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Abstract—The capacity of the channel defined by the stochastic
nonlinear Schrödinger equation, which includes the effects of
the Kerr nonlinearity and amplified spontaneous emission noise,
is considered in the case of zero dispersion. In the absence of
dispersion, this channel behaves as a collection of parallel per-
sample channels. The conditional probability density function of
the nonlinear per-sample channels is derived using both a sum-
product and a Fokker-Planck differential equation approach. It is
shown that, for a fixed noise power, the per-sample capacity grows
unboundedly with input signal. The channel can be partitioned
into amplitude and phase subchannels, and it is shown that the
contribution to the total capacity of the phase channel declines for
large input powers. It is found that a two-dimensional distribution
with a half-Gaussian profile on the amplitude and uniform
phase provides a lower bound for the zero-dispersion optical
fiber channel, which is simple and asymptotically capacity-
achieving at high signal-to-noise ratios (SNRs). A lower bound
on the capacity is also derived in the medium-SNR region. The
exact capacity subject to peak and average power constraints
is numerically quantified using dense multiple ring modulation
formats. The differential model underlying the zero-dispersion
channel is reduced to an algebraic model, which is more tractable
for digital communication studies, and in particular it pro vides a
relation between the zero-dispersion optical channel and a2× 2

multiple-input multiple-output Rician fading channel. It appears
that the structure of the capacity-achieving input distribution
resembles that of the Rician fading channel,i.e., it is discrete in
amplitude with a finite number of mass points, while continuous
and uniform in phase.

Index Terms—Information theory, optical fiber, nonlinear
Schrödinger equation, path integral.

I. I NTRODUCTION

A LTHOUGH the capacity of many classical communi-
cation channels has been established, determining the

capacity of fiber-optic channels has remained an open and
challenging problem. The capacity of the optical fiber channel
is difficult to evaluate because signal propagation in optical
fibers is governed by the stochastic nonlinear Schrödinger
(NLS) equation, which causes signal and noise to interact ina
complicated way. This paper evaluates the capacity for models
of the optical fiber channel in the case of zero dispersion.

The deterministic NLS equation is a partial differential
equation in space and time exhibiting linear dispersion and
a cubic nonlinearity, giving rise to a deterministic model of
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pulse propagation in optical fibers in the absence of noise.
When distributed additive white noise is incorporated, a wave-
form communication channel is defined. This channel has an
input-output map that is not explicit and instantaneous, but
involves the evolution of the transmitted signal along the space
dimension.

The exact capacity of the optical fiber with dispersion and
nonlinearity is not yet known. Results so far are limited to
lower bounds on the capacity in certain regimes of propagation
or under some conditions. Some of these works include model-
ing the nonlinearity by multiplicative noise in the wavelength-
division multiplexing (WDM) case [1], assuming a Gaussian
distribution for the output signal when nonlinearity is weak [2],
perturbing the nonlinearity parameter [3], approaching capac-
ity via multiple-ring modulation formats [4], or specializing
to the important case of zero dispersion [2], [5], which is the
focus of this paper.

When dispersion is zero, pulse propagation is governed
only by the Kerr nonlinearity and amplified spontaneous
emission (ASE) noise. This eliminates the time-dependence
of the stochastic NLS, reducing it to a nonlinear ordinary
differential equation (ODE) as a function only of distance
z. For a certain suboptimal receiver, as assumed later in
the paper, transmission is then sample-wise and the channel
can be viewed as a collection of parallel independent sub-
channels, with noise interacting with the nonlinearity in the
same channel, but not with neighboring channels located at
other times. The problem becomes easier to analyze since,
instead of describing the evolution of a random waveform and
its entropy rate, we merely need to look at the evolution of a
random variable and its entropy, which can be described by a
single conditional probability density function (PDF).

In [2], Tang estimated the capacity in the dispersion-free
case using Pinsker’s formula, based on the channel input-
output correlation functions. Tang’s results show that capacity,
C, increases with input power power,P , reaching a peak
at a certain optimal input power, and then asymptotically
vanishes asP → ∞. Estimates of the capacity in the general
case [1], [3], [4], [6] also exhibit this behavior. However,
the results of [2] can be viewed only as a lower bound on
the capacity (even when the nonlinearity is weak), since the
second-order statistics used in Pinsker’s formula do not capture
the entire conditional PDF, which, of course, is required for
the computation ofC.

The conditional probability density function (of the channel
output given the channel input) for the dispersion-free optical
fiber has been derived in [5] and [7]. In [5], the authors used
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the Martin-Siggia-Rose formalism in quantum mechanics to
find a closed-form expression for the conditional joint PDF of
the received signal amplitude and phase. Although they did not
explicitly compute the capacity, they showed that the capacity
asymptotically goes to infinity for large signal-to-noise ratios
(SNRs).

With the exception of a few papers (e.g., [1]–[6]), optical
fiber communication is largely unstudied from the information
theory point of view. Most previous papers on the capacity
of optical fibers have focused on the dispersive channel
directly from its description given by the stochastic non-
linear Schrödinger equation. This direct approach has had
limited success, due to the complexity of the underlying
channel model and its limited mathematical understanding.
The stochastic nonlinear Schrödinger equation with dispersion
parameter set to zero, on the other hand, leads to a model
which is the basic building block of the dispersive optical fiber
channel. It is therefore of fundamental interest to first study the
zero-dispersion case. In this paper, we pursue such a bottom-
up approach. Below, we highlight some of the contributions
of this paper.

In Sec. III-A, we provide a simple derivation of the
conditional PDF of the channel output given the channel
input. Our approach is based on discretizing the fiber into
a cascade of a large number of small fiber segments, which
leads to a recursive computation of the PDF. An alternative
perspective, using a stochastic calculus approach, is provided
in Appendix A.

In Sec. III-B, we show that the probabilistic channel model
in optical fibers can be understood in terms of the sum-product
algorithm, or as a path integration. Such path integrals underlie
the Martin-Siggia-Rose formalism, which was employed in
[5].

In Sec. IV, for the first time to the best of our knowledge, the
capacity of the dispersionless fiber is numerically evaluated as
a function of the signal-to-noise ratio, for fixed noise spectral
densities. The results re-affirm the conclusion of [5] that the
channel capacity (when measured in bits per symbol) grows
unbounded, at a fixed noise level, with increasing signal power.

In Sec. V, a decomposition is established between the am-
plitude and phase channels. The decoupling has the property
that the input phase does not statistically excite the output
amplitude. Using this amplitude and phase decomposition, the
asymptotic result of [5] is then easily proved.

Also in Sec. V, a simplified model is derived for the
dispersion-free optical channel. Simplification is achieved by
reducing thedifferential modelunderlying the zero-dispersion
channel to analgebraic model, which is more tractable for
digital communication studies. Instead of a stochastic differ-
ential equation, the channel’s input/output relation is explicitly
expressed as a simple 2×2 MIMO system, similar to MIMO
wireless multi-antenna models.

In Sec. VI we return to the amplitude/phase decomposition,
and show that the phase channel exhibits aphase transition
property: for very small or high signal power levels, the
phase channel conveys little information, and the maximum
information rate is achieved at a finite optimal power. This
phase transition property partitions theP-σ2 plane into four

regions which behave in different ways. This partitioning also
enables us to find practically significant bounds on the capacity
in some of these regions.

In [8] it was shown that for a simple intensity-modulation
direct-detection (IM/DD) optical channel, a half-Gaussian dis-
tribution is asymptotically capacity-achieving at high SNRs.
An important conclusion of Sec. VI is that, a two-dimensional
distribution with a half-Gaussian profile on the amplitude
and uniform phase provides an excellent global lower bound
for the zero-dispersion optical fiber channel, which is simple
and asymptotically capacity-achieving in a certain high SNR
regime whereP → ∞ and noise power is fixed.

In Sec. VII, we show that the channel capacity is indeed a
two-dimensional function of the signal and noise powers and,
unlike classical linear channels, is not completely captured by
the signal-to-noise ratio.

In Sec. VIII, we address the relationship between the
spectral efficiency in bits/s/Hz and capacity in bits/symbol.
For many practical pulse shapes, even though the capacity (in
bits/symbol) grows without bound (in agreement with [5]),
spectral broadening resulting from the fiber nonlinearity sends
the spectral efficiency (in bits/s/Hz) to zero (in agreementwith
the estimates of [2]). This result also agrees with the spectral-
efficiency estimates of [1], [3], [4], [6] for fiber channels with
nonzero dispersion.

In Sec. IX, the optical fiber at zero dispersion is related
to the Rician fading channel in wireless communication.
Although we do not provide a formal proof, numerical sim-
ulations indicate that the optimal capacity-achieving input
distribution for the dispersion-free optical fiber appearsto be
discrete in amplitude and uniform in phase.

II. N OTATION

The notation in this paper is mostly consistent with [9].
We use upper-case letters to denote scalar random variables
taking values on the real lineR or in the complex planeC, and
lower-case letters for their realizations. Random vectorsare
denoted with bold-face capital letters while their realizations
are denoted by boldface lower-case letters. All deterministic
quantities are treated as realizations of random variables. In
order to avoid confusion with scalar random variables, we
represent constant matrices with sans serif font, such asK,
M, P, and important scalars with calligraphic font such as
powerP , bandwidthW , capacityC, rateR. We reserve lower
case Greek and Roman letters for special scalars. Real and
complex normal random variables are shown asNR andNC.
We use the shorthand notation{Zk} ∼ IID NR(0, σ

2) to
denote a sequence of real, independent, identically-distributed
zero-mean Gaussian random variables with varianceσ2.

III. C HANNEL MODEL

Let Q(z, t) be the complex envelope of the propagating
electric field as a function of distancez and timet, the latter
measured with respect to a reference frame copropagating
with the signal. Signal evolution in optical fibers with zero
dispersion and distributed Raman amplification is modeled
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by the stochastic nonlinear ODE (see,e.g., [4, Eqn. (1) with
β2 = 0])

∂Q(z, t)

∂z
= jγQ(z, t)|Q(z, t)|2 + V (z, t),

Q(0, t) = Q0(t), 0 ≤ z ≤ L. (1)

Here L is the length of the fiber,V (z, t) is a zero-mean
Gaussian process uncorrelated in space and time,i.e., with

E[V (z, t)V ∗(z′, t′)] = σ2
0δ(z − z′, t− t′),

andQ0(t) is the complex envelope of the electric field applied
at the fiber input. Finally,γ is the Kerr nonlinearity param-
eter andσ2

0 is the noise power spectral density. Following
[4], we assume the fiber parameters given in Table I, with
σ2
0 = nsphνα = 5.906×10−21 W/(km ·Hz). The transmitted

power is denoted as

PQ0
=

1

T

∫ T

0

|Q0(t)|2dt.

The transmitter will be constrained so thatEPQ0
= P0.

