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Abstract

For annt transmit,nr receive antenna system (nt × nr system), afull-rate space time block code

(STBC) transmitsnmin = min(nt, nr) complex symbols per channel use. The well known Golden code

is an example of a full-rate, full-diversity STBC for 2 transmit antennas. Its ML-decoding complexity is

of the order ofM2.5 for squareM -QAM. The Silver code for 2 transmit antennas has all the desirable

properties of the Golden code except its coding gain, but offers lower ML-decoding complexity of the

order ofM2. Importantly, the slight loss in coding gain is negligible compared to the advantage it offers in

terms of lowering the ML-decoding complexity. For higher number of transmit antennas, the best known

codes are the Perfect codes, which are full-rate, full-diversity, information lossless codes (fornr ≥ nt)

but have a high ML-decoding complexity of the order ofMntnmin (for nr < nt, the punctured Perfect

codes are considered). In this paper1, a scheme to obtain full-rate STBCs for2a transmit antennas and

anynr with reduced ML-decoding complexity of the order ofMnt(nmin−
3
4 )−0.5, is presented. The codes

constructed are also information lossless fornr ≥ nt, like the Perfect codes and allow higher mutual

information than the comparable punctured Perfect codes for nr < nt. These codes are referred to as the

generalized Silver codes, since they enjoy the same desirable properties as the comparable Perfect codes

(except possibly the coding gain) with lower ML-decoding complexity, analogous to the Silver-Golden

codes for 2 transmit antennas. Simulation results of the symbol error rates for 4 and 8 transmit antennas

show that the generalized Silver codes match the punctured Perfect codes in error performance while

offering lower ML-decoding complexity.

Index Terms

Anticommuting matrices, ergodic capacity, full-rate space-time block codes, low ML-decoding com-

plexity, information losslessness.

1Part of the content of this manuscript has been presented at IEEE ISIT 2010 and another part at IEEE Globecom, 2010.
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I. INTRODUCTION AND BACKGROUND

Complex orthogonal designs (CODs) [1], [2], although provide linear Maximum Likelihood (ML)-

decoding, do not offer a high rate of transmission. A full-rate code for annt×nr MIMO system transmits

min(nt, nr) independent complex symbols per channel use. Among the CODs, only the Alamouti code

for 2 transmit antennas is full-rate for a2 × 1 MIMO system. A full-rate STBC can efficiently utilize

all the degrees of freedom the channel provides. In general,an increase in the rate tends to result in an

increase in the ML-decoding complexity. The Golden code [3]for 2 transmit antennas is an example of

a full-rate STBC for any number of receive antennas. Until recently, the ML-decoding complexity of the

Golden code was reported to be of the order ofM4, whereM is the size of the signal constellation.

However, it was shown in [4], [5] that the Golden code has a decoding complexity of the order ofM2.5

for squareM -QAM. Current research focuses on obtaining high rate codeswith reduced ML-decoding

complexity(refer to Sec. II for a formal definition). For 2 transmit antennas, the Silver code, named so

in [6], was first mentioned in [7] and independently presented in [8] along with a study of its low ML-

decoding complexity property. It is a full-rate code with full-diversity and an ML-decoding complexity

of the order ofM2 for squareM -QAM. Its algebraic properties have been studied in [6] and [9] and a

fixed point fast decoding scheme has been given in [10]. For 4 transmit antennas, Biglieri et. al. proposed

a rate-2 STBC which has an ML-decoding complexity of the order of M4.5 for squareM -QAM without

full-diversity [11]. It was, however, shown that there was no significant reduction in error performance

at low to medium SNR when compared with the previously best known code - the DjABBA code [12].

This code was obtained by multiplexing Quasi-orthogonal designs (QOD) for 4 transmit antennas [13].

In [4], a new full-rate STBC for4× 2 system with an ML-decoding complexity ofM4.5 was proposed

and was conjectured to have the non-vanishing determinant (NVD) property. This code was obtained by

multiplexing the coordinate interleaved orthogonal designs (CIODs) for 4 transmit antennas [14]. These

results show that codes obtained by multiplexing low complexity STBCs can result in high rate STBCs

with reduced ML-decoding complexity and by choosing a suitable constellation, there won’t be any

significant degradation in the error performance when compared with the best existing STBCs. Such an

approach has also been adopted in [15] to obtain high rate codes1 from multiplexed orthogonal designs.

More recently, full-rate STBCs with an ML-decoding complexity of the order ofM5.5 and a provable

NVD property for the4× 2 system have been proposed in [19] and [20].

1Fast decodable STBCs have been constructed in [16]-[18], but these codes are not full-rate in general, and make use of near
ML-decoding algorithms.
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In general, it is not known how one can design full-rate STBCsfor an arbitrary number of transmit

and receive antennas with reduced ML-decoding complexity.It is well known that the maximum mutual

information achievable with an STBC is at best equal to the ergodic capacity of the MIMO channel,

in which case the STBC is said to beinformation lossless(see Section II for a formal definition). It

is known how to design information lossless codes [21] for the case wherenr ≥ nt. However, when

nr < nt the only known code in literature which is information lossless is the Alamouti code, which

is information lossless for the2 × 1 system alone. It has been shown in [7], [22] and [12] that when

nr < nt, self-interferenceof the STBC (a formal definition of self interference is givenin Section II) has

to be minimized for maximizing the mutual information achieved with the STBC. Not much research2

has been done on designing codes that allow a high mutual information whennr < nt. In this paper, for

nt = 2a, we systematically design full-rate STBCs which have the least possible self-interference and

the lowest ML-decoding complexity among known full-rate STBCs fornr < nt and consequently allow

higher mutual information than the best existing codes (thePerfect codes with puncturing [25], [26]),

while for nr ≥ nt, the proposed STBCs are information lossless like the comparable Perfect codes. We

call these codes thegeneralized Silver codessince, analogous to the silver code and the Golden code

for 2 transmit antennas, the proposed codes have every desirable property that the Perfect codes have,

except the coding gain, but importantly, have lower ML-decoding complexity. The contributions of the

paper are:

1) We give a scheme to obtain rate-1, 4-group decodable codes(refer Section II for a formal definition

of multi-group decodable codes) fornt = 2a through algebraic methods. The speciality of the

obtained design is that it is amenable for extension to higher number of receive antennas, resulting

in full-rate codes with reduced ML-decoding complexity forany number of receive antennas, unlike

the previous constructions [27]-[29] of rate-1, 4-group decodable codes.

2) Using the rate-1, 4-group decodable codes thus constructed, we propose a scheme to obtain the

generalized Silver codes, which are full-rate codes with reduced ML-decoding complexity for2a

transmit antennas and any number of receive antennas. Thesecodes also have the least self-

interference among known comparable STBCs and allow highermutual information with lower

ML-decoding complexity than the comparable punctured Perfect codes for the casenr < nt,

2The full-rate STBCs in [23], designed fornr < nt, are not linear dispersion codes. They are based on maximal orders and
use spherical shaping due to which the encoding and decodingcomplexity is extremely high. The STBCs in [24], also designed
for nr < nt, use the concept of restricting the number of active transmit antennas to be no larger than the number of receive
antennas, and so, the mutual information analysis for thesecodes is very difficult. These STBCs are diversity-multiplexing gain
tradeoff (DMT) optimal but are associated with a very high ML-decoding complexity.
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while being information lossless fornr ≥ nt. In terms of error performance, by choosing the

signal constellation carefully, the proposed codes have more or less the same performance as the

corresponding punctured Perfect codes. This is shown through simulation results for 4 and 8 transmit

antenna systems.

