e.,X ∈ {0, 1}, and phase-shift

keying(PSK) withM = 16 phase levels.
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Fig. 3. Polar decomposition of mutual information for OOK (left) and 16-PSK (right).

As the input phase carries no information with OOK, the phaseterm and the mixed term II are zero. The

amplitude term yields the amount of information available when only the signal amplitude is received and processed.
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An example for such a system is the direct-detection receiver used in optical communication systems, where the

photodiode responds to the incident light power [16, Ch. 4].Receivers that have access to the full signal (amplitude

and phase) can extract additional information about the input amplitude from the output phase. This information gain

is reflected in the mixed term I (dotted line). In the optical communications example, this gain can be obtained by

upgrading an optical OOK system from direct to coherent detection. At SNRs larger than 10 dB, all the information

is contained in the received amplitude, so that receiving the signal phase does not yield any additional information.

For the PSK input, the amplitude term and the mixed term I are zero. A phase-only receiver captures most of the

available information; the (rather small) gain that is obtained from additional amplitude reception at SNRs below

10 dB is captured by the mixed term II (dash-dotted line).

2) Combined ASK-PSK modulation:The simultaneous digital modulation of both amplitude and phase was first

proposed in 1960 [1]. Examples for this type of constellation, which later became known as theType Ior star-QAM

constellation, are shown in Fig. 4. The constellations depicted in the left column are combinations of 4 amplitude

levels and 4, 8, and 16 phase levels, respectively. The constellations shown in the right column are modifications

of these ASK/PSK schemes, where an additional phase offset is introduced between adjacent amplitude levels, thus

increasing the minimum distance between neighboring constellation points.

The decomposition results shown in Fig. 5 illustrate the capacity gain obtained from the phase offset in the right-

column constellations of Fig. 4. As the joint amplitude PDFp(xq, yq) remains unaffected by the phase offset, the

amplitude term (red line) is equal for both constellations (compare plots on the left and on the right side of Fig. 5).

Similarly, the conditional joint phase PDFp(x∢, y∢|xq) only experiences a constant shift (along thex∢-axis) for

amplitude levels with phase offset, which does not change the decomposition phase term (blue line). The capacity

gain achieved by the phase offset is reflected in the increaseof the mixed term I (magenta line; cf. top left and top

right plots); this gain decreases with increasing number ofphase levels (top to bottom).

By letting the number of phase levels go to infinity, the constellation turns into continuous concentric rings

and the mixed term I tends towards zero. Such modulation schemes with a discrete number of amplitude levels

and continuous phase angles (so-calledring modulation) were used in an extensive numerical study to estimate

the capacity of nonlinear fiber-optic channels [17]. As for the constellations discussed above (and most other

constellations), the mixed term II (green line) is negligibly small but non-zero for ASK/PSK constellations, too.

3) QAM: The polar decomposition results forM -QAM constellations withM = 4, 16, 64, 256, 512, 1024 are

shown in Fig. 6. It can be seen that the amplitude and phase terms saturate atH(Xq) andH(X∢|Xq), respectively.

For instance, 16-QAM has three distinct amplitude levels with four or eight distinct phase levels each, so the

decomposition terms tend towards

H(Xq) = − 4

16
log2

(
4

16

)

− 8

16
log2

(
8

16

)

− 4

16
log2

(
4

16

)

= 1.5 bits (26)

and

H(X∢|Xq) =
1

4
log2 4 +

1

2
log2 8 +

1

4
log2 4 = 2.5 bits. (27)
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Fig. 4. Combined ASK/PSK signal constellations with 4 phaselevels (top), 8 phase levels (center) and 16 phase levels (bottom) without (left)

and with (right) phase shift. The number of amplitude levelsis always 4.

Among the considered QAM constellations, 4-QAM is a specialcase in the sense that its mixed term I is zero;

being a PSK format, its decomposition resembles that of 16-PSK depicted in Fig. 3. ForM > 4, QAM constellations

exhibit a significant mixed term I, so that in the analysis of this modulation scheme, the mutual information may

not be approximated by the sum of the amplitude and phase terms only. Again, mixed term II is non-zero but

negligibly small for all QAM constellations.
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Fig. 5. Polar decomposition of mutual information for ASK/PSK constellations depicted in Fig. 4 without phase offset (left) and with phase

offset (right).
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Fig. 6. Polar decomposition of mutual information forM -QAM constellations with (from top left to bottom right)M =

4, 16, 64, 256, 512, 1024.
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IV. PARTIALLY COHERENTCHANNELS

In the preceding section, the transmitted phase (and, of course, the amplitude, too) was corrupted by AWGN. If

the signal is impaired by phase noise (in addition to AWGN), the channel is only partially able to convey phase

information even in the absence of AWGN. Such channels are called1 partially coherent[6]. Partially coherent

channels can be described in continuous-time form by

Y (t) = X(t) · eΘ(t) +N(t), (28)

whereN(t) is a complex-valued AWGN process with variance2σ2
n andΘ(t) models the phase noise process. We

can differentiate various types of phase noise appearing incommunication systems:

• The carrier itself as well as the local oscillator used for demodulation have random noise fluctuations. This

type of phase noise occurs in lightwave communication systems where the laser phase performs a random

walk (e. g., Brownian motion). The nonzero laser linewidth can broaden the signal spectrum so that spectrally

sensitive operations (filtering, sampling) require special attention. References on laser phase noise and related

system aspects include [20]–[24] and many references therein.

