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Abstract

Consider the standard linear regression modelY = Xβ∗+w, whereY ∈ Rn is an observation
vector,X ∈ Rn×d is a design matrix,β∗ ∈ Rd is the unknown regression vector, andw ∼
N (0, σ2I) is additive Gaussian noise. This paper studies the minimax rates of convergence for
estimation ofβ∗ for ℓp-losses and in theℓ2-prediction loss, assuming thatβ∗ belongs to anℓq-ball
Bq(Rq) for someq ∈ [0, 1]. We show that under suitable regularity conditions on the design

matrixX , the minimax error inℓ2-loss andℓ2-prediction loss scales asRq

(
log d

n

)1−
q

2 . In addition,
we provide lower bounds on minimax risks inℓp-norms, for allp ∈ [1, +∞], p 6= q. Our proofs
of the lower bounds are information-theoretic in nature, based on Fano’s inequality and results
on the metric entropy of the ballsBq(Rq), whereas our proofs of the upper bounds are direct
and constructive, involving direct analysis of least-squares overℓq-balls. For the special case
q = 0, a comparison withℓ2-risks achieved by computationally efficientℓ1-relaxations reveals
that although such methods can achieve the minimax rates up to constant factors, they require
slightly stronger assumptions on the design matrixX than algorithms involving least-squares over
theℓ0-ball.

1 Introduction

The area of high-dimensional statistical inference concerns the estimation in the “larged, smalln”
regime, whered refers to the ambient dimension of the problem andn refers to the sample size. Such
high-dimensional inference problems arise in various areas of science, including astrophysics, remote
sensing and geophysics, and computational biology, among others. In the absence of additional struc-
ture, it is frequently impossible to obtain consistent estimators unless the ratiod/n converges to zero.
However, many applications require solving inference problems withd ≥ n, so that consistency is
not possible without imposing additional structure. Accordingly, an active line of research in high-
dimensional inference is based on imposing various types ofstructural conditions, such as sparsity,
manifold structure, or graphical model structure, and thenstudying the performance of different esti-
mators. For instance, in the case of models with some type of sparsity constraint, a great deal of of
work has studied the behavior ofℓ1-based relaxations.

Complementary to the understanding of computationally efficient procedures are the fundamental
or information-theoretic limitations of statistical inference, applicable to any algorithm regardless
of its computational cost. There is a rich line of statistical work on such fundamental limits, an
understanding of which can have two types of consequences. First, they can reveal gaps between the
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performance of an optimal algorithm compared to known computationally efficient methods. Second,
they can demonstrate regimes in which practical algorithmsachieve the fundamental limits, which
means that there is little point in searching for a more effective algorithm. As we shall see, the results
in this paper lead to understanding of both types.

1.1 Problem set-up

The focus of this paper is a canonical instance of a high-dimensional inference problem, namely that
of linear regression ind dimensions with sparsity constraints on the regression vector β∗ ∈ Rd. In this
problem, we observe a pair(Y,X) ∈ Rn × Rn×d, whereX is the design matrix andY is a vector of
response variables. These quantities are linked by the standard linear model

Y = Xβ∗ + w, (1)

wherew ∼ N(0, σ2In×n) is observation noise. The goal is to estimate the unknown vector β∗ ∈ Rd

of regression coefficients. The sparse instance of this problem, in whichβ∗ satisfies some type of
sparsity constraint, has been investigated extensively over the past decade. LetXi denote theith row
of X andXj denote thejth column ofX. A variety of practical algorithms have been proposed and
studied, many based onℓ1-regularization, including basis pursuit [9], the Lasso [31], and the Dantzig
selector [6]. Various authors have obtained convergence rates for different error metrics, including
ℓ2-error [6, 4, 37], prediction loss [4, 16], as well as model selection consistency [37, 25, 33, 38].
In addition, a range of sparsity assumptions have been analyzed, including the case ofhard sparsity
meaning thatβ∗ has exactlys ≪ d non-zero entries, orsoft sparsityassumptions, based on imposing
a certain decay rate on the ordered entries ofβ∗.

Sparsity constraints These notions of sparsity can be defined more precisely in terms of theℓq-
balls1 for q ∈ [0, 1], defined as

Bq(Rq) :=
{
β ∈ Rd | ‖β‖q

q =

d∑

j=1

|βj |q ≤ Rq

}
, (2)

where in the limiting caseq = 0, we have theℓ0-ball

B0(s) :=
{
β ∈ Rd |

d∑

j=1

I[βj 6= 0] ≤ s
}
, (3)

corresponding to the set of vectorsβ with at mosts non-zero elements.

Loss functions We consider estimatorŝβ : Rn × Rn×d → Rd that are measurable functions of the
data(y,X). Given any such estimator of the true parameterβ∗, there are many criteria for determining
the quality of the estimate. In a decision-theoretic framework, one introduces a loss function such that
L(β̂, β∗) represents the loss incurred by estimatingβ̂ whenβ∗ ∈ Bq(Rq) is the true parameter. The
associated riskR is the expected value of the loss over distributions of (Y , X)—namely, the quantity
R(β̂, β∗) = E[L(β̂, β∗)]. Finally, in the minimax formalism, one seeks to choose an estimator that
minimizes the worst-case risk given by

min
bβ

max
β∗∈Bq(Rq)

R(β̂, β∗). (4)

1Strictly speaking, these sets are not “balls” whenq < 1, since they fail to be convex.
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Various choices of the loss function are possible, including (a) themodel selection loss, which is
zero if supp(β̂) = supp(β∗) and one otherwise; (b) theℓp-losses

Lp(β̂, β∗) := ‖β̂ − β∗‖p
p =

d∑

j=1

|β̂j − β∗
j |pp, (5)

and (c) theℓ2-prediction loss‖X(β̂ − β∗)‖2
2/n. In this paper, we study theℓp-losses and theℓ2-

prediction loss.

1.2 Our main contributions and related work

In this paper, we study minimax risks for the high-dimensional linear model (1), in which the regres-
sion vectorβ∗ belongs to the ballBq(Rq) for 0 ≤ q ≤ 1. The core of the paper consists of four
main theorems, corresponding to lower bounds on minimax rate for the cases ofℓp losses and the
ℓ2-prediction loss, and upper bounds forℓ2-norm loss and theℓ2-prediction loss. More specifically,
in Theorem1, we provide lower bounds forℓp-losses that involve a maximum of two quantities: a
term involving the diameter of the null-space restricted tothe ℓq-ball, measuring the degree of non-
identifiability of the model, and a term arising from theℓp-metric entropy structure forℓq-balls, mea-
suring the massiveness of the parameter space. Theorem2 is complementary in nature, devoted to
upper bounds forℓ2-loss. Forℓ2-loss, the upper and lower bounds match up to factors independent of
the triple(n, d,Rq), and depend only on structural properties of the design matrix X (see Theorems1
and2). Finally, Theorems3 and4 provide upper and lower bounds forℓ2-prediction loss. For the
ℓ2-prediction loss, we provide upper and lower bounds on minimax risks that are again matching up
to factors independent of(n, d,Rq), as summarized in Theorems3 and4. Structural properties of the
design matrixX again play a role in minimaxℓ2-prediction risks, but enter in a rather different way
than in the case ofℓ2-loss.

For the special case of the Gaussian sequence model (whereX =
√

nIn×n), our work is closely
related to the seminal work by of Donoho and Johnstone [14], who determined minimax rates forℓp-
losses overℓq-balls. Our work applies to the case of generalX, in which the sample sizen need not
be equal to the dimensiond; however, we re-capture the same scaling as Donoho and Johnstone [14]
when specialized to the caseX =

√
nIn×n. In addition to our analysis ofℓp-loss, we also determine

minimax rates forℓ2-prediction loss which, as mentioned above, can behave verydifferently from the
ℓ2-loss for general design matricesX. During the process of writing up our results, we became aware
of concurrent work by Zhang (see the brief report [36]) that also studies the problem of determining
minimax upper and lower bounds forℓp-losses withℓq-sparsity. We will be able to make a more
thorough comparison once a more detailed version of their work is publicly available.

Naturally, our work also has some connections to the vast body of work onℓ1-based methods for
sparse estimation, particularly for the case of hard sparsity (q = 0). Based on our results, the rates
that are achieved byℓ1-methods, such as the Lasso and the Dantzig selector, are minimax optimal for
ℓ2-loss, but require somewhat stronger conditions on the design matrix than an “optimal” algorithm,
which is based on searching theℓ0-ball. We compare the conditions that we impose in our minimax
analysis to various conditions imposed in the analysis ofℓ1-based methods, including the restricted
isometry property of Candes and Tao [6], the restricted eigenvalue condition imposed in Menshausen
and Yu [26], the partial Riesz condition in Zhang and Huang [37] and the restricted eigenvalue condi-
tion of Bickel et al. [4]. We find that “optimal” methods, which are based on minimizing least-squares
directly over theℓ0-ball, can succeed for design matrices whereℓ1-based methods are not known to
work.
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The remainder of this paper is organized as follows. In Section 2, we begin by specifying the
assumptions on the design matrix that enter our analysis, and then state our main results. Section3
is devoted to discussion of the consequences of our main results, including connections to the normal
sequence model, Gaussian random designs, and related results onℓ1-based methods. In Section4, we
provide the proofs of our main results, with more technical aspects deferred to the appendices.

2 Main results

This section is devoted to the statement of our main results,and discussion of some of their conse-
quences. We begin by specifying the conditions on the high-dimensional scaling and the design matrix
X that enter different parts of our analysis, before giving precise statements of our main results.

In this paper, our primary interest is the high-dimensionalregime in whichd ≫ n. For technical
reasons, forq ∈ (0, 1], we require the following condition on the scaling of(n, d,Rq):

d

Rqnq/2
= Ω(dκ) for someκ > 0. (6)

In the regimed ≥ n, this assumption will be satisfied for allq ∈ (0, 1] as long asRq = o(d
1
2
−κ′

) for
someκ′ ∈ (0, 1/2), which is a reasonable condition on the radius of theℓq-ball for sparse models.
In the work of Donoho and Johnstone [14] on the normal sequence model (special case ofX = I),
discussed at more length in the sequel, the effect of the scaling of the quantity d

Rqnq/2 on the rate of

convergence also requires careful treatment.

2.1 Assumptions on design matrices

Our first assumption, imposed throughout all of our analysis, is that the columns{Xj , j = 1, . . . , d}
of the design matrixX are bounded inℓ2-norm:

Assumption 1(Column normalization). There exists a constant0 < κc < +∞ such that

1√
n

max
j=1,...,d

‖Xj‖2 ≤ κc. (7)

In addition, some of our results involve the set defined by intersecting the kernel ofX with the
ℓq-ball, which we denoteNq(X) := Ker(X)∩Bq(Rq). We define theBq(Rq)-kernel diameterin the
ℓp-norm

diamp(Nq(X)) := max
θ∈Nq(X)

‖θ‖p = max
‖θ‖q

q≤Rq , Xθ=0
‖θ‖p. (8)

The significance of this diameter should be apparent: for any“perturbation”∆ ∈ Nq(X), it follows
immediately from the linear observation model (1) that no method could ever distinguish between
β∗ = 0 andβ∗ = ∆. Consequently, thisBq(Rq)-kernel diameter is a measure of thelack of identifia-
bility of the linear model (1) overBq(Rq).

Our second assumption, which is required only for achievable results forℓ2-error and lower bounds
for ℓ2-prediction error, imposes a lower bound on‖Xθ‖2/

√
n in terms of‖θ‖2 and a residual term:

Assumption 2 (Lower bound on restricted curvature). There exists a constantκℓ > 0 and a function
fℓ(Rq, n, d) such that

1√
n
‖Xθ‖2 ≥ κℓ ‖θ‖2 − fℓ(Rq, n, d) for all θ ∈ Bq(2Rq). (9)
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Remarks: Conditions on the scaling forfℓ(Rq, n, d) are provided in Theorems2 and3. It is useful
to recognize that the lower bound (9) is closely related to the diameter condition (8); in particular,
Assumption2 induces an upper bound on theBq(Rq)-kernel diameter inℓ2-norm, and hence the
identifiability of the model:

Lemma 1. If Assumption2 holds for anyq ∈ (0, 1], then theBq(Rq)-kernel diameter inℓ2-norm is
upper bounded as

diam2(Nq(X)) ≤ fℓ(Rq, n, d)

κℓ
.

Proof. We prove the contrapositive statement. Note that ifdiam2(Nq(X)) >
fℓ(Rq ,n,d)

κℓ
, then there

must exist someθ ∈ Bq(Rq) with Xθ = 0 and‖θ‖2 >
fℓ(Rq ,n,d)

κℓ
. We then conclude that

0 =
1√
n
‖Xθ‖2 < κℓ‖θ‖2 − fℓ(Rq, n, d),

which implies there cannot exist anyκℓ for which the lower bound (9) holds.

In Section3.3, we discuss further connections between our assumptions, and the conditions im-
posed in analysis of the Lasso and otherℓ1-based methods [6, 25, 4]. In the caseq = 0, we find that
Assumption2 is weaker than any condition under which anℓ1-based method is known to succeed.
Finally, in Section3.2, we prove that versions of both Assumptions1 and2 hold with high probability
for various classes of non-i.i.d. Gaussian random design matrices (see Proposition1).