The paper is organized as follows. In Section II, we present the system model and the relevant

definitions. The criteria for maximizing the mutual information with space time modulation are presented

in Section III and our method to construct rate-1, 4-group decodable codes is proposed in Section IV.

The scheme to extend these codes to obtain the generalized Silver codes for higher number of receive

antennas is presented in Section V. Simulation results are discussed in Section VI and the concluding

remarks are made in Section VII.

Notations:Throughout, bold, lowercase letters are used to denote vectors and bold, uppercase letters

are used to denote matrices. LetX be a complex matrix. Then,XH and XT denote the Hermitian and

the transpose ofX, respectively and unless used to denote indices or subscripts, j represents
√
−1. The

(i, j)th entry of X is denoted byX(i, j) while tr(X) anddet(X) denote the trace and determinant ofX,

respectively. The set of all real and complex numbers are denoted byR andC, respectively. The real

and the imaginary part of a complex numberx are denoted byxI and xQ, respectively.‖X‖ denotes

the Frobenius norm ofX, ‖x‖ denotes the vector norm of a vectorx, andIT andOT denote theT × T

identity matrix and the null matrix, respectively. The Kronecker product is denoted by⊗ and vec(X)

denotes the concatenation of the columns ofX one below the other. For a complex random variable

X, E[X] denotes the mean ofX andEX (f(X)) denotes the mean off(X), a function of the random

variableX. The inner product of two vectorsx andy is denoted by〈x, y〉. For a setS, aS , {as|s ∈ S}.

Let P andQ be two sets such thatP ⊃ Q. ThenP \Q denotes the set of elements ofP excluding the

elements ofQ. For a complex variablex, the (̌.) operator acting onx is defined as

x̌ ,




xI −xQ

xQ xI



 .

The (̌.) can similarly be applied to any matrixX ∈ Cn×m by replacing each entryxij with x̌ij, i =

1, 2, · · · , n, j = 1, 2, · · · ,m, resulting in a matrix denoted by̌X ∈ R2n×2m. Given a complex vector

x = [x1, x2, · · · , xn]T , x̃ is defined as̃x , [x1I , x1Q, · · · , xnI , xnQ]T . It follows that for A ∈ Cm×n,

B ∈ Cn×p andC = AB, the equalitiešC = ǍB̌ and ṽec(C) = (Ip ⊗ Ǎ)ṽec(B) hold.
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II. SYSTEM MODEL

We consider the Rayleigh block fading MIMO channel with fullchannel state information (CSI) at

the receiver but not at the transmitter. Fornt × nr MIMO transmission, we have

Y =

√
SNR

nt
HS + N, (1)

whereS ∈ Cnt×T is the codeword matrix whose average energy is given byE(‖S‖2) = ntT , N ∈ Cnr×T

is a complex white Gaussian noise matrix with i.i.d. entries∼ NC (0, 1) (complex normal distribution

with zero mean and unit variance),H ∈ Cnr×nt is the channel matrix with the entries assumed to be

i.i.d. circularly symmetric Gaussian random variables∼ NC (0, 1), Y ∈ Cnr×T is the received matrix

andSNR is the signal-to-noise ratio at each receive antenna.

Definition 1: (Code rate) Code rate is the average number of independent informationsymbols trans-

mitted per channel use. If there arek independent complex information symbols (or2k real information

symbols) in the codeword which are transmitted overT channel uses, then, the code rate isk/T complex

symbols per channel use (2k/T real symbols per channel use).

Definition 2: (Full-rate STBCs) For annt×nr MIMO system, if the code rate ismin (nt, nr) complex

symbols per channel use, then the STBC is said to befull-rate.

Assuming ML-decoding, the metric that is to be minimized over all possible values of codewordsS

is given by

M (S) =

∥
∥
∥
∥
∥

Y −
√

SNR

nt
HS

∥
∥
∥
∥
∥

2

.

Definition 3: (ML-Decoding complexity) The ML decoding complexity is measured in terms of the

maximum number of symbols that need to be jointly decoded in minimizing the ML decoding metric.

For example, if the codeword transmitsk independent symbols of which a maximum ofp symbols need

to be jointly decoded, the ML-decoding complexity is of the order of Mp, whereM is the size of the

signal constellation. If the code has an ML-decoding complexity of order less thanMk, the code is said

to havereduced ML-decodingcomplexity.

Definition 4: (Generator matrix) For any STBC that encodes2k real symbols (ork complex informa-

tion symbols), thegeneratormatrix G ∈ R2Tnt×2k is defined by [11]

ṽec (S) = Gs,

whereS is the codeword matrix,s , [s1, s2, · · · , s2k]T is the real information symbol vector.
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A codeword matrix of an STBC can be expressed in terms ofweight matrices(linear dispersion

matrices) [30] as

S =

2k∑

i=1

siAi.

Here, Ai, i = 1, 2, · · · , 2k, are the complex weight matrices of the STBC and should form alinearly

independentset overR. It follows that

G =
[
˜vec(A1) ˜vec(A2) · · · ˜vec(A2k)

]

.

Due to the constraint thatE
(
‖S‖2

)
= ntT , we have,

∑2k
i=1 E(si)

2tr
(
AiAH

i

)
= ntT . Choosing

E(si)
2 = 1/2 for all i = 1, · · · , 2k, we have

2k∑

i=1

tr
(
AiAH

i

)
= 2ntT. (2)

Definition 5: (Multi-group decodable STBCs) An STBC is said to beg-group decodable [29] if its

weight matrices can be separated intog groupsG1, G2, · · · , Gg such that

AiAH
j + AjAH

i = Ont
, Ai ∈ Gl, Aj ∈ Gp, l, p ∈ {1, 2, · · · , g}, l 6= p.

Definition 6: (Self-interference) For an STBC given byS =
∑2k

i=1 siAi, the self-interference matrix

[12] is defined as

Sint =

2k−1∑

i=1

2k∑

j>i

sisj
(
AiAH

j + AjAH
i

)
.

Definition 7: (Punctured Codes) Punctured STBCs are the codes with some of the symbols being

zeros, in order to meet the full-rate criterion.

For example, a codeword of the Perfect code for 4 transmit antennas [25] transmits sixteen complex

symbols in four channel uses and has a rate of 4 complex symbols per channel use. If this code were

to be used for a two receive antenna system which can only support a rate of two independent complex

symbols per channel use, then, eight symbols of the Perfect code can be made zeros, so that the codeword

transmits eight complex symbols in four channel uses. Theseeight symbols correspond to the two layers

[25] of the Perfect code.

Equation (1) can be rewritten as

ṽec(Y) =

√

SNR

nt
Heqs + ṽec(N), (3)

whereHeq ∈ R2nrT×2nminT , called the equivalent channel matrix. is given byHeq =
(
IT ⊗ Ȟ

)
G, with

G ∈ R2ntT×2nminT being the generator matrix as in Definition 4.

June 8, 2018 DRAFT
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Definition 8: (Ergodic capacity) The ergodic capacity of annt × nr MIMO channel is [31]

Cnt×nr
= EH

(

log det

(

Inr
+

SNR

nt
HHH

))

.

