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Abstract—The average weight distribution of a regular low-
density parity-check (LDPC) code ensemble over a finite field
is thoroughly analyzed. In particular, a precise asymptotic ap-
proximation of the average weight distribution is derived for
the small-weight case, and a series of fundamental qualitative
properties of the asymptotic growth rate of the average weight
distribution are proved. Based on this analysis, a general result,
including all previous results as special cases, is established for
the minimum distance of individual codes in a regular LDPC
code ensemble.

Index Terms—Low-density parity-check (LDPC) codes, mini-
mum distance, weight distribution.

I. I NTRODUCTION

L OW-DENSITY parity-check (LDPC) codes, originally
introduced by Gallager [1], are a family of linear codes

characterized by a sparse parity-check matrix. Owing to
their capacity-approaching performance under low-complexity
iterative decoding algorithms, LDPC codes have attracted
tremendous attention in the past years. To evaluate the the-
oretical performance of an LDPC code, a typical method is to
estimate its performance under maximum-likelihood (ML) or
iterative decoding assumptions. The performance of a linear
code under ML decoding can be well estimated based on its
weight distribution [1], so having the knowledge about weight
distributions of LDPC codes facilitate the analysis of the ML
decoding performance.

The first analysis work on the weight distributions of LDPC
codes was given by Gallager in his pioneering work [1], where
he studied the weight distributions of binary regular LDPC
codes. Moreover, he also generalized the analysis to non-
binary regular LDPC codes overZm (m > 2), characterized
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by zero-one parity-check matrices. Ever since the publication
of [1], there has been a lot of work extending the analysis
of weight distributions of binary LDPC codes in different
ways, such as [2]–[7]. A generalization of weight distributions,
also known as spectra, of regular LDPC codes over finite
fields and arbitrary abelian groups were later studied in [8],
[9]. More recently, the binary weight distributions of non-
binary LDPC codes also received some attention [10]. By now
a bundle of formulas about weight distributions of various
LDPC codes is known, but the value and significance of
most formulas is far from being fully understood, except in
the case of binary regular LDPC codes, which have been
well studied [1], [2]. The difficulty is due to the complex
expressions for the weight distributions of LDPC codes, which
are usually obtained by the generating function approach and
hence are typically expressed as coefficients of a polynomial.
Given a polynomialp(x) with nonnegative coefficients, a usual
approach for estimating the coefficient of a monomialxk in
[p(x)]n is to calculate the infimum of[p(x)]n/xk over all
positivex, which gives an upper bound of the coefficient and in
fact has the same asymptotic growth rate as the coefficient [4,
Theorem 1]. However, analyzing functions likeinfy>0 f(x, y)
is not an easy job. Whenf(x, y) is complicated, determining
the shape, such as monotonicity, convexity, and zeros, of
infy>0 f(x, y) becomes a difficult mission.

In this paper, we shall perform such a mission for ensembles
of regular LDPC codes over finite fields. At first, as an easy
consequence of the results in [8], [9], [11], an exact expression
is introduced for the average weight distribution of a(c, d)-
regular LDPC code ensemble over the finite fieldFq of order
q, where c and d, in a less strict sense, correspond to the
column and row weight of parity-check matrix, respectively.
Based on this expression, we show that, when averaged on the
whole ensemble, the fraction of codewords of small weightl
in an LDPC code is at most asymptoticallyn−⌈(c−2)l/2⌉ as
the coding lengthn goes to infinity. Next, using the upper-
bound technique mentioned above, we analyze the asymptotic
growth rateωq,c,d(x) of the average weight distribution, where
x denotes the normalized weight. A series of fundamental
qualitative properties ofωq,c,d(x) are found and proved. In
particular, we show that ford ≥ c ≥ 3, ωq,c,d(x) has a
unique zerox0 in (0, 1 − 1/q]. This zero just corresponds to
the normalized minimum distance of a typical LDPC code,
and hence provides important information about the code
ensemble. Finally, we prove that ford ≥ c ≥ 3, there are at
most a fractionΘ(n−⌈(c−2)l0/2⌉) of all codes in the ensemble
whose minimum distance is between the constantl0 andαn,

http://arxiv.org/abs/1010.2030v3
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whereα ∈ (0, x0).
The rest of this paper is organized as follows. In Sec-

tion II, we introduce the notations and conventions to be
used throughout the paper. In Section III, we define the
ensemble of regular LDPC codes over a finite field and give
its average weight distribution function; moreover, we study
the asymptotic behavior of the average weight distributionfor
the small-weight case. The main analysis, consisting of two
stages, for the asymptotic growth rate of the average weight
distribution is performed in Sections IV and V. The minimum
distance of individual codes in a regular LDPC code ensemble
is analyzed in Section VI. Section VII concludes the paper.

II. N OTATIONS AND CONVENTIONS

In this section, we introduce some basic notations and
conventions to be used throughout the rest of this paper.

• In general, symbols, real variables, and deterministic
mappings are denoted by lowercase letters. Sets and
random elements are denoted by capital letters.

• The symbolsZ, N, N0, R denote the ring of integers, the
set of positive integers, the set of nonnegative integers,
and the field of real numbers, respectively. For a prime
powerq ≥ 2 the finite field of orderq is denoted byFq.
The multiplicative subgroup of nonzero elements ofFq

is denoted byF×
q .

• Then-fold cartesian product of a setA is denoted byAn.
An element ofAn is denoted byx = (x1, x2, . . . , xn),
wherexi ∈ A denotes theith component ofx.

• For any vectorc ∈ F
n
q , theweightw(c) of c is the number

of nonzero symbols in it, that is,w(c)
△

= |{i : ci 6= 0}|.
• Given the functionsf : X → Y and g : Y → Z, their

composite is the functiong ◦ f : X → Z given byx 7→
g(f(x)).

• Given the functionsf : X1 → Y1 and g : X2 → Y2,
their cartesian product is the functionf⊙g : X1×X2 →
Y1 × Y2 given by (x1, x2) 7→ (f(x1), g(x2)).

• When performing probabilistic analysis, all objects of
study are relative to a basic probability space(Ω,A, P )
where A is a σ-algebra inΩ and P is a probability
measure on(Ω,A). For any eventA ∈ A, PA = P (A)
is called the probability ofA. Any measurable mapping
of Ω into some measurable space(B,B) is generally
called a random element. For any random set or function,
we tacitly assume that theirn-fold cartesian products
(e.g., An or

⊙n
i=1 F ) are cartesian products of their

independent copies.
• All logarithms are taken to the natural basee and denoted

by ln.
• For anyx ∈ [0, 1] and any integerq ≥ 2, the entropy

functionHq(x) is defined by

Hq(x)
△

= x ln
1

x
+ (1− x) ln

1

1− x
+ x ln(q − 1).

For anyx, y ∈ [0, 1], the information divergence function
D(x‖y) is defined by

D(x‖y) △

= x ln
x

y
+ (1− x) ln

1− x

1− y
.

• For any real functionsf(n) and g(n) with n ∈ N, the
asymptoticΘ-notationf(n) = Θ(g(n)) means that there
exist positive constantsc1 andc2 such that

c1g(n) ≤ f(n) ≤ c2g(n).

for sufficiently largen.
• For x ∈ R, ⌊x⌋ denotes the largest integer not exceeding

x, and⌈x⌉ denotes the smallest integer not less thanx.

III. R EGULAR LDPC CODES OVERFINITE FIELDS

We first define some basicFq-linear transformations.
Definition 3.1: A single symbol repetitionwith a parameter

c ∈ N is a mappingfREP
q,c : Fq → F

c
q given by x 7→

(x, x, . . . , x).
Definition 3.2: A single symbol checkwith a parameterd ∈

N is a mappingfCHK
q,d : Fd

q → Fq given byx 7→
∑d

i=1 xi.
Definition 3.3: A single symbol random multiplier mapis a

random mappingFRM
q : Fq → Fq given byx → Cx whereC

is an independent random variable uniformly distributed over
F
×
q .
Definition 3.4: A uniform random interleaverof F

n
q is a

random automorphismΣq,n : F
n
q → F

n
q given by x 7→

(xΠ−1(1), xΠ−1(2), . . . , xΠ−1(n)), whereΠ is an independent
random permutation uniformly distributed over the symmetric
groupSn, i.e., all permutations onn letters.

