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On the Per-Sample Capacity of
Nondispersive Optical Fibers
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Abstract—The capacity of the channel defined by the stochastic pulse propagation in optical fibers in the absence of noise.
nonlinear Schrodinger equation, which includes the effects of When distributed additive white noise is incorporated, aava

the Kerr nonlinearity and amplified spontaneous emission nse, o communication channel is defined. This channel has an
is considered in the case of zero dispersion. In the absencé o .

dispersion, this channel behaves as a collection of parallper- !nput-output map _that IS not eXpI'(,:'t anq instantaneous, bu
sample channels. The conditional probability density funtion of ~ involves the evolution of the transmitted signal along thace
the nonlinear per-sample channels is derived using both a s- dimension.

product and a Fokker-Planck differential equation approach. It is The exact capacity of the optical fiber with dispersion and
shown that, for a fixed noise power, the per-sample capacityylgws  nlinearity is not yet known. Results so far are limited to

unboundedly with input signal. The channel can be partitiored I . . .
into amplitude and phase subchannels, and it is shown that # lower bounds on the. (_:apa(:lty In certain regimes ,Of propegatl
contribution to the total capacity of the phase channel deghes for  Or under some conditions. Some of these works include model-
large input powers. It is found that a two-dimensional distribution  ing the nonlinearity by multiplicative noise in the wavedgin-

with a half-Gaussian profile on the amplitude and uniform  division multiplexing (WDM) casel]1], assuming a Gaussian
phase provides a lower bound for the zero-dispersion optida istribytion for the output signal when nonlinearity is ke,

fiber channel, which is simple and asymptotically capacity- . . . .
achieving at high signal-to-noise ratios (SNRs). A lower hmnd perturbing the nonlinearity parameter [3], approachingaca

on the capacity is also derived in the medium-SNR region. The ity via multiple-ring modulation formats [4], or specialig
exact capacity subject to peak and average power constraist to the important case of zero dispersioh [2], [5], which is th
is numerically quantified using dense multiple ring modulaton  focus of this paper.
formats. _The differential model _underlying t_he _zero-dispesion When dispersion is zero, pulse propagation is governed
channel is reduced to an algebraic model, which is more traable . . .
for digital communication studies, and in particular it pro vides a 0”'Y l_)y the Kerr _nonllne_arlty_ a_nd ampl|f|e_d spontaneous
relation between the zero-dispersion optical channel and 2 x 2 €mission (ASE) noise. This eliminates the time-dependence
multiple-input multiple-output Rician fading channel. It appears of the stochastic NLS, reducing it to a nonlinear ordinary
that the structure of the capacity-achieving input distribution  differential equation (ODE) as a function only of distance
resembles that of the Rician fading channeli.e, it is discrete in -, 4 5 certain suboptimal receiver, as assumed later in
amplitude with a finite number of mass points, while continuais S .
and uniform in phase. the paper, transmission is then sample-W|s_e and the channel
can be viewed as a collection of parallel independent sub-
channels, with noise interacting with the nonlinearity lre t
same channel, but not with neighboring channels located at
other times. The problem becomes easier to analyze since,
instead of describing the evolution of a random waveform and
LTHOUGH the capacity of many classical communiits entropy rate, we merely need to look at the evolution of a
cation channels has been established, determining #@&dom variable and its entropy, which can be described by a
capacity of fiber-optic channels has remained an open agidgle conditional probability density function (PDF).
challenging problem. The capacity of the optical fiber ctednn In [2], Tang estimated the capacity in the dispersion-free
is difficult to evaluate because signal propagation in @pticcase using Pinsker’s formula, based on the channel input-
fibers is governed by the stochastic nonlinear Schrodingsutput correlation functions. Tang’s results show thatacap,
(NLS) equation, which causes signal and noise to interaat irC, increases with input power poweR, reaching a peak
complicated way. This paper evaluates the capacity for tsodat a certain optimal input power, and then asymptotically
of the optical fiber channel in the case of zero dispersion. vanishes ag> — oco. Estimates of the capacity in the general
The deterministic NLS equation is a partial differentiatase [[1], [3], [4], [6] also exhibit this behavior. However,
equation in space and time exhibiting linear dispersion aise results of[[2] can be viewed only as a lower bound on
a cubic nonlinearity, giving rise to a deterministic modél othe capacity (even when the nonlinearity is weak), since the
. . - . second-order statistics used in Pinsker’s formula do noiLce
This paper was presented in part at the 25th Biennial Syraposin . " . . .
Communications, Kingston, ON, in May 2010, at the 2010 |IEERtrnational the entire conditional PDF, which, of course, is requ|red fo
Symposium on Information Theory, Austin, TX, in June 201 at the 2011 the computation of.

Canadian Workshop on Information Theory, Kelowna, BC, imy/\2811. The conditional probability density function (of the chahn
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the Martin-Siggia-Rose formalism in quantum mechanics tegions which behave in different ways. This partitioningpa
find a closed-form expression for the conditional joint POF eenables us to find practically significant bounds on the dapac
the received signal amplitude and phase. Although they diid in some of these regions.
explicitly compute the capacity, they showed that the cépac In [8] it was shown that for a simple intensity-modulation
asymptotically goes to infinity for large signal-to-noisgios direct-detection (IM/DD) optical channel, a half-Gaussihs-
(SNRs). tribution is asymptotically capacity-achieving at high S

With the exception of a few papers.g, [1]-[6]), optical An important conclusion of SeC._VI is that, a two-dimensiona
fiber communication is largely unstudied from the inforroati distribution with a half-Gaussian profile on the amplitude
theory point of view. Most previous papers on the capacignd uniform phase provides an excellent global lower bound
of optical fibers have focused on the dispersive chanrfelr the zero-dispersion optical fiber channel, which is danp
directly from its description given by the stochastic norand asymptotically capacity-achieving in a certain highRSN
linear Schrodinger equation. This direct approach has hesfjime whereP — oo and noise power is fixed.
limited success, due to the complexity of the underlying In Sec[VIl, we show that the channel capacity is indeed a
channel model and its limited mathematical understandingiwo-dimensional function of the signal and noise powers, and
The stochastic nonlinear Schrodinger equation with d&pae  unlike classical linear channels, is not completely cagaiusy
parameter set to zero, on the other hand, leads to a moel signal-to-noise ratio.
which is the basic building block of the dispersive optichéfi In Sec.[VIl, we address the relationship between the
channel. Itis therefore of fundamental interest to firstigtthe  spectral efficiency in bits/s/Hz and capacity in bits/syinbo
zero-dispersion case. In this paper, we pursue such a bott@er many practical pulse shapes, even though the capagity (i
up approach. Below, we highlight some of the contributiorisits/symbol) grows without bound (in agreement with [5]),
of this paper. spectral broadening resulting from the fiber nonlinearityds

In Sec.[Il:A, we provide a simple derivation of thethe spectral efficiency (in bits/s/Hz) to zero (in agreenveittt
conditional PDF of the channel output given the channgle estimates of]2]). This result also agrees with the spkct

input. Our approach is based on discretizing the fiber intgficiency estimates of [1][[3][]4][]6] for fiber channelstiv
a cascade of a large number of small fiber segments, whigbnzero dispersion.

leads to a recursive computation of the PDF. An alternative|n Sec.[TX, the optical fiber at zero dispersion is related

perspective, using a stochastic calculus approach, iS¢edv to the Rician fading channel in wireless communication.
in Appendix(A. o Although we do not provide a formal proof, numerical sim-
In Sec[IMI-B, we show that the probabilistic channel modgliations indicate that the optimal capacity-achievinguinp

in optical fibers can be understood in terms of the sum-produistribution for the dispersion-free optical fiber appe@rde
algorithm, or as a path integration. Such path integraledi®d discrete in amplitude and uniform in phase.

the Martin-Siggia-Rose formalism, which was employed in

5.

In Sec[1V, for the first time to the best of our knowledge, the

capacity of the dispersionless fiber is numerically evaldats  The notation in this paper is mostly consistent with [9].
a function of the signal-to-noise ratio, for fixed noise spEc We use upper-case letters to denote scalar random variables
densities. The results re-affirm the conclusion[df [5] the t taking values on the real liri or in the complex plan€, and
channel capacity (when measured in bits per symbol) growsver-case letters for their realizations. Random vectoes
unbounded, at a fixed noise level, with increasing signalggowdenoted with bold-face capital letters while their redlizas

In Sec[V, a decomposition is established between the aare denoted by boldface lower-case letters. All deterriinis
plitude and phase channels. The decoupling has the propejisntities are treated as realizations of random variales
that the input phase does not statistically excite the dutpsrder to avoid confusion with scalar random variables, we
amplitude. Using this amplitude and phase decomposititn, trepresent constant matrices with sans serif font, sucK,as
asymptotic result of([5] is then easily proved. M, P, and important scalars with calligraphic font such as

Also in Sec.[¥, a simplified model is derived for thepower?, bandwidth\V, capacityC, rateR. We reserve lower
dispersion-free optical channel. Simplification is ackigby case Greek and Roman letters for special scalars. Real and
reducing thedifferential modelunderlying the zero-dispersioncomplex normal random variables are shown\as and A¢.
channel to aralgebraic model which is more tractable for We use the shorthand notatigiZ,} ~ IID Nk(0,02) to
digital communication studies. Instead of a stochastitedif denote a sequence of real, independent, identicallyHuligéd
ential equation, the channel's input/output relation ipleitly  zero-mean Gaussian random variables with variarfce
expressed as a simplex2 MIMO system, similar to MIMO
wireless multi-antenna models.