With the use of an STBC, the maximum mutual information achievable is [32]

ISTBC =
1

2T
EH

(

log det

(

I2nrT +
SNR

nt
HeqHT

eq

))

.

It is known thatCnt×nr
≥ ISTBC . If Cnt×nr

= ISTBC , the STBC is said to beinformation lossless. If

the generator matrixG is orthogonal (from Definition 4, this case arises only ifnr ≥ nt and the STBC

is full-rate, i.e,k = ntT ), the STBC is information lossless.

III. R ELATIONSHIP BETWEEN WEIGHT MATRICES AND THE MAXIMUM MUTUAL INFORMATION

Capacity can be achieved with the use of continuous inputs with Gaussian distribution. If one were

able to use continuous Gaussian distributed inputs in practice, using the V-blast scheme would suffice,

since diversity is irrelevant. But in practice, one has to use finite discrete inputs, and diversity becomes an

important aspect, necessitating the use of full-diversitySTBCs. Even though we considered the limited

block length scenario for space-time coding as a standalonescheme, in practice, one would also have an

outer code and coding would be done over large block lengths to go close to capacity. In such a scenario,

the maximum mutual information that an STBC allows becomes an important parameter for the design of

STBCs. It is preferable to use STBCs which allow mutual information as close to the channel capacity as

possible. It has been shown that if the generator matrix is orthogonal, the maximum mutual information

achievable with the STBC is the same as the ergodic capacity of the MIMO channel [21], [32]. For the

generator matrix to be orthogonal, a prerequisite is that the number of receive antennas should be at least

equal to the number of transmit antennas. Whennr < nt, only the Alamouti code has been known to

be information lossless for the2× 1 MIMO channel. In [22], by using the well known matrix identities

det M = etr(logM) and log(I + X) =
∑∞

n=1
(−1)n−1

n Xn, an expansion of the ergodic MIMO capacity in

SNR was obtained as

Cnt×nr
=

∞∑

n=1

CnSNRn,

with Cn = −1
n

(
−1
nt

)n
EH
(
tr
[(

HHH
)n])

. The first two coefficients can easily be checked to beC1 = nr

and C2 = −nr(nr + nt)/nt. On a similar note,ISTBC can also be expanded in SNR asISTBC =
∑∞

n=1 InSNRn, where

June 8, 2018 DRAFT
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In =
−1

2Tn

(−1

nt

)n

EH

(

tr
[(

HeqHT
eq

)n
])

=
−1

2Tn

(−1

nt

)n

EH

(

tr
[(

HT
eqHeq

)n
])

. (4)

Let H̄ , HT
eqHeq. It is straightforward to check that̄H(i, j) = 1

2 tr
(
SijHHH

)
, whereSij , AiAH

j +

AjAH
i . Hence,

I1 =
1

2Tnt
EH(tr

[
HT

eqHeq

]
) =

1

4Tnt

2Tnr∑

i=1

EH
(
tr
(
SiiHHH

))

=
1

2Tnt

2Tnr∑

i=1

tr
(
AiAH

i EH
(
HHH

))
= nr,

whereE
(
HHH

)
= nrInt

and (2) is used in obtainingI1. So, using all the available power helps one to

achieve the first order capacity. The second coefficientI2 has been calculated in [7] to be

I2 =
−nr

16Tn2
t

2Tnr∑

i=1

2Tnr∑

j=i

(
tr(S2

ij) + nr(trSij)
2
)
. (5)

In [7], it was argued that typical discrete input schemes fail to achieve capacity at the third order in

the expansion of the mutual information and hence,I2 should be maximized. From (5), it is clear that

to maximizeI2, the following criteria should be satisfied.

1) Hurwitz-Radon Orthogonality: as many ofSij should be equal toOnt
as possible, for1 ≤ i < j ≤

2Tnr.

2) Tracelessness: Sij should be traceless, for all1 ≤ i < j ≤ 2Tnr.

In fact, the first criterion, which is equivalent to minimizing the self-interference, is already clear from

(4), where it can be observed that a larger number of zero entries of HT
eqHeq contributes to a lower value

of the trace of
(
HT

eqHeq

)2
. Hence, to design a good STBC with a high mutual information whennr < nt,

one should have as many as possible weight matrix pairs satisfying Hurwitz-Radon (HR) orthogonality.

We would, of course, like all the weight matrices to satisfy HR-orthogonality, but there is a limit to

this number [1] which, except for the Alamouti code, is much lesser than2Tnr, the number of weight

matrices of a full-rate STBC whennr < nt. It can easily be checked that for the Alamouti code,I2 = C2.

It is known that for a rate-1 code fornt > 2, one cannot have all the full-ranked weight matrices mutually

satisfying HR-orthogonality. For such STBCs, the minimum self-interference is achieved if the STBCs

are g-group decodable, withg as large as possible. At present, the best known rate-1 low complexity

multi-group decodable codes are the 4-group decodable codes for any number of transmit antennas [27],

[28], [29]. These codes are not full-rate fornr > 1. If one were to require a full-rate code, the codes

June 8, 2018 DRAFT



9

A1 = In A k

g
+1 . . . A (g−1)k

g
+1

A2 A k

g
+2 = A2A k

g
+1 . . . A (g−1)k

g
+2 = A2A (g−1)k

g
+1

...
... . . .

...
A k

g

A 2k

g

= A k

g

A k

g
+1 . . . Ak = A k

g

A (g−1)k

g
+1

TABLE I

WEIGHT MATRICES OF Ag-GROUP DECODABLE CODE

in literature [27], [28], [29] are not suitable for extension to higher number of receive antennas, since

their design is obtained by iterative methods. In the next section, we propose a new design methodology

to obtain the weight matrices of a rate-1, 4-group decodablecode by algebraic methods for2a transmit

antennas. These codes can be extended to higher number of receive antennas to obtain full-rate STBCs

with lower ML-decoding complexity and lower self-interference than the existing designs.

IV. CONSTRUCTION OFRATE-1, 4-GROUP DECODABLE CODES

We make use of the following theorem, presented in [28], to construct rate-1, 4-group decodable codes

for n = 2a transmit antennas.

Theorem 1:[28] An n× n linear dispersion code transmitting k real symbols isg-group decodable if

the weight matrices satisfy the following conditions:

1) A2
i = In, i ∈ {1, 2, · · · , kg}.

2) A2
j = −In, j ∈ {mk

g + 1,m = 1, 2, · · · , g − 1}.

3) AiAj = AjAi, i, j ∈ {1, 2, · · · , kg }.

4) AiAj = AjAi, i ∈ {1, 2, · · · , kg }, j ∈ {mk
g + 1,m = 1, 2, · · · , g − 1}.

5) AiAj = −AjAi, i, j ∈ {mk
g + 1,m = 1, 2, · · · , g − 1}, i 6= j.

6) Amk

g
+i = AiAmk

g
+1, m ∈ {1, 2, · · · , g − 1}, i ∈ {1, 2, · · · , kg}.

Table I illustrates the weight matrices of ag-group decodable code which satisfy the above conditions.

The weight matrices in each column belong to the same group.

In order to obtain a rate-1, 4-group decodable STBC for2a transmit antennas, it is sufficient if we have

2a+1 matrices satisfying the conditions in Theorem 1. To obtain these3, we make use of the following

lemmas.