Next, we define a random linear transformation based on
the above simple maps.

Definition 3.5: FLD
q,c,d,n : Fn

q → F
cn/d
q is a random mapping

defined by

FLD
q,c,d,n

△

= fCHK
q,d,cn/d ◦ FRM

q,cn ◦ Σq,cn ◦ fREP
q,c,n (1)

wherec, d ∈ N, d dividescn, and

fREP
q,c,n

△

=

n
⊙

i=1

fREP
q,c , fCHK

q,d,n
△

=

n
⊙

i=1

fCHK
q,d , FRM

q,n
△

=

n
⊙

i=1

FRM
q .

Considering the kernel ofFLD
q,c,d,n, we thus obtain an ensem-

ble of regular LDPC codes overFq, which is called arandom
(c, d)-regular LDPC code overFq and is denoted byC(n)

q,c,d.1

This ensemble was originally introduced in [8], [12], [13] by
the method of bipartite graphs.

To see the connection ofFLD
q,c,d,n with a bipartite graph, we

may regard eachfREP
q,c as a variable node withc sockets and

eachfCHK
q,d as a check node withd sockets. Then in total there

arenc variable sockets andnc check sockets. We say that the
ith variable socket and thejth check socket are connected
by an edge ifj = Π(i), whereΠ is the random permutation
defined in Definition 3.4. We also define the label of the edge
connecting these two sockets to be the random variableC
defined in Definition 3.3. Then we dispose of the sockets (i.e.
edges are considered as connections between variable nodes
and check nodes). The resulting random graph (which may
have repeated edges) is exactly the random regular bipartite
graph with independent and uniformly distributed random edge
labels taken fromF×

q as in [8].

1We shall tacitly assume throughout the paper that the block length n
always takes values such thatd divides cn.
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Now let us investigate the weight distribution ofC(n)
q,c,d. The

next theorem gives its average weight distribution.
Theorem 3.6 (cf. [8], [9], [11]): For c, d ∈ N, the average

weight distribution ofC(n)
q,c,d is given by

E
[

A
(n)
q,c,d(l)

]

=

(

n
l

)

coef
(

g
(cn/d)
q,d (x), xcl

)

(

cn
cl

)

(q − 1)(c−1)l
(2)

whereA(n)
q,c,d(l) denotes the number of codewords of weightl

in C(n)
q,c,d (0 ≤ l ≤ n), coef

(

p(x), xl
)

denotes the coefficient
of xl in the polynomialp(x), and

g
(n)
q,d (x)

△

=
1

qn
{

[1 + (q − 1)x]d + (q − 1)(1− x)d
}n

. (3)

Furthermore, we have

1

n
lnE

[

A
(n)
q,c,d(l)

]

≤ ωq,c,d

(

l

n

)

+ cβcn(cl) (4)

where
ωq,c,d(x)

△

= Hq(x) +
c

d
[δq,d(x) − ln q] (5)

δq,d(x)
△

= inf
x̂∈(0,1)

δq,d(x, x̂) (6)

δq,d(x, x̂)
△

= dD(x‖x̂) + ρq,d(x̂) (7)

ρq,d(x)
△

= ln

[

1 + (q − 1)

(

1− qx

q − 1

)d
]

(8)

βn(l)
△

= H2

(

l

n

)

− 1

n
ln

(

n

l

)

. (9)

Proof: The average weight distribution (2) is in fact a
known result. Note that

E
[

A
(n)
q,c,d(l)

]

=

(

n

l

)

(q − 1)lP
{

c ∈ C(n)
q,c,d

∣

∣

∣
w(c) = l

}

and

P
{

c ∈ C(n)
q,c,d

∣

∣

∣
w(c) = l

}

=

∣

∣

∣

{

ĉ ∈ ker fCHK
q,d,cn/d : w(ĉ) = cl

}∣

∣

∣

(

cn
cl

)

(q − 1)cl
.

For a proof of
∣

∣

∣

{

ĉ ∈ ker fCHK
q,d,cn/d : w(ĉ) = cl

}
∣

∣

∣
= coef

(

g
(cn/d)
q,d (x), xcl

)

the reader is referred to [8, Appendix III], [9], [11].
Now let us prove the inequality (4). By the upper-bound

technique introduced in Section I, it follows from (2) that

E
[

A
(n)
q,c,d(l)

]

≤
(

n
l

)

g
(cn/d)
q,d (x)

(

cn
cl

)

(q − 1)(c−1)lxcl

for any x > 0. Taking

x =
x̂

(q − 1)(1− x̂)

wherex̂ ∈ (0, 1), we obtain

E
[

A
(n)
q,c,d(l)

]

≤
(q − 1)l

(

n
l

)

ĝ
(cn/d)
q,d (x̂)

(

cn
cl

)

x̂cl(1− x̂)cn−cl
(10)

where

ĝ
(n)
q,d (x)

△

=
1

qn

[

1 + (q − 1)

(

1− qx

q − 1

)d
]n

.

Taking logarithms of both sides of (10) and using the lower-
bound in Lemma A.1, we further have

1

n
lnE

[

A
(n)
q,c,d(l)

]

≤ Hq(α) +
c

d
[δq,d(α, x̂)− ln q] + cβcn(cl)

whereα
△

= l/n. The theorem is finally established by taking
the infimum of the right side over all̂x ∈ (0, 1).

Remark 3.7:Loosely speaking, for anyα ∈ [0, 1], if we
take l = αn, then it follows from [4, Theorem 1] that

lim
n→∞

1

n
ln coef

(

g
(cn/d)
q,d (x), xcl

)

=
c

d
inf
x>0

ln
g
(1)
q,d(x)

xdα

= inf
x>0

1

m
ln

g
(cm/d)
q,d (x)

xcmα

for any m > 0. Comparing this identity with the proof of
Theorem 3.6 and noting that the second term in the right hand
side of (4) is asymptotically negligible, we immediately have

lim
n→∞

1

n
lnE

[

A
(n)
q,c,d(αn)

]

= ωq,c,d(α).

The functionωq,c,d(x) thus represents the asymptotic growth
rate of the average weight distribution ofC(n)

q,c,d, and hence
deserves further investigations. In the subsequent sections, we
shall provide an in-depth analysis ofωq,c,d(x).

Although in general the average weight distribution ofC(n)
q,c,d

is very complex, it becomes simple for some speciald. The
next two theorems give its complete characterization ford =
1, 2.

Theorem 3.8:

E
[

A
(n)
q,c,1(l)

]

=

{

1 l = 0

0 otherwise.

Proof: Ford = 1, we haveFLD
q,c,d,n = FRM

q,cn◦Σq,cn◦fREP
q,c,n ,

which is injective. In other words, the defining parity-check
matrix of C(n)

q,c,1 has rankn, so thatC(n)
q,c,1 = {0}.

Theorem 3.9:

E
[

A
(n)
q,c,2(l)

]

=







(nl)(
cn/2
cl/2)

(q−1)(c/2−1)l(cncl)
cl is even

0 otherwise
(11)

1

n
lnE

[

A
(n)
q,c,2(l)

]

≤
(

1− c

2

)

Hq

(

l

n

)

+ cβcn(cl). (12)

Proof: By (3) it follows that

g
(n)
q,2 (x) =

[

1 + (q − 1)x2
]n

.

Then we have

coef
(

g
(cn/2)
q,2 (x), xcl

)

=

{

(q − 1)cl/2
(cn/2
cl/2

)

cl is even
0 otherwise.