• Another type of correlated phase noise emerges when the carrier phase is imperfectly tracked at the receiver

(e. g., in a phase-locked loop [5], [6]). In this case, samples from the the phase noise processΘ(t) are usually

assumed to have a von Mises (Tikhonov) distribution (52).

• Uncorrelated (white) phase noise can be used to model the nonlinear effect of cross-phase modulation (XPM)

[25, Ch. 7] in multi-channel fiber-optic communication systems. In this case, the phase noise samples follow

a wrapped Gaussian distribution (49) as explained in Sec. IV-D.

• Signal-dependent phase noise is also found in fiber-optic communication systems, where it is produced by the

nonlinear effect of self-phase modulation (SPM) [26, Ch. 5]. SPM induces a phase shift that is proportional

to the instantaneous power of the propagating optical wave (including signal and noise) [25, Ch. 4].

In general, all types of phase noise are capable of broadening the spectrum of the transmitted signalX(t). This

spectral broadening is the major obstacle in transforming (28) into a discrete-time channel model. Filtering (and

sampling) a signal whose spectrum is broadened by phase noise can result (1) in signal distortions and energy

loss when the filter is narrow [21], [24] and (2) in an increased captured noise power when the filter bandwidth is

wide (see [24] and references therein). These effects can beneglected when the spectral broadening is moderate,

which is the case for strongly correlated phase noise processes. Filtering and sampling at the symbol rate is then

possible and leads to discrete-time channel models that have independent and identically distributed (i. i. d.) signal

and noise samples, but correlated phase noise samples (see,e. g., [27]). To obtain a discrete-time channel model

1The termpartially coherentwas introduced to communications engineering by A. Viterbiin 1965 [18]. Viterbi possibly adopted the term

from physical optics, where it characterizes the temporal or spatial correlation of electrical fields that are neithercoherent(fully correlated) nor

incoherent(uncorrelated) [19, Ch. X]. In communication and information theory, the termnoncoherent(rather thanincoherent) is used to refer

to channels that are entirely unable to transmit any phase information.
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with uncorrelated phase noise samples, the presence of an ideal interleaver and de-interleaver can be assumed (e. g.,

[6]). It is then possible to transform (28) into the discrete-time form

Y = X · eΘ +N, (29)

in which the phase noise time samplesΘi are modeled as i. i. d. and statistically independent ofX . In Sec. IV-C,

we instead discuss partially coherent channels withwhite phase noise. Discretization of such channels by means of

filtering and sampling at the symbol rate is possible, but does not lead to (29). Instead, the discrete-time channel

model must be modified to account for an effect we callspectral loss.

Before continuing with information rates, we remark that since the phase angle of AWGN is uniformly distributed,

the order in which phase noise and AWGN act on the transmittedsignal is irrelevant:

Y = (X +N) · eΘ

= X · eΘ +N · eΘ

= X · eΘ +N ′, (30)

whereN ′ ∼ NC

(
0, 2σ2

n

)
has the same distribution asN .

The circular PDFp(Y∢) can be obtained by circular convolution [28] of (17) withp(Θ). In numerical experiments,

it is usually more efficient to multiply the PDFs’ discrete Fourier transforms (DFT) and perform an inverse DFT

(IDFT) to obtain the final result [29]. In particular, when the phase noise has a wrapped Gaussian distribution,

the DFT of (17) can be multiplied with the DFT of the “unwrapped” Gaussian (which is again Gaussian). The

following IDFT will implicitly “wrap” the resulting PDF so that it maintains its periodicity with2π.

In the following discussion of partially coherent channels, the termSNRrefers to the power ratio of signal and

additivenoise (7).

A. Input Optimization and Information Rate Calculation

The capacity-achieving input distribution for the partially coherent channel (29) is not Gaussian [30], but it is

circularly symmetric [30], i. e., uniform in phase, and has discrete amplitude levels [6], [31]. In other words, the

capacity-achieving input distribution for the partially coherent channel consists of a number of continuous rings; the

number, radii and probabilities of these rings are subject to optimization. Interestingly, the shaping gain that can be

achieved by using non-equiprobable input symbols rather than a uniform square-area or circular-area distribution

is significantly larger than the maximum shaping gain of 1.53dB for the AWGN channel [30]. Therefore, the

optimization of signal sets for the partially coherent channel may be more rewarding than for the AWGN channel.

The polar decomposition is useful for the analysis of partially coherent channels when both mixed terms are

small or can be neglected. As mentioned in Section III, this is the case for AWGN channels with Gaussian or ring

inputs. As the amplitude termI(Xq;Yq) is not affected by phase noise, it suffices to re-calculate the phase term

in the presence of phase noise. The conditional phase PDFp(y∢|xq, x∢ = 0) is obtained numerically or, where

possible, analytically from a circular convolution [28] of(17) with the phase noise PDF, usually (49) or (52).
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Fig. 7 shows the decomposition results for the AWGN channel with Gaussian input with additional phase noise.