The stochastic differential equation (1) is interpreted inthe
Itô sense via its equivalent integral representation [10]. Note
that in (1) the white noiseV (z, t) is added to the spatial
derivative of the signal, as opposed to the signal itself, and
has units ofW1/2/km. Note further that (1) contains no loss
parameter, since losses are assumed to be perfectly compen-
sated for by Raman amplification [11]. The time variablet
appears in (1) essentially as a parameter. Some limitationsof
the zero-dispersion model (1) are discussed in Section VIII.

Suppose the communication channel (1),i.e., the waveform
channel fromQ(0, t) to Q(L, t), is used in the time interval
[0, T ] for some fixedT and that the input waveformQ0(t) is
approximately bandlimited toW0 Hz. It is well known that,
if W0T ≫ 1, the set of possible transmitted pulses spans
a complex finite-dimensional signal space (called here the
input space) with approximately2W0T dimensions (complex
degrees of freedom). Since the channel is dispersionless, the
pulse duration remains constant during propagation; however,
as discussed in Sec. VIII, the pulse bandwidth may contin-
uously grow because of the nonlinearity. We denote byWL
the bandwidth of the waveform received at the output of the
fiber. The received waveform is an element of a signal space
(called here the output space) of dimension2WLT ≥ 2W0T .
In other words, the dimension of the signal space grows while
the signal is propagated.

We consider a model in which noise throughout the fiber is
bandlimited toWL using in-line channel filters. Therefore,
throughout the fiber, the noise lies in the output space.
Both the input waveform and the output waveform can be

TABLE I
FIBER PARAMETERS

nsp 1 spontaneous emission factor
h 6.626 × 10−34J · s Planck’s constant
ν 193.55 THz center frequency
α 0.046 km−1 fiber loss (0.2 dB/km)
γ 1.27 W−1km−1 nonlinearity parameter
B 125 GHz maximum bandwidth

represented by samples taken1/2WL seconds apart. At the
fiber input, where the signal is constrained to lie in the input
space, information can be encoded in samples corresponding
to the input signal degrees of freedom (called the principal
samples). All other samples are interpolated as appropriate
linear combinations of the principal samples. These samples,
though not innovative, carry correlation information, much like
parity-checks in a linear code, that are potentially usefulfor
optimal detection.

In this paper, however, we consider a suboptimal receiver
that ignores the additional samples, and bases its decisiononly
on the principal samples. The resulting channel is consequently
a set of parallel independent scalar channels (called per-sample
channels) defined via

∂Q(z)

∂z
= jγQ(z)|Q(z)|2 + V (z),

E[V (z)V ∗(z′)] = σ2δ(z − z′), E|Q0|2 ≤ P , (2)

whereσ2 = 2WLσ2
0 , Q0 ∈ C is the channel input sample

value, andP is the per-sample power. The output of the
channel isQ(L) ∈ C.

A. A Simple Recursive Derivation of the Conditional PDF

The differential model in the form given by (2) is not
directly suitable for an information-theoretic analysis.Instead,
we require an explicit input-output probabilistic model,i.e.,
the conditional probability density function of the channel
output given the channel input. The conditional PDF ofQ(L)
given Q(0) was derived in [7] and [5]. Although the direct
calculation of moments of the received signal, or equivalently
the moment generating function as in [7], leads to an expres-
sion for the PDF, it does not provide enough insight into the
statistical nature of the channel. The approach of [5] relies on
the Martin-Siggia-Rose formalism in quantum mechanics and
expresses the PDF as a path integral. Below we derive the
PDF in a simple way, by breaking the fiber into a cascade of
a large number of small segments, and recursively compute
the PDF. With this approach, we are able to illustrate some
important properties of the statistical channel model.

In order to describe the statistics of the per-sample channels
in (2), we look at the fiber as a cascade of a large number
n → ∞ of pieces of discrete fiber segments by discretizing
the equation (2). The recursive stochastic difference equation
giving the input-output relation of thekth incremental channel
is given by

Qk+1 = Qk + jǫγ|Qk|2 +
√
ǫVk, 0 ≤ k ≤ n− 1, (3)

in which ǫ = L/n, and the discrete noiseVi ∼ NC(0, σ
2) has

been scaled by the square root of the step size,i.e., multiplied
by 1/

√
ǫ. Note that from (3) the cascade of incremental fiber

segments forms a discrete-time continuous-state Markov chain

Q0 → Q1 → · · · → Qn−1. (4)

GivenQ0, the signal entropy is increased by a tiny, signal-
dependent, amount in each of these incremental channels. In
fact, the conditional entropy increases more for transmitted
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signals with higher amplitude than those with smaller ampli-
tude. In a sphere-packing picture, “noise balls” surrounding a
transmitted symbol increase in volume as the symbol ampli-
tude increases, and indeed are not perfectly spherical.

Each of the incremental channels, though still nonlinear with
respect to the input signal, is conditionally Gaussian withPDF

fQk+1|Qk
(qk+1|qk) =

1

πσ2ǫ

exp

(

−
∣
∣qk+1 − qk − jǫγqk|qk|2

∣
∣
2

ǫσ2

)

. (5)

Using the Markov property (4), the probability density func-
tion for the cascade of two consecutive incremental channels
is given by the Chapman-Kolmogorov equation

fQk+2|Qk
(qk+2|qk) =

∫

C

fQk+2|Qk+1
(qk+2|qk+1)fQk+1|Qk

(qk+1|qk)dqk+1. (6)

Repeated application of (6) gives the overall conditional PDF

fQn|Q0
(qn|q0) =

∫

C

. . .

∫

C

1

(πσ2ǫ)n

n−1∏

k=0

exp

(

−
∣
∣qk+1 − qk − jǫγ|qk|2qk

∣
∣
2

ǫσ2

)
n−1∏

k=1

dqk (7)

=
1

πσ2ǫ

∫

C

. . .

∫

C

exp

{

− ǫ

σ2

[
n−1∑

k=0

∣
∣
∣
∣

qk+1 − qk
ǫ

− jγ|qk|2qk
∣
∣
∣
∣

2
]}

×dqn−1

πǫσ2

dqn−2

πǫσ2
· · · dq1

πǫσ2
, (8)

whereqk = rk exp(jφk) and integrations are performed over
the entire complex plane.

We proceed to solve multiple integrals (8). First a change
of variables is introduced to make the exponent quadratic in
qk. The integrating factorfor the noiseless equation (2) serves
as the new variable

pk = qk exp

(

−jǫγ
k−1∑

m=0

|qm|2
)

k = 1, . . . , n− 1. (9)

Plugging (9) into (8), each term in the exponent, except the
first and last terms, is

ǫ

∣
∣
∣
∣

qk+1 − qk
ǫ

− jγ|qk|2qk
∣
∣
∣
∣

2

= ǫ

∣
∣
∣
∣

pk+1 exp(jǫγ|pk|2)− pk
ǫ

− jγ|pk|2pk
∣
∣
∣
∣

2

= ǫ

∣
∣
∣
∣

pk+1 − pk
ǫ

∣
∣
∣
∣

2

+O(ǫ2),

where we have assumed(pk+1 − pk)/ǫ is bounded. It follows
that each middle term in the exponent of (7) is simplified to

ǫ
∣
∣
∣
pk+1−pk

ǫ

∣
∣
∣

2

, which is correct up to first order inǫ.
The treatment of the boundary terms is different and in

particular they lead to new expressions. The first term is treated

as above to give

ǫ

∣
∣
∣
∣

p1 exp(jǫγ|q0|2)− q0
ǫ

− jγ|q0|2q0
∣
∣
∣
∣

2

= ǫ

∣
∣
∣
∣

p1 − q0
ǫ

∣
∣
∣
∣

2

+O(ǫ2),

while the last term reads

ǫ

∣
∣
∣
∣

qn exp

(

−jγǫ
n−1∑

k=0

|pk|2
)

− pn−1

ǫ

∣
∣
∣
∣

2

+Q(ǫ2).

As can be seen, the end point is now interpreted as

qn exp(−jǫγ
n−1∑

k=0

|pk|2) which has a variable phase. In order

to consistently convert all correlated integrals to Gaussian type
integrals, one can assume that the received phase

θn = φn − ǫγ
n−1∑

k=0

|pk|2, (10)

is constant, and then integrate over0 ≤ θn < 2π. For fixed
θn, the resulting integrand is an exponential with a complex
quadratic polynomial in the exponent, and boundary terms
r0 exp jφ0 and rn exp jθn. However phase constraint (10)
implies that for each value ofθn, integration is performed

under the constraintǫγ
n−1∑

k=0

|pk|2 = φn − θn.

To enforce constraint (10), the function under the integration
is multiplied by thedelta functionrepresenting that constraint,
giving

δ

(

φn − θn − ǫγ

n−1∑

k=0

|pk|2
)

=

∞∑

m=−∞
δ

(

φn − θn − ǫγ

n−1∑

k=0

|pk|2 + 2mπ

)

=
1

2π

∞∑

m=−∞
exp

[

jm

(

φn − θn − ǫγ

n−1∑

k=0

|pk|2
)]

.

where we have used phase periodicity and expanded the train
of impulse functions as a complex Fourier series.

Summarizing, the conditional PDF now reads

fQn|Q0
(qn|q0) =

1

2π

∞∑

m=−∞
ejmφn

2π∫

θn=0

e−jmθn

1

πσ2ǫ

∫

C

. . .

∫

C

exp

{

−ǫ
n−1∑

k=0

[

1

σ2

∣
∣
∣
∣

pk+1 − pk
ǫ

∣
∣
∣
∣

2

+ jγm|pk|2
]}

× dpn−1

πǫσ2

dpn−2

πǫσ2
· · · dp1

πǫσ2
, (11)

where we assumedp0 = q0 andpn = rn exp jθn, and used the
fact that the Jacobian of the transformation (9) is unity, since
it represents a lower triangular matrix with unit magnitudeon
its diagonal elements.
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The integrals in (11) are complex Gaussian and can be
solved directly. We proceed to calculate

Tm(rn) =

2π∫

0

dθne
−jmθn

∫

C

. . .

∫

C

dpn−1

πǫσ2

dpn−2

πǫσ2
· · · dp1

πǫσ2
×

1

πσ2ǫ
exp

{

−ǫ
n−1∑

k=0

[

1

σ2

∣
∣
∣
∣

pk+1 − pk
ǫ

∣
∣
∣
∣

2

+ jγm|pk|2
]}

. (12)

This is done by first integrating over phases, starting from
the very last termθn where only one variable is involved. It
can be shown that (12) simplifies to

Tm(rn) =

(
2

ǫσ2

)n

e−jm(θ0+γǫr20) exp

(

−r
2
n + r20
ǫσ2

)

∞∫

rn−1

· · ·
∞∫

r1

drn−1 · · · dr1

n−1∏

k=1

rk exp

{

−2 + jmγǫ2σ2

ǫσ2
r2k

}

Im

(
2rkrk+1

ǫσ2

)

(13)

× Im

(
2r1r0
ǫσ2

)

, (14)

whereIm denotes themth order modified Bessel function of
the first kind, and where we have used (61) from Appendix B.

