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Abstract

Consider the standard linear regression matlet X 5*+w, whereY € R™ is an observation
vector, X € R™*? is a design matrix3* € R? is the unknown regression vector, amd~
N(0,021) is additive Gaussian noise. This paper studies the minira@srof convergence for
estimation of3* for ¢,-losses and in thé,-prediction loss, assuming théat belongs to ar,-ball
B,(R,) for someg € [0,1]. We show that under suitable regularity conditions on theigie

matrix X', the minimax error irfz-loss and’s-prediction loss scales d, (%)17%. In addition,

we provide lower bounds on minimax risksdp-norms, for allp € [1, 4+o00],p # g. Our proofs

of the lower bounds are information-theoretic in naturesdabon Fano’s inequality and results
on the metric entropy of the balB,(R,), whereas our proofs of the upper bounds are direct
and constructive, involving direct analysis of least-sggaover/,-balls. For the special case

q = 0, a comparison withfs-risks achieved by computationally efficiefit-relaxations reveals
that although such methods can achieve the minimax ratee apristant factors, they require
slightly stronger assumptions on the design makfithan algorithms involving least-squares over
the ¢y-ball.

1 Introduction

The area of high-dimensional statistical inference camedne estimation in the “largé, smalln”
regime, wherel refers to the ambient dimension of the problem arréfers to the sample size. Such
high-dimensional inference problems arise in varioussaoéacience, including astrophysics, remote
sensing and geophysics, and computational biology, amthreg In the absence of additional struc-
ture, it is frequently impossible to obtain consistentreators unless the ratidyn converges to zero.
However, many applications require solving inference [gnois withd > n, so that consistency is
not possible without imposing additional structure. Actogly, an active line of research in high-
dimensional inference is based on imposing various typesro€tural conditions, such as sparsity,
manifold structure, or graphical model structure, and ttedying the performance of different esti-
mators. For instance, in the case of models with some typparsiy constraint, a great deal of of
work has studied the behavior 6f-based relaxations.

Complementary to the understanding of computationallgieffii procedures are the fundamental
or information-theoretic limitations of statistical iméace, applicable to any algorithm regardless
of its computational cost. There is a rich line of statidtie@rk on such fundamental limits, an
understanding of which can have two types of consequendes, they can reveal gaps between the
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performance of an optimal algorithm compared to known caatprnally efficient methods. Second,
they can demonstrate regimes in which practical algorithtgeve the fundamental limits, which
means that there is little point in searching for a more ¢ffealgorithm. As we shall see, the results
in this paper lead to understanding of both types.

1.1 Problem set-up

The focus of this paper is a canonical instance of a high-dgo@al inference problem, namely that
of linear regression id dimensions with sparsity constraints on the regressiotovgé € R?. In this
problem, we observe a pdi¥, X) € R" x R"*4, whereX is the design matrix antl is a vector of
response variables. These quantities are linked by thdatatinear model

Y = XB* +w, 1)

wherew ~ N(0,021I,,) is observation noise. The goal is to estimate the unknowtowegé € R4

of regression coefficients. The sparse instance of thislgmbin which 5* satisfies some type of
sparsity constraint, has been investigated extensivedy ive past decade. L&f; denote the*” row

of X andX; denote the/** column of X. A variety of practical algorithms have been proposed and
studied, many based dh-regularization, including basis pursué]]the Lasso 31], and the Dantzig
selector f]. Various authors have obtained convergence rates faerdift error metrics, including
lo-error [6, 4, 37], prediction loss 4, 16], as well as model selection consisten@y,[25, 33, 38§].

In addition, a range of sparsity assumptions have been zsthlyncluding the case difard sparsity
meaning that3* has exactlys < d non-zero entries, @oft sparsityassumptions, based on imposing
a certain decay rate on the ordered entries*of

Sparsity constraints These notions of sparsity can be defined more precisely mst@f the/,-
balls' for ¢ € [0, 1], defined as

d
By(Rg) := {BeR|8]1=> [8| <R}, )

=1

where in the limiting case = 0, we have the-ball

d
Bo(s) := {BeR'|) I3 #0]<s}, (3)

=1

corresponding to the set of vectg#svith at mosts non-zero elements.

Loss functions We consider estimatonig : R™ x R4 — R% that are measurable functions of the
data(y, X). Given any such estimator of the true paramgtetthere are many criteria for determining
the quality of the estimate. In a decision-theoretic framdyone introduces a loss function such that
L(B, (%) represents the loss incurred by estimatﬁlg/henﬁ* € B,(R,) is the true parameter. The
associated risiR is the expected value of the loss over distributionsYaf X )—namely, the quantity
R(B,3%) = E[L(B,#*)]. Finally, in the minimax formalism, one seeks to choose dimesor that
minimizes the worst-case risk given by

min max RA, ). 4
in e R(, ) @

!strictly speaking, these sets are not “balls” wlhen 1, since they fail to be convex.



Various choices of the loss function are possible, inclgdey) themodel selection lossvhich is
zero if sup3) = supf5*) and one otherwise; (b) thig-losses

d
Ly(3,8%) = [1B=p"I = > 13— B, (5)
=1

and (c) thels-prediction Ioss||X(B — B%)|13/n. In this paper, we study th&,-losses and thé,-
prediction loss.

1.2 Our main contributions and related work

In this paper, we study minimax risks for the high-dimenaldmear model {), in which the regres-
sion vector3* belongs to the balB,(R,) for 0 < ¢ < 1. The core of the paper consists of four
main theorems, corresponding to lower bounds on minimax ficat the cases of,, losses and the
£s-prediction loss, and upper bounds farnorm loss and thé;-prediction loss. More specifically,
in Theoreml, we provide lower bounds faof,-losses that involve a maximum of two quantities: a
term involving the diameter of the null-space restrictedh®/,-ball, measuring the degree of non-
identifiability of the model, and a term arising from themetric entropy structure faf,-balls, mea-
suring the massiveness of the parameter space. Thebisroomplementary in nature, devoted to
upper bounds fofs-loss. Forls-loss, the upper and lower bounds match up to factors indkgpe rof
the triple(n, d, R,), and depend only on structural properties of the designixnat(see Theorem$
and?2). Finally, Theorems3 and4 provide upper and lower bounds fés-prediction loss. For the
lo-prediction loss, we provide upper and lower bounds on rmamimisks that are again matching up
to factors independent ¢f., d, R,), as summarized in Theorersind4. Structural properties of the
design matrixX again play a role in minimax,-prediction risks, but enter in a rather different way
than in the case dk-loss.

For the special case of the Gaussian sequence model (&here,/nl,.,,), our work is closely
related to the seminal work by of Donoho and Johnstddg {vho determined minimax rates fég-
losses over,-balls. Our work applies to the case of geneXalin which the sample size need not
be equal to the dimensiafy however, we re-capture the same scaling as Donoho andtdakrs4]
when specialized to the casé = \/nl,x,. In addition to our analysis df,-loss, we also determine
minimax rates fos-prediction loss which, as mentioned above, can behavediteyently from the
¢5-loss for general design matriceS During the process of writing up our results, we became awar
of concurrent work by Zhang (see the brief rep@d]) that also studies the problem of determining
minimax upper and lower bounds fég-losses with/,-sparsity. We will be able to make a more
thorough comparison once a more detailed version of theik vegoublicly available.

Naturally, our work also has some connections to the vasg bbd@ork on/;-based methods for
sparse estimation, particularly for the case of hard syafgi= 0). Based on our results, the rates
that are achieved b§;-methods, such as the Lasso and the Dantzig selector, amaaxioptimal for
£5-loss, but require somewhat stronger conditions on thegdewsiatrix than an “optimal” algorithm,
which is based on searching thgball. We compare the conditions that we impose in our mixima
analysis to various conditions imposed in the analysié, dfased methods, including the restricted
isometry property of Candes and Td, [the restricted eigenvalue condition imposed in Mensbaus
and Yu 6], the partial Riesz condition in Zhang and Huaig][and the restricted eigenvalue condi-
tion of Bickel et al. f]. We find that “optimal” methods, which are based on minimigieast-squares
directly over thely-ball, can succeed for design matrices whgrdased methods are not known to
work.



The remainder of this paper is organized as follows. In $a@j we begin by specifying the
assumptions on the design matrix that enter our analysisfteen state our main results. Secti®n
is devoted to discussion of the consequences of our maitigesicluding connections to the normal
sequence model, Gaussian random designs, and relatet$ @msijl-based methods. In Sectidnwe
provide the proofs of our main results, with more technicglexts deferred to the appendices.

2 Main results

This section is devoted to the statement of our main resaitid,discussion of some of their conse-
guences. We begin by specifying the conditions on the higtedsional scaling and the design matrix
X that enter different parts of our analysis, before givinggmse statements of our main results.

In this paper, our primary interest is the high-dimensiaegime in whichd >> n. For technical
reasons, foy € (0, 1], we require the following condition on the scaling(ef, d, R,):

d

q

In the regimed > n, this assumption will be satisfied for allc (0, 1] as long ask, = o(d%‘“') for
somer’ € (0,1/2), which is a reasonable condition on the radius of thall for sparse models.
In the work of Donoho and Johnston®4] on the normal sequence model (special cas& of 1),
discussed at more length in the sequel, the effect of théngcaf the quantity on the rate of

_d
Rgna/2
convergence also requires careful treatment.

2.1 Assumptions on design matrices

Our first assumption, imposed throughout all of our anajysithat the columng X;,j =1,...,d}
of the design matrixX' are bounded ird;-norm:

Assumption 1(Column normalization) There exists a constafit< x. < 4oc such that

1
NaE X5l < ke @)
In addition, some of our results involve the set defined bgrdcting the kernel ok with the

(,-ball, which we denot&V, (X) : = Ker(X) NB,(R,). We define thé,(R,)-kernel diametein the
£p-norm
di X)) := 0|, = 0|, 8

tam,, (N (X)) oimax MOl =, max 11l ®)
The significance of this diameter should be apparent: for‘paegturbation” A € N,(X), it follows
immediately from the linear observation modé) (hat no method could ever distinguish between
p* = 0andjs* = A. Consequently, thi, (R,)-kernel diameter is a measure of tlaek of identifia-
bility of the linear modelX) overB,(R,).

Our second assumption, which is required only for achievedsults for,-error and lower bounds

for ¢y-prediction error, imposes a lower bound [pK 6|2 /+/n in terms of||#||2 and a residual term:

Assumption 2 (Lower bound on restricted curvaturéJhere exists a constart > 0 and a function
fe(Ry,n, d) such that

1

\/HHXHHQ > ke |l0ll2 — fe(Rg,m,d) forall 6 e B,(2R,). 9)



Remarks: Conditions on the scaling fof,(R,, n, d) are provided in TheoremZand3. It is useful
to recognize that the lower bouné)(is closely related to the diameter conditids);(in particular,
Assumption2 induces an upper bound on tlig (R, )-kernel diameter ir/-norm, and hence the
identifiability of the model:

Lemma 1. If Assumptior? holds for anyg € (0, 1], then theB,(R,)-kernel diameter irf;-norm is
upper bounded as
diamy (N (x)) < L Fand)

> y

Proof. We prove the contrapositive statement. Note thaliafin, (N, (X)) > MR+W’ then there
must exist somé € B,(R,) with X6 = 0and||6|2 > MR#,M)_ We then conclude that

1
0 = %HXHM < k|02 = fe(Rg,n, d),

which implies there cannot exist ary for which the lower bound9) holds. O

In Section3.3, we discuss further connections between our assumptiodstha conditions im-
posed in analysis of the Lasso and othgbased method<5] 25, 4]. In the case; = 0, we find that
Assumption2 is weaker than any condition under which &nrbased method is known to succeed.
Finally, in Section3.2, we prove that versions of both Assumptidnand2 hold with high probability
for various classes of non-i.i.d. Gaussian random desigricaa (see Propositioh).