In Sec[V] we return to the amplitude/phase decomposition,
and show that the phase channel exhibitshase transition  Let Q(z,t) be the complex envelope of the propagating
property. for very small or high signal power levels, theelectric field as a function of distanceand timet, the latter
phase channel conveys little information, and the maximumeasured with respect to a reference frame copropagating
information rate is achieved at a finite optimal power. Thiwith the signal. Signal evolution in optical fibers with zero
phase transition property partitions tfes? plane into four dispersion and distributed Raman amplification is modeled

II. NOTATION

Ill. CHANNEL MODEL
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by the stochastic nonlinear ODE (seeg, [4, Eqn. (1) with represented by samples tak&fi2)V, seconds apart. At the

B2 = 0]) fiber input, where the signal is constrained to lie in the inpu
0Q(z,1) . , space, .informf.zltion can be encoded in samples corresponding

5 = J7Q(z,1)|Q(z, )" + V(z, 1), to the input signal degrees of fregdom (called the pr|nC|paI

Q(0,t) = Qo(t), 0<z<L. L samples). All other samples are interpolated as apprepriat

linear combinations of the principal samples. These sasnple
Here £ is the length of the fiber)/(z,¢) is a zero-mean though not innovative, carry correlation information, rhuike
Gaussian process uncorrelated in space and fimewith parity-checks in a linear code, that are potentially uséul

Wil Ny 2 , , optimal detection.
EV(z )V (=", t)] = 0p0(z = 2, ¢ =), In this paper, however, we consider a suboptimal receiver

andQy(t) is the complex envelope of the electric field appliethat ignores the additional samples, and bases its de@sign
at the fiber input. Finallyy is the Kerr nonlinearity param- on the principal samples. The resulting channel is consgtyue
eter ando? is the noise power spectral density. Following set of parallel independent scalar channels (calledgrapte

[4], we assume the fiber parameters given in Tdble |, wighannels) defined via

08 = ngphva = 5.906 x 102! W/(km-Hz). The transmitted 8Q(=)

power is denoted as 6—; = 7Q(2)Q(2)|* + V(2),

EV()V* () =0%(2~2),  ElQf <P, (2

1 (T
Par =7 [ 1@o(oPat
0 whereo? = 2W, o2, Qo € C is the channel input sample

The transmitter will be constrained so tHaP,, = Py. value, andP is the per-sample power. The output of the

The stochastic differential equatidd (1) is interpretedhie channel isQ(£) € C.
Itd sense via its equivalent integral representation.[Nijte
that in [1) the white noisd/(z,t) is added to the spatial
derivative of the signal, as opposed to the signal itself| al
has units ofW'/2/km. Note further that[{1) contains no loss The differential model in the form given byl(2) is not
parameter, since losses are assumed to be perfectly compectly suitable for an information-theoretic analydisstead,
sated for by Raman amplification [11]. The time variable we require an explicit input-output probabilistic modeg.,
appears in[{1) essentially as a parameter. Some limitatibnsthe conditional probability density function of the chahne
the zero-dispersion moddll(1) are discussed in SeEfion Villoutput given the channel input. The conditional PDRXI)

Suppose the communication chaniél (B, the waveform given Q(0) was derived in[[7] and[]5]. Although the direct
channel fromQ(0,t) to Q(L,t), is used in the time interval calculation of moments of the received signal, or equivityen
[0, 7] for some fixed7 and that the input wavefor@,(¢) is the moment generating function as In [7], leads to an expres-
approximately bandlimited t®/, Hz. It is well known that, sion for the PDF, it does not provide enough insight into the
if WoT > 1, the set of possible transmitted pulses spaisgatistical nature of the channel. The approach bf [5] setie
a complex finite-dimensional signal space (called here thee Martin-Siggia-Rose formalism in quantum mechanics and
input space) with approximateB,7 dimensions (complex expresses the PDF as a path integral. Below we derive the
degrees of freedom). Since the channel is dispersionless, PDF in a simple way, by breaking the fiber into a cascade of
pulse duration remains constant during propagation; heweva large number of small segments, and recursively compute
as discussed in Set. M, the pulse bandwidth may contithe PDF. With this approach, we are able to illustrate some
uously grow because of the nonlinearity. We denoteYdy important properties of the statistical channel model.
the bandwidth of the waveform received at the output of the In order to describe the statistics of the per-sample cHanne
fiber. The received waveform is an element of a signal spaice(Z), we look at the fiber as a cascade of a large number
(called here the output space) of dimensv,7 > 2W,T. n — oo of pieces of discrete fiber segments by discretizing
In other words, the dimension of the signal space grows whilee equation[{2). The recursive stochastic difference tmua
the signal is propagated. giving the input-output relation of the incremental channel

We consider a model in which noise throughout the fiber is given by
bandlimited toW, using in-line channel filters. Therefore, _ )
throughout the fiber, the noise lies in the output space. @k+1 = Qr +JeV|Qk +VeVk, 0<k<n—1, (3)

Both the input waveform and the output waveform can B \\hich ¢ — £/n, and the discrete noisé ~ N¢(0,02) has
been scaled by the square root of the step $ige multiplied

hA' A Simple Recursive Derivation of the Conditional PDF

TABLE | by 1/4/e. Note that from[(B) the cascade of incremental fiber
FIBER PARAMETERS segments forms a discrete-time continuous-state Markainch
nsp | 1 spontaneous emission factor o
h | 6.626 x 1073*J -s | Planck’s constant Qo — Q1 — = Qn-1. (4)
v 193.55 THz center frequency . . - . .
o | 0.046 k=1 fiber loss (0.2 dB/km) Given )y, the signal entropy is increased by a tiny, signal-
v | 1.27 W—lkm™?! nonlinearity parameter dependent, amount in each of these incremental channels. In
B

125 GHz maximum bandwidth fact, the conditional entropy increases more for transmitt
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signals with higher amplitude than those with smaller amplas above to give
tude. In a sphere-packing picture, “noise balls” surrongdi

transmitted symbol increase in volume as the symbol amplip, exp(jev|qol?) — qo — jrlao? ? =0 2 +0()
tude increases, and indeed are not perfectly spherical. € p J7idol 90| = p €

Each of the incremental channels, though still nonlinedin wi
respect to the input signal, is conditionally Gaussian Wil  while the last term reads
1 (qr+1lar) = ! ST
Qrt1|Qk + To2e qn €XpP | —J7€ Z |pk| — Pn—12

i 2 k=0 2
|Gk — ax — evarlar)?| € ; +Q(€).
exp [ — .(5)

) - ) As can be seen, the end point is now interpreted as
Using the Markov property{4), the probability density func

n—1
. . . . 2 H H
tion for the cascade of two consecutive incremental channéh €xp(—jey Y- |px|*) which has a variable phase. In order

. . . ) k=0 . .
is given by the Chapman-Kolmogorov equation to consistently convert all correlated integrals to Gaarssype

integrals, one can assume that the received phase
ka+2|Qk (qrralar) =

n—1
C/fQ,MQ,M(Qk+2|q;c+1)ka+1|Qk(Qk+1|%)ko+1- (6) 0, = b — E'YZ Ipel2, (10)
k=0

Repeated application dfl(6 es the overall conditioraFP
P pplication dfl(6) giv v " |s constant, and then integrate oveK 6, < 2. For fixed

- 1 0., the resulting integrand is an exponential with a complex
anIQO qn|q0 ce 2 . . .
o guadratic polynomial in the exponent, and boundary terms
roexp joo and r, exp jf,. However phase constraint_{10)

n—1 . . . . .
Qrt1 — Gk —J€7|q;c| i implies that for each vaIue of,,, integration is performed
HM%J ) ‘)Hm @ "M m e P
€o under the constrainty Z Ipk|? = ¢ — On.
-1 2 k=
_ 1 / /ex € nz Tk+1 — Gk . q? To enforce constrawﬂlO) the function under the integrat
wo2e ) P\ 752 — € I\ ]k is multiplied by thedelta functionrepresenting that constraint,
c ¢ B giving
dqn 1dgn—2  dq
7T€0'2 Teo?  meo?
2
whereqy, = 7 exp(jor) and integrations are performed over 0 <¢n —On —€y Z [P ] )
the entire complex plane.
We proceed to solve multiple integrals (8). First a change 2
. S .2 = -0, — 2
of variables is introduced to make the exponent quadratic in m_z_:o(f n EVZ [p|” + 2mm

qr. Theintegrating factorfor the noiseless equatioln (2) serves

n—1
as the new variable 2
27T E exp lym <¢n—9 —ev > bl )]

k—1 m=-—o0o k=0
Pk = qr €XP <—j6”yz|qm|2> k=1,...,n—1. (9)
m=0

Plugging [®) into[(B), each term in the exponent, except th
first and last terms, is

where we have used phase periodicity and expanded the train
of impulse functions as a complex Fourier series.
Summarizing, the conditional PDF now reads

2 50 2

1 y. _a
an|Q0(Qn|QO):% Z eImén / e~ Imbn

2 m==eo 0, =0
. 2
+ jym|pr| ] }

% dpp—1 dpn—2 o dp:
where we have assumég, 1 — px)/c is bounded. It follows meo? meo?  meo?’
that each mlddle term in the exponent bf (7) is simplified

qr+1 — qk . 2
€ |[——— — 7l ax

_ |Prs exp(jey|prl?) — pr

- — 7Pkl Pr ) / / { Z [
... [ exp
_ | PRt~ Pk 2 moZe

+0(e), c ¢

Pk+1 — Pk pk

€

(11)

t\(R/here we assumedg, = g9 andp,, = r,, exp j60,,, and used the
M\ which is correct up to first order ia fact that the Jacobian of the transformatibh (9) is unitycsi
The treatment of the boundary terms is different and ihrepresents a lower triangular matrix with unit magnituate
particular they lead to new expressions. The first term @@ its diagonal elements.
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The integrals in[(11) are complex Gaussian and can hamely,

solved directly. We proceed to calculate by,
o bn+1 = 602[a i 1+jm'y2€202]’
- dpn_1 dpn_ d " €@
Tm(rn):/doneﬂmf’n/.../ D1 ZPn2 L S 1
J J J TEoS TEO TET ntl = — 3 (602)2[ 1+Jm,yé Uz]
n—1 2 2 2
1 1 | Pr+1 — Dk . 2 o B jm'ye _ b
T02e €Xp § —€ Z ; | + ]7m|pk| : (12) = Gn o2 [an + 1+jm'};5202] )
k=0 o
L o . . with
This is done by first integrating over phases, starting from _ 5 o
the very last termd,, where only one variable is involved. It — L +J”f”€ g 7 by = 1 _
can be shown thaE{12) simplifies to €o?(1 + jmye?o?) €0?(2 + jmye’o?)
2 \" 22 42 Solving these equations, we obtain expressions:{ot) and
Ton(rn) = | =5 gm(Ootyery) oxp (-2 0 b(m) in the limit asn — oo (ne = L):
" €o? €o? _
7 7 a(m) = lim_a,(m) = I coth vV ijmyo?L,
Tn—1 T1 . jm'y 1
b(m) = lim_b,(m) = . : . @an
1 ({2 b, () ag R 7 sinhyimet
TEk€Xpy——— 5 T m . . . L. .
Pt g €o? b €o? Finally, using [I¥) we obtain the conditional PDF ©fin
%170 the zero-dispersion modéll (2)
< ( €02 >’ (14) SRRy (T]T0)
0
f(r,¢lro, o) = 27T

wherel,, denotes then'” order modified Bessel function of

the first kind, and where we have usgd](61) from Appehdix B. += Z ( r)elm(¢—¢o— WS“) , (18)
Integrals [I#) involve products of Bessel functions and

can be computed iteratively with the help of identityl(62) ivhere fp g, (r|ro) is the probablllty density of the amplitude

