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Abstract: In this paper, we are concerned about optimal two-dimensional optical or-
thogonal codes with λ = 2. Some combinatorial constructions are presented and many
infinite families of optimal two-dimensional optical orthogonal codes with weight 4 and
λ = 2 are obtained. Especially, we shall see that in many cases an optimal two-
dimensional optical orthogonal code can not achieve the Johnson bound.
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1 Introduction

An optical orthogonal code is a family of sequences with good auto- and cross-correlation
properties. Its study has been motivated by an application in an optical code-division
multiple access (OCDMA) system. In a bursty traffic environment of a multiple access
local area network (LAN), asynchronous multiplexing schemes are more efficient than
synchronous schemes. OCDMA is such one asynchronous multiplexing scheme suitable
for high speed LANs. For more information, the interested reader may refer to [32, 40,
41,52,53].

In an OCDMA system different users share both time and frequency, and are dis-
tinguished by using a unique spreading sequence. Each user’s data is multiplied by its
spreading sequence, and then all the users are coupled into the shared channel. Optical
orthogonal codes can be taken as the spreading sequences used in an OCDMA system.

Let u, v, k and λ be positive integers. A two-dimensional (u × v, k, λ) optical or-
thogonal code (briefly 2-D (u × v, k, λ)-OOC), C, is a family of u × v (0, 1)-matrices
(called codewords) of Hamming weight k satisfying: for any matrix A = (aij)u×v ∈ C,
B = (bij)u×v ∈ C and any integer r:

u−1
∑

i=0

v−1
∑

j=0

aijbi,j+r ≤ λ,

where either A 6= B or r 6= 0, and the arithmetic j + r is reduced modulo v. Especially,
when u = 1, a two-dimensional (1 × v, k, λ) optical orthogonal code is said to be a
one-dimensional (v, k, λ)-optical orthogonal code, denoted by 1-D (v, k, λ)-OOC.

1-D OOC was first suggested in 1989 [17]. Since then much work has been done on 1-
D OOCs. The interested reader may refer to [1–3,7,8,10–16,18,21–23,36,37,44–47,59,63].
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One limitation in applying 1-D OOCs is that the length of the sequences increases rapidly
when the number of users or the weight of codes is increased, which means a large
bandwidth expansion is required. Thus the bandwidth utilization is reduced. And a
large code length causes the chip rate of the OCDMA system to exceed the maximum
chip rate currently attainable in practice.

1-D OOCs spread the input data bits only in the time domain. By spreading in both
time and wavelength domain, the chip rate can be reduced considerably. Technologies
such as wavelength-division-multiplexing (WDM) and dense-WDM have made it possible
to spread codes in both time and wavelength domain [61]. These codes are referred
to wavelength-time hopping codes, multiple-wavelength codes, two-dimensional optical
orthogonal codes, etc., which tend to require smaller code length and hence lower chip
rate. Here we always refer to these codes as two-dimensional optical orthogonal codes.

The number of codewords of a 2-D OOC is called the size of the 2-D OOC. From a
practical point of view, a code with a large size is required [53]. For fixed values of u, v,
k and λ, the largest possible size of a 2-D (u× v, k, λ)-OOC is denoted by Φ(u× v, k, λ).
A 2-D (u× v, k, λ)-OOC with Φ(u× v, k, λ) codewords is said to be optimal. Generally
speaking, it is difficult to determine the exact value of Φ(u × v, k, λ). Based on the
Johnson bound [31] for constant weight codes, the size of a 2-D (u × v, k, λ)-OOC is
upper bounded [61] by

Φ(u× v, k, λ) ≤ J(u× v, k, λ),

where

J(u× v, k, λ) = ⌊
u

k
⌊
uv − 1

k − 1
⌊
uv − 2

k − 2
⌊· · · ⌊

uv − λ

k − λ
⌋ · · ·⌋⌋⌋⌋.

In optical code-division multiple-access applications, performance analysis shows that
codes with λ ≤ 3 are the most desirable. As pointed out by [38], from a multiple-access
and synchronization point of view, the most desirable on-off signature sequences are
OOCs with λ = 1. However, these families of codes may suffer from low cardinality
in some applications. It was hinted that in [5] OOCs with λ = 2 could, under certain
conditions, have better performance than that of OOCs with λ = 1. In this paper, we
are concerned about OPTIMAL 2-D (u× v, k, λ)-OOCs with λ = 2 and k = 4.

We will neither try to explore the applications of 2-D OOCs, nor try to provide the
performance analysis of a code-division multiple-access system which uses 2-D OOCs.
Mathematically, combinatorial design theory, projective geometry and finite field theory
are three main tools to investigate the constructions for 2-D OOCs. In this paper, we
focus our attention on the combinatorial structures of 2-D OOCs. Many terminologies
and results related to combinatorial design theory will be used. To ensure smooth read-
ing of the paper, most of the proofs related to design theory have been moved to the
Appendices. For more information on design theory, the interested reader may refer
to [6].

1.1 Literature review

There is a considerable literature on 2-D OOC constructions. Yang and Kwong [61]
used a 1-D OOC to achieve spreading in the wavelength and time domains to construct
a 2-D OOC. The construction by Lee and Seo [34] spreads in the wavelength and the
time domain by using two different 1-D OOCs. Sun et al. [56] constructed a 2-D OOC
by employing a frequency hopping code and a 1-D OOC to spread in the wavelength
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domain and the time axis, respectively. The construction by Alderson and Mellinger [4]
are based on certain point sets in finite projective spaces of dimension k over GF(q).
Omrani et al. [49] constructed some 2-D OOCs using polynomials over finite fields and
rational functions. Cao and Wei [9] first gave a combinatorial description of 2-D OOCs.
Wang et al. [57] discussed the existence of optimal 2-D OOCs with weight 3 and index
λ = 1 using combinatorial design theory.

For more information on 2-D OOC constructions, the interested reader may refer to
[4,9,24,33–35,39,49,51,54–58,60–62] and the references therein. However, in this paper,
we only focus our attention on OPTIMAL 2-D OOC constructions. In applications,
optimal OOCs facilitate the largest possible number of asynchronous users to transmit
information effectively and reliably. A quick review of the majority of constructions for
optimal 2-D OOCs in the literature is presented in Table I.

Table I
Optimal 2-D OOCs in the literature

Parameters Conditions Code size Reference

(u× v, 3, 1) u, v ≥ 1 and v ≡ 1 (mod 2) if u ≡ 5 (mod 6) and v = 1 [57]
J(u× v, 3, 1)− 1;

otherwise, J(u× v, 3, 1)

(u× u, k, 1) u ≡ 1 (mod k(k − 1)) and u a prime J(u× u, k, 1) [61]

(pn × p, p, 1) p a prime and n ≥ 1 J(pn × p, p, 1) [9]

(u× v, q, 1) uv = qn − 1, n ≥ 1, and q a prime power J(u× v, q, 1) [4]

(u× v, q + 1, 1) uv = (qn+1 − 1)/(q − 1), J(u× v, q + 1, 1) [4]
q a prime power, n ≥ 1,
either n ≡ 0 (mod 2),

or n ≡ 1 (mod 2) and gcd(q + 1, v) = 1

(u× v, 4, 2) uv = 2n − 1 and n ≥ 3 J(u× v, 4, 2) [4]

(u× v, 6, 2) uv = (4n − 1)/3, n ≥ 3, J(u× v, 6, 2) [4]
either n ≡ 0, 1 (mod 3),

or n ≡ 2 (mod 3) and gcd(21, v) = 1

(u× v, q + 1, 2) uv = qn + 1, q a prime power, J(u× v, q + 1, 2) [4]
n ≥ 1, either n ≡ 0 (mod 2),

or n ≡ 1 (mod 2) and gcd(q + 1, v) = 1

1.2 Outline of the paper

The rest of this paper is structured as follows. In Section 2 based on the relationship
between 1-D OOCs and 2-D OOCs, many optimal 2-D (u × v, 4, 2)-OOCs are derived.
Cao and Wei [9] showed that an optimal 2-D (u × v, k, t − 1)-OOC is equivalent to an
optimal strictly v-cyclic t-(u × v, k, 1)-packing, provided that t ≤ k holds. We restate
this combinatorial equivalence in Section 3. In this section perfect 2-D OOCs are defined
as a special case of optimal 2-D OOCs. We point out in Remark 3.5 that the problem
for the existence of perfect 2-D (u × v, 4, 2)-OOCs can be reduced to the problem for
the existence of perfect 2-D (w × v, 4, 2)-OOCs, w ∈ {1, 2}. When w = 1, perfect 2-D
(1× v, 4, 2)-OOCs have been widely investigated as a kind of combinatorial object called
strictly cyclic Steiner quadruple system. Thus we pay our attention to the case of w = 2
in Section 4. We give a construction for perfect 2-D (2 × v, 4, 2)-OOCs. In Section
5 we improve the upper bound for optimal 2-D (u × v, 4, 2)-OOCs (not only focus on
perfect), which is tighter than the well-known Johnson bound in many cases. In Sections
6 and 7 some auxiliary designs are introduced to establish recursive constructions for
2-D (u × v, k, 2)-OOCs with general k. Using these recursive constructions and some
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direct constructions, we obtain many infinite families of optimal 2-D (u× v, 4, 2)-OOCs
in Sections 8 and 9. Finally, Section 10 gives a brief conclusion.

Our main results are summarized in Table II (in Section 9), Tables III and IV (in
Section 10).

2 2-D OOCs from 1-D OOCs

2-D OOCs are very closely related to 1-D OOCs. A 2-D (1 × v, k, λ)-OOC is just a 1-D
(v, k, λ)-OOC. A 1-D (v, k, λ)-OOC with Φ(1 × v, k, λ) codewords is said to be optimal.
In this section we shall derive some optimal 2-D OOCs from the known results on optimal
1-D OOCs. First we quote the following result from Alderson and Mellinger [4].

Theorem 2.1 ( [4]) Suppose that there exists an optimal 2-D (u × v, k, λ)-OOC with
Φ(u× v, k, λ) codewords. Then for any integer factorization v = v1v2, there exists a 2-D
(uv1 × v2, k, λ)-OOC with v1Φ(u× v, k, λ) codewords.

As a corollary of Theorem 2.1, we have

Corollary 2.2 If there is an optimal 1-D (uv, k, λ)-OOC with Φ(1×uv, k, λ) codewords,
then a 2-D (u× v, k, λ)-OOC with uΦ(1× uv, k, λ) codewords exists.

Therefore by Corollary 2.2, if uΦ(1×uv, k, λ) is just equal to Φ(u× v, k, λ), then the
resulting 2-D (u× v, k, λ)-OOC is optimal. In the following we shall give some analysis
on uΦ(1× uv, k, λ) = Φ(u× v, k, λ). According to the Johnson bound, Φ(u× v, k, λ) ≤
J(u× v, k, λ) and Φ(1× uv, k, λ) ≤ J(1× uv, k, λ). Assume that

J1(1× uv, k, λ) =
1

k
⌊
uv − 1

k − 1
⌊
uv − 2

k − 2
⌊· · · ⌊

uv − λ

k − λ
⌋ · · ·⌋⌋⌋.

We have the following lemma.

Lemma 2.3 J(u × v, k, λ) = uJ(1 × uv, k, λ) if and only if J1(1 × uv, k, λ) − J(1 ×
uv, k, λ) < 1/u.

Proof Let x = ⌊uv−1
k−1 ⌊

uv−2
k−2 ⌊· · · ⌊

uv−λ
k−λ ⌋ · · ·⌋⌋⌋ and x = ak + b, where 0 ≤ b < k. Then

J(u× v, k, λ) = ⌊ukx⌋ and J(1× uv, k, λ) = ⌊ 1kx⌋. It is easy to verify that

J(u× v, k, λ) = uJ(1× uv, k, λ) ⇐⇒ ⌊ukx⌋ = u⌊ 1kx⌋ ⇐⇒ ua+ ⌊ubk ⌋ = ua

⇐⇒ ⌊ubk ⌋ = 0 ⇐⇒ ub < k

⇐⇒ b
k < 1

u .

Note that J1(1× uv, k, λ) − J(1× uv, k, λ) = b
k . ✷

Theorem 2.4 If there exists an optimal 1-D (uv, k, λ)-OOC with J(1 × uv, k, λ) code-
words and J1(1 × uv, k, λ) − J(1 × uv, k, λ) < 1/u, then there exists an optimal 2-D
(u× v, k, λ)-OOC with J(u× v, k, λ) codewords.

Proof By Corollary 2.2, if there is an optimal 1-D (uv, k, λ)-OOC with J(1× uv, k, λ)
codewords, then there is a 2-D (u× v, k, λ)-OOC with uJ(1×uv, k, λ) codewords. Since
J1(1× uv, k, λ)− J(1× uv, k, λ) < 1/u, by Lemma 2.3, uJ(1× uv, k, λ) = J(u× v, k, λ).
Thus the resulting 2-D OOC is optimal. ✷
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Corollary 2.5 If there exists an optimal 1-D (n, 4, 2)-OOC with J(1×n, 4, 2) codewords,
then

(1) for any integer n ≡ 1, 3 (mod 6) or n ≡ 2, 10 (mod 24), and for any integer factoriza-
tion n = uv, there exists an optimal 2-D (u× v, 4, 2)-OOC with J(u× v, 4, 2) codewords;

(2) for any integer n ≡ 4, 20 (mod 24) and n = 2n1, there exists an optimal 2-D (2 ×
n1, 4, 2)-OOC with J(2× n1, 4, 2) codewords.

Proof When n ≡ 1, 3 (mod 6) or n ≡ 2, 10 (mod 24), it is readily checked that
J1(1 × n, 4, 2) − J(1 × n, 4, 2) = 0. When n ≡ 4, 20 (mod 24), it is readily checked that
J1(1× n, 4, 2) − J(1× n, 4, 2) = 1/4. The assertion then follows from Theorem 2.4. ✷

As a special topic, 1-D (n, 4, 2)-OOCs have been extensively studied, for example
Alderson and Mellinger [3], Chu and Colbourn [14,15], Feng, Chang and Ji [18,19]. We
only quote partial known results on optimal 1-D (n, 4, 2)-OOCs, which are essential for
our work.

Lemma 2.6

(1) ( [19]) There exists an optimal 1-D (uv, 4, 2)-OOC with J(1× uv, 4, 2) codewords for
any u ∈ {4n − 1 : integer n ≥ 1} ∪ {1, 27, 33, 39, 51, 87, 123, 183} and v an integer
taken from the set {p ≡ 7 (mod 12) : p is a prime} ∪ {2n − 1 : odd integer n ≥ 1} ∪ {25,
37, 61, 73, 109, 157, 181, 229, 277}, or a product of such integers.

(2) ( [18]) Let n be a positive integer. If n = pr11 pr22 · · · prss , where pi = 13 or pi is a
prime, pi ≡ 5 (mod 12) and pi < 1500000, ri ≥ 1 for 1 ≤ i ≤ s, then there is an optimal
1-D (4n, 4, 2)-OOC with J(1× 4n, 4, 2) codewords.

(3) ( [18]) There exists an optimal 1-D (n, 4, 2)-OOC with J(1×n, 4, 2) codewords for all
7 ≤ n ≤ 100 with the definite exceptions of n ∈ {9, 12, 13, 24, 48, 72, 96} and possible
exceptions of n ∈ {45, 47, 53, 55, 59, 60, 65, 66, 69, 71, 76, 77, 81, 83, 84, 85, 89, 91,
92, 95, 97, 99}.

(4) ( [14,18]) There exists an optimal 1-D (n, 4, 2)-OOC with J(1×n, 4, 2)−1 codewords
for n ∈ {9, 12, 13, 24, 48, 72, 96}.

Theorem 2.7

(1) Let m = uv, where u ∈ {4n − 1 : n ≥ 1} ∪ {1, 27, 33, 39, 51, 87, 123, 183} and v is
an integer taken from the set {p ≡ 7 (mod 12) : p is a prime}∪{2n− 1 : odd integer n ≥
1} ∪ {25, 37, 61, 73, 109, 157, 181, 229, 277}, or a product of such integers. Then for
any integer factorization m = n1n2, there exists an optimal 2-D (n1×n2, 4, 2)-OOC with
J(n1 × n2, 4, 2) codewords.

(2) Let n ∈ {10, 15, 21, 25, 26, 27, 33, 34, 39, 49, 50, 51, 57, 58, 63, 74, 75, 82, 87, 93, 98}. Then
for any integer factorization n = n1n2, there is an optimal 2-D (n1 ×n2, 4, 2)-OOC with
J(n1 × n2, 4, 2) codewords.

(3) Let n be a positive integer. If n = pr11 pr22 · · · prss , where pi = 13 or pi is a prime,
pi ≡ 5 (mod 12) and pi < 1500000, ri ≥ 1 for 1 ≤ i ≤ s, then there is an optimal 2-D
(2× 2n, 4, 2)-OOC with J(2× 2n, 4, 2) codewords.

(4) Let 2n ∈ {20, 28, 44, 52, 68, 100}. Then there is an optimal 2-D (2×n, 4, 2)-OOC with
J(2× n, 4, 2) codewords.
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Proof It is readily checked that the number n described in (1) is congruent to 1 or 3
modulo 6; the number n described in (2) is congruent to 1, 3 modulo 6, or 2, 10 modulo
24; the number 4n described in (3) and the number 2n described in (4) are congruent to
4 or 20 modulo 24. Combining the results of Lemma 2.6, the assertion then follows from
Corollary 2.5. ✷

3 Combinatorial descriptions

Two-dimensional optical orthogonal codes are closely related to some combinatorial con-
figurations called strictly v-cyclic packings. Throughout this paper we always assume
that Iu = {0, 1, . . . , u− 1} and denote by Zv the additive group of integers modulo v.

3.1 Combinatorial equivalence

A t-(v, k, 1) packing is a pair (X,B), where X is a set of v points and B is a set of subsets
of X (called blocks), each of cardinality k, such that every t-subset of X occurs in at
most one block. The set of all uncovered t-subsets by B is said to be the leave of the
packing.

An automorphism α of a packing (X,B) is a permutation on X such that

{{α(x) : x ∈ B} : B ∈ B} = B.

In other words, a block of the packing is mapped to a block under an automorphism. A
t-(u × v, k, 1) packing is said to be v-cyclic if it admits an automorphism π consisting
of u cycles of length v. Without loss of generality identify X with Iu × Zv and the
automorphism π can be taken as (i, x) 7−→ (i, x + 1) (mod (−, v)), i ∈ Iu and x ∈ Zv.
Then all blocks of this packing can be partitioned into some orbits under π. Choose any
fixed block from each orbit and then call it a base block.

All automorphisms of a packing form a group, called the full automorphism group of
the packing. Any subgroup of the full automorphism group is called an automorphism
group of the packing. Let G be an automorphism group of a packing. For any block B
of the packing, the subgroup

{π ∈ G : Bπ = B}

is called the stabilizer of B in G. If the stabilizer of each block of a v-cyclic t-(u× v, k, 1)
packing is trivial in Zv, i.e., for each block B, {δ ∈ Zv : B + δ = B} = {0}, where
B + δ = {(i, x + δ) : (i, x) ∈ B}, then the packing is called strictly v-cyclic. When
u = 1, a (strictly) v-cyclic t-(1× v, k, 1) packing is often simply referred to as a (strictly)
cyclic t-(v, k, 1) packing. When v = 1, a (strictly) 1-cyclic t-(u × 1, k, 1) packing is just
a t-(u, k, 1) packing.

A strictly v-cyclic t-(u × v, k, 1) packing is called optimal if it contains the largest
possible block number. The main purpose of this paper is to construct optimal 2-D
OOCs. Cao and Wei [9] established the equivalence between optimal 2-D OOCs and
optimal strictly v-cyclic packings. Suppose (X,B) is a strictly v-cyclic t-(u × v, k, 1)
packing. Denote the family of base blocks of this packing by F . For each base block B
of F , construct an u×v (0, 1)-matrix MB whose rows are indexed by Iu and columns are
indexed by Zv, such that its (i, j) cell equals 1 if and only if (i, j) ∈ B. Since any two
blocks intersect at most t− 1 points and all the blocks can be generated by developing
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cyclically the base blocks, {MB : B ∈ F} forms a 2-D (u × v, k, t − 1)-OOC with |F|
codewords. Conversely, given a 2-D (u× v, k, t− 1)-OOC, C, for each u× v (0, 1)-matrix
M ∈ C whose rows are indexed by Iu and columns are indexed by Zv, construct a k-
subset BM of Iu × Zv such that (i, j) ∈ BM if and only if M ’s (i, j) cell equals 1. Then
{BM : M ∈ C} is the family of base blocks of a strictly v-cyclic t-(u× v, k, 1) packing.

Theorem 3.1 ( [9]) An optimal 2-D (u × v, k, t − 1)-OOC is equivalent to an optimal
strictly v-cyclic t-(u× v, k, 1)-packing, provided that t ≤ k holds.

Since a strictly 1-cyclic 3-(u × 1, 4, 1) packing is just a 3-(u, 4, 1) packing, and the
existence of an optimal 3-(u, 4, 1) packing has been investigated by Ji [29], we can have
the following result.

Theorem 3.2 ( [29]) There exists an optimal 2-D (u × 1, 4, 2)-OOC (i.e., an optimal
3-(u, 4, 1) packing) with φ codewords, where

φ =







⌊u4 ⌊
u−1
3 ⌊u−2

2 ⌋⌋⌋ u 6≡ 0 (mod 6),

⌊u4 (⌊
u−1
3 ⌊u−2

2 ⌋⌋ − 1)⌋ u ≡ 0 (mod 6),

with the exception of 21 undecided values u = 6r + 5, r ∈ {m : m is odd, 3 ≤ m ≤ 35,
m 6= 17, 21}∪ {45, 47, 75, 77, 79, 159}.