Integrals (14) involve products of Bessel functions and
can be computed iteratively with the help of identity (62) in
Appendix B. We have

Tm(r2) =
2

ǫσ2(2 + jmγǫ2σ2)
e−jm(θ0+γr20ǫ)

× exp

{

− 1

ǫσ2

(
1 + jmγǫ2σ2

2 + jmγǫ2σ2

)

(r20 + r22)

}

× Im

(
2r0r2

ǫσ2(2 + jmγǫ2σ2)

)

.

As the calculations forTm(r2) and identity (62) suggest,
Tm(rn) keeps its structure forn ≥ 3, and can be parametrized
in the form

Tm(rn) = 2bn(m)e−jm(θ0+γr20nǫ) exp
{
−an(m)(r20 + r2n)

}

× Im (2bn(m)r0rn) , (15)

wherean(m) and bn(m) are parameters to be determined. It
can be shown thatTm(rn) satisfies

Tm(rn+1) =

∞∫

rn=0

K(rn, rn+1)Tm(rn)drn, (16)

where kernelK(rn+1, rn) is

K(rn+1, rn) =
2

ǫσ2
rn

exp

{

− 1

ǫσ2

[
r2n+1 + (1 + jmγǫ2σ2)r2n

]
}

Im(
2rnrn+1

ǫσ2
).

Substituting (15) into (16) and comparing exponents on both
sides, recursive equations are obtained foran(m) andbn(m),

namely,

bn+1 =
bn

ǫσ2[an + 1+jmγǫ2σ2

ǫσ2 ]
,

an+1 =
1

ǫσ2
− 1

(ǫσ2)2[an + 1+jmγǫ2σ2

ǫσ2 ]

= an − jmγǫ2σ2

ǫσ2
− b2n

[an + 1+jmγǫ2σ2

ǫσ2 ]
,

with

a2 =
1 + jmγǫ2σ2

ǫσ2(1 + jmγǫ2σ2)
, b2 =

1

ǫσ2(2 + jmγǫ2σ2)
.

Solving these equations, we obtain expressions fora(m) and
b(m) in the limit asn→ ∞ (nǫ = L):

a(m) = lim
nǫ=L
n→∞

an(m) =

√
jmγ

σ
coth

√

jmγσ2L,

b(m) = lim
nǫ=L
n→∞

bn(m) =

√
jmγ

σ

1

sinh
√

jmγσ2L
. (17)

Finally, using (17) we obtain the conditional PDF ofQ in
the zero-dispersion model (2)

f(r, φ|r0, φ0) =
fR|R0

(r|r0)
2π

+
1

π

∞∑

m=1

ℜ
(

Cm(r)ejm(φ−φ0−γr20L)
)

, (18)

wherefR|R0
(r|r0) is the probability density of the amplitude

of the received signal

fR|R0
(r|r0) =

2r

σ2L exp(−r
2 + r20
σ2L )I0(

2rr0
σ2L ), (19)

and where the Fourier coefficientCm(r) is given by

Cm(r) = rb(m) exp
[
−a(m)

(
r2 + r20

)]
Im(2b(m)r0r).

Remark1. Note thatf(r, φ|r0, φ0) is symmetric with respect
to the phaseφ. We rely on this property in Sec. IV to simplify
the optimization problem in the capacity question.

Remark2. One can verify that the conditional PDF of the
amplitude of the received field given the amplitude of the
transmitted signal (19) is in fact the conditional PDF for the
intensity-modulated direct-detection (IM/DD) channel

Rk =
∣
∣Qk

0 + Zk

∣
∣ k = 0, 1, . . . , (20)

whereZk ∼ NC(0, σ
2L). It is easy to see that the conditional

PDF depends only onR0 = |Q0|, as in (19).

The conditional PDF (18) defines a communication channel
having the complex plane as the input alphabet, for which the
information capacityC is defined as

C(P , σ2L, γ) = max
f(r0,φ0)∈F

I(R,Φ;R0,Φ0)

subject to ER2
0 ≤ P , (21)

where

I(R,Φ;R0,Φ0)=

∫∫∫∫

f(r0, φ0)f(r, φ|r0, φ0)

· log f(r, φ|r0, φ0)
f(r, φ)

dr0dφ0drdφ,
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and whereF is the space of probability densities, and
f(r, φ) =

∫∫
f(r, φ|r0, φ0)f(r0, φ0)dr0dφ0.

The per-sample capacity (21) can be related to the capacity
of the waveform dispersion-free optical channel. It can be
argued that a uniform power allocation is optimal for principal
samples. The capacity of the entire ensemble of the principal
per-sample channels is

2W0T C
( P0

2W0T
,
2σ2

0LWL
2W0T

, γ

)

bits per channel use,

which, as discussed before, is a lower bound on the capacity
of the zero-dispersion waveform channel (1). Therefore in this
paper we only estimate the per-sample capacity of (2).

The following theorem is a simple way to establish the
results of [5].

Theorem 1. Let ρ = P/σ2L be the signal-to-noise ratio.
ThenC ≥ 1

2 log ρ− 1
2 and in particular lim

ρ→∞
C(ρ) = ∞.

Proof: Using the chain rule for mutual information

I(R,Φ;R0,Φ0) = I(R;R0,Φ0) + I(Φ;R0,Φ0|R)
≥ I(R;R0,Φ0) = I(R;R0).

As mentioned in Remark 2,I(R;R0) is the mutual infor-
mation function for the intensity-modulated direct-detection
(IM/DD) channel for which the lower bound12 log ρ − 1

2 is
already known [7]. It therefore follows thatC ≥ 1

2 log ρ− 1
2 .

Put in other words, Theorem 1 simply says that the amount
of information which can be sent over the complex channel
(2) is no less than what can be transmitted and received by
the amplitude alone. From (19), the communication channel
from R0 to R does not depend on the nonlinearity parameter
γ, is independent of input phase and supports an unbounded
information rate when increasing power indefinitely. Sincethe
capacity of (2) was discussed to be a lower bound to the
capacity of (1), we conclude that the capacity of the zero
dispersion optical fiber (1) also goes to infinity with SNR.

B. Sum-product probability flow in zero-dispersion fibers

The recursive computation of the PDF in the previous
section was algebraic and still not a suitable way to visualize
signal statistics. In this section, we show that the structure of
the probability flow in zero-dispersion fibers is given by the
sum-product algorithm or a path integral. Such path integration
underlies the Martin-Siggia-Rose formalism in quantum field
theory (QFT), which was directly used in [5]. This connects
the results of the previous section to [5].

Computation of the conditional PDF as explained in the
previous section was a marginalization process. In our ex-
ample, the Markov property (4) made it possible to perform
marginalization, since the conditional PDF factors as a product
of certain normalized functions. This observation allows us
to apply thesum-product algorithmknown already in coding
theory. As a matter of fact, the reader can notice that (7) is a
sum-product computation, with a slight difference that instead
of multiple summation, we performed multiple integrations,

which is indeed a continuous limit of the sum-product algo-
rithm in the signal dimension. It might be, however, more
insightful to restore the analysis and represent the technique
in the discrete domain.

While discretizing the fiber in the distance dimension, we
will also at the end of at each fiber segment quantize the signal
qk into a large number of small bins in the complex plane

qk ∈ S = {qmn = rn exp(jφm)|rn = n(δr), n = 1, . . . , N,

φm = m(δφ), m = 0, 1, . . . ,M − 1}, (22)

for smallδr andδφ. This turns each incremental channel into a
discrete memoryless channel (DMC) described by a transition
matrix; moreover, the overall channel matrix is the productof
all of these transition matrices. The probability of receiving
qlk = rk exp jφl at z = L given the qji = ri exp jφj is
transmitted atz = 0, is the sum over the probability of all
possible transitions (paths) fromqji to qlk. This is graphically
illustrated in Fig. 1 as a trellis. Nodes of the trellis are
quantized points in the complex plane and edges have weights
corresponding to transition probabilities (5).

It follows that the essence of the probabilistic model in
optical fibers is apropagator A(δr, δφ, ǫ), independent of
spatial indexk, which for the case of (2) can be described
by a single functional matrix

[A(δr, δφ, ǫ)]i,j =
|qmn |δrδφ
πσ2ǫ

exp

(

−
∣
∣qmn − qlk − jǫγqlk|qlk|2

∣
∣
2

ǫσ2

)

,

where i = (k − 1)M + l and j = (n − 1)M + m. The
probabilities of{qmn }N,M

n,m=0 are then recursively updated as

p(k + 1) = A(δr, δφ, ǫ)p(k),

where p is the vector of the probabilities of{qmn }N,M
n,m=0.

By diagonalizing the propagatorA = UΛU
−1, the overall

conditional distribution isp(n) = UΛ
n
U
−1, which is a

function of eigenvalues and eigenvectors of the propagator.
In the language of the statistical mechanics, the limit of

the expression (8) whenn → ∞ is a path integral and is
represented as

fQ|Q0
(q|q0) =

∫ rejφ

r0ejφ0

exp




−

∫ z

0

∣
∣
∣
∂q
∂z′ − jγ|q(z′)|2q(z′)

∣
∣
∣

2

σ2
dz′




Dq, (23)

where the expression is understood as in [12]. Equation (23)
is just a symbolic representation of (8) and follows from the
definition of the path integral [12], [13].

The computation of path integrals whose exponent can
be made quadratic inq and ∂q/∂z is standard in quantum
mechanics and, in the case of (23), this computation has been
done in [5] to find the conditional PDF. Indeed path integral
(23) is an immediate consequence of the Martin-Siggia-Rose
formalism, a more generic framework in quantum mechanics
dealing with stochastic dynamical systems [5]. To compute
(23), roughly speaking, one needs to sum over the input-
output paths giving the largest contributions,i.e., the path
corresponding to minimizers of the integral exponent in (23).
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discretizing in space dimension

q = r exp jφ

quantizing in signal dimension

q0 = r0 exp jφ0

Fig. 1. Graphical computation of the probability density function f(r, φ|r0, φ0). The probability of receivingrn expφm given transmission ofrk exp φl is
the sum over the probability of each possible path between start and end points shown schematically in the figure. The probability of each path is the product
of of the transition probabilities of all edges forming thatpath, computable from (5).

This classical path is given by the Euler-Lagrange equations,
with all other paths considered as a perturbation around this
classical path, serving as a normalization constant in the PDF.

It is interesting to see the effect of the change in variables
(9) in the sum-product algorithm. One can verify that the
equation (2) when noise is zero has the solution

q(z) = q0 exp(jγ|q0|2z). (24)

In other words, while the signal is propagated down the
noiseless fiber, it remains on a circle in the complex plane with
radius |q0| and rotates counterclockwise with phase velocity
γ|q0|2 rad/m. We call this solution thedeterministic path,
which is a helix twisted around the fiber. With the change
of variable (9), the accumulated phase from the beginning
of the fiber to an arbitrary distancez is subtracted from
the (nonlinear) phase of the signal, to compensate for the
signal rotation. The deterministic path is then a straight line,
rather than a twisted helix. In this view, (24) gives rise to
nonlinear phase compensation at the receiver, often used in
optical communications.