The phase noise has a wrapped Gaussian distribution with parameterσ as shown in Fig. 9.2 The phase noise

parameter values areσ = 0, 0.5, 1, 2. For largeσ, the circular variance goes to one and the wrapped Gaussian

distribution becomes uniform. In this case, no informationcan be transmitted in the signal phase and the phase

term tends to zero. An interesting observation can be made when σ is small (but nonzero). In this case, the phase

term increases with increasing SNR, but tends towards a constant value asymptotically. When the phase term nearly

reaches this asymptote, the contribution of the phase term to I(X ;Y ) gets small compared to that of the amplitude

term (which rises logarithmically with the SNR, cf. (14)). This statement is valid for any (arbitrarily low) phase

noise variance. Fig. 7 shows the amplitude term and the phaseterms forσ = 0, 0.5, 1, 2 and the respective total

capacities. The (very small) contribution of the mixed termII was neglected.
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Fig. 7. Polar decomposition of mutual information for an AWGN channel with Gaussian input with additional phase noise (σ=0, 0.5, 1, 2).

The mixed term II is negligible.

2We remind the reader thatσ2
n denotes the AWGN’s variance per dimension, whereasσ is the parameter of the wrapped Gaussian distribution.

Note that this distribution’s circular variance is given by(51); it is not equal toσ2 .
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B. Noncoherent Channels

Thenoncoherentchannel is the limiting case of the partially coherent channel (29) whenΘ is distributed uniformly

in [−π, π). As the phase is completely randomized, the output phasey∢ carries no information and the phase term

and the mixed term I of the polar decomposition are zero. The fact that the mixed term II is zero, too, is a

consequence ofp(yq|xq, y∢) = p(yq|x, y∢). The only information that can be transmitted over the noncoherent

channel is, therefore, represented by the amplitude termI(Xq;Yq). An example for a noncoherent channel is the

previously mentioned optical direct-detection (DD) receiver, which can be modeled byY = |X+N |2.
A related but different situation occurs for channels that obeyY = |X |2+N . Channels of this kind are found in

a variety of optical communication scenarios, with different statistics forN . For example, in thermal-noise limited

DD receiversN is a Gaussian process, but other noise statistics can be found for channels limited by (multiplied)

shot noise or by large amounts of optical background noise, both in fiber and free-space optical communications.

For a discussion of optical intensity channels with AWGN, see, e. g., [32]. While the phase term and the mixed

term II are zero in this case as for the noncoherent and DD channels, the mixed term I can be larger than zero.

Similarly, when the channel input is constrained to real-valued amplitude modulation, i. e., when the channel model

is Y =X +N, X = [0,∞), the mixed term I can be larger than zero. The decomposition ofthe AWGN channel

with OOK modulation discussed in Section III-C is an example.

The conditional PDFp(yq|xq) of the noncoherent channel is Ricean (11), so the mutual informationI(Xq;Yq) is

calculated along the lines of the amplitude term calculation in Section III-A. The difficulty in finding the capacity

of the noncoherent channel lies in finding the optimum input distribution p(xq). Similar to the partially coherent

channel, it is known that the optimum input distributionp(x) is not Gaussian [33], i. e., the optimump(xq) is not a

Rayleigh distribution (9). Rather, the capacity-achieving input is discrete [6]. By numerical optimization, Ho found

an optimum input (for the optical DD channel) that has a discrete probability mass atxq = 0 and a continuous

exponential profile atxq > 0 [34]. At low SNRs, this distribution collapses to two discrete points atxq = 0 and at

xq > 0, i. e., OOK, confirming a result reported in [6].

An analytical approximation to the noncoherent channel’s capacity is available in the limit of large SNRs. In

this case, the Ricean distributionp(yq|xq) can be approximated by a Gaussian, and the capacity-achieving input

distribution is apositive normalor half-Gaussiandistribution [3]

p(xq) =







√
2

πPs
· exp

(

− x2

q

2Ps

)

, x ≥ 0,

0, x < 0.
(31)

In a derivation analogous to that of (14), the capacity is found to be [3]

I(xq; yq) ≈
1

2
log2

(
Ps

2σ2
n

)

− 1

2
, Ps ≫ 2σ2

n, (32)

which is (log2 π − (1 + γ)/(ln 2) + 1)/2 ≈ 0.19 bits higher than the mutual information (14) that results from a

Rayleigh-distributed input. The same result was found in ananalysis of optical DD systems [35]. Signal shaping

methods for the optical DD are discussed in [36].
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C. Spectral Loss Induced by White Phase Noise

As discussed above, certain types of phase noise induce spectral broadening. If the phase noise processΘ(t) is

white, i. e., if it is temporally uncorrelated, a related butqualitatively different effect occurs which we callspectral

loss.