Example 3.3 There is a trivial optimal 2-D (1 × 6, 4, 2)-OOC, whose number of code-
words is ⌊14⌊

5
3⌊

4
2⌋⌋⌋ = 0. By Theorem 3.2, there is an optimal 2-D (6× 1, 4, 2)-OOC with

3 codewords. An optimal 2-D (2× 3, 4, 2)-OOC has only J(2× 3, 4, 2) = 1 codeword
(

1 1 0
1 1 0

)

,

whose corresponding base block of the optimal strictly 3-cyclic 3-(2 × 3, 4, 1)-packing is
{(0, 0), (1, 0), (0, 1), (1, 1)}. A 2-D (3 × 2, 4, 2)-OOC can not contain J(3 × 2, 4, 2) = 2
codewords. Otherwise, there were a 2-D (6× 1, 4, 2)-OOC with 4 codewords by Theorem
2.1, which would be contradict to Theorem 3.2. Thus an optimal 2-D (3 × 2, 4, 2)-OOC
has only one codeword





1 1
1 0
1 0



 ,

whose corresponding base block of the optimal strictly 2-cyclic 3-(3 × 2, 4, 1)-packing is
{(0, 0), (1, 0), (2, 0), (0, 1)}.

3.2 Perfect 2-D OOCs

Let K be a set of positive integers. A t-wise balanced design (briefly t-design) is a pair
(X,B), where X is a set of v points and B is a set of subsets of X (called blocks), each
of cardinality from K, such that every t-subset of X is contained in a unique block.
Such a design is denoted by S(t,K, v). If K = {k}, we write S(t,K, v) by S(t, k, v). An
S(2, 3, v) is called a Steiner triple system and denoted by STS(v). An S(3, 4, v) is called
a Steiner quadruple system and denoted by SQS(v).
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Evidently an S(t, k, v) is a special t-(v, k, 1)-packing, whose leave is an empty set.
Thus one can similarly define (strictly) v-cyclic S(t, k, u×v) as we have done for (strictly)
v-cyclic t-(u× v, k, 1)-packing. A strictly v-cyclic SQS(1× v) is often simply written as
an sSQS(v) (cf. [18]).

If a 2-D (u × v, k, t − 1)-OOC is equivalent to a strictly v-cyclic S(t, k, u × v), then
the OOC is said to be perfect. It is easy to verify that a perfect OOC is an optimal OOC
that attains the Johnson bound without using the brackets (cf. [48]).

Lemma 3.4 The necessary conditions for the existence of a strictly v-cyclic SQS(u×v)
(or equivalently, a perfect 2-D (u× v, 4, 2)-OOC) are uv ≡ 2, 4 (mod 6), u(uv − 1)(uv −
2) ≡ 0 (mod 24). Specifically, the necessary conditions can be classified as follows:

(1) u ≡ 1, 5 (mod 12) and v ≡ 2, 10 (mod 24);

(2) u ≡ 7, 11 (mod 12) and v ≡ 14, 22 (mod 24);

(3) u ≡ 2, 4 (mod 6) and v ≡ 1, 5 (mod 6);

(4) u ≡ 4, 8 (mod 12) and v ≡ 2, 4 (mod 6).

Proof It is well known that an SQS(uv) exists if and only if uv ≡ 2, 4 (mod 6) [25].
Count the number of base blocks of a strictly v-cyclic SQS(u × v). It follows that
u(uv − 1)(uv − 2) ≡ 0 (mod 24). ✷

A natural question from Lemma 3.4 is whether the necessary conditions for the
existence of a perfect 2-D (u× v, 4, 2)-OOC are sufficient. In Section 5, by Corollary 5.5,
we show that for u ≡ 4, 8 (mod 12) and v ≡ 2, 4 (mod 6), there is no perfect 2-D
(u×v, 4, 2)-OOC. In Section 9, by Proposition 9.2, if there exists a perfect 2-D (2×v, 4, 2)-
OOC with v ≡ 1, 5 (mod 6), then a perfect 2-D (u× v, 4, 2)-OOC exists for any u ≡ 2, 4
(mod 6). When u and v satisfy Conditions (1) and (2) in Lemma 3.4, uv ≡ 2, 10 (mod 24).
Then by Corollary 2.5(1), if there exists an optimal 1-D (uv, 4, 2)-OOC with J(1×uv, 4, 2)
codewords, a perfect 2-D (u × v, 4, 2)-OOC exists. Note that when uv ≡ 2, 10 (mod
24), an optimal 1-D (uv, 4, 2)-OOC with J(1 × uv, 4, 2) codewords is just a perfect 2-D
(1× uv, 4, 2)-OOC. Thus

Remark 3.5 The existence problem of perfect 2-D (u× v, 4, 2)-OOCs can be reduced to
the existence problems of perfect 2-D (1×v, 4, 2)-OOCs and perfect 2-D (2×v, 4, 2)-OOCs.

4 A construction for perfect 2-D (2× v, 4, 2)-OOCs

According to Remark 3.5, it is important to consider the existences of perfect 2-D (1 ×
v, 4, 2)-OOCs and perfect 2-D (2 × v, 4, 2)-OOCs. A perfect 2-D (1 × v, 4, 2)-OOC is
equivalent to an sSQS(v). Much work has been done on sSQSs in the literature. The
interested reader may refer to [18] and the references therein. In this section, we shall
present a construction for perfect 2-D (2× v, 4, 2)-OOCs.

The idea of this construction is originally from Hartman [27]. In 1980 Hartman [27]
gave a construction for an SQS(2p), which can be obtained from an SQS(p + 1) with
a cyclic derived Steiner triple system, where p ≡ 1 (mod 6) is a prime. Here, we shall
generalize Hartman’s method to obtain a construction for strictly p-cyclic SQS(2× p)s.
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The existence of a strictly p-cyclic SQS(2 × p) implies the existence of a perfect 2-D
(2× p, 4, 2)-OOC.

Our construction are based on the concept of rotational SQSs. A rotational SQS(n)
is an SQS(n) with an automorphism consisting of one fixed point and a cycle of length
n− 1. Such a design is denoted by RoSQS(n).

Assume that (X,B) is an RoSQS(n). We can identify X with Zn−1 ∪ {∞}, and
let the permutation α fixing ∞ and mapping i to i + 1 (mod n − 1), i ∈ Zn−1, be
an automorphism of the RoSQS. Let G be a cyclic group generated by α under the
compositions of permutations. Then all blocks of the RoSQS can be partitioned into
some orbits under G. Choose any fixed block from each orbit and then call it a base
block.

Example 4.1 An RoSQS(8) (X,B) is constructed on X = Z7 ∪ {∞}. All blocks of B
are listed below:

{i, i+ 1, i + 2, i+ 5}, {i, i + 1, i+ 3,∞}, 0 ≤ i ≤ 6.

Obviously, all blocks of B can be obtained by developing the two base blocks {0, 1, 2, 5},
{0, 1, 3,∞} by +1 modulo 7, where ∞+ 1 = ∞.

Construction 4.2 Let p ≡ 1 (mod 6) be a prime. If there exists an RoSQS(p + 1),
then there exists a strictly p-cyclic SQS(2× p).

Proof Here we only exhibit the algorithm in Figure 1. The detailed proof of this
construction has been moved to Appendix I. ✷

Step 1: Start from an RoSQS(p+ 1), which is constructed on Zp ∪ {∞}. Denote the set of base
blocks of this design by B1 ∪ B2, where B1 and B2 generate all the blocks containing and not
containing ∞, respectively.
Step 2: We write the element (i, x) of I2 × Zp as xi for short. Let

A1 = {{x0, y0, z0, u0} : {x, y, z, u} ∈ B2},

A2 = {{01, x0, y0, z0} : {∞, x, y, z} ∈ B1},

A3 = {{x0, y0, (2r − 1)(y − x)1, 2r(y − x)1} :

{∞, x, y} ⊆ B ∈ B1, 1 ≤ r ≤ (p− 1)/2}.

Step 3: Define a mapping τ from I2 × Zp to I2 × Zp : xi 7−→ (−x)1−i. For j = 1, 2,

A′
j = {{τ (a) : a ∈ A} : A ∈ Aj}.

Step 4: Take
A = A1 ∪A′

1 ∪ A2 ∪A′
2 ∪A3.

Then A is the set of base blocks of the required strictly p-cyclic SQS(2× p), which is constructed
on I2 × Zp.

Figure 1: Algorithm to construct a strictly p-cyclic SQS(2× p)

The following example illustrates the algorithm presented in Figure 1.

Example 4.3 In this example we shall show how to construct a strictly 7-cyclic SQS(2×
7) from an RoSQS(8). It is equivalent to a perfect 2-D (2 × 7, 4, 2)-OOC by Theorem
3.1.
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• Step 1: Start from an RoSQS(8), which is given by Example 4.1. Take

B1 = {{0, 1, 3,∞}}, B2 = {{0, 1, 2, 5}}.

• Step 2: Construct the required strictly 7-cyclic SQS(2× 7) on I2 × Z7. Let

A1 = {{00, 10, 20, 50}}, A2 = {{01, 00, 10, 30}},

A3 = {{00, 10, 11, 21} ∪ {00, 10, 31, 41} ∪ {00, 10, 51, 61}

∪{00, 30, 31, 61} ∪ {00, 30, 21, 51} ∪ {00, 30, 11, 41}

∪{10, 30, 21, 41} ∪ {10, 30, 61, 11} ∪ {10, 30, 31, 51}.

• Step 3: Under the action of the mapping τ : xi 7−→ (−x)1−i, we have

A′
1 = {{01, 61, 51, 21}}, A′

2 = {{00, 01, 61, 41}}.

• Step 4: Let A = A1 ∪ A′
1 ∪ A2 ∪ A′

2 ∪ A3. Then |A| = 13 and A is the set of base
blocks of the required strictly 7-cyclic SQS(2× 7).

By Theorem 3.1, a strictly p-cyclic SQS(2 × p) is equivalent to a perfect 2-D (2 ×
p, 4, 2)-OOC. Thus by Construction 4.2, for obtaining some perfect 2-D (2×p, 4, 2)-OOCs,
we need some results on RoSQSs.

Theorem 4.4 ( [19]) There exists an RoSQS(uv+1) for any u ∈ {4n − 1 : integer n ≥
1} ∪ {1, 27, 33, 39, 51, 87, 123, 183} and v is an integer taken from the set {p ≡
7 (mod 12) : p is a prime} ∪ {2n − 1 : odd integer n ≥ 1} ∪ {25, 37, 61, 73, 109, 157,
181, 229, 277}, or a product of such integers.

Combining the results of Theorem 3.1, Construction 4.2 and Theorem 4.4, we have

Theorem 4.5 There exist a strictly p-cyclic SQS(2× p) and a perfect 2-D (2× p, 4, 2)-
OOC for any prime p ≡ 7 (mod 12) or p ∈ {37, 61, 73, 109, 157, 181, 229, 277}.

5 Tighter upper bound for 2-D (u× v, 4, 2)-OOCs

In most cases an optimal 2-D (u×v, 4, 2)-OOC is not a perfect 2-D (u×v, 4, 2)-OOC. Thus
the determination of the largest possible size Φ(u× v, 4, 2) of a optimal 2-D (u× v, 4, 2)-
OOC is of interest. Recall that in Section 1, we mention that Φ(u×v, 4, 2) ≤ J(u×v, 4, 2),
where J(u×v, 4, 2) = ⌊u4 ⌊

uv−1
3 ⌊uv−2

2 ⌋⌋⌋ is the famous Johnson bound. Here we shall give
a tighter upper bound for 2-D (u× v, 4, 2)-OOCs than the Johnson bound.

Lemma 5.1 Let uv ≡ 0 (mod 6). Then Φ(u× v, 4, 2) ≤ ⌊u4 (⌊
uv−1

3 ⌊uv−2
2 ⌋⌋ − 1)⌋.

Proof By Theorem 2.1, an optimal 2-D (u× v, 4, 2)-OOC with Φ(u× v, 4, 2) codewords
implies a 2-D (uv × 1, 4, 2)-OOC with vΦ(u × v, 4, 2) codewords. Since a 2-D (uv ×
1, 4, 2)-OOC is equivalent to a strictly 1-cyclic 3-(uv × 1, 4, 1)-packing, by Theorem 3.2,
when uv ≡ 0 (mod 6), it has at most ⌊uv4 (⌊uv−1

3 ⌊uv−2
2 ⌋⌋ − 1)⌋ blocks. Thus we have

vΦ(u × v, 4, 2) ≤ ⌊uv4 (⌊uv−1
3 ⌊uv−2

2 ⌋⌋ − 1)⌋. It is readily checked that Φ(u × v, 4, 2) ≤
⌊ 1v ⌊

uv
4 (⌊uv−1

3 ⌊uv−2
2 ⌋⌋ − 1)⌋⌋ = ⌊ u

24 (u
2v2 − 3uv − 6)⌋ = ⌊u4 (⌊

uv−1
3 ⌊uv−2

2 ⌋⌋ − 1)⌋. ✷
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The following two lemmas shows that in some cases of uv ≡ 0 (mod 6), the bound
for Φ(u× v, 4, 2) in Lemma 5.1 is not tight enough. Their proofs are lengthy. To ensure
smooth reading of the paper, their proofs have been moved to Appendix II.

Lemma 5.2 Let u ≡ 0 (mod 12) and v ≡ 2, 4 (mod 6). Then Φ(u × v, 4, 2) ≤
⌊u4 (⌊

uv−1
3 ⌊uv−2

2 ⌋⌋ − 1)⌋ − 1.

Lemma 5.3 Let uv ≡ 0 (mod 12) and v ≡ 0 (mod 6). Then Φ(u× v, 4, 2) ≤ ⌊u4 (⌊
uv−1

3
⌊uv−2

2 ⌋⌋ − 2)⌋.

Lemma 5.4 Let uv ≡ 4, 8 (mod 12) and v ≡ 0 (mod 2). Then Φ(u × v, 4, 2) ≤
⌊u4 (⌊

uv−1
3 ⌊uv−2

2 ⌋⌋ − 1)⌋.

Proof For each a ∈ Iu and each 0 ≤ i < v/2, consider the number n of the base blocks
containing the two points (a, i), (a, v/2 + i) in a strictly v-cyclic 3-(u × v, 4, 1)-packing.
Since each 3-subset of Iu×Zv occurs in at most one block and each base block containing
the two points (a, i), (a, v/2 + i) generates exactly two different blocks containing the
same two points, the number n is at most ⌊(uv − 2)/4⌋ = (uv − 4)/4. Thus there are at
least two 3-subsets of the form {(a, i), (a, v/2+i), (∗, ∗)} in the leave. Note that the above
conclusion holds for each a ∈ Iu and each 0 ≤ i < v/2. It follows that there are at least uv
3-subsets in the leave. It implies that Φ(u× v, 4, 2) ≤ ⌊(

(uv
3

)

− uv)/(4v)⌋ = ⌊ 1
24u(u

2v2 −
3uv − 4)⌋. It is readily checked that ⌊u4 (⌊

uv−1
3 ⌊uv−2

2 ⌋⌋ − 1)⌋ = ⌊ 1
24u(u

2v2 − 3uv − 4)⌋.
This completes the proof. ✷

Corollary 5.5 For any u ≡ 4, 8 (mod 12) and v ≡ 2, 4 (mod 6), there is no perfect 2-D
(u× v, 4, 2)-OOC.

Proof If there were a perfect 2-D (u× v, 4, 2)-OOC for u ≡ 4, 8 (mod 12) and v ≡ 2, 4
(mod 6), then it should have u(uv−1)(uv−2)/24 codewords. By Lemma 5.4, the largest
possible size of the perfect 2-D (u × v, 4, 2)-OOC should be u(uv + 1)(uv − 4)/24. A
contradiction occurs. ✷

Lemma 5.6 Let u ≡ 7, 11 (mod 12). Then Φ(u× 2, 4, 2) ≤ ⌊u4 ⌊
2u−1
3 ⌊2u−2

2 ⌋⌋⌋ − 1.

Proof It is known that Φ(u× 2, 4, 2) ≤ J(u× 2, 4, 2) = ⌊u4 ⌊
2u−1
3 ⌊2u−2

2 ⌋⌋⌋. Suppose that
Φ(u× 2, 4, 2) = J(u × 2, 4, 2). Then there were a strictly 2-cyclic 3-(u × 2, 4, 1)-packing
with J(u × 2, 4, 2) base blocks. Count the number of 3-subsets in the leave L of the
strictly 2-cyclic 3-(u× 2, 4, 1)-packing. It is

(

2u
3

)

− J(u× 2, 4, 2) · 2 · 4 = 4. Each 3-subset
in the leave is of the form {(a, i), (b, j), (c, k)} or {(a, i), (b, j), (a, i+1)}, where a, b, c are
distinct elements in Iu, and i, j, k ∈ Z2.

Assume that {(a, i), (b, j), (x, k)} is a 3-subset in the leave, where a, b, x ∈ Iu, a 6= b
and i, j, k ∈ Z2. Consider the number n of the blocks containing the two points (a, i),
(b, j). Since each 3-subset of Iu×Z2 occurs in at most one block, the number n is at most
⌊(2u−3)/2⌋ = (2u−4)/2. Thus there must be another 3-subset {(a, i), (b, j), (y, l)} in the
leave, where (y, l) 6= (x, k). Due to |L| = 4, we have L = {{(a, i), (b, j), (x, k)}, {(a, i +
1), (b, j + 1), (x, k + 1)}, {(a, i), (b, j), (y, l)}, {(a, i + 1), (b, j + 1), (y, l + 1)}}.

If x 6= a and x 6= b, since each 3-subset of Iu × Z2 occurs in at most one block, the
number of blocks containing the two points (a, i), (x, k) is exactly (2u − 3)/2, which is
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not an integer. A contradiction. If x = a, then (x, k) = (a, i + 1) and there are exactly
(2u−4)/4 base blocks containing the points (a, i), (x, k). If x = b, then (x, k) = (b, j+1)
and there are also exactly (2u− 4)/4 base blocks containing the points (b, j), (x, k). The
number (2u−4)/4 is not an integer. A contradiction. Hence |L| 6= 4 and Φ(u×2, 4, 2) ≤
J(u× 2, 4, 2) − 1. ✷

Combine the results of Lemmas 5.1-5.6. Let A = {(u, v) : u ≡ 0 (mod 12), v ≡ 2, 4
(mod 6)} and B = {(u, v) : uv ≡ 0 (mod 12), v ≡ 0 (mod 6)}. In the rest of this paper,
we always assume that

J∗(u×v) =











































⌊u4 ⌊
2u−1
3 ⌊2u−2

2 ⌋⌋⌋ − 1, if u ≡ 7, 11 (mod 12) and v = 2;

⌊u4 (⌊
uv−1

3 ⌊uv−2
2 ⌋⌋ − 1)⌋, if uv ≡ 0 (mod 6) and (u, v) 6∈ A ∪B,

or uv ≡ 4, 8 (mod 12) and v ≡ 0 (mod 2);

⌊u4 (⌊
uv−1

3 ⌊uv−2
2 ⌋⌋ − 1)⌋ − 1, if (u, v) ∈ A;

⌊u4 (⌊
uv−1

3 ⌊uv−2
2 ⌋⌋ − 2)⌋, if (u, v) ∈ B;

⌊u4 ⌊
uv−1

3 ⌊uv−2
2 ⌋⌋⌋, otherwise.

We have the following theorem.

Theorem 5.7 Φ(u× v, 4, 2) ≤ J∗(u× v).

Now the question is whether there are optimal 2-D (u × v, 4, 2)-OOCs to achieve
the upper bounds established in Theorem 5.7. In Section 9 we shall give many infinite
families for optimal 2-D (u× v, 4, 2)-OOCs, which achieve the upper bound in Theorem
5.7.

6 Auxiliary designs and filling constructions

In this section and the next section, some recursive constructions for optimal 2-D OOCs
will be given, called filling constructions and weighting constructions, respectively. These
constructions are the generalization of standard constructions for 3-designs in combina-
torial design theory. So far the research on combinatorial constructions for 2-D OOCs
mainly focuses on λ = 1 [9,57], which corresponds to the theory of 2-designs. However,
when λ = 2, the research is related to the theory of 3-designs. Compared to 2-designs,
the known results on 3-designs are limited, and the auxiliary structures to construct
3-designs are more complex. Thus the following auxiliary designs will be a little strange
for the reader who first meets them. If one is familiar with 2-designs, it is useful to no-
tice that the concepts of s-fan designs and H designs are two possible generalizations of
group divisible designs. Group divisible design is one of the most basic research objects
in combinatorial design theory [6].

6.1 s-fan designs

Hartman [28] first introduced the concept of s-fan designs in 1994. Let s be a non-negative
integer. An s-fan design is an (s+3)-tuple (X,G,B1,B2, . . . ,Bs,T ) satisfying that (X,G)
is a 1-design, (X,G ∪ Bi) is a 2-design for each 1 ≤ i ≤ s and (X,G ∪ (

⋃s
i=1 Bi) ∪ T ) is a

3-design. The elements of G and (
⋃s

i=1 Bi)∪T are called groups and blocks, respectively.
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For understanding the concept of s-fan designs, we first consider the case of s = 0.
A 0-fan design is a 3-tuple (X,G,T ) satisfying that (X,G) is a 1-design and (X,G ∪ T )
is a 3-design.

Example 6.1 Take X = I8 and G = {{0, 2, 4, 6}, {1, 3, 5, 7}}. Then (X,G) is a 1-design.
Let T consists of the following 12 blocks

{0, 1, 2, 3}, {0, 1, 4, 5}, {0, 1, 6, 7}, {0, 2, 5, 7}, {0, 3, 4, 7}, {0, 3, 5, 6},
{1, 2, 4, 7}, {1, 2, 5, 6}, {1, 3, 4, 6}, {2, 3, 4, 5}, {2, 3, 6, 7}, {4, 5, 6, 7}.

It is readily checked that each 3-subset of I8 is either contained in exactly one block of T
or in exactly one group of G, but not in both. Hence, (X,G ∪ T ) is a 3-design. This is
an example of 0-fan designs.

Next we give an example of 1-fan designs. A 1-fan design is a 4-tuple (X,G,B,T )
satisfying that (X,G) is a 1-design, (X,G ∪ B) is a 2-design and (X,G ∪ B ∪ T ) is a
3-design.