When using (9), the trellis in Fig. 1 is transformed to a new
trellis. Since the change of variable (9) has memory of the

form exp

(

−jǫγ
k−1∑

m=0
|qm|2

)

, it causes a transformation from

paths to points

P : (q0, q
m1

1 , qm2

2 , · · · , qmk

k ) 7→ plk.

In generalqmn at stagek of the old trellis is mapped to a
number of points at stagek + 1 in the new trellis, depending
on the total number of paths fromq0 to qmn . These points lie on
a circle and correspond to rotations of constellations in the old
trellis. The structure of thep-trellis, in the limitsδr, δφ→ 0,
is same as Fig. 1 except that instead of a single terminal point
at the end of the diagram, there is a circle of radius|qlk|. The
transformed trellis is shown in Fig. 2.

The expression (7) is then the sum over the probability of all
transition paths starting withq0 = qji and ending in any of the
resulting terminal points. The overall sum can be decomposed
into a number of subgroups, with each subgroup a sum-product
from ri exp jφj to one of the output terminal pointsrk exp jθl,
for somel as in (22). The total sum is then obviously sum over
all these sub-sum-products corresponding to different phase

levels

P [rk exp jφl|ri exp jφj ]
=

∑

all possibleθl

SP(q0 = qji → qlk = rk exp jθl),

where SP(q0 = qji → qlk = rk exp jθl) is a sum-product
from qji to qlk. In terms of Fig. 2, this is a sum-product
from q0 to one of the points on the terminal circle. Note
that, however, each sum-product fromri exp jφj to rk exp jθl
is a constrained sum-product,i.e., instead of all possible
paths between these two points, the summation in (12) is
performed over only feasible paths consistent with (10). This is
accomplished by multiplying the edge-weights by anindicator
functionrepresenting (10), and then summing over all possible
paths betweenri exp jφj to rk exp jθl. The indicator function
is later expanded in terms of Fourier series to make analytical
computations possible.

IV. N UMERICAL EVALUATION OF THE CAPACITY

In this section we numerically evaluate the per-sample
capacity of the communication channel (2) to observe the
general trend of the capacity as a function of the input average
power. In particular, we are interested in observing the effect
of the signal-dependent noise in the absence of dispersion.
The spectral efficiency of the dispersive optical channel as
a function of the input power is known to have a peak [1].
The peak is often attributed to the fact that increasing the
signal power will increase the noise power as well (which is
signal-dependent). The same type of behavior was observed
in [2] for the nondispersive channel as well. In this section,
we numerically observe that with no dispersion, although the
channel is still nonlinear, the signal-dependent noise is not
strong enough to suppress the capacity to zero.

We consider a 5000 km optical fiber operating at zero
average dispersion and using distributed Raman amplification
[11]. Among several sources of noise, ASE noise is assumed to
be the dominant stochastic impairment, which can be modeled
as additive white Gaussian noise. All other nominal simulation
parameters are given in Table. I [4], [14].

We sample the conditional PDF (18) in a high resolution
grid in the complex plane withN rings andM symbols
on each ring. The values ofN andM , or the size of bins,
depend on the noise standard deviation and are chosen so
that in each noise standard deviation there are sufficiently
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discretizing in space dimension

quantizing in signal dimension

q0 = q
j
i qlk = rk exp jθl

Fig. 2. Transformation of the q-trellis (the trellis in Fig.1) under the transformation (9). The result is called the p-trellis.

many bins so that the conditional PDF of the channel is
normalized over the entire partition. This is very similar to
the multiple ring modulation format, an idea well-known in the
context of AWGN channels and recently employed in optical
communication in [4].

The accumulated noise level in the optical fiber, albeit signal
dependent, is still much smaller than the noise level in typical
AWGN channels. Thus compared to the AWGN channels,
more resolution is needed to numerically approach the capacity
of optical channels via this technique. In addition, it is known
that in a dispersive channel, dispersion and nonlinearity to
some extent cancel out each some of the detrimental effects
of the other, leading to a balanced propagation. In the absence
of dispersion such balance does not exist anymore, and the
channel exhibits stronger nonlinear properties. This makes
it more difficult to numerically evaluate the capacity of the
dispersionless channel.

Estimates of the capacity are found and compared using two
methods: the Blahut-Arimoto algorithm with power constraint
[15] and a logarithmic barrier interior-point method [16].
From the phase symmetry of the channel matrix, a capacity-
achieving input distribution will have uniform phase distribu-
tion. In both algorithms, we enforce this constraint to makethe
problem effectively a one dimensional optimization program,
which considerably stabilizes and speeds up the underlying
numerical optimization.

Note that the Blahut-Arimoto algorithm in its original form
was developed for linear inequality constraints, and cannot be
directly used to approximate the capacity in a region whereC
is decreasing withP . One might modify the original Blahut-
Arimoto algorithm to take into account the equality constraints
as well. However since in our numerical simulations capacity
is never found to be constant when increasing power, the
inequality power constraint is always active at the optimalso-
lution and no such modification is required. Because for small
SNRs capacity follows Shannon’s limit for linear Gaussian
channels, the Lagrange multiplier is started at a large value
and is iterated down to zero at the optimum, with increasing
resolution.

The results of the numerical calculation of the capacity are
shown in Figs. 3-5. Fig. 3 shows the per-sample capacityC
of channel (2) as a function of input average signal powerP
for noise spectral density10−1 µ W/GHz. We can see that
the channel capacity increases indefinitely with the average
input power. Moreover, as evident in Fig. 3, in the high power
regime the capacity growth is linear on a logarithmic scale.
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Fig. 3. Capacity as a function of SNR with peak powerP0 = 10mW and
noise spectral density10−1µW/GHz. The end of the graph occurs at about
20% of the peak power.

To simulate at increased power levels, a prohibitive number
of symbols is required.

Motivated by previous work [2], [5], we searched for peaks
in the capacity curve for different set of fiber parameters.
Simulations were performed for a wide range of parameters
to operate at low and high SNRs. No peak was found within
our computational ability of finding capacity at high SNRs.

Although there is no peak in the capacity curve, the phase
channelΦ0 7→ (R,Φ) was found to always having a global
maximum in its C − P plot. Intuitively this behavior is a
consequence of the observation that the phase of the received
field is uniform and independent of the transmitted signal, if
very low or high energy signals are sent through the channel.
For a fixed noise variance, when signal power levelP is small,
phase supports little information because the linear phasenoise
dominates and is uniformly distributed in[0, 2π]. On the other
hand whenP is large, the nonlinear phase noise takes over
the whole interval [0,2π] and the phase sub-channel is unable
to carry data. This effect is illustrated in Fig. 4.

In Fig. 5 we have plotted the capacity and the mutual in-
formation that uncoded phase-shift keying modulation formats
can achieve in the zero-dispersion optical fiber. Similar tothe
AWGN channel, binary signaling is suboptimal at low SNRs
(e.g., SNR< 0). More symbols are required to get close to
the capacity with increasing SNR.
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Fig. 4. (a) Simulation of the optical phase channel channel operating at
zero-dispersion for 3 transmitted points. It can be seen that for signals with
very low or high power, the phase of the received signal contains almost
no information. (b) Capacity of the phase modulation dispersion-free optical
channel as a function of SNR.
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Fig. 5. Achievable information rates in zero-dispersion optical fiber with
M-PSK modulation formats
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Fig. 6. (a) Vector diagram showing the signal evolution in thenth incremental
piece of the fiber (b) Information streaming in the dispersion-free optical
channel. Note that no information is transferred fromΦ0 to R.

V. A N ALGEBRAIC MODEL

Although we used the PDF (18) to numerically find the ca-
pacity, it provides limited direct information-theoreticinsights
into the behavior of the channel. We therefore proceed with a
more intuitive and simplified expression for the channel model.
We reduce thedifferential model(2) to analgebraic model,
which is more tractable for an information-theoretic analysis.

The vector diagram in Fig. 6(a) pictorially shows the
evolution of the signal in thenth incremental piece of the
fiber. The nonlinear termj|Q|2Q is orthogonal to the signal
and, to the first order inǫ, does not change the amplitude. In
other words, since in Fig. 6(a)

| ~OB| = | ~OA|+O(ǫ2),

the orthogonality of the nonlinearity to the signal impliesthat
the nonlinear coefficientγ is responsible only for an angular
rotation; it does not contribute to random fluctuations across
the radius. Therefore for the description of the amplitude
channel we can setγ = 0 without incurring any local or global
error at the end of the fiber

|Qn+1| = | ~OD| = | ~OB +
√
ǫV I

n + j
√
ǫV Q

n |
= |Qn +

√
ǫVn|+O(ǫ2), (25)

whereV I andV Q are in-phase and quadrature components of
the noise, and we have used the fact that white noise preserves
its properties under rotation. Similarly for the phase channel

Φn+1 = Φn + tan−1 jγǫ|Qn|2 + tan−1 |√ǫV Q
n |

|Rn +
√
ǫV I

n |
= Φn +ΦL + jγǫ|Qn|2 + O(ǫ2). (26)

Hence from (25)-(26) it follows that

R(z) = |Q0 +W (z)| = |R0 +W (z)|, (27)

Φ(z) = ΦL(z) + γ

∫ z

0

|Q0 +W (z)|2, (28)

where W (z)=
∫ z

0
V (λ)dλ is the Wiener process with

EW (z)W ∗(z′)=σ2 min(z, z′). The linear part of the phase
ΦL(z) from Fig. 6(a) is only a function of the amplitude| ~OB|
and the noiseVn. As a result, settingγ = 0 in (2) it is given
by

ΦL(z) = ∠(Q0 +W (z)). (29)
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A byproduct of (27)-(29) is the compact solution of the
nonhomogeneous stochastic ODE (2)

Q(z) = (Q0 +W (z)) exp(jγ

z∫

0

|Q0 +W (z′)|2dz′). (30)

The first equation in the system (27)-(28) is decoupled from
the second one and hence, neither deterministic amplitude
nor its noisy perturbation depends on the Kerr nonlinearity
constantγ. In particular, from (27) the probability density
function ofR follows, as in (19). This is schematically shown
in Fig. 6(b). Information is streamed fromR0 to (R,Φ), but
Φ0 does not excite the output amplitude.

Amplitude and phase channels are defined by (27)-(29).
Statistics can be directly computed from these equations and
are generally signal-dependant Gaussian noises, and Gaussian
squared (chi-squared) noise-noise beats. The original PDF
can be rederived by calculating these statistics. To simplify
the model, we replace the noise-noise beat terms with worst
case Gaussian noises with the same mean and covariance
matrix. In addition, we ignore the linear phaseΦL compared
to ΦNL , which is stochastically valid forP ≫ σ2L. Though
it is possible to calculate the statistics directly, it is generally
easier to replace the Wiener process with its Karhunen-Loéve
(KL) expansion in order to substitute the correlated sums with
summations with uncorrelated terms and ease the following
calculations. We are in accord of [17] concerning the use of
Karhunen-Loéve expansion for such simplification. The KL
expansion for the Wiener process reads [10]

W (z) =
∞∑

k=1

σkXkψk(z), 0 ≤ z ≤ L,

where{Xk} ∼ IID NC(0, σ
2L) is a sequence of independent

identically distributed zero-mean complex Gaussian random
variables, and eigenvaluesσk and eigenfunctionsψk(z) are
defined as

ψk(z) =
√
2 sin

(
(2k − 1)π

2L z

)

, 0 ≤ z ≤ L,

σk =
2

(2k − 1)π
.

