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Beam Selection Gain Versus Antenna Selection
Gain

Dongwoon Bai, Saeed S. Ghassemzadeh, Robert R. Miller, and Vahid Tarokh

Abstract

We consider beam selection using a fixed beamforming network(FBN) at a base station withM
array antennas. In our setting, a Butler matrix is deployed at the RF stage to formM beams, and
then the best beam is selected for transmission. We provide the proofs of the key properties of the
noncentral chi-square distribution and the following properties of the beam selection gain verifying that
beam selection is superior to antenna selection in Rician channels with anyK-factors. Furthermore, we
find asymptotically tight stochastic bounds of the beam selection gain, which yield approximate closed
form expressions of the expected selection gain and the ergodic capacity. Beam selection has the order
of growth of the ergodic capacityΘ(log(M)) regardless of user location in contrast toΘ(log(log(M)))
for antenna selection.

I. INTRODUCTION

Deploying multiple antennas at a base station dramaticallyincreases spectral efficiency. While multiple-
input/multiple-output (MIMO) systems require multiple RFchains and elaborate signal processing units,
Antenna selection has been an attractive solution for multiple antenna systems because only one RF chain
is required to use the antenna with the highest signal-to-noise ratio (SNR).

With promise of higher spectral efficiency, we focus onbeam selection instead of antenna selection
using a FBN at a base station which deploysM multiple linear equally spaced omnidirectional array
antennas when each remote unit is equipped with an omnidirectional antenna. While the base station can
adaptively steer beams to remote users usingM RF chains, we investigate the Butler matrix, a simple
FBN at the RF stage producing orthogonal beams and requiringonly one RF chain for the best beam
to be selected for transmission [1]. The choice of the best beam can be achieved with partial channel
state information (CSI) at the base station. The remote feeds back the index of the best beam to the base
station for the forward link.

Although beam selection has been known to have no advantage over antenna selection in ideal
Rayleigh fading channels, it has been established (using analysis and simulations) that beam selection can
outperform antenna selection in correlated Rayleigh fading channels with limited angle spread [2]. For
the case of Rician fading channels, there exist only limitedanalytical results of two very special cases of
Rayleigh fading channels and deterministic channels except our own work in [3] while simulations and
measurements have shown that beam selection using the Butler FBN outperforms antenna selection [4].

Motivated by this, we have analyzed the performance of beam selection using the Butler FBN for Rician
fading channels with arbitraryK-factors and derived the exact distribution of the beam selection gain as a
function of the azimuthal location of the remote user in our previous work [3], where some key properties
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Fig. 1. Beam selection system using the Butler FBN withM linear equally spaced array antennas and
beam pattern forM = 4 andd = λc/2.

of the noncentral chi-square distribution and the following properties of the beam selection gain have
been presented without any proofs. Using these properties,we have compared the beam selection gain
with the antenna selection gain for Rician fading channels and analytically proved that beam selection
outperforms antenna selection.

In this paper, we provide the proofs omitted in [3], which verify our claim that beam selection is superior
to antenna selection regardless of user location in Rician channels with anyK-factors. Moreover, we
find asymptotically tight stochastic bounds of the beam selection gain yielding approximate outage and
the approximate expression for average performance. This approximation technique can be applied for
most of average performance measures as shown for the expected selection gain and the ergodic capacity.
Using these results, we obtain orders of growth of the expected selection gain and the ergodic capacity
for beam selection, proved to be higher than those for antenna selection.

The remainder of this paper is organized as follows: In Section II, we present our system model when
the Butler FBN is used in the base station. In Section III, we analyze the beam selection gain using a
statistical approach. In Section IV, we compare the gain of beam selection with that of antenna selection,
and prove that beam selection outperforms antenna selection under any Rician channel transmission
model. In Section V, we find stochastic bounds of the beam selection gain and approximate closed form
expressions of performance measures. Finally, we provide our conclusions in Section VI.

II. T HE SYSTEM MODEL

We consider a base station endowed withM ≥ 2 antennas (as depicted in Fig. 1) and remote units
each endowed with one antenna. For them-th port of the Butler matrix (m ∈ {1, ...,M}), the SNR
equals toρ · Γm regardless of the direction of the communication link [3], whereρ is the average SNR
per port andΓm denotes the gain of selecting them-th port. This gain is given by

Γm =
∣

∣bTmh
∣

∣

2
, (1)

where theM × 1 complex vectorh = [h1, ..., hM ]T represents the flat fading channel gains for corre-
sponding antennas normalized such thatE[|hi|2] = 1 for i = 1, 2, · · · ,M , and the1×M complex vector
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bTm is them-th row of theM ×M Butler matrix given by

bTm =
1√
M

[

ej
2π

M
(m− 1

2
), ej

2π

M
(m− 1

2
)2, ..., ej

2π

M
(m− 1

2
)M
]

. (2)

Then, the base station chooses the port with the highest SNR.To select the best beam for the forward
link, the remote user only needs to feed back the index of the best beam to the base station (even when the
channel is not reciprocal) and this is the only difference between reverse and forward link beam selection.
From this point on, we will not distinguish reverse and forward link beam selection in this paper as they
are analytically identical. The SNR is then given byρ · Γ(M), where the notationz(m) is used to denote
them-th smallest value from any set of finite samples{z1, ..., zM}, and thusΓ(M) = maxm∈{1,...,M} Γm.

We define thebeam selection gain as the ratio of the SNR of beam selection with a FBN to the average
SNR of random antenna switching without a FBN, which is givenby Γ(M).

III. B EAM SELECTION GAINS IN FADING CHANNELS

It has been shown that beam selection outperforms antenna selection in ideal line-of-sight (LOS)
channels, while beam selection performs as good as antenna selection in ideal non-line-of-sight (NLOS)
channels [4]. We are interested in investigating the performance of beam selection under Rician channel
models. This is the most frequently used realistic channel model in wireless communications. Under the
Rician channel model, the normalized channel vectorh can be modeled as multipath signals

h =

√

K

K + 1
hL +

√

1

K + 1
hN . (3)

The entries of complex vectorhL (which represents the normalized LOS component) are modeled to
have unit power and fixed phase. The entries of the complex vector hN (which represents the normalized
NLOS component) are modeled by i.i.d. independent zero-mean circularly symmetric complex Gaussian
random variables with unit variance. The parameterK is referred to as the RicianK-factor, which
represents the ratio of the LOS signal power to the NLOS signal power. The special cases ofK = ∞
andK = 0 represent ideal LOS (deterministic) and ideal NLOS (Rayleigh fading) channels, respectively.