2.2 Risks inℓp-norm

Having described our assumptions on the design matrix, we now turn to the main results that provide
upper and lower bounds on minimax risks. In all of the statements to follow, we use the quantities
cq,p, c′q,2, c̃q,2 etc. to denote numerical constants, independent ofn, d, Rq, σ2 and the design matrix
X. We begin with lower bounds on theℓp-risk.

Theorem 1 (Lower bounds onℓp-risk). Consider the linear model(1) for a fixed design matrixX ∈
Rn×d.

(a) Conditions for q ∈ (0, 1]: Suppose thatX is column-normalized (Assumption1 with κc < ∞).
For anyp ∈ [1,∞), the minimaxℓp-risk over theℓq ball is lower bounded as

min
bβ

max
β∗∈Bq(Rq)

E‖β̂ − β∗‖p
p ≥ cq,p max

{
diamp

p(Nq(X)), Rq

[
σ2

κ2
c

log d

n

] p−q
2

}
. (10)

(b) Conditions for q = 0: Suppose that‖Xθ‖2√
n‖θ‖2

≤ κu for all θ ∈ B0(2s). Then for anyp ∈ [1,∞),
the minimaxℓp-risk over theℓ0-ball with radiuss = R0 is lower bounded as

min
bβ

max
β∗∈B0(s)

E‖β̂ − β∗‖p
p ≥ c0,p max

{
diamp

p(N0(X)), s
p
2
[σ2

κ2
u

log(d/s)

n

] p
2

}
. (11)
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Note that both lower bounds consist of two terms. The first term is simply the diameter of the set
Nq(X) = Ker(X) ∩ Bq(Rq), which reflects the extent which the linear model (1) is unidentifiable.
Clearly, one cannot estimateβ∗ any more accurately than the diameter of this set. In both lower
bounds, the ratiosσ2/κ2

c (or σ2/κ2
u) correspond to the inverse of the signal-to-noise ratio, comparing

the noise varianceσ2 to the magnitude of the design matrix measured byκu. As the proof will clarify,
the term[log d]

p−q
2 in the lower bound (10), and similarly the termlog(d

s ) in the bound (11), are
reflections of the complexity of theℓq-ball, as measured by its metric entropy. For many classes of
design matrices, the second term is of larger order than the diameter term, and hence determines the
rate. (In particular, see Section3.2for an in-depth discussion of the case of random Gaussian designs.)

We now state upper bounds on theℓ2-norm minimax risk overℓq balls. For these results, we require
both the column normalization condition (Assumption1) and the curvature condition (Assumption2).

Theorem 2(Upper bounds onℓ2-risk). Consider the model(1) with a fixed design matrixX ∈ Rn×d

that is column-normalized (Assumption1 with κc < ∞).

(a) Conditions for q ∈ (0, 1]: If X satisfies Assumption2withfℓ(Rq, n, d) = o(Rq
1/2( log d

n )1/2−q/4)
andκℓ > 0, then there exist constantsc1 andc2 such that the minimaxℓ2-risk is upper bounded
as

min
bβ

max
β∗∈Bq(Rq)

‖β̂ − β∗‖2
2 ≤ 24Rq

[κ2
c

κ2
ℓ

σ2

κ2
ℓ

log d

n

]1−q/2
, (12)

with probability greater than1 − c1 exp (−c2n).

(b) Conditions for q = 0: If X satisfies Assumption2 with fℓ(s, n, d) = 0 andκℓ > 0, then there
exists constantsc1 andc2 such that the minimaxℓ2-risk is upper bounded as

min
bβ

max
β∗∈B0(s)

‖β̂ − β∗‖2
2 ≤ 6

κ2
c

κ2
ℓ

σ2

κ2
ℓ

s log d

n
, (13)

with probability greater than1 − c1 exp (−c2n). If, in addition, the design matrix satisfies
‖Xθ‖2√
n‖θ‖2

≤ κu for all θ ∈ B0(2s), then the minimaxℓ2-risk is upper bounded as

min
bβ

max
β∗∈B0(s)

‖β̂ − β∗‖2
2 ≤ 144

κ2
u

κ2
ℓ

σ2

κ2
ℓ

s log(d/s)

n
, (14)

with probability greater than1 − c1 exp (−c2s log(d − s)).

In the case ofℓ2-risk and design matricesX that satisfy the assumptions of both Theorems1 and2,
then these results identify the minimax risk up to constant factors. In particular, forq ∈ (0, 1], the
minimaxℓ2-risk scales as

min
bβ

max
β∗∈Bq(Rq)

E‖β̂ − β∗‖2
2 = Θ

(
Rq

[σ2 log d

n

]1−q/2)
, (15)

whereas forq = 0, the minimaxℓ2-risk scales as

min
bβ

max
β∗∈B0(s)

E‖β̂ − β∗‖2
2 = Θ

(σ2 s log(d/s)

n

)
. (16)

Note that the bounds with high probability can be converted to bound in expectation by a standard
integration over the tail probability.
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2.3 Risks in prediction norm

In this section, we investigate minimax risks in terms of theℓ2-prediction loss‖X(β̂ − β∗)‖2
2/n, and

provide both lower and upper bounds on it.

Theorem 3 (Lower bounds on prediction risk). Consider the model(1) with a fixed design matrix
X ∈ Rn×d that is column-normalized (Assumption1 with κc < ∞).

(a) Conditions for q ∈ (0, 1]: If the design matrixX satisfies Assumption2 with κℓ > 0 and
fℓ(Rq, n, d) = o(Rq

1/2( log d
n )1/2−q/4), then the minimax prediction risk is lower bounded as

min
bβ

max
β∈Bq(Rq)

E
‖X (β̂ − β)‖2

2

n
≥ c′2,q Rq κ2

ℓ

[σ2

κ2
c

log d

n

]1−q/2
. (17)

(b) Conditions for q = 0: Suppose thatX satisfies Assumption2 with κℓ > 0 andfℓ(s, n, d) = 0,

and moreover that‖Xθ‖2√
n‖θ‖2

≤ κu for all θ ∈ B0(2s). Then the minimax prediction risk is lower
bounded as

min
bβ

max
β∈B0(s)

E
‖X(β̂ − β)‖2

2

n
≥ c′0,q κ2

ℓ

σ2

κ2
u

s log(d/s)

n
. (18)

In the other direction, we have the following result:

Theorem 4 (Upper bounds on prediction risk). Consider the model(1) with a fixed design matrix
X ∈ Rn×d.

(a) Conditions for q ∈ (0, 1]: If X satisfies the column normalization condition, then for some
constantc2,q, there existc1 andc2 such that the minimax prediction risk is upper bounded as

min
bβ

max
β∗∈Bq(Rq)

1

n
‖X(β̂ − β∗)‖2

2 ≤ c2,q κ2
c Rq

[σ2

κ2
c

log d

n

]1− q
2
, (19)

with probability greater than1 − c1 exp (−c2Rq(log d)1−q/2nq/2).

(b) Conditions for q = 0: For anyX, with probability greater than1 − exp (−10s log(d/s)) the
minimax prediction risk is upper bounded as

min
bβ

max
β∗∈B0(s)

1

n
‖X(β̂ − β∗)‖2

2 ≤ 81
σ2 s log(d/s)

n
. (20)

2.4 Some intuition

In order to provide the reader with some intuition, let us make some comments about the scalings that
appear in our results.

First, as a basic check of our results, it can be verified that Lemma1 ensures that the lower bounds
on minimax rates stated in Theorem1 for p = 2 are always less than or equal to the achievable
rates stated in Theorem2. In particular, sincefℓ(Rq, n, d) = o(Rq

1/2( log d
n )1/2−q/4) for q ∈ (0, 1],

Lemma1 implies thatdiam2
2(Nq(X)) = o(Rq(

log d
n )1−q/2), meaning that the achievable rates are

always at least as large as the lower bounds in the caseq ∈ (0, 1]. In the case of hard sparsity (q = 0),
the upper and lower bounds are clearly consistent sincefℓ(s, n, d) = 0 implies the diameter ofN0(X)
is 0.
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Second, for the caseq = 0, there is a concrete interpretation of the rates log(d/s)
n , which appears in

Theorems1(b), 2(b), 3(b) and4(b)). Note that there are
(d
s

)
subsets of sizes within {1, 2, . . . , d}, and

by standard bounds on binomial coefficients [11], we havelog
(d
s

)
= Θ(s log(d/s)). Consquently, the

rate s log(d/s)
n corresponds to the log number of models divided by the samplesizen. Note that unless

s/d = Θ(1), this rate is equivalent (up to constant factors) tos log d
n .

Third, for q ∈ (0, 1], the interpretation of the rateRq

( log d
n

)1−q/2
, appearing in parts (a) of The-

orems1 through4, is less immediately obvious but can can understood as follows. Suppose that we
choose a subset of sizesq of coefficients to estimate, and ignore the remainingd − sq coefficients.
For instance, if we were to choose the topsq coefficients ofβ∗ in absolute value, then the fast decay
imposed by theℓq-ball condition onβ∗ would mean that the remainingd− sq coefficients would have
relatively little impact. With this intuition, the rate forq > 0 can be interpreted as the rate that would

be achieved by choosingsq = Rq

( log d
n

)−q/2
, and then acting as if the problem were an instance of

a hard-sparse problem (q = 0) with s = sq. For such a problem, we would expect to achieve the

rate sq log d
n , which is exactly equal toRq

( log d
n

)1−q/2
. Of course, we have only made a very heuristic

argument here; this truncation idea is made more precise in Lemma2 to appear in the sequel.
Fourth, we note that the minimax rates forℓ2-prediction error andℓ2-norm error are essentially the

same except that the design matrix structure enters minimaxrisks invery different ways. In particular,
note that proving lower bounds on prediction risk requires imposing relatively strong conditions on the
designX—namely, Assumptions1 and2 as stated in Theorem3. In contrast, obtaining upper bounds
on prediction risk requires very mild conditions. At the most extreme, the upper bound forq = 0 in
Theorem3 requires no assumptions onX while for q > 0 only the column normalization condition
is required. All of these statements are reversed forℓ2-risks, where lower bounds can be proved with
only Assumption1 onX (see Theorem1), whereas upper bounds require both Assumptions1 and2.

Lastly, in order to appreciate the difference between the conditions forℓ2-prediction error andℓ2

error, it is useful to consider a toy but illuminating example. Consider the linear regression problem
defined by a design matrixX =

[
X1 X2 · · · Xd

]
with identical columns—that is,Xj = X̃1 for

all j = 1, . . . , d. We assume that vector̃X1 ∈ Rd is suitably scaled so that the column-normalization
condition (Assumption1) is satisfied. For this particular choice of design matrix, the linear observation
model (1) reduces toY = (

∑d
j=1 β∗

j )X̃1 + w. For the case of hard sparsity (q = 0), an elementary
argument shows that the minimax risk inℓ2-prediction error scales asΘ( 1

n). This scaling implies that
the upper bound (20) from Theorem4 holds (but is not tight).2 Consequently, this highly degenerate
design matrix yields a very easy problem forℓ2-prediction, since the1/n rate is essentially parametric.
In sharp contrast, for the case ofℓ2-norm error (still with hard sparsityq = 0), the model becomes
unidentifiable. To see the lack of identifiability, letei ∈ Rd denote the unit-vector with1 in position
i, and consider the two regression vectorsβ∗ = c e1 and β̃ = c e2, for some constantc ∈ R. Both
choices yield the same observation vectorY , and since the choice ofc is arbitrary, the minimaxℓ2-
error is infinite. In this case, the lower bound (11) on ℓ2-error from Theorem1 holds (and is tight,
since the kernel diameter is infinite). In contrast, the upper bound (13) on ℓ2-error from Theorem2
does not apply, because Assumption2 is violated due to the extreme degeneracy of the design matrix.

3 Some consequences

In this section, we discuss some consequences of our results. We begin by considering the classical
Gaussian sequence model, which corresponds to a special case of our linear regression model, and

2Note that the lower bound (18) on theℓ2-prediction error from Theorem3 does not apply to this model, since this
degenerate design matrix with identical columns does not satisfy any version of Assumption2.
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making explicit comparisons to the results of Donoho and Johnstone [14] on minimax risks overℓq-
balls.

3.1 Connections with the normal sequence model

The normal (or Gaussian) sequence model is defined by the observation sequence

yi = θ∗i + εi, for i = 1, . . . , n, (21)

whereθ∗ ∈ Θ ⊆ Rn is a fixed but unknown vector, and the noise variablesεi ∼ N (0, τ2

n ) are
i.i.d. normal variates. Many non-parametric estimation problems, including regression and density
estimation, are asymptotically equivalent to an instance of the Gaussian sequence model [28, 27, 5],
where the setΘ depends on the underlying “smoothness” conditions imposedon the functions. For
instance, for functions that have anmth derivative that is square-differentiable (a particular kind of
Sobolev space), the setΘ corresponds to an ellipsoid; on the other hand, for certain choices of Besov
spaces, it corresponds to anℓq-ball.

In the caseΘ = Bq(Rq), our linear regression model (1) includes the normal sequence model (21)
as a special case. In particular, it corresponds to settingd = n, the design matrixX = In×n, and noise
varianceσ2 = τ2

n . For this particular model, seminal work by Donoho and Johnstone [14] derived
sharp asymptotic results on the minimax error for generalℓp-norms overℓq balls. Here we show that
a corollary of our main theorems yields the same scaling in the casep = 2 andq ∈ [0, 1].

