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Arithmetic Correlations and Walsh
Transforms
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Abstract—In this paper the authors continue a pro-
gram to find arithmetic, or “with-carry,” analogs of
polynomial based phenomena that appear in the design
and analysis of cryptosystems and other branches of
digital computation and communications. They construct
arithmetic analogs of the Walsh-Hadamard transform
and correlation functions of Boolean functions. These
play central roles in the cryptographic analysis of
block ciphers and stream ciphers. After making ba-
sic definitions and constructing various algebraic tools
they: (1) show how to realize arithmetic correlations
as cardinalities of intersections of hypersurfaces; (2)
show that the arithmetic Walsh spectrum characterizes
a Boolean function; (3) study the average behavior of
arithmetic Walsh transforms; (4) find the arithmetic
Walsh transforms of linear and affine functions.

Index Terms—Walsh-Hadamard transform, correla-
tion functions, p-adic numbers.

I. INTRODUCTION

Over the last 15 years the authors have carried out a
program to find arithmetic, or “with-carry,” analogs of
polynomial based phenomena that appear in the design
and analysis of cryptosystems and other branches of
digital computation and communications [3], [4], [6]–
[8]. In this paper we construct arithmetic analogs of
the Walsh-Hadamard transform and correlation func-
tions of Boolean functions.
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In cryptography there are two conflicting forces:
systems need complexity to resist cryptanalysis and
systems need simplicity to be efficient. This seems an
impossible situation, but the wiggle room comes from
the fact that “simple” for purposes of cryptanalysis
is not necessarily the same as “simple” for purposes
of efficiency. But even systems that are close to
cryptanalytically simple systems are attackable since
this closeness enables a more efficient search for the
secret key. Design of good cryptosystems depends on
finding computationally simple constructs with large
distance from cryptanalytically simple constructs.

More specifically, we have the following outline
of an attack. Suppose we use a Boolean function
whose Hamming distance from some linear function
is at most k ≥ 0. Any observed string of output bits
together with k puts some constraints on the initial
state in the form of a probability distribution. A search
for the initial state guided by this distribution has
smaller expected success time.

The Walsh-Hadamard transform and cross corre-
lation measure the proximity of a Boolean func-
tion to a cryptographically simple Boolean func-
tion f(a1, · · · , an) [11]. More precisely, the classical
Walsh-Hadamard transform f̂(a) is related to the
Hamming distance d between f and the linear function
Ta = “inner product with a,” by

d = (2n − f̂(a))/2. (1)

Consequently the Walsh-Hadamard transform pro-
vides a basis for measuring the cryptographic security
of stream and block ciphers. In this paper we define
and study with-carry analogs of the Walsh-Hadamard
transform and of correlation functions.

The usual way to add Boolean functions f
and g is to add their corresponding values: (f +



g)(a1, · · · , an) = f(a1, · · · , an) + g(a1, · · · , an). To
define addition with carry, we need some place for
the carries to go. We achieve this by extending each
function in n Boolean variables to a function on
Nn by setting f(a1, · · · , an) = f(a1 mod 2, · · · , an

mod 2). Then the carry from adding f(a1, · · · , an)
and g(a1, · · · , an) goes to the value of the resulting
function at the point (a1 + 1, · · · , an + 1).

In Section II we define these algebraic structures
and obtain some basic facts about them. In Section
III we use these structures to define arithmetic Walsh
transforms and arithmetic correlations. In Section IV
we develop some tools for computing arithmetic cor-
relations and use them to compute the arithmetic
correlations of linear and affine functions. In Section
V we show that the arithmetic Walsh transform is
injective, so that it is indeed a transform. In Section VI
we study the expectation and second moment of the
arithmetic Walsh transform. The moment calculation
is essentially an analog of Parseval’s identity, but the
picture is somewhat more complicated in the arith-
metic case — the second moment varies depending
on four parameters of the function. In Sections VII
and VIII we find the arithmetic Walsh transforms of
linear and affine functions.

It is not clear whether there are useful applications
of these ideas. One difficulty is that the arithmetic
Walsh transform does not relate to a formal distance
function as the Walsh-Hadamard transform does. In
the arithmetic case, given the arithmetic Walsh trans-
form f̃(a) of a Boolean function f, we can, following
equation (1) define d′ = (2n − f̃(a))/2, but this
turns out to not be a distance function in the formal
mathematical sense. In fact, d′ may be zero when f is
not linear. We examine this phenomenon further later
in the paper.

II. ALGEBRAIC STRUCTURES

A Boolean function is a function

f : Vn = Fn
2 → F2

for some positive integer n. Here F2 = {0, 1} is the
field with 2 elements. Addition of Boolean functions
is defined termwise, (f + g)(a) = f(a) + g(a). The

imbalance Z(f) of a Boolean function f is the real
number

Z(f) =
∑

a∈Vn

(−1)f(a).

If a ∈ Vn, then the shift of f by a is the F2-valued
function fa : Vn → F defined by

fa(b) = f(a+ b).

The cross-correlation of two Boolean functions f and
g is the real valued function Cf,g : Vn → R defined
by

Cf,g(b) = Z(f + gb). (2)

The autocorrelation of f is Af (b) = Cf,f (b). For
a, b ∈ Vn let [a · b]2 denote their F2-inner product and
let Ta(b) = [a ·b]2, so that Ta is a linear function. The
Walsh-Hadamard Transform of f is the real valued
function f̂ : Vn → R defined by

f̂(a) = Z(f + Ta). (3)

In this paper we define arithmetic analogs of the
Walsh-Hadamard transform and the cross-correlation
of Boolean functions by replacing the termwise sum
(which is the same as the termwise difference since we
are operating modulo 2) of functions by the with-carry
difference. This takes some work since the carries
naturally take us outside the domain of the Boolean
function. Let N = {0, 1, 2, · · · } denote the natural
numbers including 0. A Boolean function f may be
extended to a mapping f : Nn → F2 by setting

f(a1, · · · , an) = f(a1 mod 2, · · · , an mod 2).

The set of such extensions is the set

Pn = {f : N→ F2 : f(a+ 2b) = f(a)} ,

of 2-periodic functions, which we consider to be a
subset of the set of all Boolean functions,

Rn = {f : Nn → F2} .

In general in this paper we denote Boolean func-
tions by lower case letters and elements of Rn by
boldface lowercase letters. The extension of a Boolean
function to Rn is denoted by the boldface version of
the letter denoting the Boolean function. Vectors in Nn

are denoted by lowercase letters from the beginning
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of the English alphabet. We denote the inner product
of two integer vectors a and b by a · b. We denote
the reduction of an integer x modulo 2 by [x]2. Thus
the F2-inner product of two binary vectors a and b is
[a · b]2

We now define an algebraic structure on the set Rn.
It is helpful to first recall the definition of the 2-adic
integers (in fact R1 is exactly the 2-adic integers). A
2-adic integer is a formal expression

f =
∞∑

i=0

fi2i,

where fi ∈ F2. The set of 2-adic integers is denoted
by Z2. There is a well defined algebraic structure on
the set of 2-adic integers that makes it a ring. It is
based on performing addition and multiplication with
carry. Specifically, we say that

∞∑
i=0

fi2i +
∞∑

i=0

gi2i =
∞∑

i=0

hi2i

if there are “carry” integers d0, d1, d2, · · · so that d0 =
0 and for all i ≥ 0 we have fi +gi +di = hi +2di+1.
Similarly, we say that

∞∑
i=0

fi2i ·
∞∑

i=0

gi2i =
∞∑

i=0

hi2i

if there are carry integers d0, d1, d2, · · · so that d0 = 0
and for all i ≥ 1 we have fig0 + fi−1g1 + · · · +
h0gi + di = hi + 2di+1. The algebra of 2-adic
integers has been studied for more than 100 years
[5], [9] and recently the authors and others have
used this algebra in the study of fast generation of
pseudorandom sequences [3], [6].

It is natural to identify a function f ∈ R1 with the
2-adic integer

∞∑
a=0

f(a)2a.