At the end of the fiberz = L we have, after some algebra,

R2 = |Q0 + Z1|2 = R2
0 + 2ℜ{Q0Z1}+ |Z1|2,

Φ ≈ Φ0 + γL
(

R2
0 +

2√
3
ℜ{Q0Z2}+ Z3

)

, (31)

where Z1 ∼ NC(0, σ
2L), Z2 ∼ NC(0, σ

2L), EZ1Z
∗
2 =√

3
2 σ

√
L andZ3 =

∑∞
k=0 σ

2
k|Xk|2 is a non-Gaussian random

variable correlated withZ1 andZ2. In matrix notation

Y ≃ X +HZ1 + Z2, Y2 mod2π, (32)

in which

Y =

(
R2

Φ
γL

)

, X =

(
R2

0
Φ0

γL +R2
0

)

,H =

(
R0 0
0 R0

)

,

and Z1 ∼ NR(0,P1), while Z2 is a non-zero mean random
variable related to central chi-square random variables with
E(Z2 − EZ2)(Z2 − EZ2)

T = P2. It can be shown that

P1 = σ2L
(

2 1
1 2

3

)

, P2 = σ4L2

(
1 1

3
1
3

1
6

)

, Z1 ⊥ Z2.

Gaussian random variables in model (32) can be further
decoupled by performing the Cholesky factorization of the
P1 = LLT and processingL−1Y as the output. Equations
(31) can also be approximated as

R = |R0 + Z1|,
Φ ≈ Φ0 + γL|R0 +

Z2√
3
|2, P ≫ σ2L.

From (32), nonlinearity introduces two important stochastic
effects which are always absent in linear channels: signal-
noise beatHZ1 and non-Gaussian noise-noise beatZ2. In our
problem, signal-noise beat is a simple signal-dependent noise
in the form of the product of a Gaussian random variable with
amplitude of the signal and stands for the amplification of the
noise with signal during the propagation in the fiber. Noise-
noise beat is related to chi-square random variables, whichis
independent of the signal, orthogonal to signal-noise beatand
represents the gradual interaction of the Gaussian noise with
itself through the nonlinearity.

VI. B OUNDS ON THECAPACITY – PERFORMANCE OF THE

HALF-GAUSSIAN DISTRIBUTION

The algebraic model given in the equation (32) is a2 × 2
MIMO conditionally Gaussian channel model. It is very
closely related to the Rician fading channel model, except that
the term which comes directly from the signal at the output
of (32) is the square of the signal, rather than the signal itself.
However it still does not seem amenable to a closed form
expression for the capacity.

For a simple intensity-modulated direct-detection channel
(20), it is known that half-Gaussian distribution for the input
amplitude (i.e., a Gaussian distribution truncated and normal-
ized to nonnegative arguments) comes close to the capacity [8],
[9]. Motivated by this, in this section we evaluate the mutual
information that the half-Gaussian distributionQ∗ can achieve
for the zero-dispersion optical channel, thereQ∗ corresponds
to the density function

fR0.Φ0
(r0, φ0) =

{
2

2π
√
2πP exp(− r20

2P ) if r0 ≥ 0,

0 if r0 < 0.

We show that, interestingly, a distribution with a truncated
Gaussian profile on the amplitude and uniform phase provides
an excellent global lower bound for the zero-dispersion optical
fiber, and is asymptotically capacity-achieving in a high SNR
region whereP ≫ max{ 6π2

γ2σ2L3 , σ
2L}. Note that the power

of Q∗ is P̃ = (1− 2
π )P = 0.36P .

Although the algebraic model (32) is much more tractable
than (2) or the PDF (18), estimating the resulting output
entropy forQ∗ is still complicated, thoughfY1,Y2

(y1, y2) can
be computed explicitly. In the case of a simple optical intensity
channel, the data processing inequality for relative entropies
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was used in [9] to bound output entropy in terms of input
entropy, by transferring the difficulty to the input side. This
technique however is not immediately implementable for the
two-dimensional problem here. We use several observations
based on the algebraic model to evaluate the mutual informa-
tion for the distributionQ∗.

Let fY2|X2,H(y2|x2,H) be the conditional probability density
function of the phase channel in the simplified model (32).
ReplacingZ2 with a worst-case Gaussian random variable with
the same covariance matrix for the purpose of the lower bound,
we have

fY2|X2,H(y2|x2,H) =
∞∑

k=−∞

1
√

2πσ2
Y2

exp− (y2 + 2kπ − x2)2

2σ2
Y2

.

where σ2
Y2

is the variance ofY2, and the summation is a
result of mod2π reduction. PictoriallyfY2|X2,H(y2|x2,H) is
the summation of shifted Gaussians separated by distance2π.
However if 2

3σ
2L (γL)2 P ≪ (2π)2 all Gaussians are local-

ized in the intervals[− (k−1)π
γL , (k+1)π

γL ] centered approximately
at the mean nonlinear phase noise and only one Gaussian is
present in the interval of interest. In this region we would be
able to find a lower bound by ignoring phase wraparounds.
Conversely, if 2

3σ
2L (γL)2 P ≫ (2π)2 all Gaussians look

globally flat and from the symmetry of pairwise terms around
the middle term, conditional phase tends to be uniformly
distributed in[−(k−1)π

γL , (k−1)π
γL ]. In this case, we would be able

to lower bound capacity by treating phase noise as a uniform
random variable independent of the channel input. We make
these intuitive statements precise in the next two subsections.

We also observe that in the zero-dispersion channel, it
follows from phase symmetry that the capacity-achieving input
distribution is uniform in phase, and thus the search for the
optimal input distribution should be really done only over one-
dimensional distributions. When applying the input distribu-
tionQ∗ to the original PDF (18), the sophisticated dependency
on φ terms disappears since input phase is assumed to be
uniform. We therefore use the exact original PDF (18) to find
the output entropy, while conditional entropy is computed from
the algebraic model (32). Offset termlog | det J|, with J being
the Jacobian of the transformation relating these two models, is
added to account for the mismatch between these two models.

A. Capacity bounds in the high-power regime

In the the high power regime whereγ2Pσ2L3 ≫ 6π2, the
signal-dependent phase noise takes over the entire phase inter-
val [0, 2π] and we conclude that phase carries no information.
It follows that in this regime the zero-dispersion model (2)
is reduced to the optical intensity-modulated direct-detection
channel (20). For the latter channel, a lower bound was derived
in [8] under average power constraint which is asymptotically
exact. In fact, applying distributionQ∗ to the amplitude PDF
(19), it is easy to show that

CH ≥ 1

2
log(ρ)− 1

2
,

whereCH is the capacity in the high-power regime, andρ =
P̃/σ2L is the signal-to-noise ratio. Moreover from the duality-

based upper bound developed in [9]

CH ≤ 1

2
log(ρ)− 1

2
+ oP(1),

where oP(1) → 0 when P → ∞. We conclude that the
capacity of the zero-dispersion optical channel asymptotically,
in the regionP ≫ max{ 6π2

γ2σ2L3 , σ
2L}, is

C ∼ 1

2
log(ρ)− 1

2
.

A distribution with a half-Gaussian profile for the amplitude
and uniform phase is capacity achieving at such high powers.

B. Capacity lower bound in the medium-power regime

As mentioned before, in a power region whereγ2Pσ2L3 ≪
6π2, the effect of the phase wraparounds is negligible and
the phase channel qualitatively acts similar to the amplitude
channel. The resulting model is then similar to two amplitude
channels correlated with each other

Y = X + HZ1 + Z2, (33)

where nowY is extended over the entire real line. We proceed
to bound the mutual information for the distributionQ∗ and
model (33)

I(R,Φ;R0,Φ0)|Q∗ = I(R2,Φ;R2
0,Φ0)|Q∗

= h(R2,Φ)− h(R2,Φ|R2
0,Φ0)

= h(Y)− h(Y|X).

It can be shown thatZ1 ⊥ Z2 and therefore at the end of
the fiberz = L we can write

P = E[(Y − EY)(Y − EY)H |X]

= σ2LR2
0

(
2 1
1 2

3

)

+ σ4L2

(
1 1

3
1
3

1
6

)

,

and

detP =
σ4L2

3
(R4

0 +R2
0σ

2L+
1

6
σ4L2).

Therefore for the conditional output entropy

h(Y|X) = log(γL) + EX [h(Y|X = x0)]

≤ log(γL) + ER0,Φ0
[
1

2
log((2πe)2 detP)] (34)

= log(γL) + log(2πe) +
1

2
log(

σ4L2

3
)

+
1

2
ER0

[log(R2
0 + α1σ

2L)(R2
0 + α2σ

2L)], (35)

in which α1 = 3+
√
3

6 andα2 = 3−
√
3

6 . Note that the entropy
of the small extra non-Gaussian ASE-ASE noise termZ2 was
upper bounded in (34) by its equivalent worst-case Gaussian.
For the half-Gaussian distribution, with the help of [18] one
can verify that

ER0
[
1

2
log(R2

0 + q2σ2L)] = 1

2
log(P)− 1

2
log(2)− 1

2
ζ

− q2σ2L
2P H([1, 1], [

3

2
, 2],

q2σ2L
2P )

+
π

2
Erfi(q

√

σ2L
2P ), (36)
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where ζ=0.5772 is the Euler constant,q ∈ R+, Erfi(x) =
−jerf(jx) is the imaginary error function [18]

Erfi(x) =
1√
π
(2x+

2

3
x3 +

1

5
x5 +

1

27
x7 + . . .), |x| ≪ 1,

andH(p, q, x) is the Hyper-geometric function

H([1, 1], [
3

2
, 2], x) =

∞∑

k=0

ckx
k = 1 +

1

3
x+

4

45
x2

+
4

105
x3 + . . .

ck+1

ck
=

k + 1

(k + 3
2 )(k + 2)

.

From (35)-(36)

h(Y|X) ≤ log(Pσ2L) + log(γL) + log(2πe)

−1

2
log(3)− log(2)− ζ + F (

σ2L
2P , α1)

+ F (
σ2L
2P , α2). (37)

where

F (x, α) =
π

2
Erfi(

√
α2x)− α2xH([1, 1], [

3

2
, 2], α2x).

