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Abstract

For ann, transmit,n,. receive antenna system(x n,. system), aull-rate space time block code
(STBC) transmitsy,,,;,, = min(n, n,) complex symbols per channel use. The well known Golden code
is an example of a full-rate, full-diversity STBC for 2 trami$ antennas. Its ML-decoding complexity is
of the order ofM?2-> for squareM-QAM. The Silver code for 2 transmit antennas has all therdbf
properties of the Golden code except its coding gain, barsfiower ML-decoding complexity of the
order of M2. Importantly, the slight loss in coding gain is negligibngpared to the advantage it offers in
terms of lowering the ML-decoding complexity. For highemnmher of transmit antennas, the best known
codes are the Perfect codes, which are full-rate, fullyditye information lossless codes (far. > n;)
but have a high ML-decoding complexity of the orderf*"mi» (for n, < n., the punctured Perfect
codes are considered). In this papex scheme to obtain full-rate STBCs &t transmit antennas and
anyn,. with reduced ML-decoding complexity of the order ot (Mmin—13)=05 jg presented. The codes
constructed are also information lossless #gr> ny, like the Perfect codes and allow higher mutual
information than the comparable punctured Perfect codes,fec n,. These codes are referred to as the
generalized Silver codesince they enjoy the same desirable properties as the cabipderfect codes
(except possibly the coding gain) with lower ML-decodingrmgmexity, analogous to the Silver-Golden
codes for 2 transmit antennas. Simulation results of thebsymrror rates for 4 and 8 transmit antennas
show that the generalized Silver codes match the punctueei@d® codes in error performance while

offering lower ML-decoding complexity.

Index Terms

Anticommuting matrices, ergodic capacity, full-rate spaiecne block codes, low ML-decoding com-

plexity, information losslessness.
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. INTRODUCTION AND BACKGROUND

Complex orthogonal designs (CODs) [1], [2], although pdeviinear Maximum Likelihood (ML)-
decoding, do not offer a high rate of transmission. A futeraode for am; x n,, MIMO system transmits
min(ng,n,) independent complex symbols per channel use. Among the C@idsthe Alamouti code
for 2 transmit antennas is full-rate forzax 1 MIMO system. A full-rate STBC can efficiently utilize
all the degrees of freedom the channel provides. In genanalncrease in the rate tends to result in an
increase in the ML-decoding complexity. The Golden codef¢B]2 transmit antennas is an example of
a full-rate STBC for any number of receive antennas. Untkrgly, the ML-decoding complexity of the
Golden code was reported to be of the orderdét, where M is the size of the signal constellation.
However, it was shown in [4], [5] that the Golden code has abdeg complexity of the order of/??
for squareM-QAM. Current research focuses on obtaining high rate ced#sreduced ML-decoding
complexity(refer to Secl1l for a formal definition). For 2 transmit amtes, the Silver code, named so
in [6], was first mentioned in [7] and independently presdnite[8] along with a study of its low ML-
decoding complexity property. It is a full-rate code witHIdiversity and an ML-decoding complexity
of the order ofM? for squareM-QAM. Its algebraic properties have been studied in [6] a@idahd a
fixed point fast decoding scheme has been given in [10]. Foarsiit antennas, Biglieri et. al. proposed
a rate-2 STBC which has an ML-decoding complexity of the oafel/45 for squareM -QAM without
full-diversity [11]. It was, however, shown that there was significant reduction in error performance
at low to medium SNR when compared with the previously besismncode - the DJABBA code [12].
This code was obtained by multiplexing Quasi-orthogonaligtes (QOD) for 4 transmit antennas [13].
In [4], a new full-rate STBC fort x 2 system with an ML-decoding complexity dff*> was proposed
and was conjectured to have the non-vanishing determitWiD} property. This code was obtained by
multiplexing the coordinate interleaved orthogonal desi¢CIODs) for 4 transmit antennas [14]. These
results show that codes obtained by multiplexing low coxipteSTBCs can result in high rate STBCs
with reduced ML-decoding complexity and by choosing a $léaconstellation, there won't be any
significant degradation in the error performance when coatbwith the best existing STBCs. Such an
approach has also been adopted in [15] to obtain high rate&dnd)m multiplexed orthogonal designs.
More recently, full-rate STBCs with an ML-decoding comptgxof the order of M/5° and a provable

NVD property for thed x 2 system have been proposed in [19] and [20].

!Fast decodable STBCs have been constructed in [16]-[18hese codes are not full-rate in general, and make use of nea
ML-decoding algorithms.
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In general, it is not known how one can design full-rate STB@san arbitrary number of transmit
and receive antennas with reduced ML-decoding compleltitg. well known that the maximum mutual
information achievable with an STBC is at best equal to tlgodic capacity of the MIMO channel,
in which case the STBC is said to leformation losslesg¢see Sectiofilll for a formal definition). It
is known how to design information lossless codes [21] fa& tase where:,. > n;. However, when
n, < ny the only known code in literature which is information lessd is the Alamouti code, which
is information lossless for theé x 1 system alone. It has been shown in [7], [22] and [12] that when
n, < ny, self-interferencef the STBC (a formal definition of self interference is givierSectior(1l) has
to be minimized for maximizing the mutual information aclgd with the STBC. Not much resealich
has been done on designing codes that allow a high mutuahiattion whemn, < n;. In this paper, for
n; = 2%, we systematically design full-rate STBCs which have thesigossible self-interference and
the lowest ML-decoding complexity among known full-rateE8Js for n,. < n; and consequently allow
higher mutual information than the best existing codes Riefect codes with puncturing [25], [26]),
while for n, > n., the proposed STBCs are information lossless like the coaiya Perfect codes. We
call these codes thgeneralized Silver codesince, analogous to the silver code and the Golden code
for 2 transmit antennas, the proposed codes have evenaliesiproperty that the Perfect codes have,
except the coding gain, but importantly, have lower ML-dding complexity. The contributions of the
paper are:

1) We give a scheme to obtain rate-1, 4-group decodable doefes Sectiof 1l for a formal definition
of multi-group decodable codes) fer, = 2 through algebraic methods. The speciality of the
obtained design is that it is amenable for extension to lighenber of receive antennas, resulting
in full-rate codes with reduced ML-decoding complexity &ty number of receive antennas, unlike
the previous constructions [27]-[29] of rate-1, 4-grougaliable codes.