Appendix(B. We have of the received signal
2 —jim(0p+~yrie 2r 7’2 + 7’(2) 27"7’0
Tnlrs) = ot gy Triro(riro) = Cop expl=—2a o) A9)

1 [(1+jmyeo?\ o and where the Fourier coefficieat,, (r) is given by

X exp -~ 27“ (T + 7”2) ) )

€o + gmyeco Chn (1) = rb(m) exp [—a(m) (7‘ + 7‘0)} I, (2b(m)ror).
2712 . L
X I (60_2(2 +jm76202)) . Remarkl. Note thatf(r, ¢|ro, ¢o) is Symmetric with respect

to the phase. We rely on this property in Sec.JV to simplify
As the calculations foff,(ro) and identity [[6R) suggest, the optimization problem in the capacity question.

T (rn) keeps its structure far > 3, and can be parametrizedRemark2. One can verify that the conditional PDF of the

in the form amplitude of the received field given the amplitude of the

, transmitted signal(19) is in fact the conditional PDF foe th
_ —jm(Oo4~rne) _ 2 2 h i g .
Ton(rn) = 2bn(m)e™ ™00 exp {—an (m)(rg +17) } intensity-modulated direct-detection (IM/DD) channel

X I, (2bn(m)7°07'n)a (15) Ry = ‘QJS + Zk’ E=0.1.... (20)
wherea,,(m) andb,(m) are parameters to be determined. ifhqore 7, ~ Nc(0,02L). It is easy to see that the conditional
can be shown thdf, (r,,) satisfies PDF depends only oy = |Qo|, as in [19).

The conditional PDH{18) defines a communication channel
m(Tn1) / K(rp,rpg1) T (rn)dr,, (16) having the complex plane as the input alphabet, for which the

=0 information capacityC is defined as
where kernelK (41,7, is C(P,0°L,7) = e I(R, ®; Ry, o)
K(rmot, ) = %Tn subject to FRZ <P, (21)
1 260 : 2 2y .2 2rnTni1 where
exp{_P o (14 gmyete )T’J}I’”( @ VIR R.) ////f ro, 60) £(r. dlro. é0)
Substituting[(Ib) intd(116) and comparing exponents on both f(r, d|ro, ¢0)

sides, recursive equations are obtaineddofm) andb,, (m), f(r, o) drodgodrdg,
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and where 7 is the space of probability densities, andvhich is indeed a continuous limit of the sum-product algo-

(@) = [[ f(r,¢|ro, ¢o) f(ro, po)drodey. rithm in the signal dimension. It might be, however, more
The per-sample capacity (21) can be related to the capaditgightful to restore the analysis and represent the tegcieni

of the waveform dispersion-free optical channel. It can ke the discrete domain.

argued that a uniform power allocation is optimal for prpadi While discretizing the fiber in the distance dimension, we

samples. The capacity of the entire ensemble of the prihcipdill also at the end of at each fiber segment quantize the kigna

per-sample channels is qr into a large number of small bins in the complex plane

2WOTC < P, | 20’8£W£77> b per channel use qr € S = {q:ln =7Tn exp(j¢m)|7°n = n(57‘), n=1,...,N,
WoT ' 2WoT bm =m(3¢), m=0,1,...,M—1}, (22)

which, as discussed before, is a lower bound on the Capa%}/smallér andd¢. This turns each incremental channel into a

ogtheer \Z,veéoc;g:Spsgﬁlﬁgtg?\ézforer?_i;nElc(;)ézi?&g?;?m t discrete memoryless channel (DMC) described by a tramsitio
pap Y P P P .., matrix; moreover, the overall channel matrix is the prodafct

re;ruhltes gll[&v]vmg theorem is a simple way to establish thg" of these transition matrices. The probability of reasiv

¢¢ = rpexpj¢ at = = L given theq! = rexpjop; is
Theorem 1. Let p = P/o?L be the signal-to-noise ratio. transmitted atz = 0, is the sum over the probability of all
ThenC > %logp — % and in particular lim C(p) = oc. possible transitions (paths) frond to ¢t. This is graphically
pree illustrated in Fig.[0 as a trellis. Nodes of the trellis are
guantized points in the complex plane and edges have weights
corresponding to transition probabilitidd (5).
I(R, ®; Ry, ®g) = I(R; Ry, ®0) + I(®; Ro, o|R) It follows that the essence of the probabilistic model in
> I(R; Ro, ®o) = I(R; Ry). optlc_al _flbers is apropagator A(dr, ¢, €), independent pf
spatial indexk, which for the case of[{2) can be described
As mentioned in Remarkl Z(R; Ry) is the mutual infor- by a single functional matrix
mation function for the intensity-modulated direct-d?’rtam - N Ty
(IM/DD) channel for which the lower bouné logp — 5 is [A(S7, 86, €)];.; = gy [0 exp (_ ‘qn @, — JVa a5 ‘ ) :

Proof: Using the chain rule for mutual information

2

already known[[7]. It therefore follows that > 1logp — 1. mo?e €o?

erei = (k—1)M +landj = (n — 1)M + m. The
N are then recursively updated as

n,m=0

[ |

Put in other words, Theorel 1 simply says that the amou P - I
of information which can be sent over the complex chann@[()bab'“t'eS offgn'}
(2) is no less than what can be transmitted and received by p(k 4 1) = A(6r, 86, €)p(k),
the amplitude alone. Froni (119), the communication channel . o N
from Ry, to R does not depend on the nonlinearity paramet¥fere p is the vector of the probabilities ofq;'}, .~
~, is independent of input phase and supports an unbound® diagonalizing the propagatok = UAU™!, the overall
information rate when increasing power indefinitely. Sittoe  conditional distribution isp(n) = UA™U~', which is a
capacity of [2) was discussed to be a lower bound to tfiénction of eigenvalues and eigenvectors of the propagator
Capacity of D)’ we conclude that the Capacity of the Zeroln the Ianguage of the statistical meChaniCS, the limit of

dispersion optical fibel{1) also goes to infinity with SNR. the expression[{8) when — oo is a path integraland is
represented as

B. Sum-product probability flow in zero-dispersion fibers  fg0,(qlq0) =

The recursive computation of the PDF in the previous  , ;
section was algebraic and still not a suitable way to vigeali / exp _/
signal statistics. In this section, we show that the stmectf roed®o 0
the probability flow in zero-dispersion fibers is given by the
sum-product algorithm or a path integral. Such path intémna where the expression is understood as’id [12]. Equakioh (23)
underlies the Martin-Siggia-Rose formalism in quantundfielis just a symbolic representation ¢f (8) and follows from the
theory (QFT), which was directly used inl[5]. This connectdefinition of the path integral [12][13].
the results of the previous section to [5]. The computation of path integrals whose exponent can

Computation of the conditional PDF as explained in thee made quadratic ig and d¢/0z is standard in quantum
previous section was a marginalization process. In our exechanics and, in the case bfl(23), this computation has been
ample, the Markov property(4) made it possible to perforaone in [5] to find the conditional PDF. Indeed path integral
marginalization, since the conditional PDF factors as alped  ([23) is an immediate consequence of the Martin-Siggia-Rose
of certain normalized functions. This observation allovss Uformalism, a more generic framework in quantum mechanics
to apply thesum-product algorithnknown already in coding dealing with stochastic dynamical system$ [5]. To compute
theory. As a matter of fact, the reader can notice thiat (7) is(23), roughly speaking, one needs to sum over the input-
sum-product computation, with a slight difference thatéasl output paths giving the largest contributiori®., the path
of multiple summation, we performed multiple integratipnsorresponding to minimizers of the integral exponen{in) (23

dq . |2 / 2
5% — jvla(z")Pq(2")
2

dz' | Dq, (23)

g
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quantizing in signal dimension

q=rexpjo
qo = 1o exp jdo

discretizing in space dimension

Fig. 1. Graphical computation of the probability densitydtion f(r, ¢|ro, ¢o). The probability of receiving, exp ¢, given transmission of exp ¢; is
the sum over the probability of each possible path betwesm ahd end points shown schematically in the figure. Theahility of each path is the product
of of the transition probabilities of all edges forming thth, computable fronf]5).