Output entropyh(Y) cannot be straightly computed similar
to h(Y|X) from the algebraic model (33). As explained at
the beginning of this section, we instead exploit the phase
symmetry of (18) and computeh(Y) directly from the original
accurate PDF (18). The output PDF is computed as

fR,Φ(r, φ) =
exp

(

− r2

2P+σ2L

)

2π
√

π(2P + σ2L)
[1 + erf(

√

2P
σ2L(2P + σ2L)r)]

≈ 2

2π

exp
(

− r2

2P+σ2L

)

√

π(2P + σ2L)
r ≥ 0, (38)

where the asymptote of the Bessel functionI0(x) ∼
1√
2πx

expx has been used for|x| ≫ 1, and r
r0

≈ 1. Note
that this means that with uniform input phase, from the point
of view of input-output densities, the zero-dispersion channel
acts like the intensity-modulated direct-detection channel.

From (38) and changing the variablẽR = R2, fR2,Φ(r
2, φ)

is obtained, which consequently leads to

h(Y)=
3

2
log(π) + log(2P + σ2L)− 1

2
ζ +

1

2
. (39)

Finally from (39) and (37), a lower bound to the capacity
of the zero-dispersion channel in the medium-power range
σ2L≪P≪ 6π2

γ2σ2L3 follows

CM ≥ 1

2
log(

P
σ2L ) +

1

2
log(

3π

γ2Pσ2L3
) +

ζ − 1

2

− F (
σ2L
2P , α1)− F (

σ2L
2P , α2), (40)

whereζ ≈ 0.5772 is the Euler constant.
The first term in (40) is 1

2 log(ρ) and is attributed to
the amplitude channel. The rest of the terms are the phase
contributions to the lower bound. Note that the lower bound
(40) depends not only on the ratioρ = P/σ2L, but also on

σ2

P

Phase-limited
C ∼ 1

2
log ρ− 1

2

Phase-limited and
Amplitude-limited

Amplitude-limited

✲

✻

Fig. 7. Fundamental transmission regimes in theP − σ2 plane. The line
P = C1σ

2 marks the boundary between high and low SNR regimes, where
the amplitude channel is approximately on, or approximately off. The curved
boundary is of the formP = C2

σ2 and separates two regions where the phase
channel supports, or stops, to support information.

the product of the signal and noise powers. In the low-power
regime whereP ≪ σ2L the linear phase cannot be ignored
relative to the nonlinear phase noise.

VII. T WO-DIMENSIONALITY OF THE CAPACITY

A distinguishing feature of the capacity of the system (2) is
the two-dimensionality of the capacity as a function of both
signal and noise powers. Unlike linear Gaussian channels, the
dependency of the capacity of the nonlinear channels to signal
and noise powers is not simply through the ratioρ = P/σ2L.
This is in sharp contrast to AWGN channels where capacity
is completely captured by the signal-to-noise ratio.

For the IM/DD channel (20), it can be shown that although
channel is still nonlinear in signal and noise, capacity is only
a function of SNR. This basically follows from the scale-
invariance property of the PDF (19) with respect to the noise
power. The PDF of the whole channel (18) does not have
such property. By scaling (2), if(Q, V, γ) is a solution of
(2), so is(λQ, λV, γ

λ2 ). This implies that changing the Kerr
coefficient,e.g., whenλ → 0, keeps the signal-to-noise ratio
constant while capacity varies byγ. As a result, capacity is
not completely captured by the SNR. It follows that when
characterizing capacity as a function of SNR, one should make
sure that within the working range of parameters, results are
not affected by the choice ofP andσ2 for a fixed SNR.

VIII. S PECTRAL CONSIDERATIONS

Spectral efficiencies of the dispersion-free optical fiber have
been studied in [2], [5]. In [2], the author used Pinsker’s
formula to relate the spectral efficiency to input-output cor-
relation functions. Such a result should be used with caution
since second-order correlation functions do not capture the
knowledge of the whole PDF, which is required for the
computation of the capacity. In fact, Pinsker’s formula was
originally formulated for (linear dispersive) Gaussian wave-
form channels. Therefore, the results of [2] can be viewed as
a lower bound to the capacity, not ultimate achievable rates.
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The asymptotic tail of the capacity was proved to be
growing unboundedly in [5] by an asymptotic analysis. The
authors then concluded that “a naive straightforward applica-
tion of the Pinsker formula for evaluation of the capacity of
a nonlinear channel as, for instance, in [2], can lead to wrong
conclusions regarding the asymptotic behavior of the capacity
with S/N → ∞”.

There are a number of points to note when comparing the
results of [2] with [5]. Firstly, while Pinsker’s formula works
on waveform channels (like (1)), the finding of [5], is indeed
the per-samplecapacity of the zero-dispersion channel (2),
which is only a lower bound to the capacity of waveform
model (1). Secondly, and most importantly, in [5] the authors
neglect the issue of spectrum broadening, which is essential
when comparing capacity in bits per channel use (as in [5])
to spectral efficiency in bits per second per Hertz (as in [2]).
Below we discuss this spectral broadening issue.

The nonlinear term in the phase creates new frequency
components in the pulse spectrum. While the pulse propagates
down the fiber, its spectrum may grow continuously. The
amount of spectrum broadening depends on the pulse shape
and generally is proportional to the signal peak power [14].
For the zero-dispersion case, eventually the pulse may need
a large transmission bandwidth when increasing the average
launched power. While bit/symbol versus power increases
indefinitely, bit/sec/Hz may asymptotically vanish with power,
hence having a peak in its curve. In the following, we make
an analogy with FM signals to estimate the bandwidth growth.
We assume that the effect of the noise on bandwidth growth
is negligible, and therefore look at the deterministic spectrum
broadening.

The solution of (2) in the absence of the noise is

q(t, z) = r0 exp j(γr
2
0z + φ0) = q(t, 0) exp(jγ|q(t, 0)|2z). (41)

Since we are interested in estimates of bandwidth, not the
entire spectrum, one can assume that the input is a single-tone
signal whose frequency is the maximum frequency component
of the actual input. The termexp(jγ|q(t, 0)|2z) individually
can be looked upon as an instance of phase modulation (FM)
with no carrier. The spectrum ofq(t, z) in (41) then involves
Bessel functions and depends on the envelop of the pulse.

For pulses of the form

q(t, 0) = ejφ(t)







+A t ∈ T1,

−A t ∈ T2,

0 t ∈ T̄1 ∩ T̄2,

whereT1, T2 are subsets ofR and T̄ is theT complement,
we haveq(t,L) = ejγA

2Lq(t, 0). For these signals, such as
constant intensity waveforms, where the nonlinear phase noise
φNL = γr20z is not a function of time, there is no spectral
broadening in the zero-dispersion fiber. This is a consequence
of the fact that the nonlinearity for such pulses becomes
constant across the pulse. For other pulse shapes, a qualitative
argument can be made for the purpose of asymptotic analysis.
Two regimes are considered. In thenarrowband approximation
regime where the maximum nonlinear phase noiseΨmax =

γP0z is less than one radian, spectral broadening is negligible.
If Wz is the bandwidth of the pulse at distance z, then

Wz ≈ 3W0.

In most practical optical systems,Ψmax exceeds 2π. In
such awideband regime, the effective single-tone bandwidth,
following Carson’s rule, is

Wz ≈ W0 +∆f + B, (42)

in which B is the bandwidth ofm(t) = d
dtr

2
0(t), and ∆f

is the frequency deviation proportional to the peak power of
the messagem(t). The precise value of the broadening is
pulse-dependent, but from (42) it is qualitatively affine inpeak
power. Taking the peak power close to the average power,
bandwidth increases linearly with the average power as well.
Because capacity in bit/symbol is at most logarithmic in power,
for such pulse shapes spectral efficiency should vanish at high
average powers.

It follows that the exact relationship between bits per symbol
and bits per second per Hertz is pulse-dependent. For constant
intensity modulation formats, such as square NRZ, these two
are proportional since there is no bandwidth broadening. All
other pulse shapes which experience even a slight bandwidth
enlargement at a given average power, eventually (whenP →
∞) require infinite bandwidth for transmission. For such pulse
shapes, the spectral efficiency asymptotically vanishes asin
[2].

The optimal pulse shape from a bits/s/Hz aspect depends
on the average launched power and the target distance. Square
pulses, such as RZ or NRZ pulse formats which are common
in optical communication, although not bandwidth efficientat
the transmitter, are optimal at high powers or long distances.
For short distances or lower transmitted power levels, pulse
shapes like Gaussians which are more spectrally compact at
transmitter generally give better overall spectral efficiency.

As mentioned earlier, with2W0T complex degrees of
freedom at the input of the fiber, the capacity of the wave-
form channel is2W0C( P0

2W0T ,
2σ2

0WLL
2W0T , γ) bits/sec. If one

requires the whole pulse at the end of the fiber to re-
cover data, then the spectral efficiency of such scheme is
2W0

WL
C( P0

2W0T ,
2σ2

0WLL
2W0T , γ). Note that unlike the AWGN chan-

nel, bandwidth does not cancel out through the ratio of the
signal and noise powers (SNR). Spectral efficiency depends
on the initial bandwidthW0 and bandwidth enlargement factor
WL

W0
. For a fixed maximum input bandwidth, increasing aver-

age input power or transmission distance, not only deteriorates
spectral efficiency by a factor ofW0

WL
, but also allows more

noise in the system, which results in even worse performance.
Note that in our discussion of spectrum broadening, we have

neglected the influence of noise. In particular, in the presence
of the noise even constant intensity modulation schemes will
no longer have a time-independent nonlinear phase, and hence
they will also suffer from spectral broadening. Such bandwidth
enlargement as a result of the noise might be negligible at low
signal and noise powers, but asymptotically whenP → ∞ will
cause an infinite spectrum broadening and send the capacity
to zero. In addition to this, in practice a small deviation from



14 IEEE TRANSACTIONS ON INFORMATION THEORY

an ideal pulse like NRZ square pulse would lead to the same
asymptotic result.

The spectral efficiencies of the dispersive nonlinear optical
fiber has been studied in [1], [3], [4], [6]. It is often reasoned
that the peak in the spectral efficiency is the result of the
signal-dependent noise. Increasing the signal power, amplifies
noise power to an extent that sends the capacity to zero. In
contrast, an important result of this paper implies that the
peak in the spectral efficiency, at least at zero-dispersion, is
a consequence of spectrum broadening, not signal-dependent
noise. It is a deterministic product of the nonlinearity, and not
a noise property. From equation (27) and following Jensen’s
inequality, increasing the signal level expands the noise ball
as well, but no more than signal growth rate.

It is worthwhile to mention that spectrum broadening may
be absent in dispersive fibers. Ifβ2 6= 0, the nonlinear
Schrödinger equation is integrable and in particular solitons
can exist. These are localized pulses that keep their shape or
periodically recur to their initial state. A fundamental soliton,
for example, suffers from no bandwidth enlargement. It would
be interesting to investigate the relationship between bit/s/Hz
and bit/s in the dispersive fiber.

Practical application of zero-dispersion optical fibers is
quite limited compared to the standard fiber. Optical fibers
can operate either at shifted zero-dispersion wavelength of
1.55 µm, or less commonly, at natural 1.3µm zero disper-
sion wavelength. The International Telecommunication Union
(ITU) Recommendations G.652 and ITU-T G.653 describe
single-mode optical fibers optimized to operate respectively at
1.31µm zero-dispersion and 1.55µm shifted zero-dispersion
wavelengths [19], [20]. There are nevertheless various is-
sues concerning the practical application of the nondispersive
fibers. Since dispersion is absent, nonlinear impairments such
as self-phase modulation (SPM) and cross-phase modulation
(XPM) might be stronger in nondispersive fibers. This together
with spectrum broadening issue limit the application of nondis-
persive fibers in WDM systems.