3These STBCs can be obtained elegantly using the theory of Clifford Algebra but to make the paper accessible to a wider
group of readers, we have preferred to make use of simple concepts from matrix theory without reference to Clifford Algebra.
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Lemma 1: [33] If n = 2a and invertible complex matrices of sizen×n, denoted byFi, i = 1, 2, · · · , 2a,

anticommute pairwise, then the set of productsFi1Fi2 · · · Fis with 1 ≤ i1 < · · · < is ≤ 2a along with In

forms a basis for the22a dimensional space of alln× n matrices overC.

Proof: The proof is provided for the sake of completeness. Assume that in the set of products

Fi1Fi2 · · ·Fis , 1 ≤ i1 < · · · < is ≤ 2a, along with In, at mostk elements are linearly independent over

C, for somek < 22a. So,

k+1∑

i=1

αiF
λi1

1 Fλi2

2 · · ·Fλi2a

2a = On, αi 6= 0, λij ∈ {0, 1}, j = 1, 2, · · · , 2a. (6)

Noting thatF2 · · ·F2a anticommutes withF1 but commutes with each ofF2, · · · , F2a, premultiplying

each term of (6) byF2 · · ·F2a results in a new equation with the coefficientsαi negated for those terms

in (6) containingF1. Adding this new equation to (6) yields another equation containing fewer summands

than (6), leading to a contradiction. So,k = 22a, which proves the theorem.

Lemma 2: If all the mutually anticommutingn × n matricesFi, i = 1, 2, · · · , 2a, are unitary and

anti-Hermitian, so that they square to−In, then the productFi1Fi2 · · ·Fis with 1 ≤ i1 < · · · < is ≤ 2a

squares to(−1)
s(s+1)

2 In.

Proof: We have

(Fi1Fi2 · · ·Fis)(Fi1Fi2 · · ·Fis) = (−1)s−1(F2
i1Fi2 · · ·Fis)(Fi2Fi3 · · · Fis)

= (−1)s−1(−1)s−2(F2
i1F2

i2 · · · Fis)(Fi3Fi4 · · ·Fis)

= (−1)[(s−1)+(s−2)+···1](F2
i1F2

i2 · · · F2
is)

= (−1)
s(s−1)

2 (−1)sIn = (−1)
s(s+1)

2 In,

which proves the lemma.

Lemma 3:Let Fi, i = 1, 2, · · · , 2a be anticommuting, anti-Hermitian, unitary matrices. LetΩ1 =

{Fi1 ,Fi2 , · · · ,Fis} andΩ2 = {Fj1 ,Fj2 , · · · ,Fjr} with 1 ≤ i1 < · · · < is ≤ 2a and1 ≤ j1 < · · · < jr ≤
2a. Let |Ω1 ∩ Ω2| = p. Then the product matrixFi1Fi2 · · ·Fis commutes withFj1Fj2 · · ·Fjr if exactly

one of the following is satisfied, and anticommutes otherwise.

1) r, s andp are all odd.

2) The productrs is even andp is even (including 0).

Proof: WhenFjk ∈ Ω1 ∩ Ω2, we note that

(Fi1Fi2 · · ·Fis)Fjk = (−1)s−1Fjk(Fi1Fi2 · · ·Fis)

June 8, 2018 DRAFT
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and whenFjk /∈ Ω1 ∩ Ω2, we have(Fi1Fi2 · · · Fis)Fjk = (−1)sFjk(Fi1Fi2 · · ·Fis). Now,

(Fi1Fi2 · · ·Fis)(Fj1Fj2 · · ·Fjr) = (−1)p(s−1)(−1)(r−p)s(Fj1Fj2 · · ·Fjr)(Fi1Fi2 · · ·Fis)

= (−1)rs−p(Fj1Fj2 · · ·Fjr)(Fi1Fi2 · · ·Fis).

Case1) Sincer, s andp are all odd,(−1)rs−p = 1.

Case2) The productrs is even andp is even (including 0). Hence(−1)rs−p = 1.

From Theorem 1, to get a rate-1, 4-group decodable STBC, we need 3 pairwise anticommuting, anti-

Hermitian matrices which commute with a group of2a−1 Hermitian, pairwise commuting matrices. Once

these are identified, the other weight matrices can be easilyobtained. From [2], one can obtain2a

pairwise anticommuting, anti-Hermitian matrices and the method to obtain these is presented here for

completeness. Let

P1 =




0 1

−1 0



 ,P2 =




0 j

j 0



 ,P3 =




1 0

0 −1





andA⊗m

, A ⊗ A ⊗ A · · · ⊗ A
︸ ︷︷ ︸

m times

. The2a anti-Hermitian, pairwise anti-commuting matrices are

F1 = ±jP⊗a

3 ,

F2k = I⊗
a−k

2

⊗

P1

⊗

P⊗k−1

3 , k = 1, · · · , a,

F2k+1 = I⊗
a−k

2

⊗

P2

⊗

P⊗k−1

3 , k = 1, · · · , a− 1.

Henceforth,Fi, i = 1, 2, · · · , 2a, refer to the matrices obtained using the above method. For asetS =

{a1, a2, · · · , an}, defineP(S) as

P(S) ,
{

aλ1

1 aλ2

2 · · · aλn

n , λi ∈ {0, 1}
}

.

We chooseF1, F2 andF3 to be the three pairwise anticommuting, anti-Hermitian matrices (to be placed

in the top row along withIn in Table I. Consider the setS = {jF4F5, jF6F7, · · · , jF2a−2F2a−1,F1F2F3},

the cardinality of which isa−1. Using Lemma 2 and Lemma 3, one can note thatS consists of pairwise

commuting matrices which are Hermitian. Moreover, it is clear that each of the matrices in the set

also commutes withF1, F2 andF3. Hence,P(S), which has cardinality2a−1 is also a set with pairwise

commuting, Hermitian matrices which also commute withF1, F2 andF3. The linear independence ofP(S)
overR is easy to see by applying Lemma 1. Hence, we have 3 pairwise anticommuting, anti-Hermitian

matrices which commute with a group of2a−1 Hermitian, pairwise commuting matrices. Having obtained
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I8 F1 F2 F3

jF4F5 jF1F4F5 jF2F4F5 jF3F4F5

F1F2F3 −F2F3 F1F3 −F1F2

jF1F2F3F4F5 −jF2F3F4F5 jF1F3F4F5 −jF1F2F4F5

TABLE II

WEIGHT MATRICES OF A RATE-1, 4-GROUP DECODABLESTBCFOR 8 TRANSMIT ANTENNAS

these, the other weight matrices are obtained from Theorem 1. To illustrate with an example, we consider

n = 8 and show below how the weight matrices are obtained for the rate-1, 4-group decodable code.

A. An example -n = 8

Let Fi, i = 1, 2, · · · , 6 denote the 6 pairwise anticommuting, anti-Hermitian matrices. ChooseF1, F2

andF3 to be the three anticommuting matrices required for code construction. Let

S = {jF4F5,F1F2F3}, P(S) = {I8, jF4F5,F1F2F3, jF1F2F3F4F5}.

The 16 weight matrices of the rate-1, 4-group decodable codefor 8 antennas are as shown in Table

II. Each column corresponds to the weight matrices belonging to the same group. Note that the product

of any two matrices in the first group is some other matrix in the same group.

B. Coding gain calculations

Let ∆(S,S′) , det
(
∆S∆SH

)
, where∆S , S − S′,S 6= S′ denotes the codeword difference matrix.