2) Using the rate-1, 4-group decodable codes thus consttuete propose a scheme to obtain the
generalized Silver codes, which are full-rate codes wittuoed ML-decoding complexity fo2¢
transmit antennas and any number of receive antennas. Tdoeles also have the least self-
interference among known comparable STBCs and allow higha&ual information with lower

ML-decoding complexity than the comparable punctured dd¢rtodes for the case, < ny,

The full-rate STBCs in [23], designed far, < n., are not linear dispersion codes. They are based on maximdatsoand
use spherical shaping due to which the encoding and decadimglexity is extremely high. The STBCs in [24], also design
for n, < n, use the concept of restricting the number of active trahamtennas to be no larger than the number of receive
antennas, and so, the mutual information analysis for thedes is very difficult. These STBCs are diversity-multiohg gain
tradeoff (DMT) optimal but are associated with a very high Jdécoding complexity.
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while being information lossless fat, > n;. In terms of error performance, by choosing the
signal constellation carefully, the proposed codes haveemo less the same performance as the
corresponding punctured Perfect codes. This is showndifrsimulation results for 4 and 8 transmit

antenna systems.

The paper is organized as follows. In Sectioh I, we preshket dystem model and the relevant
definitions. The criteria for maximizing the mutual infortiwem with space time modulation are presented
in SectionIll and our method to construct rate-1, 4-groupod@ble codes is proposed in Section IV.
The scheme to extend these codes to obtain the generaliked &des for higher number of receive
antennas is presented in Sectioh V. Simulation results mmusked in Section VI and the concluding
remarks are made in Sectibn VII.

Notations: Throughout, bold, lowercase letters are used to denotenrgeand bold, uppercase letters
are used to denote matrices. Détbe a complex matrix. TheX” and X” denote the Hermitian and
the transpose oX, respectively and unless used to denote indices or subsgiipepresents/—1. The
(i,7)" entry of X is denoted byX (i, j) while tr(X) anddet(X) denote the trace and determinantf
respectively. The set of all real and complex numbers aretdenby R and C, respectively. The real
and the imaginary part of a complex numberare denoted by:; and z¢, respectively//X| denotes
the Frobenius norm oX, ||x|| denotes the vector norm of a vectarandl, and O denote thel’ x T'
identity matrix and the null matrix, respectively. The Kemker product is denoted by and vec(X)
denotes the concatenation of the columnsXobne below the other. For a complex random variable
X, E[X] denotes the mean of andEx (f(X)) denotes the mean ¢f(X), a function of the random
variable X . The inner product of two vectossandy is denoted by(x, y). For a setS, aS = {as|s € S}.

Let P and Q be two sets such th& > Q. ThenP \ Q denotes the set of elements Bfexcluding the

elements ofQ. For a complex variable, the (f) operator acting orx is defined as
SN Ty —IQ

xr =
xrQ Ty

The (f) can similarly be applied to any matriX € C"*™ by replacing each entry;; with z;;, i =
1,2,---,n,j = 1,2,--- ,m, resulting in a matrix denoted by € R?*?™_Given a complex vector
X = [x1,72, -, 2|7, X is defined ask £ [z17, 210, , Tn1, Tng]” . It follows that for A € C™*m,

e~

B € C™*P andC = AB, the equalitiesC = AB andvec(C) = (I, ® A)vec(B) hold.
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[I. SYSTEM MODEL

We consider the Rayleigh block fading MIMO channel with fahannel state information (CSI) at

the receiver but not at the transmitter. Forx n,, MIMO transmission, we have

Y:W/SNRHS+ N, Q)
nt

whereS € C™*7 is the codeword matrix whose average energy is giveRE@8|?) = n, T, N € C**T

is a complex white Gaussian noise matrix with i.i.d. entries\c (0,1) (complex normal distribution
with zero mean and unit variance), € C"*" is the channel matrix with the entries assumed to be
i.i.d. circularly symmetric Gaussian random variables\c (0,1), Y € C**T is the received matrix
and SN R is the signal-to-noise ratio at each receive antenna.

Definition 1: (Code rat@ Code rate is the average number of independent informatiarbols trans-
mitted per channel use. If there @randependent complex information symbols @dr real information
symbols) in the codeword which are transmitted dechannel uses, then, the code raté i§" complex
symbols per channel usek/T real symbols per channel use).

Definition 2: (Full-rate STBC} For ann, x n,, MIMO system, if the code rate isvin (ny, n,) complex
symbols per channel use, then the STBC is said ttubeate.

Assuming ML-decoding, the metric that is to be minimized roak possible values of codeword&

is given by
SNR

Tt

2
M (S) =||Y — HS

Definition 3: (ML-Decoding complexilyThe ML decoding complexity is measured in terms of the
maximum number of symbols that need to be jointly decodediimimizing the ML decoding metric.
For example, if the codeword transmitandependent symbols of which a maximumpo$ymbols need
to be jointly decoded, the ML-decoding complexity is of theler of AP, where M is the size of the
signal constellation. If the code has an ML-decoding coxipleof order less than\/*, the code is said
to havereduced ML-decodingomplexity.

Definition 4: (Generator matrix For any STBC that encod@# real symbols (o complex informa-

tion symbols), thegeneratormatrix G € R?7™:*2* s defined by [11]

vec (S) = Gs,

whereS is the codeword matrixs = [sy, sg, - - - ,szk]T is the real information symbol vector.
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A codeword matrix of an STBC can be expressed in termsveifght matrices(linear dispersion

matrices) [30] as
2k
=1

Here,A;,i = 1,2,--- ,2k, are the complex weight matrices of the STBC and should forlimesarly

independenset overR. It follows that
G= [ve/c(\A/l) U;C(\A_/Q) ve?(\,&gk)} .
Due to the constraint thak (||S||?) = n,T, we have,> 7 E(s;)%r (A;A) = n,T. Choosing
E(s;)?=1/2foralli=1,--- 2k, we have

2k
> tr (AAF) = 2n,T. )
1=1

Definition 5: (Multi-group decodable STBEAn STBC is said to bey-group decodable [29] if its

weight matrices can be separated igtgroupsg,, G, - - -, G, such that

AAT +AAT =0, AcG, Aj€G, Lpe{l,2---.,g}, l#p
Definition 6: (Self-interferenceFor an STBC given bys = Zfil s;A;, the self-interference matrix

[12] is defined as
2k—1 2k

S =" "sis; (AAF + AAH).

Definition 7: (Punctured Code)sPunzahr]éﬁi STBCs are the codes with some of the symbols being
zeros, in order to meet the full-rate criterion.

For example, a codeword of the Perfect code for 4 transmérarats [25] transmits sixteen complex
symbols in four channel uses and has a rate of 4 complex sgnm®ul channel use. If this code were
to be used for a two receive antenna system which can onlyosuppate of two independent complex
symbols per channel use, then, eight symbols of the Perfelet can be made zeros, so that the codeword
transmits eight complex symbols in four channel uses. Thagd symbols correspond to the two layers
[25] of the Perfect code.