To describe this effect, we use the continuous-time channelmodel (28). We derive the power spectral density

(PSD)ΦY (f) of Y (t), assuming thatX(t) andNPN(t) = eΘ(t) are stationary, ergodic, and statistically independent

random processes. The autocorrelation function (ACF)ϕY (τ) of Y (t) is [37]

ϕY (τ) = E
{

X(t) · eΘ(t) ·X∗(t+ τ) · e−Θ(t+τ)
}

+ E {N(t) ·N∗(t+ τ)}

= E {X(t) ·X∗(t+ τ)} · E
{

eΘ(t) · e−Θ(t+τ)
}

+ ϕN (τ)

= ϕX(τ) · ϕNPN
(τ) + ϕN (τ), (33)

whereE {.} denotes the ensemble average. In calculating the ACFϕNPN
(τ) of NPN(t), we assume for simplicity

that the phase noise follows a wrapped Gaussian distribution (49) with parameterσ. SinceΘ(t) and Θ(t + τ)

are independent samples of a Gaussian random process, theirsum or differenceΘ′(t)=Θ(t)± Θ(t+ τ) satisfies

Θ′(t) ∼ NR

(
0, 2σ2

)
for τ 6= 0. The autocorrelation functionϕNPN

(τ) of the phase noise processNPN(t) is

ϕNPN
(τ) = E

{

eΘ(t) · e−Θ(t+τ)
}

=







1, τ = 0,

e−σ2

, τ 6= 0,
(34)

where the last result (forτ 6= 0) is the resultant length (50) of an ergodic (wrapped) Gaussian random variableΘ′

with zero mean and variance2σ2:

E
{

e (Θ(t)−Θ(t+τ))
}

= E
{

eΘ
′

}

= e−σ2

, τ 6= 0. (35)

The piecewise defined ACF (34) can be written as

ϕNPN
(τ) = e−σ2

+ lim
B→∞

(1 − e−σ2

) · sinc (Bτ) , (36)

wheresinc (x)=sin(πx)/(πx). By the Wiener-Khinchin theorem [37], the PSDΦNPN
(f) of NPN(t) is

ΦNPN
(f) = F (ϕNPN

(τ))

= e−σ2

δ(f) + lim
B→∞

(1− e−σ2

) · 1

B
· rect

(
f

B

)

, (37)

where

rect (f) =







1, |f | < 1
2 ,

1
2 , |f | = 1

2 ,

0, |f | > 1
2







= F (sinc (t)) (38)
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is the rectangular function[28]. Finally, the PSDΦY (f) of Y (t) is calculated using (33) and (37) as

ΦY (f) = ΦX(f) ⋆ ΦNPN
(f) + ΦN (f)

= e−σ2

ΦX(f) + lim
B→∞

ΦX(f) ⋆ (1− e−σ2

)
rect (f/B)

B
+ ΦN (f). (39)

The⋆ sign denotes convolution. Equation (39) explains the spectral effect of phase noise: The original PSDΦX(f)

is preserved in shape, but attenuated by a factore−σ2

. The remaining signal power (a fraction of1−e−σ2

) is spread

over the entire spectrum from−∞ to +∞ through convolution with a rectangular function whose width goes to

infinity and whose height tends to zero. Because the fractionof power that leaks outside the original spectrum has

arbitrarily low power in any given finite band, it does not appear as spectral interference. Hence, we call the effect

spectral loss(in contrast tospectral broadening).

A remarkable feature of (39) is its simplicity: the originalPSDΦX(f) is not broadened. We conclude from (39)

that filtering (at the bandwidth ofΦX(f)) the output of the partially coherent channel with white phase noise and

sampling at the Nyquist rate produces a channel of the form

Y = X · e− 1

2
·σ2 · eΥ +N, (40)

whereΥ is a random variable and the factor1/2 appears since (40) is expressed in terms of amplitudes. In fact,

numerical simulations (with largeB) show thatΥ approches0 asB increases. The resulting discrete-time model

for our channel is

Y = X · e− 1

2
·σ2

+N. (41)

Eq. (41) models an AWGN channel whose SNR (7) is attenuated bye−σ2

, so this channel’s capacity is

C = log2

(

1 +
Ps · e−σ2

2σ2
n

)

. (42)

If the phase noise distribution is not (wrapped) Gaussian, the same calculation will lead to qualitatively similar

results, with the value of the ACF (34) atτ 6= 0 determining the spectral loss factor.

We remark that (39) has an important implication for numerical simulations of phase noise. Due to the infinite

spectral broadening of the power, the output signalY (t) has infinite bandwidth and is therefore necessarily

undersampled in numerical simulations with finite bandwidth. Therefore, the numerical simulation of phase noise

will create aliasing inside and outside the original signalband through convolution ofΦX(f) with a rectangular

function of finite width and nonzero height. To keep this aliasing effect small in numerical simulations, it is necessary

to oversampleX(t) by a sufficiently large factor and to filter the spurious out-of-band noise.

D. Capacity of Nonlinear Fiber-optic Communication Channels

Fiber-optic systems are one example for a channel that can beimpaired by phase noise. It is therefore tempting

to apply the channel model with phase noise and spectral lossintroduced above to estimate the channel capacity of

fiber-optic systems in certain cases. Such systems either transport a single channel or carry multiple channels via

wavelength division multiplexing (WDM). In general, capacity calculations for this channel are very difficult due to
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the medium nonlinearity, its interaction with linear channel effects, and the distributed nature of noise, nonlinearity

and dispersion. A method for estimating this channel’s capacity from exhaustive numerical simulations is proposed

in [17] where results for different physical scenarios are reported. We first emphasize that the curves in [17, Fig. 36]

are for a fixed AWGN variance, except for Curve (2) where the AWGN variance is set to zero. Hence increasing SNR

at fixed system length refers to increasing the transmit signal power. At low signal power levels, the fiber channel

is dominated by ASE (Amplified Spontaneous Emission) noise from optical amplifiers and can be characterized as

an AWGN channel. With increasing signal power, distortionsfrom nonlinear fiber effects increase faster than the

SNR, bringing the channel capacity down to zero eventually.Cross-phase modulation(XPM) is identified as the

most relevant effect for the channel capacity of WDM systems[17, Fig. 36]. XPM causes a modulation of the

signal phase in one WDM channel by the instantaneous power levels of all co-propagating channels [25, Ch. 7].