This classical path is given by the Euler-Lagrange equatiorevels
with all other paths considered as a perturbation aroursl thi
classical path, serving as a normalization constant in D& P P[ry exp j¢|r; exp j¢;]

It is interesting to see the effect of the change in variables - Z SRqo = ¢ — ¢ = i exp j)),
@) in the sum-product algorithm. One can verify that the all possibled;

equation[(2) when noise is zero has the solution . )
where SRgy = ¢/ — ¢, = rrexpj6;) is a sum-product

. from ¢/ to ¢.. In terms of Fig.[R, this is a sum-product
4(2) = a0 exp(j7ao|*2). (24) from qé to 01F1e of the points on the terminal circle. Note
that, however, each sum-product frofrexp j¢; to 71 exp j6,
In other words, while the signal is propagated down thg a constrained sum-product,i.e., instead of all possible
noiseless fiber, it remains on a circle in the complex plarte Wipaths between these two points, the summation[id (12) is
radius|qo| and rotates counterclockwise with phase velocityerformed over only feasible paths consistent Wit (10)s T
7|qo* rad/m. We call this solution theleterministic path accomplished by multiplying the edge-weights byirdicator
which is a helix twisted around the fiber. With the Changﬁjnctionrepresentindﬂ()), and then Summing over all possib|e
of variable [9), the accumulated phase from the beginnifgths between; exp j; to r; exp j6;. The indicator function

of the fiber to an arbitrary distance is subtracted from s |ater expanded in terms of Fourier series to make analytic
the (nonlinear) phase of the signal, to compensate for themputations possible.

signal rotation. The deterministic path is then a straigig,|
rather than a twisted helix. In this view,_(24) gives rise to

nonlinear phase compensation at the receiver, often used in _ ) _
optical communications. In this section we numerically evaluate the per-sample

\%/apacity of the communication channél (2) to observe the
eneral trend of the capacity as a function of the input ayera
k—1 power. In particular, we are interested in observing theaff
form exp (—jﬂ > |qm|2>. it causes a transformation fromof the signal-dependent noise in the absence of dispersion.
paths to points m=0 The spectral efficiency of the dispersive optical channel as
a function of the input power is known to have a peak [1].
. my e -— . The peak is often attributed to the fact that increasing the
P:go,ar™ @25 ™) = i signal power will increase the noise power as well (which is
signal-dependent). The same type of behavior was observed
In generalg,’ at stagek of the old trellis is mapped to ain [2] for the nondispersive channel as well. In this segtion
number of points at stage+ 1 in the new trellis, depending we numerically observe that with no dispersion, although th
on the total number of paths frog to g;*. These points lie on channel is still nonlinear, the signal-dependent noiseds n
a circle and correspond to rotations of constellationsédll  strong enough to suppress the capacity to zero.
trellis. The structure of the-trellis, in the limitsér, d¢ — 0, We consider a 5000 km optical fiber operating at zero
is same as Fig.]1 except that instead of a single terminat poifyerage dispersion and using distributed Raman ampliicati
at the end of the diagram, there is a circle of radij$. The [L1]. Among several sources of noise, ASE noise is assumed to
transformed trellis is shown in Figl 2. be the dominant stochastic impairment, which can be modeled
The expressiori{7) is then the sum over the probability of @k additive white Gaussian noise. All other nominal simaorat
transition paths starting witly = ¢] and ending in any of the parameters are given in Tablé .1 [4]. [14].
resulting terminal points. The overall sum can be deconghose We sample the conditional PDE_(18) in a high resolution
into a number of subgroups, with each subgroup a sum-prodgdd in the complex plane withV rings and M symbols
fromr; exp j¢; to one of the output terminal points exp j6;, on each ring. The values d¥ and M, or the size of bins,
for somel as in [22). The total sum is then obviously sum oveitepend on the noise standard deviation and are chosen so
all these sub-sum-products corresponding to differens@hahat in each noise standard deviation there are sufficiently

IV. NUMERICAL EVALUATION OF THE CAPACITY

When using[(B), the trellis in Fi§] 1 is transformed to a ne
trellis. Since the change of variablg] (9) has memory of t
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quantizing in signal dimension
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discretizing in space dimension

Fig. 2. Transformation of the g-trellis (the trellis in F[@) under the transformatiofi](9). The result is called theeplid.

many bins so that the conditional PDF of the channel is
normalized over the entire partition. This is very similar t
the multiple ring modulation format, an idea well-known liret
context of AWGN channels and recently employed in optical
communication in[[4].

The accumulated noise level in the optical fiber, albeitaign
dependent, is still much smaller than the noise level indglpi
AWGN channels. Thus compared to the AWGN channels
more resolution is needed to numerically approach the dgpac
of optical channels via this technique. In addition, it isolm
that in a dispersive channel, dispersion and nonlineadty t
some extent cancel out each some of the detrimental effec
of the other, leading to a balanced propagation. In the alesen 15 , , , , , , , ,
of dispersion such balance does not exist anymore, and tt A - T gy
channel exhibits stronger nonlinear properties. This rmake
it_ more. difficult to numerically evaluate the capacity of theFig. 3. Capacity as a function of SNR with peak powar — 10mW and
dispersionless channel. noise spectral density0—!W/GHz. The end of the graph occurs at about

Estimates of the capacity are found and compared using t&f§¢ of the peak power.
methods: the Blahut-Arimoto algorithm with power congitai
[15] and a logarithmic barrier interior-point method [16].

From the phase symmetry of the channel matrix, a capacify; gimylate at increased power levels, a prohibitive number
achieving input distribution will have uniform phase distr- symbols is required

tion. In both algorithms, we enforce this constraint to mtde ) )
problem effectively a one dimensional optimization pragra  Motivated by previous work [2](]5], we searched for peaks

which considerably stabilizes and speeds up the underlyilfgthe capacity curve for different set of fiber parameters.
numerical optimization. Simulations were performed for a wide range of parameters

Note that the Blahut-Arimoto algorithm in its original formtO operate at .lOW and_ _h|gh S.NRS' No pea_lk was_found within
. . . . our computational ability of finding capacity at high SNRs.
was developed for linear inequality constraints, and cabeo

directly used to approximate the capacity in a region witere Although there is no peak in the capacity curve, the phase
is decreasing wittP. One might modify the original Blahut- channel®, — (2, ®) was found to always having a global
Arimoto algorithm to take into account the equality conistia  Mmaximum in itsC — P plot. Intuitively this behavior is a
as well. However since in our numerical simulations cagacieonsequence of the observation that the phase of the receive
is never found to be constant when increasing power, tfigld is uniform and independent of the transmitted sigrfal, i
inequality power constraint is always active at the optisml Very low or high energy signals are sent through the channel.
lution and no such modification is required. Because for km&ior a fixed noise variance, when signal power l&ves small,
SNRs capacity follows Shannon’s limit for linear GaussiaBhase supports little information because the linear phasse
channels, the Lagrange multiplier is started at a largeevaldominates and is uniformly distributed 0, 2]. On the other
and is iterated down to zero at the optimum, with increasidi@nd whenP is large, the nonlinear phase noise takes over
resolution. the whole interval [®x] and the phase sub-channel is unable
The results of the numerical calculation of the capacity al® carry data. This effect is illustrated in Fig. 4.
shown in Figs[1835. Fig]3 shows the per-sample capatity In Fig.[3 we have plotted the capacity and the mutual in-
of channel[(R) as a function of input average signal po®er formation that uncoded phase-shift keying modulation fatsn
for noise spectral density0—! u W/GHz. We can see that can achieve in the zero-dispersion optical fiber. Similatht®
the channel capacity increases indefinitely with the averagWGN channel, binary signaling is suboptimal at low SNRs
input power. Moreover, as evident in Fid. 3, in the high powde.g, SNR < 0). More symbols are required to get close to
regime the capacity growth is linear on a logarithmic scaléhe capacity with increasing SNR.
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Fig. 4. (a) Simulation of the optical phase channel chanperating at
zero-dispersion for 3 transmitted points. It can be seenftrasignals with
very low or high power, the phase of the received signal dostalmost
no information. (b) Capacity of the phase modulation disjperfree optical
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channel as a function of SNR.
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Fig. 5. Achievable information rates in zero-dispersiorticg fiber with

M-PSK modulation formats
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Signal-to-noise ratio [dB]

12

(b)

Fig. 6. (a) Vector diagram showing the signal evolution i@/ incremental
piece of the fiber (b) Information streaming in the dispersiee optical
channel. Note that no information is transferred frdm to R.

V. AN ALGEBRAIC MODEL

Although we used the PDIE(118) to numerically find the ca-
pacity, it provides limited direct information-theoretitsights
into the behavior of the channel. We therefore proceed with a
more intuitive and simplified expression for the channel eiod
We reduce thalifferential model(@) to analgebraic model
which is more tractable for an information-theoretic aséy

The vector diagram in Fig[]6(a) pictorially shows the
evolution of the signal in the:™ incremental piece of the
fiber. The nonlinear termj|Q|?Q is orthogonal to the signal
and, to the first order im, does not change the amplitude. In
other words, since in Fid. 6(a)

|OB| = |OA| + O(?),

the orthogonality of the nonlinearity to the signal implibat
the nonlinear coefficient is responsible only for an angular
rotation; it does not contribute to random fluctuations asro
the radius. Therefore for the description of the amplitude
channel we can set = 0 without incurring any local or global
error at the end of the fiber

|Qui1| = |OD] = [OB + eV, + j/eV,2
= [Qn + VeV| + O(e?), (25)

whereV! andV¥ are in-phase and quadrature components of
the noise, and we have used the fact that white noise preserve
its properties under rotation. Similarly for the phase ci@n

_ 1 2 1 IWVeVR
(I)n-ﬁ-l —(I)n+tan ]VelQn| + tan |Rn+\/EVnI|
=@, + O + j7elQnl” + O(2). (26)
Hence from[(2b)E(26) it follows that
R(z) = |Qo + W (z)| = [Ro + W(2)], (27)
0 = 1)+ [ 1Q+WEPR (@9
0

where W(z)= [ V(A\)dX\ is the Wiener process with
EW (2)W*(2')=0?min(z,2’). The linear part of the phase
®, (z) from Fig.[8(a) is only a function of the amplitud® B|
and the noisd/,,. As a result, settingy = 0 in (@) it is given
by

Bp(2) = £(Qo + W(2)). (29)
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A byproduct of [2¥){(2P) is the compact solution of thendZ; ~ Ng(0,P;), while Z, is a non-zero mean random
nonhomogeneous stochastic ODE (2) variable related to central chi-square random variablgl wi
B E(Zy — EZ5)(Zy — EZ5)T = P,. It can be shown that
Q(2) = (Qo+ W (=) exp(jy / Qo+ W()Pd').(30) p, _ ,2p ( 2] ) Ry ( 1
0

2 1

3 3

The first equation in the systef{27(28) is decoupled frog]aussmn random variables in mod€&l](32) can be further

the second one and hence. neither deterministic amplitﬁoupled by performing the Cholesky factorization of the

O 0| =

), Z, L Z,.