Equation[(1) can be rewritten as

vec(Y) = %Heqw— v?c\(ﬁ), (3)
t

whereH,, € R?" 12T called the equivalent channel matrixs given byH., = (I ® H) G, with

G € R?mTx2mminT peing the generator matrix as in Definitibh 4.

June 8, 2018 DRAFT



Definition 8: (Ergodic capacity The ergodic capacity of an; x n,, MIMO channel is [31]

N
Crixn, = B (log det (Inr + Sn RHHH>> :
t

With the use of an STBC, the maximum mutual information agdide is [32]

] SNR
Tsrc = —Enq (log det (|2an + HeqHZq)) :

2T ¢
It is known thatC,,, x,,, > Zsrpc. If Ch,xn, = ZsTc, the STBC is said to beformation losslessf

the generator matriG is orthogonal (from Definitiol4, this case arises only:jf> n, and the STBC

is full-rate, i.e,k = n;T), the STBC is information lossless.

[1l. RELATIONSHIP BETWEEN WEIGHT MATRICES AND THE MAXIMUM MUTUAL INFORMATION

Capacity can be achieved with the use of continuous inputls @aussian distribution. If one were
able to use continuous Gaussian distributed inputs in ijpggaising the V-blast scheme would suffice,
since diversity is irrelevant. But in practice, one has te filsite discrete inputs, and diversity becomes an
important aspect, necessitating the use of full-diverSTBCs. Even though we considered the limited
block length scenario for space-time coding as a standaoheme, in practice, one would also have an
outer code and coding would be done over large block lengtlg® tclose to capacity. In such a scenario,
the maximum mutual information that an STBC allows beconmesrgportant parameter for the design of
STBCs. It is preferable to use STBCs which allow mutual infation as close to the channel capacity as
possible. It has been shown that if the generator matrixttsogonal, the maximum mutual information
achievable with the STBC is the same as the ergodic capacityeoMIMO channel [21], [32]. For the
generator matrix to be orthogonal, a prerequisite is thantimber of receive antennas should be at least
equal to the number of transmit antennas. When< n;, only the Alamouti code has been known to
be information lossless for thex 1 MIMO channel. In [22], by using the well known matrix ideindi
det M = ¢t7(lo9M) andiog(l + X) = S U xn an expansion of the ergodic MIMO capacity in

n=1 n

SNR was obtained as

Cosn, = iCnSNR",

n=1

with C,, = =1 (;—})n En (tr [(HH®)"]). The first two coefficients can easily be checked tahe= n,

and Cy = —n,.(n, + ny)/ne. On a similar noteZsrpc can also be expanded in SNR dsypc =
Yoo InSNR™, where

June 8, 2018 DRAFT



I, = % <;—j>nEH (tr [(HeqH;)"D - % <;—S>HEH (tr [(H;Heq)"D . (4)

Let H £ H] H,,. It is straightforward to check thad (i, j) = jtr (S;H'H), whereS;; £ AZ-AjH +
A;AH . Hence,

2Tn
1 1 ;
I, = 2TntEH(tr [H;Heq]):4T - ;EH (tr (SyHTH))
1 2Tn,.
= Z tr (NAPEy (HPH)) = n,,

i=1
whereE (HHH) = n,l,, and [2) is used in obtaining;. So, using all the available power helps one to
achieve the first order capacity. The second coefficigritas been calculated in [7] to be

2Tn, 2Tn,

I = 16Tn2 Z Z tr S2 )+ n,(trS;;) ) (5)

i=1 j=1i
In [7], it was argued that typical discrete input schemektéaiachieve capacity at the third order in
the expansion of the mutual information and henkeshould be maximized. Frond(5), it is clear that

to maximizel,, the following criteria should be satisfied.

1) Hurwitz-Radon Orthogonalityas many ofS;; should be equal t®,,, as possible, fot <i < j <
21'n,..

2) TracelessnessS;; should be traceless, for all< i < j < 2T'n,.

In fact, the first criterion, which is equivalent to mininmzgj the self-interference, is already clear from
(@), where it can be observed that a larger number of zerdneemeeT(IHeq contributes to a lower value
of the trace of(HZ;Heq)2. Hence, to design a good STBC with a high mutual informatitremn,. < n.,
one should have as many as possible weight matrix pairdfgagisHurwitz-Radon (HR) orthogonality.
We would, of course, like all the weight matrices to satisfiR-drthogonality, but there is a limit to
this number [1] which, except for the Alamouti code, is muekser thareTn,., the number of weight
matrices of a full-rate STBC whem,. < n;. It can easily be checked that for the Alamouti cofie= C>.

It is known that for a rate-1 code for; > 2, one cannot have all the full-ranked weight matrices mijual
satisfying HR-orthogonality. For such STBCs, the minimuetf-;iterference is achieved if the STBCs
are g-group decodable, witly as large as possible. At present, the best known rate-1 lonplexity

multi-group decodable codes are the 4-group decodablesdod@ny number of transmit antennas [27],

[28], [29]. These codes are not full-rate for > 1. If one were to require a full-rate code, the codes
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Alzln A§+1 A(g;1)k+1
A2 A§+2 = A2A§+1 e A(g—q‘l)k 1o = AQA (g—q‘l)k 11
Ax A =AcAc | | Ar=AAu o,
9 g 9 g g q
TABLE 1

WEIGHT MATRICES OF Ag-GROUP DECODABLE CODE

in literature [27], [28], [29] are not suitable for extensito higher number of receive antennas, since
their design is obtained by iterative methods. In the negtiee, we propose a new design methodology
to obtain the weight matrices of a rate-1, 4-group decodebtke by algebraic methods faf transmit
antennas. These codes can be extended to higher numberdaferantennas to obtain full-rate STBCs

with lower ML-decoding complexity and lower self-interégrce than the existing designs.

IV. CONSTRUCTION OFRATE-1, 4-GROUP DECODABLE CODES

We make use of the following theorem, presented in [28], tastict rate-1, 4-group decodable codes
for n = 2% transmit antennas.
Theorem 1:[28] An n x n linear dispersion code transmitting k real symbolg-igroup decodable if

the weight matrices satisfy the following conditions:

1) A =1, ie{l1,2,--- k)

2) Af=—l,, je{®E+1m=12--,9-1}.

3) AA; = AjA;, G e{1,2,--- k)

4) AR =AA;, e {12, 8 e {1 m =12, 91}

B) AiAj = —AjA;, Qe +1m=1,2--- g1}, i #].

6) Auiyy=AiAueyy, me{l,2,- g1}, i€{1,2 )

Tablell illustrates the weight matrices ofyjagroup decodable code which satisfy the above conditions.
The weight matrices in each column belong to the same group.