Single-channel systems have a higher capacity because of the absence of suchinter-channelnonlinearities [17,

Fig. 36, Curves (3) and (4)]. There, the fundamentally limiting effect involves the nonlinear interaction of signal

and ASE noise.

Separate results for two special cases give insights into the origin of the capacity limitations [17, Sec. XI-E]: (1)

If XPM is suppressed (by transmitting one channel only), then the capacity starts decreasing at a much higher SNR

than with WDM, see [17, Fig. 36, Curves (3) and (4)]. (2) In the“unphysical” case where ASE noise is absent

(but all WDM channels are present), the capacity is still limited by XPM, see [17, Fig. 36, Curve (2)].

In the following, we will concentrate on the single-channelcase (with optical filtering) which is limited by

nonlinear signal-noise interaction [17, Fig. 36, Curve (3)]. In contrast to all other cases considered in [17], the

capacity for the single-channel system setup decreases sharply with SNR. To reproduce this curve with the channel

model (41), we assume that the phase noise varianceσ2 in (41) scales quadratically withPs (i. e., σ2 = c · P 2
s ,

wherec is a constant). Stated differently, we assume that the amplitude of the phase shift fluctuations induced by

SPM scales linearly with the signal power.

Using this model, a rapid capacity loss occurs (see (42)) if the channel suffers from spectral loss. More precisely,

at high powersPs (42) gives

C = log2

(

1 +
Ps · e−cP 2

s

2σ2
n

)

≈ Ps · e−cP 2

s

2σ2
n

· log2(e). (43)

The capacity curve [17, Fig. 36, Curve (3)] was produced using a 16-ring input. Instead of using (42), which

holds for a bidimensional Gaussian input, we calculate the polar decomposition’s amplitude and phase terms for the

channel model (41) with a 16-ring input. The (very small) mixed term II is neglected. A good fit of the resulting

capacity curve with [17, Fig. 36, Curve (3)] is obtained forc=1.1·105 W−2, see Fig. 8. The WDM system capacity

curve [17, Fig. 36, Curve (1)] is shown in red for reference. We observe that the channel model (41) reproduces

the sharp capacity decline in the high-power region well. However, the spectral loss model (41) withσ2 = c · P 2
s

exhibits a sharp capacity roll-off that does not match the shape of the WDM curve shown in Fig. 8. This model

of spectral loss is clearly insufficient to explain the WDM curve and additional investigations are needed to find

mechanisms that would reproduce the WDM curve.
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Fig. 8. Capacities of the fiber-optic channel (16-ring constellation input, single propagating channel) modeled as partially coherent channel

(41) with wrapped Gaussian phase noise distribution withσ2
=c · P 2

s . Dotted lines show numerical results from [17, Fig. 36, Curves (1) and

(3)] (single channel (black) and WDM system (red)). Upper x-axis showsPs in dBm, lower x-axis shows SNR in dB (8).

Finally, we would like to mention that a reviewer of this paper pointed out a discrepancy between the numerical

results [17] and an analytical model with phase noise and spectral loss (such as (40) or (41)) if the noiseN is set to

zero. In this case, the information rate for large but finitePs will clearly be log2(r) wherer is the number of rings.

The capacity therefore does not reduce withPs. This is not supported by the results in [17, Fig. 36, Curve (2)]

and it shows that spectral loss cannot completely account for the capacity reduction at high signal power. This is

especially apparent if the ASE noise power is small. Thus, asemphasized above, spectral loss should be considered

as onlyonemechanism by which fiber capacity can exhibit a maximum and approach zero at high signal powers.

V. CONCLUSION

We have presented a polar decomposition of the mutual information between a complex-valued channel input

and its output. This decomposition yields two main terms, anamplitude term and a phase term, and two “mixed”

terms that are small or zero in many cases. The decompositionwas performed for the AWGN channel with a

Gaussian input (for which asymptotic analytical approximations are derived), a phase-modulated input, and with

discrete input constellations.

Partially coherent channels are channels with AWGN and additional phase noise. The decomposition amplitude

term of such channels is not affected by phase noise. In contrast, the decomposition phase term is bounded because

of phase noise. A property of partially coherent channels with white phase noise that we call spectral loss was
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derived and discussed. Effectively, this loss decreases the received SNR; hence, the decomposition amplitude term is

affected by phase noise, too. Spectral loss must be taken into account in the analysis of channels impaired by phase

noise as well as in their numerical simulation. A particularly interesting example of a partially coherent channel

is the nonlinear fiber-optic channel. Capacity results for optical channels limited by signal-noise interaction were

calculated.