nor its noisy perturbation depends on the Kerr nonlineari = LL* and process_lng_ 'Y as the output. Equations
constant~. In particular, from [(2l7) the probability density ) can also be approximated as

function of R follows, as in [ID). This is schematically shown R =|Ro + 74|,

in Fig.[B(b). Information is streamed from, to (R, ®), but Zs
®, does not excite the output amplitude. © ~ o+ 7L[Ro + V3

Amplitude and phase channels are defined Dy @'(Zg)From [32), nonlinearity introduces two important stochast

Statistics can be directly computed from these equatiods o cts which are always absent in linear channels: signak-

are generally signal-dependant Gaussian noises, and i&auss . ) . .
9 y sig P se beatHZ; and non-Gaussian noise-noise b2at In our

squared (chi-squared) noise-noise beats. The original PDF . . . . . .
. . - problem, signal-noise beat is a simple signal-dependeseno
can be rederived by calculating these statistics. To sfgnpli . . .
. : . in the form of the product of a Gaussian random variable with
the model, we replace the noise-noise beat terms with worst - : e
. ) i .—amplitude of the signal and stands for the amplification ef th
case Gaussian noises with the same mean and covarianc

matrix. In addition, we ignore the linear phasie compared noise with signal during the propagation in the fiber. Noise-

to @y, which is stochastically valid foP > 2. Though noise beat is related to chi-square random variables, wikich

. . o . S independent of the signal, orthogonal to signal-noise badt
it is possible to calculate the statistics directly, it imgeally : : : . .
. . L represents the gradual interaction of the Gaussian noite wi
easier to replace the Wiener process with its Karhunen;daoeItself through the nonlinearity
(KL) expansion in order to substitute the correlated sumnth wi '
summations with uncorrelated terms and ease the followin
calculations. We are in accord df [17] concerning the use o
Karhunen-Loéve expansion for such simplification. The KL
expansion for the Wiener process redds [10] The algebraic model given in the equationl(32) i a 2
MIMO conditionally Gaussian channel model. It is very
closely related to the Rician fading channel model, exdegut t
the term which comes directly from the signal at the output
of (32) is the square of the signal, rather than the signelfits
where{ X} ~ IID N¢(0,02L) is a sequence of independentiowever it still does not seem amenable to a closed form
identically distributed zero-mean complex Gaussian ramda@xpression for the capacity.
variables, and eigenvalues, and eigenfunctiong),(z) are For a simple intensity-modulated direct-detection channe
defined as (20), it is known that half-Gaussian distribution for their
amplitude {.e., a Gaussian distribution truncated and normal-
Ur(z) = V2 sin (Mz) ’ 0<z<L, ized to nonnegative arguments) comes close to the cap&tity [
2L [Q]. Motivated by this, in this section we evaluate the muitua
2 information that the half-Gaussian distributi@yf can achieve
(2k —)m for the zero-dispersion optical channel, thé)é corresponds

At the end of the fibee = £ we have, after some algebra,tO the density function

1%, P> oL,

|. BOUNDS ON THECAPACITY — PERFORMANCE OF THE
HALF-GAUSSIAN DISTRIBUTION

W(z) = ZUka¢k(2)7 0<z< L,
k=1

O =

— 2 exp(—28) if vy >0,
R = |Qo + Z1[* = 3 + 2R(QoZ1} + |74, Froct0 (o, 60) = {SWW P et
To .
2
~ 2, 2
o~ +L (RO + \/§§R{QOZQ} + 23) + CD e show that, interestingly, a distribution with a trunchte
Gaussian profile on the amplitude and uniform phase provides
where Z, ~ Nc(0,0%L), Zy ~ Nc(0,0°L), EZ1Z5 = an excellent global lower bound for the zero-dispersioficapt
V35\/L and Z3 = Y72, 07| X,.|? is a non-Gaussian randomfiber, and is asymptotically capacity-achieving in a highfSN
variable correlated witt¥; and Z,. In matrix notation region whereP > max{%, o?L}. Note that the power
of Q* is P = (1 — 2)P = 0.36P.
Y~ X+HZy +2,, Yz mod2r, (32) Although the algebraic moddl (B2) is much more tractable
in which than [2) or the PDF[(18), estimating the resulting output

entropy for@* is still complicated, thouglfy, v, (Y;,Y,) can

v_ < R? > S ( R? > H— ( Ry 0O ) be computed explicitly. In the case of a simple optical istn

% f—g + R channel, the data processing inequality for relative qi¢®
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was used in[[9] to bound output entropy in terms of inputased upper bound developed|in [9]
entropy, by transferring the difficulty to the input side.igh 1 1
technique however is not immediately implementable for the Cu < 5 log(p) — 3 +op(1),
two-dimensional problem here. We use several observation

based on the algebraic model to evaluate the mutual inforn\/}éﬁere op(l) — 0 whenP — oo. We conclude that the

tion for the distributionQ*. capr?cny of tr;)e zero- dlsperS|on opﬁuca! channel asymgady,
Let fv, x,.1(Y2|X2, H) be the conditional probability density " the region > max{ 75z, 0L}, is

function of the phase channel in the simplified model (32). 1

ReplacingZ, with a worst-case Gaussian random variable with Cr~3 log( )~ 9°

the same covariance matrix for the purpose of the lower bound gjstribution with a half Gaussian profile for the ampliaud

we have and uniform phase is capacity achieving at such high powers.
= 1 (Yy + 2kT — X2)?
Xz, H) = — . . . . .
Frapxs Y2 X, H) k;m 202 P 209, B. Capacity lower bound in the medium-power regime

As mentioned before, in a power region whefePo? L3 <
where o3, is the variance ofYs, and the summation is a6x2, the effect of the phase wraparounds is negligible and
result of mod2r reduction. Pictorially fv,x, u(Y2[X2, H) is  the phase channel qualitatively acts similar to the amgitu
the summation of Shlfted Gaussians separated by distance channel. The resulting model is then similar to two ampktud
However if 202L (v£)* P < (2m)? all Gaussians are local- channels correlated with each other
ized in the |nterval$ (—Dr ()7 centered approximately
at the mean nonlinear phase noise and only one Gaussian is Y =X+HZ + 2, (33)
present in the interval of interest. In this region we would bwhere nowy is extended over the entire real line. We proceed
able to find a lower bound by ignoring phase wraparounds. bound the mutual information for the distributigp and
Conversely, if 202L (v£)*P > (2m)? all Gaussians look model [3B)
globally flat and from the symmetry of pairwise terms around

. _ 2 . p2
the middle term, conditional phase tends to be uniformly I(R, ®; Ro, ®o)lq- = I(R", ®; Rg, Po)lo-
distributed in[ ==L (k;é)“]. In this case, we would be able = h(R? ®) — h(R?, ®|RF, Do)
to lower bound capacity by treating phase noise as a uniform = h(Y) — h(Y|X).

random variable independent of the channel input. We make
these intuitive statements precise in the next two sulmsesti |t ¢@n be shown thaZ, L Z, and therefore at the end of
We also observe that in the zero-dispersion channel,ft¢ fiberz = £ we can write

follows from phase symmetry that the capacity-achievimgin P =E[(Y —EY)(Y —EY)7|X]

distribution is uniform in phase, and thus the search for the 9 1 1
optimal input distribution should be really done only oveee *LR3 ( 1 2 ) e ( i ) 5
dimensional distributions. When applying the input diziri 3 3.6
tion Q* to the original PDF[(1I8), the sophisticated dependené\?d 4p2 1

on ¢ terms disappears since input phase is assumed to be detP = (R§ + R20°L + 60452).

uniform. We therefore use the exact original PDF (18) to find N
the output entropy, while conditional entropy is computenhf 1 herefore for the conditional output entropy

the algebraic mode[(32). Offset teriwg | det J|, with J being h(Y|X) = log(vL) + Ex[R(Y|X = Xo)]

the Jacobian of the transformation relating these two nsodel 1 )

added to account for the mismatch between these two models. < log(7£) + ERo,@, [ log((2me)” det P)] - (34)
— log(7£) + log(2 Ljog(ZE

A. Capacity bounds in the high-power regime = log(yL) + log(2me) + 2 08( 3 )

: : 1
In the the high power regime whergPo? L3 >>_6772, the - + = Epy[log(R2 + a102L)(R2 + aso®L)], (35)

signal-dependent phase noise takes over the entire phase in 2

val [0, 27r] and we conclude that phase carries no informatiofh which a; = 323 anday = 3= \/_ Note that the entropy

It follows that in this regime the zero-dispersion mod8l (23f the small extra non-Gaussian ASE-ASE noise t@nwas
is reduced to the optical intensity-modulated direct-c®@ upper bounded if{34) by its equivalent worst-case Gaussian

channell(2D). For the latter channel, a lower bound was eérivior the half-Gaussian distribution, with the help ofl[18]eon
in [8] under average power constraint which is asymptdiicalcan verify that

exact. In fact, applying distributio®* to the amplitude PDF

1 1 1
(I39), it is easy to show that ERO[5 log(R2 + ¢*0*L)] = 5 log(P) — 3 log(2) — 5¢
1 1 2520 3 2520
Cr > 5 log(p) — 5, ~ L% = h,1,02,2),
2 2 oy HL1L (5,2, 55)
whereCy is the capacity in the high-power regime, and- . o2r

P /oL is the signal-to-noise ratio. Moreover from the duality- + 5By 55), (36)
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where (=0.5772 is the Euler constanty € R*, Erfi(z) =
—jerf(jz) is the imaginary error functior [18]

1 2 1 1

—=(2 St —a 4. 1
ﬁ( T+ ze” + 227+ ooat ), |z < 1,
and H(p, q,z) is the Hyper-geometric function

Erfi(x) =

3 > 1 4

4

S
+105x + ...

o k+1
o (k+3)(k+2)

From [35)4(36)
h(Y|X) < log(Po*L) + log(vL) + log(2me)
oL
—% log(3) —log(2) — ¢ + F(Wv ai)
oL
+F(Wvoéz)- (37)
where

F(z,0) = SEfi(Va?r) - oeH (1, 1], [g, 2, a%a).
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Fig. 7. Fundamental transmission regimes in fhe- o2 plane. The line

P = C102 marks the boundary between high and low SNR regimes, where
the amplitude channel is approximately on, or approxingadé. The curved
boundary is of the fornP = % and separates two regions where the phase
channel supports, or stops, to support information.

the product of the signal and noise powers. In the low-power
regime whereP < oL the linear phase cannot be ignored
relative to the nonlinear phase noise.