In order to obtain a rate-1, 4-group decodable STBCQfotransmit antennas, it is sufficient if we have
20+l matrices satisfying the conditions in TheorEim 1. To obtaiﬂs, we make use of the following
lemmas.

3These STBCs can be obtained elegantly using the theory Gb@liAlgebra but to make the paper accessible to a wider
group of readers, we have preferred to make use of simpleept&érom matrix theory without reference to Clifford Algab
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Lemma 1:[33] If n = 2% and invertible complex matrices of sizexn, denoted byF;,i = 1,2, --- , 2a,
anticommute pairwise, then the set of produets;, - - - F;. with 1 <1i; < --- < iy < 2a along withl,,
forms a basis for the?® dimensional space of all x n matrices overC.

Proof: The proof is provided for the sake of completeness. Assurat iththe set of products
Fi,Fi,---Fi.,, 1 <i; <--- <i4 < 2a, along withl,,, at mostk elements are linearly independent over

C, for somek < 22¢. So,

k+1
SRRy Fy =0, i £0, A, €{0,1},5 =12, 2. (6)
i=1

Noting thatFs - - - Fo, anticommutes withF; but commutes with each d¥,, - -, Fo,, premultiplying

each term of[(6) by, - - - Fo, results in a new equation with the coefficientsnegated for those terms
in (@) containingF;. Adding this new equation t@](6) yields another equationaimimg fewer summands
than [6), leading to a contradiction. So= 22¢, which proves the theorem. ]
Lemma 2:If all the mutually anticommuting: x n matricesF;,i« = 1,2,---,2a, are unitary and
anti-Hermitian, so that they square td,,, then the producF; F;,---F; with 1 <i; < --- <izs < 2a

s(s+1)

squares td—1) "= I,,.

Proof: We have

(FiFi, - Fi)(FiFi, - Fi)) = (1) N F;Fy,-F;)(F;,F

. Fi.)

Z-a... R

= (—1)" (=) *(FIF - Fi)(FiFi, - -Fy)

i1 io E s

= (DD E ER R

1 12

s(s—1) s(s+1)

= (=1) 2 (=1l =(=1) = Iy,

which proves the lemma. |
Lemma 3:Let F;,i = 1,2,---,2a be anticommuting, anti-Hermitian, unitary matrices. &t =
{Fil,FZ’2,--- >Fis} anng = {FjlaFj2>"' 7Fj7‘} with 1 < << < 2a andl1 §j1 < -e <j7« <

2a. Let |21 N Qs = p. Then the product matrik; F;, - - - F;, commutes withF; F;, ---F; if exactly
one of the following is satisfied, and anticommutes othezwis

1) r,s andp are all odd.

2) The products is even ang is even (including 0).

Proof: WhenF;, € Q; Ny, we note that

(Fi,Fi, - Fi)Fj, = (=1)° " 'Fj (Fi,Fiy -+ - Fi))

7;2”

June 8, 2018 DRAFT



11

and whenF;, ¢ Q; N Qy, we have(F; F;, ---F;,)F;, = (=1)°F;, (Fi,F;, -- - F;.). Now,

(Fi,Fiy - Fi)(FiFj - Fy) = (—1)P D (=)0 PP (R Ry, o Fy ) (Fy, Fiy - Fiy)
= (=)™ P(FF), - Fy ) (FaFiy - Fi ).
Casel) Sincer, s andp are all odd,(—1)"*7? = 1.
Case?2) The products is even and is even (including 0). Hencg-1)"*"? = 1. [ |

From Theorenill, to get a rate-1, 4-group decodable STBC, wd Bgairwise anticommuting, anti-
Hermitian matrices which commute with a group2sf-! Hermitian, pairwise commuting matrices. Once
these are identified, the other weight matrices can be eabilgined. From [2], one can obtaitu
pairwise anticommuting, anti-Hermitian matrices and thethnod to obtain these is presented here for

completeness. Let

01 0 j 1 0
P1= Py = P3 =
10 i 0 0 —1

andA®" 2 A®A®A---®A. The2q anti-Hermitian, pairwise anti-commuting matrices are

m  times
Fi = +jPy,
Foo = 157 Q@PIQPY . k=1, ,q
Fort1 = |g§aik®P2®P§§kil, k=1,---,a—1.
Henceforth,F;,7 = 1,2,--- , 2a, refer to the matrices obtained using the above method. F&t&8 =

{ay,a9, -+ ,a,}, defineP(S) as
P(S) = {ai‘lag‘z —ead, A € {0, 1}} .

We choosd-, F2 andF; to be the three pairwise anticommuting, anti-Hermitianrioas (to be placed
in the top row along with,, in Table(l. Consider the s& = {jF4Fs5, jFsF7, - - - , jF2a—2F2q—1, F1F2F3},
the cardinality of which isz— 1. Using Lemmd and Lemnia 3, one can note habnsists of pairwise
commuting matrices which are Hermitian. Moreover, it isacléhat each of the matrices in the set
also commutes witlF;, F» andF3. Hence P(S), which has cardinalitRe~! is also a set with pairwise
commuting, Hermitian matrices which also commute Vth F; andFs. The linear independence BfS)
overR is easy to see by applying Lemrhh 1. Hence, we have 3 pairwisgoarmmuting, anti-Hermitian

matrices which commute with a group f~! Hermitian, pairwise commuting matrices. Having obtained
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I F1 Fa F3
JF4F5 jFi1F4Fs JjFaF4F5 JF3F4F5
FiF2Fs “FuF; FiFs “FiF

JF1FoF3F4Fs | —jFoFsF4Fs | jRiFsF4Fs | —jF1FaFsFs

TABLE Il
WEIGHT MATRICES OF A RATE1, 4-GROUP DECODABLESTBCFOR 8 TRANSMIT ANTENNAS

these, the other weight matrices are obtained from Theblero lllustrate with an example, we consider

n = 8 and show below how the weight matrices are obtained for tteea4-group decodable code.

A. An example n =8

LetF;,i =1,2,--- ,6 denote the 6 pairwise anticommuting, anti-Hermitian ncasi Choosé&, F,

andF3 to be the three anticommuting matrices required for codestcoction. Let
S = {jFaFs, F1FoFs},  P(S) = {ls, jF4Fs, F1FaFs, jF1F2F3F4F5 1

The 16 weight matrices of the rate-1, 4-group decodable ¢od8 antennas are as shown in Table
M Each column corresponds to the weight matrices belanginthe same group. Note that the product

of any two matrices in the first group is some other matrix i@ $ame group.