This together with (2) gives (11), which further yields (12)by
Lemma A.1.

As shown above, the average weight distribution ofC(n)
q,c,d

is trivial for d = 1, 2. In the sequel, we shall therefore
concentrate on the general case ofd ≥ 3.
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Another well-known fact to be noted is that whenq = 2 and
d is even, the weight distribution ofC(n)

q,c,d satisfiesA(n)
2,c,d(l) =

A
(n)
2,c,d(n − l) for 0 ≤ l ≤ n. This property simply follows

from the fact that for evend the all-one vector is a codeword
of C(n)

2,c,d. In particular we have the following:
Remark 3.10:For evend ≥ 2,

E
[

A
(n)
2,c,d(l)

]

= E
[

A
(n)
2,c,d(n− l)

]

(13)

ω2,c,d(x) = ω2,c,d(1− x). (14)

We close this section with a theorem on the asymptotic
behavior of the average weight distribution for the small-
weight case.

Theorem 3.11:For d ≥ 3 and constant weightl ≥ 1,

E
[

A
(n)
q,c,d(l)

]

=







0 c = 1 and l = 1
0 q = 2 andcl is odd
Θ
(

n−⌈(c−2)l/2⌉
)

otherwise.

Proof: The trick of the proof is to find a precise ap-
proximation ofcoef(g(cn/d)q,d (x), xcl) in (2) and to prove it by
induction. For convenience, we define

A(n,m)
△

= coef
(

g
(n)
q,d (x), x

m
)

.

After some algebraic manipulations, we have

g
(n)
q,d (x) =

[

d
∑

i=0

(

d

i

)

B(i)xi

]n

where

B(i) =
(q − 1)i + (−1)i(q − 1)

q
.

Then it is observed that

A(n+ 1,m) =

min{m,d}
∑

i=0

(

d

i

)

A(n,m− i)B(i)

= A(n,m) +

min{m,d}
∑

i=2

(

d

i

)

A(n,m− i)B(i).

Hence we have

A(n, 0) = A(1, 0) = 1

A(n, 1) = A(1, 1) = 0

A(n, 2) = A(n− 1, 2) +

(

d

2

)

A(n− 1, 0)B(2)

= A(n− 1, 2) +
d(d− 1)(q − 1)

2

= Θ
(

n⌊ 2
2⌋
)

A(n, 3) = A(n− 1, 3) +

(

d

2

)

A(n− 1, 1)B(2)

+

(

d

3

)

A(n− 1, 0)B(3)

= A(n− 1, 3) +
d(d− 1)(d− 2)(q − 1)(q − 2)

6

=

{

0 q = 2

Θ
(

n⌊ 3
2⌋
)

otherwise.

We shall show by induction onm that

A(n,m) =

{

0 q = 2 andm is odd

Θ
(

n⌊m
2 ⌋
)

otherwise.
(15)

for all constantm ≥ 2. Here, we only prove the general case
of q > 2. The case ofq = 2 can be proved by a similar
argument with the factB(i) = [1 + (−1)i]/2. Suppose that
(15) holds for2 ≤ m ≤ k with k ≥ 3, then form = k + 1,

A(n, k + 1) = A(n− 1, k + 1)

+

min{k+1,d}
∑

i=2

(

d

i

)

A(n− 1, k − i+ 1)B(i)

= A(n− 1, k + 1) + Θ
(

(n− 1)⌊(k−1)/2⌋
)

This asymptotic behavior implies that there exits a positive
integern0 such that forn > n0,

A(n, k + 1) = A(n0, k + 1) + Θ

(

n−1
∑

i=n0

i⌊(k−1)/2⌋

)

= Θ
(

n⌊(k+1)/2⌋
)

.

Thus (15) holds for allm ≥ 2.
Finally, it follows from Theorem 3.6 and (15) that

E
[

A
(n)
q,c,d(l)

]

=

(

n
l

)

A(cn/d, cl)
(

cn
cl

)

(q − 1)(c−1)l

=







0 c = 1 and l = 1
0 q = 2 andcl is odd
Θ
(

n−⌈(c−2)l/2⌉
)

otherwise

as desired.
Remark 3.12:The first and second cases of Theorem 3.11

have the following alternative proofs: Ifc = 1 then the random
codeC(n)

q,c,d, as the kernel of the reduced mappingfCHK
q,d,n/d ◦

FRM
q,n ◦Σq,n, has the same weight distribution as the kernel of

fCHK
q,d,n/d. In particular,C(n)

q,c,d has no words of weight1. If c

is odd then every column of the parity-check matrix ofC(n)
2,c,d

(i.e. the transformation matrix ofFLD
2,c,d,n) has odd weight. This

implies that the all-one vector is in the dual code ofC(n)
2,c,d and

hence that all codewords have even weight.

IV. PROPERTIES OF THEFUNCTION δq,d(x)

As an important step towards understanding the function
ωq,c,d(x), we analyze in this section the functionδq,d(x)
defined by (6). The proofs of lemmas in this section are
presented in Appendix D.

In the sequel, we shall frequently use the following substi-
tution to facilitate the analysis:

z
△

= 1− qx

q − 1
, ẑ

△

= 1− qx̂

q − 1
. (16)

Note that this transform is bijective and strictly decreasing, so
we have

x =
(q − 1)(1− z)

q
, x̂ =

(q − 1)(1− ẑ)

q
(17)

andz, ẑ ∈ [−1/(q − 1), 1] asx, x̂ ∈ [0, 1].
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Our first goal is to study the zeros of the partial derivative
of δq,d(x, x̂) with respect tôx.

Lemma 4.1:For the functionδq,d(x, x̂) defined by (7),

∂δq,d(x, x̂)

∂x̂
= d

∂D(x‖x̂)
∂x̂

+
dρq,d(x̂)

dx̂
(18)

= − qd(ζq,d(ẑ)− z)

(1− ẑ)[1 + (q − 1)ẑ]
(19)

where

ζq,d(ẑ)
△

=
ẑ + ẑd−1 + (q − 2)ẑd

1 + (q − 1)ẑd
. (20)

Lemma 4.1 shows that the zeros of∂δq,d(x, x̂)/∂x̂ are
determined by the equationζq,d(ẑ) − z = 0. We therefore
proceed to analyze the functionζq,d(ẑ). The next three lemmas
give the properties ofζq,d(ẑ).

Lemma 4.2:For q ≥ 2 and d ≥ 3, the functionζq,d(ẑ) is
continuously differentiable on[−1/(q−1), 1] and its derivative
is positive on(−1/(q − 1), 1).

Lemma 4.3:For q ≥ 2 andd ≥ 1,

ζq,d(z)− z =
zd−1(1− z)[1 + (q − 1)z]

1 + (q − 1)zd
(21)

ζq,d

(

− 1

q − 1

)

=

{

2
d − 1 q = 2 andd is odd(22a)

− 1
q−1 otherwise (22b)

ζq,d(0) = 0 (23)

ζq,d(1) = 1. (24)

Lemma 4.4:Let

z1
△

=











2

d
− 1 q = 2 andd is odd (25a)

− 1

q − 1
otherwise. (25b)

The equationζq,d(ẑ)−z = 0 has a unique solution̂z1 = ẑ1(z)
in [−1/(q − 1), 1] for eachz ∈ [z1, 1] and has no solution in
[−1/(q − 1), 1] for z < z1. The solutionẑ1(z) is continuous
on [z1, 1] and is continuously differentiable on(z1, 1); its
derivative is positive on(z1, 1). Moreover,ẑ1(z) ∈ I ′q,d(z),
where

I ′q,d(z)
△

=







































{− 1
q−1} z = z1

(− 1
q−1 , z) z ∈ (z1, 0) andd is odd

(z, 0) z ∈ (z1, 0) andd is even

{0} z = 0

(0, z) z ∈ (0, 1)

{1} z = 1.