Let ∆si , si − s′i, i = 1, 2, · · · , 2nt, wheresi ands′i are the real symbols encoding codeword matrices

S andS′, respectively. Hence,

∆(S,S′) = det

(
2nt∑

i=1

∆siAi

2nt∑

m=1

∆smAH
m

)

= det

(
2nt∑

i=1

2nt∑

m=1

∆si∆smAiAH
m

)

.

Note that because of the nature of construction of the weightmatrices, we have

AiAH
m = A pnt

2
+iA

H
pnt

2
+m, i,m ∈

{

1, 2, · · · , nt

2

}

, p ∈ {1, 2, 3}.

Further, since the code is 4-group decodable,

∆(S,S′) = det





3∑

p=0





(p+1)nt

2∑

i= pnt

2
+1

∆s2i Int
+ 2

(p+1)nt

2
−1

∑

i= pnt

2
+1

(p+1)nt

2∑

m=i+1

∆si∆smAiAH
m







 .
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All the weight matrices in the first group are Hermitian and pairwise commuting and the product of any

two such matrices is some other matrix in the same group. It iswell known that commuting matrices

are simultaneously diagonalizable. Hence,

Ai = EDiEH , i ∈
{

2, 3, · · · , nt

2

}

,

whereDi is a diagonal matrix. SinceAi is Hermitian as well as unitary, the diagonal elements ofDi are

±1. The following lemma proves thatAi is traceless.

Lemma 4:Let Fi, i = 1, 2, · · · , 2a be 2a × 2a unitary, pairwise anticommuting matrices. Then, the

product matrixFλ1

1 Fλ2

2 · · ·Fλ2a

2a , λi ∈ {0, 1}, i = 1, 2, · · · , 2a, with the exception ofI2a , is traceless.

Proof: It is well known thattr(AB) = tr(BA) for any two matricesA andB. Let A andB be two

invertible,n× n anticommuting matrices. Then,ABA−1 = −B. So,

tr(ABA−1) = −tr(B) ⇔ tr(B) = −tr(B).

∴ tr(B) = 0. (7)

Similarly, it can be shown thattr(A) = 0. By applying Lemma 3, it can be seen that any product

matrix Fλ′

1

1 Fλ′

2

2 · · · Fλ′

2a

2a , excludingI2a , anticommutes with some other invertible product matrix from the

set {Fλ1

1 Fλ2

2 · · ·Fλ2a

2a , λi ∈ {0, 1}, i = 1, 2, 3, · · · , 2a}. Hence, from (7), we can say that every product

matrix Fλ1

1 Fλ2

2 · · ·Fλ2a

2a exceptI2a is traceless.

From the above lemma,Ai except identity is traceless. Hence,Di has an equal number of ’1’s and ’-1’s.

In fact, because of the nature of construction of the matrices Fi, i = 1, 2, · · · , 2a, the product matrices

FiFi+1, for eveni, and the product matrixF1F2F3 are always diagonal (easily seen from the definition of

Fi, i = 1, 2, · · · , 2a). Hence, all the weight matrices of the first group excludingA1 = Int
are diagonal,

with the diagonal elements being±1. Since these diagonal matrices also commute withF2 andF3, the

diagonal entries are such that for every oddi, if the (i, i)th entry is 1(-1), then, the(i+1, i+1)th entry

is also 1(-1, respectively). To summarize, the properties of Ai, i = 2, · · · , nt

2 are listed below.

Ai = AH
i ; A2

i = Int
,

Ai(m,n) = 0, m 6= n; Ai(j, j) = ±1, j = 1, 2, · · · , nt,

tr(Ai) = 0, (8)

Ai(j, j) = Ai(j + 1, j + 1), j = 1, 3, 5, · · · , nt − 1, (9)
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AiAj = Ak, i, j, k ∈
{

1, 2, · · · , nt

2

}

. (10)

In view of these properties,

∆(S,S′) = det





3∑

p=0





(p+1)nt

2∑

i= pnt

2
+1

∆s2i Int
+ 2

(p+1)nt

2
−1

∑

i= pnt

2
+1

(p+1)nt

2∑

m=i+1

∆si∆smDim







 ,

whereDim = AiAm = Ak for somek ∈ {1, 2, · · · , nt

2 }, and

∆(S,S′) =

nt∏

j=1

3∑

p=0





nt

2∑

i=1

dij∆s pnt

2
+i





2

, (11)

wheredij = ±1 andd1j = 1. In fact,dij = Ai(j, j), i = 1, 2, 3, · · · , nt

2 . From (11),∆(S,S′) is a product

of the sum of squares and it is minimized when only one group, say p = 0, gives a non-zero contribution.

Hence,

min
S,S′

(∆(S,S′)) = min
∆si






nt∏

j=1





nt

2∑

i=1

dij∆si





2



 ,

wheremin
x

(y) denotes the minimum value ofy over all possible values ofx. From (9),

min
S,S′

(∆(S,S′)) = min
∆si






nt

2∏

j=1





nt

2∑

i=1

di(2j−1)∆si





4



 . (12)

We need the minimum determinant to be as high a non-zero number as possible. In this regard, let

W ,

√
2

nt
[wij ], wij = di(2j−1), i, j = 1, 2, · · · , nt

2
(13)

and

yp , [yntp

2
+1
, yntp

2
+2
, · · · , y

nt(p+1)
2

]T = W[sntp

2
+1
, sntp

2
+2
, · · · , s

nt(p+1)
2

]T , p = 0, 1, 2, 3.

Lemma 5:W as defined in (13) is an orthogonal matrix.

Proof: From (13), it can be noted that the columns ofW are obtained from the diagonal elements

of Ai, i = 1, 2, · · · , nt

2 . Each element of a columni of W corresponds to every odd numbered diagonal

element ofAi. Denote theith column ofW by wi. Applying (9), (10) and (8) in that order,

〈wi,wj〉 =
1

nt
tr(AiAj) =

1

nt
tr(Ak) = δij ,
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where

δij =







0, if i 6= j,

1, otherwise.

Hence,W is orthogonal.

Substitutingyp in (12), we get

min
S,S′

(∆(S,S′)) = min
y0





nt

2∏

j=1

y4j



 .

So, the minimum determinant is a power of the minimum productdistance innt/2 real dimensions. If

yp ∈ Z
nt

2 , the product distance can be maximized by premultiplyingyp with a suitable orthogonal rotation

matrix V given in [34]. This operation maximizes the minimum determinant and hence the coding gain.

So, the2nt real symbols of the rate-1, 4-group decodable code are encoded by groupingnt

2 real symbols

each into 4 groups and each group of symbols taking value froma unitarily rotated vector belonging to

Z
nt

2 , the rotation matrix beingWTV. For 4 transmit antennas,

W =
1√
2




1 −1

1 1



 , V =




0.8507 −0.5257

0.5257 0.8507



 ,

and for 8 transmit antennas,

W =
1

2











1 −1 −1 1

1 1 1 1

1 −1 1 −1

1 1 −1 −1











, V =











−0.3664 −0.7677 0.4231 0.3121

−0.2264 −0.4745 −0.6846 −0.5050

−0.4745 0.2264 −0.5050 0.6846

−0.7677 0.3664 0.3121 −0.4231











.