A. Deterministic Components

Consider the LOS componenthL. Let θ denote the azimuthal angle of incident between a LOS signal
and the line perpendicular to the linear equally spaced array antennas assuming two-dimensional geometry
(horizontal plane) as shown in Fig. 1. Furthermore, assume that the distance between the base station
and the mobile user is much larger than array antenna separation. Then for both reverse and forward link
beam selection,hL is given by

hL = exp(jψ)

[

1, exp

(

−j2π d
λc

sin θ

)

, ...,

exp

(

−j2π(M − 1)
d

λc
sin θ

)]T

, (4)

whereψ is an arbitrary phase shift of the signal from/to the first array antenna,d is the distance between
adjacent array antennas, andλc is the carrier wavelength.

Let the SNR gain of them-th beam in ideal LOS channels (K = ∞) be denoted by

γm ,
∣

∣bTmhL

∣

∣

2

=

{

M, if φm = 2πn, n ∈ Z,
1
M

sin2(Mφm/2)
sin2(φm/2) , otherwise,

(5)
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where

φm , 2π

[

1

M

(

m− 1

2

)

− d

λc
sin θ

]

. (6)

SincehL is a function ofθ, γm is also a function ofθ and let us call a set ofM functions{γm|m =
1, ...,M} a beam pattern, which has the following properties:

M
∑

m=1

γm =M, 0 ≤ γm ≤M ; (7)

γm =M if and only if φm = 2π
n

M
,
n

M
∈ Z; (8)

γm = 0 if and only if φm = 2π
n

M
,
n

M
/∈ Z; (9)

where the azimuthal angle satisfying (8) is thebeam direction. Let us define a lobe of a beam as amain
lobe if the beam direction is inside that lobe. We assume

M − 1

2M
<

d

λc
, (10)

for all M beams to have at least one main lobe. We examine the beam pattern only from θ = 0 to the
first beam direction given by

θ = ν , arcsin

(

1

2M

λc
d

)

(11)

as discussed in [3].

B. Probabilistic Analysis

Now, let us consider the statistical channel model including NLOS components. The cumulative
distribution function (cdf) ofΓm is given by [3]

Fm(x) , Pr{Γm ≤ x}
= Fχ′2(2(K + 1)x|n, δ)|n=2, δ=2Kγm

= E
[

Fχ2(2(K + 1)x|n + 2Pδ/2)
]∣

∣

n=2, δ=2Kγm

, (12)

whereFχ′2(x|n, δ) is the noncentral chi-square cdf withn degrees of freedom and the noncentrality
parameterδ, Pδ/2 is a Poisson random variable with meanδ/2, andFχ2(x|q) is the chi-square cdf with
q degrees of freedom, given by

Fχ2(x|q) = 1− e−x/2

q/2−1
∑

k=0

(x/2)k

k!
= e−x/2

∞
∑

k=q/2

(x/2)k

k!
(13)

if q is an even number as in (12) whereq = n+2Pδ/2|n=2. Note that givenK, evaluatingγm is enough
to know the distribution of the SNR gainΓm. The beam selection gainΓ(M) is given by

F(M)(x) , Pr{Γ(M) ≤ x} =

M
∏

m=1

Fm(x), (14)

and thus forx > 0,

logF(M)(x) =
M
∑

m=1

log Fm(x). (15)



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY 5

We have the following useful key theorem on the noncentral chi-square distribution, whose proof can
be found in the Appendix.

Theorem 1: The logarithm of the noncentral chi-square cdf with two degrees of freedom

logFχ′2(x|2, δ) (16)

is a strictly decreasing and strictly concave function of the noncentrality parameterδ ≥ 0 for any given
x > 0 assuming that the base of logarithm is greater than one.

Now, we are ready to show the following theorem, where stochastic order relations are introduced in
[5, Ch. 9].

Theorem 2: For any givenx > 0, F(M)(x), the cdf of the beam selection gainΓ(M), is a strictly
decreasing function ofθ from zero to the first beam directionν = arcsin

(

1
2M

λc

d

)

. Therefore, in this
interval,Γ(M) is stochastically increasing, stochastically smallest atθ = 0, and stochastically largest at
θ = ν.

Proof: This proof is given in the Appendix.
The corollary below follows naturally from Theorem 2.
Corollary 3: For θ ∈ [−π/2, π/2] and any integer|m| ≤ M

λc/d
, Γ(M) is stochastically increasing asθ

increases if

θ ∈
[

arcsin

(

m

M

λc
d

)

,

arcsin

(

min

{

m+ 1/2

M

λc
d
, 1

})]

, (17)

and stochastically decreasing asθ increases if

θ ∈
[

arcsin

(

max

{

m− 1/2

M

λc
d
,−1

})

,

arcsin

(

m

M

λc
d

)]

. (18)

It is exactly opposite for the other half of the horizontal plane,θ ∈ [π/2, 3π/2]. Therefore,Γ(M) with
θ = 0 and θ = ν are achievable stochastic lower and upper bounds, respectively for Γ(M) with an
arbitraryθ.

Corollary 3 tells us that the expected performance measuresover Γ(M) with θ = 0 and θ = ν can
serve as lower and upper bounds, respectively, for the averages of any performance measures which are
increasing functions of SNR, e.g., the channel capacity. They can also serve as upper and lower bounds,
respectively, for the averages of any performance measureswhich are decreasing functions of SNR, e.g.,
the bit error rate (BER), applying the result in [5, pp. 405–406].