B. Coding gain calculations

Let A(S,S) £ det(ASASY), whereAS £ S— S, S # S denotes the codeword difference matrix.
Let As; = s, — sh,i =1,2,--- ,2n;, Wheres; and s’ are the real symbols encoding codeword matrices

S andS, respectively. Hence,

2n; 2n, 2n: 2n:
A(S,S) = det <Z As;A; Z AsmAg> = det <Z Z AsiAsmAiAﬁ> .
i=1 m=1

i=1 m=1

Note that because of the nature of construction of the waeitditices, we have

AAI = A A zm€{12%} pe{1,2,3).

Further, since the code is 4-group decodable,

(p+1)ny (p+1)nt_1 (p+1)ny
3 2 2 2
A(S,S) = det g E As?lnt +2 E E AsiAsmAiAg
p=0 i:%.g-l i:P_’;t.H m=i+1
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All the weight matrices in the first group are Hermitian andwee commuting and the product of any
two such matrices is some other matrix in the same group. Wel$ known that commuting matrices

are simultaneously diagonalizable. Hence,

A =EDE", ic {23 %}

whereD; is a diagonal matrix. Sincd; is Hermitian as well as unitary, the diagonal element®péare
+1. The following lemma proves tha; is traceless.

Lemma 4:Let F;,i = 1,2,--- ,2a be 2% x 2% unitary, pairwise anticommuting matrices. Then, the
product matrixF*Fa2 - - - Fa2e \; € {0,1},i = 1,2,--- ,2a, with the exception of ., is traceless.

Proof: It is well known thattr(AB) = tr(BA) for any two matricesA andB. Let A andB be two

invertible, n x n anticommuting matrices. TheABA~! = —B. So,
tr(ABA™!) = —tr(B) & tr(B) = —tr(B).
s tr(B) = 0. (7)

Similarly, it can be shown thatr(A) = 0. By applying Lemmd13, it can be seen that any product
matrix Ffl Fgé e FQ; excludingl ., anticommutes with some other invertible product matronfrthe
set{F'F?---Fy2 \; € {0,1},i = 1,2,3,--- ,2a}. Hence, from[{I7), we can say that every product
matrix FY'F52 - - - F)2* exceptlo. is traceless. u
From the above lemma); except identity is traceless. Hen&, has an equal number of '1’s and ’-1's.
In fact, because of the nature of construction of the matr€ei = 1,2,--- , 2a, the product matrices
F;F;.1, for eveni, and the product matrik, F,F3 are always diagonal (easily seen from the definition of
F.,i=1,2,---,2a). Hence, all the weight matrices of the first group excluding= I,,, are diagonal,
with the diagonal elements beingl. Since these diagonal matrices also commute Wwitrand F3, the

diagonal entries are such that for every add the (i,4)"" entry is 1(-1), then, théi + 1,7 +1)*" entry

is also 1(-1, respectively). To summarize, the propertied0i = 2,--- , % are listed below.
A, = AH; AZ=1,,
Az(mvn):07 m#nv AZ(]?])::EL j:1727 > Tty
tT(Ai) = 0, (8)
AZ(]?]) = AZ(]+17]+1)7 j:17375>"' 7nt_17 (9)
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AA; = A zyk€{12%} (10)
In view of these properties,
3 (T—’+21)"7't (P+21)"7't_1 (P+21)"t
ASS)=det [> [ Y Asfln,+2 Y > AsiAsuDim | |
p=0 \i=22t 11 =22t 41 m=it1
whereD;,,, = A;A,, = Ay, for somek € {1,2,---, %}, and
ny 3 % 2
ASS)=T]D] | Do diydsemsi | (11)

j=1p=0 \ i=1

whered;; = +1 andd;; = 1. In fact,d;; = A;(4,7), i =1,2,3,--- , 2. From [11),A(S,S) is a product
J J J 2

of the sum of squares and it is minimized when only one groapps= 0, gives a non-zero contribution.

Hence,
0 2
Tt 2
min(A(S, §)) = min H1 Z; dijAsi ||,
j=1 \i=

wheremin(y) denotes the minimum value gf over all possible values af. From [9),
€T

n 4

win(A(S§)) = min H1 Z;di@j—l)Asi - (12)
j=1 \ii=

We need the minimum determinant to be as high a non-zero nuasbpossible. In this regard, let

2 n
N . t
W=/ n_t[wij]a wij = di2j-1), 4,J=1,2,--- -y (13)
and
T T
ypé [yﬂz£+17yﬂ2£+27... 7ynt(;2)+1):| :W[Sﬂzg+17312,Lp+2;"' ,Snt(ngl)] 5 p=0,1,2,3.

Lemma 5:W as defined in[(13) is an orthogonal matrix.
Proof: From [I3), it can be noted that the columns\Wfare obtained from the diagonal elements
of A;,i=1,2,--- , 5. Each element of a columhof W corresponds to every odd numbered diagonal

element ofA;. Denote thei’” column of W by w;. Applying (), [I0) and[{8) in that order,

1 1
Wi W;) = —tr(AA;) = —tr(Ax) = 0.

nt
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where
0, if i # J
1, otherwise
Hence,W is orthogonal. [ |

Substitutingy,, in (12), we get

in(A(S, 9)) = mi 4
min(A(S,S)) = min j];[lyj

So, the minimum determinant is a power of the minimum prodiigtance inn; /2 real dimensions. If
Yy, € 7%, the product distance can be maximized by premultiplyipgvith a suitable orthogonal rotation
matrix V given in [34]. This operation maximizes the minimum deteramt and hence the coding gain.
So, the2n, real symbols of the rate-1, 4-group decodable code are eddoyl groupings- real symbols
each into 4 groups and each group of symbols taking value &ramitarily rotated vector belonging to

Z%, the rotation matrix beingvTV. For 4 transmit antennas,

1 1 -1 0.8507 —0.5257
W= — , V= ,
V211 1 0.5257  0.8507
and for 8 transmit antennas,
[ 1 -1 -1 1 ] [ —0.3664 —0.7677 0.4231 0.3121 ]

W — 111 1 1 1 V— —0.2264 —0.4745 —0.6846 —0.5050
2 1 -1 1 -1 ’ —0.4745 0.2264 —0.5050 0.6846
1 1 -1 -1 —0.7677 0.3664 0.3121 —0.4231

If the practically used square QAM constellation of sizeis used, encoding is done as follows : the
complex symbols in each codeword matrix take values fromMh&AM and are split into two groups,
one group consisting of the real parts of thiesymbols and the other group consisting of the imaginary
parts. Each group is further divided into two subgroupsheamnsisting ofn;/2 real symbols. So, in
all, there are 4 groups consisting of/2 real symbols. As used before, denoting the column vectors
consisting of the symbols in a group lyy, p = 0,1,2,3 (the entries ofy, take values independently
from v/ M-PAM), let S, = WTVyp, whereW andV are as explained before. Then the codeword matrix

is given by

E Spm, Apne ;.
Byt+i 5 i

3
S=
p=0 i=1
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Note that the above codeword matrix can also be expressed as

