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Abstract—The fundamental principle underlying compressed [13]. However, all known recovery approaches use the prior
sensing is that a signal, which is sparse under some basisknowledge of the sparsity basi.
representation, can be recovered from a small number of linar Dictionary learning (DL)]—EQD] is another applicatiof

measurements. However, prior knowledge of the sparsity bas tati In DL . t of traini
is essential for the recovery process. This work introduceshe Sparse representatons. In » We are given a set ot training

concept of blind compressed sensing, which avoids the need t Signals, formally the columns of a matriX. The goal is to
know the sparsity basis in both the sampling and the recovery find a dictionaryP, such that the columns of are sparsely

process. We suggest three possible constraints on the spfys represented as linear combinations of the columng’oin

basis that can be added to the problem in order to make its 171 the quthors study conditions under which the DL proble
solution unique. For each constraint we prove conditions fo . . : . .
yields a unique solution for the given training sét

unigueness, and suggest a simple method to retrieve the stitn. X . !
Under the uniqueness conditions, and as long as the signals [N this work we introduce the concept of blind compressed

are sparse enough, we demonstrate through simulations that sensing (BCS), in which the goal is to recover a high-
without knowing the sparsity basis our methods can achieve dimensional vector: from a small number of measurements,
results similar to those of standard compressed sensing, Wi\ here the only prior is that there exists some basis in which

rely on prior knowledge of the sparsity basis. This offers a . Wi fer t i blind. si d t
general sampling and reconstruction system that fits all spae * IS Sparse. VVe refer to our setung as blind, since we do no

signals, regardless of the sparsity basis, under the conitins and require knowledge of the sparsity basis for the sampling or
constraints presented in this work. the reconstruction. This is in sharp contrast to CS, in which

recovery necessitates this knowledge. Our BCS framework
combines elements from both CS and DL. On the one hand, as
. INTRODUCTION in CS and in contrast to DL, we obtain only low dimensional

measurements of the signal. On the other hand, we do not

Sparse signal representations have gained popularity {#fyuire prior knowledge of the sparsity basis which is simil
recent years in many theoretical and applied aréas([L]-[§} the DL problem. The goal of this work is to investigate the
Roughly speaking, the information content of a sparse $igngsic conditions under which blind recovery from comprésse
occupies only a small portion of its ambient dimension. Fopeasurements is possible theoretically, and to propose con
example, a finite dimensional vector is sparse if it containsgate algorithms for this task.

small number of nonzero entries. It is sparse under a basis il5ince the sparsity basis is unknown, the uncertainty about
its representation under a given basis transform is spArse. o signalz is larger in BCS than in CS. A straightforward

analog signal is referred to as sparse if, for example, @largy|ytion would be to increase the number of measurements.
part of its bandwidth is not exploited|[4].][7]. Other model§oyever, we show that no rate increase can be used to
for analog sparsity are discussed in detaillih [5], [6], [8].  getermines, unless the number of measurements is equal
Compressed sensing (CS) [2]J [3] focuses on the role @fe dimension of:. Furthermore, we prove that even if we
sparsity in reducing the number of measurements neededhfe multiple signals that share the same (unknown) sparsit
represent a finite dimensional vectoe R™. The vectorz is  pasis, as in DL, BCS remains ill-posed. In order for the
measured by = Az, whereA is a matrix of sizen x m, with  measurements to determimeuniquely we need an additional
n < m. In this formulation, determining: from the given constraint on the problem. To prove the concept of BCS we
measurements is ill possed in general, sincd has fewer pegin by discussing two simple constraints on the sparsity b
rows than columns and is therefore non-invertible. Howevejis which enable blind recovery of a single vectote then
if 2 is known to be sparse in a given badfs then under tyrn to our main contribution, which is a BCS framework for
additional mild conditions o [9]-[11], the measurementsstryctured sparsity bases. In this setting, we show thatiprel
b determinex uniquely as long as: is large enough. This yectors sharing the same sparsity pattern are needed teeensu
concept was also recently expanded to include sub-Nyquigkovery. For all of the above formulations we demonstréte v
sampling of structured analog signals [4], [6].[12]. simulations that when the signals are sufficiently sparse th
In principle, recovery from compressed measurementsissults of our BCS methods are similar to those obtained by
NP-hard. Nonetheless, many suboptimal methods have be@indard CS algorithms which use the true, though unknown
proposed to approximate its solutidn [1]J-[3]. [13]5[15héSe in practice, sparsity basis. When relying on the structural
algorithms recover the true value ofwhenz is sufficiently constraint we require in addition that the number of signals
sparse and the columns of are incoherentl]1],[[9]=[11], must be large enough. However, the simulations show that the

number of signals needed is reasonable and much smaller than
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http://arxiv.org/abs/1002.2586v2

have been considered "good” in the sense that they are knoavwvectorz € R™ from measurements = Ax, where A €
to sparsely represent many natural signals. These inclut,*™ andn < m. This problem is ill possed in general and
for example, various wavelet representations! [25] and thigerefore has infinitely many possible solutions. In CS wakse
discrete-cosine transform (DCT) _[26]. We therefore tréwt t the sparsest solution:
setting in which the unknown basi® is one of a finite
and known set of bases. We develop uniqueness conditions
and a recovery algorithm by treating this formulation as where|| - ||, is the, semi-norm which counts the number of
series of CS problems. To widen the set of possible bas@snzero elements of the vector. This idea can be generalized
that can be treated, the next constraint allolvgo contain to the case in whick is sparse under a given bagts so that
any sparse enough combination of the columns of a givéere is a sparse vectsrsuch that: = Ps. Problem[(ll) then
dictionary. We show that the resulting CS problem can h®comes
viewed within the framework of standard CS, or as DL with ) .
a sparse dictionary [23]. We compare these two approaches s=argminlfsllo st b=APs, @
for BCS with a sparse basis. For both classes of constrains & the reconstructed signal is= Ps. When the maximal
show that a Gaussian random measurement matrix satisfiestbhgber of nonzero elements iris known to equak, we may
unigueness conditions we develop with probability one.  consider the objective

Our main contribution is inspired by multichannel systems, A ) )
where the signals from each channel are sparse under separat = 8 min ||b — APs|[; st lsllo <k (3)

bases. In our setting this translates to the requiremert thaan important question is under what conditionk (@)-(3) have
P is block diagonal. For simplicity, and following several ynique solution. In[]9] the authors define tapark of a
previous works [[27]+[29], we impose in addition thBtis matrix, denoted by (-), which is the smallest possible number
orthogonal. We then choose to measure the set of sigh@dg  of linearly dependent columns. They prove thati§ k-sparse,

a measurement matrid consisting of a union of orthogonal ando(AP) > 2k, then the solution td{2), or equivalenty (3),
bases. This choice has been used in previous CS and DL wqgkginique. Unfortunately, calculating the spark of a matsix
as well [21], [22], [30]-[32]. For technical reasons we alsg combinatorial problem. However, it is often bounded by the
choose the number of blocks iRt as an integer multiple of mytyal coherencf], which can be calculated easily. Denoting

the number of bases id. Using this structure we developthe jth column of a matrixD by d;, the mutual coherence of
uniqueness results as well as a concrete recovery algorithmis given by

The uniqueness condition follows from reformulating the BC .
e : |d; d;|

problem within the framework of DL and then relying on (D) = max — I

results obtained in that context. In particular, we requaire i#5 ||ds]|2|1d;]]2

ensemble of signals, all sparse in the same basis. AS W§; js easy to see that(D) > 1+ ——. Therefore, a sufficient

show, a suitable choice of random matrik satisfies the condition for the uniqueness of the solutionsf (2)[@r (3) is
unigueness conditions with probability 1.

Unfortunately, the reduction to an equivalent DL problem k< 1 (1 + #) )
which is used for the uniqueness proof, does not lead to a 2 H(AP)

practical recovery algorithm. This is due to the fact that it Although the uniqueness condition involves the product
necessitates resolving the signed permutation ambiguliigh AP, some CS methods are universal. This means that by
is inherent in DL. Instead, we propose a simple and direebnstructing a suitable measurement mattixuniqueness is
algorithm for recovery, which we refer to as the orthogongjuaranteed for any fixed orthogonal bagts In such cases
block diagonal BCS (OBD-BCS) algorithm. This method findRnowledge ofP is not necessary for the sampling process. One
X = PS by computing a basi® and a sparse matri& using way to achieve this universality property with probability
two alternating steps. The first step is sparse coding, ithwhirelies on the next proposition.

P is fixed andS is updated using a standard CS algorithn}5
In the second step' is fixed andP is updated using several
singular value decompositions (SVD).

The remainder of the paper is organized as follows.
Section[l] we review the fundamentals of CS and define Proof: Due to the properties of Gaussian random variables
the BCS problem. In Section Il we prove that BCS is illand sinceP is orthogonal, the productP is also an i.i.d.
posed by showing that it can be interpreted as a certain baussian random matrix. Since anyor less, i.i.d. Gaussian
posed DL problem. In Sectiois JV.]V._ VI we consider theectors inR™ are linearly independent with probability 1,
three constrained BCS problems respectively. A compariseiAP) > n with probability 1. On the other hand, more
between the different approaches is provided in Seéfioh Vithenr vectors inR" are always linearly dependent, therefore

& = argmin ||z||o st b= Az, Q)

roposition 1. If A is an i.i.d. Gaussian random matrix of size
n x m, wheren < m, thenc(AP) = n+ 1 with probability 1
ﬁqr any fixed orthogonal basis.

o(AP)=n+1. |
I BCS_PROBLEM DEFINITION According to Propositiofil1 ifd is an i.i.d Gaussian matrix
A. Compressed Sensing and the number of nonzero elementssinis k& < n/2, then

We start by shortly reviewing the main results in the field ahe uniqueness of the solution {d (2) bf (3) is guaranteeld wit
CS needed for our derivations. The goal of CS is to reconistrygrobability 1 for any fixed orthogonal basi3 (see also[[33]).