Finally, the polar decomposition is useful to understand the fundamental impairments of channels such as partially

coherent channels and their optimizing input constellations. The decomposition is a practical tool for a rapid

numerical evaluation of mutual information in cases where the mixed terms are small and the complex-valued

channel can be effectively decomposed into two independentone-dimensional channels.
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APPENDIX A

REVIEW OF DIRECTIONAL STATISTICS

Random variables such as phase angles or points on a spherical surface cannot be treated with “conventional”

statistical methods. (E.g., the average wind direction calculated from two measurements of358 ◦ and 2 ◦ is not

180 ◦.) The field that deals with suchdirectional (in contrast tolinear) random variables is known asdirectional

statistics[38].

A. Trigonometric moments

We restrict our review to one-dimensional directional (or circular) random variables, e. g., phase angles. Such a

random variableΘ is defined on an arbitrary interval of length2π and has a periodic probability density function

(PDF) that satisfies
∫ c+π

c−π

p(θ)dθ = 1, c ∈ R. (44)

To ensure that the statistical moments of the directional random variable are invariant under a rotation of the

coordinate system, thetrigonometric momentsare calculated fromeΘ rather than fromΘ. The ith trigonometric

moment ofΘ is defined as [39]
∫ π

−π

(
e θ
)i
p(θ)dθ. (45)

The first trigonometric moment can be calculated as
∫ π

−π

e θp(θ)dθ = ρ◦Θ · e µ◦

Θ , (46)

whereρ◦Θ is the resultant lengthandµ◦
Θ is themean directionof Θ [38]. The ith central trigonometric momentis

calculated as theith trigonometric moment ofΘ− µ◦
Θ.
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To quantify theconcentration(or, inversely, thedispersion) of a circular random variableΘ, it is common to

define thecircular varianceas [38], [39]

V ◦
Θ = 1−

∣
∣E
{
eΘ
}∣
∣ = 1− ρ◦Θ. (47)

Clearly, the circular variance is maximized ifΘ is uniformly distributed (V ◦
Θ = 1) and minimized for a constantΘ

(V ◦
Θ = 0). It must be noted that thecircular standard deviationis not defined as

√
V ◦
Θ, but as [39]

σ◦
Θ =

√

−2 ln(1− V ◦
Θ) =

√

−2 ln ρ◦Θ. (48)

B. Circular distributions

An example for a circular distribution has been introduced above in (17), which describes the probability density

of the phase angle of a complex phasor corrupted by complex-valued AWGN. This distribution ranges from a

uniform distribution (in any2π interval) for small SNRs to a Gaussian distribution for large SNRs. Middleton gives

a series expansion of (17) [10,§ 9.2-2] which has been applied in the context of systems with phase noise (cf.

references given in [26, Appendix 4.A]).

1) Wrapped Gaussian distribution:Another important circular distribution is thewrapped Gaussiandistribu-

tion [40], [41]:

p(θ) =
1√
2πσ

·
∞∑

k=−∞

exp

(

− (θ − µ− 2πk)2

2σ2

)

. (49)

This distribution occurs when a linear random variableX ∼ NR

(
µ, σ2

)
is “wrapped” around a circle, i. e.,Θ = X

mod 2π.

The mean directionµ◦
Θ, resultant lengthρ◦Θ and circular varianceV ◦

Θ of a wrapped Gaussian random variable

can be calculated as [41]

µ◦
Θ = µ mod 2π, ρ◦Θ = e−

1

2
σ2

(50)

and

V ◦
Θ = 1− e−

1

2
σ2

. (51)

The wrapped Gaussian approaches a uniform distribution forlarge σ and can be approximated by a Gaussian

distribution for smallσ as shown in Fig. 9.

2) Von Mises distribution:While the wrapped Gaussian distribution shares some of the properties of the linear

Gaussian distribution [42], it does not maximize the entropy for a given (circular) variance. This condition is met

by thevon Misesdistribution [39], [40]

p(θ) =
exp(κ cos(θ − µ))

2π I0(κ)
, (52)

whereµ is the circular mean (and is usually called thecentrality parameter), κ is theconcentration parameterand

I0(.) is the modified Bessel function of the first kind with order zero. In engineering, the von Mises distribution is

known as theTikhonovdistribution (after V. I. Tikhonov) [43]; it appears in the description of the phase error of

phase-locked loops [4].
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The circular variance is calculated using (47) with (46) as

V ◦
Θ = 1− ρ◦Θ

= 1−
∣
∣
∣
∣

∫ π

−π

p(θ) · e θdθ
∣
∣
∣
∣

= 1− 1

2π I0(κ)

∣
∣
∣
∣

∫ π

−π

eκ cos θ(cos θ +  sin θ)dθ

∣
∣
∣
∣

= 1− 1

π I0(κ)

∫ π

0

eκ cos θ cos θdθ = 1− I1(κ)

I0(κ)
. (53)

To obtain (53), we use the modified Bessel functions of the first kind of ordern defined as (see [9])

In(κ) =
1

π

∫ π

0

eκ cosx cos(nx)dx. (54)

The differential entropy is calculated as

h(Θ) =

∫ π

−π

eκ cos θ

2π I0(κ)
ln

2π I0(κ)

eκ cos θ
dθ

=
ln(2π I0(κ))

2π I0(κ)
·
∫ π

−π

eκ cos θdθ − k

2π I0(κ)
·
∫ π

−π

eκ cos θ cos θdθ

= ln(2π I0(κ))− k · I1(κ)
I0(κ)

, (55)

where (54) was used twice in the last equality.