IV. B EAM SELECTION VERSUSANTENNA SELECTION

Let us consider the antenna selection gain under the same scenario used for beam selection case except
the fact that the Butler FBN will not be deployed for antenna selection. When them-th antenna is selected
amongM antennas in the base station, the SNR is given byρ ·Hm, whereHm , |hm|2. Assuming that
the antenna with the highest SNR is always selected, the antenna selection gain is defined as the ratio of
the SNR of antenna selection to the average SNR of random antenna switching, which can be expressed
by H(M). For anym, the cdf ofHm becomes

G(x) , Pr{Hm ≤ x} = Fχ′2(2(K + 1)x|2, 2K). (19)
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Therefore, the cdf ofH(M) is given by

G(M)(x) , Pr{H(M) ≤ x} = GM (x). (20)

With the proofs of previous theorems, we can confirm that the following lemma holds.
Lemma 1: For the same RicianK-factor, beam selection always outperforms antenna selection, i.e.,

the beam selection gainΓ(M) is stochastically larger than the antenna selection gainH(M).
Proof: Applying the concavity result in Theorem 1 and Jensen’s inequality gives us

logG(M)(x) =M log Fχ′2(2(K + 1)x|2, 2K)

≥
M
∑

m=1

logFχ′2(2(K + 1)x|2, 2Kγm)

= log F(M)(x), (21)

for any givenx > 0.

V. A SYMPTOTIC SELECTION GAINS

It has been shown that the beam selection gain is stochastically upper and lower bounded byΓ(M)

with θ of zero and the first beam directionν = arcsin
(

1
2M

λc

d

)

, respectively. Our interest in this section
is to see how these two extremes change as the number of antennasM increases and then obtain the
asymptotic selection gain for an arbitrary location of the remote user. Furthermore, these analytical results
can be applied to study the outage and the ergodic capacity ofbeam selection systems. For this purpose,
consider the SNR gainΓm(θ) and its cdfFm(·|θ) as functions of the azimuthal angleθ.

A. Bounds and Approximations

First, we can obtain the stochastic lower bound for the beam selection gain of the user at the beam
directionΓ(M)(ν) given by

F(M)(x|ν) =
M
∏

m=1

Fχ′2(2(K + 1)x|2, 2Kγm(ν))

= Fχ′2(2(K + 1)x|2, 2KM) · FM−1
χ2 (2(K + 1)x|2)

= QM (x)WM−1(x)

≤ QM (x), (22)

whereQ andW are defined by

Qγ(x) , Fχ′2(2(K + 1)x|2, 2Kγ), (23)

W (x) , Fχ2(2(K + 1)x|2). (24)

Fig. 2 showsF(M)(x|ν) and its stochastic lower boundQM . It can be seen that the lower boundQM

approaches to the cdfF(M)(x|ν) asM increases, which will be proved.
Now, consider the beam selection gain of the user exactly between beamsΓ(M)(0) and its cdf given

by

F(M)(x|0) =
M
∏

m=1

Fχ′2(2(K + 1)x|2, 2Kγm(0)). (25)
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L.B. :  M = 4
L.B. :  M = 8
L.B. :  M = 16
L.B. :  M = 32
L.B. :  M = 64
L.B. :  M = 128
Exact :  M = 4
Exact :  M = 8
Exact :  M = 16
Exact :  M = 32
Exact :  M = 64
Exact :  M = 128

L.B. :  M = 4
L.B. :  M = 8
L.B. :  M = 16
L.B. :  M = 32
Exact :  M = 4
Exact :  M = 8
Exact :  M = 16
Exact :  M = 32

L.B. :  M = 4
L.B. :  M = 8
L.B. :  M = 16
L.B. :  M = 32
Exact :  M = 4
Exact :  M = 8
Exact :  M = 16
Exact :  M = 32

Fig. 2. Distributions of the beam selection gainΓ(M)(ν) and its stochastic lower bound forK =
−10, 0, 10 dB, whered = λc/2 is assumed.

Let us choose a vectoru = [u(1), ..., u(M)] which majorizes the beam pattern{γm(0)|m = 1, ...,M} as

γ1(0) = γM (0) = u(M) = u(M−1) =
1

M sin2(π/2M)
, aM

> u(M−2) = u(M−3) =
M

2
− 1

M sin2(π/2M)
, bM > γ2(0) = γM−1(0)

> γ3(0), ..., γM−2(0) > u(M−4) = ... = u(1) = 0, (26)

where majorization is introduced in [6, p. 45].
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Notation: For any two real-valued sequencescM anddM , we define

cM ≈ dM if and only if limM→∞ |cM − dM | = 0;
cM ∼ dM if and only if limM→∞ cM/dM = 1;
cM = Θ(dM ) if and only if 0 < limM→∞ cM/dM <∞.

Using this notation, we can see

aM ∼ 4

π2
M = (0.4053...) ×M, (27)

bM ∼
(

1

2
− 4

π2

)

M = (0.0947...) ×M. (28)

Applying Hardy-Littlewood-Pólyas theorem in [6, pp. 88–91] and the strict concavity of (16) to (25)
yields the stochastic upper bound

F(M)(x|0) ≥
M
∏

m=1

Fχ′2(2(K + 1)x|2, 2Ku(m))

= F 2
χ′2(2(K + 1)x|2, 2KaM ) · F 2

χ′2(2(K + 1)x|2, 2KbM ) · FM−4
χ2 (2(K + 1)x|2)

= Q2
aM

(x) ·Q2
bM (x) ·WM−4(x). (29)

Thus, we have the stochastic lower and upper bound forF(M)(x|0) given by

Q2
aM

(x) ≥ F(M)(x|0) ≥ Q2
aM

(x) ·Q2
bM (x) ·WM−4(x). (30)

Fig. 3 showsF(M)(x|0) and its stochastic lower boundQ2
aM

and upper boundQ2
aM
Q2

bM
WM−4. We

also observe that as the lower and upper bounds are merged into each other, so doesF(M)(x|0) asM
increases.

The following theorem verifies that the stochastic lower bounds in (22) and (30) are indeed asymptot-
ically tight.

Theorem 4: For K > 0 andp ∈ [0, 1),

F−1
(M)(p|ν) ≈ Q−1

M (p) (31)

and
F−1
(M)(p|0) ≈ Q−1

aM
(
√
p) (32)

asM increases.
Proof: This proof is given in the Appendix.

We also have the following theorem useful for average performance evaluation, whose proof can be
found in the Appendix.