Corollary 1. Consider the normal sequence model(21) with Θ = Bq(Rq) for someq ∈ (0, 1]. Then
there are constantsc′q ≤ cq depending only onq such that

c′q(
2τ2 log n

n
)1−

q
2 ≤ min

bβ
max

β∗∈Bq(Rq)
E‖β̂ − β∗‖2

2 ≤ cq(
2τ2 log n

n
)1−

q
2 . (22)

These bounds follow from our main theorems, via the substitutions n = d, σ2 = τ2

n , and
κu = κℓ = 1. To be clear, Donoho and Johnstone [14] provide a far more careful analysis that yields
sharper control of the constants than we have provided here.

3.2 Random Gaussian Design

Another special case of particular interest is that of random Gaussian design matrices. A widely
studied instance is the standard Gaussian ensemble, in which the entries ofX ∈ Rn×d are i.i.d.
N(0, 1) variates. A variety of results are known for the singular values of random matricesX drawn
from this ensemble (e.g., [2, 3, 12]); moreover, some past work [13, 6] has studied the behavior
of different ℓ1-based methods for the standard Gaussian ensemble, in whichentriesXij are i.i.d.
N(0, 1). In modeling terms, requiring that all entries of the designmatrix X are i.i.d. is an overly
restrictive assumption, and not likely to be met in applications where the design matrix cannot be
chosen. Accordingly, let us consider the more general classof Gaussian random design matrices
X ∈ Rn×d, in which the rows are independent, but there can be arbitrary correlations between the
columns ofX. To simplify notation, we define the shorthandρ(Σ) := maxj=1,...,d Σjj, corresponding
to the maximal variance of any element ofX, and useΣ1/2 to denote the symmetric square root of the
covariance matrix.

In this model, each columnXj , j = 1, . . . , d has i.i.d. elements. Consequently, it is an immediate
consequence of standard concentration results forχ2

n variates (see AppendixI) that

max
j=1,...,d

‖Xj‖2√
n

≤ ρ(Σ)
(
1 +

√
32 log d

n
). (23)
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Therefore, Assumption1 holds as long asn = Ω(log d) andρ(Σ) is bounded.
Showing that a version of Assumption2 holds with high probability requires more work. We

summarize our findings in the following result:

Proposition 1. Consider a random design matrixX ∈ Rn×d formed by drawing each rowXi ∈ Rd

i.i.d. from anN(0,Σ) distribution. Then for some numerical constantsck ∈ (0,∞), k = 1, 2, we
have

‖Xv‖2√
n

≥ 1

2
‖Σ1/2v‖2 − 6

(ρ(Σ) log d

n

)1/2 ‖v‖1 for all v ∈ Rd (24)

with probability1 − c1 exp(−c2n).

Remarks: Past work by by Amini and Wainwright [1] in the analysis of sparse PCA has established
an upper bound analogous to the lower bound (24) for the special caseΣ = Id×d. We provide a
proof of this matching upper bound for generalΣ as part of the proof of Proposition1 in AppendixE.
The argument is based on Slepian’s lemma [12] and its extension due to Gordon [15], combined with
concentration of Gaussian measure results [22]. Note that we have made no effort to obtain sharp
leading constants (i.e., the factors1/2 and6 can easily be improved), but the basic result (24) suffices
for our purposes.

Let us now discuss the implications of this result for Assumption 2. First, in the caseq = 0, the
bound (13) in Theorem2 requires that Assumption2 holds withfℓ(s, n, d) = 0 for all θ ∈ B0(2s). To
see the connection with Proposition1, note that ifθ ∈ B0(2s), then we have‖θ‖1 ≤

√
2s‖θ‖2, and

hence

‖Xv‖2√
n

≥
{‖Σ1/2v‖2

2‖v‖2
− 6

√
2
(ρ(Σ)s log d

n

)1/2
}
‖v‖2.

Therefore, as long asρ(Σ) < ∞, minv∈B0(2s)
‖Σ1/2v‖2

‖v‖2
> 0 and s log d

n = o(1), the condition needed
for the bound (13) will be met.

Second, in the caseq ∈ (0, 1], Theorem2(a) requires that Assumption2 hold with the residual
termfℓ(Rq, n, d) = o(Rq

1/2 log d
n )1/2−q/4. We claim that Proposition1 guarantees this condition, as

long asρ(Σ) < ∞ and the minimum eigenvalue ofΣ is bounded away from zero. In order to verify
this claim, we require the following result:

Lemma 2. For any vectorθ ∈ Bq(2Rq) and any positive numberτ > 0, we have

‖θ‖1 ≤
√

2Rqτ
−q/2‖θ‖2 + 2Rqτ

1−q. (25)

Although this type of result is standard (e.g, [14]), we provide a proof in AppendixA for completeness.

In order to exploit Lemma2, let us setτ =
√

log d
n . With this choice, we can substitute the resulting

bound (25) into the lower bound (24), thereby obtaining that

‖Xv‖2√
n

≥
{‖Σ1/2v‖2

2‖v‖2
− 6

√
2 ρ(Σ)

√
Rq

( log d

n

)1/2−q/4}‖v‖2 − 2Rqρ(Σ)1/2
( log d

n

)1−q/2
.

Recalling that the condition
√

Rq

( log d
n

)1/2−q/4
= o(1) is required for consistency, we see that As-

sumption2 holds as long asρ(Σ) < +∞ and the minimum eigenvalue ofΣ is bounded away from
zero.
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Lastly, it is also worth noting that we can also obtain the following stronger result for the case

q = 0, in the case thatminv∈B0(2s)
‖Σ1/2v‖2

‖v‖2
> 0 and maxv∈B0(2s)

‖Σ1/2v‖2

‖v‖2
< ∞. If the sparse

eigenspectrum is bounded in this way, then as long asn > c3 s log(d/s), we have

3‖Σ1/2v‖2 ≥ ‖Xv‖2√
n

≥ 1

2
‖Σ1/2v‖2 for all v ∈ B0(2s) (26)

with probability greater than1 − c1 exp(−c2n). This fact follows by applying the union bound over
all

( d
2s

)
subsets of size2s, combined with standard concentration results for random matrices (e.g.,

see Davidson and Szarek [12] for Σ = I, and Wainwright [33] for the straightforward extensions to
non-identity covariances).

3.3 Comparison toℓ1-based methods

In addition, it is interesting to compare our minimax rates of convergence forℓ2-error with known
results forℓ1-based methods, including the Lasso [31] and the closely related Dantzig method [6].
Here we discuss only the caseq = 0 since we are currently unaware of anyℓ2-error bound forℓ1-based
methods forq ∈ (0, 1]. For the Lasso, past work [37, 26] has shown that itsℓ2-error is upper bounded
by s log d

n under sparse eigenvalue conditions. Similarly, Candes andTao [6] show the same scaling for
the Dantzig selector, when applied to matrices that satisfythe more restrictive RIP conditions. More
recent work by Bickel et. al [4] provides a simultaneous analysis of the Lasso and Dantzig selector
under a common set of assumptions that are weaker than both the RIP condition and sparse eigenvalue
conditions. Together with our results (in particular, Theorem1(b)), this body of work shows that under
appropriate conditions on the designX, the rates achieved byℓ1-methods in the case of hard sparsity
(q = 0) are minimax-optimal.

Given that the rates are optimal, it is appropriate to compare the conditions needed by an “optimal”
algorithm, such as that analyzed in Theorem2, to those used in the analysis ofℓ1-based methods. One
set of conditions, known as the restricted isometry property [6] or RIP for short, is based on very
strong constraints on the condition numbers of all submatrices ofX up to size2s, requiring that they
be near-isometries (i.e., with condition numbers extremely close to1). Such conditions are satisfied by
matrices with columns that are all very close to orthogonal (e.g., whenX has i.i.d.N(0, 1) entries and
n = Ω(log

( d
2s

)
)), but are violated for many reasonable matrix classes (e.g., Toeplitz matrices) that

arise in statistical practice. Zhang and Huang [37] imposed a weaker sparse Riesz condition, based on
imposing constraints (different from those of RIP) on the condition numbers of all submatrices ofX
up to a size that grows as a function ofs andn. Meinshausen and Yu [26] impose a bound in terms of
the condition numbers or minimum and maximum restricted eigenvalues for submatrices ofX up to
sizes log n. It is unclear whether the conditions in Meinshausen and Yu [26] are weaker or stronger
than the conditions in Zhang and Huang [37].

The weakest known sufficient conditions to date are due to Bickel et al. [4], who show that in
addition to the column normalization condition (Assumption 1 in this paper), it suffices to impose a
milder condition, namely a lower bound on a certain type of restricted eigenvalue (RE). They show
that this RE condition is less restrictive than both the RIP condition [6] and the eigenvalue conditions
imposed in Meinshausen and Yu [26]. For a given vectorθ ∈ Rd, let θ(j) refer to thejth largest
coefficient in absolute value, so that we have the ordering

θ(1) ≥ θ(2) ≥ . . . ≥ θ(d−1) ≥ θ(d).
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For a given scalarc0 and integers = 1, 2, . . . , d, let define the set

Γ(s, c0) :=

{
θ ∈ Rd |

d∑

j=s+1

|θ(j)| ≤ c0

s∑

j=1

|θ(j)|
}

.

In words, the setΓ(s, c0) contains all vectors inRd where theℓ1-norm of the largests co-ordinates
provides an upper bound (up to constantc0) to theℓ1 norm over the smallestd − s co-ordinates. For
example ifd = 3, then the vector(1, 1/2, 1/4) ∈ Γ(1, 1) whereas the vector(1, 3/4, 3/4) /∈ Γ(1, 1).

With this notation, the restricted eigenvalue (RE) assumption can be stated as follows:

Assumption 3(Restricted lower eigenvalues [4]). There exists a functionκ(X, c0) > 0 such that

1√
n
‖Xθ‖2 ≥ κ(X, c0)‖θ‖2 for all θ ∈ Γ(s, c0).

Bickel et. al [4] require a slightly stronger condition for bounding theℓ2-loss in ifs depends onn.
However the conditions are equivalent for fixeds and Assumption3 is much simpler to analyze and
compare to Assumption2. At this point, we have not seen conditions weaker than Assumption 3.

The following corollary of Proposition1 shows that Assumption3 is satisfied with high probability
for broad classes of Gaussian random designs:

Corollary 2. Suppose thatρ(Σ) remains bounded,minv∈B0(2s)
‖Σ1/2v‖2

‖v‖2
> 0 and thatn > c3s log d

for a sufficiently large constant. Then a randomly drawn design matrixX ∈ Rn×d with i.i.d. N(0,Σ)
rows satisfies Assumption3 with probability greater than1 − c1 exp(−c2n).

Proof. Note that for any vectorθ ∈ Γ(s, c0), we have

‖θ‖1 ≤ (1 + c0)
s∑

j=1

|θ(j)| ≤ (1 + c0)
√

s‖θ‖2.

Consequently, if the bound (24) holds, we have

‖Xv‖2√
n

≥
{‖Σ1/2v‖2

2‖v‖2
− 6(1 + c0)

(ρ(Σ)s log d

n

)1/2
}
‖v‖2.

Since we have assumed thatn > c3s log d for a sufficiently large constant, the claim follows.

Combined with the discussion following Proposition1, this result shows that both the conditions
required by Theorem2 of this paper and the analysis of Bickel et al. [4] (both in the caseq = 0) hold
with high probability for Gaussian random designs.

3.3.1 Comparison of RE assumption with Assumption2

In the caseq = 0, the condition required by the estimator that performs least-squares over theℓ0-ball—
namely, the form of Assumption2 used in Theorem2(b)—is not stronger than Assumption3. This
fact was previously established by Bickel et al. (see p.7, [4]). We now provide a simple pedagogical
example to show that theℓ1-based relaxation can fail to recover the true parameter while the optimal
ℓ0-based algorithm succeeds. In particular, let us assume that the noise vectorw = 0, and consider
the design matrix

X =

[
1 −2 −1
2 −3 −3

]
,
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corresponding to a regression problem withn = 2 andd = 3. Say that the regression vectorβ∗ ∈ R3

is hard sparse with one non-zero entry (i.e.,s = 1). Observe that the vector∆ :=
[
1 1/3 1/3

]

belongs to the null-space ofX, and moreover∆ ∈ Γ(1, 1) but ∆ /∈ B0(2). All the 2 × 2 sub-
matrices ofX have rank two, we haveB0(2) ∩ ker(X) = {0}, so that by known results from Cohen
et. al. [10] (see, in particular, their Lemma 3.1), the conditionB0(2) ∩ ker(X) = {0} implies that
the ℓ0-based algorithm can exactly recover any1-sparse vector. On the other hand, suppose that,
for instance, the true regression vector is given byβ∗ =

[
1 0 0

]
, If applied to this problem with

no noise, the Lasso would incorrectly recover the solutionβ̂ : =
[
0 −1/3 −1/3

]
since‖β̂‖1 =

2/3 ≤ 1 = ‖β∗‖1. Although this example is low-dimensional ((s, d) = (1, 3)), we suspect that higher
dimensional examples of design matrices that satisfy the conditions required for the minimax rate but
not satisfied forℓ1-based methods may be constructed using similar arguments.This construction
highlights that there are instances of design matricesX for whichℓ1-based methods fail to recover the
true parameterβ∗ for q = 0 while the optimalℓ0-based algorithm succeeds.