We wish to find a similar identification for functions
f ∈ Rn of several variables. For this, we need a
multiple term analog of the 2-adic integers in much
the same way that we generalize power series in one
variable to power series in several variables. The new
structure can be thought of as having several “2s”.
To distinguish them from the ordinary integer 2, we

denote them by t1, · · · , tn. Then a multi-2-adic integer
is a formal expression∑

a=(a1,··· ,an)∈Nn

fat
a1
1 · · · tan

n ,

with fa ∈ F2. We can identify an element f ∈ Rn

with a multi-2-adic integer by setting f(a1,··· ,an) =
f(a1, · · · , an). To think about this geometrically, each
lattice point (a1, a2, · · · , an) ∈ Nn corresponds to a
monomial ta1

1 t
a2
2 · · · tan

n and the multi-2-adic number∑
a∈Nn fat

a can be identified with the collection of
lattice points a ∈ Nn such that fa = 1 as in Figure 1
for n = 2.

u u u u u u u u

u u u u u u u

u u u u u u

Fig. 1. t21t22(1 + t2 + t22)
∑∞

n=0
(t1t2)n

For convenience, if a ∈ Nn, let ta denote ta1
1 · · · tan

n .
Also, let 1n = (1, 1, · · · , 1) ∈ Nn and 0n =
(0, 0, · · · , 0) ∈ Nn. In each arithmetic computation,
we want a coefficient equal to 2 to induce a carry
to “the next place in each variable”, that is, to the
monomial with the exponent of each ti increased
by one. Accordingly, define an addition operation by
saying that∑

a∈Nn

fat
a +

∑
a∈Nn

gat
a =

∑
a∈Nn

hat
a

if
1) there exist integers {da : a ∈ Nn} so that da =

0 if any component of a is zero, and
2) for all a ∈ Nn, we have: fa + ga + da = ha +

2da+1n .

In other words, addition is just 2-adic addition along
the diagonals

Da = {a+ c(1, 1, · · · , 1) : c ∈ N}. (4)
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(Since each diagonal ends on a coordinate hyperplane
the set of distinct diagonals is parametrized by ele-
ments a = (a1, · · · , an) ∈ Nn such that at least one
of the coordinates ai vanishes.) Similarly, define a
multiplication operation by saying that∑

a∈Nn

fat
a ·
∑

a∈Nn

gat
a =

∑
a∈Nn

hat
a

if
1) there exist integers {da : a ∈ Nn} so that da =

0 if any component of a is zero, and
2) for all a ∈ Nn we have:

∑
b+c=a fbgc + da =

ha + 2da+1n .

This is not simply multiplication along the diagonals.
In contrast, let

Z[[t1, · · · , tn]]

=


∑

a=(a1,··· ,an),
aj∈N

cat
a1
1 · · · tan

n : ca ∈ Z

 ,

be the power series ring in n variables over the
integers. In this ring the ti are treated as variables and
are added and multiplied as for polynomials (with no
carry).

Theorem 1: The ring Rn is isomorphic to the quo-
tient ring

Sn = Z[[t1, · · · , tn]]/(t1t2 · · · tn − 2). (5)

Proof: In the ring Sn = Z[[t1, · · · , tn]]/(t1t2 · · · tn−
2) we may write 2 = t1t2 · · · tn and hence −1 =∑∞

i=0(t1 · · · tn)i. Therefore any element f ∈ Sn can
be written uniquely as a formal power series

f =
∑

a=(a1,··· ,an)

fat
a1
1 · · · tan

n (6)

where a ∈ Nn and where each coefficient fa ∈ {0, 1}.
Such an element f may, in turn, be identified with a
Boolean function f : Vn → {0, 1} by f(a1, · · · , an) =
f(a1,··· ,an). In this way we have established a one
to one correspondence Sn ↔ Rn. We claim that
this correspondence is a homomorphism of rings (and
hence is an isomorphism). In fact, if we add two
elements f ,g ∈ Rn as elements in Rn and compare
this to the sum f+g as elements in Z[[t1, · · · , tn]] we

find that these differ by a multiple of (2 − t1 · · · tn),
which is to say that the one to one correspondence
is an additive homomorphism. The same argument
proves that it is also a multiplicative homomorphism.

2

Corollary 1: The addition and multiplication oper-
ations defined above make Rn into a commutative
ring. The zero (additive identity) is the element z ∈
Rn with za = 0 for all a, and the one (multiplicative
identity) is the element e ∈ Rn with e0,0,··· ,0 = 1 and
ea = 0 if a 6= 0n.

Another way to organize the sum (6) is to group the
terms that occur along each diagonal Da of equation
(4). For fixed a ∈ Nn lying on one of the coordinate
hyperplanes, in the ring Sn, the sum of terms in the
diagonal Da defines a 2-adic integer

f(a) =
∞∑

i=0

f(a+ i(1, 1, · · · , 1))(t1 · · · tn)i

=
∞∑

i=0

f(a+ i(1, 1, · · · , 1))2i. (7)

In this way we have constructed a one to one cor-
respondence between Boolean functions f ∈ Rn and
functions f : H → Z2 where

H = {(a1, · · · , an) ∈ Nn : some ai = 0.}

denotes the union of the coordinate hyperplanes. We
refer to f̄(a) as the restriction of f to the diagonal
Da. The same notation and terminology will be used
even if a does not have a zero component.

It is important to note that the set Pn of elements of
Rn that have period 2 in all directions is not a subring
of Rn. In fact the sum and difference of elements of
Pn may not be in Pn. However, since addition is just
2-adic addition on each diagonal, and the sum of two
periodic 2-adic integers is eventually periodic (i.e.,
periodic beyond some point), the sum and difference
of two elements of Pn are ultimately periodic along
each diagonal. Moreover, the set of restrictions to
diagonals are periodic (that is, the restriction of an
element f ∈ Pn to a diagonal Da is the same as the
restriction of f to Da+2b for any b ∈ Vn). Thus if
f ,g ∈ Pn, then f + g and f − g (where the sum and
difference of f and g are in the ring Rn) are eventually
2-periodic in the following sense.
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Definition 1: The element f ∈ Rn is eventually
p-periodic if there is an integer k so that if a =
(a1, · · · , an) ∈ Nn, and ai ≥ k for i = 1, · · · , n,
then for every b ∈ Nn, f(a + pb) = f(a). If
a = (a1, · · · , an) ∈ Nn, and ai ≥ k for i = 1, · · · , n,
then the restriction of f to the set {a + b : b =
(b1, · · · , bn), 0 ≤ bi < p, i = 1, · · · , n} is called a
complete period of f .

If p = 2, then it is possible to take k = 2
in the above Definition 1. For, if f =

∑∞
i=0 fi2i

and g =
∑∞

i=0 gi2i is a pair of 2-adic integers
whose coefficient sequences have period 2, then the
coefficient sequences of −f , f + g, and f − g are
periodic from the coefficients with index 2 on. Tables
I, II, and III show the first four coefficients of the
negation of f and the sum and difference f + g and
f − g for all possible combinations of periodic 2-adic
integers with period 2.

f −f
00 0000
01 0110
10 1101
11 1000

TABLE I
NEGATION OF A 2-PERIODIC 2-ADIC INTEGER.

f + g 00 01 10 11
00 0000 0101 1010 1111
01 0101 0010 1111 1001
10 1010 1111 0101 0010
11 1111 1001 0010 0111

TABLE II
SUM OF 2-PERIODIC 2-ADIC INTEGERS.

f − g 00 01 10 11
00 0000 0110 1101 1000
01 0101 0000 1010 1101
10 1010 1101 0000 0110
11 1111 1010 0101 0000

TABLE III
DIFFERENCE OF 2-PERIODIC 2-ADIC INTEGERS.

The possibilities for f and g are given by the first

two coefficients of each. In the second and third tables,
the various fs are listed down the left hand side and
the various gs are listed across the top. For each table
entry, the last two bits are repeated periodically.

Let us return to the case of Rn, and suppose that
f : N → {0, 1} is strictly 2-periodic. Then in the
representation in equation (7) we have

f̄(a) =
∞∑

i=0

f(a+ i · 1n)2i

= f(a) + f(a+ 1n)2 + f(a)22

+f(a+ 1n)23 + · · ·

= −f(a) + 2f(a+ 1n)
3

. (8)

III. ARITHMETIC CORRELATIONS AND WALSH
TRANSFORMS

Now we can define the arithmetic correlations and
Walsh transforms. First note that when defining clas-
sical correlation functions (equation (2)) and Walsh-
Hadamard transforms (equation(3)) of binary valued
functions, we can we can replace the plus sign by
a minus and the result will be unchanged. However,
when these concepts are generalized to N -ary valued
functions, N > 2, the sign matters and it becomes
apparent that a minus sign is needed are needed. For
example, the unshifted cross-correlation of a function
with itself is 2n is we use a minus sign, but has various
values if we use a plus sign. This is the point of view
we use here. First we extend the notion of imbalance
to eventually 2-periodic elements.

Definition 2: Let f ∈ Rn be eventually p-periodic.
Then the imbalance of f is

Z(f) =
∑

a

(−1)f(a),

where the sum is extended over one complete period
of f .

Note that Z(f) is independent of the choice of
complete period. This definition is consistent with the
definition of the imbalance of Boolean functions in the
sense that the imbalance of a Boolean function equals
the imbalance of its periodic extension to Nn.