Theorem 5: Let h be any differentiable function defined on[0,∞) such thath′ is bounded. Ifh is
integrable with respect toQM , then

∫ ∞

0
h(x)dF(M)(x|ν) ≈

∫ ∞

0
h(x)dQM (x) (33)

asM increases. Ifh is integrable with respect toQ2
aM

, then
∫ ∞

0
h(x)dF(M)(x|0) ≈

∫ ∞

0
h(x)dQ2

aM
(x) (34)

asM increases.
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U.B. :  M = 4
U.B. :  M = 16
U.B. :  M = 64
U.B. :  M = 256
L.B. :  M = 4
L.B. :  M = 16
L.B. :  M = 64
L.B. :  M = 256
Exact :  M = 4
Exact :  M = 16
Exact :  M = 64
Exact :  M = 256

U.B. :  M = 4
U.B. :  M = 8
U.B. :  M = 16
U.B. :  M = 32
L.B. :  M = 4
L.B. :  M = 8
L.B. :  M = 16
L.B. :  M = 32
Exact :  M = 4
Exact :  M = 8
Exact :  M = 16
Exact :  M = 32

U.B. :  M = 4
U.B. :  M = 8
U.B. :  M = 16
U.B. :  M = 32
L.B. :  M = 4
L.B. :  M = 8
L.B. :  M = 16
L.B. :  M = 32
Exact :  M = 4
Exact :  M = 8
Exact :  M = 16
Exact :  M = 32

Fig. 3. Distributions of the beam selection gainΓ(M)(0) and its stochastic lower and upper bounds for
K = −10, 0, 10 dB, whered = λc/2 is assumed.

Theorems 4 and 5 in this subsection demonstrate that for large M , the distributions of the beam
selection gain of the user at the beam directionΓ(M)(ν) and the beam selection gain of the user exactly
between beamsΓ(M)(0) can be well approximated byQM (x) andQ2

aM
(x), respectively, which are the

noncentral chi-square distribution and its square. These are useful as their closed-form expressions are
complicated and thus not insightful.
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B. Performance Analysis

It can be seen that outage probabilities withθ = 0 andθ = ν for a given rateC0 can be approximated
by

Pout(C0) , Pr
{

log2
(

1 + ρΓ(M)(θ)
)

≤ C0

}

≈







QM

(

2C0−1
ρ

)

, if θ = ν,

Q2
aM

(

2C0−1
ρ

)

, if θ = 0,
(35)

for largeM . Furthermore, Theorem 4 can be used to approximate outage capacities withθ = 0 and
θ = ν as

Cout(P0) , P−1
out(P0) = log2

[

1 + ρF−1
(M)(P0|θ)

]

≈
{

log2
[

1 + ρQ−1
M (P0)

]

, if θ = ν,
log2

[

1 + ρQ−1
aM

(
√
P0)
]

, if θ = 0.
(36)

for largeM .
Let us apply Theorem 5 to the mean selection gainE

[

Γ(M)

]

by takingh(x) = x. The expected beam
selection gain forθ = ν is given by

E
[

Γ(M)(ν)
]

≈
∫ ∞

0
xdQM (x) =

KM + 1

K + 1
= Θ(M). (37)

The expected beam selection gain forθ = 0 is given by

E
[

Γ(M)(0)
]

≈
∫ ∞

0
xdQ2

aM
(x), (38)

asM increases. Although it seems difficult to solve the integration in (38), we can obtain upper and
lower bounds using an inequality in [7, p. 62] becauseQ2

aM
is the cdf of the maximum of two samples

from QaM
, whose mean and variance are(KaM +1)/(K +1) and(2KaM +1)/(K +1)2, respectively.

These bounds are given by

KaM + 1

K + 1
≤
∫ ∞

0
xdQ2

aM
(x) ≤ KaM + 1

K + 1
+

1√
3

√
2KaM + 1

K + 1
, (39)

which yields

E
[

Γ(M)(0)
]

≈
∫ ∞

0
xdQ2

aM
(x) ∼ KaM + 1

K + 1
= Θ(M) (40)

Hence,E
[

Γ(M)

]

= Θ(M) regardless of user location, which is faster thanΘ(logM) for antenna selection
[8].

Lemma 2: Let ρ > 0 denote SNR. AsM increases, the ergodic capacity of the user at the beam
direction (θ = ν) is given by

E
[

log2
(

1 + ρΓ(M)(ν)
)]

≈ log2

(

1 + ρ
KM + 1

K + 1

)

, (41)

and the ergodic capacity of the user exactly between beams (θ = 0) is given by

E
[

log2
(

1 + ρΓ(M)(0)
)]

≈ log2

(

1 + ρ
KaM + 1

K + 1

)

. (42)

Proof: This proof is given in the Appendix.
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Fig. 4. Ergodic capacity versusM for K = 0 dB at ρ = 5 dB, whered = λc/2 is assumed.

This lemma also yields the order of growth of the ergodic capacity E
[

log2
(

1 + ρΓ(M)

)]

≈ Θ(log(M))
regardless of user location, which is faster thanΘ(log(log(M))) for antenna selection [8]. Fig. 4 shows
the ergodic capacity and its approximations in (41) and (42)for SNR ρ = 5dB. We see that the
approximations approach the numerically integrated exactvalues asM increases.

VI. CONCLUSION

We considered beam selection using the Butler FBN at the basestation with multiple linear equally
spaced omnidirectional array antennas. Completing the analysis of the beam selection gain, we provided
the proofs of the key properties verifying that beam selection is superior to antenna selection in Rician
channels with anyK-factors. We also found asymptotically tight stochastic bounds of the beam selection
gain and approximate closed form expressions of the expected selection gain and the ergodic capacity.
Using these results, it was shown that beam selection has higher order of growth of the ergodic capacity
than antenna selection. Graphical results were provided demonstrating the underlying gains and supporting
our approximations.
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APPENDIX

Proof of Theorem 1: Without loss of generality, assume the natural logarithm. For any givenx > 0,
(16) can be expressed as

log Fχ′2(x|2, δ) = log

[

∞
∑

i=0

e−δ/2(δ/2)i

i!
αi

]

= −δ
2
+ log

[

∞
∑

i=0

(δ/2)i

i!
αi

]