Problems[(R) and{3) are NP-hard in general. Many sub- [1l. UNIQUENESS

optimal methods have been proposed to approximate theifye now discuss BCS unigueness, namely the uniqueness of

solutions, such as [1H[3]/ [13[=[15]. These algorithms cahe signal matrixX which solves Problerfll 2. Unfortunately,

be divided into two main approaches: greedy algorithms agghough Probleni]2 seems quite natural, its solution is not

convex relaxation methods. Greedy algorithms approxima}jﬁique for any choice of measurement matrix for any

the solutiqn by selecting the indices of the nonzero elem_ient number of signals and any sparsity level. We prove this tesul

§ sequentially. One of the most common methods of this typg reducing the problem to an equivalent one, using the field

is orthogonal matching pursuit (OMR) [13]. Convex rela@ati of p, and proving that the solution to the equivalent proble

approaches change the objective[ih (2) to a convex problgg ot unique.

The most common of these methods is basis pursuit (BP) [15]) SectiorTII=A we review results in the field of DL needed

which considers the problem: for our derivation. In Sectiol III-B we use these results to
s . _ prove that the BCS problem does not have a unique solution.
§ = argmin||s]ly st b=APs. @ In Sectiond IV [V,[V] we suggest several constraints on the

Under suitable conditions on the produtP and the sparsity basisP that ensure uniqueness.

level of the signals, both the greedy algorithms and the eonv

relaxation methods recover the true valuesofor instance, A Dictionary Learning (DL)

both OMP and BP recover the true valuesaf/hen the number

of nonzero elements in is no more thang (1 + —py) [,

[O1-{11], [13].

The field of DL [16]-[20] focuses on finding a sparse matrix
S € R™*N and a dictionaryD € R"*™ such thatB = DS
where onlyB € R"*" is given. Usually in DL the dimensions
satisfyn < m. BCS can be viewed as a DL problem with=
B. BCS Problem Formulation AP whereA is known andP is an unknown basis. Thus, one

Even when the universality property is achieved in CS, diay view BCS as a DL problem with a constrained dictionary.
existing algorithms require the knowledge of the sparsitgie However, there is an important difference in the output of DL
P for the reconstruction process. The idea of BCS is to avod BCS. DL provides the dictiona®y = AP and the sparse
entirely the need of this prior knowledge. That is, perforfatrix S. On the other hand, in BCS we are interested in
both the sampling and the reconstruction of the signalsouith Fecovering the unknown signal§” = PS. Therefore, after
knowing under which basis they are sparse. performing DL some postprocessing is needed to retrieve

This problem seems impossible at first, since every signalff§m D. This is an important distinction which, as we show in
sparse under a basis that contains the signal itself. Thisdvo SectionlVI-B, makes it hard to directly apply DL algorithms.
imply that BCS allows reconstruction of any signal from a An important question is the uniqueness of the DL fac-
small number of measurements without any prior knowledg@rization. That is, given a matrd3 € R™*" what are
which is clearly impossible. Our approach then, is to sampqge conditions for the uniqueness of the pair of matrices
an ensemble of signals that are all sparse under the sanse bd%i € R"*™ and S € R™** such thatB = DS where S

Later on we revisit problems with only one signal, but witfS k-Sparse. Note that if some palv, S satisfiesB = DS,
additional constraints. then scaling and signed permutation of the column®aind

Let X € R™*N denote a matrix whose columns ardOWs of S respectively do not change the produgt= DS.
the original signals, and le§ € R™*N denote the matrix |herefore, there cannot be a unique pairs. In the context

whose columns are the corresponding sparse vectors, sAEL the term uniqueness refers to uniqueness up to scaling
that X = PS for some basisP € R™*™. The signals and signed permutation. In fact in most cases without loss of

are all sampled using a measurement mattixc R"*™ generality we can assume the columns of the dictionary have

producing the matrixB = AX. For the measurements toUnit norm, such that there is no ambiguity in the scaling, but
be compressed the dimensions should satisfy m, where ©nly in the signed permutation. o .

the compression ratio i& = m/n. Following [17], [24] we Conditions fqr DL unigueness wh(_an the dictionaby is
assume the maximal number of nonzero elements in eachogiiogonal or just square are provided in[28] and] [29].
the columns ofS, is known to equalk. We refer to such However, in BCSD = AP is in general rectangular. n_[17]

a matrix S as ak-sparse matrix. The BCS problem can pihe authors prove sufficient conditions @n and S for the
formulated as follows. uniqueness of a general DL. We refer to the conditioTbas

the spark conditiorand to the conditions oS as therichness
Problem 2. Given the measurements and the measurementconditions The main idea behind these conditions is titat
matrix A find the signal matrixX' such thatB = AX where gshould satisfy the condition for CS uniqueness, and that the
X = PS for some basig” and k-sparse matrixS. columns ofS should be diverse regarding both the locations

Note that our goal is not to find the bagisand the sparse and tlh.e values of the_ nonzero elements. More specifically, th

matrix S. We are only interested in the produst — ps. conditions for DL uniqueness are:
In fact, for a given matrixX there is more than one pair of « The spark conditions(D) > 2k.
matricesP and S such thatX = PS. Here we focus on the e The richness conditions:
question of whetheX can be recovered given the knowledge 1) All the columns of S have exactlyk nonzero
that such a pair exists fak. elements.



2) For each possible-length support there are at leasthe columns ofPy are perpendicular to the columns Bf; .,
k + 1 columns inS. o o
3) Any k + 1 columns inS, which have the same P{P1 =Py Py =||Pyo||% + || Pxll%

support, span &-dimensional space. ) _ )
4) Any k + 1 columns in S, which have different A square matrixP has full rank if and only~|fP~TP has full
supports, span & + 1)-dimensional space. rank. Therefore, sincé, has full rank andP) P, = P! P,
1;2 also has full rank. So that botR; and P, are solutions
0

According to the second of the richness conditions ”1 ProbleniB. In fact there are many more solutions; some of

number of signals, that is the number of columnsSinmust them can be found by chanaing the sians of onlv part of the
be at least(’") (k + 1). Nevertheless, it was shown i [17] y ging 9 yp
k columns of Py.

that in practice far fewer signals are needed. Heuristictie . . .
P 9 e We now return to the original BCS problem, as defined in

number of signals should grow at least linearly with the teng . i )
. . : roblen{2. We just proved that when the DL solution given
of the signals. It was also shown inJ17] that DL algorlthmlg5 unique, Problerfl2 is equivalent to ProblEm 3 which has no

erform well even when there are at méshonzero elements =~ | . . X . ) .
P unigue solution. Obviously if the DL solution giveB is not

in the columns ofS instead of exactly. . . .
W unique, then BCS will not be unique. Therefore, Prob[dm 2
has no unique solution for any choice of parameters.
B. BCS Uniqueness In order to guarantee a unique solution we need an ad-

Under the conditions above the DL solution given thgitional constraint. We next discuss constraints Bnthat

measurements is unique. That is, up to scaling and signe&an render the solution to Probldmh 3 unique, and therefore

permutations there is a unique pdd, S such thatB = DS n ado!?mon fPtTﬁ r|chnesstcort'1r(]j|t|on§ o and :chﬂe] spa}rli_
andS is k-sparse. Since we are interested in the produst condition on €y guarantee the uniqueness ot fhe soution

and not in P or S themselves, without loss of generalityto Problem2. Although there are many possible constraints,

we can always assume that the columns fofare scaled we focus below on the following.

so that the columns oD = AP have unit norm. This 1) P is one of a finite and known set of bases.

way there is no ambiguity in the scaling @ and S, but ~ 2) P is sparse under some known dictionary.

only in their signed permutation. That is, applying DL on 3) P is orthogonal and has a block diagonal structure.

B providesD = APQ and S = Q”'S for some unknown  The motivation for these constraints comes from the unique-
signed permutation matrig). A signed permutation matrix is ness of Problerill3. Nonetheless, we provide conditions under
a column (or row) permutation of the identity matrix, wherguhich the solution to Problerfll 2 with constraints 1 or 2
the sign of each column (or row) can change separately.if1unique even without DL uniqueness. In fact, under these

other words, it has only one nonzero element, eghdl in  conditions the solution to Problefd 2 is unique even when
each column and each row. Any signed permutation matrix 3 = 1, so that there is only one signal.

obviously orthogonal. = N In the next sections we consider each one of the constraints,
If we can find the basi®”> = PQ out of D, then we can prove conditions for the uniqueness of the constrained BCS
recover the correct signal matrix by: solution, and suggest a method to retrieve the solutioneThb

PS = PQQTS = PS - X, summarizes these three approaches.
Therefore, under thg uniqqeness conditions fqr DLSand IV. EINITE SET OF BASES
D = AP Problem2 is equivalent to the following problem.