Output entropyh(Y) cannot be straightly computed similar
to A(Y|X) from the algebraic mode[(B3). As explained at VII. TWO-DIMENSIONALITY OF THE CAPACITY

the beginning of this section, we instead exploit the phasea distinguishing feature of the capacity of the systé&in (2) is
symmetry of [1B) and compute(Y) directly from the original the two-dimensionality of the capacity as a function of both

accurate PDA(18). The output PDF is computed as

T2
exp (_W

2P
L P) = 1+erf(y] ——m———
Ira(r,¢) o ﬁ(273+02£)[ ( 2L(2P + o2L)
exp —ng
~ 2 (L* ﬁ) r>0, (38
2w

(2P + 02L) N

where the asymptote of the Bessel functidp(z)
— expa has been used fo| > 1, and = ~ 1. Note

that this means that with uniform input phase, from the poiret

of view of input-output densities, the zero-dispersionroie
acts like the intensity-modulated direct-detection clenn

From [38) and changing the variabfe= R?, fgr: 4(r2, ¢)
is obtained, which consequently leads to

1

h(Y):g log(m) + log(2P + o°L) — %Q +3 (39)

signal and noise powers. Unlike linear Gaussian chanrsds, t
dependency of the capacity of the nonlinear channels tabign
and noise powers is not simply through the ratie- P/o%L.
This is in sharp contrast to AWGN channels where capacity
is completely captured by the signal-to-noise ratio.

For the IM/DD channel{20), it can be shown that although
channel is still nonlinear in signal and noise, capacityrig/o
a function of SNR. This basically follows from the scale-
invariance property of the PDE([19) with respect to the noise
ower. The PDF of the whole chann€[ 118) does not have
such property. By scalind{2), ifQ,V,~) is a solution of
@), so is(AQ, AV, ). This implies that changing the Kerr
coefficient,e.g, when\ — 0, keeps the signal-to-noise ratio
constant while capacity varies by. As a result, capacity is
not completely captured by the SNR. It follows that when
characterizing capacity as a function of SNR, one shouldemak
sure that within the working range of parameters, resuks ar

Finally from (39) and[(37), a lower bound to the capacitpot affected by the choice ¢ ando? for a fixed SNR.
of the zero-dispersion channel in the medium-power range

2
0 LLP< % follows

1 P 1 3 ¢—1
1> =log(—=) + 5
Cu 25 10g(02£) T3 103(727302£3) T
0'2£ O'QE
~Plgp ) = Pl a2) o)

where( = 0.5772 is the Euler constant.

VIIl. SPECTRAL CONSIDERATIONS

Spectral efficiencies of the dispersion-free optical fikeren
been studied in[]2],[15]. In[]2], the author used Pinsker's
formula to relate the spectral efficiency to input-output-co
relation functions. Such a result should be used with cautio
since second-order correlation functions do not captuee th
knowledge of the whole PDF, which is required for the

The first term in [(4D) iS%log(p) and is attributed to computation of the capacity. In fact, Pinsker's formula was
the amplitude channel. The rest of the terms are the phasginally formulated for (linear dispersive) Gaussianvera
contributions to the lower bound. Note that the lower bourfdrm channels. Therefore, the results [of [2] can be viewed as

(@0) depends not only on the ratip= P/o%L, but also on

a lower bound to the capacity, not ultimate achievable rates
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The asymptotic tail of the capacity was proved to begPyz is less than one radian, spectral broadening is negligible.
growing unboundedly in[[5] by an asymptotic analysis. Thi V., is the bandwidth of the pulse at distance z, then
authors then concluded that “a naive straightforward appli
tion of the Pinsker formula for evaluation of the capacity of W. = 3Wo.

a nonlinear channel as, for instance,[ih [2], can lead to gron In most practical optical systems,... exceeds 2. In

conclusions regarding the asymptotic behavior of the d8pacg,ch awideband regimethe effective single-tone bandwidth,

with S/N — oo™ ) ) following Carson’s rule, is
There are a number of points to note when comparing the
results of [2] with [5]. Firstly, while Pinsker’s formula wks W, =Wy + Af+ B, (42)

on waveform channels (lik¢](1)), the finding of [5], is indeed . . . d 2
the per-samplecapacity of the zero-dispersion chanriel (2},n which B is the bgndmdth Ofm@ = @’o(t), and Af
the frequency deviation proportional to the peak power of

which is only a lower bound to the capacity of wavefornt
y pacty e messagen(t). The precise value of the broadening is

) h
del [@). Secondly, and most importantly, [ [5] the aushof vaue of 1 aer
model [1). Secondly, and most importantly, i [5] the autho Ise-dependent, but froln (42) it is qualitatively affingoiak

neglect the issue of spectrum broadening, which is essenfi Taki h K | h
when comparing capacity in bits per channel use (aslin [ ?Wgr'.d"; ng the pelf”‘ F"I’Wefhcfe to the average powehr,
to spectral efficiency in bits per second per Hertz (as_in. [2] andwidth increases linearly with the average power as. we

Below we discuss this spectral broadening issue. ecause capacity in bit/symbol is at most logarithmic in pgw

The nonlinear term in the phase creates new frequenft(:)r such pulse shapes spectral efficiency should vanishgat hi
gerage powers.

components in the pulse spectrum. While the pulse propaga? . . .
down the fiber, its spectrum may grow continuously. The Itfg_ltlows that the dexact;elft;ltlpnshllp be:jtweendblt? rl):er s(glrnbt
amount of spectrum broadening depends on the puise snaf B° R SEERCL BEF N B ENES SREEERE, T S
and generally is proportional to the signal peak power [14]. X . " . o

g y IS Prop gna p b [ proportional since there is no bandwidth broadening. Al

For the zero-dispersion case, eventually the pulse may n . . . .
P y b y other pulse shapes which experience even a slight bandwidth

a large transmission bandwidth when increasing the avera ell tat a i wally (v
launched power. While bit/symbol versus power increas argement at a given average power, eventua y (Whea
00) require infinite bandwidth for transmission. For such puls

indefinitely, bit/sec/Hz may asymptotically vanish withvyer, . X SR
e ha\);ing = peak in i'Zs ca/rv:. - theyfollowing, we rnal%apes, the spectral efficiency asymptotically vanishem as

an analogy with FM signals to estimate the bandwidth growtH: h imal oul h f bits/s/ d d
We assume that the effect of the noise on bandwidth growthT e optimal pulse shape from a bits/s/Hz aspect depends

is negligible, and therefore look at the deterministic $peo on the average launched power and the target distance.e&Squar
broadening. pulse_s, such as R_Z or NRZ pulse formats Whl_ch are common
The solution of [[2) in the absence of the noise is in optical communication, although not bandwidth efficiant
the transmitter, are optimal at high powers or long distance
.(41) For short distances or lower transmitted power levels, uls
shapes like Gaussians which are more spectrally compact at
Since we are interested in estimates of bandwidth, not ti@nsmitter generally give better overall spectral efficie
entire spectrum, one can assume that the input is a singée-to As mentioned earlier, witi2W,7 complex degrees of
signal whose frequency is the maximum frequency compondtgtedom at the input of the fiber, the capacity of the wave-
of the actual input. The terraxp(jv|q(t,0)|%2) individually form channel iS2WoC(5her, 23825 ) bits/sec. If one
can be looked upon as an instance of phase modulation (Fidjjuires the whole pulse at the end of the fiber to re-
with no carrier. The spectrum af(¢, z) in (41) then involves cover data, then the spectral efficiency of such scheme is

Bessel functions and depends on the envelop of the pulse.g%c(wﬁgw 2‘;%’?{7)_ Note that unlike the AWGN chan-

qlt,z) = roexpj(yrgz + do) = q(t,0) exp(jvlq(t, 0)]*2)

For pulses of the form neI,C bandwidth does not cancel out through the ratio of the
signal and noise powers (SNR). Spectral efficiency depends
+A teT, on the initial bandwidthV,, and bandwidth enlargement factor
q(t,0)=e*D L _ A teT, Y. For a fixed maximum input bandwidth, increasing aver-
0 te TNy, age input power or transmission distance, not only detatésr

spectral efficiency by a factor 01}% but also allows more
whereT}, T, are subsets oR andT is theT complement, noise in the system, which results in even worse performance
we haveq(t, L) = e”“‘zﬁq(t,o). For these signals, such as Note that in our discussion of spectrum broadening, we have
constant intensity waveforms, where the nonlinear phaisenoneglected the influence of noise. In particular, in the prese
én1 = yrdz is not a function of time, there is no spectrabf the noise even constant intensity modulation schemds wil
broadening in the zero-dispersion fiber. This is a consezpiemo longer have a time-independent nonlinear phase, angthenc
of the fact that the nonlinearity for such pulses becomdsey will also suffer from spectral broadening. Such bartkwvi
constant across the pulse. For other pulse shapes, a tjualitaenlargement as a result of the noise might be negligiblevat lo
argument can be made for the purpose of asymptotic analysignal and noise powers, but asymptotically wiier> oo will
Two regimes are considered. In tharrowband approximation cause an infinite spectrum broadening and send the capacity
regime where the maximum nonlinear phase ndisg,. = to zero. In addition to this, in practice a small deviatioonfr
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an ideal pulse like NRZ square pulse would lead to the sam 05e

asymptotic result. | Discr_ete inpyt distri'buFion_
The spectral efficiencies of the dispersive nonlinear aptic o " T v iy

fiber has been studied inl[1].1[3[.1[4].][6]. It is often reason 04r Qutput distribution 2

that the peak in the spectral efficiency is the result of the  ossf

signal-dependent noise. Increasing the signal power, ifiepl _ o3} u

noise power to an extent that sends the capacity to zero. | 3 ozsl A

contrast, an important result of this paper implies that the € m S

peak in the spectral efficiency, at least at zero-dispersson o2r ] \

a consequence of spectrum broadening, not signal-depende  ©0.15¢ D

noise. It is a deterministic product of the nonlinearityd arot o1f

a noise property. From equatidn [27) and following Jensen’

inequality, increasing the signal level expands the noeé b . . . . . .

as well, but no more than signal growth rate. 0o 01 02 03 04 05 06 07 08
It is worthwhile to mention that spectrum broadening may Normaized ampitude ofth field [r

be absent in dispersive fibers. f; # 0, the nonlinear Fig. 8. Capacity-achieving input and output distributicatsSNR=2.6 dB.