2.2 Risks inf,-norm

Having described our assumptions on the design matrix, wettin to the main results that provide
upper and lower bounds on minimax risks. In all of the statesé follow, we use the quantities
Cap» Cyor Cq2 €IC. to denote numerical constants, independent, df R,, o> and the design matrix
X. We begin with lower bounds on thg-risk.

Theorem 1(Lower bounds orf,,-risk). Consider the linear mod€l) for a fixed design matrixX &
Rnxd.

(a) Conditions for ¢ € (0, 1]: Suppose thak is column-normalized (Assumptidrwith . < o).
For anyp € [1,00), the minimax,,-risk over the/, ball is lower bounded as

' ElG- g > G N, (), 7, |2 1%24) 7| g
IHBIH 6* éInt?E{Rq) P = Cq’p max lamp q 5 q [{g n .

(b) Conditions for ¢ = 0: Suppose tha% < Ky forall 8 € By(2s). Then for any € [1, c0),
the minimax/,,-risk over thely-ball with radiuss = R, is lower bounded as

L1 2
KZ on

. 2
min_max E|G -0l > e, max{ diam? (No(X)), sﬁ[g—w]g}. 1)
B *€Bo(s



Note that both lower bounds consist of two terms. The firshtisrsimply the diameter of the set
Ny (X) = Ker(X) N B,(R,), which reflects the extent which the linear modBl i§ unidentifiable.
Clearly, one cannot estimai& any more accurately than the diameter of this set. In botlretow
bounds, the ratios?/x?2 (or 02 /x2) correspond to the inverse of the signal-to-noise ratimmaring
the noise variance? to the magnitude of the design matrix measuredpyAs the proof will clarify,
the term|log d]% in the lower bound X0), and similarly the terrﬂog(g) in the bound (1), are
reflections of the complexity of thé,-ball, as measured by its metric entropy. For many classes of
design matrices, the second term is of larger order thanidmeeder term, and hence determines the
rate. (In particular, see Secti@m®for an in-depth discussion of the case of random Gaussiagrdes

We now state upper bounds on thenorm minimax risk ovet, balls. For these results, we require
both the column normalization condition (Assumptijrand the curvature condition (Assumptighn

Theorem 2 (Upper bounds o#,-risk). Consider the moddlL) with a fixed design matrix € R™*?
that is column-normalized (Assumptitvith x. < o0).

(a) Conditionsfor ¢ € (0, 1]: If X satisfies Assumpticwith f¢(R,,n, d) = o( R,"/2(12E4)1/2-a/4)
andk, > 0, then there exist constants and ¢, such that the minima#-risk is upper bounded
as

2 1-q/2
min max, Hﬂ B3 < 24R{ loid] "

, 12
3 B*€Bg(R (12)

e\w|nm
e\w|

with probability greater tharl — ¢; exp (—can).

(b) Conditions for ¢ = 0: If X satisfies Assumptichwith f,(s,n,d) = 0 andx, > 0, then there
exists constants; andcs; such that the minimag-risk is upper bounded as

2 2
k5 o° slogd
< 6 C 13
ménﬁ*meﬁui 1B -85 < W2k n (13)

with probability greater thanl — c¢; exp (—con). If, in addition, the design matrix satisfies

\%(H@;‘IE < ky forall 6 € By(2s), then the minimax,-risk is upper bounded as
Ky 0> slog(d/s)
< 1442 20800 14
min max 55718 < 1447 K@ ma— (1)

with probability greater tharl — ¢; exp (—caslog(d — s)).

In the case of,-risk and design matriceX that satisfy the assumptions of both Theordrasd?2,
then these results identify the minimax risk up to constantdrs. In particular, foy € (0, 1], the
minimax/s-risk scales as

, o?logdyl-a/2
min max EIF- 613 = ©(R |25 ), (15)
whereas for = 0, the minimax/,-risk scales as
o2 slog(d/s
min max EHﬁ B3 = @(#) (16)

B B*€Bo(

Note that the bounds with high probability can be convertebdund in expectation by a standard
integration over the tail probability.



2.3 Risks in prediction norm

In this section, we investigate minimax risks in terms of thgrediction Ioss1|X(B — B913/n, and
provide both lower and upper bounds on it.

Theorem 3 (Lower bounds on prediction risk)Consider the modg(l) with a fixed design matrix
X € R™*? that is column-normalized (Assumptidmwith . < 00).

(@) Conditions for ¢ € (0,1]: If the design matrixX satisfies Assumptiod with x, > 0 and
fo(Rg,n, d) = o(RyY?(1&2)1/2=4/4)  then the minimax prediction risk is lower bounded as

X (B-B)|3 21 1—q/2
min max EM > ¢ Bq KJ% [0—2 ogd} ! . a7
B BeBq(Rq) n ’ Rz N

(b) Conditions for ¢ = 0: Suppose thak satisfies Assumptichwith x, > 0 and f;(s,n,d) = 0,

and moreover tha%%‘lf < ky for all 8 € By(2s). Then the minimax prediction risk is lower
bounded as
o 2 2
min max EIXC=OIB -, o 0% slog(dfs) a8)
B BeBo(s) n K2 n

In the other direction, we have the following result:

Theorem 4 (Upper bounds on prediction riskIConsider the modg]l) with a fixed design matrix
X e R4,

(@) Conditions for ¢ € (0,1]: If X satisfies the column normalization condition, then for some
constante; 4, there exist; andc; such that the minimax prediction risk is upper bounded as

2 _4q
ed (19)

min max X )B < erqwd Ry =

B B*€Bq(Rq) N
with probability greater thar — ¢; exp (—ca R, (log d)' ~4/2n/2),

(b) Conditions for ¢ = 0: For any X, with probability greater than — exp (—10slog(d/s)) the
minimax prediction risk is upper bounded as

o2 slog(d/s) .

X < 81
nznﬁ%?)%s H B-B3 < "

(20)

2.4 Some intuition

In order to provide the reader with some intuition, let us enatime comments about the scalings that
appear in our results.

First, as a basic check of our results, it can be verified thatinhal ensures that the lower bounds
on minimax rates stated in Theorelnfor p = 2 are always less than or equal to the achievable
rates stated in Theoreg In particular, sincefy(Ry,n,d) = o(R,"/?(124)1/2=4/4) for ¢ € (0,1],
Lemmal implies thatdiam3 (N, (X)) = o(Rq(%)l‘W), meaning that the achievable rates are
always at least as large as the lower bounds in thegas@), 1]. In the case of hard sparsity £ 0),
the upper and lower bounds are clearly consistent sfpeen, d) = 0 implies the diameter of/y(X)
is0.



Second, for the casge= 0, there is a concrete interpretation of the r%ﬁﬁ, which appears in
Theoremsl(b), 2(b), 3(b) and4(b)). Note that there ar(éi) subsets of size within {1,2,...,d}, and
by standard bounds on binomial coefficierit&][ we havelog (fj) = O(slog(d/s)). Consquently, the
rate“ogifld/s) corresponds to the log number of models divided by the sasipda:. Note that unless
s/d = ©(1), this rate is equivalent (up to constant factorsi—‘%—d.

Third, for g € (0, 1], the interpretation of the ra@q(%)l_qm, appearing in parts (a) of The-
oremsl through4, is less immediately obvious but can can understood asaisliGuppose that we
choose a subset of sizg of coefficients to estimate, and ignore the remaining s, coefficients.
For instance, if we were to choose the tgpcoefficients of3* in absolute value, then the fast decay
imposed by thé,-ball condition on3* would mean that the remainint— s, coefficients would have
relatively little impact. With this intuition, the rate fgr> 0 can be interpreted as the rate that would

be achieved by choosing, = Rq(%)_qm, and then acting as if the problem were an instance of
a hard-sparse probleny & 0) with s = s,. For such a problem, we would expect to achieve the

rate 221°2¢ which is exactly equal thq(%)l_q/g Of course, we have only made a very heuristic
argument here; this truncation idea is made more preciserimia? to appear in the sequel.

Fourth, we note that the minimax rates fofrprediction error and,-norm error are essentially the
same except that the design matrix structure enters miniislexinvery different waysln particular,
note that proving lower bounds on prediction risk requirepasing relatively strong conditions on the
designX—namely, Assumption& and2 as stated in Theoref In contrast, obtaining upper bounds
on prediction risk requires very mild conditions. At the mestreme, the upper bound for= 0 in
Theorem3 requires no assumptions on while for ¢ > 0 only the column normalization condition
is required. All of these statements are reversedfaisks, where lower bounds can be proved with
only Assumptionl on X (see Theorem), whereas upper bounds require both Assumptioasd?2.

Lastly, in order to appreciate the difference between thelitions for/»-prediction error and-
error, it is useful to consider a toy but illuminating exaep{Consider the linear regression problem
defined by a design matriX = [X; X, --- X,] withidentical columns-that is, X; = X, for
all j =1,...,d. We assume that vectof; € R?is suitably scaled so that the column-normalization
condition (Assumptiorl) is satisfied. For this particular choice of design mattie, linear observation
model () reduces td" = (Z?Zl B7)X1 + w. For the case of hard sparsity £ 0), an elementary
argument shows that the minimax riskésprediction error scales ﬁ(%). This scaling implies that
the upper bound2Q) from Theorem¥ holds (but is not tightf. Consequently, this highly degenerate
design matrix yields a very easy problem fgfprediction, since the/n rate is essentially parametric.
In sharp contrast, for the case ©fnorm error (still with hard sparsity = 0), the model becomes
unidentifiable. To see the lack of identifiability, let € Ri denote the unit-vector with in position
1, and consider the two regression vectgis= ce; and( = ces, for some constant € R. Both
choices yield the same observation vecdtgrand since the choice efis arbitrary, the minimaxs-
error is infinite. In this case, the lower bountll) on /s-error from Theoreni holds (and is tight,
since the kernel diameter is infinite). In contrast, the uggmind (L3) on /y-error from Theoren?
does not apply, because Assumptibis violated due to the extreme degeneracy of the designxmatri

3 Some consequences

In this section, we discuss some consequences of our reSuitdegin by considering the classical
Gaussian sequence model, which corresponds to a speaabtasir linear regression model, and

2Note that the lower boundLg) on the/,-prediction error from Theoreri does not apply to this model, since this
degenerate design matrix with identical columns does rigfgany version of Assumptiof.