, (43)

whereαi is defined as

αi , Fχ2(x|2 + 2i) = e−x/2
∞
∑

k=i+1

(x/2)k

k!
(44)

from (13). Differentiating (43) gives us

∂

∂δ
log Fχ′2(x|2, δ) = −1

2
+

1

2
·
∑∞

i=0
(δ/2)i

i! αi+1
∑∞

i=0
(δ/2)i

i! αi

=

∑∞
i=0

(δ/2)i

i! (αi+1 − αi)

2
∑∞

i=0
(δ/2)i

i! αi

< 0 (45)

for δ > 0 becauseαi+1 < αi from (44), and thus (16) is a strictly decreasing function ofδ ≥ 0.
Now, prove that (16) is a strictly concave function ofδ ≥ 0. The second derivative of (43) is given by

∂2

∂δ2
log Fχ′2(x|2, δ)

=

(

∑∞
i=0

(δ/2)i

i! αi

)(

∑∞
i=0

(δ/2)i

i! αi+2

)

−
(

∑∞
i=0

(δ/2)i

i! αi+1

)2

4
(

∑∞
i=0

(δ/2)i

i! αi

)2 , (46)

the i-th order term of whose numerator can be simplified as

(δ/2)i

i!
(α0αi+2 − α1αi+1). (47)

Let us show that (46) is negative by proving that (47) is negative for δ > 0. Considerαi−1/αi, which is
an increasing function ofi because

αi−1

αi
− 1 =

(x/2)i

i!
∑∞

k=i+1
(x/2)k

k!

=
1

∑∞
k=1

(x/2)k

(i+k)!/i!

(48)

and (i+ k)!/i! increases asi increases for any positive integerk. Therefore,
α0

α1
<
α1

α2
< ... <

αi+1

αi+2
< ..., (49)

which yields the strict concavity of (16).
Proof of Theorem 2: Define

β , 2π
d

λc
sin θ. (50)
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Under the condition (10),β is an increasing and continuous function ofθ and has the range
[

0, π
M

]

.
Therefore, we only need to show thatF(m) is a strictly decreasing function ofβ in the domain

[

0, π
M

]

.
From (6),

φm(β) ,
2π

M

(

m− 1

2

)

− β = φm(0)− β, (51)

and by defining

η(φ) =

{

M if φ = 2πn, n ∈ N

1
M

sin2(Mφ/2)
sin2(φ/2)

otherwise,
(52)

we can represent
γm(β) = η(φm(β)). (53)

Note thatη(φ) is a periodic function with period2π, symmetric with respect to the axisφ = πn, and
the value ofη at φ = 2πn makesη(φ) a continuous function ofφ.

First, prove that forβ ∈
[

0, π
M

]

the beam pattern{γm} can be sorted in nonincreasing order as follows:

γ1(β) ≥ γM (β) ≥ γ2(β) ≥ γM−1(β) ≥ ... ≥ γ⌊M

2
⌋+1(β), (54)

where⌊·⌋ is a floor function. It can be easily shown that

γM+1−m(β) = η(φm(−β)) = γm(−β). (55)

We get the following equivalent inequalities of (54)

η(φ1(β)) ≥ η(φ1(−β)) ≥ ... ≥ η
(

φ⌊M+1

2
⌋
(

(−1)M−1β
)

)

. (56)

We can see that

η(φm(±β)) = 1

M

sin2
(

M
2 φm(±β)

)

sin2
(

1
2φm(±β)

) =
1

M

cos2
(

M
2 β
)

sin2
(

1
2φm(±β)

) (57)

and
0 ≤ φ1(β) ≤ φ1(−β) ≤ ... ≤ φ⌊M+1

2
⌋
(

(−1)M−1β
)

≤ π, (58)

which yields (56) because in (57), the numeratorsin2
(

M
2 φ
)

has the same value atφ = φm(±β) for
any fixedβ and allm, and the denominatorsin2

(

1
2φ
)

is increasing function ofφ ∈ [0, π]. Define the
nondecreasingly sorted vectorγ from {γm} given by

γ , [γ(1), γ(2), ..., γ(M)]

=
[

γ⌊M

2
⌋+1, ..., γM−1, γ2, γM , γ1

]

(59)

for β ∈
[

0, π
M

]

. Let us show thatγ(β2) strictly majorizesγ(β1) for 0 ≤ β1 < β2 ≤ π
M , which means

M
∑

i=1

γ(i)(β1) =

M
∑

i=1

γ(i)(β2) (60)

and
m
∑

i=1

γ(i)(β1) >
m
∑

i=1

γ(i)(β2) (61)
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for all m ∈ {1, ...,M − 1}. We already have (60) from (7), and thus it suffices to prove (61). Under the
assumption that (61) is proved, using Hardy-Littlewood-P´olyas theorem in [6, pp. 88–91] based on the
strict concavity of (16) proved in Theorem 1 gives us

log F(M)(x|K,β1) =
M
∑

m=1

logFχ′2(2(K + 1)x|2, 2Kγm(β1))

>

M
∑

m=1

log Fχ′2(2(K + 1)x|2, 2Kγm(β2)) = log F(M)(x|K,β2), (62)

which basically shows thatF(m) is a strictly decreasing function ofβ.
Let us prove thatγ1(β) and γM (β) are strictly increasing and strictly decreasing respectively. For

φ 6= 2πn, it can be shown that

η′(φ) =
1

M

sin2
(

M
2 φ
)

sin2
(

1
2φ
)

[

M cot

(

M

2
φ

)

− cot

(

1

2
φ

)]

. (63)

We can showη′(φ) is negative for0 < φ < 2π
M because by the Taylor series expansion,

M cot

(

M

2
φ

)

− cot

(

1

2
φ

)

= M

[

2

Mφ
−

∞
∑

i=1

22i|B2i|
(2i)!

(

M

2
φ

)2i−1
]

−
[

2

φ
−

∞
∑

i=1

22i|B2i|
(2i)!

(

1

2
φ

)2i−1
]

= −
∞
∑

i=1

22i|B2i|
(2i)!