Optical fibers greatly benefit from dispersion management.
In these systems fiber segments with positive and negative
chromatic dispersion are placed in tandem to cancel out chro-
matic dispersion on average. This keeps pulses localized in
their time span, and is known to have numerous other benefits.
The resulting system however might not be equivalent to the
perfectly non-dispersive model discussed in this paper. Ina
realistic system, one has a net residual dispersion, loss, other
sources of noise such as Rayleigh scattering [11], multiple
wavelengths and multiple modes which we have not modeled
in this paper.

IX. T HE STRUCTURE OF THE CAPACITY-ACHIEVING INPUT

DISTRIBUTION

The capacity of the quadrature additive white Gaussian
noise channel (complex AWGN) subject to average and peak
power constraints was proved to be discrete in amplitude with
a finite number of mass points and uniform in phase [21].
Discreteness of the capacity-achieving input distribution has
been established for a number of other channels, such as the
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Fig. 8. Capacity-achieving input and output distributionsat SNR=2.6 dB.
The noise power density is 1µW/GHZ and peak powerP0=10 mW.

Poisson channel with average and peak power constraints, the
Rayleigh fading channel under average power constraint [22]
and more generally, conditionally Gaussian channels under
certain conditions [23]. See [23] for a list of known channels
having this property.

The amplitude channel in (27) is closely related to the
Rician fading channel in the wireless communication. The
authors of [22] proved that the the optimal capacity-achieving
input distribution for the discrete-time memoryless Rayleigh
fading channel is discrete with a finite number of mass points.
The same result was proved in [24] for the non-coherent Rician
fading model

Yi = mXi +AiXi + Zi,

whereAi andZi are independent identically-distributed Gaus-
sian random variables andm is a deterministic constant
representing the line of sight component of the fading.

The IM/DD optical channel shares similarities with the
Rician fading channel. Both have the same type of the signal-
dependent noise, although signal levels are stronger in IM/DD
channels. Note that in fading channels, there is no determinis-
tic rotation or nonlinear phase noise. The similarity should be
understood by the virtue of the algebraic model (32), rather
than the original equation (2) or (41). Capacity techniquesand
coding schemes for Rician fading channels might be useful
for IM/DD as well. In particular, the structure of the capacity-
achieving input distribution tends to be discrete in both cases.

A rigorous proof of the discrete character of the capacity-
achieving input distribution for the optical channel is not
presented here. Instead, we perform a number of simula-
tions to reveal this structure numerically. Fig. 8 shows the
capacity-achieving input distribution for the amplitude and
the corresponding output distribution. Like the Rician fading
channel, there is always a single mass point at the zero
intensity with high probability. This is not unusual and exists
in peak-constrained AWGN channels as well. Turning off
the transmitter sufficiently frequently helps to stay within the
given power budget, while mutual information is maximized
over the remaining degrees of freedom. Like the AWGN
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Fig. 9. Capacity-achieving input and output distributionsat SNR=13 dB.
The noise power density is 1µW/GHZ and peak powerP0=10 mW

channel, in low SNRs (SNR<6 dB), simple on-off keying
(OOK) is near-optimal. In this case the channel is off more
often than it is on. The ratio of on-to-off probabilities is 0.3
at SNR=2.5 dB, and decreases with increasing the SNR.

The surface of the mutual information as a function of
the input probability distribution is flat around the optimum.
Hence although the capacity optimization problem is a convex
program with a unique optimum, there are distributions that
come very close to the capacity but with quite different
structure. With increasing SNR, the number of mass points and
their locations increases. More powerful numerical methods
are required to find discrete mass points at higher SNRs. We
use the solution of the interior-point method as an starting
point to search for discrete distributions using a second layer
of interior-point optimization. The combined method was used
to find discrete mass points at SNR=13 dB in Fig. 9. Note
that the number of mass points increases considerably beyond
the low power region SNR>6 dB. Some of the points may
be merged with a slight capacity loss. Indeed the controlled
increase of the power shows that new mass points are created
by splitting a single mass point with high probability into two
new mass points. With no peak power, new mass points might
come from infinity as conjectured in [22] for Rayleigh fading
channel under average power constraint.

It is interesting to note that even though the capacity-
achieving input distribution is not unique (in the sense that
semi-continuous distributions are near-optimal within our af-
fordable numerical accuracy), the output distribution appears
to be unique. This can be observed in Fig. 8 and Fig. 9, where
the corresponding output distribution is plotted for a discrete
and semi-continuous input distribution. Capacity deviates±0.1
bits/symbol which is less than 4% error.

X. CONCLUSION

We have considered the capacity of the per-sample channels
that arise from a model of dispersion-free optical fibers. The
capacity and capacity-achieving input distribution were eval-
uated numerically. We observed that the signal phase carries

little or no information at very low and at very high signal-
power levels, an observation that enabled us to find a simple
lower bound on the capacity of the dispersion-free fiber which
is asymptotically exact. Although the overall capacity subject
to the average power constraint does not have a peak in itsC-
P curve and grows indefinitely with input signal power, there
exists an optimal power for which the phase channel reaches
its maximum bits/symbol capacity. For zero-dispersion fibers,
neglecting spectral broadening may lead to wrong conclusions
regarding the asymptote of the spectral efficiency.

APPENDIX A
A STOCHASTIC CALCULUS APPROACH FOR THE

DERIVATION OF THE CONDITIONAL PDF

In this appendix we provide a different approach for the
derivation of the conditional PDF ofQ(z) in the per-sample
channel model (2), namely,fQ(z)|Q(0)(q(z)|q(0)). The method
is based on simple mathematical techniques for manipulating
random differential equations,i.e., methods of the stochastic
calculus (seee.g., [10]).

A. Itô calculus

We start by separating the real and imaginary components
of Q(z) in (2), writing

∂X1(z)

∂z
= −γX2(X

2
1 +X2

2 ) + V1(z),

∂X2(z)

∂z
= γX1(X

2
1 +X2

2 ) + V2(z), (43)

whereX1(z) = ℜQ(z), X2(z) = ℑQ(z), andVi(z), i = 1, 2,
are two independent zero-mean real Gaussian processes with
E(Vi(z)Vi(z

′)) = (σ2/2)δ(z − z′).
Note that, in strict mathematical terms, channel model (2)

(or (43)) does not exist. To see this, letγ be zero in (2).
Solution of the equation is thenW (z) =

∫ z

0 V (z′)dz′, i.e.,
the Wiener process. The Wiener process is, however, known
to be differentiable nowhere, to satisfy∂W/∂z = V (z). To
resolve this issue, stochastic differential equation (2) should
be interpreted via its equivalent integral representation

Q(z) = Q0 +

∫ z

0

γ|Q|2Qdz′ +
∫ z

0

V (z′)dz′. (44)

This eliminates problems with differentiating a stochastic pro-
cess (one could also live in the Schwartz space of distributions
and consider the original differential equation in the weak
sense).

The system of stochastic differential equations (43) can be
transformed to polar coordinates via the transformation

R =
√

X2
1 +X2

2 , Φ = tan−1 X2

X1
. (45)

However since (43) is a stochastic system, such a transforma-
tion cannot be executed simply based on the ordinary calculus.

Roughly speaking, the difference between the classical
deterministic calculus and the stochastic calculus stems from
the fact that, unlike the classical calculus in which terms pro-
portional todt2 are ignored, we can not neglectdW 2 (square
of infinitesimal increments of the Wiener process) in stochastic
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equations. Intuitively, this is becausedW ∼ NC(0, σ
2dz) and

thereforeE(dW 2) = σ2dz, i.e., dW 2 is of orderdz and cannot
be neglected. To see this more precisely, let us integrate the
equation ofX1(z) in (43) from z to z +∆z for small∆z

X1(z +∆z)−X1(z) ≈ −γX2(z)
(
X1(z)

2 +X2(z)
2
)
∆z

+

∫ z+∆z

z

V1(z
′)dz′.

Following the classical calculus, the second term
∫ z+∆z

z V1(z
′)dz′ is approximated by V1(z)∆z, similar

to the first term. However, it is a fact that the variance
of the summation of a sequence of independent random
variables is the summation of the individual variances. In
other words, the linearity is on the variance, not the standard
deviation or the radius of the balls (signal level). Therefore,
the second term properly is approximated byV1(z)

√
∆z

which consequently affects the chain rule for differentiation.
This can be also understood from the fact that, when one
discretizes the differential equation (2) at pointszk = kǫ,
the continuous-space stochastic processV (z) is replaced

by a sequence of random variables
{

Vk√
ǫ

}

, where Vk is a
sequence of i.i.d zero-mean Gaussian random variables with
E|Vk|2 = σ2.

In (44), any stochastic integral of the form
∫ z

0
G(Q(z′), z′)V (z′)dz′ is understood by definition as

mean-squarelim
n→∞

n∑

k=1

G(Q(τk), τk)
(
W (z′k)−W (z′k−1)

)
, (46)

where mean-squarelim is the mean square probabilistic limit,
z′0 = 0 < z′1 < · · · < z′n = z is a partition of the
interval [0, z], and z′k−1 ≤ τk ≤ z′k. Unlike the classical
calculus, the choice of the intermediate pointτk ∈ [z′k−1, z

′
k]

affects the result of integration. Choosingτk = z′k−1 leads
to Itô’s interpretation of the stochastic integral, whileusing
{G(Q(τk), τk−1) +G(Q(τk−1), τk−1)} /2 in (46) instead of
G(Q(τk), τk), gives Stratonovich’s definition. As common in
this context, in this paper we adopt Itô’s definition, which
consequently leads to Itô calculus.

The following lemma is used when changing variables in a
stochastic differential equation.

Lemma 2 (Itô’s lemma). Let X(z) be an n-dimensional
stochastic process evolving according to the following first
order stochastic differential equation

dX = a(X, z)dz + B(X, z)dW(z), (47)

where a(X, z) ∈ C
n and B(X, z) ∈ C

n×n are respectively
vector-valued and matrix-valued functions, and elements of
dW(z) are infinitesimal increments of independent Wiener
processes with

E{Wi(z)W
∗
i (z

′)} = min(z, z′), i = 1, · · · , n.

Then for any twice continuously differentiable functiong(X, z)

dg(X, z) =
{

ġ(X, z) +
∑

i

ai(X, z)∂ig(X, z)

+
1

2

∑

i,j

[B(X, z)B(X, z)T ]ij∂i∂jg(X, z)
}

dz

+
∑

i,j

Bij(X, z)∂ig(X, z)dWj(z), (48)

where ġ(X, z) = ∂g(X, z)/∂z, and ∂i stands for ordinary
partial differentiation with respect toXi.