Equipped with Lemmas 4.1–4.4, we are now in a position
to analyze the functionδq,d(x).

Theorem 4.5:Let q ≥ 2, d ≥ 3, and

x1
△

=

{

1− 1

d
q = 2 andd is odd (26a)

1 otherwise. (26b)

For the functionδq,d(x) defined by (6), we have

δq,d(x) =























































ln q x = 0 (27a)

ρq,d(1) x = 1 (27b)

−∞ x ∈ (1 − 1
d , 1), q = 2,

andd is odd (27c)

ln(2d)− dH2

(

1

d

)

x = 1− 1
d , q = 2,

andd is odd (27d)

δq,d(x, x̂1) x ∈ (0, x1) (27e)

whereρq,d(x) is defined by (8) and̂x1 = x̂1(x) is the unique
root in (0, 1) of the equation

∂δq,d(x, x̂)

∂x̂
= 0 (28)

solved forx̂ as a function ofx. The functionx̂1(x) is continu-
ously differentiable on(0, x1) and its derivative is positive on
(0, x1). Moreover,limx→0+ x̂1(x) = 0, limx→x−

1
x̂1(x) = 1,

and x̂1(x) ∈ Iq,d(x), where

Iq,d(x)
△

=























(x, 1− 1
q ) x ∈ (0, 1− 1

q )

{1− 1
q } x = 1− 1

q

(x, 1) x ∈ (1 − 1
q , x1) andd is odd

(1− 1
q , x) x ∈ (1 − 1

q , x1) andd is even.

The functionδq,d(x) is continuous on[0, x1] and is continu-
ously differentiable on(0, x1), in which case,

dδq,d(x)

dx
= d ln

x(1 − x̂1)

x̂1(1− x)
. (29)

Proof: At first, Lemmas 4.1, 4.2, and 4.3 show that

∂δq,d(0, x̂)

∂x̂
> 0 ∀x̂ ∈ (0, 1)

and
∂δq,d(1, x̂)

∂x̂
< 0 ∀x̂ ∈ (0, 1).

Therefore we have

δq,d(0) = lim
x̂→0+

δq,d(0, x̂) = ρq,d(0)

and
δq,d(1) = lim

x̂→1−
δq,d(1, x̂) = ρq,d(1).

This concludes (27a) and (27b).
A similar argument also shows that for oddd

∂δ2,d(x, x̂)

∂x̂
< 0 ∀x ∈

[

1− 1

d
, 1

)

, x̂ ∈ (0, 1)

so that

δ2,d(x) = lim
x̂→1−

δ2,d(x, x̂)

= −dH2(x) + lim
x̂→1−

ln
1 + (1− 2x̂)d

(1− x̂)d(1−x)

= −dH2(x) + ln lim
x̂→1−

2(1− 2x̂)d−1

(1− x)(1 − x̂)d(1−x)−1

= −dH2(x) + ln
2

(1− x) limx̂→1−(1 − x̂)d−1−dx
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which yields (27c) and (27d).
For x ∈ (0, x1), Lemma 4.4 shows that there is a unique

ẑ1 = ẑ1(z) ∈ (−1/(q − 1), 1) such thatζq,d(ẑ1) = z =
1−qx/(q−1). Let x̂1 = (q−1)(1−ẑ1)/q, which is essentially
a function ofx. Then it follows from Lemma 4.1 and 4.2 that

∂δq,d(x, x̂)

∂x̂
< 0 ∀x̂ ∈ (0, x̂1)

and
∂δq,d(x, x̂)

∂x̂
> 0 ∀x̂ ∈ (x̂1, 1).

Therefore, δq,d(x) = δq,d(x, x̂1), which concludes (27e).
Furthermore, Lemma 4.4 shows thatx̂1(x) is continuously dif-
ferentiable on(0, x1) and its derivative is positive on(0, x1). It
also shows thatlimx→0+ x̂1(x) = 0 and limx→x−

1
x̂1(x) = 1,

and thatx̂1(x) ∈ Iq,d(x).
Based on the above analysis, it is clear thatδq,d(x) is

continuously differentiable on(0, x1). Furthermore, equation
(27e) combined with Lemma B.1 gives (29).

Finally, let us show thatδq,d(x) is continuous at the end-
points of the interval. Note thatδq,d(x) is the infimum of a col-
lection of continuous functions, so it is upper semi-continuous.
Then it suffices to show thatlimx→0+ δq,d(x) ≥ δq,d(0) and
limx→x−

1
δq,d(x) ≥ δq,d(x1). Recall thatlimx→0+ x̂1(x) = 0

and limx→x−

1
x̂1(x) = 1, so we have

lim
x→0+

δq,d(x) ≥ lim
x→0+

ρq,d(x̂1(x)) = ln q

lim
x→x−

1

δq,d(x) ≥ lim
x→x−

1

ρq,d(x̂1(x)) = ρq,d(1)

and

lim
x→x−

1

δ2,d(x) ≥ lim
x→x−

1

[

−dH2(x) + ln
1 + (1− 2x̂1(x))

d

1− x̂1(x)

]

= ln(2d)− dH2

(

1

d

)

for odd d. The proof is complete.
In Fig. 1 we give an illustration of the graphs ofδq,d(x) for

(q, d) = (2, 5), (q, d) = (2, 6), (q, d) = (3, 5), and (q, d) =
(3, 6).

V. PROPERTIES OF THEFUNCTION ωq,c,d(x)

In this section, we proceed to analyze the properties of the
functionωq,c,d(x) defined by (5). Since LDPC codes are trivial
when c > d, we shall sometimes assumec ≤ d to exclude
trivial cases. The proofs of lemmas in this section are presented
in Appendix E.

At first, we calculate the value ofωq,c,d(x) at some special
points.

Lemma 5.1:Let q ≥ 2, c ≥ 1, andd ≥ 3.

ωq,c,d(0) = 0. (30)

ωq,c,d

(

1− 1

q

)

=
(

1− c

d

)

ln q. (31)

ωq,c,d(1) = ln(q − 1) +
c

d
ρq,d(1)−

c

d
ln q. (32)

If q = 2 andd is odd then

ωq,c,d

(

1− 1

d

)

= (1− c)H2

(

1

d

)

+
c

d
ln d (33)

and

ωq,c,d(x) = −∞ ∀x ∈
(

1− 1

d
, 1

)

. (34)

Lemma 5.1 is an easy consequence of Theorem 4.5, so its
proof is left to the reader. Next, let us calculate the first-order
derivative ofωq,c,d(x).

Lemma 5.2:For the functionωq,c,d(x) defined by (5) with
q ≥ 2, c ≥ 1, andd ≥ 3, if x belongs to the case (27e) then

dωq,c,d(x)

dx
= ln

[

(

x

1− x

)c−1(
1− x̂1

x̂1

)c
]

+ ln(q − 1)

(35)
which can be further expressed as

dωq,c,d(x)

dx
= ln







1 + (q − 1)ẑ1
1− ẑ1

[

1− ẑd−1
1

1 + (q − 1)ẑd−1
1

]c−1






(36)
wherex̂1 is defined by (28) and̂z1 = 1− qx̂1/(q − 1).

The next lemma gives the value ofdωq,c,d(x)/dx at some
special points.

Lemma 5.3:Let q ≥ 2, d ≥ 3, andx1 be defined by (26).

lim
x→0+

dωq,c,d(x)

dx
=







∞ c = 1 (37a)

ln(d− 1) c = 2 (37b)

−∞ c ≥ 3. (37c)

dωq,c,d(x)

dx

∣

∣

∣

∣

x=1− 1
q

= 0. (38)

If q = 2 andd is even then

lim
x→1−

dωq,c,d(x)

dx
=







−∞ c = 1 (39a)

− ln(d− 1) c = 2 (39b)

∞ c ≥ 3. (39c)

If q 6= 2 or d is odd then

lim
x→x−

1

dωq,c,d(x)

dx
= −∞. (40)

To have more insights intoωq,c,d(x), we proceed to analyze
the second-order derivative ofωq,c,d(x). Since

d2ωq,c,d(x)

dx2
=

d

dẑ1

(

dωq,c,d(x)

dx

)

· dẑ1
dx

(41)

and we note that
dẑ1
dx

= − q

q − 1

dx̂1

dx

is negative on(0, x1), our task is now to calculate the
derivatived(dωq,c,d(x)/dx)/dẑ1.