Example 6.2 Take X = I9 and G = {{0, 1, 8}, {2, 3, 6}, {4, 5, 7}}. Then (X,G) is a
1-design. Let B consists of the following 9 blocks

{2, 4, 8}, {3, 5, 8}, {0, 2, 7}, {0, 3, 4}, {1, 3, 7}, {1, 4, 6},
{1, 2, 5}, {0, 5, 6}, {6, 7, 8}.

It is readily checked that each 2-subset of I9 is either contained in exactly one block of
B or in exactly one group of G, but not in both. Hence, (X,G ∪ B) is a 2-design. Let T
consists of the following 18 blocks

{0, 1, 2, 3}, {0, 1, 4, 5}, {0, 1, 6, 7}, {0, 2, 4, 6}, {0, 2, 5, 8}, {0, 3, 5, 7},
{0, 3, 6, 8}, {0, 4, 7, 8}, {1, 2, 4, 7}, {1, 2, 6, 8}, {1, 3, 4, 8}, {1, 3, 5, 6},
{1, 5, 7, 8}, {2, 3, 4, 5}, {2, 3, 7, 8}, {2, 5, 6, 7}, {3, 4, 6, 7}, {4, 5, 6, 8}.

It is readily checked that (X,G∪B∪T ) is a 3-design. This is an example of 1-fan designs.

If there are ai groups of size gi in an s-fan design, 1 ≤ i ≤ m, then the type of the s-fan
design is defined to be ga11 ga22 · · · gamm . Let K1, K2, . . . ,Ks, KT be sets of positive integers.
If block sizes of Bi and T are from Ki (1 ≤ i ≤ s) and KT , respectively, then the s-fan
design is denoted by s-FG(3, (K1 ,K2, . . . ,Ks,KT ),

∑m
i=1 giai) of type g

a1
1 ga22 · · · gamm . Ex-

ample 6.1 shows a 0-FG (3, (∅, 4), 8) of type 42. Example 6.2 presents a 1-FG(3, (3, 4), 9)
of type 33.

Lemma 6.3 ( [18]) The necessary conditions for the existence of a 0-FG(3, (∅,KT ), gn)
of type gn (n ≥ 2) are

(1) g2n(n− 1)(gn + g − 3) ≡ 0 (mod α), where α = gcd{k(k − 1)(k − 2) : k ∈ KT };

(2) g(n − 1)(gn + g − 3) ≡ 0 (mod β), where β = gcd{(k − 1)(k − 2) : k ∈ KT };

(3) if g = 1, then n ≡ 2 (mod γ); if g > 1, then gn ≡ g ≡ 2 (mod γ), where
γ = gcd{k − 2 : k ∈ KT }.

Theorem 6.4 ( [64]) There exists a 0-FG(3, (∅, 4), gn) of type gn if and only if either
g = 1 and n ≡ 2, 4 (mod 6), or g is even and g(n − 1)(n − 2) ≡ 0 (mod 3).
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6.1.1 The basic idea

Since an optimal 2-D (u × v, k, 2)-OOC is equivalent to an optimal strictly v-cyclic 3-
(u×v, k, 1)-packing, we first consider how to construct a 3-packing without the restriction
of automorphism groups.

• Step 1: Start from a 0-FG(3, (∅, k), gn) of type gn (X,G, ∅,T ). By the definition of
s-fan designs, (X,G ∪T ) is a 3-design. (X,T ) satisfies that each 3-subset of X not
contained in some group of G occurs in exactly one block of T , and each 3-subset
of X contained in some group of G never occur in any block of T .

• Step 2: If a 3-(g, k, 1)-packing exists, then one can construct a 3-(g, k, 1)-packing
on the set G for each G ∈ G. Denote its block set by AG.

• Step 3: Let A = ∪G∈GAG. It follows that each 3-subset of X contained in some
group of G occurs in at most one block of A.

• Step 4: Let C = A ∪ T . We have that (X, C) is a 3-(gn, k, 1)-packing.

The main idea of the above construction is to fill in the groups of a 0-fan design with
a 3-packing. So this construction is termed as “Filling Construction”. Furthermore, if
one hope to obtain an optimal 3-(gn, k, 1)-packing, it is necessary to input an optimal
3-(g, k, 1)-packing. Note that the reverse is not always correct. Now our purpose is to
construct strictly v-cyclic 3-(u× v, k, 1)-packings. We need to modify the above “Filling
Construction” such that the initial 0-fan design admits some special automorphisms.

An automorphism of an s-fan design (X,G,B1,B2, . . . ,Bs,T ) is a permutation on X
leaving G, B1, B2, . . . ,Bs, T invariant, respectively. All automorphisms of an s-fan design
form a group, called the full automorphism group of the s-fan design. Any subgroup of
the full automorphism group is called an automorphism group of the s-fan design.

Let G be an automorphism group of an s-fan design. All blocks of the s-fan design
can be partitioned into some orbits under G. Choose any fixed block from each orbit
and then call it a base block of this s-fan design. For any block B of the s-fan design,
the subgroup {π ∈ G : Bπ = B} is called the stabilizer of B in G.

Example 6.5 Observe the 0-FG (3, (∅, 4), 8) of type 42 from Example 6.1. Consider
the permutation α = (0 1 2 3)(4 5 6 7) on I8. It is easy to checked that α is an
automorphism of this 0-FG. All blocks are partitioned into 5 orbits under the action of
α. The 5 base blocks are {0, 1, 2, 3}∗, {4, 5, 6, 7}∗ , {1, 2, 5, 6}, {0, 1, 6, 7} and {0, 2, 5, 7},
where the stabilizer of each base block marked with a ∗ is trivial, i.e., it contains only the
identity permutation.

In the following we introduce two kinds of s-fan designs with special automorphism
groups.

6.1.2 h-cyclic s-fan designs

Construct an s-fan design of type (hg1)
a1(hg2)

a2 · · · (hgm)am on (
⋃m

i=1(Iai × Igi)) × Zh

with the group set {{x} × Igi × Zh : x ∈ Iai , 1 ≤ i ≤ m}. If this s-fan design admits an
automorphism π mapping (x, y, j) 7−→ (x, y, j + 1) (mod (−,−, h)), x ∈ Iai , y ∈ Igi and
j ∈ Zh, then the s-fan design is said to be h-cyclic.
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For each block B of an h-cyclic s-fan design of type (hg1)
a1(hg2)

a2 · · · (hgm)am , if
the stabilizer of B in Zh is trivial, i.e., {δ ∈ Zh : B + δ = B} = {0}, where B + δ =
{(x, y, j + δ) : (x, y, j) ∈ B}, then the s-fan design is called strictly h-cyclic. A (strictly)
h-cyclic s-fan design of type hn is often referred to as a (strictly) semi-cyclic s-fan design
of type hn (cf. [18]).

The following construction is straightforward.

Construction 6.6 (Filling Construction-I) Suppose that the following exist:

(1) a strictly h-cyclic 0-FG(3, (∅, k),Σm
i=1giaih) of type (hg1)

a1(hg2)
a2 · · · (hgm)am with

b0 base blocks;

(2) a strictly h-cyclic 3-(gi × h, k, 1) packing with bi base blocks for each 1 ≤ i ≤ m.

Then there exists a strictly h-cyclic 3-((Σm
i=1giai) × h, k, 1) packing with b0 +

∑m
i=1 aibi

base blocks, which is a 2-D ((Σm
i=1giai)× h, k, 1)-OOC.

Furthermore, if the given strictly h-cyclic 3-(gi ×h, k, 1) packing is a strictly h-cyclic
S(3, k, gi×h) for each 1 ≤ i ≤ m, then we obtain a strictly h-cyclic S(3, k, (Σm

i=1giai)×h),
which is a perfect 2-D ((Σm

i=1giai)× h, k, 2)-OOC.

Example 6.7 In this example, we construct an optimal 2-D (4× 2, 4, 2)-OOC.

• Step 1: First we construct a strictly 2-cyclic 0-FG(3, (∅, 4), 8) of type 42 on I2 ×
I2 ×Z2 with the group set {{x} × I2 ×Z2 : x ∈ I2}. All the 6 base blocks are listed
below.

{(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 1, 0)}, {(0, 0, 0), (1, 0, 0), (1, 0, 1), (0, 1, 0)},
{(0, 0, 0), (1, 0, 0), (1, 1, 1), (0, 1, 1)}, {(0, 0, 0), (1, 0, 1), (1, 1, 0), (0, 1, 1)},
{(0, 0, 0), (1, 1, 0), (1, 1, 1), (0, 1, 0)}, {(1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 1, 1)}.

• Step 2: Take an optimal strictly 2-cyclic 3-(2 × 2, 4, 1) packing, which is trivial
without base blocks.

• Step 3: Apply Construction 6.6 to obtain a strictly 2-cyclic 3-(4 × 2, 4, 1) packing
with 6 base blocks, which achieves the upper bound in Theorem 5.7 and is an optimal
2-D (4 × 2, 4, 2)-OOC with 6 codewords. Note that I2 × I2 × Z2

∼= I4 × Z2. Hence
Φ(4× 2, 4, 2) = J∗(4× 2) = 6.

Example 6.8 In this example, we construct an optimal 2-D (4× 3, 4, 2)-OOC.

• Step 1: First we construct a strictly 3-cyclic 0-FG(3, (∅, 4), 12) of type 62 on I2 ×
I2×Z3 with the group set {{x}× I2 ×Z3 : x ∈ I2}. All the 15 base blocks are listed
below:

{(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)}, {(0, 0, 0), (0, 0, 1), (1, 0, 2), (1, 1, 0)},
{(0, 0, 0), (0, 0, 1), (1, 1, 1), (1, 1, 2)}, {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)},
{(0, 0, 0), (0, 1, 0), (1, 0, 1), (1, 1, 1)}, {(0, 0, 0), (0, 1, 0), (1, 0, 2), (1, 1, 2)},
{(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)}, {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 0, 2)},
{(0, 0, 0), (0, 1, 1), (1, 1, 0), (1, 1, 2)}, {(0, 0, 0), (0, 1, 2), (1, 0, 0), (1, 1, 2)},
{(0, 0, 0), (0, 1, 2), (1, 0, 1), (1, 1, 0)}, {(0, 0, 0), (0, 1, 2), (1, 0, 2), (1, 1, 1)},
{(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 2)}, {(0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 2)},
{(0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1)}.
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• Step 2: Construct an optimal strictly 3-cyclic 3-(2×3, 4, 1) packing on {x}×I2×Z3
for each x ∈ I2, which has 1 base block and exists by Example 3.3. Then this step
contributes 2 base blocks as follows

{(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1)}, {(1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1)}.

• Step 3: Apply Construction 6.6 to obtain a strictly 3-cyclic (4×3, 4, 1) packing with
17 base blocks, which achieves the upper bound in Theorem 5.7 and is an optimal
2-D (4× 3, 4, 2)-OOC with 17 codewords. Note that I2 × I2 ×Z3

∼= I4 ×Z3. Hence
Φ(4× 3, 4, 2) = J∗(4× 3) = 17.

Lemma 6.9 For any v ≡ 1 (mod 2), there exists a strictly v-cyclic 0-FG(3, (∅, 4), 4v) of
type (2v)2.

Proof By Lemma 2.11 in [20], there is a semi-cyclic 0-FG(3, (∅, 4), 4v) of type (2v)2 on
the point set X = I2 × Z2v and the group set G = {{x} × Z2v : x ∈ I2}. Denote the
family of its blocks by T . For each (x, i) ∈ X, define a mapping

τ : (x, i) 7−→ (x, i − 2⌊i/2⌋, ⌊i/2⌋).

Let X ′ = I2 × I2 × Zv and G′ = {{x} × I2 × Zv : x ∈ I2}. Let T ′ =
⋃

T∈T τ(T ), where
τ(T ) = {τ(r) : r ∈ T}. Since v ≡ 1 (mod 2), it is readily checked that (X ′,G′, ∅,T ′) is a
strictly v-cyclic 0-FG(3, (∅, 4), 4v) of type (2v)2. ✷

Remark 6.10 In Construction 6.6, even if the given strictly h-cyclic 3-(gi × h, k, 1)
packing is optimal for each 1 ≤ i ≤ m, the resulting strictly h-cyclic 3-((

∑m
i=1 giai) ×

h, k, 1) packing may not be optimal.

6.1.3 (u, h)-regular s-fan designs

Let h divide v and H be a subgroup of order h in Zv, i.e., H = {0, v/h, . . . , (h− 1)v/h}.
Let Hi = H + i be a coset of H in Zv, 0 ≤ i < v/h. Construct an s-fan design of type
(uh)v/h on Iu×Zv with the group set {Iu×Hi : 0 ≤ i < v/h}. If this s-fan design admits
an automorphism π mapping (x, j) 7−→ (x, j + 1) (mod (−, v)), x ∈ Iu and j ∈ Zv, then
the s-fan design is said to be (u, h)-regular.

For each block B of a (u, h)-regular s-fan design of type (uh)v/h, if the stabilizer of B
in Zv is trivial, i.e., {δ ∈ Zv : B + δ = B} = {0}, where B+ δ = {(x, j + δ) : (x, j) ∈ B},
then the s-fan design is called strictly (u, h)-regular.

Example 6.11 By Example 6.5, the 0-FG (3, (∅, 4), 8) of type 42 from Example 6.1
admits an automorphism (0 1 2 3)(4 5 6 7). Actually the reader may check that this 0-
FG is isomorphic to a (2, 2)-regular 0-FG under the mapping τ : v → (⌊v/4⌋, v (mod 4))
from I8 to I2 × Z4. But it is not strictly (2, 2)-regular.

When u = 1, a (strictly) (1, h)-regular s-fan design of type hv/h is often referred to
as a (strictly) cyclic s-fan design of type hv/h (cf. [18]). We quote the following results
for later use.

Lemma 6.12 ( [18])
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(1) There exists a strictly cyclic 0-FG(3, (∅, 4), 2h) of type h2 for any h ≡ 0 (mod 8).

(2) There exists a strictly cyclic 0-FG(3, (∅, 4), 3h) of type h3 for any h ≡ 0 (mod 12).

(3) There exists a strictly cyclic 0-FG(3, (∅, 4), 5h) of type h5 for any h ≡ 0 (mod 2).

Lemma 6.13 ( [19]) An RoSQS(v + 1) for v ≡ 1 (mod 6) is equivalent to a strictly
cyclic 1-FG(3, (3, 4), v) of type 1v. An RoSQS(v+1) for v ≡ 3 (mod 6) is equivalent to
a strictly cyclic 1-FG(3, (3, 4), v) of type 3v/3.

Construction 6.14 (Filling Construction-II) Let uh ≥ k ≥ 3. Suppose that the follow-
ing exist.

(1) a strictly (u, h)-regular 0-FG(3, (∅, k), uv) of type (uh)v/h with b0 base blocks;

(2) a strictly h-cyclic 3-(u× h, k, 1) packing with b1 base blocks.

Then there exists a strictly v-cyclic 3-(u× v, k, 1) packing with b0 + b1 base blocks.
Furthermore, if the given strictly h-cyclic 3-(u×h, k, 1) packing is optimal with J(u×

h, k, 2) base blocks, then the derived strictly v-cyclic 3-(u×v, k, 1) packing is also optimal
with J(u×v, k, 2) base blocks, which is an optimal 2-D (u×v, k, 2)-OOC with J(u×v, k, 2)
codewords.

Proof First we prove the first part of this construction.

• Step 1: Start from a strictly (u, h)-regular 0-FG(3, (∅, k), uv) of type (uh)v/h. De-
note the family of base blocks of this design by F .

• Step 2: Let E be the family of base blocks of a strictly h-cyclic 3-(u × h, k, 1)
packing. For each B = {(x1, j1), (x2, j2), . . . , (xk, jk)} ∈ E we take

v

h
B = {(x1,

v

h
j1), (x2,

v

h
j2), . . . , (xk,

v

h
jk)}.

• Step 3: Then F ∪ { v
hB : B ∈ E} forms the family of base blocks of the desired

strictly v-cyclic (u× v, k, 1) packing.

For checking optimality of the required design in the second part, it suffices to show
that

u((uv − 1)(uv − 2)− (uh− 1)(uh − 2))

k(k − 1)(k − 2)
+ ⌊

u

k
⌊
uh− 1

k − 1
⌊
uh− 2

k − 2
⌋⌋⌋

= ⌊
u

k
⌊
uv − 1

k − 1
⌊
uv − 2

k − 2
⌋⌋⌋. (1)

By Lemma 6.3 (3), since uh > 1, the existence of a strictly (u, h)-regular 0-FG(3, (∅, k),
uv) of type (uh)v/h implies that uv − 2 ≡ uh − 2 ≡ 0 (mod k − 2). By Lemma 6.3
(2), one can verify that (uv − 1)(uv − 2) ≡ (uh − 1)(uh − 2) (mod (k − 1)(k − 2)). Let
(uv−1)(uv−2) = a1(k−1)(k−2)+ r and (uh−1)(uh−2) = a2(k−1)(k−2)+ r, where
0 ≤ r < (k − 1)(k − 2). Thus for obtaining the equation (1), it suffices to prove that

u(a1 − a2)

k
+ ⌊

ua2
k

⌋ = ⌊
ua1
k

⌋. (2)

Note that u(a1 − a2) ≡ 0 (mod k). Let ua1 = b1k + r1 and ua2 = b2k + r1, where
0 ≤ r1 < k. It is readily checked that the equation (2) holds. ✷
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Example 6.15 In this example, we construct an optimal 2-D (2× 4, 4, 2)-OOC.

• Step 1: First we construct a strictly (2, 2)-regular 0-FG(3, (∅, 4), 8) of type 42 on
I2 × Z4 with the group set {I2 ×Hi : 0 ≤ i ≤ 1}, where H0 = {0, 2} is a subgroup
of order 2 in Z4 and H1 = {1, 3}. All the 3 base blocks are listed below:

{(0, 0), (0, 1), (0, 2), (1, 1)}, {(0, 0), (0, 1), (1, 2), (1, 3)}, {(0, 0), (1, 0), (1, 1), (1, 3)}.

• Step 2: Take an optimal strictly 2-cyclic 3-(2 × 2, 4, 1) packing, which is trivial
without base blocks.

• Step 3: Apply Construction 6.14 to obtain a strictly 4-cyclic 3-(2× 4, 4, 1) packing
with 3 base blocks, which achieves the upper bound in Theorem 5.7 and is an optimal
2-D (2× 4, 4, 2)-OOC with 3 codewords. Hence Φ(2× 4, 4, 2) = J∗(2× 4) = 3.

Example 6.16 In this example, we construct an optimal 2-D (2× 8, 4, 2)-OOC.

• Step 1: First we construct a strictly (2, 4)-regular 0-FG(3, (∅, 4), 16) of type 82 on
I2 × Z8 with the group set {I2 × Hi : 0 ≤ i ≤ 1}, where H0 = {0, 2, 4, 6} is a
subgroup of order 4 in Z8 and H1 = {1, 3, 5, 7}. All the 14 base blocks are listed
below:

{(0, 0), (0, 1), (0, 2), (0, 5)}, {(0, 0), (0, 1), (0, 3), (1, 0)}, {(0, 0), (0, 1), (0, 6), (1, 1)},
{(0, 0), (0, 1), (1, 2), (1, 3)}, {(0, 0), (0, 1), (1, 4), (1, 5)}, {(0, 0), (0, 1), (1, 6), (1, 7)},
{(0, 0), (0, 2), (1, 1), (1, 5)}, {(0, 0), (0, 3), (1, 1), (1, 6)}, {(0, 0), (0, 3), (1, 2), (1, 5)},
{(0, 0), (0, 3), (1, 4), (1, 7)}, {(0, 0), (0, 4), (1, 1), (1, 7)}, {(0, 0), (1, 0), (1, 1), (1, 3)},
{(0, 0), (1, 0), (1, 5), (1, 7)}, {(1, 0), (1, 1), (1, 2), (1, 5)}.

• Step 2: Construct an optimal strictly 4-cyclic 3-(2 × 4, 4, 1) packing with 3 base
blocks, which exists by Example 6.15. Then this step contributes 3 base blocks as
follows

{(0, 0), (0, 2), (0, 4), (1, 2)}, {(0, 0), (0, 2), (1, 4), (1, 6)}, {(0, 0), (1, 0), (1, 2), (1, 6)}.

• Step 3: Apply Construction 6.14 to obtain a strictly 8-cyclic (2×8, 4, 1) packing with
17 base blocks, which achieves the upper bound in Theorem 5.7 and is an optimal
2-D (2× 8, 4, 2)-OOC with 17 codewords. Hence Φ(2× 8, 4, 2) = J∗(2× 8) = 17.

The following result is simple but very useful.

Lemma 6.17 If there exists a strictly (u, h)-regular 0-FG(3, (∅, k), uv) of type (uh)v/h,
then for any integer divisor h1 of h, there exists a strictly h1-cyclic 0-FG(3, (∅, k), uv) of
type (uh)v/h.

Corollary 6.18 For any v 6≡ 2 (mod 4), there exists a strictly v-cyclic 0-FG(3, (∅, 4), 4v)
of type (2v)2.

Proof When v ≡ 0 (mod 4), by Lemma 6.12 there is a strictly cyclic 0-FG(3, (∅, 4), 4v)
of type (2v)2. Apply Lemma 6.17 to obtain a strictly v-cyclic 0-FG(3, (∅, 4), 4v) of type
(2v)2. When v ≡ 1 (mod 2), the conclusion follows from Lemma 6.9. ✷
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Lemma 6.19 If there is a perfect 2-D (2 × v, 4, 2)-OOC with v ≡ 1, 5 (mod 6), then
there is a strictly (2, 1)-regular 1-FG(3, (2, 4), 2v) of type 2v.