Proof: See [10].
In the context of statistical physics, the first order

stochastic dynamical system (47) is called thenonlin-
ear Langevin equation. The quantitiesa(X, z) and B(X, z)
are drift and diffusion coefficients. Note that the term
1
2

∑

i,j

[B(X, z)B(X, z)T ]ij∂i∂jg(X, z) can be obtained only via

the Itô calculus (unlessa(X, z) is linear inX).
In the case of (43),B(X, z) = σ√

2
I2, and all other constants

are easily extracted from (43). Applying Lemma 2 to (45),
the per-sample model (2) is properly transformed to polar
coordinates

(
∂R
∂z
∂Φ
∂z

)

=







Ito calculus
︷︸︸︷

σ2

4R
γR2







+
σ√
2

(
cosΦ sinΦ

− sinΦ/R cosΦ/R

)(
V1
V2

)

. (49)

Note that in (49) we have assumed

E{Vi(z)Vi(z′)} = δ(z − z′), i = 1, · · · , n, (50)

to be consistent with the statement of the Lemma 2, in which
the amplitude of impulse functions is unit.

The radial diffusion termσ2

4R is the term which cannot be
obtained by classical calculus and significantly changes the
results. The new channel in the polar coordinates (49) is itself
another Langevin equation whose parameters can be extracted
from (49).

B. Fokker-Planck equation

Consider now the Langevin equation (49), in which the
stochastic processX(z) = [R,Φ]T evolves in the distance
dimensionz. For a fixedz, X(z) is a random variable with a
probability density functionfX(x, z) parametrized byz. Since
for the information-theoretic purposes we are not interested
in correlation between intermediate space samples of random
process,e.g., E{Xi(z)Xj(z

′)H}, 0 < z < z′ < L, a single
conditional PDF at the output of the fiber completely describes
the underlying channel. The stochastic process contains much
more information, but this is irrelevant to our application.

Let g(X, z) be a general function in Lemma 2, independent
of z, and with vanishing boundary terms inXi (i.e., if the
support of densities extends to infinity, theng(±∞, z) = 0).
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One can look at the evolution ofEg(X, z), which is deter-
ministic. The result is a deterministic equation in terms of
g(X, z) andfX(x, z). Sinceg can be varied to be any change
of variable, it follows thatfX(x, z) should satisfy a certain
evolution equation. Let, therefore, fixX = x in (48), multiply
both sides of (48) byfX(x, z), i.e., the PDF ofX(z) at a fixed
z, and integrate with respect tox. Both sides can then be
integrated by parts which transfers differentials fromg(x, z)
to fX(x, z). Since the resulting integral holds for anyg(x, z),
the following lemma is obtained (for the casen = 1).

Lemma 3 (Nonlinear Fokker-Planck equation). Let fX(x, z)
be the probability density function ofX(z) at a fixedz in the
Langevin equation(47). ThenfX(x, z) satisfies the following
differential equation

∂fX(x, z)
∂z

= −
∑

i

∂

xi
[a(x, z)fX(x, z)]

+
1

2

∑

i,j

∂2

∂xi∂xj

{
[B(x, z)B(x, z)T ]ijfX(x, z)

}
. (51)

Proof: For the single variable case, the proof outlined
above simply gives the desired result. The generalization to
the multivariable case is, however, complicated since boundary
terms are now surfaces and curves, instead of points. See [10]
for the complete proof.

Description of the probability density function via the
Fokker Planck equation is incomplete without specifying the
boundary conditions. In the multivariable case, such conditions
may render the problem hard to solve analytically. In this
paper, we assume

fX(x, z = 0) = δ(q − q0), lim
|x|i→∞

fX(x, z) = 0, ∀i.

The delta function implies that we are looking for the con-
ditional PDFfX(x, z|x0, z0). In the following, we unambigu-
ously usefX(x, z) instead offX(x, z|x0, z0) for the sake of
brevity. Depending on the structure of the problem, other
appropriate boundary conditions might be assumed, such as
periodic, absorbing or reflecting boundary conditions.

Note that according to the Fokker-Planck equation, matrix
B(X, z) in the dynamics of the stochastic process affects
the PDF in the form ofB(X, z)B(X, z)T . In other words,
probabilistically channel (49) is equivalent to

(
∂R
∂z
∂Φ
∂z

)

=

(
σ2

4R
γR2

)

+
σ√
2

(
1 0
0 1

R2

)(
V1
V2

)

, (52)

which corresponds to the following Fokker-Planck equation

∂f(r, φ, z)

∂z
= −γr2 ∂f

∂φ
+

1

4
σ2

[
∂2f

∂r2
+

1

r2
∂2f

∂φ2

]

−

Ito term
︷ ︸︸ ︷

σ2

4

∂

∂r

(
f

r

)

, (53)

f(r, φ, 0) = δ(r − r0, φ− φ0).

Remark3 (Phase Symmetry). If f(r, φ, z) is a solution of
(53), so isf(r, φ − φ1, z) for any φ1. The PDF is therefore
symmetric with respect to the phase,i.e., it is a function

of φ − φ0. This essentially comes from the fact that in
the nonlinear Schrödinger equation, the cubic nonlinearity is
of the form |Q|2Q, as opposed toQ3. This roots back to
the underlying physics of the fiber, in which the nonlinear
refractive response of the silica glass to an external light
beam is deterministically proportional to the intensity|Q|2
of the incoming beam. The absolute value is responsible for
some very important properties of the nonlinear Schrödinger
equation.

We proceed to solve the resulting partial differential equa-
tion (53). First, we find the marginal PDF of the amplitude
channel alone. Integrating both sides of (53) with respect to φ
in the interval[0, 2π], assuming phase continuityf(r, 0, z) =
f(r, 2π, z), and performing phase marginalization, we obtain

∂f(r, z)

∂z
=

1

4
σ2 ∂

2f(r, z)

∂r2
− σ2

4

∂

∂r

[
f(r, z)

r

]

, (54)

f(r, 0) = δ(r − r0).

The PDF of the amplitude,f(r, z), satisfies (54). If atz = 0,
r = r0, then the conditional PDFf(r, z|r0) is the solution of
(54). We make the following observations about the resulting
PDE.

Remark4 (Scaling Property). Partial differential equation (54)
admits an important scaling property: iff(r, z|r0) is a solution
of (54), then so isf(λr, λ2z|λr0) for any real nonzeroλ.
Such scaling is indeed aLie symmetry groupof the partial
differential equation (54) and corresponds to aconserved
quantity. The essential feature of the symmetry group is that
it conserves the set of solutions of the differential equation,
inducing a set of orbits under action by the group. Each
symmetry group may be visualized as permuting integral
curves of the partial differential equation among themselves.

Remark 5 (Robustness). The PDF of the amplitude does
not depend on the Kerr nonlinearity constantγ, hence the
operation of an amplitude detector (e.g., a photodetector) is
also independent ofγ.

We use the scaling property in Remark 4 to solve the partial
differential equation (54). Such scaling implies that the ratios
r2/z andrr0/z are important quantities for the equation (54).
We therefore search for the solutions of the formf(r, z) =

h( r
2

z ,
rr0
z ). Substituting this into (54) and after straightforward

algebra, we obtain the solution

f(r, z) =
2r

σ2z
e−

r2+r2
0

σ2z I0

( rr0
σ2z

)

, (55)

where we have scaledf so that it stands for a probability
distribution, andf → δ(r − r0) whenz → 0 ( if z → 0, then

I0(
2rr0
σ2z ) → 1

r

√
σ2z
2π e

2rr0

σ2z ). Below we use (55) to solve (53).
Note that alternatively one may solve (54) using Remark 5:
since the PDF of the amplitude does not depend onγ, one can
assumeγ = 0 in the original equation (2) and find the PDF
of the amplitude of a complex Brownian motion.

We use the method ofseparation of variablesto solve the
PDE (53). Assumingf is separable inr andφ, i.e.,

f(r, φ, z) = g(r, z)h(φ, z), (56)
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and plugging (56) into (53), we get

1

g

∂g(r, z)

∂z
+

1

h

∂h(φ, z)

∂z
= −γr2 1

h(φ, z)

∂h(φ, z)

∂φ

+
1

4
D

{
1

g(r, z)

∂2g(r, z)

∂r2
+

1

r2
1

h(r, z)

∂2h(φ, z)

∂φ2

− 1

g(r, z)

∂

∂r
(
g(r, z)

r
)

}

. (57)

If

1

h(φ, z)

∂h(φ, z)

∂φ
= c (58)

for some constantc, then

1

h(φ, z)

∂2h(φ, z)

∂φ2
= c2.

In this case, (57) allows a separation of variables. Solution of
the phase part in (58) ish(φ, z) = exp [c (φ− φ0)] and the
equation for the amplitude part,g(r, z), is

∂gc
∂z

=
σ2

4

∂2gc
∂r2

+

(
c2

r2
σ2

4
− γcr2

)

gc −
σ2

4

∂

∂r

(gc
r

)

. (59)

Due to phase periodicity, naturally one can assumec = jm,
whence the PDF is written as a Fourier series with coefficient
gm(z, r).

Although (59) is linear ingc, applying Fourier or Laplace
transform gives another PDE which is as hard as (59) to solve.
We prefer to use avariational method. If c = 0, (59) is reduced
to (54) whose solution is then (55). We therefore assume the
general solution forc 6= 0 to be a variation of the solution at
c = 0,

gc(r, z) =
r

πσ2z
e−(r

2+r20)a(z)Im(2rr0b(z)) (60)

for some unknowna(z) and b(z) to be determined. Finally,
(60) is plugged in (59) to get differential equations fora(z)
and b(z). After some rather tedious but straightforward alge-
bra, the overall PDF

f(r, z) =

∞∑

m=−∞
ejm(φ−φ0−γr20z)gm(r, z)

is obtained, in which

gm(r, z) =
rb(m)

π
e−am(z)(r2+r20)I|m|(2bm(z)r0r),

where

am(z) =

√
jmγ

σ
coth

√

jmγσ2z,

bm(z) =

√
jmγ

σ

1

sinh
√

jmγσ2z
.

Functions gm(r, z) can be considered as eigenfunctions
in the amplitude PDE (59),∂g/∂z = Hg = λg (see the
literature in time-dependent Schrödinger equation in quantum
mechanics). The PDF (18) then appears to be an expansion
in terms of eigenfunctions of the associated Fokker-Planck
equation. Each of these terms is a solution of the Fokker-
Planck equation and the summation in (18) is to create the
delta functionδ(φ− φ0) at the beginning of the fiber.

As this paper was going to press, we became aware that
a similar Fokker-Planck approach to describing the statistics
of the model (2) has been worked out—in the context of
nonlinear oscillators—in [25].

APPENDIX B
USEFUL IDENTITIES

1

2π

2π∫

0

e−jmθ+x cos(θ−θ0)dθ = Im(x)e−jmθ0 (61)

∞∫

0

xe−ax2

Im(bx)Im(cx)dx =
1

2a
e

b2+c2

4a Im(
bc

2a
) (62)
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