Among all linear distributions that satisfy an average power (or variance) constraintE
{
|X |2

}
≤ P , the Gaussian

distribution maximizes the differential entropyh(X) [7]. Similarly, one can ask for the circular distributionp(θ)

that maximizesh(Θ) under a circular variance constraintV ◦
Θ ≤ A. Without loss of generality, we assumeµ◦

Θ = 0

which means thatE
{
eΘ
}

is a non-negative real number and thatE {sinΘ} = 0. We can thus write the circular

variance constraint as

V ◦
Θ

(47)
= 1− |E

{
eΘ
}
|

= 1−
∫ π

−π

p(θ) cos θdθ − 

∫ π

−π

p(θ) sin θdθ

︸ ︷︷ ︸

=0

= 1− E {cosΘ} ≤ A. (56)

To prove that the von Mises distribution (52) maximizes the differential entropy under the circular variance

contraint (56), we calculate the Kullback-Leibler distance between the von Mises distributionp(θ) and an arbitrary
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other distributionq(θ):

D(q‖p) =
∫ π

−π

q(θ) ln
q(θ)

p(θ)
dθ

=

∫ π

−π

q(θ) ln q(θ)dθ

︸ ︷︷ ︸

−h(q)

−
∫ π

−π

q(θ) ln p(θ)dθ

= −h(q)−
∫ π

−π

q(θ) ln
eκ cos θ

2π I0(κ)
dθ

= −h(q) + ln(2π I0(κ))− κ ·
∫ π

−π

q(θ) cos θdθ

= −h(q) + ln(2π I0(κ))− κ · EΘ∼q(θ) {cosΘ}
︸ ︷︷ ︸

≥1−A

≤ −h(q) + h(p), (57)

whereh(q) denotes the differential entropyh(Θ) of a random variableΘ ∼ q(θ) and whereκ is chosen to satisfy

1−A = I1(κ)/ I0(κ). Recall thatD(q‖p) ≥ 0 with equality if and only ifp=q [7]. Hence, we find that

h(p) ≥ h(q) (58)

with equality if and only ifq = p.

A different path to get to the same result is to note that the von Mises distribution is a special case of the maximum

entropy distribution [7, p. 267]. With the constraint (56),the maximum entropy distribution with coefficientsλ0=

− ln(2π I0(κ)) and λ1 = κ transforms into (52). Barakat finds the same result using Lagrange multipliers [44].

Observe that the von Mises distribution becomes uniform forlarge circular variance (smallκ) and approaches a

Gaussian distribution with varianceσ2 = 1/κ when the circular variance is small (κ large) [40]. Fig. 9 shows the

wrapped Gaussian PDF forµ = 0 (i. e., µ◦
Θ = 0) and various values ofσ.

Because of its maximum entropy property, the von Mises distribution is often considered to be the circular

analogue of the linear normal distribution. Hence, it is sometimes referred to as thecircular normal distribution; to

avoid confusion with the wrapped Gaussian distribution, itis advisable not to use this term. The wrapped Gaussian

and the von Mises distribution have a very similar shape [44], see Fig. 9. In practice, one often uses whichever is

more convenient [39].

3) Truncated Gaussian distribution:Suppose now for the sake of argument that the phase constraint is the usual

second-order constraintE
{
Θ2
}
≤ A, where the expectation is performed over the interval[−π, π). Suppose further

that we wish to maximize the entropy PDF over all PDFs withE {Θ} = 0 (the latter constraint is made to simplify

the discussion). Consider thetruncatedGaussian distribution

p(θ) =
λ√
2πσ

exp

(

− θ2

2σ2

)

, −π ≤ θ < π, (59)
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whereλ is a scaling constant that ensures (44) is valid, andσ2 is chosen so thatE
{
Θ2
}
= A. We compute

h(Θ) =

∫ π

−π

−p(θ) ln p(θ)dθ

=
1

2
ln

(
2πσ2

λ2

)

+
1

2σ2
·
∫ π

−π

p(θ)θ2dθ

︸ ︷︷ ︸

=E{Θ2}=A

=
1

2
ln

(
2πσ2

λ2

)

+
A

2σ2
. (60)

We further have

D(q‖p) =
∫ π

−π

q(θ) ln
q(θ)

p(θ)
dθ

= −h(q)−
∫ π

−π

q(θ) ln p(θ)dθ

= −h(q) +
1

2
ln

(
2πσ2

λ2

)

+
1

2σ2
·
∫ π

−π

q(θ)θ2dθ

= −h(q) +
1

2
ln

(
2πσ2

λ2

)

+
1

2σ2
· EΘ∼q(θ)

{
Θ2
}

︸ ︷︷ ︸

≤A

≤ −h(q) + h(p). (61)

Using D(q‖p) ≥ 0 with equality if and only ifq = p, we find that a truncated Gaussian distribution maximizes

entropy.