One way to guarantee a unique solution to Prollém 3 is to
limit the number of possible basé3 to a finite set of bases,
and require that these bases are different from one another

We therefore focus on the uniqueness of Prodlém 3. Singader the measurement matuk Since P in Problen(3 is a
n < m the matrix4 has a null space. As we now show, evenolumn signed permutation d@ in Probleni2, by limitingP
with the constraint thaP is a basis there is still no uniqueto a finite set we also limit the possible to a finite set. The
solution. new constrained BCS, instead of Problgim 2, is then:

To see that assumg, is a basis, i.e., has full rank, and
satisfiesD = AP,. Decompose?, asP, = Py. + Py where
the columns ofPy are in N(A), the null space of4, and
those of Py are in its orthogonal complement(A)-. Note
that necessarilyPy # 0, otherwise the matrix?y = Py. is
in N(A)*+ and has full rank. However, since the dimension The motivation behind Problefd 4 is that over the years a
of N(A)L is at mostn < m, it contains at most linearly variety of bases were proven to lead to sparse represeargatio
independent vectors. Therefore, there ismo< m full rank of many natural signals, such as wavelet [25] and DCT [26].
matrix whose columns are all iv(A)*. These bases have fast implementations and are known to fit

Next define the matrix®, = Py. — Py which is different many types of signals. Therefore, when the basis is unknown
from Py, but it is easy to see thdd = AP,. Moreover, since it is natural to try one of these choices.

Problem 3. (}ivenD € Rxm an~dA € R"™™ wheren < m,
find a basisP such thatD = AP.

Problem 4. Given the measuremeni8, the measurement
matrix A and a finite set of baseg, find the signal matrixX
such thatB = AX and X = PS for some basis®” € ¥ and
k-sparse matrixs.



TABLE |
SUMMARY OF CONSTRAINTS ONP

The constraint Conditions for uniqueness Algorithm
Finite Set - Section 1V e o(AP) <2k forany P € V. e F-BCS - Solving[(b) or[{l7) for eacl® € ¥ using a standard CS
P is in a given finite set | o A is k-rank preserving of' (Definition[3). algorithm, and choosing the best solution.
of possible base¥.
Sparse Basis SectiolY | e o(A®) > 2kpk. e Direct method - Solving[(9) ol (10) using a standard CS afgonj
P is kp-sparse under a where the recovery iX = ®C.
given dictionary®. e Sparse K-SVD - Using sparse K-SVD algorithim [23] to retrievgZ,
where the recovery iX = ®Z5.
Structure - Section[ V] e The richness conditions ofl. e OBD-BCS - UpdatingS and P alternately according to the algorithm
P is orthogonal2L-block | e A is a union ofL orthogonal bases. in Table[IM, where the recovery i¥ = PS.
diagonal. e o(AP)=n+1.
e A is not inter-block diagonal (Definitio_10)|

A. Uniqueness Conditions Alternatively, one can bound the spark of these matricasgusi

We now show that under proper conditions the solutiotrrlIelr mutual coherence.

to Problem% is unique even when there is only one signal,It is easy to see that any full column rank matrixis -

namely N — 1. In this case instead of the matricas S, B rank preserving for anys and any setV. However, in our
we deal with the vectors, s, b respectively ’ caseA is rectangular and therefore does not have full column

Assumer is a solution to Problefl4. That is, is k-sparse rank. In order to guarantee that is k-rank preserving with

under P € ¥ and satisfied = Ax. Uniqueness is achievedpmb‘ijbiIity 1 we rely on the following proposition:

if there is nox # z which is k-sparse under a basi3 € ¥ Proposition 6. An i.i.d Gaussian matrix4 of sizen x m is
and also satisfies = Az. We first require that-(AP) > 2k;  with probability 1 k-rank preserving of any fixed finite set of
otherwise even ifP = P there is no unique solutior |[9]. bases and any < n/2.

Since the real sparsity basB is unknown we require that
o(AP) > 2k for :fnyPye W, q Proof: If n > m then A has full column rank with probabil-

ity 1, and is thereforé-rank preserving with probability 1. We
therefore focus on the case where< m. AssumeT’, J are
index sets of siz&, and P, P € ¥. Denoter = ranK Pr, P;].
We then need to prove that raqpKPr, Ps]) = 7.

Perform a Gram Schmidt process on the columns of

Next we writex = Ps = Prsp, whereT is the index
set of the nonzero elements inwith |T| < k, s is the
vector of nonzero elements isn, and Pr is the sub-matrix
of P containing only the columns with indices if. If z is

also a solution to Problefd 4 then= Ps = P;5;, where.J . _ > i
is the index set of the nonzero elementssinand |.J| < k. [Pr, P;] and denote the resulting matrix iy. G is then an
m X r matrix with orthonormal columns, with rag&) = r

Moreover,b = AP;5; = APrsr, which implies that the <
matrix A[Pr, P;] has a null space. This null space containd"d rankAG) = rar)I(A[PT,PJ]).. Next we completeC.J to
the null space ofPr, P;]. By requiring an orth_qgonal _matrl?Gu py adding (;olumns: Accorgimg to
Propositior 1l sinced is an i.i.d Gaussian matrix ar@l, is or-
rank A[Pr, P;]) = ranK Py, Py, (5) thogonalo (AG,,) = n+ 1 with probability 1. Therefore, with
- probability 1 anyt columns ofAG,, are linearly independent,
we guarantee that the null space4fPr, P;] equals the null with ¢ < n. In particular, with probability 1 the columns dfG
space of Pr, P;]. Therefore, undefd5)AP;5; = APrsr if are linearly independent, so that radky) = r, completing
and only if P;5; = Prsy, which impliesz = x. the proof. u
Therefore, in order do guarantee the uniqueness of theUntil now we proved conditions for the uniqueness of
solution to Problenf]4 in addition to the requirement tharoblem[% when there is only one signsil = 1. The same
o(AP) > 2k for any P € ¥, we require that any two index conditions are true foN > 1 since we can look at every signal
setsT, J of sizek and any two base®, P ¢ ¥ satisfy [3).  separately. However, since all the signals are sparse tineler
same basis, ifV > 1 then the condition thatt must bek-rank
preserving can be relaxed.
For instance, consider the case where there are only two
index setsT,J and two basesP,P € ¥ (P is the real
The conditions for the uniqueness of the solution to Probparsity basis) that do not satisfyl (5). In this case if weehav
lem[4 are therefores(AP) > 2k for any P € ¥, and A many signals with different sparsity patterns, then onlynals
is k-rank preserving of the se¥. In order to satisfy the portion of them fall in the problematic index set, and theref
first condition with probability 1, according to SectionZl- might falsely indicate thaf is the sparsity basis. However,
we can require allP € ¥ to be orthogonal and generate most of the signals correspond to index sets that safidfy (5)
from an i.i.d. Gaussian distribution. However, since thmbar and therefore these signals indicate the correct basis. The
of bases is finite, we can instead verify the first conditiogselection of the sparsity bases is done according to therityajo
is satisfied by checking the spark of all the produdt®. of signals and therefore the correct basis is selected.

Definition 5. A measurement matrid is k-rank preserving
of the bases se¥ if any two index set¥’, J of sizek and any
two basesP, P € ¥ satisfy(5).



TABLE Il

_ Another example is the case Where_ Fhere are enou_gr_l diverse F-BCS SIMULATION RESULTS
signals such that the richness conditions ®rare satisfied.

In this case it is gnough to require that. for any two bases SNR Viss Average
P, P € ¥ the matricesAP and AP are different from one Detected | Error
another even under scaling and signed permutation of the 383 82@ 10’;:%
columns. This way we guarantee that the problem equivalent 25dg 002 %702
to Problem ¥ under the richness and spark conditions has a 20dB 0% 5.4%
unigue solution, and therefore Probléin 4 also has a unique 15dB 1% 11.6%

10dB 12% 22.5%

solution. 5dB 25% 40.1%

Problen{# can also be viewed as a CS problem with a block
sparsity constrainf[34]([35]. That is, W = { Py, P>, ...} then
the desired signal matrix can be written as
g C. F-BCS Simulation Results
Sl We now demonstrate the F-BCS method in simulation. We
X=[Ph, P, .| _2 ) chose the set of basds to contain 5 bases of sizgl x 64:

: the identity, DCT [[26], Haar wavelet, Symlet wavelet and
where only one of the submatric&s is not all zeros. In con- Biorthogonal wavelet[]25]. 190 signals of length 64 were
trast to the usual block sparsity constraint here the Subi_xnacrea_ted_randomly by ge_neratlng random sparse vectors and

@éﬂnplylng them by the Biorthogonal wavelet basisimEach

S; which is not zero is itself sparse. However, the uniquene . . )
conditions which are implied from this block sparsity cSharse vector contained up to 6 nonzero elements in unijorml
dom locations, and values from a normal distribution.