8



making explicit comparisons to the results of Donoho andhdtiime [4] on minimax risks over,-
balls.

3.1 Connections with the normal sequence model
The normal (or Gaussian) sequence model is defined by thevalise sequence
Y = 9:%—62‘, fori=1,...,n, (22)

wheref* € © C R is a fixed but unknown vector, and the noise variablgs- N (0, %) are
i.i.d. normal variates. Many non-parametric estimatioobfems, including regression and density
estimation, are asymptotically equivalent to an instarfdbe Gaussian sequence modas,[27, 5],
where the se® depends on the underlying “smoothness” conditions impaosethe functions. For
instance, for functions that have as” derivative that is square-differentiable (a particulanckif
Sobolev space), the sétcorresponds to an ellipsoid; on the other hand, for certagices of Besov
spaces, it corresponds to gpball.

In the cas® = B,(R,), our linear regression modd)(includes the normal sequence mod&l)(
as a special case. In particular, it corresponds to seftiag, the design matriX’ = I,,«,,, and noise
varianceo? = % For this particular model, seminal work by Donoho and Judmes [L4] derived
sharp asymptotic results on the minimax error for gengyadorms over, balls. Here we show that
a corollary of our main theorems yields the same scalingerctse = 2 andgq € [0, 1].

Corollary 1. Consider the normal sequence mog#l) with © = B,(R,) for someg € (0, 1]. Then
there are constants’q < ¢, depending only og such that

272logn _q ~ 272logn _q
A(—=")"2 < min max E|B— 83 < ¢,(—2—)"2. 22
()T S i max BG5S (=) (22)

These bounds follow from our main theorems, via the subitita n = d, 02 = % and

Ky = k¢ = 1. To be clear, Donoho and Johnstorid][provide a far more careful analysis that yields
sharper control of the constants than we have provided here.

3.2 Random Gaussian Design

Another special case of particular interest is that of ramddaussian design matrices. A widely
studied instance is the standard Gaussian ensemble, ifhhecentries ofX € R™*4 are i.i.d.
N(0,1) variates. A variety of results are known for the singulauesl of random matrice¥ drawn
from this ensemble (e.g.2[ 3, 12]); moreover, some past work$, 6] has studied the behavior
of different ¢,-based methods for the standard Gaussian ensemble, in whides X;; are i.i.d.
N(0,1). In modeling terms, requiring that all entries of the desigatrix X are i.i.d. is an overly
restrictive assumption, and not likely to be met in appi@ma where the design matrix cannot be
chosen. Accordingly, let us consider the more general af<saussian random design matrices
X € R™ in which the rows are independent, but there can be arpitramrelations between the
columns ofX. To simplify notation, we define the shorthap) : = max;_; 4 X;;, corresponding
to the maximal variance of any element®f and use_'/2 to denote the symmetric square root of the
covariance matrix.

In this model, each columi;, j =1,...,d has i.i.d. elements. Consequently, it is an immediate
consequence of standard concentration resultgJorariates (see Appendiy that

HX]HQ 32logd
jmax o <o) (L =) 23)




Therefore, Assumptiofi holds as long as = €2(log d) andp(X) is bounded.
Showing that a version of Assumptiéhholds with high probability requires more work. We
summarize our findings in the following result:

Proposition 1. Consider a random design matriX ¢ R"*¢ formed by drawing each ro&; € R?
i.i.d. from anN(0,X) distribution. Then for some numerical constantse (0,00), k = 1,2, we
have

[ Xvll2 L s/ p(X)logd, /2
> _g (A= e
v 2 glElk -6 (=)

with probability 1 — ¢; exp(—can).

|v]; forall v e R (24)

Remarks: Past work by by Amini and Wainwrightl] in the analysis of sparse PCA has established
an upper bound analogous to the lower boubd) for the special cas& = I;.4. We provide a
proof of this matching upper bound for gene¥ahs part of the proof of Propositichin AppendixE.
The argument is based on Slepian’s lemm3 pnd its extension due to Gordohd], combined with
concentration of Gaussian measure resuf3. [ Note that we have made no effort to obtain sharp
leading constants (i.e., the factdr& and6 can easily be improved), but the basic resif) (suffices

for our purposes.

Let us now discuss the implications of this result for Asstionp2. First, in the casg = 0, the
bound (3) in Theorem2 requires that Assumptichholds with fy(s,n,d) = 0 for all 8 € By(2s). To
see the connection with Propositiannote that ifd € By (2s), then we have|d||; < v/2s||0|2, and
hence

||XU||2 ||El/2U||2 p(E)slogd 1/2
> —6V2(———— .
Vn { 2[[vl2 6\/_( n ) }HUH2

=12 ]]

Tl — 0 and‘“‘;—gd = o(1), the condition needed

Therefore, as long g&(X) < oo, min,cp, (24
for the bound 13) will be met.

Second, in the case € (0, 1], Theorem2(a) requires that Assumptioh hold with the residual
term fo(Ry, n, d) = o(R,*/?1%84)1/2=4/4We claim that Propositiot guarantees this condition, as
long asp(X) < oo and the minimum eigenvalue &f is bounded away from zero. In order to verify
this claim, we require the following result:

Lemma 2. For any vectord € B,(2R,) and any positive number > 0, we have
16l < 2Rgm V26|24 2R 7171 (25)

Although this type of result is standard (e.#4]), we provide a proof in Appendii for completeness.

In order to exploit Lemma, let us setr = %. With this choice, we can substitute the resulting

bound @5) into the lower bound44), thereby obtaining that

lood. 1 /9 logd, 1—
— 63/20(%) /Ry (F25) 2 ollp — 2Ryp(3) 12 (ZES) 02,

[Xvlla {HE”%Hz
vn 2[lvll2
Recalling that the conditiorq/]%q(%)1/2_‘1/4 = o(1) is required for consistency, we see that As-

sumption2 holds as long ag(3) < 4oo and the minimum eigenvalue @&f is bounded away from
zero.
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Lastly, it is also worth noting that we can also obtain thdofwing stronger result for the case
. /
g = 0, in the case thamin,cp, (2s) % > 0 and max,ep, (2s) % < oo. If the sparse

eigenspectrum is bounded in this way, then as long ascs s log(d/s), we have

[ Xvll2
NG

with probability greater tham — ¢; exp(—con). This fact follows by applying the union bound over
all (QdS ) subsets of siz@s, combined with standard concentration results for randaatrioes (e.qg.,
see Davidson and Szarek?] for ¥ = I, and Wainwright B3] for the straightforward extensions to
non-identity covariances).

1
3220y > > 5Hzl/%u2 for all v € Bo(2s) (26)

3.3 Comparison to/;-based methods

In addition, it is interesting to compare our minimax ratésanvergence fors-error with known
results for¢;-based methods, including the Las&d][and the closely related Dantzig methdg]. [
Here we discuss only the cage- 0 since we are currently unaware of afayerror bound for; -based
methods for; € (0, 1]. For the Lasso, past worBY, 26] has shown that ité,-error is upper bounded
by ”;L—gd under sparse eigenvalue conditions. Similarly, Candegaadb] show the same scaling for
the Dantzig selector, when applied to matrices that satisfymore restrictive RIP conditions. More
recent work by Bickel et. al4] provides a simultaneous analysis of the Lasso and Dangtégter
under a common set of assumptions that are weaker than leoRiFhcondition and sparse eigenvalue
conditions. Together with our results (in particular, Tlen1(b)), this body of work shows that under
appropriate conditions on the desidgn the rates achieved l-methods in the case of hard sparsity
(¢ = 0) are minimax-optimal.

Given that the rates are optimal, it is appropriate to coma conditions needed by an “optimal”
algorithm, such as that analyzed in Theor&no those used in the analysisfqfbased methods. One
set of conditions, known as the restricted isometry prgpgst or RIP for short, is based on very
strong constraints on the condition numbers of all submedrofX up to size2s, requiring that they
be near-isometries (i.e., with condition numbers extrgrklse tol). Such conditions are satisfied by
matrices with columns that are all very close to orthogoeaj.( whenX has i.i.d.N (0, 1) entries and
n = Q(log (2ds))), but are violated for many reasonable matrix classes, (€ogplitz matrices) that
arise in statistical practice. Zhang and HuaBg jmposed a weaker sparse Riesz condition, based on
imposing constraints (different from those of RIP) on thadition numbers of all submatrices af
up to a size that grows as a functionsodndn. Meinshausen and Y2§] impose a bound in terms of
the condition numbers or minimum and maximum restricte@miglues for submatrices of up to
sizeslogn. Itis unclear whether the conditions in Meinshausen and2@)idre weaker or stronger
than the conditions in Zhang and Huary]|

The weakest known sufficient conditions to date are due tkdBiet al. ], who show that in
addition to the column normalization condition (Assumptibin this paper), it suffices to impose a
milder condition, namely a lower bound on a certain type sfrieted eigenvalue (RE). They show
that this RE condition is less restrictive than both the RiRdition [6] and the eigenvalue conditions
imposed in Meinshausen and YRg. For a given vecto¥ € R?, let 0;) refer to thej*" largest
coefficient in absolute value, so that we have the ordering

9(1) > 9(2) > .2 H(d—l) > H(d)

11



For a given scalaty and integes = 1,2, ..., d, let define the set

d s
o) = {0eB | 3 1y <o 3l
j=1

j=s+1

In words, the sef'(s, cq) contains all vectors iiR? where thef;-norm of the largest co-ordinates

provides an upper bound (up to constagjtto the/; norm over the smallest — s co-ordinates. For

example ifd = 3, then the vectof1,1/2,1/4) € I'(1,1) whereas the vectdi, 3/4,3/4) ¢ I'(1,1).
With this notation, the restricted eigenvalue (RE) assionatan be stated as follows:

Assumption 3(Restricted lower eigenvalued]]. There exists a functior(X, c¢y) > 0 such that
1
Vn
Bickel et. al fi] require a slightly stronger condition for bounding theloss in if s depends om.
However the conditions are equivalent for fixednd AssumptiorB8 is much simpler to analyze and
compare to Assumptio®. At this point, we have not seen conditions weaker than Agsiom3.

The following corollary of Propositiofh shows that AssumptioBis satisfied with high probability
for broad classes of Gaussian random designs:

X0l > kK(X,co)||f]l2 foralld e I'(s,cp).

Corollary 2. Suppose thgb(¥) remains boundedpin, g, 2s) ”EHI:EQUHQ

for a sufficiently large constant. Then a randomly drawn giesnatrix X € R™* with i.i.d. N (0, )
rows satisfies Assumpti@with probability greater thanl — ¢y exp(—can).

> 0 and thatn > csslogd

Proof. Note that for any vectaf € I'(s, ¢p), we have

161l < (L+co) D 160 < (1 + co) /58]l

=1

Consequently, if the boun@4) holds, we have

6(1 + co)(

[Xvlla {HE”QUIb B
Vn 2|[vll2

Since we have assumed that>- c3slog d for a sufficiently large constant, the claim follows. [J

Y)slogd
PEEOED) 2 o

Combined with the discussion following Propositibnthis result shows that both the conditions
required by Theorerd of this paper and the analysis of Bickel et &l} (both in the case = 0) hold
with high probability for Gaussian random designs.