In summary, for the hard sparsity caseq = 0, methods based onℓ1-relaxation can achieve the
minimax rateO

(s log d
n

)
for ℓ2-error, but the current analyses of theseℓ1-methods [6, 26, 4] are based

on imposing stronger conditions on the design matrixX than those required by the “optimal” estimator
that performs least-squares over theℓ0-ball.

4 Proofs of main results

In this section, we provide the proofs of our main theorems, with more technical lemmas and their
proofs deferred to the appendices. To begin, we provide a high-level overview that outlines the main
steps of the proofs.

Basic steps for lower bounds The proofs for the lower bounds follow an information-theoretic
method based on Fano’s inequality [11], as used in classical work on nonparametric estimation [19,
34, 35]. A key ingredient is a fine characterization of the metric entropy structure ofℓq balls [20, 8].
At a high-level, the proof of each lower bound follows the following three basic steps:

(1) Let‖ · ‖∗ be the norm for which we wish to lower bound the minimax risk; for Theorem1, the
norm ‖ · ‖∗ corresponds to theℓp norm, whereas for Theorem3, it is the ℓ2-prediction norm
(the square root of the prediction loss). We first construct an δn-packing set forBq(Rq) in the
norm ‖ · ‖∗, whereδn > 0 is a free parameter to be determined in a later step. The packing
set is constructed by deriving lower bounds on the packing numbers forBq(Rq); we discuss the
concepts of packing sets and packing numbers at more length in Section4.1. For the case of
ℓq-balls forq > 0, tight bounds on the packing numbers inℓp norm have been developed in the
approximation theory literature [20]. For q = 0, we use combinatorial to bound the packing
numbers. We use Assumption2 in order to relate the packing number in theℓ2-prediction norm
to the packing number inℓ2-norm.

(2) The next step is to use a standard reduction to show that any estimator with minimax riskO(δ2
n)

must be able to solve a hypothesis-testing problem over the packing set with vanishing error
probability. More concretely, suppose that an adversary places a uniform distribution over the
δn-packing set inBq(Rq), and let this random variable beΘ. The problem of recoveringΘ
is a multi-way hypothesis testing problem, so that we may apply Fano’s inequality to lower
bound the probability of error. The Fano bound involves the log packing number and the mutual
information I(Y ; Θ) between the observation vectory ∈ Rn and the random parameterΘ
chosen uniformly from the packing set.
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(3) Finally, following a technique introduced by Yang and Barron [34], we derive an upper bound
on the mutual information betweenY andΘ by constructing anǫn-covering set forBq(Rq) with
respect to theℓ2-prediction semi-norm. Using Lemma4 in Section4.1.2, we establish a link
between covering numbers inℓ2-prediction semi-norm to covering numbers inℓ2-norm. Finally,
we choose the free parametersδn > 0 and andǫn > 0 so as to optimize the lower bound.

Basic steps for upper bounds The proofs for the upper bounds involve direct analysis of the natural
estimator that performs least-squares over theℓq-ball. The proof is constructive and involves two steps,
the first of which is standard while the second step is more specific to the problem at hand:

(1) Since the estimator is based on minimizing the least-squares loss over the ballBq(Rq), some
straightforward algebra allows us to upper bound theℓ2-prediction error by a term that measures
the supremum of a Gaussian empirical process over the ballBq(2Rq). This step is completely
generic and applies to any least-squares estimator involving a linear model.

(2) The second and more challenging step involves computingupper bounds on the supremum of
the Gaussian process overBq(2Rq). For each of the upper bounds, our approach is slightly
different in the details. Common steps include upper boundson the covering numbers of the
ball Bq(2Rq), as well as on the image of these balls under the mappingX : Rd → Rn. For the
caseq = 1, we make use of Lemma2 in order to relate theℓ1-norm to theℓ2-norm for vectors
that lie in anℓq-ball. Forq ∈ (0, 1), we make use of some chaining and peeling results from
empirical process theory (e.g., Van de Geer [32]).

4.1 Packing, covering, and metric entropy

The notion of packing and covering numbers play a crucial role in our analysis, so we begin with some
background, with emphasis on the case of covering/packing for ℓq-balls.

Definition 1 (Covering and packing numbers). Consider a metric space consisting of a setS and a
metricρ : S × S → R+.

(a) An ǫ-covering ofS in the metricρ is a collection{β1, . . . , βN} ⊂ S such that for allβ ∈ S,
there exists somei ∈ {1, . . . , N} with ρ(β, βi) ≤ ǫ. Theǫ-covering numberN(ǫ;S, ρ) is the
cardinality of the smallestǫ-covering.

(b) A δ-packing ofS in the metricρ is a collection{β1, . . . , βM} ⊂ S such thatρ(βi, βj) ≥ δ for
all i 6= j. Theδ-packing numberM(δ;S, ρ) is the cardinality of the largestδ-packing.

In simple terms, the covering numberN(ǫ;S, ρ) is the minimum number of balls with radiusǫ
under the metricρ required to completely cover the space, so that every point in S lies in some ball.
The packing numberM(δ;S, ρ) is the maximum number of balls of radiusδ under metricρ that can
be packed into the space so that there is no overlap between any of the balls. It is worth noting that
the covering and packing numbers are (up to constant factors) essentially the same. In particular, the
inequalitiesM(ǫ;S, ρ) ≤ N(ǫ;S, ρ) ≤ M(ǫ/2;S, ρ) are standard (e.g., [29]). Consequently,
given upper and lower bounds on the covering number, we can immediately infer similar upper and
lower bounds on the packing number. Of interest in our results is the logarithm of the covering number
log N(ǫ;S, ρ), a quantity known as themetric entropy.

A related quantity, frequently used in the operator theory literature [20, 30, 8], are the (dyadic)
entropy numbersǫk(S; ρ), defined as follows fork = 1, 2, . . .

ǫk(S; ρ) = inf
{
ǫ > 0 | N(ǫ;S, ρ) ≤ 2k−1

}
. (27)

By definition, note that we haveǫk(S; ρ) ≤ δ if and only if log N(δ;S, ρ) ≤ k.

14



4.1.1 Metric entropies ofℓq-balls

Central to our proofs is the metric entropy of the ballBq(Rq) when the metricρ is the ℓp-norm,
a quantity which we denote bylog Np,q(ǫ). The following result, which provides upper and lower
bounds on this metric entropy that are tight up to constant factors, is an adaptation of results from the
operator theory literature [20, 17]; see AppendixB for the details. All bounds stated here apply to a
dimensiond ≥ 2.

Lemma 3. Assume thatq ∈ (0, 1] andp ∈ [1,∞] withp > q. Then there is a constantUq,p, depending
only onq andp, such that

log Np,q(ǫ) ≤ Uq,p

[
Rq

p
p−q

(1

ǫ

) pq
p−q log d

]
for all ǫ ∈ (0, Rq

1/q). (28)

Conversely, suppose in addition thatǫ < 1 andǫp = Ω
( log d

dν

) p−q
q for some fixedν ∈ (0, 1), depending

only onq andp. Then there is a constantLq,p ≤ Uq,p, depending only onq andp, such that

log Np,q(ǫ) ≥ Lq,p

[
Rq

p
p−q

(1

ǫ

) pq
p−q log d

]
. (29)

Remark: In our application of the lower bound (29), our typical choice ofǫp will be of the order

O
( log d

n

)p−q
2 . It can be verified that as long as there exists aκ ∈ (0, 1) such that d

Rqnq/2 = Ω(dκ)

(which is stated at the beginning of Section2) andp > q, then there exists some fixedν ∈ (0, 1),
depending only onp andq, such thatǫ lies in the range required for the lower bound (29) to be valid.

4.1.2 Metric entropy of q-convex hulls

The proofs of the lower bounds all involve the Kullback-Leibler (KL) divergence between the distribu-
tions induced by different parametersβ andβ′ in Bq(Rq). Here we show that for the linear observation
model (1), these KL divergences can be represented asq-convex hulls of the columns of the design
matrix, and provide some bounds on the associated metric entropy.

For two distributionsP andQ that have densitiesdP anddQ with respect to some base measure
µ, the Kullback-Leibler (KL) divergence is given byD(P ‖Q) =

∫
log dP

dQ
P(dµ). We usePβ to

denote the distribution ofy ∈ R under the linear regression model—in particular, it corresponds to the
distribution of aN(Xβ, σ2In×n) random vector. A straightforward computation then leads to

D(Pβ ‖Pβ′) =
1

2σ2
‖Xβ − Xβ′‖2

2. (30)

Therefore, control of KL-divergences requires understanding of the metric entropy of theq-convex
hull of the rescaled columns of the design matrixX—in particular, the set

absconvq(X/
√

n) :=
{ 1√

n

d∑

j=1

θjXj | θ ∈ Bq(1)
}
. (31)

We have introduced the normalization by1/
√

n for later technical convenience.
Under the column normalization condition, it turns out thatthe metric entropy of this set with

respect to theℓ2-norm is essentially no larger than the metric entropy ofBq(Rq), as summarized in
the following
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Lemma 4. Suppose thatX satisfies the column normalization condition (Assumption1 with constant
κc). Then there is a constantU ′

q,2 depending only onq ∈ (0, 1] such that

log N(ǫ, absconvq(X/
√

n), ‖ · ‖2) ≤ U ′
q,2

[
Rq

2
2−q

(κc

ǫ

) 2q
2−q log d

]
.

The proof of this claim is provided in AppendixC. Note that apart from a different constant, this
upper bound on the metric entropy is identical to that forlog N2,q(ǫ/κc) from Lemma3. Up to
constant factors, this upper bound cannot be tightened in general (e.g., considern = d andX = I).

4.2 Proof of lower bounds

We begin by proving our main results that provide lower bounds on minimax risks, namely Theorems1
and3.

4.2.1 Proof of Theorem1

Recall that the lower bounds in Theorem1 are the maximum of two expressions, one corresponding
to the diameter of the setNq(X) intersected with theℓq-ball, and the other correspond to the metric
entropy of theℓq-ball.

We begin by deriving the lower bound based on the diameter ofNq(X) = Bq(Rq)∩ ker(X). The
minimax risk is lower bounded as

min
bβ

max
β∈Bq(Rq)

E‖β̂ − β‖p
p ≥ min

bβ
max

β∈Nq(X)
E‖β̂ − β‖p

p,

where the inequality follows from the inclusionNq(X) ⊆ Bq(Rq). For anyβ ∈ Nq(X), we haveY =

Xβ + w = w, so thatY contains no information aboutβ ∈ Nq(X). Consequently, oncêβ is chosen,
the adversary can always choose an elementβ ∈ Nq(X) such that‖β̂ − β‖p ≥ 1

2 diamp(Nq(X)).

Indeed, if‖β̂‖p ≥ 1
2 diamp(Nq(X)), then the adversary choosesβ = 0 ∈ Nq(X). On the other

hand, if‖β̂‖p ≤ 1
2 diamp(Nq(X)), then the adversary can choose someβ ∈ Nq(X) such that‖β‖p =

diamp(Nq(X)). By triangle inequality, we then have‖β − β̂‖p ≥ ‖β‖p −‖β̂‖p ≥ 1
2 diamp(Nq(X)).

Overall, we conclude that

min
bβ

max
β∈Bq(Rq)

E‖β̂ − β‖p
p ≥

(1

2
diamp(Nq(X))

)p
.

In the following subsections, we establish the second termsin the lower bounds via the Fano method,
a standard approach for minimax lower bounds. Our proofs of part (a) and (b) are based on slightly
different arguments.

Proof of Theorem 1(a): Let M = Mp(δn) be the cardinality of a maximal packing of the ball
Bq(Rq) in the ℓp metric, say with elements{β1, . . . , βM}. A standard argument (e.g., [18, 34, 35])
yields a lower bound on the minimaxℓp-risk in terms of the error in a multi-way hypothesis testing
problem: in particular, we have

min
bβ

max
β∈Bq(Rq)

E‖β̂ − β‖p
p ≥ 1

2p
δp
n min

eβ
P[β̃ 6= B]
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where the random vectorB ∈ Rd is uniformly distributed over the packing set{β1, . . . , βM}, and the
estimatorβ̃ takes values in the packing set. Applying Fano’s inequality[11] yields the lower bound

P[B 6= β̃] ≥ 1 − I(B;Y ) + log 2

log Mp(δn)
, (32)

whereI(B;Y ) is the mutual information between random parameterB in the packing set and the
observation vectorY ∈ Rn.

It remains to upper bound the mutual information; we do so by following the procedure of Yang
and Barron [34], which is based on covering the model space{Pβ, β ∈ Bq(Rq)} under the square-root
Kullback-Leibler divergence. As noted prior to Lemma4, for the Gaussian models given here, this
square-root KL divergence takes the form

√
D(Pβ ‖Pβ′) = 1√

2σ2
‖X(β − β′)‖2. Let N = N2(ǫn) be

the minimal cardinality of anǫn-covering ofBq(Rq) in ℓ2-norm. Using the upper bound on the dyadic
entropy ofabsconvq(X) provided by Lemma4, we conclude that there exists a set{Xβ1, . . . ,XβN}
such that for allXβ ∈ absconvq(X), there exists some indexi such that‖X(β−βi)‖2/

√
n ≤ c κc ǫn.