If the practically used square QAM constellation of sizeM is used, encoding is done as follows : thent

complex symbols in each codeword matrix take values from theM -QAM and are split into two groups,

one group consisting of the real parts of thent symbols and the other group consisting of the imaginary

parts. Each group is further divided into two subgroups, each consisting ofnt/2 real symbols. So, in

all, there are 4 groups consisting ofnt/2 real symbols. As used before, denoting the column vectors

consisting of the symbols in a group byyp, p = 0, 1, 2, 3 (the entries ofyp take values independently

from
√
M -PAM), let sp = WTVyp, whereW andV are as explained before. Then the codeword matrix

is given by

S =

3∑

p=0

nt

2∑

i=1

s pnt
2

+i
A pnt

2
+i.
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Note that the above codeword matrix can also be expressed as

S =

3∑

p=0

nt

2∑

i=1

y pnt
2

+i
A′

pnt

2
+i, (14)

whereA′
pnt

2
+i =

∑nt

2

j=1 ωjiA pnt

2
+j , p = 0, 1, 2, 3, with ωji being the(j, i)th element ofWTV. Clearly,

the weight matricesA′
pnt

2
+i, p = 0, 1, 2, 3, satisfy the condition

A′
lnt

2
+i

(

A′
mnt

2
+j

)H
+ A′

mnt

2
+j

(

A′
lnt

2
+i

)H
= Ont

, for 0 ≤ l < p ≤ 3, andi, j = 0, 1, · · · , nt

2 .

Consequently, the ML-decoding complexity of the code is of the order ofM
nt−2

4 . This is because there

are four groups consisting ofnt/2 real symbols each and the symbols in each group can be decoded

independently from the symbols in the other groups. In decoding the symbols in the same group jointly,

one needs to make a search over
√
M

nt

2 = M
nt

4 possibilities for the symbols, since the real and the

imaginary parts of a signal point in a squareM -QAM have only
√
M possible values each (the real and

the imaginary parts of a signal point of a squareM -QAM take values from a
√
M -PAM constellation).

However, one need not make an exhaustive search over all the possibleM
nt

4 values for thent/2 symbols.

For every possible value of the firstnt

2 − 1 real symbols, the last symbol is evaluated byquantization

[4]. Hence, the worst case ML-decoding complexity is of the order of
√
M

nt

2
−1

= M
nt−2

4 only. Fig.

1 gives a comparison of the symbol error rate for the proposedSTBC, the 4-group decodable STBC

proposed by Yuen et al. [27] and the 4-group-decodable STBC proposed by Rajan [28], all for the8× 1

MIMO system. The plots reveal that all the STBCs have the sameperformance for QAM constellations.

Independently, we have computed that all the three codes have the same minimum determinant for QAM

constellations.

V. EXTENSION TO HIGHER NUMBER OF RECEIVE ANTENNAS

When nr = 1, a rate-1, 4-group decodable STBC is the best full-rate STBCpossible in terms of

ML-decoding complexity and as a result, ergodic capacity. However, whennr > 1, we need more weight

matrices to meet the full-rate criterion. In literature, there does not exist a 4-group decodable STBC with

rate greater than 1. So, it is unlikely, though not proven, that there exists a full-rate, multi-group ML-

decodable STBC with full-diversity fornr > 1. So, fornr > 1, we relax the requirement of multi-group

decodability and simply aim for some reduction in the ML-decoding complexity and self-interference.

Let nt = 2a. We know that ifFi, i = 1, 2, · · · , 2a are pairwise anticommuting, invertible matrices, then,

the setF , {Fλ1

1 Fλ2

2 · · ·Fλ2a

2a , with λi ∈ {0, 1}, i = 1, 2, · · · , 2a} is linearly independent overC. Hence,
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the setM = {F , jF} is linearly independent overR. As a result, the elements ofM can be used as

weight matrices of a full-rate STBC fornr > 1. Keeping in view that the self-interference has to be

minimized, it is important to choose the weight matrices judiciously. The idea is that given a full-rate

STBC for nr − 1 receive antennas, obtain the additional weight matrices ofa full-rate STBC fornr

receive antennas by using the weight matrices of a rate-1, 4-group decodable STBC such that after the

addition of the new weight matrices, the set consisting of the weight matrices of the rate-nr code is

linearly independent overR. This is achieved as follows.

1) Obtain a rate-1, 4-group decodable STBC by using the construction detailed in Section IV. Due to

the nature of the construction, the product of any two weightmatrices is always some other weight

matrix of the code, up to negation. Denote the set of weight matrices byG1.

2) From the setF , choose a matrix that does not belong toG1 and multiply it with the elements of

G1 to obtain a new set of weight matrices, denoted byG2. Clearly, the two sets will not have any

matrix in common. To see this, letA ∈ G1 andB ∈ F ⋂(M\ G1), whereB is the matrix chosen

to be multiplied with the elements ofG1. Let BA = C ∈ G1. Hence,B = CAH = ±CA and CA

belongs toG1, up to negation. This contradicts the fact thatB ∈ F ⋂(M\G1). So,C cannot belong

to G1.

The weight matrices ofG2 form a new, rate-1, 4-group decodable STBC. This is because the ML-

decoding complexity does not change by multiplying the weight matrices of a code with a unitary

matrix. In this case, we have multiplied the elements ofG1 with an element ofF , which is a unitary

matrix. Now,G1
⋃G2 is the set of weight matrices of a rate-2 code with an ML-decoding complexity

of Mnt .M
nt−2

4 = M
5nt−2

4 . This is achieved by decoding the lastnt symbols with a complexity of

Mnt and then conditionally decoding the firstnt symbols using the 4-group decodability property

as explained in Section IV-B.

3) For increasingnr, repeat as in the second step, obtaining new rate-1, 4-groupdecodable codes

and then appending their weight matrices to obtain a new, rate-nr code with an ML-decoding

complexity ofMnt(nr− 3

4
)−0.5. The new set of weight matrices is

⋃nr

i=1 Gi.

4) When all the elements ofF have been exhausted (this occurs whennr = nt/2), Step 3 can be

continued tillnr = nt by choosing the matrices that are to be multiplied with the elements ofG1

from jF ⋂(M\⋃nr−1
i=1 Gi). Note from Lemma 1 that this does not spoil the linear independence

of the weight matrices overR.
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Note : In the case of the Perfect codes fornt transmit antennas, a layer [25], [26] corresponds to

nt complex symbols. In case of our generalized Silver codes, a layer corresponds to a rate-1, 4-group

decodable code encodingnt complex symbols. Also, the Silver code for annt × nr system refers to

the STBC containingnmin = min(nt, nr) individual rate-1, 4-group decodable codes, a property dueto

which self-interference is greatly reduced compared with other known full-rate codes.