Definition 3: The arithmetic cross-correlation of
two eventually periodic functions f and g in Rn is
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the real number Ca
f ,g ∈ R defined by

Ca
f ,g = Z(f − g).

If f and g are two Boolean functions on Vn, then
the arithmetic cross-correlation of f and g is the real
valued function Ca

f,g : Nn → R defined by

Ca
f,g(a) = Ca

f ,ga

where f is the extension of f and ga is the extension
of ga. The arithmetic autocorrelation of f is

Aa
f (b) = Ca

f,f (b).

In defining ga it doesn’t matter whether we translate
by a and then extend to Nn or extend to Nn and then
translate by a. A linear function is a Boolean function
Ta, a ∈ Vn, where Ta(b) = [a ·b]2. Thus the extension
Ta is also defined by Ta(b) = [a · b]2 for b ∈ Nn.

Definition 4: The arithmetic Walsh transform of an
eventually periodic f ∈ Rn is the real valued function
f̃ : Vn → R defined by

f̃(a) = Z(f −Ta).

If f is a Boolean function on Vn, then the arithmetic
Walsh transform of f is the arithmetic Walsh trans-
form of the extension f of f , f̃(a) = f̃(a). The list
of values 〈· · · , f̃(b), · · · 〉, b ∈ Vn, is the arithmetic
Walsh spectrum of f . Each f̃(b) is an arithmetic Walsh
coefficient.

We want to use the representation in equations (7)
and (8) to compute correlations. Let

Un = {a = (a1, · · · , an) : ai ∈ {0, 1} and a1 = 0}.

The restriction of an eventually periodic function
f ∈ Rn to a diagonal Da with a ∈ Un is eventually
periodic. If we select one full period from each of
these diagonals, altogether we will have one complete
period of f . It follows that the imbalance of f is the
sum of the imbalances of the restrictions of f to the
diagonals. The imbalance of the restriction of f to
diagonal Da in turn is the imbalance of the 2-adic
integer f̄(a) (defined in equation (7)). This then is the
imbalance of the 2-adic representation of the rational
number in equation (8). Thus

Z(f) =
∑

a∈Un

Z(f̄(a)). (9)

Theorem 2: Let f : Vn → F2 be a Boolean
function. If [b · 1n]2 = 0, then

f̃(b) =
∑

a∈Un

2(1− f(a)− f(a+ 1n)

+2f(a)f(a+ 1n)[a · b]2)

= 2n − 2
∑

a∈Vn

f(a)

+4
∑

a∈Un

f(a)f(a+ 1n)[a · b]2 (10)

= 2n − 2
∑

a∈Vn

f(a)

+2
∑

a∈Vn

f(a)f(a+ 1n)[a · b]2 (11)

If [b · 1n]2 = 1, then

f̃(b) = 2
∑

a∈Un

(f(a+ 1n)− f(a)f(a+ 1n)

+(f(a)− f(a+ 1n))[a · b]2) (12)

=
∑

a∈Vn

(f(a+ 1n)− f(a)f(a+ 1n)

+(f(a)− f(a+ 1n))[a · b]2). (13)

Proof: If [b · 1n]2 = 0, then [(a+ 1n) · b]2 = [a · b]2,
while if [b · 1n]2 = 1, then [(a+ 1n) · b]2 = [a · b]2 + 1
mod 2 = 1 − [a · b]2. Let ω = f(a) + 2f(a + 1n) −
[a · b]2 − 2[(a + 1n) · b]2. It then follows from the
discussion above that

f̃(b) =
∑

a∈Un

Z((f̄ − T̄b)(a)) =
∑

a∈Un

Z

(
−ω
3

)
Thus

f̃(b) =
∑

a∈Un

Z

(
−f(a) + 2f(a+ 1n)

3
+ [a · b]2

)
if [b · 1n]2 = 0, while

f̃(b) =
∑

a∈Un

Z

(
−f(a) + 2f(a+ 1n) + [a · b]2 − 2

3

)
if [b · 1n]2 = 1.

If u is an integer, then the 2-adic expansion of u/3
is eventually periodic with period dividing 2. If u is
not a multiple of 3, the each period equals 10 or 01. In
this case the imbalance of u/3 is 0. If u is a multiple
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of 3, then the eventual period is 1 and each period is
either 1 (if u is negative) or 0 (if u is nonnegative).
The imbalance of u/3 is thus −2 if u is negative and
is 2 if u is nonnegative. Let Za = Z((f̄ − T̄b)(a)).

For [b · 1n]2 = 0, we have the following table of
values:

f(a) f(a+ 1n) [a · b]2 Za

0 0 0 2
1 0 0 0
0 1 0 0
1 1 0 -2
0 0 1 2
1 0 1 0
0 1 1 0
1 1 1 2

Using Lagrange interpolation we find that

Za = 2(1−f(a)−f(a+1n)+2f(a)f(a+1n)[a ·b]2).

For [b · 1n]2 = 1, we have the following table of
values:

f(a) f(a+ 1n) [a · b]2 Za

0 0 0 0
1 0 0 0
0 1 0 2
1 1 0 0
0 0 1 0
1 0 1 2
0 1 1 0
1 1 1 0

Using Lagrange interpolation we find that

Za = 2(f(a+ 1n)− f(a)f(a+ 1n)
+(f(a)− f(a+ 1n))[a · b]2).

This definition makes sense for a 6∈ Un as well. It can
be checked that Za = Za+1n . Thus the last equality
holds. This proves the theorem. 2

Corollary 2: If f is a Boolean function on Vn, and
[b · 1n]2 = 0, then f̃(b) is even.

Corollary 3: Let L : Vn → Vn be a nonsingular F2-
linear transformation such that L(1n) = 1n. Let f be
a Boolean function on Vn. Then the set of arithmetic
Walsh coefficients of f is invariant under composition
with L. That is,

{f̃(b) : b ∈ Vn} = {(̃f◦L)(b) : b ∈ Vn}.

Proof: Note that if a ∈ Vn, then L(a+ 1n) = L(a) +
L(1n) = L(a) + 1n. Let M denote the representation
of L as a matrix using the standard basis of Vn. Thus
L(a) = aM . For any matrix N let N t denote the
transpose of N . Then for any a, b ∈ Vn, we have [a ·
b]2 = abt. We claim that for any b ∈ Vn, (̃f◦L)(b) =
f̃(b(M−1)t).

Suppose that [b · 1n]2 = 0. Then by equation (11),

(̃f◦L)(b)

= 2n − 2
∑

a∈Vn

f(L(a))

+2
∑

a∈Vn

f(L(a))f(L(a+ 1n))[a · b]2

= 2n − 2
∑

a∈Vn

f(L(a))

+2
∑

a∈Vn

f(L(a))f(L(a) + 1n)[abt]2

= 2n − 2
∑

a∈Vn

f(L(a))

+2
∑

a∈Vn

f(L(a))f(L(a) + 1n)[aMM−1bt]2

= 2n − 2
∑

a∈Vn

f(L(a))

+2
∑

a∈Vn

f(L(a))f(L(a) + 1n)[L(a) · b(M−1)t]2

= 2n − 2
∑

a∈Vn

f(a)

+2
∑

a∈Vn

f(a)f(a+ 1n)[a · b(M−1)t]2

= f̃(b(M−1)t),

where the penultimate line holds because L is a
permutation. Moreover,

b(M−1)t · 1n = b(M−1)t(1n)t = b(1nM)t

= b(1n)t = [b · 1n]2,

so this is the correct expression for f̃(b(M−1)t). This
proves the claim in this case. A similar argument
works when [b · 1n]2 = 1. 2
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A. Relation to Metrics

Let us return for a moment to the classical case of
Boolean functions and Walsh-Hadamard transforms.
If f and g are Boolean functions, then the distance
between f and g is

δ(f, g) = |{a ∈ Vn : f(a) 6= g(a)}|.

This is a true distance measure. It is well-known that
Z(f − g) = 2n − 2δ(f, g), or equivalently

δ(f, g) =
2n − Z(f − g)

2
. (14)

In particular, Z(f−g) = 2n if and only if δ(f, g) = 0
if and only if f = g. Also, Z(f − g) = −2n if and
only if f is the complement of g. Thus f has a Walsh-
Hadamard coefficient equal to 2n if and only if f is
linear, and has a Walsh-Hadamard coefficient equal to
−2n if and only if f is affine and nonlinear.

Now we return to the arithmetic case. Let f and g be
Boolean functions and let f and g be their extensions.
Let us see how we can have Z(f − g) = 2n. From
equation (9) this is equivalent to having Z(f̄(a) −
ḡ(a)) = 2 for every a ∈ Un. That is,

Z

(
g(a)− f(a) + 2(g(a+ 1n)− f(a+ 1n))

3

)
= 2.