Following the argument of Yang and Barron [34], we obtain that the mutual information is upper
bounded as

I(B;Y ) ≤ log N(ǫn) +
c2 n

σ2
κ2

cǫ
2
n.

Combining this upper bound with the Fano lower bound (32) yields

P[B 6= β̃] ≥ 1 − log N2(ǫn) + c2 n
σ2 κ2

c ǫ2
n + log 2

log Mp(δn)
. (33)

The final step is to choose the packing and covering radii (δn andǫn respectively) such that the lower
bound (33) remains strictly above zero, say bounded below by1/4. In order to do so, suppose that we
choose the pair(ǫn, δn) such that

c2 n

σ2
κ2

c ǫ2
n ≤ log N2(ǫn), and (34a)

log Mp(δn) ≤ 4 log N2(ǫn). (34b)

As long asN2(ǫn) ≥ 2, we are then guaranteed that

P[B 6= β̃] ≥ 1 − 2 log N2(ǫn) + log 2

4 log N2(ǫn)
≥ 1/4, (35)

as desired.
It remains to determine choices ofǫn and δn that satisfy the relations (34). From Lemma3,

relation (34a) is satisfied by choosingǫn such thatc
2 n
σ2 κ2

c ǫ2
n = Lq,2

[
Rq

2
2−q

(
1
ǫn

) 2q
2−q log d

]
, or equiv-

alently such that

(
ǫn

) 4
2−q = Θ

(
Rq

2
2−q

σ2

κ2
c

log d

n

)
.

In order to satisfy the bound (34b), it suffices to chooseδn such that

Uq,p

[
Rq

p
p−q

( 1

δn

) pq
p−q log d

]
≤ 4Lq,2

[
Rq

2
2−q

( 1

ǫn

) 2q
2−q log d

]
,
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or equivalently such that

δp
n ≥

[ Uq,p

4Lq,2

] p−q
q

{(
ǫn

) 4
2−q

} p−q
2

Rq

2−p
2−q

=
[ Uq,p

4Lq,2

] p−q
q L

p−q
2

q,2 Rq

[σ2

κ2
c

log d

n

] p−q
2

Combining this bound with the lower bound (35) on the hypothesis testing error probability and sub-
stituting into equation (10), we obtain

min
bβ

max
β∈Bq(Rq)

E‖β̂ − β‖p
p ≥ cq,p Rq

[σ2

κ2
c

log d

n

] p−q
2

,

which completes the proof of Theorem1(a).

Proof of Theorem 1(b): In order to prove Theorem1(b), we require some definitions and an auxil-
iary lemma. For any integers ∈ {1, . . . , d}, we define the set

H(s) :=
{
z ∈ {−1, 0,+1}d | ‖z‖0 = s

}
.

Although the setH depends ons, we frequently drop this dependence so as to simplify notation. We
define the Hamming distanceρH(z, z′) =

∑d
j=1 I[zj 6= z′j] between the vectorsz andz′. We prove

the following result in AppendixD:

Lemma 5. There exists a subset̃H ⊂ H with cardinality|H̃| ≥ exp( s
2 log d−s

s/2 ) such thatρH(z, z′) ≥
s
2 for all z, z′ ∈ H̃.

Now consider a rescaled version of the setH̃, say
√

2
sδnH̃ for someδn > 0 to be chosen. For any

elementsβ, β′ ∈ δn√
s
H̃, we have the following bounds on theℓ2-norm of their difference:

‖β − β′‖2
2 ≥ δ2

n, and (36a)

‖β − β′‖2
2 ≤ 8δ2

n. (36b)

Consequently, the rescaled set
√

2
sδnH̃ is anδn-packing set inℓ2 norm withM2(δn) = |H̃| elements,

say{β1, . . . , βM}. Using this packing set, we now follow the same classical steps as in the proof of
Theorem1(a), up until the Fano lower bound (32).

At this point, we use an alternative upper bound on the mutualinformation, namely the bound
I(Y ;B) ≤ 1

(M
2 )

∑
i6=j D(βi ‖βj), which follows from the convexity of mutual information [11]. For

the linear observation model (1), we haveD(βi ‖βj) = 1
2σ2 ‖X(βi −βj)‖2

2. Since(β −β′) ∈ B0(2s)
by construction, from the assumptions onX and the upper bound bound (36b), we conclude that

I(Y ;B) ≤ 8nκ2
u δ2

n

2σ2
.

Substituting this upper bound into the Fano lower bound (32), we obtain

P[B 6= β̃] ≥ 1 −
8 nκ2

u
2σ2 δ2

n + log(2)
s
2 log d−s

s/2

.
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Settingδ2
n = 1

32
σ2

κ2
u

s
2n log d−s

s/2 ensures that this probability is at least1/4. Consequently, combined
with the lower bound (10), we conclude that

min
bβ

max
β∈Bq(Rq)

E‖β̂ − β‖p
p ≥ 1

2p

1

4
(

1

32
)p/2

[σ2

κ2
u

s

2n
log

d − s

s/2

] p
2
.

As long as the ratiod/s ≥ 1+δ for someδ > 0 we havelog(d/s−1) ≥ c log(d/s) for some constant
c > 0, from which the result follows.

4.2.2 Proof of Theorem3

We use arguments similar to the proof of Theorem1 in order to establish lower bounds on prediction
error‖X(β̂ − β∗)‖2/

√
n.

Proof of Theorem 3(a): For someδ2
n = Ω(Rq ( log d

n )1−q/2), let {β1, . . . , βM} be anδn packing of
the ballBq(Rq) in theℓ2 metric, say with a total ofM = M(δn/κc) elements. We first show that if
n is sufficiently large, then this set is also aκℓδn/2-packing set in the prediction (semi)-norm. From
Assumption2, for eachi 6= j,

‖X(βi − βj)‖2√
n

≥ κℓ ‖βi − βj‖2 − fℓ(Rq, n, d). (37)

Using the assumed lower bound onδ2
n—namely,δ2

n = Ω
(
Rq(

log d
n )1−

q
2 )—and the initial lower

bound (37), we conclude that‖X(βi−βj)‖2√
n

≥ κℓδn/2 oncen is larger than some finite number.

We have thus constructed aκℓδn/2-packing set in the (semi)-norm‖X(βi − βj)‖2. As in the
proof of Theorem2(a), we follow a standard approach to reduce the problem of lower bounding the
minimax error to the error probability of a multi-way hypothesis testing problem. After this step, we
apply the Fano inequality to lower bound this error probability via

P[XB 6= Xβ̃] ≥ 1 − I(XBi;Y ) + log 2

log M2(δn)
,

whereI(XBi;Y ) now represents the mutual information3 between random parameterXB (uniformly
distributed over the packing set) and the observation vector Y ∈ Rn.

From Lemma4, theκc ǫ-covering number of the setabsconvq(X) is upper bounded (up to a con-
stant factor) by theǫ covering number ofBq(Rq) in ℓ2-norm, which we denote byN2(ǫn). Following
the same reasoning as in Theorem2(a), the mutual information is upper bounded as

I(XB;Y ) ≤ log N2(ǫn) +
n

2σ2
κ2

c ǫ2
n.

Combined with the Fano lower bound, we obtain

P[XB 6= Xβ̃] ≥ 1 − log N2(ǫn) + n
σ2 κ2

c ǫ2
n + log 2

log Mp(δn)
. (38)

Lastly, we choose the packing and covering radii (δn andǫn respectively) such that the lower bound (38)
remains strictly above zero, say bounded below by1/4. It suffices to choose the pair(ǫn, δn) to satisfy
the relations (34a) and (34b). As long asǫ2

n > log d
n andN2(ǫn) ≥ 2, we are then guaranteed that

P[XB 6= Xβ̃] ≥ 1 − 2 log N2(ǫn) + log 2

4 log N2(ǫn)
≥ 1/4,

3Despite the difference in notation, this mutual information is the same asI(B;Y ), since it measures the information
between the observation vectory and the discrete indexi.
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as desired. Recalling that we have constructed aδnκℓ/2 covering in the prediction (semi)-norm, we
obtain

min
bβ

max
β∈Bq(Rq)

E‖X (β̂ − β)‖2
2/n ≥ c′2,q Rq κ2

ℓ

[σ2

κ2
c

log d

n

]1−q/2
,

for some constantc′2,q > 0. This completes the proof of Theorem3(a).

Proof of Theorem 3(b): Recall the assertion of Lemma5, which guarantees the existence of a set
δ2
n

2s H̃ is an δn-packing set inℓ2-norm with Mp(δn) = |H̃| elements, say{β1, . . . , βM}, such that

the bounds (36a) and (36b) hold, and such thatlog |H̃| ≥ s
2 log d−s

s/2 . By construction, the difference

vectors(βi − βj) ∈ B0(2s), so that by assumption, we have

‖X(βi − βj)‖/√n ≤ κu‖βi − βj‖2 ≤ κu

√
8 δn. (39)

In the reverse direction, since Assumption2 holds withfℓ(Rq, n, d) = 0, we have

‖X(βi − βj)‖2/
√

n ≥ κℓδn. (40)

We can follow the same steps as in the proof of Theorem1(b), thereby obtaining an upper bound the
mutual information of the formI(XB; y) ≤ 8κ2

unδ2
n. Combined with the Fano lower bound, we have

P[XB 6= Xβ̃] ≥ 1 −
8 nκ2

u
2σ2 δ2

n + log(2)
s
2n log d−s

s/2

.

Remembering the extra factor ofκℓ from the lower bound (40), we obtain the lower bound

min
bβ

max
β∈B0(s)

E
1

n
‖X(β̂ − β)‖2

2 ≥ c′0,q κ2
ℓ

σ2

κ2
u

s log
d − s

s/2
.

Repeating the argument from the proof of Theorem1(b) allows us to further lower bound this quantity
in terms oflog(d/s), leading to the claimed form of the bound.

4.3 Proof of achievability results

We now turn to the proofs of our main achievability results, namely Theorems2 and4, that provide
upper bounds on minimax risks. We prove all parts of these theorems by analyzing the family of
M -estimators

β̂ ∈ arg min
‖β‖q

q≤Rq

‖Y − Xβ‖2
2.

We begin by deriving an elementary inequality that is usefulthroughout the analysis. Since the
vectorβ∗ satisfies the constraint‖β∗‖q

q ≤ Rq meaningβ∗ is a feasible point, we have‖Y − Xβ‖2
2 ≤

‖Y − Xβ∗‖2
2. Defining∆̂ = β̂ − β∗ and performing some algebra, we obtain the inequality

1

n
‖X∆̂‖2

2 ≤ 2|wT X∆̂|
n

. (41)

4.3.1 Proof of Theorem2

We begin with the proof of Theorem2, in which we upper bound the minimax risk in squaredℓ2-norm.
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Proof of Theorem 2(a): To begin, we may apply Assumption2 to the inequality (41) to obtain

[
max(0, κℓ‖∆̂‖2 − fℓ(Rq, n, d))

]2 ≤ 2|wT X∆̂|/n

≤ 2

n
‖wT X‖∞‖∆̂‖1.

Sincewi ∼ N(0, σ2) and the columns ofX are normalized, each entry of2nwT X is zero-mean
Gaussian with variance at most4σ2κ2

c/n. Therefore, by union bound and standard Gaussian tail
bounds, we obtain that the inequality

[
max(0, κℓ‖∆̂‖2 − fℓ(Rq, n, d))

]2 ≤ 2σκc

√
3 log d

n
‖∆̂‖1 (42)

holds with probability greater than1 − c1 exp(−c2n). Consequently, we may conclude that at least
one of the two following alternatives must hold

‖∆̂‖2 ≤ 2fℓ(Rq, n, d)

κℓ
, or (43a)

‖∆̂‖2
2 ≤ 2σκc

κ2
ℓ

√
3 log d

n
‖∆̂‖1. (43b)

Suppose first that alternative (43a) holds. Consequently for we have

‖∆̂‖2
2 ≤ o

(
Rq

( log d

n

)1−q/2
)

,

which is the same up to constant rate than claimed in Theorem2(a).
On the other hand, suppose that alternative (43b) holds. Since botĥβ andβ∗ belong toBq(Rq), we

have‖∆̂‖q
q =

∑d
j=1 |∆̂j |q ≤ 2Rq. Therefore we can exploit Lemma2 by settingτ = 2σκc

κ2
ℓ

√
3 log d

n ,

thereby obtaining the bound‖∆̂‖2
2 ≤ τ‖∆̂‖1, and hence

‖∆̂‖2
2 ≤

√
2Rqτ

1−q/2‖∆̂‖2 + 2Rqτ
2−q.

Viewed as a quadratic in the indeterminatex = ‖∆̂‖2, this inequality is equivalent to the constraint
f(x) = ax2 + bx + c ≤ 0, with a = 1,

b = −
√

2Rqτ
1−q/2, and c = −2Rqτ

2−q.

Sincef(0) = c < 0 and the positive root off(x) occurs atx∗ = (−b +
√

b2 − 4ac)/(2a), some
algebra shows that we must have

‖∆̂‖2
2 ≤ 4max{b2, |c|} ≤ 24Rq

[κ2
c

κ2
ℓ

σ2

κ2
ℓ

log d

n

]1−q/2
,

with high probability (stated in Theorem2(a) which completes the proof of Theorem2(a).