Lemma 5.4:For the functionωq,c,d(x) defined by (5) with
q ≥ 2, c ≥ 1, andd ≥ 3, if x belongs to the case (27e) then

d

dẑ1

(

dωq,c,d(x)

dx

)

=
qξq,c,d(ẑ1)

(1− ẑd−1
1 )[1 + (q − 1)ẑ1][1 + (q − 1)ẑd−1

1 ]
(42)
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Fig. 1. The graphs ofδq,d(x) for (q, d) = (2, 5), (q, d) = (2, 6), (q, d) = (3, 5), and(q, d) = (3, 6).

where

ξq,c,d(ẑ) =

d−3
∑

i=0

ẑi − [(c− 1)(d− 1)− 1]ẑd−2

− (q − 1)[(c− 1)(d− 1)− 1]ẑd−1

+ (q − 1)
2d−3
∑

i=d

ẑi. (43)

Whenc = 1, equation (42) reduces to

d

dẑ1

(

dω2,c,d(x)

dx

)

=
q

(1− ẑ1)[1 + (q − 1)ẑ1]
. (44)

We go on to analyze the functionξq,c,d(ẑ) for q ≥ 2, c ≥ 2,
andd ≥ max{c, 3}.

Lemma 5.5:For d ≥ 3, the functionξ2,2,d(ẑ) is positive on
(−1, 1). For q ≥ 3 and d ≥ 3, the functionξq,2,d(ẑ) has a
positive zeroẑ2 in (−1/(q − 1), 1), and ξq,2,d(ẑ) is positive
on (−1/(q − 1), ẑ2) and negative on(ẑ2, 1).

For d ≥ c ≥ 3 with d even, the functionξ2,c,d(ẑ) has one
zeroẑ2 in (0, 1) and the other zerôz′2 in (−1, 0), andξ2,c,d(ẑ)
is positive on(ẑ′2, ẑ2) and negative on(−1, ẑ′2) ∪ (ẑ2, 1).

For q ≥ 2 andd ≥ c ≥ 3 with q 6= 2 or d odd, the function
ξq,c,d(ẑ) has a positive zerôz2 in (−1/(q−1), 1), andξq,c,d(ẑ)
is positive on(−1/(q − 1), ẑ2) and negative on(ẑ2, 1).

We are now ready to give the qualitative properties of
ωq,c,d(x).

Theorem 5.6:Let q ≥ 2, c ≥ 1, d ≥ max{c, 3}, andx1

be defined by (26). The functionωq,c,d(x) defined by (5) is
continuous on[0, x1] and is twice differentiable on(0, x1).

If c = 1, then ωq,c,d(x) is concave on(0, x1), and it is
strictly increasing on(0, 1 − 1/q) and strictly decreasing on
(1− 1/q, x1).

If c = 2, thenωq,c,d(x) is strictly increasing on(0, 1−1/q)
and strictly decreasing on(1 − 1/q, x1). Moreover, if q = 2,
it is concave on(0, x1); otherwise, it is convex on(0, x2) and
concave on(x2, 1), wherex2 ∈ (0, 1− 1/q).

If c ≥ 3, q = 2, andd is even, thenωq,c,d(x) is symmetric
about the axisx = 1

2 . It is convex on(0, x2) and concave
on (x2,

1
2 ) for somex2 ∈ (0, 1

2 ); it is strictly decreasing on
(0, x3) and strictly increasing on(x3,

1
2 ), wherex3 ∈ (0, x2);

consequently, it has a unique zerox0 in (0, 1
2 ], wherex0 ∈

(x3,
1
2 ], and it is negative on(0, x0) and positive on(x0,

1
2 ).

For other cases, the functionωq,c,d(x) is convex on(0, x2)
and concave on(x2, x1), wherex2 ∈ (0, 1−1/q); it is strictly
decreasing on(0, x3) ∪ (1 − 1/q, x1) and strictly increasing
on (x3,

1
2 ), wherex3 ∈ (0, x2); consequently, it has a unique

zero x0 in (0, 1 − 1/q], wherex0 ∈ (x3, 1 − 1/q], and it is
negative on(0, x0) and positive on(x0, 1− 1/q).

To provide an intuitive illustration ofωq,c,d(x) in each case,
the graphs ofωq,c,d(x) for typical values of(q, c, d) are plotted
in Figs. 2–5.

Sketch of Proof: The proof is direct, and it depends
on Remark 3.10, Theorem 4.5, Lemmas 5.1–5.5, and identity
(41). Here, we only give the proof of the last paragraph of
statements.

Lemma 5.5 and identity (41) show thatωq,c,d is convex on
(0, x2) and concave on(x2, x1), wherex2 ∈ (0, 1 − 1/q).
Furthermore, Lemmas 5.1 and 5.3 show that

ωq,c,d(0) = 0, ωq,c,d

(

1− 1

q

)

=
(

1− c

d

)

ln q ≥ 0

and

lim
x→0+

dωq,c,d(x)

dx
= −∞,

dωq,c,d(x)

dx

∣

∣

∣

∣

x=1− 1
q

= 0.
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Fig. 2. The graphs ofω2,c,5(x) for c = 1, c = 2, andc = 3.
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Therefore, the derivativedωq,c,d(x)/dx has a unique zero
x3 in (0, 1 − 1/q), where x3 ∈ (0, x2); it is negative on
(0, x3) ∪ (1 − 1/q, x1) and positive on(x3, 1 − 1/q). In
other words, the functionωq,c,d(x) is strictly decreasing on
(0, x3)∪ (1−1/q, x1) and strictly increasing on(x3, 1−1/q).
The last statement about the unique zero in(0, 1−1/q) clearly
follows.

Remark 5.7:The zerox0 in Theorem 5.6 just corresponds
to the normalized minimum distance of LDPC codes, in an
average and asymptotic sense. It is in fact a function ofq, c,
andd, so we denote it byx0(q, c, d). We note that

lim
d→∞

ρq,d(x) = 0 ∀x ∈ (0, 1)

and hence for anyr ∈ (0, 1],

lim
d→∞

x0(q, ⌈rd⌉ , d) = x0,q,r

wherex0,q,r is the solution ofHq(x) − r ln q = 0 in (0, 1 −
1/q). The detailed proof is left to the reader. Note thatx0,q,r

as well as the equationHq(x)−r ln q = 0 is closely related to
the so-called asymptotic Gilbert-Varshamov (GV) bound over
finite fields [14, pp. 94–95]. This implies that regular LDPC
codes with largec andd achieve the GV bound.

VI. M INIMUM DISTANCE OFLDPC CODES

Though we have shown in Remark 5.7 that regular LDPC
code ensembles are asymptotically good, we are more inter-
ested in the performance of individual codes of finite length. In
this section, we shall investigate the minimum distance of an
individual code in a regular LDPC code ensemble. To achieve
this goal, we first establish an important inequality.