Proof By Lemma 3.4, the necessary condition for the existence of a perfect 2-D (2 ×
v, 4, 2)-OOC is v ≡ 1, 5 (mod 6). Suppose that (X,T ) is a strictly v-cyclic SQS(2× v)
with X = I2 × Zv, which is equivalent to a perfect 2-D (2 × v, 4, 2)-OOC. Let G =
{I2 × {x} : x ∈ Zv}. Then (X,G, ∅,T ) is a strictly (2, 1)-regular 0-FG(3, (∅, 4), 2v) of
type 2v. Collect all 2-subsets of X from distinct groups of G into a set B. Since v is odd,
(X,G,B,T ) is a strictly (2, 1)-regular 1-FG(3, (2, 4), 2v) of type 2v. ✷

6.2 H designs

Mills first used the terminology of H designs in [42]. Let n, g, t be positive integers
and K be a set of positive integers. An H design is a triple (X,G,B), where G is a
partition of a set of points X into n subsets (called groups), each of cardinality g, and B
is a collection of subsets of X (called blocks), each of cardinality from K, such that each
block intersects any given group in at most one point, and each t-subset of X from t
distinct groups is contained in a unique block. Such a design is denoted by H(n, g,K, t).

Example 6.20 Take X = I8 and G = {{0, 4}, {1, 5}, {2, 6}, {3, 7}}. Let B consists of
the following 8 blocks

{0, 1, 2, 3}, {4, 5, 6, 7}, {0, 1, 6, 7}, {2, 3, 4, 5}, {0, 2, 5, 7}, {1, 3, 4, 6},
{0, 3, 5, 6}, {1, 2, 4, 7}.

It is easy to see that each 3-subset of I8 from three distinct groups of G is contained in a
unique block of B. Then (X,G,B) is an H(4, 2, 4, 3).

Example 6.21 Let (X,G,B1,B2, . . . ,Bs,T ) be an s-FG(3, (K1,K2, . . . ,Ks,KT ), gn) of
type gn. Then for each 1 ≤ i ≤ s, (X,G,Bi) is an H(n, g,Ki, 2) (called the i-th subdesign
of the s-fan design).

Lemma 6.22 ( [30,43]) For any n ≥ 4, n 6= 5, an H(n, g, 4, 3) exists if and only if gn is
even and g(n− 1)(n− 2) is divisible by 3. For n = 5, an H(5, g, 4, 3) exists if g is even,
g 6= 2 and g 6≡ 10, 26 (mod 48).

An automorphism of an H design (X,G,B) is a permutation on X leaving G, B
invariant, respectively. All automorphisms of an H design form a group, called the full
automorphism group of the H design. Any subgroup of the full automorphism group is
called an automorphism group of the H design.

Let G be an automorphism group of an H design. All blocks of the H design can
be partitioned into some orbits under G. Choose any fixed block from each orbit and
then call it a base block of this H design. For any block B of the H design, the subgroup
{π ∈ G : Bπ = B} is called the stabilizer of B in G.

Example 6.23 Observe the H(4, 2, 4, 3) from Example 6.20. Consider the permutation
(0 4)(1 5)(2 6)(3 7) on I8. It is readily checked that α is an automorphism of this H
design. All blocks are partitioned into 4 orbits under the action of α. The 4 base blocks
are {0, 1, 2, 3}, {0, 1, 6, 7}, {0, 2, 5, 7}, {0, 3, 5, 6}.
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Construct an H(n, lh,K, t) on In×Il×Zh with the group set {{x}×Il×Zh : x ∈ In}.
If this H design admits an automorphism π mapping (x, y, j) 7−→ (x, y, j + 1) (mod
(−,−, h)), x ∈ In, y ∈ Il and j ∈ Zh, then the H design is said to be h-cyclic. If the
stabilizer of each block of an h-cyclic H(n, lh,K, t) in Zh is trivial, i.e., for any block B,
{δ ∈ Zh : B + δ = B} = {0}, where B + δ = {(x, y, j + δ) : (x, y, j) ∈ B}, then the H
design is called strictly h-cyclic. Note that one can verify that an h-cyclic H design is
always strictly h-cyclic.

Example 6.24 By Example 6.23, the H(4, 2, 4, 3) from Example 6.20 admits an auto-
morphism (0 4)(1 5)(2 6)(3 7). Actually the reader may check that this H design is
isomorphic to a 2-cyclic H(4, 2, 4, 3) under the mapping τ : v → (v (mod 4), 0, ⌊v/4⌋)
from I8 to I4 × I1 × Z2.

When l = 1, an h-cyclic H(n, h,K, t) is often referred to as a semi-cyclic H(n, h,K, t).

Lemma 6.25 ( [18]) For any h ≥ 1, there exists a semi-cyclic H(4, h, 4, 3).

7 Weighting constructions

For applying Constructions 6.6 and 6.14, we need some strictly h-cyclic 0-FGs and strictly
(u, h)-regular s-FGs. Construction 7.1 shows that if one has a strictly h1-cyclic 1-FG of
type (g1h1)

n, and gives each point of the 1-FG a weight g2h2, then a strictly h1h2-cyclic
0-FG of type (g1g2h1h2)

n can be obtained; Construction 7.3 shows that if one has a
strictly (g1, h1)-regular 1-FG of type (g1h1)

n, and gives each point of the 1-FG a weight
g2h2, then a strictly (g1g2, h1h2)-regular 0-FG of type (g1g2h1h2)

n can be obtained. So
Constructions 7.1 and 7.3 give an approach to find some infinite families of strictly h-
cyclic 0-FGs and strictly (u, h)-regular s-FGs. Then apply Constructions 6.6 and 6.14
to fill in the groups of these infinite families. We can obtain many optimal 2-D OOCs,
which will be presented in Sections 8 and 9.

Condition (3) in Constructions 7.1 and 7.3 implies that h-cyclic H designs are impor-
tant. Thus a recursive construction for h-cyclic H designs is presented in Construction
7.5. The proofs of all constructions in this section are of design theory. Here we only
focus on how these constructions work. The detailed proofs of Constructions 7.1 and
7.5 have been moved to Appendix III. The detailed proof of Construction 7.3 is omitted,
which is similar to that of Construction 7.1.

Construction 7.1 (Weighting Construction-I) Let K and Li for each 1 ≤ i ≤ s be all
sets of positive integers greater than 1. Let KT and LT be both sets of positive integers
greater than 2. Suppose that the following exist:

(1) a strictly h1-cyclic 1-FG(3, (K,KT ), ng1h1) of type (g1h1)
n (called the master

design);

(2) a strictly h2-cyclic s-FG(3, (L1, L2, . . . , Ls, LT ), kg2h2) of type (g2h2)
k for each k ∈

K;

(3) an h2-cyclic H(k, g2h2, LT , 3) for each k ∈ KT .

Then there exists a strictly h1h2-cyclic s-FG(3, (L1, L2, . . . , Ls, LT ), ng1g2h1h2) of type
(g1g2h1h2)

n.
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Step 1: Start from

a strictly h1-cyclic 1-FG(3, (K,KT ), ng1h1) of type (g1h1)
n (X,G,B, T ),

where X = In × Ig1 × Zh1
and G = {{x} × Ig1 × Zh1

: x ∈ In}.

• Denote the family of base blocks of this design by F = F1 ∪ F2, where F1 and F2

generate all the blocks of B and T respectively.

Step 2 (input): For any base block B ∈ F1, construct

a strictly h2-cyclic s-FG(3, (L1, L2 . . . , Ls, LT ), |B|g2h2) of type (g2h2)
|B|

on B × Ig2 × Zh2
with the group set {{x} × Ig2 × Zh2

: x ∈ B}.

• Denote the family of base blocks of the j-th subdesign H(|B|, g2h2, Lj , 2) by Aj
B for

1 ≤ j ≤ s. Denote the family of all the other base blocks by DB .

Step 3 (input): For any base block B ∈ F2, construct

an h2-cyclic H(|B|, g2h2, LT , 3)

on B × Ig2 × Zh2
with the group set {{x} × Ig2 × Zh2

: x ∈ B}.

• Denote the family of base blocks of this design by D′
B .

Step 4 (mapping): Let

Aj =
⋃

B∈F1

Aj

B for 1 ≤ j ≤ s, D = (
⋃

B∈F1

DB)
⋃

(
⋃

B∈F2

D′
B).

For each C ∈ (
⋃

1≤j≤s
Aj)

⋃
D and each (x, y, z, u, v) ∈ C, define a mapping

τ : (x, y, z, u, v) 7−→ (x, y + ug1, z + vh1).

Define τ (C) = {τ (c) : c ∈ C}. Let

A∗
j =

⋃

C∈Aj

τ (C), 1 ≤ j ≤ s, D∗ =
⋃

C∈D

τ (C).

Step 5 (final): Take

A′
j = {A+ δ : A ∈ A∗

j , δ ∈ Zh1h2
}, D′ = {A+ δ : A ∈ D∗, δ ∈ Zh1h2

},

where A+ δ = {(x, y, z + δ) (mod (−,−, h1h2)) : (x, y, z) ∈ A}. Take

X ′ = In × Ig1g2 × Zh1h2
, G′ = {{x} × Ig1g2 × Zh1h2

: x ∈ In}.

Then (X ′,G′,A1
′, . . . ,As

′,D′) is the required strictly h1h2-cyclic s-FG(3, (L1, L2, . . . , Ls, LT ),
ng1g2h1h2) of type (g1g2h1h2)

n.

Figure 2: Algorithm in Construction 7.1

The following example illustrates the algorithm presented in Figure 2.

Example 7.2 In this example, we construct an optimal 2-D (8× 2, 4, 2)-OOC.

• Step 1: First construct a strictly 1-cyclic 1-FG(3, (2, 4), 4) of type 14 (X,G,B,T )
on X = I4 × I1 × Z1 with the group set G = {{x} × I1 × Z1 : x ∈ I4}, which is
trivial. Take

F1 = {{(i, 0, 0), (j, 0, 0)} : {i, j} ∈ {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}}},

which generates 6 blocks of B under Z1 such that (X,G ∪ B) is a 2-design. Take

F2 = {{(0, 0, 0), (1, 0, 0), (2, 0, 0), (3, 0, 0)}},

which generates the unique block of T such that (X,G ∪ B ∪ T ) is a 3-design.
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• Step 2: For each B = {(i, 0, 0), (j, 0, 0)} ∈ F1, construct a strictly 2-cyclic 0-
FG(3, (∅, 4), 8) of type 42 on B×I2×Z2 with the group set {{x}×I2×Z2 : x ∈ B},
which exists by Example 6.7. All the 6 base blocks of DB are listed below.

{(i, 0, 0, 0, 0), (i, 0, 0, 0, 1), (j, 0, 0, 0, 0), (j, 0, 0, 1, 0)},
{(i, 0, 0, 0, 0), (j, 0, 0, 0, 0), (j, 0, 0, 0, 1), (i, 0, 0, 1, 0)},
{(i, 0, 0, 0, 0), (j, 0, 0, 0, 0), (j, 0, 0, 1, 1), (i, 0, 0, 1, 1)},
{(i, 0, 0, 0, 0), (j, 0, 0, 0, 1), (j, 0, 0, 1, 0), (i, 0, 0, 1, 1)},
{(i, 0, 0, 0, 0), (j, 0, 0, 1, 0), (j, 0, 0, 1, 1), (i, 0, 0, 1, 0)},
{(j, 0, 0, 0, 0), (j, 0, 0, 1, 0), (i, 0, 0, 1, 0), (i, 0, 0, 1, 1)}.

• Step 3: For the unique B ∈ F2, construct a 2-cyclic H(4, 4, 4, 3) on B × I2 × Z2

with the group set {{x} × I2 × Z2 : x ∈ B}, which exists by Corollary 7.6. Denote
the family of base blocks of this design by D′

B, and |D′
B | = 32.

• Step 4: Let D = (
⋃

B∈F1
DB)

⋃

(
⋃

B∈F2
D′

B). For each C ∈ D and each (x, y, z, u, v)
∈ C, define a mapping τ : (x, y, z, u, v) 7−→ (x, y + u, z + v). Define τ(C) = {τ(c) :
c ∈ C}. Let D∗ =

⋃

C∈D
τ(C). Then |D∗| = 68, which is just the number of base

blocks in a strictly 2-cyclic 0-FG(3, (∅, 4), 16) of type 44.

• Step 5: Let D′ = {A+δ : A ∈ D∗, δ ∈ Z2}, where A+δ = {(x, y, z+δ) (mod (−,−, 2)) :
(x, y, z) ∈ A}. Take X ′ = I4 × I2 × Z2 and G′ = {{x} × I2 × Z2 : x ∈ I4}. Then
(X ′,G′, ∅,D′) is the required strictly 2-cyclic 0-FG(3, (∅, 4), 16) of type 44.

• Step 6: Apply Construction 6.6. Fill in the groups of the resulting strictly 2-cyclic
0-FG(3, (∅, 4), 16) of type 44 with a trivial optimal strictly 2-cyclic 3-(2 × 2, 4, 1)
packing without base blocks. We have an optimal strictly 2-cyclic 3-(8 × 2, 4, 1)
packing with 68 base blocks, which achieves the upper bound in Theorem 5.7 and is
an optimal 2-D (8× 2, 4, 2)-OOC. Hence Φ(8× 2, 4, 2) = J∗(8× 2) = 68.

Construction 7.3 (Weighting Construction-II) Let K and Li for each 1 ≤ i ≤ s be all
sets of positive integers greater than 1. Let KT and LT be both sets of positive integers
greater than 2. Suppose that the following exist:

(1) a strictly (g1, h1)-regular 1-FG(3, (K,KT ), g1h1n) of type (g1h1)
n;

(2) a strictly h2-cyclic s-FG(3, (L1, L2, . . . , Ls, LT ), kg2h2) of type (g2h2)
k for each

k ∈ K;

(3) an h2-cyclic H(k, g2h2, LT , 3) for each k ∈ KT .

Then there exists a strictly (g1g2, h1h2)-regular s-FG(3, (L1, L2, . . . , Ls, LT ), g1g2h1h2n)
of type (g1g2h1h2)

n.
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Step 1: Start from

a strictly (g1, h1)-regular 1-FG(3, (K,KT ), g1h1n) of type (g1h1)
n (X,G,B, T ),

on X = Ig1 ×Zh1n with the group set G = {Ig1 ×Hi : 0 ≤ i < n}, where H = {0, n, . . . , (h1 − 1)n}
is a subgroup of order h1 in Zh1n, and Hi = H + i be a coset of H in Zh1n, 0 ≤ i < n.

• Denote the family of base blocks of this design by F = F1 ∪ F2, where F1 and F2 generate
all the blocks of B and T respectively.

Step 2 (input): For any base block B ∈ F1, construct

a strictly h2-cyclic s-FG(3, (L1, L2 . . . , Ls, LT ), |B|g2h2) of type (g2h2)
|B|

on B × Ig2 × Zh2
with the group set {{x} × Ig2 × Zh2

: x ∈ B}.

• Denote the family of base blocks of the j-th subdesign H(|B|, g2h2, Lj , 2) by Aj

B for 1 ≤ j
≤ s, and denote the family of all the other base blocks by DB .

Step 3 (input): For any base block B ∈ F2, construct

an h2-cyclic H(|B|, g2h2, LT , 3)

on B × Ig2 × Zh2
with the group set {{x} × Ig2 × Zh2

: x ∈ B}.

• Denote the family of base blocks of this design by D′
B .

Step 4 (mapping): Let

Aj =
⋃

B∈F1

Aj
B for 1 ≤ j ≤ s, D = (

⋃

B∈F1

DB)
⋃

(
⋃

B∈F2

D′
B).

For each C ∈ (
⋃

1≤j≤s
Aj)

⋃
D and each (x, y, z, u) ∈ C, define a mapping

τ : (x, y, z, u) 7−→ (x+ zg1, y + uh1n).

Define τ (C) = {τ (c) : c ∈ C}. Let

A∗
j =

⋃

C∈Aj

τ (C), 1 ≤ j ≤ s, D∗ =
⋃

C∈D

τ (C).

Step 5 (final): Take

A′
j = {A+ δ : A ∈ A∗

j , δ ∈ Zh1h2n}, D′ = {A+ δ : A ∈ D∗, δ ∈ Zh1h2n},

where A+ δ = {(x, y + δ) (mod (−, h1h2n)) : (x, y) ∈ A}. Let H ′ = {0, n, . . . , (h1h2 − 1)n} be a
subgroup of order h1h2 in Zh1h2n, and H ′

i = H ′ + i be a coset of H ′ in Zh1h2n, 0 ≤ i < n. Take

X ′ = Ig1g2 × Zh1h2n, G′ = {Ig1g2 ×H ′
i : 0 ≤ i < n}.

Then (X ′,G′,A1
′, . . . ,As

′,D′) is the required strictly (g1g2, h1h2)-regular s-FG(3, (L1, L2, . . . , Ls,
LT ), g1g2h1h2n) of type (g1g2h1h2)

n.

Figure 3: Algorithm in Construction 7.3

The following example illustrates the algorithm presented in Figure 3.

Example 7.4 In this example, we construct an optimal 2-D (8× 4, 4, 2)-OOC.

• Step 1: First we construct a strictly (2, 2)-regular 1-FG(3, (2, 4), 8) of type 42 as
follows.

(1) Take a strictly (2, 2)-regular 0-FG(3, (∅, 4), 8) of type 42 (X,G, ∅,T ) on X =
I2 × Z4 with the group set G = {I2 × Hi : 0 ≤ i < 2}, where H0 = {0, 2} is a
subgroup of order 2 in Z4 and H1 = {1, 3}. It exists by Example 6.15. Denote the
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family of base blocks of this design by F2. It follows that F2 generates all the blocks
of T and |F2| = 3.

(2) Collect all 2-subsets from distinct groups of G into a set B. Then (X,G ∪B) is
a 2-design. Hence, (X,G,B,T ) is a strictly (2, 2)-regular 1-FG(3, (2, 4), 8) of type
42. Take

F1 = {{(0, 0), (0, 1)}, {(0, 0), (1, 1)}, {(1, 0), (1, 1)}, {(0, 0), (1, 3)}}.

F1 generates all the blocks of B.

• Step 2: For each B ∈ F1, construct a strictly 1-cyclic 0-FG(3, (∅, 4), 8) of type 42

on B× I4×Z1 with the group set {{x}× I4×Z1 : x ∈ B}, which can be taken from
Example 6.1. Denote the family of base blocks of this design by DB, and |DB | = 12.

• Step 3: For each B ∈ F2, construct a 1-cyclic H(4, 4, 4, 3) on B × I4 ×Z1 with the
group set {{x}× I4×Z1 : x ∈ B}, which exists by Corollary 7.6. Denote the family
of base blocks of this design by D′

B, and |D′
B | = 64.

• Step 4: Let D = (
⋃

B∈F1
DB)

⋃

(
⋃

B∈F2
D′

B). For each C ∈ D and each (x, y, z, u) ∈
C, define a mapping τ : (x, y, z, u) 7−→ (x+ 2z, y + 4u). Define τ(C) = {τ(c) : c ∈
C}. Let D∗ =

⋃

C∈D
τ(C). Then |D∗| = 240, which is just the number of base

blocks in a strictly (8, 2)-regular 0-FG(3, (∅, 4), 32) of type 162.

• Step 5: Let D′ = {A+ δ : A ∈ D∗, δ ∈ Z4}, where A+ δ = {(x, y+ δ) (mod (−, 4)) :
(x, y) ∈ A}. Let H ′ = {0, 2} be a subgroup of order 2 in Z4, and H ′

1 = {1, 3}. Take
X ′ = I8 × Z4 and G′ = {I8 ×H ′

i : 0 ≤ i < 2}. Then (X ′,G′, ∅,D′) is the required
strictly (8, 2)-regular 0-FG(3, (∅, 4), 32) of type 162.

• Step 6: Apply Construction 6.14. Fill in the groups of the resulting strictly (8, 2)-
regular 0-FG(3, (∅, 4), 32) of type 162 with an optimal strictly 2-cyclic 3-(8×2, 4, 1)
packing with 68 base blocks, which exists by Example 7.2. We have an optimal
strictly 4-cyclic 3-(8×4, 4, 1) packing with 308 base blocks, which achieves the upper
bound in Theorem 5.7 and is an optimal 2-D (8×4, 4, 2)-OOC with 308 codewords.
Hence Φ(8× 4, 4, 2) = J∗(8× 4) = 308.

Step 1: Start from an h1-cyclic H(n, g1h1,K, t) (X,G,B), where X = In × Ig1 × Zh1
and

G = {{x} × Ig1 × Zh1
: x ∈ In}.

• Denote the family of base blocks of this design by F .

Step 2 (input): For any base block B ∈ F , construct an h2-cyclic H(|B|, g2h2, L, t) on
B × Ig2 × Zh2

with the group set {{x} × Ig2 × Zh2
: x ∈ B}.

• Denote the family of base blocks of this design by DB .

Step 3 (mapping): Let D =
⋃

B∈F DB . For each C ∈ D and each (x, y, z, u, v) ∈ C, define a
mapping

τ : (x, y, z, u, v) 7−→ (x, y + ug1, z + vh1).

Define τ (C) = {τ (c) : c ∈ C}. Let D∗ =
⋃

C∈D
τ (C).

Step 4 (final): Take
D′ = {D + δ : D ∈ D∗, δ ∈ Zh1h2

},

where D + δ = {(x, y, z + δ) (mod (−,−, h1h2)) : (x, y, z) ∈ D}. Take

X ′ = In × Ig1g2 × Zh1h2
, G′ = {{x} × Ig1g2 × Zh1h2

: x ∈ In}.

Then (X ′,G′,D′) is the required h1h2-cyclic H(n, g1g2h1h2, L, t).

Figure 4: Algorithm in Construction 7.5
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Construction 7.5 (Weighting Construction-III) Suppose that the following exist:

(1) an h1-cyclic H(n, g1h1,K, t);

(2) an h2-cyclic H(k, g2h2, L, t) for each k ∈ K.

Then there exists an h1h2-cyclic H(n, g1g2h1h2, L, t).

Corollary 7.6 For any h ≥ 1 and n ≥ 4, n 6= 5, if gn is even and g(n − 1)(n − 2)
is divisible by 3, then there is an h-cyclic H(n, gh, 4, 3). For any h ≥ 1 and n = 5, an
h-cyclic H(5, gh, 4, 3) exists if g is even, g 6= 2 and g 6≡ 10, 26 (mod 48).