Proof of Theorem2(b): In order to establish the bound (13), we follow the same steps withfℓ(s, n, d) =
0, thereby obtaining the following simplified form of the bound (42):

‖∆̂‖2
2 ≤ κc

κℓ

σ

κℓ

√
3 log d

n
‖∆̂‖1.
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By definition of the estimator, we have‖∆̂‖0 ≤ 2s, from which we obtain‖∆̂‖1 ≤
√

2s‖∆̂‖2.
Canceling out a factor of‖∆̂‖2 from both sides yields the claim (13).

Establishing the sharper upper bound (14) requires more precise control on the right-hand side of
the inequality (41). The following lemma, proved in AppendixF, provides this control:

Lemma 6. If ‖Xθ‖2√
n‖θ‖2

≤ κu for all θ ∈ B0(2s), then for anyr > 0, we have

sup
‖θ‖0≤2s,‖θ‖2≤r

1

n

∣∣wT Xθ
∣∣ ≤ 6 σ r κu

√
s log(d/s)

n
(44)

with probability greater than1 − c1 exp(−c2 min{n, s log(d − s)}).
Let us apply this lemma to the basic inequality (41). We may upper bound the right-hand side as

∣∣w
T X∆

n

∣∣ ≤ ‖∆‖2 sup
‖θ‖0≤2s,‖θ‖2≤1

1

n

∣∣wT Xθ
∣∣ ≤ 6 ‖∆‖2 σ κu

√
s log(d/s)

n
.

Consequently, we have

1

n
‖X∆̂‖2

2 ≤ 12 σ ‖∆̂‖2 κu

√
s log(d/s)

n
,

with high probability. By Assumption2, we have‖X∆̂‖2
2/n ≥ κ2

ℓ‖∆̂‖2
2. Cancelling out a factor of

‖∆̂‖2 and re-arranging yields‖∆̂‖2 ≤ 12 κuσ
κ2

ℓ

√
s log(d/s)

n with high probability as claimed.

4.3.2 Proof of Theorem4

We again make use of the elementary inequality (41) to establish upper bounds on the prediction risk.

Proof of Theorem4(a): So as to facilitate tracking of constants in this part of the proof, we consider
the rescaled observation model, in whichw̃ ∼ N(0, In) andX̃ : = σ−1X. Note that ifX satisfies
Assumption1 with constantκc, thenX̃ satisfies it with constant̃κc = κc/σ. Moreover, if we establish
a bound on‖X̃(β̂−β∗)‖2

2/n, then multiplying byσ2 recovers a bound on the original prediction loss.
We first deal with the caseq = 1. In particular, we have

∣∣ 1
n

w̃T X̃θ
∣∣ ≤ ‖w̃T X̃

n
‖∞‖θ‖1 ≤

√
3κ̃c

2σ2 log d

n
(2R1),

where the second inequality holds with probability1 − c1 exp(−c2 log d), using standard Gaussian
tail bounds. (In particular, since‖X̃i‖2/

√
n ≤ κ̃c, the variatew̃T X̃i/n is zero-mean Gaussian with

variance at most̃κc
2/n.) This completes the proof forq = 1.

Turning to the caseq ∈ (0, 1), in order to establish upper bounds overBq(2Rq), we require the
following analog of Lemma6, proved in AppendixG.1. So as to lighten notation, let us introduce the
shorthandg(Rq, n, d) :=

√
Rq ( log d

n )
1
2
− q

4 .

Lemma 7. For q ∈ (0, 1), suppose thatg(Rq, n, d) = o(1) andd = Ω(n). Then for any fixed radius

r such thatr ≥ c3κ̃c

q
2 g(Rq, n, d) for some numerical constantc3 > 0, we have

sup

θ∈Bq(2Rq),
‖ eXθ‖2√

n
≤r

1

n

∣∣w̃T X̃θ
∣∣ ≤ c4r κ̃c

q
2

√
Rq (

log d

n
)

1
2
− q

4 ,

with probability greater than1 − c1 exp(−c2 n g2(Rq, n, d)).
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Note that Lemma7 above holds for any fixed radiusr ≥ c3κ̃c

q
2 g(Rq, n, d). We would like the

apply the result of Lemma7 to r = ‖X∆‖2√
n

, which is a random quantity. In AppendixH, we state
and prove a “peeling” result that allows us to strengthen Lemma7 in a way suitable for our needs. In
particular, if we define the event

E : =
{
∃ θ ∈ Bq(2Rq) such that

1

n

∣∣w̃T X̃θ
∣∣ ≥ c4

‖X̃θ‖2√
n

κ̃c

q
2

√
Rq (

log d

n
)

1
2
− q

4
}
, (45)

then we claim that

P[E ] ≤ 2 exp(−c n g2(Rq, n, d))

1 − exp(−c n g2(Rq, n, d))
.

This claim follows from Lemma9 in AppendixH by making the choicesfn(v;Xn) = 1
n |wT Xv|,

ρ(v) = ‖Xv‖2√
n

, andg(r) = c3 r κ̃c

q
2
√

Rq ( log d
n )

1
2
− q

4 .
Returning to the main thread, from the basic inequality (41), when the eventE from equation (45)

holds, we have

‖X̃∆‖2
2

n
≤ ‖X̃∆‖2√

n

√
κ̃c

qRq

( log d

n

)1−q/2
.

Canceling out a factor of‖X∆‖2√
n

, squaring both sides, multiplying byσ2 and simplifying yields

‖X∆‖2
2

n
≤ c2 σ2

(κc

σ

)q
Rq

( log d

n

)1−q/2
= c2 κ2

c Rq

(σ2

κ2
c

log d

n

)1−q/2
,

as claimed.

Proof of Theorem 4(b): For this part, we require the following lemma, proven in Appendix G.2:

Lemma 8. Suppose thatd2s ≥ 2. Then for anyr > 0, we have

sup
θ∈B0(2s),

‖Xθ‖2√
n

≤r

1

n

∣∣wT Xθ
∣∣ ≤ 9 r σ

√
s log(d

s )

n

with probability greater than1 − exp
(
− 10s log( d

2s)
)
.

Consequently, combining this result with the basic inequality (41), we conclude that

‖X∆‖2
2

n
≤ 9

‖X∆‖2√
n

σ

√
s log(d

s )

n
,

with high probability, from which the result follows.

5 Discussion

The main contribution of this paper was to analyze minimax rates of convergence for the linear
model (1) under high-dimensional scaling, in which the sample sizen and problem dimensiond
tend to infinity. We provided lower bounds for theℓp-norm for all p ∈ [1,∞] with p 6= q, as well
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as for theℓ2-prediction loss. In addition, for both theℓ2-loss andℓ2-prediction loss, we derived a set
of upper bounds that match our lower bounds up to constant factors, so that the minimax rates are
exactly determined in these cases. The rates may be viewed asan extension of the rates for the case
of ℓ2-loss from Donoho and Johnstone [14] on the Gaussian sequence model to more general design
matricesX. In particular substitutingX = I andd = n into Theorems1 and2, yields the same rates
as those expressed in Donoho and Johnstone [14] (see Corollary1), although they provided much
sharper control of the constant pre-factors than the analysis given here.

Apart from the rates themselves, our analysis highlights how conditions on the design matrixX
enter in complementary manners for different loss functions. On one hand, it is possible to obtain
lower bounds onℓ2-risk (see Theorem1) or upper bounds onℓ2-prediction risk (see Theorem4) under
very mild assumptions onX—in particular, our analysis requires only that the columnsof X/

√
n

have boundedℓ2-norms (see, in particular, Assumption1). On the other hand, in order to obtain
upper bounds onℓ2 risk (Theorem2) or lower bound onℓ2-norm prediction risk (Theorem3), the
design matrixX must satisfy, in addition to column normalization, other more restrictive conditions.
In particular, our analysis was based on imposed on a certaintype of lower bound on the curvature
of XT X measured over theℓq-ball (see Assumption2). As shown in Lemma1, this lower bound is
intimately related to thedegree of non-identifiabilityover theℓq-ball of the high-dimensional linear
regression model .

In addition, we showed that Assumption2 is not unreasonable—in particular, it is satisfied with
high probability for broad classes of Gaussian random matrices, in which each row is drawn in an i.i.d.
manner from aN(0,Σ) distribution (see Proposition1). This result applies to Gaussian ensembles
with much richer structure than the standard Gaussian case (Σ = Id×d). Finally, we compared to the
weakest known sufficient conditions forℓ1-based relaxations to be consistent inℓ2-norm forq = 0—
namely, the restricted eigenvalue (RE) condition, of Bickel et al. [4] and showed that the oracle least-
squares over theℓ0-ball method can succeed with even milder conditions on the design. In addition, we
also proved that the RE condition holds with high probability for broad classes for Gaussian random
matrices, as long as the covariance matrixΣ is not degenerate. The analysis highlights how the
structure ofX determines whetherℓ1-based relaxations achieve the minimax optimal rate.

The results and analysis from our paper can be extended in a number of ways. First, the assump-
tion of independent Gaussian noise is somewhat restrictiveand it would be interesting to analyze the
model under different noise assumption, either noise with heavier tails or some degree of dependency.
In addition, we are currently working on extending our analysis to non-parametric sparse additive
models.
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A Proof of Lemma 2

Defining the setS = {j | |θj| > τ}, we have

‖θ‖1 = ‖θS‖1 +
∑

j /∈S

|θj| ≤
√

|S|‖θ‖2 + τ
∑

j /∈S

|θj|
τ

.

Since|θj|/τ < 1 for all i /∈ S, we obtain

‖θ‖1 ≤
√

|S|‖θ‖2 + τ
∑

j /∈S

(
|θi|/τ

)q

≤
√

|S|‖θ‖2 + 2Rqτ
1−q.

Finally, we observe2Rq ≥ ∑
j∈S |θj |q ≥ |S|τ q, from which the result follows.

B Proof of Lemma 3

The result is obtained by inverting known results on (dyadic) entropy numbers ofℓq-balls; there are
some minor technical subtleties in performing the inversion. For ad-dimensionalℓq ball with q ∈
(0, p), it is known [30, 20, 17] that for all integersk ∈ [log d, d], the dyadic entropy numbersǫk of the
ball Bq(1) with respect to theℓp-norm scale as

ǫk(ℓq, ‖ · ‖p) = Cq,p

[
log(1 + d

k )

k

]1/q−1/p

. (46)

Moreover, fork ∈ [1, log d], we haveǫk(ℓq) ≤ Cq,p.
We first establish the upper bound on the metric entropy. Sinced ≥ 2, we have

ek(ℓq) ≤ Cq,p

[
log(1 + d

2)

k

]1/q−1/p

≤ Cq,p

[
log d

k

]1/q−1/p

.

Inverting this inequality fork = log Np,q(ǫ) and allowing for a ball radiusRq yields

log Np,q(ǫ) ≤
(
Cq,p

Rq
1/q

ǫ

) pq
p−q log d, (47)

as claimed.
We now turn to proving the lower bound on the metric entropy, for which we require the existence

of some fixedν ∈ (0, 1) such thatk ≤ d1−ν . Under this assumption, we have1 + d
k ≥ d

k ≥ dν , and
hence

Cq,p

[
log(1 + d

k )

k

]1/q−1/p

≥ Cq,p

[
ν log d

k

]1/q−1/p

Accounting for the radiusRq as was done for the upper bound yields

log Np,q(ǫ) ≥ ν
(Cq,pRq

1/q

ǫ

) pq
p−q log d,

as claimed.
Finally, let us check that our assumptions onk needed to perform the inversion are ensured by

the conditions that we have imposed onǫ. The conditionk ≥ log d is ensured by settingǫ < 1.
Turning to the conditionk ≤ d1−ν , from the bound (47) on k, it suffices to chooseǫ such that
(Cq,p

ǫ

) pq
p−q log d ≤ d1−ν . This condition is ensured by enforcing the lower boundǫp = Ω

( log d
d1−ν

)p−q
q

for someν ∈ (0, 1).
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C Proof of Lemma 4

We deal first with (dyadic) entropy numbers, as previously defined (27), and show that

ǫ2k−1(absconvq(X/
√

n), ‖ · ‖2) ≤ c κc min

{
1,

( log(1 + d
k )

k

) 1
q
− 1

2

}
. (48)

We prove this intermediate claim by combining a number of known results on the behavior of dyadic
entropy numbers. First, using Corollary 9 from Guédon and Litvak [17], for all k = 1, 2, . . ., we have

ǫ2k−1(absconvq(X/
√

n), ‖ · ‖2) ≤ c ǫk(absconv1(X), ‖ · ‖2) min

{
1,

( log(1 + d
k )

k

) 1
q
−1

}
.

Using Corollary 2.4 from Carl and Pajor [7], we obtain

ǫk(absconv1(X/
√

n), ‖ · ‖2) ≤ c√
n
|||X|||1→2 min

{
1,

( log(1 + d
k )

k

)1/2
}

,

where|||X|||1→2 denotes the norm ofX viewed as an operator fromℓd
1 → ℓn

2 . More specifically, we
have

1√
n
|||X|||1→2 =

1√
n

sup
‖u‖1=1

‖Xu‖2

=
1√
n

sup
‖v‖2=1

sup
‖u‖1=1

vT Xu

= max
i=1,...,d

‖Xi‖2/
√

n ≤ κc.

Overall, we have shown thatǫ2k−1(absconvq(X/
√

n), ‖ · ‖2) ≤ c κc min

{
1,

( log(1+ d
k
)

k

) 1
q
− 1

2

}
,

as claimed. Finally, under the stated assumptions, we may invert the upper bound (48) by the same
procedure as in the proof of Lemma3 (see AppendixB), thereby obtaining the claim.