approach are too strong comparing to our BCS approach. . C . .
bp 9 P g PP he measurement matrit was an i.i.d Gaussian matrix of

instance, they require al?; € W, to be incoherent, whereas . 39 % 64. Th ¢ lculated first without
the BCS uniqueness is not disturbed by coherent bases.tin g€ o= > 4. 1he measurements were calculated irst withou

the solution is unique even if the baseslirequal one another. noise, that isB = AX, and then with additive Gau_SS|an noise
This is because here we are not interested in recovékimmit with varying SNR from 30dB to 5dB. For each noise '?‘"e' the
rather P.S. . F-BCS method was performed, where the CS algorithm we
v used was OMP.[13].
Table[Tl summarizes the results. For all noise levels the
B. The F-BCS Method basis selection according to the majority was correct. Thesm
The uniqueness conditions we discussed lead to a straigigtected column in the table contains the percentage odlsign
forward method for solving Problelnh 4. We refer to this methoidhat indicated a false basis. The average error column icsnta
as F-BCS which stands for finite BCS. Whah= 1, F-BCS the average reconstruction error, calculated as the awerfig

solves a CS problem for eadh € ¥
8
§ = argmin ||s||o s.t.b = APs, (6) ||| ®)

wherex;, Z:; are the columns of the real signal matri and
Ihe reconstructed signal matriX respectively. The average
is performed only on the signals that indicated the correct
search when we found a sparse enofigFhe recovered signal ba_lsis. The reconstruction of the rest. of the signals oblyous
s » — Pz where P is the basis corr'esponding 0 thewe failed. As_ can be seen from Talilé Il in the n0|sel_ess case the
. X . recovery is perfect and the error grows with the noise |évai.
chose. Whert is known an alternative method is to solve forhi h SNR there are no false reconstructions, but as the SNR
eachP € ¥ N y .
decreases beyond 15dB the percentage of false reconstrsicti
5 = argmin ||b — Ap3||§ s.t.||s|lo < K, (7) increases. In these cases, one should use more then onk signa
s such that if one of the signals failed there will be an indmat
and chooses that minimizes||b — AP3||3. In the noiseless for this through the rest of the signals.
case this minimum is zero for the correct babis Another simulation we performed investigated the influence
When N > 1 we can solve eithef]6) of](7) for each of theof the sparsity levelk, which is the number of nonzero
signals and select the sparsity basis according to the ityajorelements inS. The settings of this simulation were the same
The solution to problemg$](6) anfl(7) can be approximated those of the first simulation, only this time there was
using one of the standard CS algorithms. Since these alg® noise added to the measurements, &ndas gradually
rithms are suboptimal, there is no guarantee that they geovincreased from 1 to 32. For each sparsity level new signals
the correct solution, even for the correct basiB. In general, were generated with the same sparsity basis and measured by
when k is small enough relative ta these algorithms are the same measurement matrix. Fox 8 the recovery of the
known to perform very well. Moreover, wheN > 1, P is signal was perfect, but as expected, for higher valuds thie
selected according to the majority of signals, and theeefior number of false reconstructed signals and the average error
the CS algorithm did not work well on a few of the signals igrew. The reason for this is that the OMP algorithm works
will not effect the recovery of the rest of the signals. well with small values of, for higher values of, even if the

|l = 2|2

and chooses the sparséstUnder the uniqueness condition
it is the only one with no more thak nonzero elements.
Therefore if we know the sparsity levél we can stop the



unigueness conditions are still satisfied, the OMP algarithHowever, if the solution without this constraint is unigiemn

may not find the correct solution. obviously the solution with this constraint is also unique.
Therefore, a sufficient condition for the uniqueness of Prob
V. SPARSEBASIS lem[d isc(AD) > 2k,k.

A different constraint that can be added to Probldm 2 in
order to reduce the number of solutions is the sparsity of the
basis P. That is, we assume that the columns of the badk Algorithms For Sparse BCS
P are sparse under some known dictiondryso that there
exists some unknown sparse matixsuch thatP = ¢Z. We
assume the number of nonzero elements in each colundh o
is known to equak,. We refer to® as a dictionary since it
does not have to be square. Note that in orderHato be a
basis® must have full row rank, and must have full column
rank.

The constrained BCS in this case is then:

1) Direct Method:When there is only one signal, according

o the uniqueness discussion, the solution to Prolilem 7 can
e found by solving eithe{9) of (IL0) using a standard CS
algorithm. When there are more signals the same process
can be performed for each signal separately. Since we use a
standard CS algorithm, for this method to succeed we require

the productk,k to be small relative tou.

2) Sparse K-SVD:The sparse K-SVD algorithm [23] is a
Problem 7. Given the measurement8, the measurement DL algorithm that seeks a sparse dictionary. That is, giten t
matrix A and the dictionary®, which has full row rank, find measurement® and a base dictionary it finds ky,-sparse
the signal matrixX such thatB = AX whereX = ®ZS for 7 and k-sparseS, such thatB = DZS. In our case we can
somek-sparse matrixS and k,-sparse and full column rank run sparse K-SVD om3 with D = A® in order to findZ
matrix Z. and.S, and then recover the signals By = ®~7.5. The sparse

This problem is similar to that studied in [23] in the contex-SVD algorithm is a variation of the K-SVD algorithrn [24],

of sparse DL. The difference is that [23] finds the matrice¥Nich is a popular DL algor_ithm_. Sparse K'S_VD qonsists of
7,5, while we are only interested in their product. Théwo alternating steps. The first is sparse coding, in which

motivation behind Probleif] 7 is to overcome the disadvanta§el*€d @nds is updated using a standard CS algorithm. The
ond step is dictionary update, in which the suppo &

of the previously discussed Probléin 4 in which the bases
previously discu &in 4 in wh d andZ is updated together with the value of the nonzero

fixed. When using a sparse basis we can choose a diction _ he diff b d
® with fast implementation, but enhance its adaptability {8 ments inS. The difference between sparse K-SVD and K-

different signals by allowing any sparse enough combinatic VP is only in the dictionary update step. Since the sparse K-

of the columns of®. Note that we can solve the problemS_VD is a DL algorithm, it requires a large number of diverse

separately for several different dictionariésand choose the Signais. Moreover, the required diversity of the signala ca
best solution. This way we can combine the sparse bﬁgvent the_algorlthm from working, for instance in cases of
constraint and the constraint of a finite set of bases. Amot ock sparsity.

possible combination between these two approaches is td" general, BCS cannot be solved using DL methods.
define the basic dictionary a& = [Py, P»,...], where the However, under the sparse basis constraint BCS is reduaed to

finite set of bases i@ = {Py, P»,...}. This way we allow problem that can be viewed as constrained DL, and therefore
any sparse enough combination of columns from all the basi¥ved using sparse K-SVD. Nevertheless, Protfem 7 is not
in . exactly constrained DL, since in DL we seek the matrices
S and Z themselves, whereas here we are interested only in
their productX = ®ZS. Moreover, as in any DL algorithm,

A. Uniqueness Conditions for sparse K-SVD to perform well it requires many diverse

As we now show, here too under appropriate conditions tagynals. However, for the uniqueness of Problem 7 or for
constrained problem has a unique solution even when thergys girect method of solution, there is no need for such a

only one signalV’ = 1. Therefore, instead of matricés 5, B yequirement. The sparse K-SVD algorithm is also much more
we deal with vectors:, s, b respectively. Sincgls|lo <k and  complicated than the direct method.

Z is ky-sparse, the vectar= Zs necessarily satisfigc||o <

Nonetheless, sparse K-SVD has one advantage over the
k,k. Therefore, Problef] 7 as

direct method in solving Problef 7. The direct method uses a

¢ = argmin ||c||o s.t.b= Adc, (9) standard CS algorithm in order to fiid = Z.S which is & k-
_ ¢ sparse. This algorithm provides the correct result onhhé t
or equivalently: productk,k is small enough relative ta. On the other hand,
¢ = argmin ||b — Adel[2 s.t.|lcllo < kypk, (10) the standard CS algorithms used in sparse K-SVD attempt to

find separately5' which is k-sparse andZ which is k,-sparse,
where the recovery is = ®¢. The solutions to[{9) and(]L0) and therefore requiré andk, themselves to be small instead
are unique ifo (A®) > 2k,k. If there is more then one signal,of the product:, k. Thus, when there are few signals, or even
N > 1, then one can solved](9) an@{10) for each signgist one, and whe,k is small relative ton, then Probleni]7
separately. should be solved using the direct methodk}# is large but
Note that in Problenl]7 the matriX necessarily has full still satisfieso(A®) > 2k,k, and if there are enough diverse
column rank, while this constraint is dropped [ih (9) aind (103ignals, then sparse K-SVD should be used.



TABLE Ill
RECONSTRUCTION ERROR FOR DIFFERENT NOISE LEVELS

Error Vs. Sparsity Level
T T T

T T T T
Sparse BCS
—— CS with the real P

60

sor 1 SNR CS sparse BCS
> 10~ 11% 10~ %
aof ] 30dB | 1.2% 2.8%
25dB | 1.5% 5.8%
T30 20dB | 3.3% 11.9%
® 15dB | 7.1% 23.5%
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simulation only this time we fixe& = 3 and added Gaussian
_ noise to the measuremenis We looked at different noise

R levels, and for each level we ran the direct method for sparse
BCS, and also for comparison we ran an OMP algorithm
Fig. 1. Reconstruction error as a function of the sparsitglle which used the real basi3. Table[Ill summarizes the average