Proof By Lemma 6.25, for any h ≥ 1, there exists a semi-cyclic H(4, h, 4, 3) (i.e., an
h-cyclic H(4, h, 4, 3)). Apply Construction 7.5 with h1 = g2 = 1, g1 = g and h2 = h.
Combine the results of Lemma 6.22 to complete the proof. ✷

8 Small orders of optimal 2-D (u× v, 4, 2)-OOCs

In this section, we obtain some small orders of optimal 2-D OOCs. Some of them
are obtained by computer search, and some of them are obtained by applying filling
constructions in Section 6.

Lemma 8.1 There exists an optimal 2-D (u × v, 4, 2)-OOC with J∗(u × v) codewords
for each (u, v) ∈ {(3, 3), (2, 6), (3, 4), (6, 2), (7, 2), (2, 11)}.

Proof We here give a construction of a 3-(uv, 4, 1)-packing on Iuv. Let α = (0 1 · · · v−
1)(v v+ 1 · · · 2v − 1) · · · ((u− 1)v · · · uv − 1) be a permutation on Iuv, which consists
of u cycles of length v. Let G be the group generated by α. Only base blocks are listed
below. All other blocks are obtained by developing these base blocks under the action of
G. Obviously this design is isomorphic to a strictly v-cyclic 3-(u×v, 4, 1)-packing, which
achieves the upper bound in Theorem 5.7, and is an optimal 2-D (u× v, 4, 2)-OOC.

(u, v) = (3, 3): {0, 1, 3, 4} {0, 1, 5, 6} {0, 1, 7, 8} {0, 3, 6, 8} {0, 4, 5, 7} {3, 4, 7, 8}
(u, v) = (2, 6): {0, 1, 2, 6} {0, 1, 3, 8} {0, 1, 4, 7} {0, 1, 9, 10} {0, 2, 8, 10} {0, 6, 7, 9}

{0, 6, 10, 11} {0, 7, 8, 11}
(u, v) = (3, 4): {0, 2, 4, 5} {0, 1, 2, 8} {0, 1, 4, 9} {0, 1, 5, 7} {0, 1, 6, 10} {0, 4, 7, 10}

{0, 4, 8, 11} {0, 5, 6, 11} {0, 5, 8, 10} {0, 6, 8, 9} {0, 7, 9, 11} {4, 5, 6, 9}
(u, v) = (6, 2): {0, 1, 2, 4} {0, 1, 6, 8} {0, 2, 5, 9} {0, 2, 3, 6} {0, 2, 7, 8} {0, 2, 10, 11}

{0, 3, 4, 7} {0, 3, 8, 9} {0, 4, 5, 6} {0, 4, 8, 10} {0, 4, 9, 11} {0, 5, 7, 10}
{0, 5, 8, 11} {0, 6, 7, 11} {0, 6, 9, 10} {2, 3, 4, 9} {2, 4, 5, 10} {2, 4, 6, 7}
{2, 4, 8, 11} {2, 5, 7, 11} {2, 6, 8, 10} {2, 6, 9, 11} {2, 7, 9, 10} {4, 6, 8, 9}
{4, 7, 10, 11}

(u, v) = (7, 2): {0, 1, 2, 4} {0, 1, 6, 8} {0, 1, 10, 12} {0, 2, 3, 7} {0, 2, 5, 10} {0, 2, 6, 13}
{0, 2, 8, 11} {0, 2, 9, 12} {0, 3, 4, 6} {0, 3, 8, 10} {0, 3, 9, 11} {0, 3, 12, 13}
{0, 4, 5, 13} {0, 4, 7, 10} {0, 4, 8, 9} {0, 4, 11, 12} {0, 5, 6, 9} {0, 5, 7, 11}
{0, 5, 8, 12} {0, 6, 7, 12} {0, 6, 10, 11} {0, 7, 8, 13} {0, 9, 10, 13} {2, 3, 4, 9}
{2, 3, 10, 12} {2, 4, 5, 6} {2, 4, 7, 12} {2, 4, 8, 13} {2, 4, 10, 11} {2, 5, 9, 13}
{2, 5, 11, 12} {2, 6, 7, 11} {2, 6, 8, 12} {2, 6, 9, 10} {2, 7, 8, 9} {2, 7, 10, 13}
{4, 5, 8, 10} {4, 6, 7, 9} {4, 6, 8, 11} {4, 6, 12, 13} {4, 7, 11, 13} {4, 9, 10, 12}
{6, 8, 10, 13} {6, 9, 11, 13}

(u, v) = (2, 11): {0, 1, 2, 4} {0, 1, 5, 7} {0, 1, 6, 9} {0, 1, 8, 11} {0, 1, 12, 13} {0, 1, 14, 15}
{0, 1, 16, 17} {0, 1, 18, 19} {0, 1, 20, 21} {0, 2, 5, 11} {0, 2, 12, 14} {0, 2, 13, 15}
{0, 2, 16, 19} {0, 2, 17, 21} {0, 2, 18, 20} {0, 3, 7, 12} {0, 3, 11, 15} {0, 3, 13, 16}
{0, 3, 17, 19} {0, 3, 18, 21} {0, 4, 11, 18} {0, 4, 12, 15} {0, 4, 13, 17} {0, 4, 19, 21}
{0, 5, 12, 17} {0, 5, 13, 18} {0, 5, 14, 19} {0, 5, 15, 20} {0, 5, 16, 21} {0, 11, 14, 21}
{0, 11, 17, 20} {0, 12, 16, 20} {11, 12, 13, 17} {11, 12, 14, 19} {11, 12, 18, 20}
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Lemma 8.2 There exists a strictly (2, 6)-regular 0-FG(3, (∅, 4), 24) of type 122.

Proof We here give a construction of a 0-FG(3, (∅, 4), 24) of type 122 on I24 with the
group set {{2i + j : 0 ≤ i ≤ 11} : 0 ≤ j ≤ 1}. Let α = (0 1 · · · 11)(12 13 · · · 23)
be a permutation on I24, which consists of 2 cycles of length 12. Let G be the group
generated by α. Only base blocks are listed below. All other blocks are obtained by
developing these base blocks under the action of G. Obviously this design is isomorphic
to a strictly (2, 6)-regular 0-FG(3, (∅, 4), 24) of type 122.

{0, 1, 2, 5} {0, 1, 3, 8} {0, 1, 6, 9} {0, 1, 7, 12} {0, 1, 10, 13} {0, 1, 14, 15} {0, 1, 16, 17}
{0, 1, 18, 19} {0, 1, 20, 21} {0, 1, 22, 23} {0, 2, 9, 13} {0, 2, 17, 19} {0, 2, 21, 23} {0, 3, 12, 19}
{0, 3, 13, 18} {0, 3, 14, 21} {0, 3, 17, 22} {0, 3, 20, 23} {0, 4, 13, 19} {0, 4, 15, 23} {0, 4, 17, 21}
{0, 5, 12, 21} {0, 5, 13, 20} {0, 5, 14, 23} {0, 5, 15, 18} {0, 5, 19, 22} {0, 6, 13, 21} {0, 12, 13, 15}
{0, 12, 17, 23} {0, 13, 16, 23} {12, 13, 14, 21} {12, 13, 16, 19} {12, 13, 17, 22}

Lemma 8.3 There exists an optimal 2-D (2× 12, 4, 2)-OOC with J∗(2× 12) = 41 code-
words.

Proof Start from a strictly (2, 6)-regular 0-FG(3, (∅, 4), 24) of type 122, which exists
by Lemma 8.2. Apply Construction 6.14 with an optimal strictly 6-cyclic 3-(2 × 6, 4, 1)
packing from Lemma 8.1 to obtain a strictly 12-cyclic 3-(2 × 12, 4, 1) packing with 41
base blocks, which achieves the upper bound in Theorem 5.7, and is an optimal 2-D
(2× 12, 4, 2)-OOC with 41 codewords. ✷

Lemma 8.4 There exists a strictly 2-cyclic 0-FG(3, (∅, 4), 24) of type 122.

Proof We here give a construction of a 0-FG(3, (∅, 4), 24) of type 122 on I24 with the
group set {{0, 1, . . . , 11} +i : i ∈ {0, 12}}. Let α = (0 1)(2 3) · · · (22 23) be a permu-
tation on I24 and G be the group generated by α. Only base blocks are listed below.
All other blocks are obtained by developing these base blocks under the action of G.
Obviously this design is isomorphic to a strictly 2-cyclic 0-FG(3, (∅, 4), 24) of type 122.

{0, 1, 12, 14} {0, 1, 16, 18} {0, 1, 20, 22} {0, 2, 12, 13} {0, 2, 14, 15} {0, 2, 16, 17} {0, 2, 18, 19}
{0, 2, 20, 21} {0, 2, 22, 23} {0, 3, 12, 15} {0, 3, 13, 14} {0, 3, 16, 19} {0, 3, 17, 18} {0, 3, 20, 23}
{0, 3, 21, 22} {0, 4, 12, 16} {0, 4, 13, 17} {0, 4, 14, 20} {0, 4, 15, 21} {0, 4, 18, 22} {0, 4, 19, 23}
{0, 5, 12, 17} {0, 5, 13, 20} {0, 5, 14, 22} {0, 5, 15, 18} {0, 5, 16, 23} {0, 5, 19, 21} {0, 6, 12, 19}
{0, 6, 13, 16} {0, 6, 14, 21} {0, 6, 15, 20} {0, 6, 17, 22} {0, 6, 18, 23} {0, 7, 12, 20} {0, 7, 13, 21}
{0, 7, 14, 18} {0, 7, 15, 19} {0, 7, 16, 22} {0, 7, 17, 23} {0, 8, 12, 18} {0, 8, 13, 19} {0, 8, 14, 23}
{0, 8, 15, 22} {0, 8, 16, 20} {0, 8, 17, 21} {0, 9, 12, 21} {0, 9, 13, 18} {0, 9, 14, 16} {0, 9, 15, 23}
{0, 9, 17, 20} {0, 9, 19, 22} {0, 10, 12, 22} {0, 10, 13, 23} {0, 10, 14, 17} {0, 10, 15, 16} {0, 10, 18, 21}
{0, 10, 19, 20} {0, 11, 12, 23} {0, 11, 13, 22} {0, 11, 14, 19} {0, 11, 15, 17} {0, 11, 16, 21} {0, 11, 18, 20}
{2, 3, 12, 14} {2, 3, 16, 18} {2, 3, 20, 22} {2, 4, 12, 17} {2, 4, 13, 18} {2, 4, 14, 21} {2, 4, 15, 20}
{2, 4, 16, 23} {2, 4, 19, 22} {2, 5, 12, 18} {2, 5, 13, 19} {2, 5, 14, 23} {2, 5, 15, 22} {2, 5, 16, 20}
{2, 5, 17, 21} {2, 6, 12, 16} {2, 6, 13, 17} {2, 6, 14, 20} {2, 6, 15, 21} {2, 6, 18, 22} {2, 6, 19, 23}
{2, 7, 12, 19} {2, 7, 13, 20} {2, 7, 14, 22} {2, 7, 15, 17} {2, 7, 16, 21} {2, 7, 18, 23} {2, 8, 12, 22}
{2, 8, 13, 23} {2, 8, 14, 16} {2, 8, 15, 18} {2, 8, 17, 20} {2, 8, 19, 21} {2, 9, 12, 23} {2, 9, 13, 22}
{2, 9, 14, 17} {2, 9, 15, 16} {2, 9, 18, 21} {2, 9, 19, 20} {2, 10, 12, 21} {2, 10, 13, 16} {2, 10, 14, 19}
{2, 10, 15, 23} {2, 10, 17, 22} {2, 10, 18, 20} {2, 11, 12, 20} {2, 11, 13, 21} {2, 11, 14, 18} {2, 11, 15, 19}
{2, 11, 16, 22} {2, 11, 17, 23} {4, 5, 12, 14} {4, 5, 16, 18} {4, 5, 20, 22} {4, 6, 12, 22} {4, 6, 13, 23}
{4, 6, 14, 17} {4, 6, 15, 16} {4, 6, 18, 21} {4, 6, 19, 20} {4, 7, 12, 23} {4, 7, 13, 22} {4, 7, 14, 16}
{4, 7, 15, 18} {4, 7, 17, 20} {4, 7, 19, 21} {4, 8, 12, 13} {4, 8, 14, 15} {4, 8, 16, 17} {4, 8, 18, 19}
{4, 8, 20, 21} {4, 8, 22, 23} {4, 9, 12, 20} {4, 9, 13, 21} {4, 9, 14, 18} {4, 9, 15, 19} {4, 9, 16, 22}
{4, 9, 17, 23} {4, 10, 12, 19} {4, 10, 13, 20} {4, 10, 14, 22} {4, 10, 15, 17} {4, 10, 16, 21} {4, 10, 18, 23}
{4, 11, 12, 15} {4, 11, 13, 14} {4, 11, 16, 19} {4, 11, 17, 18} {4, 11, 20, 23} {4, 11, 21, 22} {6, 7, 12, 14}
{6, 7, 16, 18} {6, 7, 20, 22} {6, 8, 12, 15} {6, 8, 13, 14} {6, 8, 16, 19} {6, 8, 17, 18} {6, 8, 20, 23}
{6, 8, 21, 22} {6, 9, 12, 17} {6, 9, 13, 20} {6, 9, 14, 22} {6, 9, 15, 18} {6, 9, 16, 23} {6, 9, 19, 21}
{6, 10, 12, 13} {6, 10, 14, 15} {6, 10, 16, 17} {6, 10, 18, 19} {6, 10, 20, 21} {6, 10, 22, 23} {6, 11, 12, 18}
{6, 11, 13, 19} {6, 11, 14, 23} {6, 11, 15, 22} {6, 11, 16, 20} {6, 11, 17, 21} {8, 9, 12, 14} {8, 9, 16, 18}
{8, 9, 20, 22} {8, 10, 12, 17} {8, 10, 13, 18} {8, 10, 14, 20} {8, 10, 15, 21} {8, 10, 16, 23} {8, 10, 19, 22}
{8, 11, 12, 16} {8, 11, 13, 17} {8, 11, 14, 21} {8, 11, 15, 20} {8, 11, 18, 22} {8, 11, 19, 23} {10, 11, 12, 14}
{10, 11, 16, 18} {10, 11, 20, 22}
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Lemma 8.5 There exists an optimal 2-D (12 × 2, 4, 2)-OOC with J∗(12 × 2) = 248
codewords.

Proof Start from a strictly 2-cyclic 0-FG(3, (∅, 4), 24) of type 122, which exists by
Lemma 8.4. Applying Construction 6.6 with an optimal strictly 2-cyclic 3-(6 × 2, 4, 1)
packing from Lemma 8.1, we have a strictly 2-cyclic 3-(12×2, 4, 1) packing with 248 base
blocks. This number achieves the upper bound in Theorem 5.7. Thus an optimal 2-D
(12× 2, 4, 2)-OOC with 248 codewords exists. ✷

Lemma 8.6 There exists a strictly (2, 3)-regular 0-FG(3, (∅, 4), 30) of type 65.

Proof We here give a construction of a 0-FG(3, (∅, 4), 30) of type 65 on I30 with the
group set {{5i + j : 0 ≤ i ≤ 5} : 0 ≤ j ≤ 4}. Let α = (0 1 · · · 14)(15 16 · · · 29) be a
permutation on I30, which consists of 2 cycles of length 15. Let G be the group generated
by α. Only base blocks are listed below. All other blocks are obtained by developing
these base blocks under the action of G. Obviously this design is isomorphic to a strictly
(2, 3)-regular 0-FG(3, (∅, 4), 30) of type 65.

{0, 1, 2, 4} {0, 1, 5, 6} {0, 1, 7, 9} {0, 1, 8, 12} {0, 1, 13, 15} {0, 1, 16, 17} {0, 1, 18, 19}
{0, 1, 20, 21} {0, 1, 22, 23} {0, 1, 24, 25} {0, 1, 26, 27} {0, 1, 28, 29} {0, 2, 5, 12} {0, 2, 6, 11}
{0, 2, 7, 15} {0, 2, 10, 16} {0, 2, 18, 20} {0, 2, 19, 21} {0, 2, 22, 24} {0, 2, 23, 25} {0, 2, 26, 28}
{0, 2, 27, 29} {0, 3, 6, 15} {0, 3, 7, 16} {0, 3, 9, 19} {0, 3, 18, 21} {0, 3, 20, 23} {0, 3, 22, 26}
{0, 3, 24, 29} {0, 3, 25, 28} {0, 4, 15, 19} {0, 4, 16, 20} {0, 4, 17, 24} {0, 4, 18, 22} {0, 4, 21, 27}
{0, 4, 23, 26} {0, 4, 25, 29} {0, 5, 16, 22} {0, 5, 17, 27} {0, 5, 18, 23} {0, 5, 19, 24} {0, 5, 26, 29}
{0, 6, 17, 22} {0, 6, 18, 24} {0, 6, 19, 28} {0, 6, 20, 26} {0, 6, 21, 29} {0, 6, 23, 27} {0, 7, 17, 25}
{0, 7, 18, 26} {0, 7, 19, 27} {0, 7, 20, 24} {0, 7, 22, 29} {0, 7, 23, 28} {0, 15, 17, 29} {0, 15, 21, 28}
{0, 15, 24, 27} {0, 16, 19, 25} {0, 16, 23, 29} {0, 16, 24, 28} {15, 16, 17, 28} {15, 16, 19, 23} {15, 16, 20, 22}
{15, 16, 21, 25} {15, 16, 24, 26} {15, 17, 20, 27}

Lemma 8.7 There exists an optimal 2-D (2× 15, 4, 2)-OOC with J∗(2× 15) = 67 code-
words.

Proof Start from a strictly (2, 3)-regular 0-FG(3, (∅, 4), 30) of type 65, which exists
by Lemma 8.6. Apply Construction 6.14 with an optimal strictly 3-cyclic 3-(2 × 3, 4, 1)
packing from Example 3.3 to obtain a strictly 15-cyclic 3-(2 × 15, 4, 1) packing with 67
base blocks, which achieves the upper bound in Theorem 5.7, and is an optimal 2-D
(2× 15, 4, 2)-OOC with 67 codewords. ✷

Lemma 8.8 There exists a strictly (3, 2)-regular 0-FG(3, (∅, 4), 30) of type 65.

Proof We here give a construction of a 0-FG(3, (∅, 4), 30) of type 65 on I30 with the group
set {{5i + j : 0 ≤ i ≤ 5} : 0 ≤ j ≤ 4}. Let α = (0 1 · · · 9)(10 11 · · · 19)(20 21 · · · 29)
and β = (0 10 20)(1 11 21) · · · (9 19 29) be two permutations on I30 and G be the group
generated by α and β. Only base blocks are listed below. All other blocks are obtained by
developing these base blocks under the action of G. Obviously this design is isomorphic
to a (3, 2)-regular 0-FG(3, (∅, 4), 30) of type 65.

{0, 1, 2, 4} {0, 1, 5, 7} {0, 1, 6, 10} {0, 1, 8, 11} {0, 1, 12, 13} {0, 1, 14, 15} {0, 1, 16, 17} {0, 1, 18, 20}
{0, 1, 19, 22} {0, 1, 21, 23} {0, 2, 7, 26} {0, 2, 11, 22} {0, 2, 12, 18} {0, 2, 14, 20} {0, 2, 15, 17} {0, 2, 16, 21}
{0, 2, 23, 29} {0, 2, 24, 28} {0, 3, 6, 24} {0, 3, 10, 14} {0, 3, 11, 18} {0, 3, 12, 27} {0, 3, 15, 23} {0, 3, 16, 20}
{0, 3, 17, 28} {0, 3, 19, 26} {0, 4, 10, 21} {0, 4, 12, 26} {0, 4, 15, 19} {0, 4, 17, 27} {0, 5, 11, 27} {0, 5, 12, 21}
{0, 5, 13, 28}
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Lemma 8.9 There exists an optimal 2-D (3 × 10, 4, 2)-OOC with J∗(3 × 10) = 100
codewords.

Proof Start from a strictly (3, 2)-regular 0-FG(3, (∅, 4), 30) of type 65, which exists
by Lemma 8.8. Apply Construction 6.14 with an optimal strictly 2-cyclic 3-(3 × 2, 4, 1)
packing from Example 3.3 to obtain a strictly 10-cyclic 3-(3× 10, 4, 1) packing with 100
base blocks, which achieves the upper bound in Theorem 5.7, and is an optimal 2-D
(3× 10, 4, 2)-OOC with 100 codewords. ✷

Lemma 8.10 Let n ≡ 18 (mod 24). If there is an optimal 1-D (n, 4, 2)-OOC, which
achieves the Johnson bound J(1×n, 4, 2) = ⌊14⌊

n−1
3 ⌊n−2

2 ⌋⌋⌋, then for any integer factor-
ization n = uv, there is an optimal 2-D (u×v, 4, 2)-OOC with J∗(u×v) = ⌊u4 (⌊

n−1
3 ⌊n−2

2 ⌋⌋−
1)⌋ codewords.

Proof By Corollary 2.2, if there exists an optimal 1-D (uv, 4, 2)-OOC with J(1×uv, 4, 2)
codewords, then there exists a 2-D (u×v, 4, 2)-OOC with uJ(1×uv, 4, 2) codewords. It is
readily checked that uJ(1×uv, 4, 2) = u(u2v2 − 3uv− 6)/24 = ⌊u4 (⌊

uv−1
3 ⌊uv−2

2 ⌋⌋− 1)⌋ =
J∗(u× v). This number achieves the upper bound in Theorem 5.7. This completes the
proof. ✷

Note that when n ≡ 18 (mod 24), J(1×n, 4, 2) = ⌊14⌊
n−1
3 ⌊n−2

2 ⌋⌋⌋ = ⌊14(⌊
n−1
3 ⌊n−2

2 ⌋⌋−
1)⌋. Hence no confusion occurs in Lemma 8.10. By Lemma 2.6(3), there is an optimal
1-D (n, 4, 2)-OOC with J(1× n, 4, 2) codewords for each n ∈ {18, 42, 90}. Then we have

Corollary 8.11 Let n ∈ {18, 42, 90}. For any integer factorization n = n1n2, there is
an optimal 2-D (n1 × n2, 4, 2)-OOC with J∗(n1 × n2) codewords.