3.3.1 Comparison of RE assumption with Assumptior?

In the case = 0, the condition required by the estimator that performstisgeares over th&-ball—
namely, the form of Assumptiof used in Theoren2(b)—is not stronger than Assumpti@ This
fact was previously established by Bickel et al. (see piJj, We now provide a simple pedagogical
example to show that thg -based relaxation can fail to recover the true parametelevitie optimal
ly-based algorithm succeeds. In particular, let us assuntéhanoise vectotrv = 0, and consider
the design matrix

1 -2 -1
X‘{z -3 —3}’
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corresponding to a regression problem with- 2 andd = 3. Say that the regression vectotr ¢ R?

is hard sparse with one non-zero entry (i€~ 1). Observe that the vectak := [1 1/3 1/3]
belongs to the null-space of, and moreoverA € TI'(1,1) but A ¢ By(2). All the 2 x 2 sub-
matrices ofX have rank two, we hav,(2) N ker(X) = {0}, so that by known results from Cohen
et. al. [LO] (see, in particular, their Lemma 3.1), the condit®n(2) N ker(X) = {0} implies that

the {y-based algorithm can exactly recover ahgparse vector. On the other hand, suppose that,
for instance, the true regression vector is givensby= [1 0 0], If applied to this problem with

no noise, the Lasso would incorrectly recover the solufion= 0 -1/3 —1/3] since||3||; =
2/3 <1 =||B*]]1. Although this example is low-dimensionak(d) = (1, 3)), we suspect that higher
dimensional examples of design matrices that satisfy theitons required for the minimax rate but
not satisfied for/;-based methods may be constructed using similar argumdihiis. construction
highlights that there are instances of design matricder which ¢;-based methods fail to recover the
true parametef* for ¢ = 0 while the optimal/y-based algorithm succeeds.

In summary, for the hard sparsity cage= 0, methods based ofy-relaxation can achieve the
minimax rateO (£1%64) for ¢,-error, but the current analyses of thésemethods §, 26, 4] are based
on imposing stronger conditions on the design maXrithan those required by the “optimal” estimator
that performs least-squares over theball.

4 Proofs of main results

In this section, we provide the proofs of our main theoremith wiore technical lemmas and their
proofs deferred to the appendices. To begin, we provide lzlBigel overview that outlines the main
steps of the proofs.

Basic steps for lower bounds The proofs for the lower bounds follow an information-thetar
method based on Fano’s inequaliyl], as used in classical work on nonparametric estimatidh [
34, 35]. A key ingredient is a fine characterization of the metritrgpy structure o¥, balls [20, 8].
At a high-level, the proof of each lower bound follows thddaling three basic steps:

(1) Let]| - ||« be the norm for which we wish to lower bound the minimax rigk; Theoreml, the
norm|| - ||, corresponds to thé, norm, whereas for Theore®) it is the ¢;-prediction norm
(the square root of the prediction loss). We first construci,apacking set fof, (R,) in the
norm || - ||, whered,, > 0 is a free parameter to be determined in a later step. The mmacki
set is constructed by deriving lower bounds on the packimgbars forB, (R, ); we discuss the
concepts of packing sets and packing numbers at more lendledtion4.1 For the case of
¢,-balls forg > 0, tight bounds on the packing numbers/jinorm have been developed in the
approximation theory literature2()]. For ¢ = 0, we use combinatorial to bound the packing
numbers. We use Assumpti@nin order to relate the packing number in tfyeprediction norm
to the packing number ify-norm.

(2) The next step is to use a standard reduction to show tlyasdgimator with minimax risk) (52 )
must be able to solve a hypothesis-testing problem over dlokipg set with vanishing error
probability. More concretely, suppose that an adversaaggd a uniform distribution over the
dn-packing set inB,(R,), and let this random variable ¥. The problem of recovering®
is a multi-way hypothesis testing problem, so that we mayyappno’s inequality to lower
bound the probability of error. The Fano bound involves ttedacking number and the mutual
information I(Y; ©) between the observation vectgre R™ and the random parameteér
chosen uniformly from the packing set.
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(3) Finally, following a technique introduced by Yang andr®a [34], we derive an upper bound
on the mutual information betweénhand® by constructing ae,,-covering set foi, (R,) with
respect to theés-prediction semi-norm. Using Lemn¥ain Section4.1.2 we establish a link
between covering numbersdg-prediction semi-norm to covering numberg#norm. Finally,
we choose the free parametéys> 0 and and:,, > 0 so as to optimize the lower bound.

Basic steps for upper bounds The proofs for the upper bounds involve direct analysis efrthtural
estimator that performs least-squares over¢Heall. The proof is constructive and involves two steps,
the first of which is standard while the second step is moreipéo the problem at hand:

(1) Since the estimator is based on minimizing the leastusgguloss over the bal,(R,), some
straightforward algebra allows us to upper boundéthprediction error by a term that measures
the supremum of a Gaussian empirical process over théBp@llr,,). This step is completely
generic and applies to any least-squares estimator imgkilinear model.

(2) The second and more challenging step involves compuiipgr bounds on the supremum of
the Gaussian process ovBf(2R,). For each of the upper bounds, our approach is slightly
different in the details. Common steps include upper bowrdthe covering numbers of the
ball B,(2R,), as well as on the image of these balls under the mapRingR? — R™. For the
caseg = 1, we make use of Lemmain order to relate thé,;-norm to thels-norm for vectors
that lie in an/,-ball. Forg € (0, 1), we make use of some chaining and peeling results from
empirical process theory (e.g., Van de Geag]).

4.1 Packing, covering, and metric entropy

The notion of packing and covering numbers play a crucia imbur analysis, so we begin with some
background, with emphasis on the case of covering/packing,fballs.

Definition 1 (Covering and packing numbersfonsider a metric space consisting of aSeaind a
metricp: S x S — Ry.

(@) Ane-covering ofS in the metricp is a collection{s',..., 3V} c S such that for all3 € S,
there exists somec {1,..., N} with p(3,3°) < e. Thee-covering numbeN (¢; S, p) is the
cardinality of the smallest-covering.

(b) A §-packing ofS in the metricp is a collection{',..., 3™} c S such thaip(3?, 37) > § for
all i # j. Thed-packing numbeiM/(J; S, p) is the cardinality of the largestpacking.

In simple terms, the covering numbaf(e; S, p) is the minimum number of balls with radius
under the metrip required to completely cover the space, so that every poiftlies in some ball.
The packing numbed! (§; S, p) is the maximum number of balls of radidsinder metricp that can
be packed into the space so that there is no overlap betweeof #&me balls. It is worth noting that
the covering and packing numbers are (up to constant faaesentially the same. In particular, the
inequalitesM (e;S,p) < N(eS,p) < M(e/2;S,p) are standard (e.g.2§]). Consequently,
given upper and lower bounds on the covering number, we carettrately infer similar upper and
lower bounds on the packing number. Of interest in our ressithe logarithm of the covering number
log N (¢; S, p), a quantity known as theaetric entropy

A related quantity, frequently used in the operator thedgydture RO, 30, 8], are the (dyadic)
entropy numbers; (S; p), defined as follows fok = 1,2, . ..

ex(S;p) = inf{e>0] N(S,p) < Qk_l}. (27)
By definition, note that we hawe.(S; p) < § if and only iflog N (4; S, p) < k.
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4.1.1 Metric entropies of/,-balls

Central to our proofs is the metric entropy of the b&li(R,) when the metricp is the ¢,-norm,

a quantity which we denote bigg IV, ,(¢). The following result, which provides upper and lower
bounds on this metric entropy that are tight up to constastbfa, is an adaptation of results from the
operator theory literature2, 17]; see AppendixB for the details. All bounds stated here apply to a
dimensiond > 2.

Lemma 3. Assume thaj € (0, 1] andp € [1, oo] withp > ¢. Then there is a constanf, ,,, depending
only ong andp, such that

» 1, pe
log Ny 4(€) < Uy, [qufq(g)w logd| forall e € (0, /1), (28)

Conversely, suppose in addition that 1 ande? = Q(229) "7 for some fixed € (0,1), depending

only ong andp. Then there is a constadt, , < U, ,, depending only op andp, such that

log Ny g(€) > Ly, [Rqﬁ(%)%logd]. (29)

Remark: In our application of the lower bound®9), our typical choice o&? will be of the order
(’)(%)¥. It can be verified that as long as there exists & (0, 1) such thatﬁ = Q(d")
qn

(which is stated at the beginning of Sectidnandp > ¢, then there exists some fixede (0,1),
depending only omp andgq, such that lies in the range required for the lower boura®)to be valid.

4.1.2 Metric entropy of g-convex hulls

The proofs of the lower bounds all involve the Kullback-Ueit(KL) divergence between the distribu-
tions induced by different parametetsainds’ in B, (R,). Here we show that for the linear observation
model (1), these KL divergences can be represented-esnvex hulls of the columns of the design
matrix, and provide some bounds on the associated metriapnt

For two distributionsP andQ that have densitiedP anddQ with respect to some base measure
u, the Kullback-Leibler (KL) divergence is given bp(P || Q) = [ log % P(du). We usePg to
denote the distribution af € R under the linear regression model—in particular, it cqroesls to the
distribution of aN (X 3, 0 1,,»,,) random vector. A straightforward computation then leads to

1 /
D(Ps||Py) = 55 IX6- XG5 (30)

Therefore, control of KL-divergences requires understaindf the metric entropy of the-convex
hull of the rescaled columns of the design mafXix—in particular, the set

d
absconvy(X/v/n) := {%Zerj | 6 €Bgy(1)}. (31)
j=1

We have introduced the normalization byy/n for later technical convenience.

Under the column normalization condition, it turns out tha metric entropy of this set with
respect to th&,-norm is essentially no larger than the metric entropBgfR,), as summarized in
the following
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Lemma 4. Suppose thak satisfies the column normalization condition (Assumpiiovth constant
kc). Then there is a constant; , depending only og € (0, 1] such that

2q
log N (e, absconvy(X/v/n), || - [l2) < Uy, {Rqﬁ(%)ﬂ logd].

The proof of this claim is provided in Appendi. Note that apart from a different constant, this
upper bound on the metric entropy is identical to thatltgr N, ,(e/x.) from Lemma3. Up to
constant factors, this upper bound cannot be tightenednargé(e.g., considet = d and X = I).

4.2 Proof of lower bounds

We begin by proving our main results that provide lower bauma minimax risks, namely Theorerhs
and3.

4.2.1 Proof of Theoreml

Recall that the lower bounds in Theordnare the maximum of two expressions, one corresponding
to the diameter of the se¥,(X) intersected with thé,-ball, and the other correspond to the metric
entropy of the/,-ball.