D Proof of Lemma 5

In this appendix, we prove Lemma5. Our proof is inspired by related results from the approximation
theory literature (see, e.g., Kühn [20]). For each even integers = 2, 4, 6, . . . , d, let us define the set

H : =
{
z ∈ {−1, 0,+1}d | ‖z‖0 = s

}
. (49)

Note that the cardinality of this set is|H| =
(d
s

)
2s, and moreover, we have‖z− z′‖0 ≤ 2s for all pairs

z, z′ ∈ H. We now define the Hamming distanceρH onH×H via ρH(z, z′) =
∑d

j=1 I[zj 6= z′j ]. For
some fixed elementz ∈ H, consider the set{z′ ∈ H | ρH(z, z′) ≤ s/2}. Note that its cardinality is
upper bounded as

∣∣{z′ ∈ H | ρH(z, z′) ≤ s/2}
∣∣ ≤

(
d

s/2

)
3s/2.

To see this, note that we simply choose a subset of sizes/2 wherez andz′ agree and then choose the
others/2 co-ordinates arbitrarily.
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Now consider a setA ⊂ H with cardinality at most|A| ≤ m : =
(d

s)
( d

s/2)
. The set of elementsz ∈ H

that are within Hamming distances/2 of some element ofA has cardinality at most

|{z ∈ H | : ρH(z, z′) ≤ s/2 for somez′ ∈ A}| ≤ |A|
(

d

s/2

)
3s/2 < |H|,

where the final inequality holds sincem
( d
s/2

)
3s/2 < |H|. Consequently, for any such set with cardi-

nality |A| ≤ m, there exists az ∈ H such thatρH(z, z′) > s/2 for all z′ ∈ A. By inductively adding
this element at each round, we then create a set withA ⊂ H with |A| > m such thatρH(z, z′) > s/2
for all z, z′ ∈ A.

To conclude, let us lower bound the cardinalitym. We have

m =

(d
s

)
( d
s/2

) =
(d − s/2)! (s/2)!

(d − s)! s!
=

s/2∏

j=1

d − s + j

s/2 + j
≥

(d − s

s/2

)s/2
,

where the final inequality uses the fact that the ratiod−s+j
s/2+j is decreasing as a function ofj.

E Proof of Proposition 1

In this appendix, we prove both parts of Proposition1. In addition to proving the lower bound (24),
we also prove the analogous upper bound

‖Xv‖2√
n

≤ 3‖Σ1/2v‖2 + 6

[
ρ(Σ) log d

n

]1/2

‖v‖1 for all v ∈ Rd. (50)

Our approach to proving the bounds (24) and (50) is based on Slepian’s lemma [23, 12] as well as
an extension thereof due to Gordon [15]. For the reader’s convenience, we re-state versions of this
lemma here. Given some index setU × V , let {Yu,v, (u, v) ∈ U × V } and{Zu,v, (u, v) ∈ U × V }
be a pair of zero-mean Gaussian processes. Given the semi-norm on these processes defined via
σ(X) = E[X2]1/2, Slepian’s lemma asserts that if

σ(Yu,v − Yu′,v′) ≤ σ(Zu,v − Zu′,v′) for all (u, v) and(u′, v′) in U × V , (51)

then

E[ sup
(u,v)∈U×V

Yu,v] ≤ E[ sup
(u,v)∈U×V

Zu,v]. (52)

One version of Gordon’s extension [15, 23] asserts that if the inequality (51) holds for (u, v) and
(u′, v′) in U × V , and holds withequalitywhenv = v′, then

E[sup
u∈U

inf
v∈V

Yu,v] ≤ E[sup
u∈U

inf
v∈V

Zu,v]. (53)

Turning to the problem at hand, any random matrixX from the given ensemble can be written as
WΣ1/2, whereW ∈ Rn×d is a matrix with i.i.d.N(0, 1) entries, andΣ1/2 is the symmetric matrix
square root. We choose the setU as the unit ballSn−1 = {u ∈ Rn | ‖u‖2 = 1}, and for some radius
r, we chooseV as the set

V(r) := {v ∈ Rd | ‖Σ1/2v‖2 = 1, ‖v‖q
q ≤ r}.
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(Although this set may be empty for certain choices ofr, our analysis only concerns those choices for
which it is non-empty.) For a matrixM , we define the associated Frobenius norm|||M |||F = [

∑
i,j M2

ij]
1/2,

and for anyv ∈ V(r), we introduce the convenient shorthandṽ = Σ1/2 v.
With these definition, consider the centered Gaussian processYu,v = uT Wv indexed bySn−1 ×

V(r). Given two pairs(u, v) and(u′, v′) in Sn−1 × V(r), we have

σ2(Yu,v − Yu′,v′) = |||u ṽT − u′(ṽ′)T |||2F
= |||uṽT − u′ ṽT + u′ ṽT − u′(ṽ′)T |||2F
= ‖ṽ‖2

2 ‖u − u′‖2
2 + ‖u′‖2

2‖ṽ − ṽ′‖2
2 + 2(uT u′ − ‖u′‖2

2)(‖ṽ‖2
2 − ṽT ṽ′)(54)

Now by the Cauchy-Schwarz inequality and the equalities‖u‖2 = ‖u′‖2 = 1 and‖ṽ‖2 = ‖ṽ′‖2, we
haveuT u′ − ‖u‖2

2 ≤ 0, and‖ṽ‖2
2 − ṽT ṽ′ ≥ 0. Consequently, we may conclude that

σ2(Yu,v − Yu′,v′) ≤ ‖u − u′‖2
2 + ‖ṽ − ṽ′‖2

2. (55)

We claim that the Gaussian processYu,v satisfies the conditions Gordon’s lemma in terms of the zero-
mean Gaussian processZu,v given by

Zu,v = gT u + hT (Σ1/2 v), (56)

whereg ∈ Rn andh ∈ Rd are both standard Gaussian vectors (i.e., with i.i.d.N(0, 1) entries). To
establish this claim, we compute

σ2(Zu,v − Zu′,v′) = ‖u − u′‖2
2 + ‖Σ1/2 (v − v′)‖2

2

= ‖u − u′‖2
2 + ‖ṽ − ṽ′‖2

2.

Thus, from equation (55), we see that Slepian’s condition (51) holds. On the other hand, whenv = v′,
we see from equation (54) that

σ2(Yu,v − Yu′,v) = ‖u − u′‖2
2 = σ2(Zu,v − Zu,v′),

so that the equality required for Gordon’s inequality is also satisfied.

Establishing an upper bound: We begin by exploiting Slepian’s inequality (52) to establish the
upper bound (50). We have

E
[

sup
v∈V(r)

‖Xv‖2

]
= E

[
sup

(u,v)∈Sn−1×V(r)

uT Xv]

≤ E
[

sup
(u,v)∈Sn−1×V(r)

Zu,v

]

= E[ sup
‖u‖2=1

gT u] + E[ sup
v∈V(r)

hT (Σ1/2v)]

≤ E[‖g‖2] + E[ sup
v∈V(r)

hT (Σ1/2v)].

By convexity, we haveE[‖g‖2] ≤
√

E[‖g‖2
2] =

√
n, from which we can conclude that

E
[

sup
v∈V(r)

‖Xv‖2

]
≤ √

n + E[ sup
v∈V(r)

hT (Σ1/2v)]. (57)
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Turning to the remaining term, we have

sup
v∈V(r)

|hT (Σ1/2v)| ≤ sup
v∈V(r)

‖v‖1 ‖Σ1/2h‖∞ ≤ r‖Σ1/2h‖∞.

Since each element(Σ1/2h)i is zero-mean Gaussian with variance at mostρ(Σ) = maxi Σii, standard
results on Gaussian maxima (e.g., [23]) imply that E[‖Σ1/2h‖∞] ≤

√
3ρ(Σ) log d. Putting together

the pieces, we conclude that forq = 1

E
[

sup
v∈V(r)

‖Xv‖2/
√

n
]

≤ 1 +
[
3ρ(Σ)

log d

n

]1/2
r

︸ ︷︷ ︸
. (58)

tu(r)

Having controlled the expectation, it remains to establishsharp concentration. Letf : RD → R be
Lipschitz function with constantL with respect to theℓ2-norm. Then ifw ∼ N(0, ID×D) is standard
normal, we are guaranteed [22] that for all t > 0,

P
[
|f(w) − E[f(w)]| ≥ t] ≤ 2 exp(− t2

2L2
). (59)

Note the dimension-independent nature of this inequality.We apply this result to the random matrix
W ∈ Rn×d, viewed as a standard normal random vector inD = n d dimensions. First, letting
f(W ) = supv∈V(r) ‖WΣ1/2v‖2/

√
n, we find that

√
n
[
f(W )− f(W ′)

]
= sup

v∈V(r)
‖WΣ1/2v‖2 − sup

v∈V(r)
‖W ′Σ1/2v‖2

≤ sup
v∈V(r)

‖Σ1/2v‖2|||(W − W ′)|||F

= |||W − W ′|||F
since‖Σ1/2v‖2 = 1 for all v ∈ V(r). We have thus shown that the Lipschitz constantL ≤ 1/

√
n.

Recalling the definition oftu(r) from the upper bound (58), we sett = tu(r)/2 in the tail bound (59),
thereby obtaining

P
[

sup
v∈V(r)

‖Xv‖2 ≥ 3

2
tu(r; q)

]
≤ 2 exp(−n

tu(r)2

8
). (60)

We now exploit this family of tail bounds to upper bound the probability of the event

T : =
{
∃ v ∈ Rd s.t. ‖Σ1/2v‖2 = 1 and‖Xv‖2 ≥ 3tu(‖v‖1)

}
.

We do so using Lemma9 from AppendixH. In particular, for the caseE = T , we may apply this
lemma with the objective functionsf(v;X) = ‖Xv‖2, sequencean = n, the constraintρ(·) = ‖ · ‖1,
the setS = {v ∈ Rd | ‖Σ1/2v‖2 = 1}, andg(r) = 3tu(r)/2. Note that the bound (60) means
that the tail bound (65) holds withc = 4/72. Therefore, by applying Lemma9, we conclude that
P[T ] ≤ c1 exp(−c2n) for some numerical constantsci.

Finally, in order to extend the inequality to arbitraryv ∈ Rd, we note that the rescaled vector
v̆ = v/‖Σ1/2v‖2 satisfies‖Σ1/2v̆‖2 = 1. Consequently, conditional on the eventT c, we have

‖Xv̆‖2/
√

n ≤ 3 + 3
[√

(3ρ(Σ) log d)/n
]
‖v̆‖1,

or equivalently, after multiplying through by‖Σ1/2v‖2, the inequality

‖Xv‖2/
√

n ≤ 3‖Σ1/2v‖2 + 3(
√

(3ρ(Σ) log d)/n)‖v‖1,

thereby establishing the claim (50).
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Establishing the lower bound(24): We now exploit Gordon’s inequality in order to establish the
lower bound (24). We have

− inf
v∈V(r)

‖Xv‖2 = sup
v∈V

−‖Xv‖2 = sup
v∈V(r)

inf
u∈U

uT Xv.

Applying Gordon’s inequality, we obtain

E[ sup
v∈V(r)

−‖Xv‖2] ≤ E
[

sup
v∈V(r)

inf
u∈Sn−1

Zu,v

]

= E[ inf
u∈Sn−1

gT u] + E[ sup
v∈V(r)

hT Σ1/2v]

≤ −E[‖g‖2] +
[
3ρ(Σ) log d

]1/2
r.

where we have used our previous derivation to upper boundE[supv∈V(r) hT Σ1/2v]. Noting4 that
E[‖g‖2] ≥

√
n/2 for all n ≥ 1, we divide by

√
n and add1 to both sides so as to obtain

E
[

sup
v∈V(r)

(
1 − ‖Xv‖2/

√
n
)]

≤ 1/2 +
[
3ρ(Σ) log d

]1/2
r

︸ ︷︷ ︸
(61)

tℓ(r)

Next define the functionf(W ) = supv∈V(r)

(
1 − ‖WΣ1/2v‖2/

√
n
)
. The same argument as

before shows that its Lipschitz constant is at most1/
√

n. Settingt = tℓ(r)/2 in the concentration
statement (59) and combining with the lower bound (61), we conclude that

P
[

sup
v∈V(r)

(
1 − ‖Xv‖2

)
≥ 3

2
tℓ(r)

]
≤ 2 exp

(
− n

t2ℓ(r)

8

)
. (62)

Define the event

T̃ : =
{
∃ v ∈ Rd s.t.‖Σ1/2v‖2 = 1 and

(
1 − ‖Xv‖2) ≥ 3tℓ(‖v‖1)

}
.

We can now apply Lemma9 with an = n, g(r) = 3tℓ(r)/2 andµ = 1/2 to conclude that there exist
constantsci such thatP[T̃ ] ≤ c1 exp(−c2n).