This holds if and only if either (1) f(a) = g(a) and
f(a+1n) = g(a+1n) or (2) g(a) = g(a+1n) = 1 and
f(a) = f(a+1n) = 0. Thus Z(f−g) = 2n if and only
if g is obtained from f by choosing some elements
X ⊆ Un so that f is 0 on the diagonal determined by
each a ∈ X and changing the value on these diagonals
to 1. Alternatively, if and only if f is obtained from g
by choosing some elements Y ⊆ Un so that g is 1 on
the diagonal determined by each a ∈ Y and changing
the value on these diagonals to 0.

Now suppose g is a linear function, say g(a) =
[a · b]2, b 6= 0n. The function g is constant on some
diagonal if and only if g(1n) = 0. In this case g is
1 on exactly 2n−2 diagonals, so there are 22n−2 −
1 nonlinear functions f that arise from g as in the
previous paragraph so that f̃(b) = 2n.

Recall the definition of a metric or distance func-
tion.

Definition 5: Let S be a set. A function d : S×S →
R is a metric if for all a, b, c ∈ S (1) d(a, b) ≥ 0; (2)

d(a, b) = 0 if and only if a = b; (3) d(a, b) = d(b, a);
and (4) d(a, c) ≤ d(a, b) + d(b, c)

Following the classical situation, we can define a
function on Boolean functions by

δ̃(f, g) =
2n − Z(f − g)

2
.

unlike the classical situation, this is not a metric: if
g is linear as above then there are 22n−2

functions
f with δ̃(f, g) = 0. Also, δ is not symmetric. For
example, let g be the Boolean function that is 1 at all
points and let f be the Boolean function that is 0 at
all points. Then as above δ̃(f, g) = 0. But on each
diagonal Da, g’s value is the 2-adic number −1, so
Z(g − f) = Z(g) = −2n. Thus δ̃(f, g) = 2n.

However, any function δ(f, g) can be made sym-
metric by adding δ̃(f, g) and δ̃(g, f).

Theorem 3: The function d(f, g) = δ̃(f, g) +
δ̃(g, f) is a metric on the set of Boolean functions
on Vn.
Proof: We have

2(δ̃(f, g) + δ̃(g, f))
= 2n+1 − Z(f − g)− Z(f − g)

=
∑

a∈Un

4− Z(f̄(a)− ḡ(a))

−Z(ḡ(a)− f̄(a)). (15)

We now consider the contribution from each a ∈
Un. On each diagonal Da, we have f̄(a), ḡ(a) ∈
{−1,−2/3,−1/3, 0}. Then f̄(a) − ḡ(a) is given by
Table IV, where the possible values of f̄(a) are listed
down the right hand side and the possible values of
ḡ(a) are listed across the top.

−1 −2/3 −1/3 0
−1 0 −1/3 −2/3 −1

−2/3 1/3 0 −1/3 −2/3

−1/3 2/3 1/3 0 −1/3

0 1 2/3 1/3 0

TABLE IV
VALUES OF f̄(a)− ḡ(a).

The corresponding values of Z(f̄(a) − ḡ(a)) are
given in Table V. The value of Z(f̄(a) − ḡ(a)) +
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−1 −2/3 −1/3 0
−1 2 0 0 −2

−2/3 0 2 0 0
−1/3 0 0 2 0

0 2 0 0 2

TABLE V
VALUES OF Z(f̄(a)− ḡ(a)).

Z(ḡ(a)− f̄(a)) is then one of the entries in the sum
of Table V and its transpose. All these entries are 0 or
4, with 4 appearing if and only if f̄(a) = ḡ(a). Thus
the contribution from diagonal Da to equation (15) is
0 or 4, with 0 occurring if and only if f̄(a) = ḡ(a).

We can associate with a Boolean function f a
vector vf indexed by Un whose entry indexed by
a ∈ Un is the pair (f(a), f(a + 1n)). For vectors
u, v ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} indexed by Un, let
dH(u, v) be the usual Hamming distance on a four
element alphabet. Then the above analysis shows that
d(f, g) = 2dH(vf , vg). Since the Hamming distance
is a metric, it is immediate that d is a metric. 2

B. Nonlinearity

In the classical theory of Boolean functions one
defines the nonlinearity nl(f) of a Boolean function
f to be the minimum Hamming distance from f(a) to
an affine function g(a) + c, with g(a) = [b ·a]2 linear.
From equation (14) we see that

nl(f) =
2n −min |f̂(b)|

2
.

By analogy, we could define the arithmetic nonlinear-
ity by

anl(f) =
2n −min |f̃(b)|

2
.

In Section III-A we saw that if b ∈ Vn, [b · 1n]2 =
0, and g(a) = [b · 1n]2, then g is constant on the
diagonals. Furthermore, if we pick any set of diagonals
on which g is constant one and change it to constant
zero on these diagonals, then we will have a function
f with |f̃(b)| = 2n. Thus anl(f) = 0. If we do this
for n − 3 diagonals, then d(f, g) = 2n−2. Thus we
have a Boolean function with large nonlinearity but
zero arithmetic nonlinearity.

IV. COMPUTING ARITHMETIC CORRELATIONS

Let f be a Boolean function. In this section we use
equations (7) and (8) to compute the arithmetic cor-
relations of f . Surprisingly, we see that all arithmetic
autocorrelations are nonnegative.

As before, we let Un = {a = (a1, a2, · · · , an) ∈
Vn : a1 = 0}.

A. Arithmetic Autocorrelations

Suppose first that b ∈ Un. Then a+ b ∈ Un if and
only if a ∈ Un. If b = 0n, then Aa

f (b) = 2n. Now
assume that b 6= 0n. Let ∆(a, b) = f(a+ b)− f(a) +
(f(a+b+1n)−f(a+1n))2. Using arguments similar
to those in Section III, the arithmetic autocorrelation
of f with shift a ∈ Vn is

Aa
f (b) =

∑
a∈Un

Z

(
∆(a, b)

3

)
. (16)

Then for any a ∈ Un, both terms in

Za = Z

(
∆(a, b)

3

)
+ Z

(
∆(a+ b, b)

3

)
(17)

appear in equation (16). The sum depends on f(a),
f(a+ 1n), f(a+ b), and f(a+ b+ 1n), and no other
terms in equation (16) depend on these values. We
want to determine Za in terms of these four values.

The numerators of the two terms are negatives of
each other, so one numerator is divisible by three if
and only if the other is. If neither is a multiple of three,
then both imbalances are zero. If either numerator is
positive, then the other is negative so the imbalances
are negatives of each other. Thus the only nonzero
contribution to Aa

f (b) is from those as for which f(a+
b)− f(a) + (f(a+ b+ 1n)− f(a+ 1n))2 = 0. This
happens exactly when f(a) = f(a + b) and f(a +
1n) = f(a + b + 1n), and then the two imbalances
add to 4. We account for each term once if we sum
just over all a < a + b (say in lexicographic order).
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Thus

Aa
f (b) = 4|{a ∈ Un : a < a+ b, f(a) = f(a+ b),

and f(a+ 1n) = f(a+ b+ 1n)}|
= 2|{a ∈ Un : f(a) = f(a+ b), and

f(a+ 1n) = f(a+ b+ 1n)}|
= |{a ∈ Vn : f(a) = f(a+ b), and

f(a+ 1n) = f(a+ b+ 1n)}|. (18)

This expression is also correct when b = 0n.
Now suppose that b ∈ Vn − Un. If b = 1n, then

a+b = a+1n and a+b+1n = a. Thus the contribution
from the term corresponding to any a ∈ Un is

Z

(
∆(a, 1n)

3

)
= Z

(
f(a)− f(a+ 1n)

3

)
=

{
2 if f(a) = f(a+ 1n)
0 otherwise.

Thus

Aa
f (b) = 2|{a ∈ Un : f(a) = f(a+ 1n)}|

= |{a ∈ Vn : f(a) = f(a+ 1n)}|.