Lemma 8.12 There exists an optimal 2-D (u × v, 4, 2)-OOC with J∗(u× v) codewords
for each (u, v) ∈ {(5, 4), (7, 4), (6, 5)}.

Proof Apply Theorem 2.1 with some known optimal 2-D (u1 × v1, 4, 2)-OOCs. One
can have all the required optimal 2-D (u× v, 4, 2)-OOCs. For illustrating the details, we
give the following table.

(u1, v1) Source number of codewords ⇒ (u, v) number of codewords J∗(u× v)

(1, 20) Lemma 2.6 14 (5, 4) 70 70

(1, 28) Lemma 2.6 29 (7, 4) 203 203

(2, 15) Lemma 8.7 67 (6, 5) 201 201

9 Infinite families of optimal 2-D (u× v, 4, 2)-OOCs

In this section, on one hand we shall give some infinite families of optimal 2-D (u×v, 4, 2)-
OOCs, which will be presented as Theorems. On the other hand, although we can not
complete the existence of optimal 2-D (u×v, 4, 2)-OOCs, we hope to present some possible
approaches to complete it, which will be presented as Propositions.

Lemma 9.1 There exists an optimal 2-D (u × 2, 4, 2)-OOC with J∗(u × 2) codewords
for any u ≡ 2, 4 (mod 6).
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Proof Let n = u/2. Then n ≡ 1, 2 (mod 3). When n = 1, an optimal 2-D (2× 2, 4, 2)-
OOC is trivial without base blocks. In the following consider n ≥ 2. First we shall show
that there is a strictly 2-cyclic 0-FG(3, (∅, 4), 4n) of type 4n for any n ≡ 1, 2 (mod 3) and
n ≥ 2. When n = 2, a strictly 2-cyclic 0-FG(3, (∅, 4), 8) of type 42 exists by Example
6.7. When n ≡ 1, 2 (mod 3), n ≥ 4 and n 6= 5, start from a 1-FG(3, (2, n), n) of type
1n, which contains one block of size n and all 2-subsets of n points. Apply Construction
7.1 with h1 = 1 and h2 = 2 to obtain a strictly 2-cyclic 0-FG(3, (∅, 4), 4n) of type 4n,
where the needed 2-cyclic H(n, 4, 4, 3) is from Corollary 7.6. When n = 5, there is a
strictly cyclic 0-FG(3, (∅, 4), 20) of type 45 from Lemma 6.12. By Lemma 6.17, it implies
a strictly 2-cyclic 0-FG(3, (∅, 4), 20) of type 45.

Next applying Construction 6.6 with an optimal strictly 2-cyclic 3-(2×2, 4, 1) packing,
which is trivial without base blocks, we have a strictly 2-cyclic 3-(2n × 2, 4, 1) packing,
which contains ⌊2n4 (⌊4n−1

3 ⌊4n−2
2 ⌋⌋ − 1)⌋ = n(n− 1)(4n + 1)/3 base blocks. This number

achieves the upper bound in Theorem 5.7. Thus an optimal 2-D (2n× 2, 4, 2)-OOC with
J∗(2n × 2) codewords exists. It is an optimal 2-D (u × 2, 4, 2)-OOC with J∗(u × 2)
codewords. ✷

Proposition 9.2 Let v ≡ 1 (mod 2) or v ≡ 0 (mod 4). Suppose that there is an optimal
2-D (2×v, 4, 2)-OOC with J∗(2×v) codewords. Then there is an optimal 2-D (u×v, 4, 2)-
OOC with J∗(u× v) codewords for any u ≡ 2, 4 (mod 6). Especially when v ≡ 1, 5 (mod
6), the resulting optimal 2-D (u× v, 4, 2)-OOC is perfect.

Proof Let n = u/2. Then n ≡ 1, 2 (mod 3). When n = 1, the conclusion follows from
the assumption. In the following consider n ≥ 2. First we shall show that there is a
strictly v-cyclic 0-FG(3, (∅, 4), 2vn) of type (2v)n for any n ≡ 1, 2 (mod 3) and n ≥ 2.
When n = 2, a strictly v-cyclic 0-FG(3, (∅, 4), 4v) of type (2v)2 is from Corollary 6.18.
When n ≡ 1, 2 (mod 3), n ≥ 4 and n 6= 5, start from a 1-FG(3, (2, n), n) of type 1n,
which contains a block of size n and all 2-subsets of n points. Apply Construction 7.1
with h1 = 1 and h2 = v to obtain a strictly v-cyclic 0-FG(3, (∅, 4), 2vn) of type (2v)n,
where the needed v-cyclic H(n, 2v, 4, 3) is from Corollary 7.6. When n = 5, there is a
strictly cyclic 0-FG(3, (∅, 4), 10v) of type (2v)5 from Lemma 6.12. By Lemma 6.17, it
implies a strictly v-cyclic 0-FG(3, (∅, 4), 10v) of type (2v)5.

Next apply Construction 6.6 with an optimal strictly v-cyclic 3-(2 × v, 4, 1) packing
with J∗(2× v) base blocks, which exists by assumption. Note that by Theorem 5.7,

J∗(2× v) =























⌊24⌊
2v−1
3 ⌊2v−2

2 ⌋⌋⌋, if v ≡ 1, 5 (mod 6),

⌊24 (⌊
2v−1
3 ⌊2v−2

2 ⌋⌋ − 1)⌋, if v ≡ 3 (mod 6) or v ≡ 4, 8 (mod 12),

⌊24 (⌊
2v−1
3 ⌊2v−2

2 ⌋⌋ − 2)⌋, if v ≡ 0 (mod 12).

Then we have a strictly v-cyclic 3-(2n × v, 4, 1) packing, which contains






































n(nv − 1)(2nv − 1)/6 = ⌊2n4 ⌊2nv−1
3 ⌊2nv−2

2 ⌋⌋⌋, if v ≡ 1, 5 (mod 6),

n(2n2v2 − 3nv − 3)/6 = ⌊2n4 (⌊2nv−1
3 ⌊2nv−2

2 ⌋⌋ − 1)⌋, if v ≡ 3 (mod 6),

n(nv − 2)(2nv + 1)/6 = ⌊2n4 (⌊2nv−1
3 ⌊2nv−2

2 ⌋⌋ − 1)⌋, if v ≡ 4, 8 (mod 12),

n(2n2v2 − 3nv − 6)/6 = ⌊2n4 (⌊2nv−1
3 ⌊2nv−2

2 ⌋⌋ − 2)⌋, if v ≡ 0 (mod 12),
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base blocks. This number achieves the upper bound in Theorem 5.7. Thus an optimal
2-D (2n×v, 4, 2)-OOC with J∗(2n×v) codewords exists. It is an optimal 2-D (u×v, 4, 2)-
OOC with J∗(u × v) codewords. Especially by Lemma 3.4, when v ≡ 1, 5 (mod 6), the
resulting optimal 2-D (u× v, 4, 2)-OOC is perfect. ✷

Lemma 9.3 There is an optimal 2-D (2× 2n, 4, 2)-OOC with J∗(2× 2n) codewords for
any positive integer n.

Proof When n = 1, an optimal 2-D (2×2, 4, 2)-OOC is trivial without codewords. When
n = 2, the conclusion follows from Example 6.15. When n ≥ 3, by Lemma 6.12 there
exists a strictly cyclic 0-FG(3, (∅, 4), 2n+1) of type (2n)2, denoted by (X,G, ∅,T ), which
is also a strictly (1, 2n)-regular 0-FG(3, (∅, 4), 2n+1) of type (2n)2. Collect all 2-subsets
from distinct groups of G into a set B. Then (X,G,B,T ) is a strictly (1, 2n)-regular
1-FG(3, (2, 4), 2n+1) of type (2n)2. Start from this 1-FG and apply Construction 7.3
with h1 = 2n and h2 = 1 to obtain a strictly (2, 2n)-regular 0-FG(3, (∅, 4), 2n+2) of type
(2n+1)2, where the needed strictly 1-cyclic 0-FG(3, (∅, 4), 4) of type 22 is from Theorem
6.4, and the needed 1-cyclic H(4, 2, 4, 3) is from Corollary 7.6. Now use induction on n.
When n = 3, there is an optimal 2-D (2× 23, 4, 2)-OOC with J∗(2× 23) codewords from
Example 6.16. Assume that an optimal 2-D (2×2n, 4, 2)-OOC with J∗(2×2n) codewords
exists for some n ≥ 3. Then start from a strictly (2, 2n)-regular 0-FG(3, (∅, 4), 2n+2) of
type (2n+1)2, and apply Construction 6.14 with an optimal 2-D (2× 2n, 4, 2)-OOC with
J∗(2×2n) codewords to obtain an 2-D (2×2n+1, 4, 2)-OOC, which contains (2n−1)(2n+2+

1)/3 = ⌊24 (⌊
2n+2−1

3 ⌊2
n+2−2

2 ⌋⌋ − 1)⌋ codewords. This number achieves the upper bound
in Theorem 5.7 (note that for any integer n ≥ 2, 2n ≡ 4, 8 (mod 12)). Thus an optimal
2-D (2× 2n+1, 4, 2)-OOC with J∗(2× 2n+1) codewords exists. ✷

Combining the results of Proposition 9.2 and Lemmas 9.1, 9.3, we have

Theorem 9.4 There is an optimal 2-D (u × 2n, 4, 2)-OOC with J∗(u × 2n) codewords
for any u ≡ 2, 4 (mod 6) and any positive integer n.

Proposition 9.2 can only deal with the case of u ≡ 2, 4 (mod 6) and v 6≡ 2 (mod 4).
When v ≡ 2 (mod 4), we have the following proposition.

Proposition 9.5 Let u ≡ 2, 4 (mod 6) and v ≡ 2 (mod 4). Suppose that there is an
optimal 2-D (u/2×2v, 4, 2)-OOC with J∗(u/2×2v) codewords. Then there is an optimal
2-D (u× v, 4, 2)-OOC with J∗(u× v) codewords.

Proof By Theorem 2.1, if there exists an optimal 2-D (u/2×2v, 4, 2)-OOC with J∗(u/2×
2v) codewords, then there exits a 2-D (u× v, 4, 2)-OOC with 2J∗(u/2× 2v) codewords.
Note that by Theorem 5.7,

J∗(u/2× 2v) =







⌊u8 (⌊
uv−1

3 ⌊uv−2
2 ⌋⌋ − 1)⌋, if v ≡ 2, 10 (mod 12),

⌊u8 (⌊
uv−1

3 ⌊uv−2
2 ⌋⌋ − 2)⌋, if v ≡ 6 (mod 12).

It is readily checked that 2J∗(u/2 × 2v) =






u(uv + 1)(uv − 4)/24 = ⌊u4 (⌊
uv−1

3 ⌊uv−2
2 ⌋⌋ − 1)⌋, if v ≡ 2, 10 (mod 12),

u(u2v2 − 3uv − 12)/24 = ⌊u4 (⌊
uv−1

3 ⌊uv−2
2 ⌋⌋ − 2)⌋, if v ≡ 6 (mod 12).
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This number achieves the upper bound in Theorem 5.7. Thus an optimal 2-D (u×v, 4, 2)-
OOC with J∗(u× v) codewords exists. ✷

The following proposition shows another approach to obtain some optimal 2-D (u×
v, 4, 2)-OOCs with v ≡ 2 (mod 4).

Proposition 9.6 If there is a perfect 2-D (2× v, 4, 2)-OOC with v ≡ 1, 5 (mod 6), then
there is an optimal 2-D (u × 2v, 4, 2)-OOC for any u ≡ 8, 16 (mod 24) with J∗(u × 2v)
codewords.

Proof Let n = u/8. Then n ≡ 1, 2 (mod 3). There is a strictly cyclic 0-FG(3, (∅, 4), 16n)
of type (8n)2, which exists by Lemma 6.12. By Lemma 6.17, it implies a strictly 2-cyclic
0-FG(3, (∅, 4), 16n) of type (8n)2. By Lemma 6.19, if there is a perfect 2-D (2× v, 4, 2)-
OOC with v ≡ 1, 5 (mod 6), then there is a strictly (2, 1)-regular 1-FG(3, (2, 4), 2v) of
type 2v . Start from this 1-FG and apply Construction 7.3 with h1 = 1 and h2 = 2 to
obtain a strictly (8n, 2)-regular 0-FG(3, (∅, 4), 16nv) of type (16n)v , where the needed
2-cyclic H(4, 8n, 4, 3) is from Corollary 7.6. Applying Construction 6.14 with an optimal
strictly 2-cyclic 3-(8n×2, 4, 1) packing with J∗(8n×2) = ⌊8n4 (⌊16n−1

3 ⌊16n−2
2 ⌋⌋−1)⌋ base

blocks, which exists by Lemma 9.1, we have a strictly 2v-cyclic 3-(8n× 2v, 4, 1) packing,
which contains 4n(4nv− 1)(16nv+1)/3 = ⌊8n4 (⌊16nv−1

3 ⌊16nv−2
2 ⌋⌋− 1)⌋ base blocks. This

number achieves the upper bound in Theorem 5.7. Thus an optimal 2-D (8n× 2v, 4, 2)-
OOC with J∗(8n × 2v) codewords exists. It is an optimal 2-D (u × 2v, 4, 2)-OOC with
J∗(u× 2v) codewords. ✷

Theorem 9.7 Let p ≡ 7 (mod 12) be a prime or p ∈ {37, 61, 73, 109, 157, 181, 229,
277}. There exists an optimal (u × 2p, 4, 2)-OOC with J∗(u × 2p) codewords for any
u ≡ 8, 16 (mod 24).

Proof Start from a perfect 2-D (2× p, 4, 2)-OOC, which exists by Theorem 4.5. Apply
Proposition 9.6 to complete the proof. ✷

Lemma 9.8 Let v ≡ 1 (mod 2) or v ≡ 0 (mod 12). Suppose that there is an optimal 2-D
(12× v, 4, 2)-OOC with J∗(12× v) codewords. Then there is an optimal 2-D (u× v, 4, 2)-
OOC with J∗(u× v) codewords for any u ≡ 0 (mod 12).

Proof Let n = u/12. When n = 1, the conclusion follows from the assumption. When
n ≥ 2, by Theorem 6.4, there exists a 0-FG(3, (∅, 4), 6n) of type 6n (X,G, ∅,T ). Collect all
2-subsets from distinct groups of G into a set B. Then (X,G,B,T ) is a 1-FG(3, (2, 4), 6n)
of type 6n. Apply Construction 7.1 with h1 = 1 and h2 = v to obtain a strictly v-cyclic 0-
FG(3, (∅, 4), 12nv) of type (12v)n, where the needed strictly v-cyclic 0-FG(3, (∅, 4), 4v) of
type (2v)2 is from Corollary 6.18, and the needed v-cyclic H(4, 2v, 4, 3) is from Corollary
7.6. Apply Construction 6.6 with an optimal strictly v-cyclic 3-(12×v, 4, 1) packing with
J∗(12× v) base blocks, which exists by assumption. Note that by Theorem 5.7,

J∗(12× v) =







⌊124 (⌊
12v−1

3 ⌊12v−2
2 ⌋⌋ − 1)⌋, if v ≡ 1 (mod 2),

⌊124 (⌊
12v−1

3 ⌊12v−2
2 ⌋⌋ − 2)⌋, if v ≡ 0 (mod 12).
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Then we have a strictly v-cyclic 3-(12n × v, 4, 1) packing, which contains






3n(24n2v2 − 6nv − 1) = ⌊12n4 (⌊12nv−1
3 ⌊12nv−2

2 ⌋⌋ − 1)⌋, if v ≡ 1 (mod 2),

6n(12n2v2 − 3nv − 1) = ⌊12n4 (⌊12nv−1
3 ⌊12nv−2

2 ⌋⌋ − 2)⌋, if v ≡ 0 (mod 12),

base blocks. This number achieves the upper bound in Theorem 5.7. Thus an optimal 2-D
(12n× v, 4, 2)-OOC with J∗(12n× v) codewords exists. It is an optimal 2-D (u× v, 4, 2)-
OOC with J∗(u× v) codewords. ✷

The use of Lemma 9.8 depends on the existence of optimal 2-D (12 × v, 4, 2)-OOCs
with J∗(12 × v) codewords. The following lemma shows an approach to obtain some
optimal 2-D (12× v, 4, 2)-OOCs from perfect 2-D (2× v, 4, 2)-OOCs.

Lemma 9.9 Suppose that there is a perfect 2-D (2 × v, 4, 2)-OOC with v ≡ 1, 5 (mod
6). Then there is an optimal 2-D (12 × v, 4, 2)-OOC with J∗(12× v) codewords.

Proof By Lemma 6.19, if there is a perfect 2-D (2×v, 4, 2)-OOC with v ≡ 1, 5 (mod 6),
then there is a strictly (2, 1)-regular 1-FG(3, (2, 4), 2v) of type 2v . Start from this 1-FG
and apply Construction 7.3 with h1 = 1 and h2 = 1 to obtain a strictly (12, 1)-regular
0-FG(3, (∅, 4), 12v) of type 12v , where the needed strictly 1-cyclic 0-FG(3, (∅, 4), 12) of
type 62 is from Theorem 6.4, and the needed 1-cyclic H(4, 6, 4, 3) is from Corollary 7.6.
Applying Construction 6.14 with an optimal strictly 1-cyclic 3-(12×1, 4, 1) packing with
51 base blocks from Theorem 3.2, we have a strictly v-cyclic 3-(12 × v, 4, 1) packing,
which contains 72v2 − 18v − 3 = ⌊124 (⌊

12v−1
3 ⌊12v−2

2 ⌋⌋ − 1)⌋ base blocks. This number
achieves the upper bound in Theorem 5.7. Thus an optimal 2-D (12× v, 4, 2)-OOC with
J∗(12× v) codewords exists. ✷

Lemma 9.10 Let v ≡ 3 (mod 6) or v ≡ 0 (mod 12). Suppose that there is an optimal
2-D (2×v, 4, 2)-OOC with J∗(2×v) codewords. Then there is an optimal 2-D (12×v, 4, 2)-
OOC with J∗(12× v) codewords.

Proof By Proposition 9.2, if there is an optimal 2-D (2 × v, 4, 2)-OOC with J∗(2 × v)
codewords for v ≡ 3 (mod 6) or v ≡ 0 (mod 12), then there is an optimal 2-D (4×v, 4, 2)-
OOC with J∗(4× v) codewords. Note that by Theorem 5.7,

J∗(4× v) =







⌊44 (⌊
4v−1
3 ⌊4v−2

2 ⌋⌋ − 1)⌋, if v ≡ 3 (mod 6),

⌊44 (⌊
4v−1
3 ⌊4v−2

2 ⌋⌋ − 2)⌋, if v ≡ 0 (mod 12).

By Lemma 6.12, there is a strictly cyclic 0-FG(3, (∅, 4), 12v) of type (4v)3. By Lemma
6.17, it implies a strictly v-cyclic 0-FG(3, (∅, 4), 12v) of type (4v)3. Start from this strictly
v-cyclic 0-FG and apply Construction 6.6 with an optimal strictly v-cyclic 3-(4× v, 4, 1)
packing with J∗(4 × v) base blocks, which is equivalent to an optimal 2-D (4 × v, 4, 2)-
OOC with J∗(4×v) codewords, to obtain a strictly v-cyclic 3-(12×v, 4, 1) packing, which
contains







72v2 − 18v − 3 = ⌊124 (⌊
12v−1

3 ⌊12v−2
2 ⌋⌋ − 1)⌋, if v ≡ 3 (mod 6),

72v2 − 18v − 6 = ⌊124 (⌊
12v−1

3 ⌊12v−2
2 ⌋⌋ − 2)⌋, if v ≡ 0 (mod 12),

base blocks. This number achieves the upper bound in Theorem 5.7. Thus an optimal
2-D (12× v, 4, 2)-OOC with J∗(12× v) codewords exists. ✷
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Combining the results of Lemmas 9.8, 9.9 and 9.10, we have the following proposition.

Proposition 9.11 Let v ≡ 1 (mod 2) or v ≡ 0 (mod 12). Suppose that there is an
optimal 2-D (2 × v, 4, 2)-OOC with J∗(2 × v) codewords. Then there is an optimal 2-D
(u× v, 4, 2)-OOC with J∗(u× v) codewords for any u ≡ 0 (mod 12).

Lemma 9.12 There exists a strictly 3-cyclic 0-FG(3, (∅, 4), 18) of type 63.

Proof We here give a construction of a 0-FG(3, (∅, 4), 18) of type 63 on I18 with the group
set {{0, 1, 2, 3, 4, 5} +i : i ∈ {0, 6, 12}}. Let α = (0 1 2)(3 4 5)(6 7 8)(9 10 11)(12 13 14)(15
16 17) be a permutation on I18 and G be the group generated by α. Only base blocks
are listed below. All other blocks are obtained by developing these base blocks under the
action of G. Obviously this design is isomorphic to a strictly 3-cyclic 0-FG(3, (∅, 4), 18)
of type 63.

{0, 1, 6, 7} {0, 1, 8, 11} {0, 1, 9, 10} {0, 1, 12, 13} {0, 1, 14, 15} {0, 1, 16, 17} {0, 3, 6, 9}
{0, 3, 7, 8} {0, 3, 10, 11} {0, 3, 12, 15} {0, 3, 13, 16} {0, 3, 14, 17} {0, 4, 6, 12} {0, 4, 7, 14}
{0, 4, 8, 16} {0, 4, 9, 13} {0, 4, 10, 15} {0, 4, 11, 17} {0, 5, 6, 16} {0, 5, 7, 12} {0, 5, 8, 17}
{0, 5, 9, 14} {0, 5, 10, 13} {0, 5, 11, 15} {0, 6, 10, 17} {0, 6, 11, 14} {0, 6, 13, 15} {0, 7, 9, 16}
{0, 7, 11, 13} {0, 7, 15, 17} {0, 8, 9, 15} {0, 8, 10, 12} {0, 8, 13, 14} {0, 9, 12, 17} {0, 10, 14, 16}
{0, 11, 12, 16} {3, 4, 6, 7} {3, 4, 8, 11} {3, 4, 9, 10} {3, 4, 12, 17} {3, 4, 13, 14} {3, 4, 15, 16}
{3, 6, 10, 14} {3, 6, 11, 17} {3, 6, 12, 16} {3, 7, 9, 13} {3, 7, 11, 16} {3, 7, 12, 14} {3, 8, 9, 12}
{3, 8, 10, 15} {3, 8, 16, 17} {3, 9, 14, 15} {3, 10, 13, 17} {3, 11, 13, 15} {6, 7, 12, 17} {6, 7, 13, 16}
{6, 7, 14, 15} {6, 9, 12, 13} {6, 9, 14, 17} {6, 9, 15, 16} {9, 10, 12, 14} {9, 10, 13, 16} {9, 10, 15, 17}

Lemma 9.13 There exists an optimal 2-D (u × 3, 4, 2)-OOC with J∗(u × 3) codewords
for any u ≡ 6 (mod 12).