errors of each of the methods. In the noiseless case there is
a perfect recovery in both cases. As the SNR decreases both
errors increases, but as can be expected, the one of the BCS
grows faster. The reason for the big difference in the low SNR
Simulation results for sparse K-SVD can be found[inl [23Fases is again the fact that in the CS case the OMP algorithm
Here we present simulation results for the direct methot Fiis performed on sparser signals, relative to the sparse BCS
of all we tested the influence of the sparsity level of the fhascase.
We generated a random sparse matrix,-of size256 x 256
with up tok, = 6 nonzero elements in each column. The value VI. STRUCTURAL CONSTRAINT
of k£ - the number of nonzero elements #) was gradually
increased from 1 to 20. For eaktwe generated as a random
k-sparse matrix of siz256 x 100, and created the signal matrix
X = &ZS, where® was the DCT basisX was measured
using a random Gaussian matrixof size 128 x 256, resulting
in B=AX.
We solved Probleni]7 giveml and B using the direct P
method, where again the CS algorithm we used was OMP. p—
For comparison we also performed OMP with the real b&sis -
which is unknown in practice. F[g 1 summaries the results. Fo Pr
every value ofk the error of each of the graphs is an averaggnd 4 is chosen to be a union of orthonormal bases, [21],
over the reconstruction errors of all the signals, caledas 7] [30]-[32]. Thatis,A = [A;,...A] whereAy, ..., A, are
in (8). Both the errors are similar fdr < 8, but for largerk’s )| orthonormal matrices. In this case
the error of the blind method is much higher.
Since A is an i.i.d Gaussian matrix and the DCT matrix D= [Dy,..,Dr] = [A1 P, ..., ALPL],
is orthogonal with probability 1g(A®) = 129. Therefore and we can simolv recove? by-
with probability 1 the uniqueness of the sparse BCS methdd Py y:
is achieved as long ds,k < 64, ork < 10. The error began to AT Dy
grow before this sparsity level because OMP is a suboptimal pP— . _ (11)
algorithm that is not guaranteed to find the solution evennwhe ‘ ATD
it is unique, but works well on sparse enough signals. The LHL
reconstruction error of the OMP which used the rBafjrows Therefore, the solution to Probldrmh 3 under the constrait th
much less for the same values/afThat is since in this case P is block diagonal is very simple.
k itself, instead ofk,k, should be small relative to. Under the richness and spark conditions the BCS problem,
Sparse K-SVD can improve the results for high value:of as defined in Problefd 2, is equivalent to Prob[ém 3, where the
assuming of course it is small enough for the solution to lgasis P in Problem3 is a column signed permutation of the
unique. However, in this simulation the number of signals IsasisP in Probleni2. Since we are interested in the solution to
even less then the length of the vectors, and sparse K-SWiboblen(2, the constraint should be on the b#3sisstead of
does not work well with such a small number of signals. I, However, if we constrair to be block diagonal, then the
the sparse K-SVD simulations which are presented_iri [28plution to the equivalent Probldrh 3 is not as simple aS i (11
the number of signals is at least 100 times the length of theProblen3 we look fol® = P(Q, for some unknown signed
signals. permutation matrixQ). Under the block diagonal constraint on
We also investigated the influence of noise on the algorithR. the matrix P = P(Q is not necessarily block diagonal, and
The setting of this simulations were the same as in the pusvidherefore we cannot usg_{11) to recover it.

C. Simulation Results

The last constraint we discuss is a structural constraint on
the basisP. We requireP to be block diagonal and orthogonal.
The motivation for the block diagonal constraint comes form
Problem[B, which looks fo® such thatD = AP. Assume
for the moment tha® is block diagonal, such that:



We can guarantee tha is block diagonal only if we can are two indicesi # j for which the product:
guarantee thaf) is block diagonal. That is) permutes only
the columns inside each block df, and does not mix the AT A — [ Ry Ry ]
blocks or change the outer order of them. As we prove below v Rs Ry |7
in the uniqueness discussion, this can be guaranteed if wei. fies:
requireP to have more blocks thaA. Specifically, we require satisties:
P to have2L blpck_s, which is twice the_ number of blocks in rank(R; ) = rank(Ry)
A. Such a basis is called2L-block diagonal In fact, the n
number of blocks inP can beM L for any integerM > 2. rank(Rz) = rank(ft3) = o — rank(Ry).
We useM = 2 for simplicity; the expansion ta\/ > 2 is
trivial. In particular if the productA? 4; is 2-block diagonal themt
We also constrainf to be orthogonal. The motivation foris inter-block diagonal.
Fhis is the spark conition. In order be a_ble to solve Prolfem With this definition in hand we can now define the condi-
mstead.o_f Probleri]2, we need to satisfyAP) > 2k. By_ tions for the uniqueness of Probldh 9.
constrainingP to be orthogonal we can use results similar
to Proposition[1l in order to achieve this requirement witfiheorem 11.1f A € R"*"~ is a union ofL orthogonal bases,
probability 1. which is not inter-block diagonal, and(AP) = n + 1, then
The constrained BCS problem is then: the solution to Probleral9 is unique.

Problem 8. Given the measuremenis and the measurement The proof of this theorem uses the next lemma.
matrix A € R"*"L find the signal matrixX such thatB =
AX where X = PS for some orthogona2L-block diagonal
matrix P and k-sparse matrixs.

Lemma 12. AssumeP and P are both orthogonal2L-
block diagonal matrices, and! satisfies the conditions of
TheoremIll. IfAP = APQ for some signed permutation

In this new settings the size of the measurement matrix Matrix @, thenP = PQ.
n x nL, wheren is the number of measurements ahds the In general sincel has a null space, if the matrices P, P

number ofn x n blocks in A, which equals the compressiondid not have their special structures, then the equalify —
ratio. Moreover, The length of the signalsris= nL, and the APQ would not imply P = PQ I-iowever according to

size of the basi$ is nL x nL. SinceP is 2L-block diagonal, LemmaI® under the constraints dn P, P this is guaranteed.

the s_ize of its plocks is; x 5. Therefore;n must bg even. The full proof of Lemmd_IR appears in Appendix A. Here we
This constrained problem can be useful for instance Btesent only the proof sketch.

multichannel systems, where the signals from each channebmof sketchlt is easy to see that due to the orthogonality

are sparse under separate bases. In such systems We 5¢3fe blocks ofA, if Q is block diagonal thenl P = APQ
constructX by concatenating signals from several dif“ferer”.nplies P = PQ. Therefore, we need to prove thét is

_chan_nels, and compressively sampling them. For eXam|O|J1(?e’cessariIy block diagonal. Denofe = AP. In general the
in microphone arrays_[36] or antenna arrays|[37], we cainjication D can yield three types of changes in It
divide the samples from each microphone / antenna into Mg, mix the blocks oD, permute the order of the blocks of
intervals in order to obtain the ensemble of sampled signgls 4 permute the columns inside each blogkis block

B. Each column of5 is a concatenation of the signals fronhiagonal if and only if it permutes only the columns inside

all the microphones / antennas over the same time intervaly, oy piock, but does not mix the blocks or change their outer

order. First we prove thaf) cannot mix the blocks ofD.
) N For this we use the condition on the spark Bf and the
A. Uniqueness Conditions orthogonality of the blocks. Next we prove th& cannot

To ensure a unique solution to Probldh 8, we need tﬁgange the outer order of the blocks. This time we use the
DL solution givenB to be unique. Therefore, we assume thdfCt that both?” and P have2L blocks and that! is not inter-
the richness conditions ofi and the spark condition odp  PloCk diagonal. Therefore) can only permute the columns
are satisfied. Then, Problelh 8 is equivalent to the followirl§Side each block, which implies it is block diagonal ~ ®
problem: If P and P have onlyL blocks instead o2, then(@ can

~ change the outer order of the blocks Bf such that it does

Problem 9. Given the matriced) and A, which have more not have to be block diagonal. Therefore, if the constraint o
columns then rows, find an orthogon@lsuch thatD = AP, P was that it hasL blocks instead oL, then Lemmd_ 112
and P = PQ for some signed permutation matri and would be incorrect, such that the solution to the Problém 9,
orthogonal2L-block diagonal matrixP. and therefore to Probleli 8, would not be unique. On the other

In order to discuss conditions for uniqueness of the sohuticpand the extension of the proof of Lemid 1240l blocks

. . o where M > 2 is trivial.
to Probleni® we introduce the following definition.
g Proof of Theoreri I1The proof we provide for Theorenll1

Definition 10. DenoteA = [A4, ..., AL ], such thatd; € R™*™ is constructive, although far from being a practical mettmd
for any1 < i < L. A is called inter-block diagonalif there deploy in practice. Denote the desired solution of Prodlém 9
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by P = PQ, and denote: The problem with this method is the search for the permuta-
pl tion Qp. There aren! different permutations of the columns
of D, wherem = nlL is the length of the signals, while
A=[A1,..,AL], P= ; only [(22)1]2L of them satisfy the requirement (see Appendix
p2L C). Asm and L grow the relative fraction of the desirable
permutations decreases. For instance, for signals of Hengt
m = 16 and a compression ratio &f = 2 only 1.58-10~%% of
. . . . A the permutations satisfy the requirement. For the samealsign
We first find a permutation matri)p such thatD = but a higher compression ratio & — 4 only 1.22 - 10-9%

D@p = AP, where P is an orthogonabL-block diagonal satisfy the condition, and for longer signals of length= 64
matrix. There is always at least one such permutation. Fé)ﬁdL — 2 only 1.51 - 10-34% satisfy the requirement

|n3ta|ncteh we CZ; Chooi@;’ to teqtl;]al the abso!juttﬁ valfue O{ Therefore, a systematic search is not practical, even fot sh
Q". In this caseP equalsP’ up to the signs, and therefore i signals. Moreover, in practice the output of the DL algarith

IS Bece‘:,satrrllly tc))lrthigo?%-blgglidmggnﬁl. 57 and not contains some error, so that even for the correct permatatio
enote the blocks of” by = 1or j =1, ...,2L, and NOte o matricesA; ' D; are not exactly 2-block diagonal, which

where 4; for i = 1,..,L and P’ for j = 1,...,2L are all
orthogonal matrices.

that renders the search even more complicated. Although there
D= [Dh ---7DL] - exist suboptimal methods for permutation problems such as
pl p2L-1 [38], these techniques are still computationally extemsind
[A1 ( pe ) AL ( poL ) } are sensitive to noise.