Equation (18) agrees with this value when b = 1n.
Lastly, let b ∈ Vn − Un and b 6= 1n. Then for any

a ∈ Un, both terms in

Za = Z

(
∆(a, b)

3

)
+Z

(
∆(a+ b+ 1n, b)

3

)
(19)

appear in equation (16). The sum depends on f(a),
f(a+ 1n), f(a+ b), and f(a+ b+ 1n), and no other
terms depend on these values. Let u and v denote
the numerators of the two terms. Then −2v = u +
3(f(a)−f(a+b)). Thus v is divisible by 3 if and only
if u is divisible by 3. If u and v are not divisible by
3 then both terms contribute 0 to the autocorrelation.
Suppose u and v are divisible by 3. Note that f(a)−
f(a + b) ∈ {−1, 0, 1}. We have u = 0 if and only
if f(a) = f(a + b) and f(a + 1n) = f(a + b + 1n),
and this holds if and only if v = 0. If u > 0 then
u ≥ 3 and so −2v = u + 3(f(a) − f(a + 1n)) ≥ 0.
Thus v ≤ 0. But u > 0 implies v 6= 0, so v < 0.
Conversely, if v < 0 then v ≤ −3 so 6 ≤ −2v =
u+3(f(a)−f(a+b)) which implies u ≥ 3 > 0. Thus

u and v have opposite signs. It follows that the two
terms cancel unless f(a) = f(a+ b) and f(a+1n) =
f(a + b + 1n). We obtain the same expression for
Aa

f (b). We summarize this analysis in the following
theorem

Theorem 4: If f is any Boolean function on n
variables and b ∈ Vn, then

Aa
f (b) = |{a ∈ Vn : f(a) = f(a+ b), and

f(a+ 1n) = f(a+ b+ 1n)}|.

In particular, Aa
f (b) ≥ 0.

One way to understand this is to define a new func-
tion f2 with values in Z2 by f2(a) = (f(a), f(a +
1n)). Then Aa

f (b) = |{a ∈ Vn : f2(a) = f2(a+ b)}|.

B. Avalanche Criteria

In the classical theory of Boolean functions for
cryptography, one important criterion for randomness
is the strict avalanche criterion. This says that if we
change a single bit of input to a Boolean function f ,
it should change the output half the time. This can
be said more precisely by saying that the function
f(a) + f(a + b) is balanced if b has weight 1. More
generally, we say that f has the strict avalanche
condition of degree k if f(a) + f(a+ b) is balanced
for every b with weight greater than 0 and less than
or equal to k. That is, f and its translate by b are
independent. It is straightforward to see that this is
equivalent to saying that the autocorrelation Af (b) is
zero for such b.

We would like to find an arithmetic analog of the
strict avalanche criterion. As a first attempt, one might
ask that the arithmetic autocorrelation Aa

f (b) be zero
if b has weight greater than 0 and less than or equal
to k. But this does not correctly capture a notion of
randomness. In fact if f and its translate by b are
independent, then we expect the condition f2(a) =
f2(a + b) from Section IV-A to hold one quarter of
the time. By contrast, Aa

f (b) = 0 only if f2(a) 6=
f2(a + b) for every a. These considerations lead to
the following definition.

Definition 6: A Boolean function satisfies the arith-
metic propagation criterion of degree k (or APC(k)) if
and only if Aa

f (b) = 2n−2 for every b with Hamming
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weight 1 ≤ wt(b) ≤ k. If k = 1, we simply say f
satisfies the arithmetic avalanche criterion (or AAC).

This is equivalent to saying that for every b of
weight 1, the function f2(a) + f2(a + b) takes the
value (0, 0) a quarter of the time.

Various questions can be asked relating to functions
satisfying APC(k). How can we construct functions
with the APC(k)? How many functions satisfy the
APC(k)? Are there functions that satisfy SAC to a
high order but AAC to only a low order, and vice
versa? Is a Boolean function that doesn’t satisfy the
AAC susceptible to cryptanalysis?

n functions SAC only AAC only SAC and AAC
2 24 4 = 22 0 0
3 28 64 = 26 0 0
4 216 ∼ 211.3 ∼ 210.4 ∼ 210.6

5 232 ∼ 224.6 ∼ 223.7 ∼ 220.9

TABLE VI
THE NUMBERS OF SAC AND AAC FUNCTIONS FOR SMALL n.

The numbers of Boolean functions satisfying SAC
and AAC for small dimensions (derived experimen-
tally) are given in Table VI. The third column gives the
number of functions satisfying SAC but not AAC, the
fourth column gives the number of functions satisfying
AAC but not SAC, and the fifth column gives the
number of functions satisfying both SAC and AAC.
It is hard to draw any conclusions from such scant
data, but it appears from dimension n = 5 that
the two criteria are largely independent. Checking
all Boolean functions of dimension 6 for the SAC
or ACC is beyond our computational capabilities at
the moment (there are 264 functions to check). Let
Sn be the log base 2 of the number of Boolean
functions of dimension n satisfying SAC. It is known
that Sn ≥ 2n−1 [2], [13] and that the limit of Sn/2n as
n tends to infinity is 1 [1]. We leave a similar analysis
of the number of Boolean functions satisfying AAC
as well as the above questions for further work.

C. Arithmetic Cross-Correlations

Now let g be a second Boolean function. Let
Γ(a, b) = g(a+b)−f(a)+2(g(a+b+1n)−f(a+1n)).

By similar reasoning, the arithmetic cross-correlation
of f with shift a ∈ Vn is

Ca
f,g(b) =

∑
a∈Un

Z

(
Γ(a, b)

3

)
.

Then for any a ∈ Un, the term

Za = Z

(
Γ(a, b)

3

)
(20)

depends on f(a), f(a+1n), g(a+b), and g(a+b+1n),
and no other terms depend on these values. We want to
determine equation (20) in terms of these four values.

The fraction in equation (20) has an eventually
balanced 2-adic expansion if and only if the numerator
is not a multiple of 3. If the numerator is a negative
multiple of 3, then the expansion is eventually all 1s,
so the imbalance is −2. If the numerator is 0 or a
positive multiple of 3, then the expansion is eventually
all 0s, so the imbalance is 2. This gives the following
theorem.

Theorem 5: Let f and g be Boolean functions on
n variables and let b ∈ Vn. Then

Ca
f,g(b)
= |{a ∈ Vn : g(a+ b) = f(a) and

g(a+ b+ 1n) = f(a+ 1n)}|
+|{a ∈ Vn : g(a+ b) = g(a+ b+ 1n) = 1
and f(a) = f(a+ 1n) = 0}|
−|{a ∈ Vn : g(a+ b) = g(a+ b+ 1n) = 0
and f(a) = f(a+ 1n) = 1}|. (21)

This implies, for example, that if f(a) = 0 for all
a and g(a) = 1 for all a, then Ca

f,g(b) = 2n for all b
and that Ca

g,f (b) = −2n for all b.
If f is a Boolean function, let f ′ denote the comple-

ment of f . That is, f ′(a) = 1 if and only if f(a) = 0,
so f ′(a) = 1− f(a) as integers.

Corollary 4: Let f and g be Boolean functions on
n variables and let b ∈ Vn. Then for every b ∈ Vn

Ca
f,g(b) = Ca

g′,f ′(b).

D. Arithmetic Correlations of Linear and Affine Func-
tions

In this section we use Theorems 4 and 5 to compute
the arithmetic auto- and cross-correlations of linear
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and affine functions. First consider autocorrelations.
If f is constant (identically 0 or identically 1), then
Aa

f (b) = 2n for all b. If f is nonzero and linear, then
f(a) = f(a + b) and f(a + 1n) = f(a + b + 1n) if
and only if f(b) = 0. Similarly, if f is affine but not
linear, then f(x) = 1− h(x) with h linear, and these
equations hold if and only if h(b) = 0. Thus in either
case

Aa
f (b) =

{
2n if f(b) = 0
0 otherwise.

We can compare this to the classical autocorrela-
tions, where if f is affine, then

Af (b) =
{

2n if f(b) = 0
−2n otherwise.

Now let us consider the cross-correlation. Let f and
g be linear or affine. Then the sets in the last two
terms of equation (21) are solutions to inhomogeneous
systems of degree 1 equations. In the two sets the
homogeneous parts of the equations are the same. It
is only the constant terms that differ. It follows that the
numbers of solutions are the same for both systems,
depending only on the rank of the homogeneous part,
and they cancel each other. Thus for linear and affine
functions Ca

f,g(b) is the number of a ∈ Vn such that

g(a+ b) = f(a) (22)

and
g(a+ b+ 1n) = f(a+ 1n). (23)

Let f(a) = f1(a)+c mod 2 and g(a) = g1(a)+d
mod 2, where f1 and g1 are linear and c, d ∈ {0, 1}.
Then equations (22) and (23) hold if and only equation
(22) and

g1(1n) = f1(1n) (24)

hold. Thus if equation (24) does not hold, then
Ca

f,g(b) = 0. Otherwise Ca
f,g(b) is the number of

a ∈ Vn such that equation (22) holds.
Suppose equation (24) holds. If f1 6= g1, then

equation (22) is a rank one affine equation, so it holds
for 2n−1 values of a. If f and g are equal and constant
(i.e., f1 = g1 = 0 and c = d), then Ca

f,g(b) = 2n. If
f and g are unequal and constant, then Ca

f,g(b) = 0.
If f1 = g1 6= 0, then equation (22) holds if and only
if g(b) = f(0n). That is, if and only if g1(b) = c− d
mod 2. This occurs for 2n−1 values of b.