Proof Let n = (u + 2)/2. Then n ≡ 4 (mod 6). There is an SQS(n) [25]. Delete one
point to obtain a 1-FG(3, (3, 4), n−1) of type 1n−1. Start from this 1-FG and apply Con-
struction 7.1 with h1 = 1 and h2 = 3 to obtain a strictly 3-cyclic 0-FG(3, (∅, 4), 6(n− 1))
of type 6n−1, where the needed strictly 3-cyclic 0-FG(3, (∅, 4), 18) of type 63 is from
Lemma 9.12, and the needed 3-cyclic H(4, 6, 4, 3) is from Corollary 7.6. Applying Con-
struction 6.6 with an optimal strictly 3-cyclic 3-(2 × 3, 4, 1) packing with J∗(2 × 3) = 1
base block from Example 3.3, we have a strictly 3-cyclic 3-(2(n − 1) × 3, 4, 1) packing,
which contains (n − 1)(6n2 − 15n + 8)/2 base blocks. This number achieves the upper
bound in Theorem 5.7. Thus an optimal 2-D (2(n−1)×3, 4, 2)-OOC with J∗(2(n−1)×3)
codewords exists. It is an optimal 2-D (u× 3, 4, 2)-OOC with J∗(u× 3) codewords. ✷

Theorem 9.14 There exists an optimal 2-D (u×3, 4, 2)-OOC with J∗(u×3) codewords
for any u ≡ 0 (mod 2).

Proof When u ≡ 2, 4 (mod 6), apply Proposition 9.2 with an optimal 2-D (2× 3, 4, 2)-
OOC with J∗(2 × 3) = 1 base block from Example 3.3 to obtain an optimal 2-D (u ×
3, 4, 2)-OOC with J∗(u × 3) codewords. When u ≡ 0 (mod 12), apply Proposition 9.11
with an optimal 2-D (2 × 3, 4, 2)-OOC with J∗(2× 3) = 1 base block from Example 3.3
to obtain an optimal 2-D (u×3, 4, 2)-OOC with J∗(u×3) codewords. When u ≡ 6 (mod
12), the conclusion follows from Lemma 9.13. ✷

Proposition 9.15 If there is an RoSQS(v+1), then there is an optimal 2-D (u×v, 4, 2)-
OOC with J∗(u× v) codewords for any u ≡ 0 (mod 6).
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Proof By Lemma 6.13, when v ≡ 1 (mod 6), an RoSQS(v+1) is equivalent to a strictly
cyclic 1-FG(3, (3, 4), v) of type 1v , which is also a strictly (1, 1)-regular 1-FG(3, (3, 4), v)
of type 1v . Start from this 1-FG and apply Construction 7.3 with h1 = 1 and h2 = 1
to obtain a strictly (u, 1)-regular 0-FG(3, (∅, 4), uv) of type uv for any u ≡ 0 (mod 6),
where the needed strictly 1-cyclic 0-FG(3, (∅, 4), 3u) of type u3 exists from Theorem
6.4, and the needed 1-cyclic H(4, u, 4, 3) is from Corollary 7.6. Applying Construction
6.14 with an optimal strictly 1-cyclic 3-(u × 1, 4, 1) packing with J∗(u × 1) base blocks
from Theorem 3.2, we have a strictly v-cyclic 3-(u × v, 4, 1) packing, which contains
u(u2v2 − 3uv − 6)/24 = ⌊u4 (⌊

uv−1
3 ⌊uv−2

2 ⌋⌋ − 1)⌋ base blocks. This number achieves the
upper bound in Theorem 5.7. Thus an optimal 2-D (u × v, 4, 2)-OOC with J∗(u × v)
codewords exists.

By Lemma 6.13, when v ≡ 3 (mod 6), an RoSQS(v + 1) is equivalent to a strictly
cyclic 1-FG(3, (3, 4), v) of type 3v/3, which is also a strictly (1, 3)-regular 1-FG(3, (3, 4), v)
of type 3v/3. Start from this 1-FG and apply Construction 7.3 with h1 = 3 and h2 = 1
to obtain a strictly (u, 3)-regular 0-FG(3, (∅, 4), uv) of type (3u)v/3 for any u ≡ 0 (mod
6). Applying Construction 6.14 with an optimal strictly 3-cyclic 3-(u × 3, 4, 1) packing
with J∗(u× 3) base blocks from Theorem 9.14, we have a strictly v-cyclic 3-(u× v, 4, 1)
packing, which contains u(u2v2−3uv−6)/24 = ⌊u4 (⌊

uv−1
3 ⌊uv−2

2 ⌋⌋−1)⌋ base blocks. This
number achieves the upper bound in Theorem 5.7. Thus an optimal 2-D (u×v, 4, 2)-OOC
with J∗(u× v) codewords exists. ✷

Combining Theorem 4.4 and Proposition 9.15, many infinite families of optimal 2-D
(u× v, 4, 2)-OOCs with J∗(u× v) codewords will be obtained. As an example, we have

Theorem 9.16 Let p ≡ 7 (mod 12) be a prime or p ∈ {37, 61, 73, 109, 157, 181, 229,
277}. There exist a perfect 2-D (u × p, 4, 2)-OOC for any u ≡ 2, 4 (mod 6), and an
optimal 2-D (u× p, 4, 2)-OOC with J∗(u× p) codewords for any u ≡ 0 (mod 6).

Proof When u ≡ 2, 4 (mod 6), start from a perfect 2-D (2×p, 4, 2)-OOC, which exists by
Theorem 4.5, and apply Proposition 9.2 to obtain a perfect 2-D (u×p, 4, 2)-OOC. When
u ≡ 0 (mod 6), start from an RoSQS(p + 1), which exists by Theorem 4.4, and apply
Proposition 9.15 to obtain an optimal 2-D (u× p, 4, 2)-OOC with J∗(u× p) codewords.

✷

Lemma 9.17 If there is a perfect 2-D (2 × v, 4, 2)-OOC with v ≡ 1, 5 (mod 6), then
there is an optimal 2-D (12× 2v, 4, 2)-OOC with J∗(12× 2v) codewords.

Proof By Lemma 6.19, if there is a perfect 2-D (2×v, 4, 2)-OOC with v ≡ 1, 5 (mod 6),
then there is a strictly (2, 1)-regular 1-FG(3, (2, 4), 2v) of type 2v . Start from this 1-FG
and apply Construction 7.3 with h1 = 1 and h2 = 2 to obtain a strictly (12, 2)-regular
0-FG(3, (∅, 4), 24v) of type 24v , where the needed strictly 2-cyclic 0-FG(3, (∅, 4), 24) of
type 122 is from Lemma 8.4, and the needed 2-cyclic H(4, 12, 4, 3) is from Corollary
7.6. Applying Construction 6.14 with an optimal strictly 2-cyclic 3-(12× 2, 4, 1) packing
with J∗(12 × 2) = 248 base blocks from Lemma 8.5, we have a strictly 2v-cyclic 3-
(12 × 2v, 4, 1) packing, which contains 4(72v2 − 9v − 1) = ⌊124 (⌊

24v−1
3 ⌊24v−2

2 ⌋⌋ − 1)⌋ − 1
base blocks. This number achieves the upper bound in Theorem 5.7. Thus an optimal
2-D (12× 2v, 4, 2)-OOC with J∗(12 × 2v) codewords exists. ✷

Theorem 9.18 Let p ≡ 7 (mod 12) be a prime or p ∈ {37, 61, 73, 109, 157, 181, 229,
277}. There exists an optimal (12 × 2p, 4, 2)-OOC with J∗(12× 2p) codewords.
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Proof Start from a perfect 2-D (2× p, 4, 2)-OOC, which exists by Theorem 4.5. Apply
Lemma 9.17 to complete the proof. ✷

Table II
Small orders of optimal 2-D (u× v, 4, 2)-OOCs with Φ(u× v, 4, 2) = J∗(u× v)

codewords for 6 ≤ uv ≤ 34

uv u× v Φ(u× v, 4, 2) Source u× v Φ(u× v, 4, 2) Source

6 2× 3 1 Example 3.3 3× 2 1 Example 3.3
8 2× 4 3 Example 6.15 4× 2 6 Example 6.7
9 3× 3 6 Lemma 8.1
10 2× 5 6 Theorem 2.7(2) 5× 2 15 Theorem 2.7(2)
12 2× 6 8 Lemma 8.1 3× 4 12 Lemma 8.1

4× 3 17 Example 6.8 6× 2 25 Lemma 8.1
14 2× 7 13 Theorem 4.5 7× 2 44 Lemma 8.1
15 3× 5 21 Theorem 2.7(2) 5× 3 35 Theorem 2.7(2)
16 2× 8 17 Example 6.16 4× 4 34 Theorem 9.4

8× 2 68 Lemma 9.1
18 2× 9 22 Corollary 8.11 3× 6 33 Corollary 8.11

6× 3 66 Corollary 8.11 9× 2 99 Corollary 8.11
20 2× 10 28 Theorem 2.7(4) 4× 5 57 Proposition 9.2

5× 4 70 Lemma 8.12 10× 2 140 Lemma 9.1
21 3× 7 45 Theorem 2.7(2) 7× 3 105 Theorem 2.7(2)
22 2× 11 35 Lemma 8.1 11× 2 ??
24 2× 12 41 Lemma 8.3 3× 8 ??

4× 6 82 Proposition 9.5 6× 4 ??
8× 3 166 Theorem 9.14 12× 2 248 Lemma 8.5

25 5× 5 110 Theorem 2.7(2)
26 2× 13 50 Theorem 2.7(2) 13× 2 325 Theorem 2.7(2)
27 3× 9 78 Theorem 2.7(2) 9× 3 234 Theorem 2.7(2)
28 2× 14 58 Theorem 2.7(4) 4× 7 117 Proposition 9.2

7× 4 203 Lemma 8.12 14× 2 406 Lemma 9.1
30 2× 15 67 Lemma 8.7 3× 10 100 Lemma 8.9

5× 6 ?? 6× 5 201 Lemma 8.12
10× 3 335 Theorem 9.14 15× 2 ??

32 2× 16 77 Theorem 9.4 4× 8 154 Theorem 9.4
8× 4 308 Theorem 9.4 16× 2 616 Lemma 9.1

33 3× 11 120 Theorem 2.7(2) 11× 3 440 Theorem 2.7(2)
34 2× 17 88 Theorem 2.7(2) 17× 2 748 Theorem 2.7(2)

Finally we summarize the existence of small orders of optimal 2-D (u× v, 4, 2)-OOCs
with J∗(u× v) codewords as follows.

Theorem 9.19 There exists an optimal 2-D (u×v, 4, 2)-OOC with J∗(u×v) codewords
for each (u, v) satisfying 6 ≤ uv ≤ 34 and (u, v) 6∈ {(1, 9), (1, 12), (1, 13), (11, 2), (23, 1),
(3, 8), (6, 4), (5, 6), (15, 2)}. When (u, v) ∈ {(1, 9), (1, 12), (1, 13)}, there exists an optimal
2-D (u× v, 4, 2)-OOC with J(1× uv, 4, 2) − 1 codewords.

Proof By Theorem 3.2, there exists an optimal 2-D (u × 1, 4, 2)-OOC with J∗(u × 1)
codewords for each 6 ≤ u ≤ 34 and u 6= 23. By Lemma 2.6(3), there exists an optimal
2-D (1× v, 4, 2)-OOC with J∗(1× v) codewords for each 7 ≤ v ≤ 34 and v 6∈ {9, 12, 13}.
Note that J∗(1×v) = J(1×v, 4, 2) when v 6≡ 0 (mod 24), and J∗(1×v) = J(1×v, 4, 2)−1
when v ≡ 0 (mod 24). When v ∈ {9, 12, 13}, by Lemma 2.6(4), there exists an optimal
2-D (1×v, 4, 2)-OOC with J(1×v, 4, 2)−1 codewords. An optimal 2-D (1×6, 4, 2)-OOC
is trivial without codewords. For all other cases of (u, v) such that there is an optimal
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2-D (u× v, 4, 2)-OOC with J∗(u× v) codewords, we show the sources in Table II, where
the question marks ”??” indicates the orders for each of which the existence of an optimal
2-D (u× v, 4, 2)-OOC with J∗(u× v) codewords is still open. ✷

10 Conclusion

In this paper, we gave some combinatorial constructions for optimal 2-D (u × v, k, 2)-
OOCs. As applications, many infinite families of optimal 2-D (u × v, 4, 2)-OOCs are
obtained. We summarize all infinite families obtained in this paper in Table III. Al-
though we can not complete the existence of optimal 2-D (u× v, 4, 2)-OOCs, we hope to
present some possible approaches to reduce the existence problem. We summarize these
approaches in Table IV.

Table III
New infinite families of optimal 2-D (u× v, 4, 2)-OOCs with J∗(u× v) codewords

in this paper

Parameters Conditions Source

n1n2 = uv,
u ∈ {4n − 1 : n ≥ 1} ∪ {1, 27, 33, 39, 51, 87, 123, 183} and

(n1 × n2, 4, 2) v ∈ S = {p ≡ 7 (mod 12) : p is a prime} ∪ Theorem 2.7(1)
{2n − 1 : odd integer n ≥ 1} ∪{25, 37, 61, 73, 109, 157, 181, 229, 277},

or v is a product of integers from S

n = pr11 pr22 · · · prss
(2× 2n, 4, 2) pi = 13 or pi ≡ 5 (mod 12) is a prime and pi < 1500000, Theorem 2.7(3)

ri ≥ 1 for 1 ≤ i ≤ s

(u× 2n, 4, 2) u ≡ 2, 4 (mod 6) and n ≥ 1 Theorem 9.4

(u× 2p, 4, 2) u ≡ 8, 16 (mod 24) or u = 12 Theorem 9.7
p ≡ 7 (mod 12) a prime or p ∈ {37, 61, 73, 109, 157, 181, 229, 277} Theorem 9.18

(u× p, 4, 2) u ≡ 0 (mod 2) Theorem 9.14
p ≡ 7 (mod 12) a prime or p ∈ {3, 37, 61, 73, 109, 157, 181, 229, 277} Theorem 9.16

Table IV
Possible approaches to construct optimal 2-D (u× v, 4, 2)-OOCs

Input ⇒ Output Source

optimal 1-D (n, 4, 2)-OOC optimal 2-D (u× v, 4, 2)-OOC
with J(1× n, 4, 2) codewords, with J(u× v, 4, 2) codewords, Corollary 2.5(1)

n ≡ 1, 3 (mod 6) or n ≡ 2, 10 (mod 24) for any integer factorization n = uv

optimal 2-D(2× v, 4, 2)-OOC optimal 2-D (u× v, 4, 2)-OOC
with J∗(2× v) codewords, with J∗(u× v) codewords, Proposition 9.2

v ≡ 1 (mod 2) or v ≡ 0 (mod 4) u ≡ 2, 4 (mod 6)

optimal 2-D (u/2× 2v, 4, 2)-OOC optimal 2-D (u× v, 4, 2)-OOC
with J∗(u/2× 2v) codewords, with J∗(u× v) codewords Proposition 9.5

u ≡ 2, 4 (mod 6) and v ≡ 2 (mod 4)

perfect 2-D (2× v, 4, 2)-OOC optimal 2-D (u× 2v, 4, 2)-OOC
v ≡ 1, 5 (mod 6) with J∗(u× 2v) codewords, Proposition 9.6

u ≡ 8, 16 (mod 24)

optimal 2-D (2× v, 4, 2)-OOC optimal 2-D (u× v, 4, 2)-OOC
with J∗(2× v) codewords, with J∗(u× v) codewords, Proposition 9.11

v ≡ 1 (mod 2) or v ≡ 0 (mod 12) u ≡ 0 (mod 12)

RoSQS(v + 1) optimal 2-D (u× v, 4, 2)-OOC
v ≡ 1, 3 (mod 6) with J∗(u× v) codewords, Proposition 9.15

u ≡ 0 (mod 6)
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By Theorem 5.7, we see that in many cases the Johnson bound can not be achieved.
A natural question is whether the bounds established in Theorem 5.7 is good enough to
make each optimal 2-D (u× v, 4, 2)-OOC achieve it. Although many infinite families are
given to achieve the upper bound in Theorem 5.7, we still tend to think it not true. For
example we conjecture that when u ≡ 0 (mod 6) and v ≡ 2, 4 (mod 6), the upper bound
is ⌊u4 (⌊

uv−1
3 ⌊uv−2

2 ⌋⌋−1)⌋−⌊ u
12⌋. If the conjecture is correct, the condition in Lemma 9.8

can be relaxed to v 6≡ 2 (mod 4), which implies that the condition in Proposition 9.11
can also be relaxed to v 6≡ 2 (mod 4).

Another question is to find more constructions for optimal 2-D (2 × v, 4, 2)-OOCs,
which are very useful by Propositions 9.2, 9.6 and 9.11. In 1991 Phelps [50] constructed
a class of 2-chromatic SQS(22) using cyclic large sets of 2-(11, 3, 1) packings. It seems
that Phelps’s method can be generalized to construct some strictly v-cyclic SQS(2× v)s
for v ≡ 1, 5 (mod 6), which are also perfect 2-D (2×v, 4, 2)-OOCs. The interested reader
may refer to the paper [50].

Appendix I

Proof of Construction 4.2: For checking the correctness of the algorithm shown in
Figure 1, first count the number of base blocks in A. It is clear that |A1 ∪ A′

1| =
(p− 1)(p − 3)/12, |A2 ∪ A′

2| = (p− 1)/3, |A3| ≤ 3× (p − 1)/6 × (p− 1)/2 = (p − 1)2/4.
Thus |A| ≤ (p− 1)(2p − 1)/6.

Since the number (p − 1)(2p − 1)/6 is the right number of base blocks in a strictly
p-cyclic SQS(2×p), in the following it suffices to show that each triple of I2×Zp appears
in at least one block of the resulting design. (1) Each triple of {0} × Zp appears in one
block of A1 ∪A2 and their cyclic shifts. (2) Each triple of {1}×Zp appears in one block
of A′

1 ∪A′
2 and their cyclic shifts. (3) Each triple of the form {x0, y0, z1} appears in one

block of A2 ∪ A3 and their cyclic shifts. (4) Each triple of the form {x1, y1, z0} appears
in one block of A′

2 ∪ A3 and their cyclic shifts. ✷

Appendix II

Lemma 5.2 Let u ≡ 0 (mod 12) and v ≡ 2, 4 (mod 6). Then Φ(u × v, 4, 2) ≤
⌊u4 (⌊

uv−1
3 ⌊uv−2

2 ⌋⌋ − 1)⌋ − 1.

Proof First we shall show that Φ(u×2, 4, 2) ≤ ⌊u4 (⌊
2u−1
3 ⌊2u−2

2 ⌋⌋−1)⌋−1. By Lemma 5.1,
Φ(u×2, 4, 2) ≤ ⌊u4 (⌊

2u−1
3 ⌊2u−2

2 ⌋⌋−1)⌋. Suppose that Φ(u×2, 4, 2) = ⌊u4 (⌊
2u−1
3 ⌊2u−2

2 ⌋⌋−
1)⌋. Then there were a strictly 2-cyclic 3-(u×2, 4, 1)-packing with ⌊u4 (⌊

2u−1
3 ⌊2u−2

2 ⌋⌋−1)⌋
base blocks. Let L be the leave of the strictly 2-cyclic 3-(u× 2, 4, 1)-packing. Count the
number of 3-subsets in the leave L. It is

(

2u
3

)

− ⌊u4 (⌊
2u−1

3 ⌊2u−2
2 ⌋⌋ − 1)⌋ · 2 · 4 = 8u/3.

For each a ∈ Iu and each i ∈ Z2, consider the number n of 3-subsets containing the
point (a, i) in the leave L. Delete one point from a strictly 2-cyclic 3-(u×2, 4, 1)-packing
to obtain a 2-(2u−1, 3, 1)-packing, which contains at most ⌊(2u−1)(2u−2)/6⌋−1 blocks
when 2u ≡ 0 (mod 6) [26]. Since each 3-subset of Iu × Z2 occurs in at most one block,
we have n ≥

(2u−1
2

)

− 3(⌊(2u− 1)(2u− 2)/6⌋ − 1) = 4, which implies that |L| ≥ 4 · 2u/3.
Due to |L| = 8u/3, n must be equal to 4. Note that the above conclusion holds for each
a ∈ Iu and each i ∈ Z2.

For each a ∈ Iu, consider the number m of the base blocks containing the two points
(a, 0), (a, 1). Since each 3-subset of Iu × Z2 occurs in at most one block and each
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base block containing the two points (a, 0), (a, 1) generates exactly two different blocks
containing the same two points, the number m is at most ⌊(2u − 2)/4⌋ = (2u − 4)/4.
Thus there are at least two 3-subsets containing the two points (a, 0), (a, 1) in the
leave, denoted by {(a, 0), (a, 1), (ba , 0)} and {(a, 0), (a, 1), (ba , 1)}, where ba ∈ Iu and
ba 6= a. Note that the above conclusion holds for each a ∈ Iu. We have that L ⊃
{{(a, 0), (a, 1), (ba , 0)}, {(a, 0), (a, 1), (ba , 1)} : a ∈ Iu}.