Finally, to extend the claim to all vectorsv, we consider the rescaled vectorv̆ = v/‖Σ1/2v‖2.
Conditioned on the event̃T c, we have for allv ∈ Rd,

1 − ‖Xv̆‖2/
√

n ≤ 3

2
+ 3 (

√
(3ρ(Σ) log d)/n) ‖v̆‖1,

or equivalently, after multiplying through by‖Σ1/2v‖2 and re-arranging,

‖Xv‖2/
√

n ≥ 1

2
‖Σ1/2v‖2 − 3 (

√
(3ρ(Σ) log d)/n) ‖v‖1,

as claimed.
4In fact, |E[‖g‖2] −

√
n| = o(

√
n), but this simple bound is sufficient for our purposes.
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F Proof of Lemma 6

For a given radiusr > 0, define the set

S(s, r) :=
{
θ ∈ Rd | ‖θ‖0 ≤ 2s, ‖θ‖2 ≤ r

}
,

and the random variablesZn = Zn(s, r) given by

Zn : = sup
θ∈S(s,r)

1

n
|wT Xθ|.

For a givenǫ ∈ (0, 1) to be chosen, let us upper bound the minimal cardinality of a set that covers
S(s, r) up to(rǫ)-accuracy inℓ2-norm. We claim that we may find such a covering set{θ1, . . . , θN} ⊂
S(s, r) with cardinalityN = N(s, r, ǫ) that is upper bounded as

log N(s, r, ǫ) ≤ log

(
d

2s

)
+ 2s log(1/ǫ).

To establish this claim, note that here are
( d
2s

)
subsets of size2s within {1, 2, . . . , d}. Moreover, for

any 2s-sized subset, there is an(rǫ)-covering inℓ2-norm of the ballB2(r) with at most22s log(1/ǫ)

elements (e.g., [24]).
Consequently, for eachθ ∈ S(s, r), we may find someθk such that‖θ − θk‖2 ≤ rǫ. By triangle

inequality, we then have

1

n
|wT Xθ| ≤ 1

n
|wT Xθk| + 1

n
|wT X(θ − θi)|

≤ 1

n
|wT Xθk| + ‖w‖2√

n

‖X(θ − θk)‖2√
n

.

Given the assumptions onX, we have‖X(θ − θk)‖2/
√

n ≤ κur‖θ − θk‖2 ≤ κu ǫ. Moreover,
since the variate‖w‖2

2/σ
2 is χ2 with n degrees of freedom, we have‖w‖2√

n
≤ 2σ with probability

1 − c1 exp(−c2n), using standard tail bounds (see AppendixI). Putting together the pieces, we
conclude that

1

n
|wT Xθ| ≤ 1

n
|wT Xθk| + 2κu σ r ǫ

with high probability. Taking the supremum overθ on both sides yields

Zn ≤ max
k=1,2,...,N

1

n
|wT Xθk| + 2κu σ r ǫ.

It remains to bound the finite maximum over the covering set. We begin by observing that each
variatewT Xθk/n is zero-mean Gaussian with varianceσ2‖Xθi‖2

2/n
2. Under the given conditions on

θk andX, this variance is at mostσ2κ2
ur2/n, so that by standard Gaussian tail bounds, we conclude

that

Zn ≤ σ r κu

√
3 log N(s, r, ǫ)

n
+ 2κu σr ǫ

= σ r κu

{√
3 log N(s, r, ǫ)

n
+ 2ǫ

}
. (63)
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with probability greater than1 − c1 exp(−c2 log N(s, r, ǫ)).

Finally, suppose thatǫ =

√
s log(d/2s)

n . With this choice and recalling thatn ≤ d by assumption,
we obtain

log N(s, r, ǫ)

n
≤ log

( d
2s

)

n
+

s log n
s log(d/2s)

n

≤ log
( d
2s

)

n
+

s log(d/s)

n

≤ 2s + 2s log(d/s)

n
+

s log(d/s)

n
,

where the final line uses standard bounds on binomial coefficients. Sinced/s ≥ 2 by assumption, we
conclude that our choice ofǫ guarantees thatlog N(s,r,ǫ)

n ≤ 5 s log(d/s). Substituting these relations
into the inequality (63), we conclude that

Zn ≤ σ r κu

{
4

√
s log(d/s)

n
+ 2

√
s log(d/s)

n

}
,

as claimed. Sincelog N(s, r, ǫ) ≥ s log(d − 2s), this event occurs with probability at least1 −
c1 exp(−c2 min{n, s log(d − s)}), as claimed.

G Proofs for Theorem 4

This appendix is devoted to the proofs of technical lemmas used in Theorem4.

G.1 Proof of Lemma7

For q ∈ (0, 1), let us define the set

Sq(Rq, r) := Bq(2Rq) ∩
{
θ ∈ Rd | ‖X̃θ‖2/

√
n ≤ r

}
.

We seek to bound the random variableZ(Rq, r) := supθ∈Sq(Rq ,r)
1
n |w̃T X̃θ|, which we do by a chain-

ing result—in particular, Lemma 3.2 in van de Geer [32]). Adopting the notation from this lemma, we
seek to apply it withǫ = δ/2, andK = 4. Suppose that‖Xθ‖2√

n
≤ r, and

√
nδ ≥ c1r (64a)

√
nδ ≥ c1

∫ r

δ
16

√
log N(t; Sq)dt = : J(r, δ). (64b)

whereN(t; Sq) is the covering number forSq in theℓ2-prediction norm (defined by‖Xθ‖/√n). As

long as‖ ew‖2
2

n ≤ 16, Lemma 3.2 guarantees that

P
[
Z(Rq, r) ≥ δ,

‖w̃‖2
2

n
≤ 16] ≤ c1 exp (−c2

nδ2

r2
).

By tail bounds onχ2 random variables (see AppendixI), we haveP[‖w̃‖2
2 ≥ 16n] ≤ c4 exp(−c5n).

Consequently, we conclude that

P
[
Z(Rq, r) ≥ δ] ≤ c1 exp (−c2

nδ2

r2
) + c4 exp(−c5n)
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For somec3 > 0, let us set

δ = c3 r κ̃c

q
2

√
Rq (

log d

n
)

1
2
− q

4 ,

and let us verify that the conditions (64a) and (64b) hold. Given our choice ofδ, we find that

δ

r

√
n = Ω(nq/4(log d)1/2−q/4),

and sinced, n → ∞, we see that condition (64a) holds. Turning to verification of the inequality (64b),

we first provide an upper bound forlog N(Sq, t). Settingγ =
eXθ√
n

and from the definition (31) of

absconvq(X/
√

n), we have

sup
θ∈Sq(Rq ,r)

1

n
|w̃T X̃θ| ≤ sup

γ∈absconvq(X/
√

n),‖γ‖2≤r

1√
n
|w̃T γ|.

We may apply the bound in Lemma4 to conclude thatlog N(ǫ; Sq) is upper bounded byc′ Rq

2
2−q

(
fκc
ǫ

) 2q
2−q log d.

Using this upper bound, we have

J(r, δ) :=

∫ r

δ/16

√
log N(Sq, t)dt ≤

∫ r

0

√
log N(Sq, t)dt

≤ c Rq

1
2−q κ̃c

q
2−q

√
log d

∫ r

0
t−q/(2−q)dt

= c′Rq

1
2−q κ̃c

q
2−q

√
log d r

1− q
2−q .

Using this upper bound, let us verify that the inequality (64b) holds as long asr = Ω(κ̃c

q
2
√

Rq ( log d
n )

1
2
− q

4 ),
as assumed in the statement of Lemma7. With our choice ofδ, we have

J√
n δ

≤
c′Rq

1
2−q κ̃c

q
2−q

√
log d

n r
1− q

2−q

c3 r κ̃c

q
2
√

Rq ( log d
n )

1
2
− q

4

=
c′Rq

1
2−q

− 1
2
− q

2 (2−q) κ̃c

q
2−q

− q
2

q
2−q

− q
2

( log d
n

) q
4
− q

2−q

(
1
2
− q

4

)

c3

=
c′

c3
,

so that condition (64b) will hold as long as we choosec3 > 0 large enough. Overall, we conclude that
P[Z(Rq, r) ≥ c3 r κ̃c

q
2
√

Rq ( log d
n )

1
2
− q

4 ] ≤ c1 exp(−Rq(log d)1−
q
2 n

q
2 ), which concludes the proof.

G.2 Proof of Lemma8

First, consider a fixed subsetS ⊂ {1, 2, . . . , d} of cardinality |S| = s. Applying the SVD to the
sub-matrixXS ∈ Rn×s, we haveXS = V DU , whereV ∈ Rn×s has orthonormal columns, and
DU ∈ Rs×s. By construction, for any∆S ∈ Rs, we have‖XS∆S‖2 = ‖DU∆S‖2. SinceV has
orthonormal columns, the vector̃wS = V T w ∈ Rs has i.i.d.N(0, σ2) entries. Consequently, for any

33



∆S such that‖XS∆S‖2√
n

≤ r, we have

∣∣∣
wT XS∆S

n

∣∣∣ =
∣∣∣
w̃T

S√
n

DU∆S√
n

∣∣∣

≤ ‖w̃S‖2√
n

‖DU∆S‖2√
n

≤ ‖w̃S‖2√
n

r.

Now the variateσ−2‖w̃S‖2
2 is χ2 with s degrees of freedom, so that by standardχ2 tail bounds (see

AppendixI), we have

P
[‖w̃S‖2

2

σ2s
≥ 1 + 4δ

]
≤ exp(−sδ), valid for all δ ≥ 1.

Settingδ = 20 log( d
2s) and noting thatlog( d

2s) ≥ log 2 by assumption, we have (after some algebra)

P

[‖w̃S‖2
2

n
≥ σ2s

n

(
81 log(d/s)

)]
≤ exp(−20s log(

d

2s
)).

We have thus shown that for each fixed subset, we have the bound

∣∣∣
wT XS∆S

n

∣∣∣ ≤ r

√
81σ2s log( d

2s)

n
,

with probability at least1 − exp(−20s log( d
2s)).

Since there are
(

d
2s

)
≤

(
de
2s)

2s subsets of sizes, applying a union bound yields that

P

[
sup

θ∈B0(2s),
‖Xθ‖2√

n
≤r

|w
T Xθ

n
| ≥ r

√
81σ2s log( d

2s )

n

]
≤ exp

(
− 20s log(

d

2s
) + 2s log

de

2s

)

≤ exp
(
− 10s log(

d

2s
)
)
,

as claimed.

H Large deviations for random objectives

In this appendix, we state a result on large deviations of theconstrained optimum of random objective
functions of the formf(v;X), wherev ∈ Rd is the optimization vector, andX is some random vector.
Of interest is the optimization problemsupρ(v)≤r, v∈S f(v;Xn), whereρ : Rd → R+ is some non-
negative and increasing constraint function, andS is a non-empty set. With this set-up, our goal is to
bound the probability of the event defined by

E : =
{
∃ v ∈ S such thatf(v;X) ≥ 2g(ρ(v)))

}
,

whereg : R → R is non-negative and strictly increasing.
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Lemma 9. Suppose thatg(r) ≥ µ for all r ≥ 0, and that there exists some constantc > 0 such that
for all r > 0, we have the tail bound

P
[

sup
v∈S, ρ(v)≤r

fn(v;Xn) ≥ g(r)] ≤ 2 exp(−c an g2(r)), (65)

for somean > 0. Then we have

P[En] ≤ 2 exp(−canµ2)

1 − exp(−canµ2)
. (66)

Proof. Our proof is based on a standard peeling technique (e.g., seevan de Geer [32] pp. 82). By
assumption, asv varies overS, we haveg(r) ∈ [µ,∞). Accordingly, form = 1, 2, . . ., defining the
sets

Sm : =
{
v ∈ S | 2m−1µ ≤ g(ρ(v)) ≤ 2mµ

}
,

we may conclude that if there existsv ∈ S such thatf(v,X) ≥ 2h(ρ(v)), then this must occur for
somem andv ∈ Sm. By union bound, we have

P[E ] ≤
∞∑

m=1

P
[
∃ v ∈ Sm such thatf(v,X) ≥ 2g(ρ(v))

]
.

If v ∈ Sm andf(v,X) ≥ 2g(ρ(v)), then by definition ofSm, we havef(v,X) ≥ 2 (2m−1)µ = 2mµ.
Since for anyv ∈ Sm, we haveg(ρ(v)) ≤ 2mµ, we combine these inequalities to obtain

P[E ] ≤
∞∑

m=1

P
[

sup
ρ(v)≤g−1(2mµ)

f(v,X) ≥ 2mµ
]

≤
∞∑

m=1

2 exp
(
− can [g(g−1(2mµ))]2

)

= 2

∞∑

m=1

exp
(
− can 22mµ2

)
,

from which the stated claim follows by upper bounding this geometric sum.

I Some tail bounds forχ2-variates

The following large-deviations bounds for centralizedχ2 are taken from Laurent and Massart [21].
Given a centralizedχ2-variateZ with m degrees of freedom, then for allx ≥ 0,

P
[
Z − m ≥ 2

√
mx + 2x

]
≤ exp(−x), and (67a)

P
[
Z − m ≤ −2

√
mx

]
≤ exp(−x). (67b)

The following consequence of this bound is useful: fort ≥ 1, we have

P
[Z − m

m
≥ 4t

]
≤ exp(−mt). (68)

Starting with the bound (67a), settingx = tm yields P
[

Z−m
m ≥ 2

√
t + 2t

]
≤ exp(−tm), Since

4t ≥ 2
√

t + 2t for t ≥ 1, we haveP[Z−m
m ≥ 4t] ≤ exp(−tm) for all t ≥ 1.
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