Theorem 6: Let f(a) = f1(a) + c mod 2 and
g(a) = g1(a) + d mod 2, where f1 and g1 are
linear and c, d ∈ {0, 1}. If g1(1n) 6= f1(1n) then
Ca

f,g(b) = 0 for all b.
1) If f1 = g1 = 0 and c = d, then Ca

f,g(b) = 2n

for all b.
2) If f1 = g1 = 0 and c 6= d, then Ca

f,g(b) = 0 for
all b.

3) If f1 = g1 6= 0, then Ca
f,g(b) = 2n for 2n−1

values of b and is 0 for 2n−1 values of b.
4) If f1 6= g1 and f1(1n) = g1(1n), then Ca

f,g(b) =
2n−1 for all b.

By contrast, the classical cross-correlation is 0 for
all b if f1 6= g1. If f1 = g1 = 0, then it is 2n for all
b or −2n for all b. If f1 = g1 6= 0, then it is 2n for
2n−1 values of b and is −2n for 2n−1 values of b.

V. UNIQUENESS OF ARITHMETIC WALSH SPECTRA

The arithmetic Walsh spectrum of a Boolean func-
tion is the set of its arithmetic Walsh coefficients. In
this section we show that the mapping from Boolean
functions to their arithmetic Walsh spectra is one to
one. That is, we show that a Boolean function is
uniquely determined by its arithmetic Walsh spectrum.
We do not, however, know a simple expression for
the inverse arithmetic Walsh transform, or even an
efficient way to compute it. Nor do we know how
to characterize those functions Vn → Z that are the
arithmetic Walsh transforms of Boolean functions.

It follows from equation (10) that if b 6= 0n and
wt(b) is even, then∑

a∈Un

f(a)f(a+ 1n)[a · b]2 =
f̃(b)− f̃(0n)

4
. (25)

Let Mn be the (2n−1 − 1) × (2n−1 − 1) rational
matrix indexed by Un − {0n} and Wn = {b ∈ Vn :
wt(b) even, b 6= 0n} whose entry with index (a, b) is
[a · b]2 treated as a rational number. Similarly, let Nn

be the (2n−1−1)×(2n−1−1) rational matrix indexed
by Un − {0n} and Tn = {b ∈ Vn : wt(b) odd, b 6=
10n−1} whose entry with index (a, b) is [a ·b]2 treated
as a rational number.

Let v(a) = f(a)f(a + 1n) and let v be the vector
indexed by Un − {0n} whose entries are the v(a).
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Let z(b) = (f̃(b) − f̃(0n))/4 and let z be the vector
indexed by Wn whose entries are the z(b). Then
equation (25) implies that vMn = z. Thus if Mn is
invertible, then the v(a) with a 6= 0n or 1n can be
determined uniquely from the f̃(b).

Similarly, it follows from equation (12) that if b 6=
10n−1 and wt(b) is odd, then∑
a∈Un

(f(a)− f(a+ 1n))[a · b]2 =
f̃(b)− f̃(10n−1)

2
.

(26)
Let u(a) = f(a)− f(a+ 1n) and let u be the vector
indexed by Un − {0n} whose entries are the u(a).
Let w(b) = (f̃(b) − f̃(10n−1))/2 and let w be the
vector indexed by Tn whose entries are the w(b).
Then equation (26) implies that uNn = w. Thus if
Nn is invertible, then the u(a) with a 6= 10n−1 can
be determined uniquely from the f̃(b).

Theorem 7: The matrices Mn and Nn have
nonzero determinants.
Proof: We order the indices in both dimensions lex-
icographically, with most significant position on the
right. For both types of matrices, we think of the rows
(the as) as being divided into three segments:

1) The rows indexed by a = 0a′0 with a′ 6= 0n−2;
2) The row indexed by a = 0n−11; and
3) The rows indexed by a = 0a′1 with a′ 6= 0n−2.

For Mn, we think of the columns (the bs) as being
divided into three segments:

1) The columns indexed by b = b′0 with wt(b′)
even and b′ 6= 0n−1;

2) The column indexed by b = 10n−21; and
3) The columns indexed by b = b′1 with wt(b′)

odd and b′ 6= 10n−2.

Similarly, for Nn, we think of the columns as being
divided into three segments:

1) The columns indexed by b = b′0 with wt(b′)
odd;

2) The column indexed by b = 0n−11; and
3) The columns indexed by b = b′1 with wt(b′)

even and b′ 6= 0n−1.

Let 〈1〉n denote the 2n × 2n matrix all of whose
entries are 1. Following these decompositions of the
indices, we can decompose Mn into blocks as follows.

1) If a = 0a′0 with a′ 6= 0n−2 and b = b′0 with
b′ 6= 0n−1 and wt(b′) even, then [0a′ · b′]2 =
[a · b]2. Thus the upper left hand block of Mn

equals Mn−1.
2) If a = 0a′1 with a′ 6= 0n−2 and b = b′0 with

b′ 6= 0n−1 and wt(b) even, then [0a′ · b′]2 =
[a · b]2. Thus the lower left hand block of Mn

equals Mn−1.
3) If a = 0a′0 with a′ 6= 0n−2 and b = b′1 with

b′ 6= 10n−2 and wt(b′) odd, then [0a′ · b′]2 =
[a · b]2. Thus the upper right hand block of Mn

equals Nn−1.
4) If a = 0a′1 with a′ 6= 0n−2 and b = b′1 with

b′ 6= 10n−2 and wt(b′) odd, then [0a′ · b′]2 =
1− [a · b]2. Thus the lower right hand block of
Mn equals 〈1〉n−1 −Nn−1.

5) If a = 0n−11, then the row indexed by a is
02n−1−112n−1

.
6) If b = 10n−21, then the column indexed by b is

02n−1−112n−1
.

Denoting the determinant of a matrix K by |K|, we
can summarize this by saying

Mn =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

Mn−1

... Nn−1

0
0 · · · 0 1 1 · · · 1

1

Mn−1

... 〈1〉n−1 −Nn−1

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

By subtracting the first block of rows from the last
block of rows, then subtracting the row indexed by
a = 0n−11 from each of the last block of rows, we

13



have

|Mn|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

Mn−1

... Nn−1

0
0 · · · 0 1 1 · · · 1

1

0
... 〈1〉n−1 − 2Nn−1

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

Mn−1

... Nn−1

0
0 · · · 0 1 1 · · · 1

0

0
... −2Nn−1

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 22n−1−1|Mn−1||Nn−1|. (27)

A similar argument gives

|Nn| = 22n−1−1|Mn−1||Nn−1|. (28)

Finally, we see that M2 and N2 are 1× 1 matrices
whose single entries are 1, hence whose determinants
are 1. It follows that the determinant of Mn and Nn

are nonzero as claimed. 2

In fact it follows from equations (27) and (28) that

|Mn| = |Nn| = 2(n−2)2n−1+1,

but we shall not use this fact.
Corollary 5: ( [7]) The values of u(a) and v(a)

for a ∈ Un − {0n} are uniquely determined by the
f̃(b). This in turn uniquely determines the values of
the f(a) for a 6= 0n, 1n.

Having determined the f(a) with a 6= 0n, 1n, we
are left with two equations in the unknowns f(0n)
and f(1n). From equation (11) with b = 0n we have

f(0n) + f(1n) = x

for some x ∈ Z, and from equation (13) with b =
10n−1 we have

f(1n)− f(0n)f(1n) = y

for some y ∈ Z. The values x and y are uniquely
determined by the f̃(b).

We can make a table of possible values

f(0n) f(1n) x y
0 0 0 0
1 0 1 0
0 1 1 1
1 1 2 0

It follows that f(0n) and f(1n) are uniquely deter-
mined by any valid value of x and y. We have proved
the following theorem.

Theorem 8: Every Boolean function on Vn is
uniquely determined by its arithmetic Walsh trans-
form.

Embedded in this proof is a method of computing
the function f from its arithmetic Walsh transform.
It is, however, more complicated than the situation
for Walsh-Hadamard transforms where one simply
computes essentially the Walsh-Hadamard transform
of the Walsh-Hadamard transform. We do not know
of such an idempotency law for the arithmetic Walsh
transform.

VI. STATISTICS OF THE ARITHMETIC WALSH
TRANSFORM

Recall that for a Boolean function f , the mean of
the Walsh-Hadamard coefficients of f is (−1)f(0) and
the second moment is 2n (independent of f ). The
picture is quite different in the arithmetic case.