A. An illustration fornt = 4

For nt = 4, let F1,F2,F3 and F4 be the four anticommuting, anti-Hermitian matrices obtained by

the method presented in [2]. LetF = {Fλ1

1 Fλ2

2 Fλ3

3 Fλ4

4 , λi ∈ {0, 1}, i = 1, 2, 3, 4}. The rate-1, 4-group

decodable code has the following 8 weight matrices, with weight matrices in each column belonging to

the same group:

I4 F1 F2 F3

F1F2F3 −F2F3 F1F3 −F1F2

Hence,G1 = {I4,F1,F2,F3,F1F2F3,−F2F3,F1F3,−F1F2}, Now, we choose a matrix fromF which

does not belong toG1. One such matrix isF4. Pre-multiplying all the elements ofG1 with F1 and applying

the anticommuting property, we obtain a new rate-1, 4-groupdecodable code, whose weight matrices are

as follows:

F4 −F1F4 −F2F4 −F3F4

−F1F2F3F4 −F2F3F4 F1F3F4 −F1F2F4

Hence,G2 = F4G1 = {F4,−F1F4, −F2F4,−F3F4,−F1F2F3F4,−F2F3F4,F1F3F4,−F1F2F4} and G1

⋃G2 is the set of weight matrices of the rate-2 STBC, which is fullrate with an ML-decoding complexity

of the order ofM4.5.

Now, since there are no more elements left inF (neglecting negation), we can choose elements from

jF . To construct a rate-3 code for 3 transmit antennas, we multiply the elements ofG1 by jI4 to obtain

the setG3 = jG1. The weight matrices of the rate-3 code constitute the setG1
⋃G2

⋃G3. Similarly, the

weight matrices of a full-rate code fornr ≥ 4 are the elements of the setG1
⋃G2

⋃G3
⋃G4, where

G4 = jF4G1 = jG2. It is obvious thatG1, G2, G3 andG4 represent the weight matrices of four individual

rate-1, 4-group decodable codes, respectively.
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B. Structure of theR-matrix and ML-decoding complexity

The popular sphere decoding [36] technique is used to perform the ML-decoding of linear dispersion

STBCs utilizing lattice constellations. A QR-decomposition of Heq, the equivalent channel matrix, is

performed to obtainHeq = QR and the ML-decoding metric is given by

M (s) =

∥
∥
∥
∥
∥
ṽec(Y)−

√

SNR

nt
Heqs

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

y′ −
√

SNR

nt
Rs

∥
∥
∥
∥
∥

2

,

wherey′ = QT ṽec(Y). TheR-matrix of the Silver code for thent×nr system has the following structure,

irrespective of the channel realization:

R =











D X . . . X

O2nt
D . . . X

...
. . . . ..

...

O2nt
O2nt

. . . D











whereX ∈ R2nt×2nt is a random non-sparse matrix whose entries depend on the channel coefficients

andD = I4 ⊗T, with T ∈ R
nt

2
×nt

2 being an upper triangular matrix. The reason for this structure is that

the weight matrices of the Silver code for annt×nr system are also the weight matrices ofmin(nt, nr)

separate rate-1, 4-group decodable codes (as illustrated in Sec. V). As a result of the structure ofD, the

R-matrix has a large number of zeros in the upper block, and hence, compared to other existing codes,

the generalized Silver codes have lower average ML-decoding complexity. The worst case ML-decoding

complexity is of the order of(Mnt(nmin−1))(M
nt−2

4 ) = Mnt(nmin− 3

4
)−0.5, which is because in decoding

the symbols, a search is to be made over all possible values ofthe lastnt(nmin − 1) complex symbols

(which requires a complexity of the order ofMnt(nmin−1)), while the remainingnt symbols can be

conditionally decodedwith a complexity ofM
nt−2

4 only, once the lastnt(nmin − 1) symbols are fixed

(a detailed explanation on conditional ML-decoding has been presented in [11], [4]). In simple words, to

decode the Silver code, one does not need a2ntnmin dimensional real sphere decoder. All one requires is

a 2nt(nmin−1) dimensional real sphere decoder in conjunction with four parallel (nt−2)/2 dimensional

real sphere decoders. The decrease in the ML-decoding complexity is evident from the decrease in the

dimension of the real sphere decoder from2ntnmin to 2nt(nmin − 1) + nt−2
2 .
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C. Information Losslessness fornr ≥ nt

For nr ≥ nt, the Silver code is information lossless because its normalized generator matrix (normal-

ization is done to ensure an appropriateSNR at each receive antenna) is orthogonal. To see this, the

generator matrix fornr ≥ nt is given as

G =
1√
nt

[ ˜vec(A1) ˜vec(A2) · · · ˜vec(A2n2
t
)],

where Ai ∈ M, i = 1, 2, · · · , 2n2
t , are the weight matrices obtained as mentioned in Sec. V, with

M = {F , jF}, whereF = {Fλ1

1 Fλ2

2 · · · Fλ2a

2a , λi ∈ {0, 1}, i = 1, 2, 3, · · · , 2a}. For i, j ∈ {1, 2, · · · , 2n2
t },

we have

〈 ˜vec(Ai), ˜vec(Aj)〉 = real
(
tr
(
AH
i Aj

))
(15)

= ±real (tr(AiAj)) (16)

=







real (tr(Int
)) if i = j

real (tr(jInt
)) if Ai = jAj

±real (tr(Ak)) otherwise,where ± Ak ∈ M \ {Int
, jInt

}
= ntδij . (17)

Equation (16) holds becauseAi, i = 1, · · · , 2n2
t are either Hermitian or anti-Hermitian, and (17) follows

from Lemma 4.

Lemma 6:Tracelessness of the self-interference matrix is equivalent to column orthogonality of the

generator matrix.

Proof: Using the definition of the self-interference matrixSint, given in Definition 6,

tr
(
Sint

)
=

2k−1∑

i=1

2k∑

j>i

sisjtr
[(

AiAH
j + AjAH

i

)]
= 2

2k−1∑

i=1

2k∑

j>i

sisj
(
real

[
tr
(
AiAH

j

)])

= 2

2k−1∑

i=1

2k∑

j>i

sisj〈 ˜vec(Ai), ˜vec(Aj)〉, (18)

where (18) follows from (15). From (18), it is clear that column orthogonality of the generator matrix is

equivalent to tracelessness of the self-interference matrix.

Recall that the second criterion given to maximizeI2 (given by (5)) requires thatSij = AiAH
j +AjAH

i ,

i 6= j, be traceless. It is clear from Lemma 6 that for our STBCs,Sij is traceless fori 6= j.
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D. The Silver code for two transmit antennas

The Silver code [7], [8] for two antennas, which is well knownfor being a low complexity, full-rate,

full-diversity STBC fornr ≥ 2, transmits 2 complex symbols per channel use. A codeword matrix of

the Silver code is given as

S =




s1 + js2 s3 + js4

−s3 + js4 s1 − js2



+ j




s5 + js6 s7 + js8

−s7 + js8 s5 − js6



U,

where

U =
1√
7




1 + j 1 + 2j

−1 + 2j 1− j



 .

The codeword encodes 8 real symbolss1, s2, · · · , s8, each taking values independently from a regular
√
M -PAM constellation. The first four weight matrices are that of the Alamouti code, given by

A1 =




1 0

0 1



 , A2 =




j 0

0 −j



 , A3 =




0 1

−1 0



 , A4 =




0 j

j 0



 .

Note that the Alamouti code is 4-group decodable for 2 transmit antennas. The Silver code’s next 4

weight matrices are obtained by multiplying the first four weight matrices byj. To make the code

achieve full-diversity with the highest possible coding gain, post-multiplication byU is performed. It can

be checked thatU = 1√
7
(A1+A2+A3+2A4). Effectively, the last 4 weight matrices of the silver code are

jAiU, i = 1, · · · , 4, which also form another rate-1, 4-group decodable code. The unitary matrixU is so

cleverly chosen that in addition to providing full-diversity with a high coding gain, the generator matrix

is orthogonal (which can be checked using (16)), making the code information lossless fornr ≥ 2. The

Silver code compares very well with the well known Golden code in error performance, while offering

lower ML-decoding complexity of the order ofM2.