Given any a ∈ Iu, consider the number r of the blocks containing the two points
(a, 0), (ba, 0). Since each 3-subset of Iu × Z2 occurs in at most one block, the number r
is at most ⌊(2u− 3)/2⌋ = (2u− 4)/2. Thus there is at least another one 3-subset in the
leave containing the two points (a, 0), (ba, 0). Assume that {(a, 0), (ba, 0), (x, k)} ∈ L,
where (x, k) 6= (a, 1). Similarly, consider the blocks containing the two points (a, 0),
(ba, 1) and assume that {(a, 0), (ba, 1), (y, l)} ∈ L, where (y, l) 6= (a, 1).

If (x, k) 6= (ba, 1), then {(a, 0), (ba, 0), (x, k)} 6= {(a, 0), (ba, 1), (y, l)}. Since the num-
ber of 3-subsets containing the point (a, 0) in the leave is exactly four, they must be
{(a, 0), (a, 1), (ba , 0)}, {(a, 0), (a, 1), (ba , 1)}, {(a, 0), (ba, 0), (x, k)}, {(a, 0), (ba, 1), (y, l)}.
Note that (x, k) 6= (ba, 0). Consider the number s of the blocks containing the two points
(a, 0), (x, k). Since each 3-subset of Iu × Z2 occurs in at most one block, the number
s is at most ⌊(2u − 3)/2⌋ = (2u − 4)/2. Thus there is at least another one 3-subset
in the leave containing the two points (a, 0), (x, k). It implies that (y, l) = (x, k).
Due to {(a, 0), (ba, 1), (y, l)} ∈ L, i.e., {(a, 0), (ba, 1), (x, k)} ∈ L, under the action
of Z2 we have {(a, 1), (ba, 0), (x, k + 1)} ∈ L. It implies that there are at least five
3-subsets containing the point (ba, 0), i.e., {(a, 0), (a, 1), (ba , 0)}, {(a, 0), (ba, 0), (x, k)},
{(a, 1), (ba, 0), (x, k +1)}, {(ba, 0), (ba, 1), (bba , 0)}, {(ba, 0), (ba, 1), (bba , 1)}. A contradic-
tion.

If (x, k) = (ba, 1) and (y, l) 6= (ba, 0), then {(a, 0), (ba, 0), (x, k)} 6= {(a, 0), (ba, 1), (y, l)}.
Note that (y, l) 6= (ba, 1), and hence (y, l) 6= (x, k). Since the number of 3-subsets con-
taining the point (a, 0) in the leave is exactly four, they must be {(a, 0), (a, 1), (ba , 0)},
{(a, 0), (a, 1), (ba , 1)}, {(a, 0), (ba, 0), (x, k)}, {(a, 0), (ba, 1), (y, l)}. It implies that there
is only one 3-subset containing the two points (a, 0) and (y, l) in the leave. Similar
arguments to those in the paragraph 4 of this proof, it is impossible.

If (x, k) = (ba, 1) and (y, l) = (ba, 0), then {(a, 0), (ba, 0), (x, k)} = {(a, 0), (ba, 1), (y, l)}.
Since the number of 3-subsets containing the point (a, 0) in the leave is exactly four, three
of them must be {(a, 0), (a, 1), (ba , 0)}, {(a, 0), (a, 1), (ba , 1)} and {(a, 0), (ba, 0), (ba, 1)}.
Assume that the 4th 3-subset containing the point (a, 0) is {(a, 0), (z, i), (w, j)}. Similar
arguments to those in the paragraph 4 of this proof, we have that the number of 3-subsets
containing the points (a, 0), (z, i) in the leave must be even. A contradiction. Hence
Φ(u× 2, 4, 2) ≤ ⌊u4 (⌊

2u−1
3 ⌊2u−2

2 ⌋⌋ − 1)⌋ − 1.
Next consider the number of Φ(u×v, 4, 2). If there is an optimal 2-D (u×v, 4, 2)-OOC

with Φ(u × v, 4, 2) codewords, then by Theorem 2.1, for integer factorization v = 2v1,
there exits a 2-D (uv1 × 2, 4, 2)-OOC with v1Φ(u × v, 4, 2) codewords. Since uv1 ≡ 0
(mod 12), we have v1Φ(u× v, 4, 2) ≤ ⌊uv14 (⌊uv−1

3 ⌊uv−2
2 ⌋⌋ − 1)⌋ − 1. It is readily checked

that Φ(u × v, 4, 2) ≤ ⌊ 1
v1
(⌊uv14 (⌊uv−1

3 ⌊uv−2
2 ⌋⌋ − 1)⌋ − 1)⌋ = u(u2v2 − 3uv − 6)/24 − 1 =

⌊u4 (⌊
uv−1

3 ⌊uv−2
2 ⌋⌋ − 1)⌋ − 1. ✷

Lemma 5.3 Let uv ≡ 0 (mod 12) and v ≡ 0 (mod 6). Then Φ(u× v, 4, 2) ≤ ⌊u4 (⌊
uv−1

3
⌊uv−2

2 ⌋⌋ − 2)⌋.
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Proof Let L be the leave of a strictly v-cyclic 3-(u × v, 4, 1)-packing. Let L1 =
{{(a, i), (a, v/3 + i), (a, 2v/3 + i)} : a ∈ Iu, 0 ≤ i < v/3}. Since each orbit of 3-subsets in
L1 is of length v/3 under the action of Zv, each 3-subset in L1 must be contained in L,
i.e., L1 ⊂ L.

For each a ∈ Iu and each i ∈ Zv, consider the number n of the blocks containing the
two points (a, i), (a, v/3+i). Since each 3-subset of Iu×Zv occurs in at most one block and
{(a, i), (a, v/3+ i), (a, 2v/3+ i)} ∈ L, the number n is at most ⌊(uv−3)/2⌋ = (uv−4)/2.
Thus there is at least another one 3-subset in the leave containing the two points (a, i),
(a, v/3 + i), denoted by {(a, i), (a, v/3 + i), (ba,i, ja,i)}, where (ba,i, ja,i) 6= (a, 2v/3 + i).
Note that the above conclusion holds for each a ∈ Iu and each i ∈ Zv. Thus we have
that L2 = {{(a, i), (a, v/3 + i), (ba,i, ja,i)} : a ∈ Iu, i ∈ Zv} ⊂ L \ L1.

For each a ∈ Iu and each 0 ≤ i < v/2, consider the number m of the base blocks
containing the two points (a, i), (a, v/2 + i). Since each 3-subset of Iu × Zv occurs in
at most one block and each base block containing the two points (a, i), (a, v/2 + i) gen-
erates exactly two different blocks containing the same two points, the number m is at
most ⌊(uv − 2)/4⌋ = (uv − 4)/4. Thus there are at least two 3-subsets containing the
two points (a, i), (a, v/2 + i) in the leave, denoted by {(a, i), (a, v/2 + i), (ca,i, ka,i)}
and {(a, i), (a, v/2 + i), (ca,i, v/2 + ka,i)}. Note that the above conclusion holds for
each a ∈ Iu and each 0 ≤ i < v/2. Thus we have that L3 = {{(a, i), (a, v/2 +
i), (ca,i, ka,i)}, {(a, i), (a, v/2 + i), (ca,i, v/2 + ka,i)} : a ∈ Iu, 0 ≤ i < v/2} ⊂ L \ L1.
For convenience assume that L3 = {{(a, i), (a, v/2+ i), (ca,i , la,i)} : a ∈ Iu, i ∈ Zv}, where
la,i = ka,i when 0 ≤ i < v/2, and la,i = v/2 + ka,i when v/2 ≤ i < v.

If L2 ∩ L3 = ∅, then |L| ≥ 7uv/3. If L2 ∩ L3 6= ∅, assume that {(x, i1), (x, v/3 +
i1), (bx,i1 , jx,i1)} = {(x, i2), (x, v/2+i2), (cx,i2 , lx,i2)} for some x ∈ Iu and some i1, i2 ∈ Zv.
If (x, i1) 6= (cx,i2 , lx,i2), we have (bx,i1 , jx,i1) = (x, v/2 + i1). If (x, i1) = (cx,i2 , lx,i2),
we have (bx,i1 , jx,i1) = (x, 5v/6 + i1). Thus each 3-subset in L2 ∩ L3 is of the form
{(x, i1), (x, v/3+ i1), (x, v/2+ i1)} or {(x, i1), (x, v/3+ i1), (x, 5v/6+ i1)}. Let L2∩L3 =
{{(x, i), (x, v/3 + i), (x, v/2 + i)} : x ∈ A, i ∈ Zv} ∪ {{(x, i), (x, v/3 + i), (x, 5v/6 + i)} :
x ∈ B, i ∈ Zv} = {{(x, i), (x, v/3 + i), (x, v/2 + i)} : x ∈ A, i ∈ Zv} ∪ {{(x, v/2 +
i), (x, 5v/6 + i), (x, v/3 + i)} : x ∈ B, i ∈ Zv}, where A,B ⊂ Iu and A ∩ B = ∅.
Then L2 \ (L2 ∩ L3) = {{(a, i), (a, v/3 + i), (ba,i, ja,i)} : a ∈ Iu \ (A ∪ B), i ∈ Zv} and
L3 \ (L2 ∩ L3) = {{(a, i), (a, v/2 + i), (ca,i, la,i)} : a ∈ Iu \ (A ∪B), i ∈ Zv}.

Let {(x, v/3 + i), (x, v/2 + i)} ⊂ T ∈ L2 ∩ L3. Consider the number of the blocks
containing the two points (x, v/3 + i), (x, v/2 + i). It is at most ⌊(uv − 3)/2⌋ = (uv −
4)/2. Thus there is at least another one 3-subset containing the two points (x, v/3 + i),
(x, v/2 + i) in L \ (L2 ∩ L3), denoted by {(x, v/3 + i), (x, v/2 + i), (dx,i, rx,i)}, where
(dx,i, rx,i) 6= (x, i) if x ∈ A, and (dx,i, rx,i) 6= (x, 5v/6 + i) if x ∈ B. Let L4 = {{(x, v/3 +
i), (x, v/2 + i), (dx,i, rx,i)} : {(x, v/3 + i), (x, v/2 + i)} ⊂ T ∈ L2 ∩L3}. Then L4 ⊂ L and
L4∩(L2∪L3) = ∅. Since |L4| = |L2∩L3|, we have |L| ≥ |L1|+|L2|+|L3\(L2∩L3)|+|L4| =
7uv/3.

Thus there are at least 7uv/3 3-subsets in the leave. It implies that Φ(u× v, 4, 2) ≤
⌊(
(uv
3

)

− 7
3uv)/(4v)⌋ = ⌊ 1

24u(u
2v2−3uv−12)⌋. It is readily checked that ⌊u4 (⌊

uv−1
3 ⌊uv−2

2 ⌋⌋−
2)⌋ = ⌊ 1

24u(u
2v2 − 3uv − 12)⌋. ✷

Appendix III

Proof of Construction 7.1: For checking the correctness of the algorithm shown in
Figure 2, it suffices to show that: (1) the resulting design is strictly h1h2-cyclic; (2) any
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3-subset S of X ′ satisfying that |S ∩ G′| < 3 for each G′ ∈ G′ is contained in a unique
block of the resulting design; (3) any 2-subset R of X ′ satisfying that |R ∩ G′| < 2 for
each G′ ∈ G′ is contained in a unique block of A′

i for each 1 ≤ i ≤ s.

For convenience assume that AB =
⋃s

j=1A
j
B for each B ∈ F1.

(1) Suppose that A = {(xl, yl + ulg1, zl + vlh1) : 1 ≤ l ≤ r} is a base block of the
resulting design, where xl ∈ In, yl ∈ Ig1 , ul ∈ Ig2 , zl ∈ Zh1

, vl ∈ Zh2
. We need to show

that the stabilizer of A is trivial, i.e., A + δ = A if and only if δ ≡ 0 (mod h1h2). The
sufficiency follows immediately, so we consider the necessity. Assume that δ = δ1 + δ2h1,
δ1 ∈ Zh1

, δ2 ∈ Zh2
. If A+ δ = A, we have

{(xl, yl + ulg1, zl + vlh1) : 1 ≤ l ≤ r} = {(xl, yl + ulg1, zl + δ1 + (vl + δ2)h1) : 1 ≤ l ≤ r},

where the arithmetic is modulo (−,−, h1h2). It follows that

{(xl, yl, zl) : 1 ≤ l ≤ r} = {(xl, yl, zl + δ1) : 1 ≤ l ≤ r},

where the arithmetic is modulo (−,−, h1). Let U = {(xl, yl, zl) : 1 ≤ l ≤ r}.
If A ∈ A′

j, 1 ≤ j ≤ s, then |U | = r ≥ 2. Since the subdesign (X,G,B) of the master
design 1-FG(3, (K,KT ), ng1h1) of type (g1h1)

n (X,G,B,T ) is strictly h1-cyclic and it
requires that any 2-subset of X which intersects each group of G in at most one point
occurs in exactly one block, we have δ1 = 0.

If A ∈ D′, without loss of generality assume that A ∈ D∗. If A = τ(C) for some
C ∈

⋃

B∈F2
D′

B , then |U | = r ≥ 3. Since the master design 1-FG(3, (K,KT ), ng1h1) of
type (g1h1)

n is strictly h1-cyclic and it requires that any 3-subset of X which intersects
each group of G in at most two points occurs in exactly one block, we have δ1 = 0. If
A = τ(C) for some C ∈

⋃

B∈F1
DB, then |U | ≥ 2. Note that in this case U may be a

multiset, i.e., |U | may be not equal to r. By similar arguments to those in the case of
A ∈ A′

j, we have δ1 = 0.
Hence,

{(xl, yl + ulg1, zl + vlh1) : 1 ≤ l ≤ r} = {(xl, yl + ulg1, zl + (vl + δ2)h1) : 1 ≤ l ≤ r},

where the arithmetic is modulo (−,−, h1h2). It follows that

{(xl, yl, zl, ul, vl) : 1 ≤ l ≤ r} = {(xl, yl, zl, ul, vl + δ2) : 1 ≤ l ≤ r},

where the arithmetic is modulo (−,−,−,−, h2). Since the input designs are all strictly
h2-cyclic, we have δ2 = 0. Thus the resulting design is strictly h1h2-cyclic.

(2) Take any triple S = {(xl, yl + ulg1, zl + vlh1) : 1 ≤ l ≤ 3} ⊂ X ′, where xl ∈ In,
yl ∈ Ig1 , ul ∈ Ig2 , zl ∈ Zh1

, vl ∈ Zh2
and x1, x2, x3 are not equal at the same time.

Case 1. Suppose that x1, x2, x3 are pairwise distinct. Then there exist a unique base
block F in F and a unique element δ1 ∈ Zh1

, such that {(xl, yl, z
∗
l ) : 1 ≤ l ≤ 3} ⊆ F and

(xl, yl, z
∗
l ) + δ1 = (xl, yl, z

∗
l + δ1) = (xl, yl, zl), 1 ≤ l ≤ 3, where the arithmetic is modulo

(−,−, h1). It follows that (xl, yl, zl)− δ1 = (xl, yl, z
∗
l ).

If F ∈ F1, then there exist a unique base block B ∈ AF
⋃

DF and a unique element
δ2 ∈ Zh2

, such that {(xl, yl, z
∗
l , ul, v

∗
l ) : 1 ≤ l ≤ 3} ⊆ B and (xl, yl, z

∗
l , ul, v

∗
l ) + δ2 =

(xl, yl, z
∗
l , ul, v

∗
l + δ2) = (xl, yl, z

∗
l , ul, vl), 1 ≤ l ≤ 3, where the arithmetic is modulo

(−,−,−,−, h2). By the mapping τ , we have that (xl, yl+ulg1, z
∗
l +(v∗l +δ2)h1) = (xl, yl+

ulg1, z
∗
l +vlh1) = (xl, yl+ulg1, zl−δ1+vlh1), where the arithmetic is modulo (−,−, h1h2).
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Let δ = δ1 + δ2h1. It follows that (xl, yl + ulg1, z
∗
l + v∗l h1 + δ) = (xl, yl + ulg1, zl + vlh1).

By (1) the resulting design is strictly h1h2-cyclic, so {(xl, yl+ulg1, zl+ vlh1) : 1 ≤ l ≤ 3}
is contained in the unique block τ(B)+δ, which is generated by τ(B). Similar arguments
hold for F ∈ F2, where B ∈ D′

F .
Case 2. Suppose that x1 = x2, x1 6= x3, and (y1, z1) 6= (y2, z2). Then there exist a

unique base block F in F2 and a unique element δ1 ∈ Zh1
, such that {(xl, yl, z

∗
l ) : 1 ≤

l ≤ 3} ⊆ F and (xl, yl, z
∗
l + δ1) = (xl, yl, zl), 1 ≤ l ≤ 3, where the arithmetic is modulo

(−,−, h1). There exist a unique base block B ∈ D′
F and a unique element δ2 ∈ Zh2

, such
that {(xl, yl, z

∗
l , ul, v

∗
l ) : 1 ≤ l ≤ 3} ⊆ B and (xl, yl, z

∗
l , ul, v

∗
l + δ2) = (xl, yl, z

∗
l , ul, vl),

1 ≤ l ≤ 3, where the arithmetic is modulo (−,−,−,−, h2). By similar arguments to
those in Case 1, {(xl, yl + ulg1, zl + vlh1) : 1 ≤ l ≤ 3} is contained in the unique block
τ(B) + δ, where δ = δ1 + δ2h1.

Case 3. Suppose that (x1, y1, z1) = (x2, y2, z2), (u1, v1) 6= (u2, v2) and x1 6= x3.
Then there exist a unique base block F in F1 and a unique element δ1 ∈ Zh1

, such that
{(xl, yl, z

∗
l ) : 1 ≤ l ≤ 3} ⊆ F and (xl, yl, z

∗
l + δ1) = (xl, yl, zl), 1 ≤ l ≤ 3, where the

arithmetic is modulo (−,−, h1). There exist a unique base block B ∈ DF and a unique
element δ2 ∈ Zh2

, such that {(xl, yl, z
∗
l , ul, v

∗
l ) : 1 ≤ l ≤ 3} ⊆ B and (xl, yl, z

∗
l , ul, v

∗
l +

δ2) = (xl, yl, z
∗
l , ul, vl), 1 ≤ l ≤ 3, where the arithmetic is modulo (−,−,−,−, h2). By

similar arguments to those in Case 1, {(xl, yl + ulg1, zl + vlh1) : 1 ≤ l ≤ 3} is contained
in the unique block τ(B) + δ, where δ = δ1 + δ2h1.

(3) Take any 2-subset R = {(xl, yl + ulg1, zl + vlh1) : 1 ≤ l ≤ 2} ⊂ X ′, where xl ∈ In,
yl ∈ Ig1 , ul ∈ Ig2 , zl ∈ Zh1

, vl ∈ Zh2
and x1 6= x2. Then there exist a unique base block

F in F1 and a unique element δ1 ∈ Zh1
, such that {(xl, yl, z

∗
l ) : 1 ≤ l ≤ 2} ⊆ F and

(xl, yl, z
∗
l + δ1) = (xl, yl, zl), 1 ≤ l ≤ 2, where the arithmetic is modulo (−,−, h1).

Given any 1 ≤ j ≤ s. There exist a unique base block B in Aj and a unique element
δ2 ∈ Zh2

, such that {(xl, yl, z
∗
l , ul, v

∗
l ) : 1 ≤ l ≤ 2} ⊆ B and (xl, yl, z

∗
l , ul, v

∗
l + δ2) =

(xl, yl, z
∗
l , ul, vl), 1 ≤ l ≤ 2, where the arithmetic is modulo (−,−,−,−, h2). By the

mapping τ , we have that (xl, yl + ulg1, z
∗
l + (v∗l + δ2)h1) = (xl, yl + ulg1, z

∗
l + vlh1) =

(xl, yl+ulg1, zl−δ1+vlh1), where the arithmetic is modulo (−,−, h1h2). Let δ = δ1+δ2h1.
It follows that (xl, yl+ulg1, z

∗
l + v∗l h1+ δ) = (xl, yl+ulg1, zl+ vlh1). By (1) the resulting

design is strictly h1h2-cyclic, so {(xl, yl + ulg1, zl + vlh1) : 1 ≤ l ≤ 2} is contained in the
unique block τ(B) + δ, which is generated by τ(B). ✷

Proof of Construction 7.5: For checking the correctness of the algorithm shown in
Figure 4, take any t-subset T = {(xl, yl+ulg1, zl+vlh1) : 1 ≤ l ≤ t} ⊂ X ′, where xl ∈ In,
yl ∈ Ig1 , ul ∈ Ig2 , zl ∈ Zh1

, vl ∈ Zh2
and |{xl : 1 ≤ l ≤ t}| = t. Then there exist a unique

base block F in F and a unique element δ1 ∈ Zh1
, such that {(xl, yl, z

∗
l ) : 1 ≤ l ≤ t} ⊆ F

and (xl, yl, z
∗
l + δ1) = (xl, yl, zl), 1 ≤ l ≤ t, where the arithmetic is modulo (−,−, h1).

There exist a unique base block B in DF and a unique element δ2 ∈ Zh2
, such that

{(xl, yl, z
∗
l , ul, v

∗
l ) : 1 ≤ l ≤ t} ⊆ B and (xl, yl, z

∗
l , ul, v

∗
l + δ2) = (xl, yl, z

∗
l , ul, vl), 1 ≤

l ≤ t, where the arithmetic is modulo (−,−,−,−, h2). By the mapping τ , we have that
(xl, yl + ulg1, z

∗
l + (v∗l + δ2)h1) = (xl, yl + ulg1, z

∗
l + vlh1) = (xl, yl + ulg1, zl − δ1 + vlh1),

where the arithmetic is modulo (−,−, h1h2). Let δ = δ1 + δ2h1. It follows that (xl, yl +
ulg1, z

∗
l + v∗l h1 + δ) = (xl, yl + ulg1, zl + vlh1). Thus {(xl, yl + ulg1, zl + vlh1) : 1 ≤ l ≤ t}

is contained in the unique block τ(B) + δ, which is generated by τ(B). ✷
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