D Yo, A, (14)

3
2
p=0 i=1

M)

S=

whereA’p%H. = Zjile'iAL;"tJ,_j, p =0,1,2,3, with w;; being the(j,7)"* element ofWTV. Clearly,
the weight matricest\’p%w p=0,1,2,3, satisfy the condition
A, ! " A A H—O for 0 <1 <3,andi,j =0,1 e
e (Azpgy ) Az (Al ;) = On, fOr0<i<p<3 andij=01,---,%.

ng—2

Consequently, the ML-decoding complexity of the code ishef order of A/~

. This is because there

are four groups consisting of;/2 real symbols each and the symbols in each group can be decoded
independently from the symbols in the other groups. In dexpthe symbols in the same group jointly,
one needs to make a search 0\«,@% — M1 possibilities for the symbols, since the real and the
imaginary parts of a signal point in a squareQAM have onlyy/M possible values each (the real and
the imaginary parts of a signal point of a squareQAM take values from a/M-PAM constellation).
However, one need not make an exhaustive search over albtisipe)/ & values for thew; /2 symbols.

For every possible value of the fir§t — 1 real symbols, the last symbol is evaluated dyantization

[4]. Hence, the worst case ML-decoding complexity is of thideo of \/M%_l = M only. Fig.
[ gives a comparison of the symbol error rate for the prop&EEC, the 4-group decodable STBC
proposed by Yuen et al. [27] and the 4-group-decodable ST®@gsed by Rajan [28], all for the x 1
MIMO system. The plots reveal that all the STBCs have the spenmformance for QAM constellations.
Independently, we have computed that all the three codesthavsame minimum determinant for QAM

constellations.

V. EXTENSION TO HIGHER NUMBER OF RECEIVE ANTENNAS

Whenn, = 1, a rate-1, 4-group decodable STBC is the best full-rate STBEsible in terms of
ML-decoding complexity and as a result, ergodic capacitwelver, whem,. > 1, we need more weight
matrices to meet the full-rate criterion. In literaturegith does not exist a 4-group decodable STBC with
rate greater than 1. So, it is unlikely, though not proveaf there exists a full-rate, multi-group ML-
decodable STBC with full-diversity for, > 1. So, forn, > 1, we relax the requirement of multi-group
decodability and simply aim for some reduction in the ML-0déing complexity and self-interference.
Let ny = 2% We know that ifF;,¢ = 1,2,--- ,2a are pairwise anticommuting, invertible matrices, then,

the setF £ {F'Fy2 ---F2e, with \; € {0,1},i = 1,2,--- ,2a} is linearly independent oveE. Hence,
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the setM = {F,jF} is linearly independent oveR. As a result, the elements g¥1 can be used as

weight matrices of a full-rate STBC fot,, > 1. Keeping in view that the self-interference has to be

minimized, it is important to choose the weight matricesigiaiisly. The idea is that given a full-rate

STBC for n, — 1 receive antennas, obtain the additional weight matricea @&ill-rate STBC forn,

receive antennas by using the weight matrices of a rategtpdp decodable STBC such that after the

addition of the new weight matrices, the set consisting ef weight matrices of the rate- code is

linearly independent oveR. This is achieved as follows.

1)

2)

3)

4)

Obtain a rate-1, 4-group decodable STBC by using the nartgin detailed in Section V. Due to
the nature of the construction, the product of any two weightrices is always some other weight
matrix of the code, up to negation. Denote the set of weightioes byJ;.

From the setF, choose a matrix that does not belongipand multiply it with the elements of
G, to obtain a new set of weight matrices, denoteddgy Clearly, the two sets will not have any
matrix in common. To see this, lé&t € G; andB € F (M \ G1), whereB is the matrix chosen
to be multiplied with the elements @f;,. Let BA = C € G;. Hence,B = CAH = +CA andCA
belongs tog;, up to negation. This contradicts the fact tBat F (M \ ;). So,C cannot belong
to G;.

The weight matrices ofj, form a new, rate-1, 4-group decodable STBC. This is becdwesL-
decoding complexity does not change by multiplying the Weigatrices of a code with a unitary
matrix. In this case, we have multiplied the elementgpfvith an element ofF, which is a unitary
matrix. Now,G; | G is the set of weight matrices of a rate-2 code with an ML-dé@xgpdomplexity

ng—2 Sng—2

of M™ . M~a = M~ + . This is achieved by decoding the lagt symbols with a complexity of

M™ and then conditionally decoding the first symbols using the 4-group decodability property
as explained in Sectidn TViB.

For increasingn,., repeat as in the second step, obtaining new rate-1, 4-gileapdable codes
and then appending their weight matrices to obtain a new-ratcode with an ML-decoding
complexity of M™(=3)-05_The new set of weight matrices g, G;.

When all the elements of have been exhausted (this occurs when= n,/2), Step 3 can be
continued tilln, = n; by choosing the matrices that are to be multiplied with therants ofG,
from jF (M \ U " G:). Note from Lemmdll that this does not spoil the linear indepene

of the weight matrices oveR.
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Note : In the case of the Perfect codes for transmit antennas, a layer [25], [26] corresponds to
n; complex symbols. In case of our generalized Silver codeayerlcorresponds to a rate-1, 4-group
decodable code encoding complex symbols. Also, the Silver code for ap x n, system refers to
the STBC containing,,,;,, = min(n, n,) individual rate-1, 4-group decodable codes, a propertytdue

which self-interference is greatly reduced compared wittenknown full-rate codes.

A. An illustration forn; = 4

For n; = 4, let F1,F,,F3 and F4 be the four anticommuting, anti-Hermitian matrices obddirby
the method presented in [2]. Let = {F}'Fy*F3*F)*, A\ € {0,1},i = 1,2,3,4}. The rate-1, 4-group
decodable code has the following 8 weight matrices, withgivematrices in each column belonging to

the same group:

l4 Fi Fa F3
FiFoFs | —FoFs | FiFs | —F1Fs

Hence,G, = {l4,F1,F2, Fs, F1FoFs, —FoF3, F1F3, —F1F2}, Now, we choose a matrix from¥ which
does not belong tg;. One such matrix i&,. Pre-multiplying all the elements ¢# with F; and applying
the anticommuting property, we obtain a new rate-1, 4-gmbegodable code, whose weight matrices are

as follows:

Fi “FiFy | —FoFy | —FsFy
—FiFoFsFy | —FoFsFy | FiFsFy | —F1FoFy

Hence,Gy = F4G1 = {F4, —F1Fy, —FoF4, —FsFy, —F1FoFsFy, —FoFsFy, F1FsFy, —F1FoF,} and Gy
|J G2 is the set of weight matrices of the rate-2 STBC, which isfaté with an ML-decoding complexity
of the order ofM*?>.