(M2i − 1)

(

φ

2

)2i−1

< 0 (64)

whereBi is thei-th Bernoulli number. Therefore,η(φ) is strictly decreasing in
[

0, 2πM
]

, and thusη(φ) is
strictly increasing in

[

2πM−1
M , 2π

]

by the symmetry. Since

γ1(β) = η
( π

M
− β

)

(65)

and

γM (β) = η

(

2π
M − 1/2

M
− β

)

, (66)

we have proved our claim.
Now, consider the case whenM ≥ 3 andm = 2, ...,M − 1. We can see that ifm < (M + 1)/2,

γM+1−m(β) is strictly decreasing because the numerator and the denominator in (52) are strictly de-
creasing and strictly increasing respectively as functions of β. Moreover, we can show the fact that
γm(β) + γM+1−m(β) is strictly decreasing, which can lead to the consequence that γM+1

2

(β) is strictly
decreasing for oddM and thusγM+1−m(β) is strictly decreasing form = (M +1)/2 as well. It suffices
to prove that

γ ′
m(β) + γ ′

M+1−m(β) < 0 (67)

for β ∈
(

0, π
M

)

. From (55),

γm(β) + γM+1−m(β) =
1

M

sin2 (Mφm(β)/2)

sin2 (φm(β)/2)
+

1

M

sin2 (Mφm(−β)/2)
sin2 (φm(−β)/2)

=
1

M
cos2

(

M

2
β

)

[

csc2 (φm(β)/2) + csc2 (φm(−β)/2)
]

, (68)
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because it can be shown that

sin2 (Mφm(β)/2) = sin2 (Mφm(−β)/2) = cos2
(

M

2
β

)

. (69)

By defining

f(β) , cos2
(

M

2
β

)

, (70)

g1(β) , csc2 (φm(β)/2) , g2(β) , csc2 (φm(−β)/2) , (71)

we have the expression

γ ′
m + γ ′

M+1−m =
1

M
f (g1 + g2)

(

f ′

f
+
g′1 + g′2
g1 + g2

)

. (72)

Sincef > 0 andg1 + g2 > 0 for β ∈
(

0, π
M

)

, we only need to show

h ,
f ′

f
+
g′1 + g′2
g1 + g2

< 0. (73)

Simple derivations give us
f ′

f
= −M tan

(

M

2
β

)

, (74)

g′1 =
d

dβ

[

csc2
(

φm(β)

2

)]

= csc2
(

φm(β)

2

)

cot

(

φm(β)

2

)

, (75)

and similarly

g′2 = − csc2
(

φm(−β)
2

)

cot

(

φm(−β)
2

)

. (76)

We get

h(β) = −M tan

(

M

2
β

)

+
csc2

(

φm(β)
2

)

cot
(

φm(β)
2

)

− csc2
(

φm(−β)
2

)

cot
(

φm(−β)
2

)

csc2
(

φm(β)
2

)

+ csc2
(

φm(−β)
2

) . (77)

Because0 < φm(β)/2, φm(−β)/2 < π, applying the mean value theorem yields

csc2
(

φm(β)
2

)

cot
(

φm(β)
2

)

− csc2
(

φm(−β)
2

)

cot
(

φm(−β)
2

)

−β = −2 csc2 ψ cot2 ψ − csc4 ψ. (78)

for someψ ∈ (φm(β)/2, φm(−β)/2). Then,

h(β) = −M tan

(

M

2
β

)

+
β csc4 ψ(2 cos2 ψ + 1)

csc2
(

φm(β)
2

)

+ csc2
(

φm(−β)
2

) . (79)
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We can see that forψ ∈ [φm(β)/2, φm(−β)/2], csc4 ψ(2 cos2 ψ+1) has maximum at eitherψ = φm(β)/2
or ψ = φm(−β)/2 and let it be denoted byψb. We are ready to show the following series of inequalities

h(β) < −M tan

(

M

2
β

)

+
β csc4 ψb(2 cos

2 ψb + 1)

csc2 ψb + 1

< −M
2

2
β + β csc2 ψb

(

−2 +
10

3− cos 2ψb

)

< −M
2

2
β + 3β csc2 ψb

< −M
2

2
β + 3β

1

sin2 π
M

<
M2

2
β






−1 +

6

π2
{

1− 1
6

(

π
M

)2
}2







< 0, (80)

where the last inequality holds asM ≥ 3. This proves (73), and thus (67) follows.
It is clear that

∑m
i=1 γ(i)(β) is strictly decreasing for allm ∈ {1, ...,M − 1} because

γM+1−m(β) (81)

and
γm(β) + γM+1−m(β) (82)

are strictly decreasing form = 1, ..., ⌊M+1
2 ⌋, which we has been proved above, and

∑m
i=1 γ(i)(β) becomes

either the sum of (82) for multiplem or the sum of (81) and (82) for multiplem. The validity of (62)
completes our proof.

Proof of Theorem 4: All functions in (31) and (32) take the value0 if and only if x = 0. Thus, we
can assumep ∈ (0, 1). To show (31), definex1 , Q−1

M (p) andx2 , F−1
(M)(p|ν) and this yields

QM (x1) = QM(x2)W
M−1(x2) = p. (83)

Let us introduce a new variablex3 to obtain upper bound forx2 given by

x3 , Q−1
M

(

p

WM−1(x1)

)

≥ x2 ≥ x1. (84)

Let us showx3 ≈ x1, and thenx2 ≈ x1 in (31) follows immediately. The value ofx1 can be computed
using Sankaran’s approximation in [9], where it has been suggested that for a random variableX with
the cdf Fχ′2(x|n, δ), {X − (n− 1)/2}1/2 − {δ + (n− 1)/2}1/2 is approximately zero mean Gaussian
with unit variance and this approximation improves if either n or δ increases. Thus asM increases,

x1 ≈ 1

2(K + 1)





1

2
+

{

(

2KM +
1

2

) 1

2

+Φ−1(p)

}2




∼ K

K + 1
M, (85)

whereΦ−1 is the inverse function of the Gaussian cdf given by

Φ(x) =
1√
2π

∫ x

−∞
e−

t
2

2 dt. (86)
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Let us use the notationsµF and σ2F to denote the mean and variance of distributionF , respectively.
Then, it can be shown that

µWM−1 ≈ qM−1 + ζ

2(K + 1)
, σ2WM−1 ≈ π2/6

{2(K + 1)}2
, (87)

where qM−1 , W−1 (1− 1/(M − 1)) ≈ ln(M − 1) and ζ , 0.5772... (Euler’s constant) [8]. For
x1 > µWM−1 (this is true for allM > C for someC), applying one-sided Chebyshev’s inequality in [10,
p. 152] yields