Instead we present the orthogonal block diagonal BCS
Since A; are orthogonal for ali = 1,..., L, we can recover (OBD-BCS) algorithm for the solution of Problef 8, which
the blocks of P by is, in theory, equivalent to DL followed by the above post-
pi-1 processing. However, it is much more practical and simple.
{ poi } = AT'D;, This algorithm is a variation of the DL algorithm in_[21],
[22], which learns a dictionary under the constraint that
such that ) the dictionary is a union of orthogonal bases. Giveénthe
AT D, algorithm in [21], [22] aims to solve

w)
|

: 2
ATD, min ||B — DS||r (12)
s.t. S is k-sparse and is a union of orthogonal bases.
Since bothP and P are orthogonal L-block diagonal, ac- ) )
cording to Lemmd_12 the equalit) — AP — APQQp !n the ECS caseP is orthogonal2L.-block diagonal an(jA
lmp“es P — PQQp. Therefore, we can recoveP by IS @ union ofL orthogonal bases. Therefore, the equivalent
- PQ = pQT g Jdictionary is:

The conclusion from Theorem 1 is that if the richness  _ 4p _
conditions onS are satisfied and! satisfies the conditions of pl p2L—1
Theoren{Il, then the solution to ProblEin 8 is unique. { 1 ( p2 ) 5 Ar ( p2L ) }

As proven in Appendix B one way to guarantee that .
satisfies the conditions of Theordml 11 with probability 1 i§ince allA; and P* are orthogonal, here toD is a union of
to generate it randomly from an i.i.d Gaussian distributiodrthogonal bases. The measurement matriss known and
and perform a Gram Schmidt process on each block in ordee are looking for an orthogonalL-block diagonal matrix”
to make it orthogonal. This claim is similar to Propositldn &nd a sparse matri¥ such thatB = APS. This leads to the
except that the statistics of is a bit different due to the Gram following variant of [12):

Schmidt process. fgié{lHB _APS|12 (13)
B. The OBD-BCS Algorithm s.t. S is k-sparse andP is orthogonaR L-block diagonal.

Although the uniqueness proof is constructive it is far from The algorithm in[[21],[[22] consists of two alternating step
being practical. In order to solve Problémh 8 by following thehe first step is sparse coding, in which the dictionaryis
uniqueness proof one needs to perform a DL algorithm @iged and the sparse matri% is updated. The second step is
B, resulting inD, S. Then go over all the permutatiod$ = dictionary update, in whicl§ is fixed andD is updated. This
DQp, and look for@p such that the matricesl” D;, for  algorithm finds the dictionarny» = AP and the sparse matrix
all i = 1,..,L, are 2-block diagonal. After finding such as but not the basig”, and consequently, not the signal matrix

permutation the recovery oX is X = PS.
AT D, In OBD-BCS we follow similar steps. The first step is again
! T sparse coding, in whickP is fixed andS is updated. The
X = Qps. second step is basis update, in whi€his fixed andP is

A{DL updated. The difference between OBD-BCS and the algorithm
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. , o TABLE IV
in [21]], [22] is mainly in the second step, where we add the THE OBD-BCS ALGORITHM

prior knowledge of the measurement matrixand the block
diagonal structure of°. In addition, we use a different CS

. i . Inputs:
algorithm in the sparse coding step. e B € R"*N . measurements
We now discuss in detail the two steps of OBD-BCS. e A€ R"*"L - measurement matrix (union df orthogonal bases

1) Sparse Coding:In this step P is fixed so that the | Outputs:

ST ) o X € R*LXN _reconstructed signal matrix
optimization in [IB) becomes: Algorthm

(14) o Initiate P = I (the identity).
e Repeat until a stoping criteria is reached:
o Sparse codingfind the sparsesf such thatB = APS,
for instance using OMP.

min ||B — APS||3  st.Sis k-sparse.

It is easy to see thaf(14) is separable in the column§.of

Therefore, for each column a8 and.S we need to solve o Basis updatefor all i =1, ..., 2L:
) ) Calculate B = B — Y, ,; AT PI 3.
m51n||b — APs||3 s.t.|[s]|o < K, (15) Use SVD:$i(B1)T Al = USVT,

Update: Pt = VU7,

where s, b are the appropriate columns 6t B respectively. o Calculate: ¥ — P&

This is a standard CS problem, as [ (3), with the additiona
property that the combined measurement malrix AP is a
union of orthogonal bases. This property is used by the block
coordinate relaxation (BCR) algorithrh [21], [22].39]. &h Let the singular value decomposition (SVD) of the matrix
idea behind this algorithm is to divide the elementssopto R = SB"A be R = UXV”, whereU, V are orthogonal
blocks Corresponding to the Orthogona| blockslaf In each matrices and® is a diagonal matrix. USing this notation we
iteration all the blocks ofs are fixed except one, which is¢an manipulate the trace i {18) as follows:
updated using soft thresholding. The DL algorithm proposed T _ T _ T
by [21], [22] is a variation of the BCR algorithm, which aims Tr(B"APS] = T[SB"AP] = TrZV" PU].
to improve its convergence rate. In OBD-BCS we can also uSke matrix Z = VT PU is orthogonal if and only ifP is
this variation. However, experiments showed that the tesubrthogonal. Therefore[ (18) is equivalent to
are about the same as the results with OMP. Therefore, we use
OMP in order to update the sparse matsixwhen the basis
P is fixed.

2) Basis Update:In this step the sparse matri is fixed
and P is updated. Divide each of theL x N matricesS and
X into 2L submatrices of siz& x N such that:

mémx{Tr xZ]} s.t. Z is orthogonal.

If the matrix R = SBT A has full rank thenZ is invertible.
In this case the maximization is achieved only fo= I, and
thereforeP’ = VU™ is the unique minimum of(17). Even if
R does not have full ranlP* = VU™ achieves a minimum of

St X! @7).
S = : . X = : ) Table[TM summarize the OBD-BCS algorithm. Note that the
S'QL X'QL initia_tion can be ar_132L-blocI_< diag_onal matrix, not necessarily
the identity matrix as written in the table; however, the
Divide each orthogonal block ofl into two blocks: 4; = identity matrix is simple to implement. This algorithm is ofiu
(A%~ A%] for i = 1,..., L, such that: simpler then following the uniqueness proof, which regsime
A=Ay, ., Af] = [A!, A2, ... A2L=1 421, combinatorial permutation search. Each iteration of théd©B

‘ o ~ BCS algorithm uses a standard CS algorithm ahdSVDs.
With this notationX* = P'S*, and B = ijl A'P'S. An important question that arises is whether the OBD-BCS

Therefore, [[IB) becomes: algorithm converges. To answer this question we look at each
oL step separately. If the sparse coding step is performedqgibrf
min_ ||B — ZAJ'PJ'SJ'H% (16) it solves [14) for the currenP. That is, the objective of(13)
pi,...pak = is reduced or at least stays the same. In practice, for small
s.t. P!, ..., P?L are orthogonal. enoughk the CS algorithm converges to the solution [of] (14).
_ However, in order to guarantee the objectivelof (13) is reduc
To minimize [16), we iteratively fix all the blockB” for j =  or at least not increased in this step, we can always compare
1,...,2L except one, denoted by*, and solve the new solution after this step with the one from the presiou

min || B — A'PS|% s.t. P! is orthogonal (17) iteration and c_hose the best of them.
pi Note that this step is performed separately on each column
whereB! = B-Y,; A7 PiS3. With slight abuse of notation, of 5. That is, we can choose to keep only some of the columns
from now on we abandon the index from the previous iteration, while the rest are updated.tif a
SinceP is orthogonal and! is constructed of columns from least part of the columns are updated then the next basiseipda

an orthogonal matrixP” AT AP = I, and||APS||% = ||S||%. Step changes the basB, so that in the following sparse
Thus, [IT) reduces to coding step we can get a whole new matfx Therefore,

- . the decision to keep the results from the previous iteration
mgx{Tf [B"APS]} st P is orthogonal. (18) does not imply we keep getting the same results in all the
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next iterations. Another possibility is to keep only the sop " ‘ Error Vs. Number of Signals
of the previous solution and update the values of the nonz¢
elements using least-squares. In practice, in our sinoulgti
the algorithm converges even without any comparison to t 8t 1
previous iteration. -, . |
The basis update step is divided irkd steps. In each, all

the blocks of P are fixed except one, which is updated t
minimize [1T). Therefore, the objective &f {17) is reduced ¢
at least stays the same in each of the steps constructing at 1
the basis update step. Therefore, the objectivé_df (16)¢hvhi
is equivalent to[{I3) with fixed, is reduced or not increased
in the basis update step.

OBD-BCS
—— CS with the real P |

©
T

6 4

e[%]
ol

Thus, as in[[21],[[22], the algorithm we are based on, ar it 1
as in other DL algorithms such ds [20], [24], we cannot pro\ 0 S S S S—
the OBD-BCS algorithm converges to the unique minimum 500 10001800 2000 2500

(I3). However, we can guarantee that under specific conditic

there is a unique minimum and th?‘t the objective functlon_ ﬁg. 2. Reconstruction error as a function of the number ghals, for
reduced or at least stays the same in each step of the algoritbparsity level ofk = 4.

Furthermore, as can be seen in the next section the OBD-BCS

algorithm performs very well in simulations on syntheticala

P is known, is that for a small portion of the signals the OMP
C. OBD-BCS Simulations algorithm fails.

As in the first two constraints we evaluated the algorithm It is clear from Fig[2 that forV > 500 the reconstruction
performance on synthetic data. The signal maffixhad 64 results of the proposed algorithm are successful and simila
rows and was generated as a product of a random sparse méa@ighose obtained whet is known. Similarly to the con-

- S and a random orthogonal 4-block diagonal matriX.-The clusion in [17], the reconstruction is successful even sor
value of the nonzero elements fiwas generated randomlymuch smaller then the number needed in order to satisfy the
from a normal distribution, and the four orthogonal blocksufficient richness conditions, which {§) (k + 1) ~ 3 - 106.

of P were generated from a normal distribution followed b@s in most DL algorithms, the algorithm in_[21], [22] was

a Gram Schmidt process. The measurement matriwas €valuated by counting the number of columns of the dictignar
constructed of two randors2 x 32 orthogonal matrices, that that are detected correctly. The conclusionsiof [21]] [22] a
were generated from a normal distribution followed by a Graihat their algorithm can find about 80% of the columns when
Schmidt process. The number of signals and the sparsity letfee number of signals is at leain = 640, and can find all the
were gradually changed in order to investigate their infigen columns when the number of signals is at lea@t = 1600.