Let
H(f) =

∑
a∈Vn

f(a),

the Hamming weight of f , and let

Q(f) =
∑

a∈Un

f(a)f(a+1n) =
1
2

∑
a∈Vn

f(a)f(a+1n),

the number of diagonals on which f is a constant 1.
Lemma 1: If f is a Boolean function on n vari-

ables, then∑
a∈Vn

f(a)f(a+ 1n)
∑

[b·1n]2=0

[a · b]2

= 2n−1Q(f)− 2n−1f(0n)f(1n),

14



∑
a∈Vn

(f(a)− f(a+ 1n)))
∑

[b·1n]2=1

[a · b]2

= 2n−1(f(1n)− f(0n)),

∑
a,c∈Vn

f(a)f(a+ 1n)f(c)f(c+ 1n)

·
∑

[b·1n]2=0

[a · b]2[c · b]2

= 2n−1Q(f)2 + 2n−1Q(f)− 2nf(0n)f(1n)Q(f)
= 2n−1Q(f)(Q(f) + 1− 2f(0n)f(1n)).

and

∑
a,c∈Vn

(f(a)− f(a+ 1n))(f(c)− f(c+ 1n))

·
∑

[b·1n]2=1

[a · b]2[c · b]2

= 2n−1(H(f)− 2Q(f)).

Proof: We prove the third equation. Proofs of the other
three equations are similar.

Let

Ra,c =
∑

[b·1n]2=0

[a · b]2[c · b]2.

Then Ra,c = |{b : [b · 1n]2 = 0, [a · b]2 = 1, and [c ·
b]2 = 1}|. There are several possibilities.

1) If a or c is 0n or 1n, then Ra,c = 0.
2) If a = c and a, c 6∈ {0n, 1n}, then Ra,c = 2n−2.
3) If a = c+ 1n and a, c 6∈ {0n, 1n}, then Ra,c =

2n−2.
4) Otherwise a, c, and 1n are linearly independent

modulo 2, so Ra,c = 2n−3.

Thus∑
a,c∈Vn

f(a)f(a+ 1n)f(c)f(c+ 1n)

·
∑

[b·1n]2=0

[a · b]2[c · b]2

= 2n−3
∑

a,c∈Vn

f(a)f(a+ 1n)f(c)f(c+ 1n)

+(2n−2 − 2n−3)

·
∑

a∈Vn

f(a)f(a+ 1n)f(a+ 1n)f(a)

+(2n−2 − 2n−3)

·
∑

a∈Vn

f(a)f(a+ 1n)f(a)f(a+ 1n)

+(−2n−3)
∑

a∈Vn

f(0n)f(1n)f(c)f(c+ 1n)

+(−2n−3)
∑

a∈Vn

f(1n)f(0n)f(c)f(c+ 1n)

+(−2n−3)
∑

a∈Vn

f(a)f(a+ 1n)f(0n)f(1n)

+(−2n−3)
∑

a∈Vn

f(a)f(a+ 1n)f(1n)f(0n)

= 2n−1Q(f)2 + 2n−1Q(f)
−2nf(0n)f(1n)Q(f)

= 2n−1Q(f)(Q(f) + 1− 2f(0n)f(1n)).

Note that in the final two lines one would expect a
term f(0n)f(1n) with some coefficient, accounting
for all the appearances of this term in the various
sums. In fact for each of the four choices of a, c ∈
{0n, 1n} we have [a·b]2[c·b]2 = 0. Thus the coefficient
of f(0n)f(1n) is zero.

2

Theorem 9: Let f be a Boolean function on n
variables. The mean arithmetic Walsh transform of f
is

E[f̃(b)] = 2n−1 − H(f) + f(0n)− f(1n)
2

−f(0n)f(1n).

The proof is omitted. The proof is similar to (and
simpler than) the proof of Theorem 10, and a sketch
has appeared previously [7].
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Parseval’s identity says the the sum of the squares
of the Walsh-Hadamard coefficients of a Boolean
function on n variables is 22n. This important fact
leads, for example, to the notion of bent functions
[10], [12]. Again the picture is more complicated in
the arithmetic case.

Theorem 10: Let f be a Boolean function on n
variables. The second moment of the arithmeticWalsh
transform of f is

E[f̃(b)2] = 22n−1 +
5
2
H(f)2 − 6H(f)Q(f)

+4Q(f)2 − (2n+1 − 1
2

+ f(0n)

−f(1n)− 4f(0n)f(1n))H(f)
+(2n+1 + 1 + 2f(0n)− 2f(1n)
−4f(0n)f(1n))Q(f)
−2n+1f(0n)f(1n).

Proof: We have

E[f̃(b)2]

=
1
2n

∑
b∈Vn

f̃(b)2

=
1
2n

 ∑
[b·1n]2=0

f̃(b)2 +
∑

[b·1n]2=1

f̃(b)2

 .

We again use equations (11) and (13) to compute these
two sums separately. For the first sum we have

∑
[b·1n]2=0

f̃(b)2 =
∑

[b·1n]2=0

(
2n − 2

∑
a∈Vn

f(a)

+2
∑

a∈Vn

f(a)f(a+ 1n)[a · b]2

)2

=
∑

[b·1n]2=0

(
2n − 2H(f)

+2
∑

a∈Vn

f(a)f(a+ 1n)[a · b]2

)2

=
∑

[b·1n]2=0

(2n − 2H(f))2

+4(2n − 2H(f))
∑

a∈Vn

f(a)f(a+ 1n)[a · b]2

+4

(∑
a∈Vn

f(a)f(a+ 1n)[a · b]2

)2

= 2n−1(2n − 2H(f))2 + 4(2n − 2H(f))

·
∑

a∈Vn

f(a)f(a+ 1n)
∑

[b·1n]2=0

[a · b]2

+4
∑

a,c∈Vn

f(a)f(a+ 1n)f(c)f(c+ 1n)

·
∑

[b·1n]2=0

[a · b]2[c · b]2

= 2n−1(2n − 2H(f))2

+4(2n − 2H(f))(2n−1Q(f)
−2n−1f(0n)f(1n))
+4(2n−1Q(f)2 + 2n−1Q(f)
−2nf(0n)f(1n)Q(f))

= 23n−1 − 22n+1H(f) + 2n+1H(f)2

−2n+2H(f)Q(f) + 2n+2H(f)f(0n)f(1n)
+(22n+1 + 2n+1)Q(f)− 22n+1f(0n)f(1n)
+2n+1Q(f)2 − 2n+2f(0n)f(1n)Q(f).

Similarly, for the second sum we have

∑
[b·1n]2=1

f̃(b)2

=
∑

[b·1n]2=1

(∑
a∈Vn

f(a+ 1n)− f(a)f(a+ 1n)

+(f(a)− f(a+ 1n))[a · b]2

)2

=
∑

[b·1n]2=1

(
H(f)− 2Q(f)

+
∑

a∈Vn

(f(a)− f(a+ 1n))[a · b]2

)2
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= 2n−1(H(f)− 2Q(f))2 + 2(H(f)− 2Q(f))

·
∑

a∈Vn

(f(a)− f(a+ 1n))
∑

[b·1n]2=1

[a · b]2

+
∑

a,c∈Vn

(f(a)− f(a+ 1n))

·(f(c)− f(c+ 1n))
∑

[b·1n]2=1

[a · b]2[c · b]2

= 2n−1(H(f)− 2Q(f))2

+2n(H(f)− 2Q(f))(f(1n)− f(0n))
+2n−1(H(f)− 2Q(f)).

It follows that

E[f̃(b)2] =
22n−1 − 2n+1H(f) + 2H(f)2

−4H(f)Q(f) + 4H(f)f(0n)f(1n)
+(2n+1 + 2)Q(f)− 2n+1f(0n)f(1n)
+2Q(f)2 − 4f(0n)f(1n)Q(f)
+2−1(H(f)− 2Q(f))2

+(H(f)− 2Q(f))(f(1n)− f(0n))
+2−1(H(f)− 2Q(f))

= 22n−1 +
5
2
H(f)2 − 6H(f)Q(f)

+4Q(f)2 − (2n+1 − 1
2

+ f(0n)− f(1n)

−4f(0n)f(1n))H(f)
+(2n+1 + 1 + 2f(0n)− 2f(1n)
−4f(0n)f(1n))Q(f)− 2n+1f(0n)f(1n),

as claimed. 2

VII. ARITHMETIC WALSH TRANSFORMS OF
LINEAR FUNCTIONS

In this section we make use of the analysis in Sec-
tion III to completely describe the arithmetic correla-
tions of linear functions. That is, of Boolean functions
f(a) = Tc(a) = [a · c]2, a, c ∈ Vn.