We begin by deriving the lower bound based on the diametaf,0X ) = B, (R,) Nker(X). The
minimax risk is lower bounded as

I TR
where the inequality follows from the inclusiov, (X) C B,(R,). Foranys3 € N,(X), we havey” =
Xp + w = w, so thatY” contains no information aboyt € N, (X). Consequently, oncé is chosen,
the adversary can always choose an elensert N, (X) such that|| 3 — Bllp > & diam, (N (X)).
Indeed, ifHBHp > 1 diam, (N (X)), then the adversary choos@s= 0 € N, (X). On the other
hand, ifHﬁHp < £ diam,, (N, (X)), then the adversary can choose sgine N, (X) such that| ||, =
diam,, (N, (X)). By triangle inequality, we then havgd — 3|, > ||5]l, — 18], > 1 diam, (N (X)).
Overall, we conclude that

~ 1
min max E[3—8|P > (= diam,(N,(X)))".
i mac EIF—Bl7 2 (5 diam,(NG(X)))
In the following subsections, we establish the second témrttee lower bounds via the Fano method,

a standard approach for minimax lower bounds. Our proofsadf(@) and (b) are based on slightly
different arguments.

Proof of Theorem 1(a): Let M = M,(d,) be the cardinality of a maximal packing of the ball
B,(R,) in the £, metric, say with element§3!, . .. , M1}, A standard argument (e.g1§, 34, 35])
yields a lower bound on the minima-risk in terms of the error in a multi-way hypothesis testing
problem: in particular, we have

~ 1 ~
min max E||8—8|P > — 6P minP B
in max B3~ 015 > 5 o minF[3 £ 5
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where the random vectds € R< is uniformly distributed over the packing sgt', ..., 3"}, and the
estimators takes values in the packing set. Applying Fano’s inequdlity] yields the lower bound

~ I(B;Y) +log2

(32)
whereI(B;Y) is the mutual information between random paraméien the packing set and the
observation vectoy” € R”.

It remains to upper bound the mutual information; we do sodbigding the procedure of Yang
and Barron 4], which is based on covering the model sp@Bg, 5 € B,(R,)} under the square-root
Kullback-Leibler divergence. As noted prior to Lemmafor the Gaussian models given here, this
square-root KL divergence takes the foxnD(Ps || Pg/) = \/%HX(ﬁ —")]|2. Let N = Na(e,,) be
the minimal cardinality of aia,,-covering ofB,(R,) in £2-norm. Using the upper bound on the dyadic
entropy ofabsconv,(X) provided by Lemma, we conclude that there exists a $&t3!, ..., X3V}
such that for allX 3 € absconv,(X), there exists some indésuch thaf| X (58— 3%)||2/v/1 < ¢ ke €n.
Following the argument of Yang and Barro®4], we obtain that the mutual information is upper
bounded as

c2n

I(B;Y) < logN(en) + —5 rcer.

Combining this upper bound with the Fano lower bou8®) fields

~ log Na(€n) + St k2 €2 + log 2
P B > 1- Z . 33
[B#08] = log M, (0,) (33)

The final step is to choose the packing and covering ragiade,, respectively) such that the lower
bound @33) remains strictly above zero, say bounded belowt by In order to do so, suppose that we
choose the paie,, d,,) such that

62n22

—2 K € < log Na(e,), and (34a)

log Mp(6,) < 4log Na(ep). (34b)

As long asNs(e,,) > 2, we are then guaranteed that

]P[B;AE] > 1_210gN2(6n)+10g2

> 1/4 35
4log No(€p) = 14 (33)
as desired.
It remains to determine choices ef andd,, that satisfy the relations3¢). From Lemma3,
2q
relation @43 is satisfied by choosing, such thatcj—Q"ng €2 = Lyo [Rq%q (é)E log d] , Or equiv-
alently such that
4 2]
()7 = O(R,7 712 ogd

Ke

).

In order to satisfy the bound@{b), it suffices to choosé,, such that

n

b1 21 20
Usp |Ry77 (5-) 70 logd] < 4Lys [Ry77(=)* 7 logd],

n n
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or equivalently such that

U, p—q 4 ) 2 2-p
p P 1 g —q —q
%2 [ {(en)z } R,
1 Ugp e pe [0_2 logd]¥
- [4Lq72:| ! Lq,2 Rq H% n

Combining this bound with the lower boun@5) on the hypothesis testing error probability and sub-
stituting into equation(0), we obtain

R 2 p—aq
min max E||S - 5”5 > Cqp Ry [0_2 logd] ’ )
B BEBy(Rq) K N

which completes the proof of Theorel(a).

Proof of Theorem 1(b): In order to prove Theorerib), we require some definitions and an auxil-
iary lemma. For any integere {1,...,d}, we define the set

H(s) = {z€{-1,0,+1}" | ||z]lo = s}

Although the set{ depends o, we frequently drop this dependence so as to simplify raatiVe
define the Hamming distange, (2, ') = Z;l:l I[z; # z}] between the vectors and2’. We prove
the following result in Appendi:

Lemma 5. There exists a subsét ¢ H with cardinality [H| > exp(§ log 45 7 2) such thatpp(z,2') >
s forall z,2' € H.

Now consider a rescaled version of theﬁeisay\/génﬁ for somes,, > 0 to be chosen. For any

elements3, 3’ € %ﬁ we have the following bounds on tlig-norm of their difference:
156135 = and (36a)
18-85 < 8. (36h)

Consequently, the rescaled v[é H is ané,,-packing set irfy norm with M5 (5,,) = |H| elements,

say{3',...,M}. Using this packing set, we now follow the same classicaisstes in the proof of
Theoreml(a), up until the Fano lower boun@3%).
At this point we use an alternative upper bound on the mutfatmation, namely the bound
I(Y;B) < 1639) ) >z D (8" || 37), which follows from the convexity of mutual informatiodf]. For
2

the linear observation model), we haveD (3" || 37) = 21, | X (8" — 57) 3. Since(3 — ) € Bo(2s)
by construction, from the assumptions &nand the upper bound boun8gl), we conclude that
8nk2 62

1(YV:B) < —%

Substituting this upper bound into the Fano lower bolsi), (we obtain

8"'{ SE62 + log(2)
s log 8/2 '

PB#F > 1-
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Settings? = 3%%? log $ ensures that this probability is at ledstd. Consequently, combined
r bo

with the lowe ndX0), we conclude that
~ 11,1 o2s d—s15
: El3 — 8P p/2
mgmﬁeIIIB}i}I(%q) 16 =Bl = 21”4(32) K2 2n ©8 5/2

Aslong as the ratid/s > 1+ ¢ for somed > 0 we havelog(d/s—1) > clog(d/s) for some constant
¢ > 0, from which the result follows.

4.2.2 Proof of Theorem3

We use arguments similar to the proof of Theoreim order to establish lower bounds on prediction

error|| X (3 — 3")|2/v/n-

Proof of Theorem3(a):  For somes2 = Q(R, (%59)1-9/2) let {3',..., 3™} be and, packing of
the ballB,(R,) in the /; metric, say with a total of\/ = M (4,,/k.) elements. We first show that if
n is sufficiently large, then this set is also:a),, /2-packing set in the prediction (semi)-norm. From
Assumption2, for eachi # j,

X8 = B7)l2
NG
Using the assumed lower bound éh—namely,d2 = Q(R,(*2%)1~%)—and the initial lower
bound @7), we conclude tha X(ﬁi/_ﬁw”b > k40, /2 oncen is larger than some finite number.
We have thus constructedxad,, /2-packing set in the (semi)-norinX (5° — 37)||2. As in the
proof of Theoren2(a), we follow a standard approach to reduce the problemveéidoounding the

minimax error to the error probability of a multi-way hypetis testing problem. After this step, we
apply the Fano inequality to lower bound this error prokigbilia

I(XB%Y) + log?2
log MQ(én) ’

wherel (X B';Y') now represents the mutual informatfdvetween random paramet&i3 (uniformly
distributed over the packing set) and the observation vécta R".

From Lemma4, the . e-covering number of the sebsconv,(X) is upper bounded (up to a con-
stant factor) by the covering number oB,(R,) in £2-norm, which we denote bV, (e, ). Following
the same reasoning as in Theor2fa), the mutual information is upper bounded as

> k|l = Bll2 = fe(Rgym, d). (37)

PIXB # Xf] > 1

I(XB;Y) < 1ogN2(en)+2in2e2

Combined with the Fano lower bound, we obtain
log Na(en) + 25 K2 €2 4+ log 2
log M, (6, )

Lastly, we choose the packing and covering radjjignde,, respectively) such that the lower bourdB)
remains strictly above zero, say bounded below by It suffices to choose the pdi;,, d,,) to satisfy

the relations §4¢ and @4h). As long ase? > % andNs(e,) > 2, we are then guaranteed that
2log Na(ey,) + log 2
4 IOg N2 (En)

PIXB#Xf] > 1-

(38)

PIXB#Xj3] > 1-

> 1/4,

®Despite the difference in notation, this mutual informatie the same a&(B;Y’), since it measures the information
between the observation vectpand the discrete indeix
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as desired. Recalling that we have constructégra/2 covering in the prediction (semi)-norm, we
obtain

2
o
min max E|X (B—3)|3/n > chq Ry I [—2

log d] 1—q/2
3 B€Bq(Rq) Ke n

for some constam’z,q > 0. This completes the proof of Theored(a).

Proof of Theorem 3(b): Recall the assertion of Lemniq which guarantees the existence of a set
2 ~ ~

g—gH is an é,-packing set in¢a-norm with M, (5,,) = |H| elements, say3',...,3M}, such that

the bounplsf{6a) and @6b) hold, and such thadbg [H| > § log %. By construction, the difference

vectors(3' — 7)) € By(2s), so that by assumption, we have

HX(ﬁl - ﬁj)H/\/ﬁ < "’iuuﬁz - ﬁj||2 < “u\/g On. (39)
In the reverse direction, since Assumpti®holds with f,(R,, n,d) = 0, we have
IX(5" = 3)ll2/vn > Kb (40)

We can follow the same steps as in the proof of Theotémy, thereby obtaining an upper bound the
mutual information of the forni (X B; y) < 8x2nd2. Combined with the Fano lower bound, we have

8nk2 <9
~ wos +1
PIXB#Xf] > 1- -2 &2

log S /2
Remembering the extra factor of from the lower bound40), we obtain the lower bound

o? d—s
min max E—HX(ﬂ Bz > Coq“zﬂ slog R

B B€Bo(s) M
Repeating the argument from the proof of TheotHi) allows us to further lower bound this quantity
in terms oflog(d/s), leading to the claimed form of the bound.