The stopping rule of the algorithm was based on a maximidsing the same measurement matrix dimensions a5 in [21],
number of iterations and the amount of change in the matrid22], the minimal number of signals the OBD-BCS algorithm
S and P. If the change from the last iteration was too smallequires is only 500.
or if the maximal number of iterations was reached, then theln order to examine the influence &fwe performed the
algorithm stopped. In most cases the algorithm stoppedauesame experiment as before but for different values ef 10.
small change between iterations after about 30 iterations. The results are presented in Fig. 3. It can be seen that for

First we examined the influence of two parametéfs, the all values ofk the graph has the same basic shape: the error
number of signals needed for the reconstruction, andthe decreases withV until a critical IV, after which the error is
sparsity level. Figl12 considers the influenceMfwhere the almost constant. A& grows this criticalV increases and so
sparsity level is set té = 4. For each value oV from 150 to does the value of the constant error. The graphskfer 1,
2500 the error presented in the upper graph is an average dver 2, k = 3 follow the same pattern; they are not in the
20 simulations of the OBD-BCS algorithm. In each simulatiofigure since they are not visible on the same scale as the rest.
the sparse vectors and the orthogonal matrix where gederateNext we investigated the influence of noise on the algorithm.
independently, but the measurement matrix was not changedthis simulation the noisy measuremeiitswere calculated
The error of each signal was calculated accordingko (8). as B = APS + W, where the elements oV were white

For comparison, the lower graph in F{g. 2 is the averaggaussian noise. For each noise level 20 simulations were per
error of a standard CS algorithm that was performed on tf@med and the average error was calculated. In all sinurati
same data, and used the real baBiswhich is unknown k =4 and N = 800. Table[M summarizes the results of the
in practice. The CS algorithm we used was again OMP. A3BD-BCS algorithm and those of OMP algorithm which uses
expected, the results of the CS algorithm are independé#mé realP. It is clear from the table that in the noiseless case
of the number of signals, since it is performed separatelye error of both algorithms is similar, therefore in thisea
and independently on each signal. The average error of thige prior knowledge of the basi® can be avoided. As the
algorithm is 0.08%. The reason for this nonzero error, aitfio  SNR decreases both error increase, but the error of OBD-BCS
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) TABLE VI
Error Vs. Number of Signals
90 DL ALGORITHM FOR ORTHOGONAL DICTIONARY

80

Inputs

e X - training set

e k - sparsity level

Outputs

e P - orthogonal dictionary

e S - sparse matrix

Algorithm

e Initiate P = 1.

e Repeat until a stoping criteria is reached:
o Fix P and calculateS = PT X.
o Keep only thek highest (absolute value) elements

in each column ofS.

o Fix S, and calculate the SVDSX7 = UxV ™.
o UpdateP = VU7,

701

AN NN N X
Lt g Y N 1

P Oo~NOoOOgN

o

60

50

e[%]

401
30
20

101,

500 1000 1500 2000 2500

, _ ) ) In all the methods above we used OMP as the standard CS
Fig. 3. Reconstruction error as a function of the number ghals for

different values ofk. algorithm. The first method, came as a reference for the rest.
It used the real basi®, whose knowledge we are trying to
TABLE V avoid. The second method is an intuitive way to reconsthect t
RECONSTRUCTION ERROR FOR DIFFERENT NOISE LEVELS signals. Since the basi? is unknown one can estimate it first
and then perform a CS algorithm which uses the pre-estimated
SNR CS OBD-BCS basis. We performed the estimation using a training set 0020
o0 0.008% 0.008% signals and a DL algorithm. The estimated basis is denoted
gggg (l)'gizf; (1)'2222 by Ppr. There are several different DL algorithms, €g./[20]-
25dB | 2.95% 3.23% [22], [24], [40]. However, in this case we have importanbpri
iggg 152-8013‘)’?/ 13-%2‘;? knowledge that the basi® is orthogonal 4-block diagonal.
10dB 25:110/2 26:040/‘; One way of using this knowledge is dividing the signals

X into 4 blocks corresponding to the 4 blocks &f and
estimating each block aP from the relevant block oX using

the algorithm in Tabl€ VI, which is designed for learning an
algorithm increases a bit faster then that of the CS algorithorthogonal basis.

However, the difference is not very big. Due to this structure of? and the sparsity of5 in each
column of X there are up to 12 nonzero elements. Therefore,
VII. COMPARATIVE SIMULATION the identity matrix/ was one of the bases in the finite set

The following simulation illustrates the difference beame ¥ that we used. Specifically, we used the sameses in

the three BCS methods presented in this work. In this simin€ Simulations in SectioR IV.X' had about twice as many
lation the length of the signals was — 128, the sparsity nonzero elements in each column compared to the real sparse

level wask — 6, the number of signals wad — 2000 matrix S, such thatX is 2k-sparse undef. Therefore, we
and the compression ratio was — 2. The syntectic data ran the F-BQS mgthod with_sparsity level 2 instead ofk.
was generated as in SectiBm VI-C, but this time the inste){Pre0Ver, sinceP is sparse itself we usedl = I as the base

of generatingP € R'25%128 randomly we used Zictio;ary in the sparse BCS method. It is easy to see that
p = 2.
I -1 Table [Vl reports the average error of all five methods,
1 1 calculated as in{8). As can be seen, the results of F-BCS are
pP=— , much worse than all the others. This can be expected since
V2 1 -1 in this caseX is 2k-sparse, so that the OMP reconstruction
11 is not as good. The error of the sparse BCS is also higher

then the rest. The reason for this is that in order for thectlire
which can be viewed as an orthogonal 4-block diagonal matiethod of sparse BCS to work well the produgt: should

(each block is 16-block diagonal by itself). be small relative ton. In this case this product is not small
We used five different methods for the reconstruction @hough. Note that though higher from the rest the errors of
these signals. the sparse BCS and F-BCS are quite small. We performed the
1) CS algorithm with the real basiB. same simulation wittk = 3 and then the error of sparse BCS
2) CS algorithm with an estimated badty .. was reduced to the level of the rest, but the error of F-BCS
3) The F-BCS method. was still high.
4) The direct method for sparse BCS. The results of both the OBD-BCS algorithm and the CS with

5) The OBD-BCS algorithm. the estimated basis, which both did not use the knowledge
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TABLE VII L. .
RECONSTRUCTION ERROR OF DIFFERENT RECONSTRUCTION ALGomrims 1), and permute the columns inside each blagkis L-block

diagonal if and only if it permutes only the columns inside
each block, but does not mix the blocks or change their outer

Algorithm Error

CS with the realP | 10 °% order.

CS with P = Ppy, | 1075% First we prove that) cannot mix the blocks ofD. We
;)i?si BCS 8:85222 denote byQp the group of all block permutation matrices,
OBD-BCS 1059 which is the group of all the permutation matrices that keep

all blocks together. That is, i) € Q5 then when multiplying
D@ only the order of the blockd, ..., D;, and the order

. o . . of the columns inside the blocks change, but there is no
of the basisP, are similar to those of the algorithm which i+ \re between the blocks. After we prove tte Q5 we
used this knowledge. Thus, the prior knowledgerdotan be o6 that) also cannot change the outer order of the blocks,

avo_lded. The ?‘d_"a”tage of OBD-BCS_over the _C_S with te therefore must be block diagonal. In order to prove that
estimated basis is that it does not require any trainingaset, necessarily) € Qp, we use the next two lemmas
therefore can be used in applications where there is no sicces '

to any full signals but only to their measurements. Lemma Al If D = [Dy,...,Dy] € R™"E is a union of
L orthogonal bases, and(D) = n + 1, then any set of
VIIl. CONCLUSIONS orthogonal columns oD are necessarily all from the same
. . ock of D.
We presented the problem of BCS which aims to solve C%

problems without the prior knowledge of the sparsity basis o Proof: Assumel is a set ofn orthogonal columns from
the signals. Therefore, this work renders CS universal nyt o D. Denotel” = T'; U I's, whereI'; is the set of columns
from the measurement process point of view, but also from tteken from D;, andT'; contains the rest of the columns in
recovery point of view. T". Without loss of generality assume the $gtis not empty.
We presented three different constraints on the sparsity I&nce bothD; andI" are orthogonal bases &", the span of
sis, that can be added to the BCS problem in order to guarankgeequals the span of the columns Bf which are not inl".
the uniqueness of the solution to the BCS problem. Und€&herefore, the set of columns, U d, whered is any column
each of these constraints we proved uniqueness conditiéresn D, which is not inT, is either linearly dependent or
and proposed simple methods to retrieve the solution. Ampty. However, the sét; Ud contains at most columns, so
the proposed methods perform very well in simulations dhat sinces(D) = n+1 this set cannot be linearly dependent.
synthetic data. In fact, whek is small enough and when Therefore I's is necessarily empty, such that all the columns
enough signals are measured (only for the structural cainstr of T are from the same block ab. [ |
case), the perfor_mance of our methods is similar to_those QLSmma A.2. AssumeD = [Dy, ..., Dy] € R"™*"L is a union
standard CS which uses the real, though unknown in practice, = o hormal bases withr (D) — L andD — D
sparsity basis. We also demonstrated through simulatioms . T ~—n+land? = Q
advantage of BCS over CS with an estimated sparsity basg, >0M¢ permutation matri. If D is also a union ofL
The advantage of BCS is that it does not require any trainir(1)(5thonormaI bases, the@ € Q.
set, and therefore can be used in applications where there i®roof: If there was a permutatio® ¢ Qp such thatD =
no access to any full signals but only to their measurementS(), it would imply that» columns of D, not all from the
An interesting direction for future research is to examinsame block, form one of the orthogonal blocks/afHowever,

more ways to assure uniqueness, beside the three preseatgwrding to Lemma_Al1l any orthogonal columns must be

here, and weaken the constraint on the basis. from the same block, and therefofee Q5 . [ |
~We need to prove that the equality? = APQ implies
IX. ACKNOWLEDGMENTS P = PQ. Denote the orthogonal blocks of by A; for i =