Schrbd.inger equation is iljtegrable and in particulayteoﬁ The noise power density isWV/GHZ and peak powePy=10 mW.
can exist. These are localized pulses that keep their shape o

periodically recur to their initial state. A fundamentalitam,
for example, suffers from no bandwidth enlargement. It WloulPoisson channel with average and peak power constraiets, th
be interesting to investigate the relationship betweefs/biz  Rayleigh fading channel under average power constrairt [22
and bit/s in the dispersive fiber. and more generally, conditionally Gaussian channels under
Practical application of zero-dispersion optical fibers isertain conditions[[23]. Se€ 23] for a list of known charmel
quite limited compared to the standard fiber. Optical fibetsaving this property.
can operate either at shifted zero-dispersion wavelength oThe amplitude channel il (R7) is closely related to the
1.55 um, or less commonly, at natural 1/8n zero disper- Rician fading channel in the wireless communication. The
sion wavelength. The International Telecommunicationddni authors of [22] proved that the the optimal capacity-adnigv
(ITU) Recommendations G.652 and ITU-T G.653 descriliput distribution for the discrete-time memoryless Righe
single-mode optical fibers optimized to operate respegtae fading channel is discrete with a finite number of mass points
1.31m zero-dispersion and 1.§8m shifted zero-dispersion The same result was proved in[24] for the non-coherent Ricia
wavelengths [[19], [[20]. There are nevertheless various i&ding model
sues concerning the practical application of the nondsper Y; = mX; + AiX; + Zi,
fibers. Since dispersion is absent, nonlinear impairmarth s
as self-phase modulation (SPM) and cross-phase modulatigtereA; andZ; are independent identically-distributed Gaus-
(XPM) might be stronger in nondispersive fibers. This togethsian random variables aneq is a deterministic constant
with spectrum broadening issue limit the application ofdien representing the line of sight component of the fading.
persive fibers in WDM systems. The IM/DD optical channel shares similarities with the
Optical fibers greatly benefit from dispersion managemefRician fading channel. Both have the same type of the signal-
In these systems fiber segments with positive and negatflependent noise, although signal levels are stronger iDIM/
chromatic dispersion are placed in tandem to cancel out chehannels. Note that in fading channels, there is no detésmin
matic dispersion on average. This keeps pulses localizedtifrotation or nonlinear phase noise. The similarity slicog
their time span, and is known to have numerous other benefitgderstood by the virtue of the algebraic modell (32), rather
The resulting system however might not be equivalent to ti@an the original equationl(2) dr (41). Capacity technicares
perfectly non-dispersive model discussed in this papesm Incoding schemes for Rician fading channels might be useful
realistic system, one has a net residual dispersion, Iakey o for IM/DD as well. In particular, the structure of the caggei
sources of noise such as Rayleigh scattering [11], multiph€hieving input distribution tends to be discrete in botsesa
wavelengths and multiple modes which we have not modeledA rigorous proof of the discrete character of the capacity-
in this paper. achieving input distribution for the optical channel is not
presented here. Instead, we perform a number of simula-
tions to reveal this structure numerically. F[d. 8 shows the
capacity-achieving input distribution for the amplitudada
the corresponding output distribution. Like the Ricianiifeg
The capacity of the quadrature additive white Gaussiamannel, there is always a single mass point at the zero
noise channel (complex AWGN) subject to average and petensity with high probability. This is not unusual and &zi
power constraints was proved to be discrete in amplitude win peak-constrained AWGN channels as well. Turning off
a finite number of mass points and uniform in phase [21the transmitter sufficiently frequently helps to stay withine
Discreteness of the capacity-achieving input distributims given power budget, while mutual information is maximized
been established for a number of other channels, such asdkier the remaining degrees of freedom. Like the AWGN

0.05F -

IX. THE STRUCTURE OF THE CAPACITYACHIEVING INPUT
DISTRIBUTION
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18- little or no information at very low and at very high signal-

Discrete input distribution ower levels, an observation that enabled us to find a simple
W Discrete input distributi level b tion that bled us to find I
] ; : o
016} — — — Continuous input distribution . . . . .

| Output distribution 1 lower bound on the capacity of the dispersion-free fiber Wwhic
014} , - Output distribution 2 is asymptotically exact. Although the overall capacity jsab

! " n to the average power constraint does not have a peak dh its

0.12f n " . . Sl s .
n " . P curve and grows indefinitely with input signal power, there

exists an optimal power for which the phase channel reaches
its maximum bits/symbol capacity. For zero-dispersionrébe
neglecting spectral broadening may lead to wrong conahssio
regarding the asymptote of the spectral efficiency.

Probability
o
=} o
oo =

o

o

>
T

APPENDIXA
A STOCHASTIC CALCULUS APPROACH FOR THE

0 20 40 60 80 100 120 DERIVATION OF THE CONDITIONAL PDF
Amplitude of the field (mw*?)

In this appendix we provide a different approach for the
Fig. 9. Capacity-achieving input and output distributicatsSNR=13 dB. derivation of the conditional PDF af)(z) in the per-sample
The noise power density isdV/GHZ and peak powePy=10 mW channel model{2), namelyy.)o(0)(¢(2)[q(0)). The method
is based on simple mathematical techniques for manipglatin
random differential equationge., methods of the stochastic
channel, in low SNRs (SNR<6 dB), simple on-off keying calculus (see.g, [10]).
(OOK) is near-optimal. In this case the channel is off more
often than it is on. The ratio of on-to-off probabilities is30 N
L . A. 1t6 calculus
at SNR=2.5 dB, and decreases with increasing the SNR. ) ) )
The surface of the mutual information as a function of e start by separating the real and imaginary components

the input probability distribution is flat around the optimu ©f @(2) in @), writing

Hence although the capacity optimization problem is a conve 0X1(2) ) )

program with a unique optimum, there are distributions that 9z - X2 (X7 + X5) + Vi(z2),

come very close to the capacity but with quite different X5 (2) ) )

structure. With increasing SNR, the number of mass poirds an 0 TX1(XT + X5) + Va(2), (43)

their locations increases. More powerful numerical mesho here X, (z) = RQ(2), Xa(2) = SQ(2), andVi(2), i = 1,2,

are required o find d|scr_ete mass points at higher SNRS'. are two independent zero-mean real Gaussian processes with
use the solution of the interior-point method as an startlriro(v(z)v(z,» — (02/2)5(z — /)

point to search for discrete distributions using a secogdrla Nlote tilat in strict mathematical terms, channel moflk! (2)
of interior-point optimization. The combined method waedis or @3)) dc;es not exist. To see this le'tbe zero in [R)

to find discrete mass point§ at_SNR=13 dB ir_1 . 9. NO%olution of the equation is thel/(z) _ JoV(2)d, ie,

that the number of_mass points increases conS|der_any Heyme Wiener process. The Wiener processois, however, known
the low POWEr region SNR6 dB' Some of the points MaY45 be differentiable nowhere, to satisi/0z = V(z). To

!oe merged with a slight capacity loss. Indeed _the controll? Solve this issue, stochastic differential equatidn (R)usd
Increase of the_ power show; that- New mass po".‘_ts are crea&g nterpreted via its equivalent integral representation

by splitting a single mass point with high probability intec ) 3

new mass points. With no peak power, new mass points might _ +/ 20d /+/ V(\ds 44
come from infinity as conjectured i [22] for Rayleigh fading Q) = Qo 0 VQlQd: 0 ()d=". (44)
channel under average power constraint. _This eliminates problems with differentiating a stochagtio-

It is interesting to note that even though the capacitess (one could also live in the Schwartz space of distdbsti
achieving input distribution is not unique (in the senset thand consider the original differential equation in the weak
semi-continuous distributions are near-optimal withim et gense).
fordable numerical accuracy), the output distributione@gBs  The system of stochastic differential equationg (43) can be
to be unique. This can be observed in [ig. 8 and[Big. 9, wheféinsformed to polar coordinates via the transformation
the corresponding output distribution is plotted for a chse Y9
and semi-continuous input distribution. Capacity dewaté.1 R=\/X}+ X3, &®=tan ' =. (45)

bits/symbol which is less than 4% error. _ ) ) Xl
However since[(43) is a stochastic system, such a transforma

tion cannot be executed simply based on the ordinary calculu
Roughly speaking, the difference between the classical
We have considered the capacity of the per-sample chanrggserministic calculus and the stochastic calculus steoms f
that arise from a model of dispersion-free optical fiberse Thhe fact that, unlike the classical calculus in which terms p
capacity and capacity-achieving input distribution wevale portional todt? are ignored, we can not neglettl’? (square
uated numerically. We observed that the signal phase sarrid infinitesimal increments of the Wiener process) in statica

X. CONCLUSION
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equations. Intuitively, this is becaudél’ ~ N¢(0,02dz) and Then for any twice continuously differentiable functigix, =)
thereforeE(dW?2) = o02dz, i.e, dW? is of orderdz and cannot
be neglected. To see this more precisely, let us integrae th dg(X, z) = {g'(X,z) + Zai(x,z)aig(x7z)
equation ofX;(z) in @3) fromz to z + Az for small Az i
1
+ =) [B(X, 2)B(X, 2)T;;0:0,9(X, z }dz
Xi1(z+ Az) — X1(2) = —yX3a(2) (X1(2)2+X2(z)2) Az QZJ[ ( ( Jia%:0i9(X,2)
z+Az
+ / Vi(2')d=. + 37 By (X, 2)dg(X, 2)dIW; (2), (48)

0,
Following the classical calculus, the second tenWhe_re g'(X,z) = _ag(x,_z)/az, and g; stands for ordinary
fz+Az Vi(2')d2' is approximated by Vi(z)Az, similar partial differentiation with respect t;.