Fig. 9 shows the PDFs for the truncated Gaussian distribution for E {Θ} = 0 and various values ofσ (wrapped

and truncated Gaussians) andκ = 1/σ2 (von Mises). We remark that the physical meaning of our second-order

constraint is unclear, but the same can be said for the circular variance constraint. It is interesting, however, that

maximum entropy considerations lead to either a von Mises distribution or a truncated Gaussian distribution. Two

interesting problems are whether the wrapped Gaussian distribution is maximum-entropy under some natural circular

constraint, and whether the wrapped Gaussian has other natural “normal” properties [42].
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Zürich, Switzerland, in 1998.

From 1998 to 2000, he was with Endora Tech AG, Basel, Switzerland. From 2000 to 2008, he was with Bell Laboratories, Alcatel-Lucent,

Murray Hill, NJ. From 2009 to 2010 he was a faculty member of the University of Southern California (USC), Los Angeles. Since 2010 he is

Alexander von Humboldt Professor at the Technische Universität München, Germany.

Prof. Kramer is a member of the Board of Governors of the IEEE Information Theory Society since 2009. He is the Society’s 2nd Vice President

in 2011. He has served as an Associate Editor, Guest Editor, and Publications Editor for the IEEE TRANSACTIONS ON INFORMATION

THEORY. He served as Co-Chair of the Technical Program Committee of the 2008 IEEE International Symposium on Information Theory, and

as Founding Co-Chair of the first, second, and third Annual Schools of Information Theory during 2008-2010. He has been serving as a member

of the Emerging Technologies Committee of the IEEE Communications Society since 2009. He is a corecipient of the IEEE Communications

Society 2005 Stephen O. Rice Prize paper award, a Bell Labs President’s Gold Award in 2003, and a recipient of an ETH Medal in 1998. He

was awarded an Alexander von Humboldt Professorship endowed by the German Federal Ministry of Education and Research in2010.

May 30, 2018 DRAFT



30

Peter J. Winzer (S’93-A’99-SM’05-F’09) received the Ph.D. degree in electrical/communications engineering from the Vienna University of

Technology, Vienna, Austria, in 1998. His academic work, largely supported by the European Space Agency (ESA), was related to the analysis

and modeling of space-borne Doppler wind lidar and highly sensitive free-space optical communication systems. In thiscontext, he specialized

on advanced digital optical modulation formats and high sensitivity optical receivers using coherent and direct detection. After joining Bell Labs

in November 2000, he focused on various aspects of high-bandwidth optical communication networks, including Raman amplification, optical

modulation formats, advanced optical receiver concepts, and digital signal processing at bit rates from 10 to 100-Gb/s. He has widely published

in peer-reviewed journals and at conferences and holds several patents in the fields of optical communications, lidar, and data networking. Dr.

Winzer is actively involved as a Reviewer, Associate Editor, and Committee Member of various journals and conferences and serves as an

elected member of the IEEE-LEOS BoG. He is a Distinguished Member of technical Staff at Bell Labs, a Member of the Optical Society of

America (OSA).

Norbert Hanik (M’00) was born in 1962. He received the Dipl.-Ing. degree inelectrical engineering (with a thesis on digital spread spectrum

systems) and the Dr.-Ing. degree (with a dissertation on nonlinear effects in optical signal transmission) from Technische Universität München,

Munich, Germany, in 1989 and 1995, respectively. He was a Research Associate at TUM’s Institute for Telecommunicationsfrom 1989 to 1995,

where he conducted research in the areas of mobile radio and optical communications. From 1995 to 2004, he was with the Technologiezentrum

of Deutsche Telekom, heading the research group System Concepts of Photonic Networks. During his work there, he contributed to a multitude

of Telekom internal research and development projects, both as scientist and project leader. During 2002, he was a Visiting Professor at Research

Center COM, Technical University of Denmark, Copenhagen. In 2004, he was appointed Associate Professor for wireline and optical transmission

systems at TUM. He participated in a large number of researchprojects, funded by industry, German research funds as wellas the European

union. Prof. Hanik served as the General Chairman of the International Conference on Transparent Optical Networks (ICTON) 2010 held in

Munich. His primary research interests are in the fields of physical design, optimization, operation, and management ofoptical backbone and

access networks. He is a member of IEEE and VDE/ITG.

May 30, 2018 DRAFT


	I Introduction
	II A Polar Decomposition of Mutual Information
	III Decomposition of the AWGN Channel
	III-A Gaussian Input
	III-A1 Amplitude term
	III-A2 Phase term
	III-A3 Mixed terms

	III-B Phase-modulated Input
	III-C Discrete Input Constellations
	III-C1 Modulation using one degree of freedom
	III-C2 Combined ASK-PSK modulation
	III-C3 QAM


	IV Partially Coherent Channels
	IV-A Input Optimization and Information Rate Calculation
	IV-B Noncoherent Channels
	IV-C Spectral Loss Induced by White Phase Noise
	IV-D Capacity of Nonlinear Fiber-optic Communication Channels

	V Conclusion
	Appendix A: Review of directional statistics
	A-A Trigonometric moments
	A-B Circular distributions
	A-B1 Wrapped Gaussian distribution
	A-B2 Von Mises distribution
	A-B3 Truncated Gaussian distribution


	References
	Biographies
	Bernhard Goebel
	René-Jean Essiambre
	Gerhard Kramer
	Peter J. Winzer
	Norbert Hanik