The authors would like to thank Prof. David Malah and mrt: -+ L and the orthogonal blocks df and.P by P/ and P
Moshe Mishali for fruitful discussions and helpful advice, '€sPectively forj =1,...,2L. Also denote:

Pl P2L—1
APPENDIXA D=AP= {Al < p2 > s AL ( p2L )]

The following proves LemmB12. That is, i and P are . . Pt p2L-1
both2L-block diagonal matrices4 satisfies the conditions of D=AP= [Al ( p2 ) e AL ( p2L )]

TheoreniTlL, and) is a permutation matrix, thedP = APQ
implies P = PQ. which are both unions of orthogonal bases sincé;, P/ and

We begin this proof by proving that under the lemma'#$’ are all orthogonal. Therefore, according to Lemmal A.2
conditions(Q is necessarily block diagonal, after this is don§ € Q5.
the completion of the proof is straight forward. For any Nextwe prove that) also cannot change the outer order of
D = [Dy,...,Dr] € R™*"L such thatD,, ..., D;, € R™*" the blocks, and therefore must ieblock diagonal. Assume
the permutatiolD(@ can yield three types of changesiih It by contradictions thaf) changes the outer order of the blocks
can mix the blocks oD, permute the order of the blocks ofof D. Without loss of generality we can assume this change
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is a switch between the first two blocks of. That is, to eliminate solutions of the form of (At1) we use the 2-

. p3 block diagonal structure of the matrices. If there were adnly
Dy = D2Q2 = Az [ pi ] Q2 blocks, then beside the solutidd = PQ there would have
Pt been another possibility, which is:
Dy = D1Q1 = 44 [ p2 } Q1 AT A3 PyQo
AT AP,
whereQ, Q2 are the corresponding sub-matrices(pfvhich . 2 A1P PQs
permute the qolumns inside the blocky, D>. In order to P= ’
satisfy D = AP we must have
A P ps PrQr
Dy = Ay [ P2 ] = Az [ p4 ] Q2 where Py, ... Py, are theL blocks of P and @, ...QQ, the the

ps p1 corresponding blocks af). Obviously in this case® # PQ.
D2=A2{ 13,4}2141{ PQ}QL
APPENDIXB
Since A; and A, are orthogonal the above implies The following proves that ifA = [A}, ..., A7) € R is
p1 p3 a union of . orthogonal bases, where each block is generated
[ [ pt } Q2 randomly from an i.i.d Gaussian distribution followed by a
) (A-1) Gram-Schmidt process, then with probabilityr{A) = n +1
} = AT A, { P ) } 0. and A is not inter-block diagonal (Definitioh_10). Multipli-

P cation by an orthogonaP does not change the statistics,
therefore if o(A) = n + 1 with probability 1, then also
o(AP) = n + 1 with probability 1. Therefore, such aA
satisfies the conditions of Theoréml 11 with probability 1.

We begin the proof by noting that we can look at the
. R, R, generation of each block oft as follows. The first column
p2 ]Qz = [ Rs R, ] - ap is generated randomly froR™. The second colummy
is generated randomly from the — 1 dimensional space
Due to the structure of the permutation mat€)¢ and due orthogonal toa;. the columnas is generated randomly from
to the orthogonality of the blocks aP and P, the ranks of the n — 2 dimensional space orthogonal to the span of
R1, Rs, R3, Ry must satisfy: {a1,as}, and similarly anyu; is generated randomly from the
space orthogonal to the span of all previous columns, whose
rank 1) = rank(12,) . dimension isn — i + 1. We start by provingr(4) = n + 1.
rank R2) = rank R3) = 5 rank( Ry ). This proof uses the next lemma.

Therefore, 4 is necessarily inter block diagonal. Howeverlkemma B.3. AssumeG € R"*" is generated as an i.i.d
according to the conditions of Theor&m Ais not inter block Gaussian matrix followed by a Gram-Schmidt process, and
diagonal, so that the contradictions assumption is incomed U is a given space of dimensioh If d < n then with

Q cannot change the outer order of the blocks, such ¢hatpProbability 1 non of the columns & are in U.

must beL-block diagonal. _ Proof: Denote the columns @ by ¢; fori = 1, ..., n. Since
Denote the diagonal blocks @ by @; for i = 1,...L,  j -, the spacel/ has zero volume iR"™. g; is generated

po | =4t

p3
s
If there is an orthogona®l-block diagonal mat[ixl3 that
satisfies[(A-ll), then in contradiction to Lemind £2# PQ.
However, [A-1) implies:

P! =8
A{A2 - [ P4T

such that: randomly fromR", and therefore with probability 3, is not
. P! paL-t in U. For any otherl < i <n, g; is generated randomly from
b= [Al < p2? ) e AL ( p2r ﬂ - G;, which is the space orthogonal to thel previous columns
pl p2L-1 in G. G; dimension isd; = n — i+ 1. In this case we need to

[Al ( P2 ) Q1 AL ( p2L ) QL:| look at the probability to generatg in the intersectiod/ NG;.

_ o If d < d; then obviously this intersection has zero volume in
Since allA; are orthogonal the above implies that for al= G, so thatg; is not in U with probability 1. Furthermore, if

1,...,L d > d; then due to the randomness of the column&oiG;
pri-1 p2i-1 is not entirely contained i/ with probability 1. Therefore,
[ p2i ] = [ p2i ] Qi, here tooU N G; has zero volume iidx;, such thaty; is not in
U with probability 1. |
such thatP = PQ. ]

In fact the above proves not only thatis L-block diagonal, = Assumel is a set ofs(A) linearly dependent columns from
it is also 2L-block diagonal. Note that the extension of thisA. Denotel’ = I'; U I's, wherel'; is the subset of® which
proof to the case wherB and P haveM L blocks, forM > 2, contains only the columns taken from the blodk, andT';
is trivial. However, if P and P had L blocks instead oL, are the rest of the columns if. Without loss of generality
this proof would not work. That is since in this proof in ordeassumel’; is not empty. Moreover, sincel; is orthogonal



I'; is also orthogonal, such that in order fbrto be linearly
dependent’y also cannot be empty.

Any n+1 columns fromA are linearly dependent such that [5]
o(A) <n+ 1. Therefore|l'| < n+ 1 so that|T'y],|T2| < n.
If |T'y| =n or 3] = n then necessarily(A) = |T'| = n+ 1.
Assume by contradiction that(4) = |T'| < n, such that
IT1| < nand|T'z| < n—|T'y]. If |T'y| contains only one column,
denoted byy;, then sincd’ is linearly dependent; must be in  [7]
the span of’,. However, the dimension of this span is at most
IT'2| < n—1, such that according to Lemrha B.3 the probabilityjg)
for this is zero. IfT"; contains only two columns, denoted by
1,72, then~, must be in the span df; U ;. However, the
dimension of this space is at mg$t |+ 1 < n — 1, such that
according to Lemm@aBl3 the probability for this is again zero
We can keep increasing the cardinality Iof and as long as (10]
IT'| < n the probability forl" to be linearly dependent will be (11
zero. Therefore, the contradiction assumption is inconnett
probability 1, so that(A4) = |I'| = n + 1 with probability 1.

Next we need to prove that is not inter-block diagonal.
Denote for any pair of indices# j:

R Rs
Rs Ry

For A to be inter block diagonal there should be a paif j

for which:

(4

(6]

El

[12]

[13]
ﬁ&_[ (B-2)

[14]

rank R;) = rank Ry4)
rank R2) = rank R3) = g —rank(Ry).

[15]
B-3
(B-3) 6]
However, due to the randomness of;, A; the blocks
Ri1, Rs, R3, Ry all have full rank with probability 1. So that [17]
rank R;) = rankRy) = 5 and rankR,) # § — rank(Ry).

Therefore,A is not inter block diagonal with probability 1. [18]

APPENDIXC [19]

AssumeA € RZ*™ is a union of L random orthogonal
bases and®? € R™*™ s an orthogonab L-block diagonal
matrix. DenoteD = APQ where( is some unknown signed
permutation matrix. We prove here that there &rg:)!]>
different permutation matrice® p such thatDQ, = AP,
where P is an orthogona? L-block diagonal matrix. Without [22]
loss of generality we can assur@e= I, therefore we need to
refer to APQp = AP. According to Lemmd&12 this implies 23]
PQp = P. Since bothP and P are 2L-block diagonal
Qp must be too, and the size of its blocks & x 37.

@p is a permutation matrix, therefore each of its blocks %4]
a permutation of the identity matrix of siz§-. Thus, there

are only (3)! different possibilities for each block. Therel25]
are 2L blocks such that the total number of possifje’s is 6

(B,

[20]

[21]

[27]
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