Theorem 6.1:For q ≥ 2, c ≥ 1, d ≥ 2, andx ∈ (0, 1/q2),

ωq,c,d(x) <
( c

2
− 1
)

x lnx+ κq,c,dx (45)

where
κq,c,d

△

= ln(q − 1) +
c

2
ln(d− 1) + 3c. (46)

Proof: Put

x̂
△

=

√

x

d− 1
. (47)

Then for anyx ∈ (0, 1/q2), x̂ ∈ (0, 1/q) ⊂ (0, 1− 1/q).
According to the definition (5) ofωq,c,d(x), we have

ωq,c,d(x)

≤ Hq(x) +
c

d
(δq,d(x, x̂)− ln q)

= Hq(x) + cD(x‖x̂)

+
c

d
ln

[

1

q
+

(

1− 1

q

)(

1− qx̂

q − 1

)d
]

(a)

≤ Hq(x) + cD(x‖x̂) + c

[

−x̂+
q(d− 1)

2(q − 1)
x̂2

]

= −(c− 1)H2(x) + x ln(q − 1)

+ c

[

x ln
1

x̂
+ (1− x) ln

1

1− x̂
− x̂+

q(d− 1)

2(q − 1)
x̂2

]

< (c− 1)x lnx+ x ln(q − 1)

+ c

[

x ln
1

x̂
+

x̂

1− x̂
− x̂+

q(d− 1)

2(q − 1)
x̂2

]

= (c− 1)x lnx+ x ln(q − 1)

+ c

[

x ln
1

x̂
+

x̂2

1− x̂
+

q(d− 1)

2(q − 1)
x̂2

]

(b)
= (c− 1)x lnx+ x ln(q − 1)

+ c

[

1

2
x ln

d− 1

x
+

x

(d− 1)(1− x̂)
+

qx

2(q − 1)

]

(c)
<
( c

2
− 1
)

x ln x+
(

ln(q − 1) +
c

2
ln(d− 1) + 3c

)

x

where (a) follows from Lemma A.2 andlnx ≤ x−1, (b) from
(47), and (c) follows fromq ≥ 2, d ≥ 2, and x̂ < 1/q.

Now, let us present the main result on the minimum distance
of individual codes in a regular LDPC code ensemble.

Theorem 6.2:For any codeC ⊆ F
n
q , we denote its mini-

mum distance bydmin(C). Then forq ≥ 2, d ≥ c ≥ 3, l0 ≥ 1,
andα ∈ (0, 1− 1/q),

P
{

l0 ≤ dmin(C(n)
q,c,d) ≤ nα

}

≤ Θ
(

n−⌈(c−2)(l0+∆)/2⌉
)

+Θ
(

n
3
2 enωq,c,d(α)

)

(48)

where

∆
△

=

{

1 q = 2 andcl0 is odd
0 otherwise.

(49)

Proof: Since the minimum distance of a linear code is
the minimum weight of its nonzero codewords, we have

P
{

l0 ≤ dmin(C(n)
q,c,d) ≤ nα

}

≤ P







⌊nα⌋
⋃

l=l0

{

A
(n)
q,c,d(l) ≥ 1

}







≤
⌊nα⌋
∑

l=l0

P
{

A
(n)
q,c,d(l) ≥ 1

}

(a)

≤
⌊nα⌋
∑

l=l0

E
[

A
(n)
q,c,d(l)

]

(b)

≤
l0+3
∑

l=l0

Θ
(

n−⌈(c−2)l/2⌉
)

+

⌊nα⌋
∑

l=l0+4

Θ
(

n
1
2 enωq,c,d(l/n)

)

(c)

≤ Θ
(

n−⌈(c−2)l0/2⌉
)

+Θ
(

n
3
2 enωq,c,d((l0+4)/n)

)

+Θ
(

n
3
2 enωq,c,d(α)

)

(d)

≤ Θ
(

n−⌈(c−2)l0/2⌉
)

+Θ
(

n
3
2n−(c−2)(l0+4)/2

)

+Θ
(

n
3
2 enωq,c,d(α)

)

(e)

≤ Θ
(

n−⌈(c−2)l0/2⌉
)

+Θ
(

n
3
2 enωq,c,d(α)

)

where (a) follows from Markov’s inequality, (b) from Theo-
rems 3.6 and 3.11, Lemma A.1, and the inequalityl(n− l) ≤
n2/4, (c) from Theorem 5.6, which shows thatωq,c,d(x) with
x ∈ [(l0 + 4)/n, α] is upper bounded by eitherωq,c,d((l0 +
4)/n) or ωq,c,d(α), (d) from Theorem 6.1, and (e) follows
from c ≥ 3.
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The above inequality holds in all cases. Whenq = 2 and
cl0 is odd, Theorem 3.11 shows thatE[A

(n)
q,c,d(l0)] = 0, so

we can further improve this inequality by simply replacingl0
with l0 + 1. The proof is complete.

Remark 6.3:If taking l0 = 1 in Theorem 6.2, we have

P
{

dmin(C(n)
q,c,d) ≤ nα

}

≤ Θ
(

n−⌈(c−2)/2⌉
)

+Θ
(

n
3
2 enωq,c,d(α)

)

.2 (50)

Recall thatωq,c,d(x) has a unique zerox0(q, c, d) in (0, 1 −
1/q), so we have

P
{

dmin(C(n)
q,c,d) ≤ nα

}

≤ Θ
(

n−⌈(c−2)/2⌉
)

(51)

for any α ∈ (0, x0(q, c, d)). Moreover, whenc ≥ 5, it
follows from the Borel-Cantelli lemma that for anyǫ > 0,
the probability of the event
{

1

n
dmin(C(n)

q,c,d) ≤ x0(q, c, d)− ǫ for infinitely manyn

}

is zero, so that

P

{

lim inf
n→∞

1

n
dmin(C(n)

q,c,d) ≥ x0(q, c, d)

}

= 1. (52)

The formula (50), forq = 2, was first proved (in a slightly
stronger form for a different ensemble) by Gallager in [1]. As
for the general case ofq > 2, Bennatan and Burshtein first
showed in [8] that there exists someγ > 0 such that

P
{

dmin(C(n)
q,c,d) ≤ nγ

}

≤ Θ
(

n1−c/2
)

which is clearly weaker than (51). In [9], Como and Fagnani
proved a result similar to (51).

Compared with previous results, the advantage of Theo-
rem 6.2 is that we can use it to obtain results much better
than (50) by removing bad codes from the original ensemble.
This viewpoint is formulated in the following theorem, which
is an easy consequence of Theorem 6.2.

Theorem 6.4:Let q ≥ 2, d ≥ c ≥ 3, l0 ≥ 2, and α ∈
(0, 1 − 1/q). Let Φn : {All subspaces ofFn

q } → {0, 1} be a
test function of linear codes such that for every linear code
C, Φn(C) = 1 implies dmin(C) ≥ l0. If E[Φn(C(n)

q,c,d)] ≥
Θ(φ(n)) for some mapφ(n) : N → [0, 1], then

P
{

dmin(C(n)
q,c,d) ≤ nα

∣

∣

∣
Φn(C(n)

q,c,d) = 1
}

≤ Θ

(

n−⌈(c−2)(l0+∆)/2⌉

φ(n)

)

+Θ

(

n
3
2 enωq,c,d(α)

φ(n)

)

(53)

where∆ is defined by (49).
The proof is left to the reader.
Remark 6.5:A simple test function can be defined by

checking whether the parity-check matrix of a linear code
contains all-zero columns. ThenΦn(C) = 1 if and only if
the parity-check matrix ofC contains no all-zero columns. It

2When q = 2 and c is odd, we have a tighter upper boundΘ(n2−c) +

Θ(n
3
2 enω2,c,d(α)). But for simplicity, we ignore this special case.

is clear thatΦn(C) = 1 is equivalent todmin(C) ≥ 2, so it
follows from (51) that

E
[

Φn(C(n)
q,c,d)

]

= P
{

dmin(C(n)
q,c,d) ≥ 2

}

= Θ(1).