Now, since there are no more elements leftFin(neglecting negation), we can choose elements from
jJF. To construct a rate-3 code for 3 transmit antennas, we phuline elements ofj; by jl, to obtain
the setGs = jG;. The weight matrices of the rate-3 code constitute thegséf Go | J Gs. Similarly, the
weight matrices of a full-rate code for, > 4 are the elements of the séi | G2 Gs|J G4, Where
G4 = jF4G1 = jGs. It is obvious thatG,, Go, G3 and G, represent the weight matrices of four individual

rate-1, 4-group decodable codes, respectively.

June 8, 2018 DRAFT



19

B. Structure of thdRr-matrix and ML-decoding complexity

The popular sphere decoding [36] technique is used to pertbe ML-decoding of linear dispersion
STBCs utilizing lattice constellations. A QR-decompasitiof H.,, the equivalent channel matrix, is
performed to obtairH., = QR and the ML-decoding metric is given by

2 2
" N
vec(Y) — Sn—R HegS
t

. [SNR

M (s) =

Rs

)

ny

wherey’ = QT vec(Y). TheR-matrix of the Silver code for the, x n, system has the following structure,

irrespective of the channel realization:

D x ... x|
Oy, D

R=| °
| Os,, Osy ... D |

where X € R?"*2n is a random non-sparse matrix whose entries depend on thmeheoefficients
andD = I, ® T, with T € R> %% being an upper triangular matrix. The reason for this stmects that
the weight matrices of the Silver code for apx n,. system are also the weight matricesnofn(n:, n,)
separate rate-1, 4-group decodable codes (as illustrat€ed[V). As a result of the structure bf the
R-matrix has a large number of zeros in the upper block, andénesompared to other existing codes,
the generalized Silver codes have lower average ML-degoclimplexity. The worst case ML-decoding

ng—2

complexity is of the order of A (min=DY (A7) = M (min=1)-05 \which is because in decoding

the symbols, a search is to be made over all possible valudgsedastn;(n,,;, — 1) complex symbols

(which requires a complexity of the order @™ ("=~=1)) while the remainings, symbols can be

ng—2

conditionally decodedvith a complexity of M~

only, once the lasti;(n,,;, — 1) symbols are fixed

(a detailed explanation on conditional ML-decoding hasnbgesented in [11], [4]). In simple words, to
decode the Silver code, one does not need;a,,;, dimensional real sphere decoder. All one requires is
a2n;(nm,in, — 1) dimensional real sphere decoder in conjunction with foualpel (n; —2)/2 dimensional
real sphere decoders. The decrease in the ML-decoding eaitypls evident from the decrease in the

dimension of the real sphere decoder fr@mn,,;, t0 2n:(nmim — 1) + "'T‘Q
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C. Information Losslessness far > n;

For n,. > ny, the Silver code is information lossless because its nazetilgenerator matrix (normal-
ization is done to ensure an appropri&t&/ R at each receive antenna) is orthogonal. To see this, the

generator matrix forn, > n; is given as

G = —=loeelAr) veetBs) -+ veelAs)

where A; € M,i = 1,2,---,2n?, are the weight matrices obtained as mentioned in B&c. \h wit

M = {F,jF}, whereF = {F}'Fy? - Fy2 )\, € {0,1},i = 1,2,3,--- ,2a}. Fori,j € {1,2,--- ,2n?},

we have
(ee(A),vec(A;)) = real (tr (AHA})) (15)
= =real (tr(AA;)) (16)
real (tr(l,,)) ifi=j
= real (tr(jlm)) if A; = jA]
+real (tr(Ag)) otherwise, where + A, € M\ {l,,,jln,}
Equation [I6) holds becauge, i = 1,--- ,2n? are either Hermitian or anti-Hermitian, arid{(17) follows

from Lemmal4.
Lemma 6: Tracelessness of the self-interference matrix is equindle column orthogonality of the
generator matrix.

Proof: Using the definition of the self-interference matsk*, given in Definition[®,

2k—1 2k 2k—1 2k
tr(S™) = D> sisitr [(AAT + AAN] =23 " sis; (real [tr (AA])])
i=1 j>i =1 j>1i
2k—1 2k o
= 2 Z Zsisj(vec(Ai),vec(Aj», (18)
i=1 j>i

where [18) follows from[(15). Froni (18), it is clear that cmin orthogonality of the generator matrix is
equivalent to tracelessness of the self-interferenceixnatr [ |
Recall that the second criterion given to maximizggiven by [5)) requires thes;; = A,-Af +AjA{{,

i # j, be traceless. It is clear from Lemrnh 6 that for our STBE,is traceless for # ;.
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D. The Silver code for two transmit antennas

The Silver code [7], [8] for two antennas, which is well kno¥an being a low complexity, full-rate,
full-diversity STBC forn, > 2, transmits 2 complex symbols per channel use. A codewordimat

the Silver code is given as

s1+7Js2 S3+jsa . S5+ Js¢ s7+Jjss
S= +J U,
—S3+Js4 S1—JS2 —s7+]JSs S5 — JS6
where
1 147 1425
Uu=—
V7| —1425 1-
The codeword encodes 8 real symbejsss, - - - , sg, each taking values independently from a regular

v M-PAM constellation. The first four weight matrices are thhathee Alamouti code, given by

10 0 0 1 0 j
AIZ 7A2: 7A3: 7A4:
0 1 0 —j -1 0 7 0

Note that the Alamouti code is 4-group decodable for 2 transmtennas. The Silver code’s next 4
weight matrices are obtained by multiplying the first fourigie matrices byj. To make the code
achieve full-diversity with the highest possible codingnggost-multiplication byJ is performed. It can
be checked thdtl = %ﬁ(Al +Aq2+A3+2A,). Effectively, the last 4 weight matrices of the silver code a
jA;U, i =1,--- 4, which also form another rate-1, 4-group decodable code.urtitary matrixU is so
cleverly chosen that in addition to providing full-divegsiwith a high coding gain, the generator matrix
is orthogonal (which can be checked usihgl (16)), making tieednformation lossless for, > 2. The
Silver code compares very well with the well known Golden eadd error performance, while offering

lower ML-decoding complexity of the order df/?.

E. Achievability of Full-diversity

The following theorem, (Theorem I, [35]) guarantees théditdiversity is possible for the generalized
Silver codes with the real symbols taking values from PAMateltations, denoted byl p 4.