1−WM−1(x1) ≤
1

1 + (x1 − µWM−1)2 /σ2WM−1

, (88)

and thus
1 ≤ 1

WM−1(x1)
≤ 1 + ǫM , (89)

where

0 < ǫM ,
σ2WM−1

(x1 − µWM−1)2
∼ π2

24

1

K2M2
(90)

by (85) and (87) asM increases. We have

x3 − x1

≤ Q−1
M (p(1 + ǫM ))−Q−1

M (p)

≈ 1

K + 1

(

2KM +
1

2

) 1

2
{

Φ−1(p(1 + ǫM ))− Φ−1(p)
}

+
1

2(K + 1)

[

{

Φ−1(p(1 + ǫM ))
}2 −

{

Φ−1(p)
}2
]

≈ 1

K + 1

(

2KM +
1

2

) 1

2

ǫMp
1

Φ′(Φ−1(p(1 + ε)))
, ε ∈ (1, ǫM )

≈ 0, (91)

asM increases, because(2KM + 1/2)1/2 · ǫM ≈ 0 from (90). Hence, (31) is proved. Now, (32) can be
shown similarly. For anyp ∈ (0, 1), let us definex4 , Q−1

aM
(
√
p) andx5 as

Q2
aM

(x5) ·Q2
bM (x5) ·WM−4(x5) = p (92)

From (30), definingx6 yields

x6 , Q−1
aM

( √
p

QbM (x4)W
M−4

2 (x4)

)

≥ x5 ≥ F−1
(M)(p|0) ≥ x4. (93)

Assumingx6 ≈ x4, we haveF−1
(M)(p|0) ≈ x4 in (32). Now, asM increases, it can be shown that

x4 ∼
K

K + 1
aM (94)
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as above. Note thatQbMW
M−4

2 is the distribution of the maximum of two independent randomvariables
following QbM andW

M−4

2 . It can be easily proved that

µ
QbM

W
M−4

2
≤ µQbM

+ µ
W

M−4
2

≈ KbM + 1

K + 1
+
qM−4

2

+ ζ

2(K + 1)

∼ K

K + 1
bM (95)

and

σ2
QbM

W
M−4

2

≤ σ2QbM

+ σ2
W

M−4
2

+
(

µ
W

M−4
2

)2

≈ KbM + 1

(K + 1)2
+

π2/6

{2(K + 1)}2
+

(

qM−4

2

+ ζ

2(K + 1)

)2

∼ K

(K + 1)2
bM . (96)

Once again using one-sided Chebyshev’s inequality,

1 ≤ 1

QbM (x4)W
M−4

2 (x4)
≤ 1 + ǫ′M , (97)

where

0 < ǫ′M ,

σ2
QbM

W
M−4

2

(

x4 − µ
QbM

W
M−4

2

)2

∼ 1

K

1/2 − 4/π2

(8/π2 − 1/2)2
1

M

= (0.9820...) × 1

KM
, (98)

As M increases, this implies(2KaM + 1/2)1/2 · ǫ′M ≈ 0, which leads usx6 ≈ x4 as in (91).
Proof of Theorem 5: Let us show (33), first. LetXF denote a random variable following any

distributionF . Obviously,Γ(M)(ν) is stochastically larger thanXQM
from (22). Using the idea of coupling

[5, Sec. 9.2], define
Γ

∗
(M)(ν) , F−1

(M) (QM (XQM
)|ν) . (99)

Then,Γ(M)(ν) andΓ ∗
(M)(ν) share the same distribution butΓ ∗

(M)(ν) ≥ XQM
with probability 1. By the

mean value theorem, we have

h(Γ ∗
(M)(ν))− h(XQM

) = h′(ε)
[

Γ
∗
(M)(ν)−XQM

]

, (100)
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for someε ∈
(

XQM
,Γ ∗

(M)(ν)
)

. Using this,
∣

∣E
[

h(Γ(M)(ν))− h(XQM
)
]∣

∣

=
∣

∣

∣E

[

h(Γ ∗
(M)(ν))− h(XQM

)
]∣

∣

∣

≤ E

[∣

∣

∣
h(Γ ∗

(M)(ν))− h(XQM
)
∣

∣

∣

]

≤ C · E
[∣

∣

∣
Γ

∗
(M)(ν)−XQM

∣

∣

∣

]

= C ·
∣

∣E
[

Γ(M)(ν)−XQM

]∣

∣ , (101)

where|h′| is bounded byC. Now, let us showE
[

Γ(M)(ν)
]

≈ E [XQM
]. For anyx ≥ 0,

QM (x) ≥ F(M)(x|ν) = QM (x)WM−1(x)

≥
[

QM (x) +WM−1(x)− 1
]+
, (102)

where[·]+ is defined as

[y]+ ,

{

y if y ≥ 0,
0 if y < 0.

(103)

As QM +WM−1 − 1 is an increasing and continuous function of[0,∞) onto [−1, 1), there exists only
oneα ≥ 0 such that

QM (α) +WM−1(α)− 1 = 0. (104)

Therefore,

0 ≤ E
[

Γ(M)(ν)−XQM

]

=

∫ ∞

0

[(

1− F(M)(x|ν)
)

− (1−QM (x))
]

dx

≤
∫ ∞

0

[

QM (x)−
[

QM (x) +WM−1(x)− 1
]+
]

dx

=

∫ α

0
QM (x) dx+

∫ ∞

α

[

1−WM−1(x)
]

dx

≤
∫ β

0
QM (x) dx+

∫ ∞

β

[

1−WM−1(x)
]

dx (105)

for anyβ ≥ 0 as (105) can be minimized by choosingβ = α. Let us obtain the upper bound for the first
term of (105) using the Marcum Q-function defined and boundedas

Ψ(a, b) ,

∫ ∞

b
xe(x

2+a2)/2I0(ax) dx

≥ 1− a

a− b
exp

(

−1

2
(a− b)2

)

if a > b, (106)

whereI0(x) is the modified Bessel function of the first kind with order zero [11]. Using the connection
between the Rice distribution and the noncentral chi-square distribution with two degrees of freedom, it
can be shown that

QM (x) = Fχ′2(2(K + 1)x|2, 2KM)