Consequently, we have

P
{

dmin(C(n)
q,c,d) ≤ nα

∣

∣

∣
Φn(C(n)

q,c,d) = 1
}

≤ Θ
(

n2−c
)

+Θ
(

n
3
2 enωq,c,d(α)

)

. (54)

VII. C ONCLUSION

We provided a thorough analysis of the average weight dis-
tributions of regular LDPC code ensembles over finite fields.
The primary results are Theorems 3.11, 4.5, 5.6, and 6.1,
which are important for any analysis of regular LDPC codes
based on the weight distribution. Furthermore, we proved a
general result (Theorem 6.2) on the minimum distance of
individual codes in a regular LDPC code ensemble, which
includes all previous results as special cases.
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APPENDIX A
SOME USEFUL INEQUALITIES

Lemma A.1:For anyn ∈ N, define the function

βn(l)
△

= H2

(

l

n

)

− 1

n
ln

(

n

l

)

∀l = 0, 1, . . . , n.

Then

0 ≤ βn(l) ≤
1

2n
ln

(

l(n− l)

n

)

+Θ(n−1) ∀0 < l < n

andβn(0) = βn(n) = 0.
Sketch of Proof:Using Stirling’s approximation:

n! =
√
2πn

(n

e

)n

eλn ∀n ≥ 1

where1/(12n+ 1) < λn < 1/(12n).
Lemma A.2:For all x ∈ [0, 1] andd ∈ N,

(1 − x)d ≤ 1− dx+
d(d− 1)

2
x2.

Proof: The inequality holds trivially ford = 1. Now
supposed ≥ 2, then by Taylor’s theorem, it follows that

(1 − x)d = 1− dx+
d(d− 1)(1− y)d−2

2
x2

for somey ∈ [0, x]. This thus concludes the proposition.
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APPENDIX B
DERIVATIVES OFHq(x), D(x‖x̂), AND ρq,d(x)

Lemma B.1:

dHq(x)

dx
= ln

1− x

x
+ ln(q − 1)

∂D(x‖x̂)
∂x

= ln
x(1 − x̂)

x̂(1− x)

∂D(x‖x̂)
∂x̂

=
x̂− x

x̂(1− x̂)

dρq,d(x)

dx
= −

qd

(

1− qx

q − 1

)d−1

1 + (q − 1)

(

1− qx

q − 1

)d
.

whereρq,d(x) is defined by (8).
The proof is left to the reader.

APPENDIX C
DESCARTES’ RULE OF SIGNS

Theorem C.1 (Descartes’ Rule of Signs):If the terms of a
univariate polynomial with real coefficients are ordered by
ascending or descending variable exponent, then the number
of positive roots of the polynomial (counted with their multi-
plicities) is either equal to the number of sign changes between
consecutive nonzero coefficients, or less than it by a multiple
of 2. Since the negative roots of the polynomial equation
f(x) = 0 are positive roots of the equationf(−x) = 0, the
rule can be readily applied to help count the negative roots as
well.

For a proof we refer the reader to [15].

APPENDIX D
PROOFS OFLEMMAS IN SECTION IV

Proof of Lemma 4.1: By definition (7), (18) follows
immediately. Using Lemma B.1 and the change of variables
(16) yields

∂δq,d(x, x̂)

∂x̂
=

qd(z − ẑ)

(1− ẑ)[1 + (q − 1)ẑ]
− qdẑd−1

1 + (q − 1)ẑd

=
qd{z − ẑ − ẑd−1 − [(q − 2)− (q − 1)z]ẑd}

(1− ẑ)[1 + (q − 1)ẑ][1 + (q − 1)ẑd]

= − qd(ζq,d(ẑ)− z)

(1− ẑ)[1 + (q − 1)ẑ]

as desired.
Proof of Lemma 4.2: To prove the lemma, we have

to show that the derivative ofζq,d(ẑ) is continuous on
[−1/(q−1), 1] and positive on(−1/(q−1), 1). Some tedious
manipulation yields

ζ′q,d(ẑ) =
f(ẑ)

[1 + (q − 1)ẑd]2

where

f(ẑ)
△

= 1 + (d− 1)ẑd−2 + (q − 2)dẑd−1 − (q − 1)(d− 1)ẑd

− (q − 1)ẑ2d−2.

The continuity is obvious, even ifq = 2 and d is odd. Our
task is now to show thatf(ẑ) is positive on(−1/(q − 1), 1).
The proof consists of two parts.

First, we show thatf(ẑ) is positive on[0, 1). Note that the
coefficients off(ẑ) have signs+,+,+,−,−. By Theorem C.1
it follows that f(ẑ) has a unique positive zero. Sincef(0) =
1 > 0 andf(1) = 0, it is clear thatf(ẑ) > 0 for all ẑ ∈ [0, 1).

Second, we show thatf(ẑ) is also positive on(−1/(q −
1), 0) for both odd and evend.

For oddd we have

f(−ẑ) = 1− (d− 1)ẑd−2 + (q − 2)dẑd−1

+ (q − 1)(d− 1)ẑd − (q − 1)ẑ2d−2.

If q ≥ 3 then for all ẑ ∈ (0, 1/(q − 1)),

f(−ẑ) > 1− (d− 1)ẑd−2

> 1− (d− 1)

(q − 1)d−2

≥ 2d−1 − (d− 1)

(q − 1)d−2

≥ 0.

As for the case ofq = 2, f(−ẑ) reduces to

1− (d− 1)ẑd−2 + (d− 1)ẑd − ẑ2d−2

which can be factorized as

(1− ẑ)3

[

d−3
∑

i=0

(i+ 1)(i+ 2)

2

(

ẑi + ẑ2d−5−i
)

]

(55)

so thatf(−ẑ) > 0 for all ẑ ∈ (0, 1).
For evend we have

f(−ẑ) = 1 + (d− 1)ẑd−2 − (q − 2)dẑd−1

− (q − 1)(d− 1)ẑd − (q − 1)ẑ2d−2

> ẑd−2 + (d− 1)ẑd−2 − (q − 2)d

q − 1
ẑd−2

− d− 1

q − 1
ẑd−2 − 1

q − 1
ẑd−2

= 0

for all ẑ ∈ (0, 1/(q − 1)). The proof is complete.
Sketch of Proof of Lemma 4.3:Identity (21) is proved

by a straightforward argument using definition (20). Equations
(22b), (23), and (24) are immediate consequence of (21). As
for (22a), we note that (21) withq = 2 and oddd gives

ζ2,d(−1) + 1 =
zd−1(1− z)

1− z + z2 − · · ·+ zd−1

∣

∣

∣

∣

z=−1

=
2

d

so thatζ2,d(−1) = 2/d− 1.
Proof of Lemma 4.4:Lemmas 4.2 and 4.3 show that the

range ofζq,d(ẑ) for ẑ ∈ [−1/(q − 1), 1] is
[

ζq,d

(

− 1

q − 1

)

, ζq,d(1)

]

= [z1, 1]

and therefore the equationζ2,d(ẑ) − z = 0 has a unique
solution in [−1/(q − 1), 1] for eachz ∈ [z1, 1] and has no
solution in [−1/(q − 1), 1] for z < z1.



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY (VERSION: OCTOBER 26, 2018) 13

Since ζq,d(ẑ) is continuously differentiable on[−1/(q −
1), 1] and its derivative is positive on(−1/(q−1), 1), it follows
from the inverse function theorem that the solutionẑ1(z) is
continuously differentiable on(z1, 1) and its derivative is also
positive on(z1, 1). The continuity ofẑ1(z) at endpoints also
follows. Moreover, Lemma 4.3 shows that

ζq,d(z) = z1 if z = − 1
q−1

ζq,d(z) > z if z ∈ (− 1
q−1 , 0) andd is odd

ζq,d(z) < z if z ∈ (− 1
q−1 , 0) andd is even

ζq,d(z) = 0 if z = 0

ζq,d(z) > z if z ∈ (0, 1)

ζq,d(z) = 1 if z = 1.

This implies thatẑ1(z) ∈ I ′q,d(z).