4.3 Proof of achievability results

We now turn to the proofs of our main achievability resultsmely Theorem& and4, that provide
upper bounds on minimax risks. We prove all parts of theserémas by analyzing the family of
M -estimators

B e arg min 1Y — X33

We begin by deriving an elementary inequality that is us#iubughout the analysis. Since the
vector 5* satisfies the constra|t1118*|| < R, meaning3* is a feasible point, we havg” — X 3|3

Y — X 3%3. DeflnlngA [3 #* and performing some algebra, we obtain the inequality

2wl XA|

n

1~
~[XA[lZ < (41)

4.3.1 Proof of Theorem?2

We begin with the proof of Theoref) in which we upper bound the minimax risk in squafeahorm.
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Proof of Theorem2(a): To begin, we may apply Assumptidhto the inequality 41) to obtain

[max(0, kel Alls — fo(Rgyn,d)]? < 2w XAl/n

IN

2 ~
ST M

Sincew; ~ N(0,0?) and the columns of{ are normalized, each entry (%fwTX iS zero-mean
Gaussian with variance at most2x2/n. Therefore, by union bound and standard Gaussian tail
bounds, we obtain that the inequality

3logd

n

[max(0, rel|Allz — fo(Rgyn,d)]® < 20k, 1A (42)

holds with probability greater thah— ¢; exp(—con). Consequently, we may conclude that at least
one of the two following alternatives must hold

~ 2 d
1A, < % or (43a)
20k [3logd

2
Ky n

IA]3

IN

1AL (43b)
Suppose first that alternativé3g) holds. Consequently for we have

~ logd,1—¢/2
1315 < o R(RE)=),

which is the same up to constant rate than claimed in The@(ejn
On the other hand, suppose that alternati&b) holds. Since botl¥ and* belong taB,(R,), we

have||Al|4 = Y9, |A;]9 < 2R,. Therefore we can exploit Lemniaby settingr = 2:—’?\/%,

thereby obtaining the bourfiA ||2 < 7||A|l1, and hence
1A < V2R ||A o + 2R, 0.

Viewed as a quadratic in the indeterminate= ||A||,, this inequality is equivalent to the constraint
fx) —ax?+br+c<0,witha =1,

b= —\/2Rq7'1_q/2, and c= —2Rq7'2_q.

Since f(0) = ¢ < 0 and the positive root of (x) occurs atr* = (—b + Vb? — 4ac)/(2a), some
algebra shows that we must have

)

~ k202 logdil-a/2
IAIZ < 4max{t?, |} < 24Rq{l€—§ﬁ—? =]
with high probability (stated in Theoref{a) which completes the proof of Theoréita).

Proof of Theorem2(b): In order to establish the boun#l3), we follow the same steps witfa(s, n, d) =
0, thereby obtaining the following simplified form of the balu@?2):

~ ke o [3logd
Al < = —

- 1A
¢ Ry n
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By definition of the estimator, we hayeA o < 2s, from which we obtain|All; < v2s|Als.
Canceling out a factor dfA||; from both sides yields the claim.g).

Establishing the sharper upper bourdd)(requires more precise control on the right-hand side of
the inequality 41). The following lemma, proved in Append provides this control:

Lemma 6. If %\GGHHZ < K, forall 8 € By(2s), then for anyr > 0, we have
1 log(d
[6]l0<2s,]|6]|2<r T¥ n

with probability greater than — ¢; exp(—co min{n, slog(d — s)}).
Let us apply this lemma to the basic inequalifft), We may upper bound the right-hand side as

‘ slog(d/s)

T
w' XA 1

| < 1Al sup —|w"X0| < 6]All2 0 Ky —
Consequently, we have

[0lo<2s,]|0]]2<1 T

1, .~ ~ slog(d/s
LIXAI < 120 Bl w28,

with high probability. By Assumptior?, we have] XA|3/n > 2| A|j2. Cancelling out a factor of
1Al and re-arranging yield§A ||, < 12 %2/ #1%84/2) with high probability as claimed.
4

4.3.2 Proof of Theorem4

We again make use of the elementary inequaliti) (o establish upper bounds on the prediction risk.

Proof of Theorem4(a): So as to facilitate tracking of constants in this part of treof, we consider

the rescaled observation model, in whigh~ N(0,1,) andX := o~!X. Note that if X satisfies

Assumptionl with constant., thenX satisfies it with constaml, = k./o. Moreover, if we establish

a bound on| X (3 — £*)||3/n, then multiplying byo? recovers a bound on the original prediction loss.
We first deal with the casg = 1. In particular, we have

1 o o’ X 3k.202logd
0" X0| < ——xllfl: < /= (2R),
n n n

where the second inequality holds with probability- ¢; exp(—c2 log d), using standard Gaussian
tail bounds. (In particular, sinceX;||a//n < &, the variatew” X; /n is zero-mean Gaussian with
variance at most./n.) This completes the proof far= 1.

Turning to the case < (0, 1), in order to establish upper bounds oBgi(2R,), we require the
following analog of Lemmd, proved in AppendidG.1L So as to lighten notation, let us introduce the

q

shorthandy(R,, n, d) : = /Ry (1284)3-1.
Lemma 7. For ¢ € (0, 1), suppose thag(R,,n,d) = o(1) andd = ©(n). Then for any fixed radius

q

r such thatr > c3k.2 g(Ry, n, d) for some numerical constant > 0, we have

1, += o]
sup —‘wTX9| < eyr /{Cg VR (
0B, (2R,), X712 <y "

with probability greater tharl — ¢1 exp(—ca n g?(Ry, n, d)).
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Note that Lemm& above holds for any fixed radius > C3/€c% g(Rg,n,d). We would like the

apply the result of Lemma@tor = XAl " \which is a random quantity. In Appendit, we state

\/ﬁ 1
and prove a “peeling” result that allows us to strengthen to@ in a way suitable for our needs. In
particular, if we define the event

I1X6l2 - 4

1, 2 g log d
£ = {30€B,(2R) suchthatg\wTX0|2c4 NG Re? /Ry (

=)y, )

then we claim that

2exp(—cn g?(Ry,n,d))

Ple] 1 —exp(—cng*(Ry,n,d))’

This claim follows from Lemma in AppendixH by making the choices), (v; X,,) = 1|w” Xv|,

Returning to the main thread, from the basic inequatt) (when the evenf from equation 45)
holds, we have

IXAIZ _ (1XAlz [, Jogd\1-g2
n2§ Vn chRq(n)q'

Canceling out a factor o‘f%n”% squaring both sides, multiplying ¥ and simplifying yields
2

2
[ XA|3 < &2 Uz(ﬁ)q Rq(@)l—qﬂ — 22 R, (U @)l—qﬂ7

n - o n ¢ K2 n

Cc

as claimed.

Proof of Theorem4(b): For this part, we require the following lemma, proven in Apgi G.2

Lemma 8. Suppose thafg > 2. Then for anyr > 0, we have

1 log (4
sup —|wTX9‘ < 9ro slog(5)
eelazo(zs),%g n n

n

with probability greater tharnl — exp ( — 10slog(%)).

Consequently, combining this result with the basic ineityié41), we conclude that

XA _ IXAl  [slos(?)
n - NG n

with high probability, from which the result follows.

5 Discussion
The main contribution of this paper was to analyze minimaegaf convergence for the linear

model () under high-dimensional scaling, in which the sample sizend problem dimensiod
tend to infinity. We provided lower bounds for tlig-norm for allp € [1, c0] with p # ¢, as well
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as for thels-prediction loss. In addition, for both thig-loss and/>-prediction loss, we derived a set

of upper bounds that match our lower bounds up to constatdrfacso that the minimax rates are
exactly determined in these cases. The rates may be viewad e@dension of the rates for the case
of /5-loss from Donoho and Johnston®] on the Gaussian sequence model to more general design
matricesX. In particular substituting = I andd = n into Theoremsl and?2, yields the same rates

as those expressed in Donoho and Johnst@de(fee Corollaryl), although they provided much
sharper control of the constant pre-factors than the aisajygen here.

Apart from the rates themselves, our analysis highlights bonditions on the design matriX
enter in complementary manners for different loss funstio®n one hand, it is possible to obtain
lower bounds ord,-risk (see Theorert) or upper bounds ofy-prediction risk (see Theore#) under
very mild assumptions otX—in particular, our analysis requires only that the colurohsX/\/n
have bounded,-norms (see, in particular, Assumptid). On the other hand, in order to obtain
upper bounds ow, risk (Theorem?2) or lower bound or¢Y,-norm prediction risk (Theorer8l), the
design matrixX must satisfy, in addition to column normalization, otherrencestrictive conditions.

In particular, our analysis was based on imposed on a cdstaeof lower bound on the curvature
of X7 X measured over thé,-ball (see Assumptiod). As shown in Lemmad, this lower bound is
intimately related to thelegree of non-identifiabilitpver the/,-ball of the high-dimensional linear
regression model .

In addition, we showed that Assumpti@is not unreasonable—in particular, it is satisfied with
high probability for broad classes of Gaussian random wesriin which each row is drawn in an i.i.d.
manner from aV (0, ) distribution (see Propositiof). This result applies to Gaussian ensembles
with much richer structure than the standard Gaussian éase {;y4). Finally, we compared to the
weakest known sufficient conditions fér-based relaxations to be consistenf4morm forqg = 0—
namely, the restricted eigenvalue (RE) condition, of Bigkel. [4] and showed that the oracle least-
squares over th&-ball method can succeed with even milder conditions on éséh. In addition, we
also proved that the RE condition holds with high probabilitr broad classes for Gaussian random
matrices, as long as the covariance matixs not degenerate. The analysis highlights how the
structure ofX determines whethéf -based relaxations achieve the minimax optimal rate.

The results and analysis from our paper can be extended imhenof ways. First, the assump-
tion of independent Gaussian noise is somewhat restriatigeit would be interesting to analyze the
model under different noise assumption, either noise watler tails or some degree of dependency.
In addition, we are currently working on extending our as@yto non-parametric sparse additive
models.
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A Proof of Lemma 2

Defining the setS = {j | |¢;| > 7}, we have
0
ol = Nosth+ 161 < VISTlell + 32 %0
J¢s jgs
Sincel|d;|/T < 1 for all i ¢ S, we obtain
Il < VISTIOlz +7 > (16:l/7)*
igs
VISI10]|2 + 2R, 1.

Finally, we observeR, > . ¢ [0;|? > |S|m9, from which the result follows.

IN

B Proof of Lemma 3

The result is obtained by inverting known results on (dypdiatropy numbers of,-balls; there are
some minor technical subtleties in performing the inversig-or ad-dimensional(, ball with ¢
(0,p), itis known [30, 20, 17] that for all integers: € [log d, d], the dyadic entropy nhumbees of the
ball B,(1) with respect to thé,-norm scale as

log(1 + %)]”"‘”” (46)

el I = Can |25

Moreover, fork € [1,log d], we havee ({;) < Cyp.
We first establish the upper bound on the metric entropy.€Ssine 2, we have

log(1 + 2) 1/q=1/p log d 1/q=1/p
er(ly) < Cgp [TZ} < Cgp [T] .

Inverting this inequality fok = log N, ,(¢) and allowing for a ball radiug,, yields
qu/q pq

)P~ logd, (47)

IOng,q(E) < (Cq,p

as claimed.

We now turn to proving the lower bound on the metric entropywhich we require the existence
of some fixedv € (0, 1) such thatk < d'~*. Under this assumption, we have+ ¢ > ¢ > ¥, and
hence

>

log(1 + g>] a1/
k

Ca {T

Accounting for the radiugz, as was done for the upper bound yields
Cq,qul/q -
€

vlogd 1/a=1/p
fe

log Npgle) > v )7~ logd,

as claimed.