Theorem 2:For any givenn x n square linear desig§ = {S: Zle siA; | si € Apam, i =1,2,
.-+, k}, encodingk real symbols with full-rank weight matrices;, there existo; € C, i = 1,--- ,k,
such that the STBG' £ {S: Zle sioiA; | si € Apang, 1=1,2,--- ,k} offers full diversity.

Since all the weight matrices of the generalized Silver cade either Hermitian or anti-Hermitian

and hence full-ranked, full-diversity is achievable witietgeneralized Silver codes. However, finding

June 8, 2018 DRAFT



22

out explicitly the values ofy; is an open problem. For the full-rate codes for 1 receive rarggein
Section[IV-B, we have identified the encoding scheme whichamy provides full-diversity, but also
maximizes the coding gain for PAM constellations. For theegalized Silver codes for higher number of
receive antennas, each layer, corresponding to a rategflguf decodable code, is encoded as explained
in V-B] Note from (13) that this type of encoding neither veés the number of matrix pairs satisfying
Hurwitz-Radon orthogonality nor spoils the column orthoglity of the Generator matrix. In addition,
we use a certain scaling factor to be multiplied with a cargibset of weight matrices to enhance the
coding gain. The choice of the scaling factor is based on cwengsearch. With the use of the scaling
factor, the generalized Silver codes perform very well whempared with the punctured Perfect codes.
Although we cannot mathematically prove that our codes Halaiversity with the constellation that
we have used for simulation, the simulation plots seem tgasigthat our codes have full-diversity, since
the error performance of our codes matches that of the cabfgpunctured Perfect codes, which have

been known to have full-diversity.

VI. SIMULATION RESULTS

In all the simulation scenarios in this section, we consttierRayleigh block fading MIMO channel.

A. 4 Tx

We consider three MIMO systems4-x 2, 4 x 3 and4 x 4 systems. The codes are constructed as
illustrated in Subsection VAA. To enhance the performanfceur code for the4 x 2 system, we have
multiplied the weight matrices df, (as defined in Subsectign WA) with the scatdf/*. This is done
primarily to enhance the coding gain, which was observedetdhe highest when the scale™/* was
chosen. It is to be noted that this action does not alter thedeglitoding complexity and the column
orthogonality of the generator matrix (so, the resultantigive matrices still satisfy the tracelessness
criterion). Consequently, the weight matrices of the Silvede for thed x 2 system can be viewed to be
from G, |J e/™/4G,. For the4 x 3 MIMO system, the weight matrices of the Silver code are friwm set
g1 Ueﬂ'“/‘lgg |J7G1, while the weight matrices of the Silver code for thex 4 system are from the set
G UJe?™*Gy | J5G1 U je™/*Gs. Fig.[2 shows the plot of the maximum mutual information aghble
with our codes and the punctured Perfect codes [25Ufer2 and4 x 3 systems. In both the cases,
our codes allow higher mutual information than the punau?Perfect code, as was expected. Regarding
error performance, we have chosen 4 QAM for our simulatiom$ @ncoding is done as explained in
Subsection TV-B.
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1) 4 x 2 MIMO
Fig.[3 shows the plots of the symbol error rate (SER) as a immaif the SNR at each receive
antenna for five codes - the DJABBA code [12], the puncturedd®e code for 4 transmit antennas,
the Silver code for the x 2 system, the EAST code [37] and Oggier’'s code from crossedymto
Algebra with a provable NVD property [19]. Since the numbedegrees of freedom of the channel
is only 2, we use the Perfect code with 2 of its 4 layers puectu©Our code and the EAST code
have the best performance. It is to be noted that the curvabdaSilver code for the x 2 system
and the EAST code coincide. Also, the Silver code for #he 2 system is the same as the one
presented in [4], but has been designed using a new, systemethod. The Silver code for the
4 x 2 system and the EAST code have an ML-decoding complexity@btider of\/** for square
QAM constellation, while the DJABBA and Oggier's code have BIL-decoding complexity of
order M% and M>, respectively.

2) 4 x 3 MIMO
Fig.[4 shows the plots of the SER as a function of the SNR at eza#ive antenna for two codes -
the punctured perfect code (puncturing one of its 4 layerd)the Silver code for thé x 3 system.
The Silver code for thd x 3 system has a marginally better performance than the plettherfect
code in the low to medium SNR range. It has an ML-decoding dexity of the order of)/%5
while that of the punctured Perfect codels!! (this reduction fromM/'2 to M'! is due to the
fact that the real and the imaginary parts of the last symbnllie evaluated by quantization, once
the remaining symbols have been fixed).

3) 4 x 4 MIMO
Fig.[d shows the plots of the SER as a function of the SNR at eax#ive antenna for the Silver
code for the4 x 4 system and the Perfect code. The Silver code for4he 4 system nearly
matches the Perfect code in performance at low and medium $éRe importantly, it has lower

ML-decoding complexity of the order af/'>?, while that of the Perfect code /.

B. 8 Tx

To construct the Silver code for tltex 2 system, we first construct a rate-1, 4-group decodable STBC
as described in Sectidn ]IV and denote the set of obtainedhiveigtrices byg,. Next we multiply the
weight matrices ofj; by F, to obtain a new set of weight matrices which is denotedjbyThe weight
matrices of the Silver code for thex 2 system are obtained fro@y | J G,. The Silver code for th& x 3

system can be obtained by multiplying the matricegGpfwith Fs and appending the resulting weight
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matrices to the sef; | JG». The rival code is the punctured perfect code for 8 transmiérznas [26].
The maximum mutual information plots of the two codes arenshin Fig.[8. As expected, our code
has higher mutual information, although lower than the dig@apacity of the corresponding MIMO
channels.

Fig. [@ shows the symbol error performance of the Silver came8fx 2 system and the punctured
Perfect code [26]. The constellation employed is 4-QAM. ikgdao enhance performance by way of
increasing the coding gain, we have multiplied the weightrives of G, with the scalar’s , as done
for the codes for 4 transmit antennas. The simulation plggests that our code has full diversity. The
most important aspect of our code is that it has an ML-degpdmplexity of A/°->, while that of the

comparable punctured Perfect codelis?.

VIl. DISCUSSION

In this paper, we proposed a scheme to obtain full-rate STBEC® transmit antennas and any
number of receive antennas with the lowest ML-decoding derily and the least self-interference
among known codes. The STBCs thus obtained allow higher ahin€ormation than existing STBCs
for the casen, < n,. Identifying explicit constellations which can be mathéicelly proven to guarantee
full-diversity and a non-vanishing determinant withoutr@asing the ML-decoding complexity is an
open problem. Also, one can seek to obtain full-rate STBGhk véduced ML-decoding complexity for
arbitrary number of transmit (not a power of 2) and receivieianas. These are some of the directions

for future research.
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