If c = 0n, then f is identically zero. By Theorem
2,

T̃0n(b) =
{

2n if [b · 1n]2 = 0
0 if [b · 1n]2 = 1.

For the remainder of the section we assume that
c 6= 0n. By equation (11), if [b · 1n]2 = 0, then

T̃c(b) =

2n − 2
∑

a∈Vn

[a · c]2

+2
∑

a∈Vn

[a · c]2[(a+ 1n) · c]2[a · b]2

= 2
∑

a∈Vn

[a · c]2[(a+ 1n) · c]2[a · b]2. (29)

By equation (13), if [b · 1n]2 = 1, then

T̃c(b) =∑
a∈Vn

[(a+ 1n) · c]2(1− [a · c]2)

+([a · c]2 − [(a+ 1n) · c]2)[a · b]2). (30)

We treat these equations separately. First suppose
that [b · 1n]2 = 0. If b = 0n, then T̃c(b) = 0. If
b 6= 0n and c · 1n = 0, then

T̃c(b) = 2
∑

a∈Vn

[a · c]2[a · c]2[a · b]2

= 2
∑

a∈Vn

[a · c]2[a · b]2

=

 2
∑

a∈Vn

[a · c]2 = 2n if b = c

2 · 2n−2 = 2n−1 if b 6= c.

(The last line holds because [a · c]2[a · b]2 = 1 on the
intersection of two hyperplanes and is 0 everywhere
else.) The last case occurs for 2n−1 − 2 values of b
for each such c. If c · 1n = 1, then

T̃c(b) = 2
∑

a∈Vn

[a · c]2(1− [a · c]2)[a · b]2 = 0,

since if x ∈ {0, 1}, then x(1 − x) = 0. This occurs
for 2n−1 values of b for each such c.

Now suppose that [b · 1n]2 = 1. If c · 1n = 0, then

T̃c(b) =
∑

a∈Vn

[a · c]2(1− [a · c]2)

+([a · c]2 − [a · c]2)[a · b]2)
= 0.

17



This occurs for 2n−1 values of b for each such c. If
c · 1n = 1, then

T̃c(b) =
∑

a∈Vn

(1− [a · c]2)2

+(2[a · c]2 − 1)[a · b]2)

=
∑

a∈Vn

(1− [a · c]2)

+(2[a · c]2 − 1)[a · b]2)

= 2n−1 +
∑

a∈Vn

(2[a · c]2 − 1)[a · b]2)

= 2n−1

+



∑
a∈Vn

2[a · c]22 − [a · c]2

if b = c∑
a∈Vn

2[a · c]2[a · b]2 − [a · b]2

if b 6= c.

=
{

2n if b = c
2n−1 if b 6= c.

The second case occurs for 2n−1 − 1 values of b for
each such c. Now we fix c and describe the distribution
of values of T̃c(b).

Theorem 11: Let c ∈ Vn. If c = 0n, then the
arithmetic Walsh transform of Tc has values 0, which
occurs 2n−1 times, and 2n, which occurs 2n−1 times.
If c · 1n = 0 and c 6= 0n, then the arithmetic Walsh
transform of Tc has values 0, which occurs 2n−1 + 1
times, 2n−1, which occurs 2n−1 − 2 times, and 2n,
which occurs once. If c · 1n = 1, then the arithmetic
Walsh transform of Tc has values 0, which occurs
2n−1 times, 2n−1, which occurs 2n−1 − 1 times, and
2n, which occurs once.

VIII. ARITHMETIC WALSH TRANSFORMS OF
AFFINE FUNCTIONS

In this section we make use of the analysis in
Section III to completely describe the arithmetic cor-
relations of affine nonlinear functions. That is, of
Boolean functions f(a) = Sc(a) = 1 − [a · c]2,
a, c ∈ Vn.

If c = 0n, then f is identically one. By Theorem 2,

S̃0n(b) =
{
−2n if b = 0n

0 if b 6= 0n.

For the remainder of the section we assume that
c 6= 0n. Theorem 2 implies that if [b · 1n]2 = 0, then

S̃c(b) =

2n − 2
∑

a∈Vn

(1− [a · c]2)

+2
∑

a∈Vn

(1− [a · c]2)(1− [(a+ 1n) · c]2)[a · b]2

= 2
∑

a∈Vn

(1− [a · c]2)(1− [(a+ 1n) · c]2)[a · b]2.

(31)

If [b · 1n]2 = 1, then

S̃c(b) =∑
a∈Vn

(1− [(a+ 1n) · c]2)[a · c]2

+([(a+ 1n) · c]2 − [a · c]2)[a · b]2. (32)

We treat these equations separately. First suppose
that [b ·1n]2 = 0. If b = 0n, then S̃c(b) = 0. If b 6= 0n

and c · 1n = 0, then

S̃c(b) = 2
∑

a∈Vn

(1− [a · c]2)[a · b]2

=
{

0 if b = c
2 · 2n−2 = 2n−1 if b 6= c.

The last case occurs for 2n−1−2 values of b for each
such c. If c · 1n = 1, then

S̃c(b) = 2
∑

a∈Vn

(1− [a · c]2)[a · c]2[a · b]2 = 0.

This occurs for 2n−1 values of b for each such c.
Now suppose that [b · 1n]2 = 1. If c · 1n = 0, then

S̃c(b) =
∑

a∈Vn

(1− [a · c]2)[a · c]2

+([a · c]2 − [a · c]2)[a · b]2
= 0.

This occurs for 2n−1 values of b for each such c. If
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c · 1n = 1, then

S̃c(b) =∑
a∈Vn

[a · c]22 + (1− 2[a · c]2)[a · b]2

=
∑

a∈Vn

[a · c]2 + (1− 2[a · c]2)[a · b]2

= 2n−1 +
∑

a∈Vn

(1− 2[a · c]2)[a · b]2

=



2n−1 +
∑

a∈Vn

[a · c]2 − 2[a · c]22

if b = c

2n−1 +
∑

a∈Vn

[a · b]2 − 2[a · c]2[a · b]2

if b 6= c.

=
{

0 if b = c
2n−1 if b 6= c.

The second case occurs for 2n−1 − 1 values of b for
each such c. Now we fix c and describe the distribution
of values of S̃c(b).

Theorem 12: Let c ∈ Vn. If c = 0n, then the
arithmetic Walsh transform of 1 − Sc has values 0,
which occurs 2n − 1 times, and −2n, which occurs
once. If c · 1n = 0 and c 6= 0n, then the arithmetic
Walsh transform of 1−Sc has values 0, which occurs
2n−1+2 times and 2n−1, which occurs 2n−1−2 times.
If c · 1n = 1, then the arithmetic Walsh transform of
1−Sc has values 0, which occurs 2n−1 +1 times and
2n−1, which occurs 2n−1 − 1 times.

IX. FUTURE WORK

A. Bentness

In cryptography we generally want to use Boolean
functions that are as far from being linear as possible.
Linear functions have Walsh-Hadamard spectra with
one large coefficient (with value 2n) and all remaining
coefficients zero. In a sense all the “mass” is concen-
trated in one coefficient. These are the functions for
which the maximum absolute values of the Walsh-
Hadamard coefficients is as large as possible.

By contrast, a bent function has all the mass spread
uniformly across all coefficients, so the absolute val-
ues of all the Walsh-Hadamard coefficients are the
same (equal to 2n/2). These can also be characterized

as the functions for which the maximum absolute
values of the Walsh-Hadamard coefficients is as small
as possible.

We would like to find an arithmetic analog of bent-
ness, but the situation is not so clear. Linear and affine
functions do not have such neat arithmetic Walsh
spectra so it is not so clear what one might consider
the opposite behavior. Bent functions are also the
functions whose Hamming distance is the maximum
allowed by Parseval’s identity (the second moment
equals 2n). But, as we have seen in Section III-A, the
arithmetic Walsh transform does not correspond to a
metric in the way that the Walsh-Hadamard transform
does. It is possible that it would be better if we built
our theory of arithmetic Walsh transforms around a
symmetric version of the Walsh-Hadamard transform:
define

f̃S(b) = Z(f −Tb) + Z(Tb − f).

It remains to attempt to redo all the work in this paper
on replacing f̃(b) by f̃S(b).

B. Cryptanalysis

Ultimately, Walsh-Hadamard transforms and bent-
ness are studied because of their implications for the
cryptanalysis of symmetric key cryptosystems [11]. If
the maximum absolute value of the Walsh-Hadamard
coefficients is small, then system resists certain attacks
that attempt to find good linear approximations to
the given function. Bent functions are optimal in
this sense (although they are provably suboptimal in
other senses, so one typically looks for “almost bent”
functions). We do not yet know of a cryptanalytic
attack whose effectiveness is similarly measured by
the arithmetic Walsh transform.
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