Finally, let us check that our assumptions jomeeded to perform the inversion are ensured by
the conditions that we have imposed @nThe conditionk > logd is ensured by setting < 1.
Turning to the conditionk < d'~¥, from the bound 47) on k, it suffices to choose such that

(S22)7-7 logd < d'~*. This condition is ensured by enforcing the lower bouhd- Q(iﬁ%ﬁl)%q
for somev € (0,1).
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C Proof of Lemma 4

We deal first with (dyadic) entropy numbers, as previousfngel 27), and show that

}. (48)

We prove this intermediate claim by combining a number ofvkmoesults on the behavior of dyadic
entropy numbers. First, using Corollary 9 from Guédon aitdbk [17], for all £ = 1,2,..., we have

log(1+d) 19
gt £ )2

) log(1+4), 2
a1 (absconvy (X/v/), || |l)) < ek mln{l, ltha il

[NIES

ea—1(absconvy (X/v/n), || - [l2) < ¢ ex(absconvy(X), || -|2) min{l, (

Using Corollary 2.4 from Carl and Pajor]| we obtain

7

where|| X ||;_2 denotes the norm ok viewed as an operator frodif — ¢7. More specifically, we
have

) d
ex(absconvy (X/v/n), || -l2) < M)lﬂ}’

X0 mind 1, (<5

1 1
— [ X[l1i—2 = —= sup [[Xul}
Vv VI ) =1
1

= —= sup sup v Xu

V1 ufla=1 Jufly=1
= iiriladeXng/\/ﬁ < Ke.

4y 1_1
Overall, we have shown thaby_1(absconv,(X/v/n), || - [2) < cke ming 1, (%)q 2

as claimed. Finally, under the stated assumptions, we maytithe upper bound4g) by the same
procedure as in the proof of LemrBgsee AppendixB), thereby obtaining the claim.

D Proof of Lemmab

In this appendix, we prove Lemnia Our proof is inspired by related results from the approxioma
theory literature (see, e.g., Kih2()). For each even integer= 2,4,6, ..., d, let us define the set

H:={z€{-1,0,+1}" | |Iz]o = s} (49)

Note that the cardinality of this setfi&| = (%)2°, and moreover, we hag: — 2'[|o < 2s for all pairs
2,2 € H. We now define the Hamming distangg on’H x H viapy(z,2') = E?zl [[z; # 2}]. For
some fixed element € H, consider the sefz’ € H | pu(z,2’) < s/2}. Note that its cardinality is
upper bounded as

‘{Z/ eEH | pH(z,z/) < 3/2}| < <S;l2>38/2.

To see this, note that we simply choose a subset ofssizevherez and-’ agree and then choose the
others/2 co-ordinates arbitrarily.
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d
Now consider a setl C H with cardinality at mostA| < m : = ((3)) . The set of elements € 'H
s/2

that are within Hamming distaneg/’2 of some element ofl has cardinality at most

HzeH |:pu(z,2) <s/2forsomez’ € A} < |A] < /2>35/2 < |H]|,
where the final inequality holds sincat§(872)35/2 < |H|. Consequently, for any such set with cardi-
nality | A| < m, there exists a € H such thapy (z,2') > s/2 for all 2’ € A. By inductively adding
this element at each round, we then create a setwith H with | A| > m such thapy(z,2") > s/2
forall z, 2’ € A.
To conclude, let us lower bound the cardinality We have

@) _ @ s/2)(s/2) _ﬁd—m L (s

"= (572)  (d—=s)st os/2+) T s/2

where the final inequality uses the fact that the r%ﬁ?}jf is decreasing as a function pf

E Proof of Proposition 1

In this appendix, we prove both parts of Propositionn addition to proving the lower boun@4),
we also prove the analogous upper bound

1/2
IX0llz g s/, + 6| B850 forailv e R (50)
\/ﬁ n

Our approach to proving the bound®4) and €0) is based on Slepian’s lemmad, 12] as well as
an extension thereof due to Gordatb]. For the reader’s convenience, we re-state versions sf thi
lemma here. Given some index $étx V, let{Y,, ., (u,v) € U x V} and{Z,,, (u,v) € U x V'}

be a pair of zero-mean Gaussian processes. Given the semiarothese processes defined via
o(X) = E[X?]Y/2, Slepian’s lemma asserts that if

oYuw —Yuww) < 0(Zuw—Zuw ) for all (u,v) and(v/,v") InU x V, (51)
then
E[ sup VY, <E[ sup Z,,]. (52)
(u,0)eUXV (u,0)eUXV

One version of Gordon’s extensiofq, 23] asserts that if the inequalitys{) holds for (u,v) and
(u',v")inU x V, and holds witrequalitywhenv = ¢/, then

E[sup inf Y,,] < E[sup inf Z,,]. (53)
uel V€V uel V€V

Turning to the problem at hand, any random mafXiXrom the given ensemble can be written as
Wx/2, whereW ¢ R™*¢is a matrix with i.i.d. N(0, 1) entries, and>'/? is the symmetric matrix
square root. We choose the g&ts the unit balls™ ! = {u € R" | |jul|z = 1}, and for some radius
r, we chooséd/ as the set

V(r) :={v e R? | |Z%0)2 =1, |Jofl§ < r}.
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(Although this set may be empty for certain choices,afur analysis only concerns those choices for
which itis non-empty.) For a matrix/, we define the associated Frobenius ngm » = [3°, - M3]/2,

and for anyv € V(r), we introduce the convenient shorthaine: >1/2 v,
With these definition, consider the centered Gaussian psa¢e, = u’ Wv indexed byS™ ! x
V(r). Given two pairgu, v) and(v/,v") in S*~! x V(r), we have

0> (Yuw — Yurw) = [ut” =o' (@))%
= \Hu@T —u' o+ T — u'(f/)T”]%
= |8l llu — /|13 + /5015 — &[5 + 2(u" ' — [|u/|I3)(||5]5 — 87F") (54)

Now by the Cauchy-Schwarz inequality and the equalifies, = ||u||2 = 1 and||7||2 = [|?’||2, we
haveu” ' — ||ul|3 < 0, and||7|2 — 73" > 0. Consequently, we may conclude that

0* (Yo = Yuw) < llu—u'|3+ o - 7|3 (55)

We claim that the Gaussian procéss, satisfies the conditions Gordon’s lemma in terms of the zero-
mean Gaussian procegs , given by

Zuw = glu+hT(2V20), (56)

whereg € R” andh € R? are both standard Gaussian vectors (i.e., with i.zd0, 1) entries). To
establish this claim, we compute

0% (Zupw = Zuw) = Ju—|3+ (82 (0 —0)3

= Ju =3+ [lo - 73

Thus, from equations5), we see that Slepian’s conditiofl) holds. On the other hand, when= v/,
we see from equatiorb{) that

Uz(Yuﬂ) - Yu/ﬂ)) = Hu - U/H% = Uz(Zuﬂ) - Zu,v’)7

so that the equality required for Gordon’s inequality i®aatisfied.

Establishing an upper bound: We begin by exploiting Slepian’s inequalit$4) to establish the
upper boundf0). We have

E[ sup |Xv|2] = E[ sup u” Xl
veV(r) (u,0)eS™ 1 xV(r)
< B[ sw 7

(u,0)eS 1 xV(r)

= E[ sup g u] +E[ sup hT(%V?0)]
flull2=1 veV(r)

< Ellgllz] + E[ sup AT (SV20)].
veV(r)
By convexity, we havé[||g|l2] < /E[||g]/3] = v/n, from which we can conclude that
E[ sup [Xvlz] < vi+E[sup AT (21%0)]. (57)

veV(r) veV(r)
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Turning to the remaining term, we have

sup |LT(£120)] < sup [lofly [I£Y%Al|o < rl|EY?A]|oc.
veV(r) veV(r)
Since each elemefE!/2h); is zero-mean Gaussian with variance at mIé§I max; 244, Standard
results on Gaussian maxima (e.@3]) imply that E[||2'/2h|«] < /3p(Z) log d. Putting together
the pieces, we conclude that fpe= 1

Bl s [Xulo/Va] < 1+ ) 2507 (59)
ve
tu(r)

Having controlled the expectation, it remains to estatsisirp concentration. Lgt: R”? — R be
Lipschitz function with constant with respect to thés-norm. Then ifw ~ N(0, Ip«p) is standard
normal, we are guarantee®?] that for all¢ > 0,

2
P[lf(w) —E[f(w)]| 2 1] < 2exp(—575)-

Note the dimension-independent nature of this inequalifg. apply this result to the random matrix
W e R"*4 viewed as a standard normal random vectoin= n d dimensions. First, letting
f(W) = SUDyev(r) HWEl/Z'UHQ/\/H, we find that

(59)

VALFW) = FW)] = sup [WSY20ll — sup WIS
veV(r) veV(r)
< sup |2V P0lo(W —W)r
veV(r)
= [W-W]p

since||x/2v||y = 1 for all v € V(r). We have thus shown that the Lipschitz constant 1/,/n.
Recalling the definition of,,(r) from the upper boundb@), we sett = ¢,,(r)/2 in the tail bound §9),
thereby obtaining

3

2
P[ sup || Xvlls > —uAr;qﬂ < 2exp(—ntugﬂ ). (60)
veV(r)

We now exploit this family of tail bounds to upper bound thelgability of the event
T := {3 v e RYs.t ||2V20]); = 1 and|| X v, > 3tu(HvH1)}.

We do so using Lemma@& from AppendixH. In particular, for the casé€ = 7, we may apply this
lemma with the objective functionf(v; X') = || Xv||2, sequence,, = n, the constrainp(-) = || - |1,
the setS = {v € R? | |XY2v|, = 1}, andg(r) = 3t,(r)/2. Note that the bound6() means
that the tail bound&5) holds withc = 4/72. Therefore, by applying Lemm@, we conclude that
P[T] < ¢ exp(—con) for some numerical constants

Finally, in order to extend the inequality to arbitranye R¢, we note that the rescaled vector
v = /][220, satisfies|2/25||, = 1. Consequently, conditional on the evéfrit, we have

IX0ll2/vVn < 3+ 3[V(3p(%) logd)/n] [|0]1,
or equivalently, after multiplying through Bj&'/2v||5, the inequality

IXvlla/vn < 3|ISY20lla + 3(v/(3p(T) log d) /n)|v]s,
thereby establishing the clairb().
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Establishing the lower bound(24): We now exploit Gordon’s inequality in order to establish the
lower bound 24). We have

— inf [|[Xv|]; = sup—||Xv|]2 = sup inf u! Xwv.
veV(r) veV veV(r) veU

Applying Gordon’s inequality, we obtain

E[ sup —[[Xv[s] < E[ sup inf Z,,]

veV(r) veV(r) uesm 1
= E[ inf ¢"u]+E[sup hTEY?y]
uesSn—1 veV(r)

< —Ellglls] + [3o() logd]"* .

where we have used our previous derivation to upper bdiisdp,cy,, 27 %'/2v]. Noting* that
E[||g]l2] = v/n/2 for all n > 1, we divide by,/n and addl to both sides so as to obtain

E[ sup (1—|Xvl2/vn)] < 1/2+ [3p(S) logd] "/ r (61)

veV(r)

to(r)

Next define the functiory (W) = sup,cy(, (1 — [[WEY20]2//n). The same argument as
before shows that its Lipschitz constant is at mbsyn. Settingt = t,(r)/2 in the concentration
statement%9) and combining with the lower boun@1), we conclude that

t(r)

3
P[ sup (1—|[Xv|2) > 515@(7‘)] < 2exp(—n ). (62)
veV(r)
Define the event
T := {3ve R s.t. |21 20]]y = 1 and(1 — [ Xwvl2) > 3te(||v]l1)}-

We can now apply Lemmawith a,, = n, g(r) = 3t,(r)/2 andp = 1/2 to conclude that there exist
constants; such thatP[7] < ¢; exp(—can).
Finally, to extend the claim to all vectois we consider the rescaled vector= v/||%'/2v)s.