E. Achievability of Full-diversity

The following theorem, (Theorem I, [35]) guarantees that full-diversity is possible for the generalized

Silver codes with the real symbols taking values from PAM constellations, denoted byAPAM .

Theorem 2:For any givenn× n square linear designS ,
{

S =
∑k

i=1 siAi | si ∈ APAM , i = 1, 2,

· · · , k}, encodingk real symbols with full-rank weight matricesAi, there existαi ∈ C, i = 1, · · · , k,

such that the STBCS ′ ,
{

S =
∑k

i=1 siαiAi | si ∈ APAM , i = 1, 2, · · · , k
}

offers full diversity.

Since all the weight matrices of the generalized Silver codeare either Hermitian or anti-Hermitian

and hence full-ranked, full-diversity is achievable with the generalized Silver codes. However, finding
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out explicitly the values ofαi is an open problem. For the full-rate codes for 1 receive antenna, in

Section IV-B, we have identified the encoding scheme which not only provides full-diversity, but also

maximizes the coding gain for PAM constellations. For the generalized Silver codes for higher number of

receive antennas, each layer, corresponding to a rate-1, 4-group decodable code, is encoded as explained

in IV-B. Note from (14) that this type of encoding neither reduces the number of matrix pairs satisfying

Hurwitz-Radon orthogonality nor spoils the column orthogonality of the Generator matrix. In addition,

we use a certain scaling factor to be multiplied with a certain subset of weight matrices to enhance the

coding gain. The choice of the scaling factor is based on computer search. With the use of the scaling

factor, the generalized Silver codes perform very well whencompared with the punctured Perfect codes.

Although we cannot mathematically prove that our codes havefull-diversity with the constellation that

we have used for simulation, the simulation plots seem to suggest that our codes have full-diversity, since

the error performance of our codes matches that of the comparable punctured Perfect codes, which have

been known to have full-diversity.

VI. SIMULATION RESULTS

In all the simulation scenarios in this section, we considerthe Rayleigh block fading MIMO channel.

A. 4 Tx

We consider three MIMO systems -4 × 2, 4 × 3 and 4 × 4 systems. The codes are constructed as

illustrated in Subsection V-A. To enhance the performance of our code for the4 × 2 system, we have

multiplied the weight matrices ofG2 (as defined in Subsection V-A) with the scalarejπ/4. This is done

primarily to enhance the coding gain, which was observed to be the highest when the scalarejπ/4 was

chosen. It is to be noted that this action does not alter the ML-decoding complexity and the column

orthogonality of the generator matrix (so, the resultant weight matrices still satisfy the tracelessness

criterion). Consequently, the weight matrices of the Silver code for the4×2 system can be viewed to be

from G1
⋃

ejπ/4G2. For the4× 3 MIMO system, the weight matrices of the Silver code are from the set

G1
⋃

ejπ/4G2
⋃

jG1, while the weight matrices of the Silver code for the4× 4 system are from the set

G1
⋃

ejπ/4G2
⋃

jG1
⋃

jejπ/4G2. Fig. 2 shows the plot of the maximum mutual information achievable

with our codes and the punctured Perfect codes [25] for4 × 2 and 4 × 3 systems. In both the cases,

our codes allow higher mutual information than the punctured Perfect code, as was expected. Regarding

error performance, we have chosen 4 QAM for our simulations and encoding is done as explained in

Subsection IV-B.
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1) 4× 2 MIMO

Fig. 3 shows the plots of the symbol error rate (SER) as a function of the SNR at each receive

antenna for five codes - the DjABBA code [12], the punctured Perfect code for 4 transmit antennas,

the Silver code for the4× 2 system, the EAST code [37] and Oggier’s code from crossed product

Algebra with a provable NVD property [19]. Since the number of degrees of freedom of the channel

is only 2, we use the Perfect code with 2 of its 4 layers punctured. Our code and the EAST code

have the best performance. It is to be noted that the curves for the Silver code for the4×2 system

and the EAST code coincide. Also, the Silver code for the4 × 2 system is the same as the one

presented in [4], but has been designed using a new, systematic method. The Silver code for the

4×2 system and the EAST code have an ML-decoding complexity of the order ofM4.5 for square

QAM constellation, while the DjABBA and Oggier’s code have an ML-decoding complexity of

orderM6 andM5.5, respectively.

2) 4× 3 MIMO

Fig. 4 shows the plots of the SER as a function of the SNR at eachreceive antenna for two codes -

the punctured perfect code (puncturing one of its 4 layers) and the Silver code for the4×3 system.

The Silver code for the4×3 system has a marginally better performance than the punctured perfect

code in the low to medium SNR range. It has an ML-decoding complexity of the order ofM8.5

while that of the punctured Perfect code isM11 (this reduction fromM12 to M11 is due to the

fact that the real and the imaginary parts of the last symbol can be evaluated by quantization, once

the remaining symbols have been fixed).

3) 4× 4 MIMO

Fig. 5 shows the plots of the SER as a function of the SNR at eachreceive antenna for the Silver

code for the4 × 4 system and the Perfect code. The Silver code for the4 × 4 system nearly

matches the Perfect code in performance at low and medium SNR. More importantly, it has lower

ML-decoding complexity of the order ofM12.5, while that of the Perfect code isM15.

B. 8 Tx

To construct the Silver code for the8×2 system, we first construct a rate-1, 4-group decodable STBC

as described in Section IV and denote the set of obtained weight matrices byG1. Next we multiply the

weight matrices ofG1 by F4 to obtain a new set of weight matrices which is denoted byG2. The weight

matrices of the Silver code for the8×2 system are obtained fromG1
⋃G2. The Silver code for the8×3

system can be obtained by multiplying the matrices ofG1 with F6 and appending the resulting weight

June 8, 2018 DRAFT



24

matrices to the setG1
⋃G2. The rival code is the punctured perfect code for 8 transmit antennas [26].

The maximum mutual information plots of the two codes are shown in Fig. 6. As expected, our code

has higher mutual information, although lower than the ergodic capacity of the corresponding MIMO

channels.

Fig. 7 shows the symbol error performance of the Silver code for 8 × 2 system and the punctured

Perfect code [26]. The constellation employed is 4-QAM. Again, to enhance performance by way of

increasing the coding gain, we have multiplied the weight matrices ofG2 with the scalare
jπ

4 , as done

for the codes for 4 transmit antennas. The simulation plot suggests that our code has full diversity. The

most important aspect of our code is that it has an ML-decoding complexity ofM9.5, while that of the

comparable punctured Perfect code isM15.

VII. D ISCUSSION

In this paper, we proposed a scheme to obtain full-rate STBCsfor 2a transmit antennas and any

number of receive antennas with the lowest ML-decoding complexity and the least self-interference

among known codes. The STBCs thus obtained allow higher mutual information than existing STBCs

for the casenr < nt. Identifying explicit constellations which can be mathematically proven to guarantee

full-diversity and a non-vanishing determinant without increasing the ML-decoding complexity is an

open problem. Also, one can seek to obtain full-rate STBCs with reduced ML-decoding complexity for

arbitrary number of transmit (not a power of 2) and receive antennas. These are some of the directions

for future research.
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