= 1−Ψ
(√

2KM,
√

2(K + 1)x
)

. (107)
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From (106) and (107), the first term in (105) is bounded as
∫ β

0
QM (x) dx ≤ βQM (β)

≤ β

1−
√

(K + 1)β/(KM)
exp



−KM
(

1−
√

(K + 1)β

KM

)2


 , (108)

for β < KM/(K + 1). If we takeβ such that

lim
M→∞

β

M
<

K

K + 1
, (109)

then (108) goes to zero. Consider the second term of (105). Note thatW is the exponential distribution,
which has an increasing failure rate (IFR) [12, Sec. 3.2]. From the chains of implication in [12, p. 159],W
is a new better than used (NBU) distribution, which is closedunder the formation of coherent systems
including parallel systems, and thus the distributionWM−1 is a new better than used in expectation
(NBUE) as well as NBU. Using the bound for NBUE in [12, p. 187],the second term in (105) is
bounded as ∫ ∞

β

[

1−WM−1(x)
]

dx ≤ µWM−1e−β/µ
WM−1 . (110)

Note

µWM−1 ≈ ln(M − 1) + ζ

2(K + 1)
(111)

from (87), and thus we can find a sequenceβ such that (110) converges to zero asM increases while
limM→∞ β/M < K/(K + 1), e.g.,β = 0.5K

√
M/(K + 1). We now prove (34). It can be seen that

Q2
aM

(x) ≥ F(M)(x|0), Q2
aM

(x)Q2
bM (x)

≥ Q2
aM

(x)Q2
bM (x)WM−4(x). (112)

By the similar reasoning as above, it needs to be proved that

E
[

Γ(M)(0)
]

≈ E

[

XQ2
aM

]

(113)

asM increases. We can easily showE
[

XQ2
aM

Q2
bM

WM−4

]

≈ E

[

XQ2
aM

Q2
bM

]

as above. Assuming

E

[

XQ2
aM

Q2
bM

]

≈ E

[

XQ2
aM

]

, (114)

yieldsE
[

XQ2
aM

Q2
bM

WM−4

]

≈ E

[

XQ2
aM

]

, and thus (113) follows. Hence, we will show (114) to complete
this proof. For this, we need to find a sequenceβ ≥ 0 such that

∫ β

0
Q2

aM
(x) dx+

∫ ∞

β

[

1−Q2
bM (x)

]

dx→ 0 (115)

asM increases. To make the first term of (115) diminish,β can be chosen as

lim
M→∞

β

aM
<

K

K + 1
. (116)
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As QbM is the noncentral chi-square distribution with two degreesof freedom,QbM is IFR [13], and thus
Q2

bM
is NBUE as above. From the definition of NBUE in [12, p. 159], the second term of (115) is upper

bounded as
∫ ∞

β

[

1−Q2
bM (x)

]

dx ≤ µQ2
bM

[

1−Q2
bM (β)

]

≤ 4µQbM
[1−QbM (β)] . (117)

For a < b, Marcum Q-function is upper bounded as [11]

Ψ(a, b) ≤ b

b− a
exp

(

−1

2
(b− a)2

)

. (118)

Then, (117) can be further bounded as
∫ ∞

β

[

1−Q2
bM (x)

]

dx

≤ 4µQbM
Ψ
(

√

2KbM ,
√

2(K + 1)β
)

≤ 4
KbM + 1

K + 1

1

1− 1/
√

(K + 1)β/(KbM )
exp



−KbM





√

(K + 1)β

KbM
− 1





2

 , (119)

which goes to zero if we takeβ such that

K

K + 1
< lim

M→∞

β

bM
<∞. (120)

From the growth rates ofaM andbM in (27) and (28),β can be selected such that (116) and (120) are
satisfied simultaneously, e.g.,β = 0.25 ·KM/(K + 1), which proves (114) and (34) consequently.

Proof of Lemma 2: Obviously,log2(1 + ρx) is integrable with respect toQM andQ2
aM

as

E [log2(1 + ρXQM
)] ≤ log2 (1 + ρµQM

) (121)

and
E

[

log2(1 + ρXQ2
aM

)
]

≤ log2

(

1 + ρµQ2
aM

)

(122)

by Jensen’s inequality. From these and Theorem 5, we have

E
[

log2
(

1 + ρΓ(M)(ν)
)]

≈ E [log2(1 + ρXQM
)] (123)

and
E
[

log2
(

1 + ρΓ(M)(0)
)]

≈ E

[

log2(1 + ρXQ2
aM

)
]

(124)

asM increases. Then, we need to show that

E [log2(1 + ρXQM
)] ≈ log2 (1 + ρµQM

) (125)

and
E

[

log2(1 + ρXQ2
aM

)
]

≈ log2

(

1 + ρµQ2
aM

)

, (126)
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asM increases. Assuming that these are true, (41) and (42) follow naturally from (37) and (39). We will
now prove (125). By Chebyshev’s inequality, for any givenε > 0, we have

E [log2(1 + ρXQM
)]

=

∫ ∞

0
log2(1 + ρx) dQM(x)

≥
[

log2(1 + ρµQM
)− ε

2

]

[

1− Pr

{

log2

(

1 + ρXQM

1 + ρµQM

)

≤ −ε
2

}]

=
[

log2(1 + ρµQM
)− ε

2

]

[

1− Pr

{

XM − µQM

σQM

≤ −µQM
+ 1/ρ

σQM

(

1− 2−ε/2
)

}]

≥
[

log2(1 + ρµQM
)− ε

2

]

[

1− σQM

(1− 2−ε/2)(µQM
+ 1/ρ)

]

≥ log2(1 + ρµQM
)− ε

2
− log2(1 + ρµQM

)
σQM

(1− 2−ε/2)(µQM
+ 1/ρ)

≥ log2(1 + ρµQM
)− ε (127)

for large enoughM becauseµQM
= (KM +1)/(K +1) given in (37) andσM =

√
KM + 1/(K +1),

which proves (125). Moreover, (126) can be shown similarly as µQ2
aM

≥ µQaM
= (KaM + 1)/(K + 1)

andσQ2
aM

≤
√
2σQaM

=
√

2(2KaM + 1)/(K + 1) by the variance bound in [7, p. 69]
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