Conditioned on the eveﬂ~fc, we have for albb € R¢,

- Xl < 543 (/Ga(5) Togd)/m) [,

or equivalently, after multiplying through bj52'/2v ||, and re-arranging,

IXelo/Vi > 21520l — 3 (\/Ba(D) g ) ol

as claimed.

*In fact, |E[||g]|2] — v/»| = o(v/n), but this simple bound is sufficient for our purposes.
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F Proof of Lemma 6
For a given radius > 0, define the set
S(s,r) = {9 c R? | 10]lo <2s, ]|0]2 < r},

and the random variables, = Z,,(s,r) given by

1
Z, := sup —|wlX4|.
6eS(s,r) T

For a givene € (0, 1) to be chosen, let us upper bound the minimal cardinality cftehsat covers
S(s, r) up to(re)-accuracy irfo-norm. We claim that we may find such a coveringfggt ..., 6V} ¢
S(s,r) with cardinality N = N (s, r, €) that is upper bounded as

log N(s,r,e) < log <2d>+2slog(1/e).
s

To establish this claim, note that here 4¢f) subsets of sizes within {1,2,...,d}. Moreover, for
any 2s-sized subset, there is dne)-covering in/y-norm of the ballB,(r) with at most22slos(1/¢)
elements (e.g.2{)).

Consequently, for eadh € S(s,r), we may find somé* such that|§ — 6%||> < re. By triangle
inequality, we then have

LwTxo < Lpxo + LT x (0 — 0

n n n

w2 [|X (6 —6%)]2
vn vn )

Given the assumptions ok, we have|| X (0 — 0%)||2//n < kur||0 — 0% < kye. Moreover,
since the variatéw||2/02 is y* with n degrees of freedom, we ha\ﬂéf/% < 20 with probability

1 — ¢1 exp(—con), using standard tail bounds (see Appendix Putting together the pieces, we
conclude that

1
< ZJwlxek| +
n

l|wTX(9| < l|wTX(9k|—|—2;—£uo're
n n
with high probability. Taking the supremum ow&pn both sides yields

1
Zn < max —|wl X0F|+ 2k, 0re
k=1,2,.,N n
It remains to bound the finite maximum over the covering set B&gin by observing that each
variatew” X 0% /n is zero-mean Gaussian with variangd| X 6?||2 /n2. Under the given conditions on
6% and X, this variance is at most?x2r2/n, so that by standard Gaussian tail bounds, we conclude
that
3log N
Zp < 0T Ky M + 2Ky, OT €
n
3log N(s,r,¢)

- + 26}. (63)

= ar,«;u{
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with probability greater thah — ¢; exp(—co log N (s, 7, €)).

Finally, suppose that = %. With this choice and recalling that < d by assumption,
we obtain
log N(s,r ) _ log(5) | 108 sTogary
n B n n
log (2ds) N slog(d/s)
- n n
< 2s + 2slog(d/s) n slog(d/s)7

n n

where the final line uses standard bounds on binomial caaffisi Sincel/s > 2 by assumption, we

conclude that our choice efguarantees théw < 5slog(d/s). Substituting these relations
into the inequality §3), we conclude that

7. < orm, {4 /SIquid/S)+2 /slogéd/s)}’

as claimed. Sincéog N(s,r,€) > slog(d — 2s), this event occurs with probability at leabkt—
¢1 exp(—ce min{n, slog(d — s)}), as claimed.

G Proofs for Theorem 4

This appendix is devoted to the proofs of technical lemmas us Theorem.

G.1 Proof of Lemma?
Forq € (0,1), let us define the set
Sy(Rg,r) = By(2R,) N {0 R | | X0|a/v/n <71}

We seek to bound the random varialleR,, ) : = supges, (r,,r) %|@TX'9|, which we do by a chain-
ing result—in particular, Lemma 3.2 in van de Ge&Z]). Adopting the notation from this lemma, we
seek to apply it withe = §/2, and K = 4. Suppose tha&%ﬂ'|2 <r,and

Vnd > er (64a)
Vné > ¢ /;\/logN(t;Sq)dt =:J(r,9). (64b)

whereN (t;S,) is the covering number fd, in the ¢2-prediction norm (defined b{yX || /\/n). As
long as% < 16, Lemma 3.2 guarantees that
113 nd”

< 16] < ¢q exp (—Czﬁ)-

P[Z(Rq,7) > 6,

3

By tail bounds ony? random variables (see Appendix we haveP[||w||3 > 16n] < ¢4 exp(—csn).
Consequently, we conclude that

2
P[Z(Rg,7) > 6] < c1 exp (—02%) + cq exp(—csn)
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For some:s > 0, let us set

log d
n

)21,

§ = c3riet /Ry (
and let us verify that the condition§48 and ©4b) hold. Given our choice of, we find that
Vi = (/g )0/,
,

and sincel, n — oo, we see that conditior6¢g holds. Turning to verification of the inequalitg4h),
we first provide an upper bound fbsg N (S,,t). Settingy = % and from the definition 1) of
absconvy(X/y/n), we have

1 = 1
sup  —|wl X6| < sup — ||
0€S,(Ryr) ~eabsconvy (X/vA),[ylla<r VT

— 2
We may apply the bound in Lemrddo conclude thalog N (¢; S, ) is upper bounded by Rqﬁ (%) e log d.
Using this upper bound, we have

J(r,9) ::/6/16 log N(Sg,t)dt < /0 log N (Sg, t)dt
< ¢ R, i,79 \/logd / $79/(2=0) gt
0
= c/Rqﬁ /-?crqq \/logdrl_%q.

Using this upper bound, let us verify that the inequal@lf) holds as long as = (<.
as assumed in the statement of LemmaVith our choice ob, we have

1 _a 14
J Ry K24 \/—bgd r 2
<

Ve T e SRy (el i
1 1

SIS
E
—~
<}
3=
s¥
~—
N
|
NS
SN—

n

C3

so that condition§4b) will hold as long as we choosg > 0 large enough. Overall, we conclude that
1_gqg 1—-4

P[Z(Ry,7) > c31 o2 /Ry (1259)271] < ¢; exp(—R,(log d)'~%n?), which concludes the proof.

n

G.2 Proof of Lemma8

First, consider a fixed subsét C {1,2,...,d} of cardinality |S| = s. Applying the SVD to the
sub-matrixXs € R"**, we haveXgs = VDU, whereV € R"** has orthonormal columns, and
DU € R**s. By construction, for anyAs € R?®, we have||XsAg|l2 = ||[DUAg|l2. SinceV has
orthonormal columns, the vectars = V7w € R® has i.i.d. N (0, 02) entries. Consequently, for any
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Ag such that% < r, we have

‘wTXSAs‘ _ @_EDUAs‘
[wsll2 |DUAs |2
EERVATRND
[ws]l2

NG

Now the variater —2||ws |3 is x? with s degrees of freedom, so that by standgfdtail bounds (see
Appendixl), we have

<

ws|3
o02s

P[ > 1446 < exp(—sd), valid forall§ > 1.

Settingd = 20 log(Zis) and noting thalog(zis) > log 2 by assumption, we have (after some algebra)

2

HwSH% o°s d
> — < - el
P{ ——= > ——(8llog(d/s))| < exp(—20slog(s

))-

We have thus shown that for each fixed subset, we have the bound

wl XgAg 8102slog(4)
) i)
n n
with probability at least — exp(—20s log(4)).

Since there aré;\) < (£)%* subsets of size, applying a union bound yields that

T 1o2slog(<
w X9]>7“ SJsog(zs)}

P [ sup |

0By (2s), % < M "

< exp( —20s log(%) + 2slog Z—j)

< exp(—10s log(%)),

as claimed.

H Large deviations for random objectives

In this appendix, we state a result on large deviations ottmstrained optimum of random objective
functions of the formf (v; X ), wherev € R is the optimization vector, andl is some random vector.
Of interest is the optimization problemup <, ,cs f(v; X»n), Wherep : R?¢ — R, is some non-
negative and increasing constraint function, &g a non-empty set. With this set-up, our goal is to
bound the probability of the event defined by

€ := {3 e Ssuchthatf(v; X) > 2g(p(v)))},

whereg : R — R is non-negative and strictly increasing.
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Lemma 9. Suppose thag(r) > u for all » > 0, and that there exists some constant 0 such that
for all » > 0, we have the tail bound

P[ sup  fu(v; Xn) > g(r)] < 2exp(—can g*(r)), (65)
veS, p(v)<r

for someu,, > 0. Then we have

2 exp(—canp?)
PIE) S [ ey (66)

Proof. Our proof is based on a standard peeling technique (e.gvasede Geer32] pp. 82). By
assumption, as varies overS, we havey(r) € [u,o0). Accordingly, form = 1,2, ..., defining the
sets

Sm 1= {ves | 2" u<glp(v)) <2™u},

we may conclude that if there existse S such thatf (v, X) > 2h(p(v)), then this must occur for
somem andv € S,,. By union bound, we have

NE

P&l < P[3 v € S, such thatf (v, X) > 2g(p(v))].

3
Il

If v € S,, andf (v, X) > 2g(p(v)), then by definition of5,,,, we havef (v, X) > 2 (2™~ 1) = 2™ p.
Since for any € S,,,, we haveg(p(v)) < 2™u, we combine these inequalities to obtain

(e o]

PE] < Y P[ sup  f(v,X)>2"y]

m=1 P)<g=H(2mpu)

< > 2exp (—can [9(g ' (27w)]?)
m=1
= 2 Z exp ( — cap, 22m,u2),
m=1
from which the stated claim follows by upper bounding thismetric sum. O

| Some tail bounds for y2-variates

The following large-deviations bounds for centralizgtl are taken from Laurent and Massaztl].
Given a centralizeg/?-variate Z with m degrees of freedom, then for ail> 0,

P [Z —m > 2y/mx + 2;U] < exp(—z), and (67a)
P [Z —m < —2\/m_3:] < exp(—z). (67b)

The following consequence of this bound is useful:tfor 1, we have

Z —m

P[m

>4t] < exp(—mt). (68)

Starting with the bound6(7g), settingz = tm yieldsP[£2 > 2/t + 2t] < exp(—tm), Since
4t > 2y/t + 2t fort > 1, we haveP[£=" > 4¢] < exp(—tm) forall t > 1.
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