to the first term. However, it is a fact that the variance Proof: See [10]. |

of the summation of a sequence of independent randomin the context of statistical physics, the first order
variables is the summation of the individual variances. Istochastic dynamical systeni _{47) is called thenlin-
other words, the linearity is on the variance, not the steshdaear Langevin equatianThe quantitiesa(X, z) and B(X, z)
deviation or the radius of the balls (signal level). Therefo are drift and diffusion coefficients. Note that the term
the second term properly is approximated By(z)vAz L1S7[B(X,z2)B(X,z2)7];;0:0;9(X, 2) can be obtained only via
which consequently affects the chain rule for differemiat  @J

This can be also understood from the fact that, when o
discretizes the differential equatiohl (2) at points = ke,

[td calculus (unlesa(X, z) is linear inX).
In the case of{(43)B(X, z) = 2, and all other constants
d are easily extracted froni_(#3). Applying Lemih 2 [01(45),

the continuous-space stochastic procésg:) is replace )
. . the per-sample modell(2) is properly transformed to polar
by a sequence of random vanabl({% , where V;, is a coordinates

sequence of i.i.d zero-mean Gaussian random variables wit

2 _ 2
E|Vk| —9 ) ) Ito calculu
In (@4), any stochastic integral of the form oR —~
foz G(Q(2), 2)V(z')dz" is understood by definition as (%) = 0_2
9z 4R,
n ’}/R2
mean-squaréim Z G(Q(1k), ) (W (z1,) — W(z,_1)) , (46) Lo cos® sin @ Vi (49)
e V2 \—sin®/R cos®/R) \V, )"
where mean-squalin is the mean square probabilistic Iimit,NOte that in [4P) we have assumed
zp = 0 < 21 < -+ < z, = z is a partition of the E(Vi)Vi(z)}=6(z—2'), i=1,---,n, (50)

interval [0, 2], and z;,_; < 7 < z.. Unlike the classical

calculus, the choice of the intermediate po-j-@te [Z;c—b Z;c] to be consistent with the statement of the Lenitha 2, in which
affects the result of integration. Choosing = z;_, leads the amplitude of impulse functions is unit.

to Itd’s interpretation of the stochastic integral, whilsing ~ The radial diffusion termz; is the term which cannot be
{G(Q(11), Th1) + G(Q(T—1), Tk_1)} /2 in (@B) instead of obtained by classical calculus and significantly changes th
G(Q(7x), ), gives Stratonovich's definition. As common infesults. The new channel in the polar coordinaes (49) édfits
this context, in this paper we adopt Itd’s definition, whict@nother Langevin equation whose parameters can be extracte

consequently leads to Itd calculus. from (49).
The following lemma is used when changing variables in a
stochastic differential equation. B. Fokker-Planck equation

Lemma 2 (Itd’s lemma) Let X(z) be an n-dimensional Consider now the Langevin equation (49), in which the
stochastic process evolving according to the followingt firstochastic procesX(z) = [R,®]” evolves in the distance

order stochastic differential equation dimensionz. For a fixedz, X(z) is a random variable with a
probability density functioryx (x, z) parametrized by. Since
dX = a(X, 2)dz + B(X, 2)dW(z), (47) for the information-theoretic purposes we are not inteest

in correlation between intermediate space samples of rando
. processe.g, E{X;(2)X;(z")f}, 0 < z < 2/ < L, a single

wherea(X, z) € C" and B(X,z) € C"*" are respectively congitional PDF at the output of the fiber completely dessib
vector-valued and matrix-valued functions, and elemefits @e ynderlying channel. The stochastic process contairsimu
dW(z) are infinitesimal increments of independent Wiengpore information, but this is irrelevant to our application
processes with Let g(X, z) be a general function in Lemnia 2, independent

of z, and with vanishing boundary terms K, (i.e. if the

E{W;(2)W/(2")} = min(z,2'), i=1,---,n. support of densities extends to infinity, theft-oo, z) = 0).
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One can look at the evolution dg(X, z), which is deter- of ¢ — ¢y. This essentially comes from the fact that in
ministic. The result is a deterministic equation in terms dhe nonlinear Schrodinger equation, the cubic nonlitgasi
g(X, 2) and fx(x, z). Sinceg can be varied to be any changeof the form |Q|?Q, as opposed ta@)3. This roots back to

of variable, it follows thatfx (X, z) should satisfy a certain the underlying physics of the fiber, in which the nonlinear
evolution equation. Let, therefore, fix = x in (48), multiply refractive response of the silica glass to an external light
both sides of[(48) byx (x, z), i.e, the PDF ofX(z) at a fixed beam is deterministically proportional to the intensjty|?

z, and integrate with respect to. Both sides can then beof the incoming beam. The absolute value is responsible for
integrated by parts which transfers differentials frgiix, z) some very important properties of the nonlinear Schroeling
to fx(x, z). Since the resulting integral holds for apyx, z), equation.

the following lemma is obtained (for the case= 1). We proceed to solve the resulting partial differential equa

Lemma 3 (Nonlinear Fokker-Planck equation)et fx(x,z) tion (83). First, we find the marginal PDF of the amplitude
be the probability density function of(z) at a fixed: in the channel alone. Integrating both sides[ofl(53) with respeet t
Langevin equatior@). Then fx(x, z) satisfies the following in the interval[0, 27], assuming phase continuiff(r, 0, z) =

differential equation f(r,2m, z), and performing phase marginalization, we obtain
ofx(X,2) 0 of(r,z) 1 ,0%f(r,z) o2 9 [f(r,z)

1 82 f(’f"o) :6(7'—’{‘0)_
+ 52 X OX. {[B(x, 2)B(x, 2)"]ij fx(x, 2) } . (51) _ N
iy OO% The PDF of the amplitudef(r, z), satisfies[(54). If at = 0,
= ro, then the conditional PDF(r, z|r) is the solution of

above simply gives the desired result. The generalization ). We make the following observations about the resgltin

the multivariable case is, however, complicated since daon DE.

terms are now surfaces and curves, instead of points[Ske [Rgmarka (Scaling Property)Partial differential equatior (54)

for the complete proof. m admits an important scaling property:fifr, z|r) is a solution
Description of the probability density function via theof G4), then so isf(Ar, A>z|Arg) for any real nonzero\.

Fokker Planck equation is incomplete without specifying thSuch scaling is indeed bie symmetry groumf the partial

boundary conditions. In the multivariable case, such aiors  differential equation [(54) and corresponds tocanserved

may render the problem hard to solve analytically. In thiduantity The essential feature of the symmetry group is that

Proof: For the single variable case, the proof outlined

paper, we assume it conserves the set of solutions of the differential equrgti
. , inducing a set of orbits under action by the group. Each
fx(X,z2=0)=d(q — q0), lx‘h@m fx(X,2) =0, Vi symmetry group may be visualized as permuting integral

curves of the partial differential equation among themsglv

ditional PDF fy (x, 2[Xo, zo). In the following, we unambigu-nRemarkS (Robustness) The F_’DF _of the amplitude does
; not depend on the Kerr nonlinearity constanthence the

ously usefx(x, z) instead of fx (X, z|Xo, z0) for the sake of . : .

. ; olperatlon of an amplitude detectae.§, a photodetector) is
brevity. Depending on the structure of the problem, other "

. - : also independent of.
appropriate boundary conditions might be assumed, such as . _ _
periodic, absorbing or reflecting boundary conditions. “We use the scaling property in Remétk 4 to solve the partial
Note that according to the Fokker-Planck equation, matrffifferential equation[(34). Such scaling implies that tatias

B(X,z) in the dynamics of the stochastic process affects/z andrro/z are important quantities for the equatiénl(54).

the PDF in the form ofB(X,2)B(X,z)”. In other words, We therefore search for the solutions of the fofifr, z) =

The delta function implies that we are looking for the co

probabi”stica”y Channemg) is equi\/a|ent to h(TZ—Z, %) Substituting this |ntd:(54) and after Straightforward
o , algebra, we obtain the solution
()= (&)« 5 2)(G) ©2 .
o/ RS V2D /AR fr2) = e 7 o (S2)) (55)
g°z g°z

which corresponds to the following Fokker-Planck equation ) N
where we have scaled so that it stands for a probability

0f(r,¢,2) _ _Wgﬁ n 12 [ﬁ iﬁ] distribution, andf — 6(r — ro) whenz — 0 (if z — 0, then
0% 0p 4~ |or? 12 0¢? Io(Zre) — l\/Ee%) Below we use[{35) to solvé (53)
0\522 T 27 ' '
,ﬂ/t& Note that alternatively one may solMe54) using Renidrk 5:
R (i) (53) since the PDF of the amplitude does not depend omne can
4 or \r )’ assumey = 0 in the original equation{2) and find the PDF
f(r,$,0) =68(r — 19,0 — o). of the amplitude of a complex Brownian motion.

) ) We use the method cfeparation of variableso solve the
Remark3 (Phase Symmetry)lf f(r, ¢,z) is a solution of ppg [53). Assuming/ is separable in and ¢, i.e.,
(53), so isf(r,¢ — ¢1,z) for any ¢;. The PDF is therefore

symmetric with respect to the phases., it is a function f(r,,2) =g(r,2)h(9, z), (56)
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and plugging[(56) into[(33), we get As this paper was going to press, we became aware that

a similar Fokker-Planck approach to describing the stesist

19g(r, 1 Oh(g, 1 Oh(e, X
- 9(r,2) - (9,2) = —yr? M of the model [[R) has been worked out—in the context of
g 0z h 0z hp,z) 0 . . .
nonlinear oscillators—in [25].
N lD{ 1 g(r2) 1 1 9%h(¢,2)
2 2 2
1 gg’z) or reh(rz) 99 APPENDIX B
1 _(g(r’z)) _ (57) USEFUL IDENTITIES
glr,z)or> r
If
1 0h(e,2) i
) _ 58 . 7jm9+zcos(9790)d9 =1, —jmbg 61
0
for some constant, then oo ) )
1 %h(¢,2) o / ze™ %" I, (ba) Iy (cx)dz = %e—” ey Im(i) (62)
hp,2) 99 0
In this case,[[57) allows a separation of variables. Saiuib
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