APPENDIX E
PROOFS OFLEMMAS IN SECTION V

Proof of Lemma 5.2: Definition (5) and equation (29)
show that
dωq,c,d(x)

dx
=

dHq(x)

dx
+ c ln

x(1− x̂1)

x̂1(1 − x)

(a)
= ln

1− x

x
+ ln(q − 1) + c ln

x(1− x̂1)

x̂1(1− x)

= ln

[

(

x

1− x

)c−1(
1− x̂1

x̂1

)c
]

+ ln(q − 1)

where (a) follows from Lemma B.1. By Lemma 4.1, equation
(28) is equivalent toζq,d(ẑ1)−z = 0, wherez = 1−qx/(q−1)
andẑ1 = 1−qx̂1/(q−1). After some manipulations, we obtain

x

x̂1
=

1− z

1− ẑ1
=

1− ẑd−1
1

1 + (q − 1)ẑd1

and

1− x

1− x̂1
=

1 + (q − 1)z

1 + (q − 1)ẑ1
=

1 + (q − 1)ẑd−1
1

1 + (q − 1)ẑd1
.

Then

dωq,c,d(x)

dx
= ln

{

(q − 1)(1− x̂1)

x̂1

[

x(1 − x̂1)

x̂1(1− x)

]c−1
}

= ln







1 + (q − 1)ẑ1
1− ẑ1

[

1− ẑd−1
1

1 + (q − 1)ẑd−1
1

]c−1






.

The proof is complete.
Proof of Lemma 5.3:From Theorem 4.5, it follows that

limx→0+ ẑ1 = 1. Then equation (36) withc = 1 and c ≥ 3
gives (37a) and (37c), respectively. As forc = 2, we have

lim
x→0+

dωq,c,d(x)

dx

= lim
ẑ1→1−

ln

{

[1 + (q − 1)ẑ1](1− ẑd−1
1 )

(1− ẑ1)[1 + (q − 1)ẑd−1
1 ]

}

= lim
ẑ1→1−

ln

{

[1 + (q − 1)ẑ1](1 + ẑ1 + · · ·+ ẑd−2
1 )

1 + (q − 1)ẑd−1
1

}

= ln(d− 1).

By the symmetric property (Remark 3.10), we also obtain (39).
From Theorem 4.5, it follows that

ẑ1

(

1− 1

q

)

= 1− q(1− 1/q)

q − 1
= 0.

This together with equation (36) gives (38).
Again by Theorem 4.5, it follows thatlimx→x−

1
ẑ1 =

−1/(q − 1). Then (36) withq 6= 2 or d odd gives (40).
Proof of Lemma 5.4:It follows from Lemma 5.2 that

d

dẑ1

(

dωq,c,d(x)

dx

)

=
q

[1 + (q − 1)ẑ1](1− ẑ1)
− q(c− 1)(d− 1)ẑd−2

1

(1− ẑd−1
1 )[1 + (q − 1)ẑd−1

1 ]

=
qξq,c,d(ẑ)

(1 − ẑd−1
1 )[1 + (q − 1)ẑ1][1 + (q − 1)ẑd−1

1 ]
.

This concludes (42), while the first equality withc = 1 gives
(44).

Proof of Lemma 5.5:Sinceξq,c,d(0) = 1, it suffices to
determine all zeros ofξq,c,d(ẑ) in (−1/(q− 1), 1). The proof
consists of two parts.

First, we check the zeros ofξq,c,d(ẑ) in (0, 1). We note
that the coefficients ofξq,c,d(ẑ) have signs+, . . . ,+,−,
−,+, . . . ,+. By Theorem C.1 it follows thatξq,c,d(ẑ) has
zero or two positive zeros. On the other hand,

ξq,c,d(0) = 1, ξq,c,d(1) = −q(c− 2)(d− 1), ξq,c,d(∞) = ∞

and
ξ′q,2,d(1) =

1

2
(q − 2)(d− 1)(d− 2).

Then for q ≥ 2 and d ≥ c ≥ 3, ξq,c,d(ẑ) has a unique zero
ẑ2 in (0, 1). As for c = 2, ξq,2,d(ẑ) with q ≥ 3 has a unique
zero ẑ2 in (0, 1) sinceξq,2,d(1) = 0 andξ′q,2,d(1) > 0, while
ξ2,2,d(ẑ) has only one zerôz = 1 in (0,∞) sinceξ′2,2,d(1) = 0
(a zero of multiplicity2), so thatξ2,2,d(ẑ) is positive on(0, 1).

Second, we check the zeros ofξq,c,d(ẑ) in (−1/(q− 1), 1).
To facilitate the analysis, we consider the function

fq,c,d(ẑ)
△

= (1 + ẑ)ξq,c,d(−ẑ).

Then the zeros ofξq,c,d(ẑ) in (−1/(q−1), 0) are just the zeros
of fq,c,d(ẑ) in (0, 1/(q − 1)).

If d is odd, we have

fq,c,d(ẑ) = (1− ẑd−1)[1 + (q − 1)ẑd−1]

+ (c− 1)(d− 1)ẑd−2(1 + ẑ)[1− (q − 1)ẑ]

which is clearly positive for all̂z ∈ (0, 1/(q − 1)).
If d is even, we have

fq,c,d(ẑ) = (1 + ẑd−1)[1− (q − 1)ẑd−1]

− (c− 1)(d− 1)ẑd−2(1 + ẑ)[1 − (q − 1)ẑ]

= 1− (c− 1)(d− 1)ẑd−2

+ (q − 2)[(c− 1)(d− 1)− 1]ẑd−1

+ (q − 1)(c− 1)(d− 1)ẑd − (q − 1)ẑ2d−2.

Whenq = 2, it reduces to

f2,c,d(ẑ) = 1− (c−1)(d−1)ẑd−2+(c−1)(d−1)ẑd− ẑ2d−2.
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Since the coefficients off2,c,d(ẑ) have signs+,−,+,−, it
follows from Theorem C.1 thatf2,c,d(ẑ) has one or three
positive zeros. Moreover, we note that

f2,c,d(0) = 1, f2,c,d(1) = 0, f2,c,d(∞) = −∞
and

f ′
2,c,d(1) = 2(c− 2)(d− 1).

Thenf2,c,d(ẑ) with c ≥ 3 has a unique zerôz′2 in (0, 1), while
f2,2,d(ẑ) is positive on(0, 1) because of (55). Finally, let us
show thatfq,c,d(ẑ) is positive on(0, 1/(q − 1)) for q ≥ 3,
c ≥ 2, andd ≥ max{c, 4}. Sinceq ≥ 3, c ≥ 2, d ≥ 4, and
ẑ < 1/(q − 1),

fq,c,d(ẑ) > 1− (c− 1)(d− 1)ẑd−2(1− ẑ − 2ẑ2)

− ẑd−1 − ẑ2d−3 (56)

> 1− (c− 1)(d− 1)ẑd−2. (57)

For ẑ ∈ (0, 1
3 ], inequality (57) shows that

fq,c,d(ẑ) > 1−(d−1)2
(

1

3

)d−2

≥ 1−(4−1)2
(

1

3

)4−2

= 0.

For ẑ ∈ (13 ,
2
5 ], inequality (56) shows that

fq,c,d(ẑ) > 1− 4(d− 1)2

9

(

2

5

)d−2

−
(

2

5

)d−1

−
(

2

5

)2d−3

≥ 1− 4

9
· 32

(

2

5

)2

−
(

2

5

)3

−
(

2

5

)5

=
893

3125
.

For ẑ ∈ (25 ,
1
2 ), inequality (56) shows that

fq,c,d(ẑ) > 1− 7(d− 1)2

25

(

1

2

)d−2

−
(

1

2

)d−1

−
(

1

2

)2d−3

≥ 1− 7

25
· 32

(

1

2

)2

−
(

1

2

)3

−
(

1

2

)5

=
171

800
.

The proof is complete.
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