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Distributed Rate Allocation for Wireless
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Jubin Jose and Sriram Vishwanath

Abstract

This paper develops a distributed algorithm for rate allocation in wireless networks that achieves

the same throughput region as optimal centralized algorithms. This cross-layer algorithm jointly per-

forms medium access control (MAC) and physical-layer rate adaptation. The paper establishes that this

algorithm is throughput-optimal for general rate regions.In contrast to on-off scheduling, rate allocation

enables optimal utilization of physical-layer schemes by scheduling multiple rate levels. The algorithm

is based on local queue-length information, and thus the algorithm is of significant practical value.

The algorithm requires that each link can determine the global feasibility of increasing its current

data-rate. In many classes of networks, any one link’s data-rate primarily impacts its neighbors and this

impact decays with distance. Hence, local exchanges can provide the information needed to determine

feasibility. Along these lines, the paper discusses the potential use of existing physical-layer control

messages to determine feasibility. This can be considered as a technique analogous to carrier sensing

in CSMA (Carrier Sense Multiple Access) networks. An important application of this algorithm is in

multiple-band multiple-radio throughput-optimal distributed scheduling for white-space networks.

Index Terms

Wireless networks, Throughput-optimal rate allocation, Distributed algorithms

I. INTRODUCTION

The throughput of wireless networks is traditionally studied separately at the physical and

medium access layers, and thus independently optimized at each of these two layers. As a

result, conventionally, data-rate adaptation is performed at the physical layer for each link, and
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link scheduling is performed at the medium access layer. There are significant throughput gains

in studying these two in a cross-layer framework [27], [8], [11], [19], [4]. This cross-layer

optimization results in a joint rate allocation for all the links in the network.

Maximum Weighted (Max-Weight) scheduling introduced in the seminal paper [27] performs

joint rate allocation and guarantees throughput-optimality1. However, Max-Weight algorithm

and its variants have the following disadvantages. (a) It requires periodic solving of a possibly

hard optimization problem. (b) The optimization problem is centralized, and thus introduces

significant overhead due to queue-length information exchanges. Thus, in order to overcome these

disadvantages, we need efficient distributed algorithms for general physical-layer interference

models [19].

The goal of this paper is to perform joint rate allocation in adecentralized manner. A

related problem is distributed resource allocation in networks, and this problem has received

considerable attention in diverse communities over years.In data and/or stochastic processing

networks, resource-sharing is typically described in terms of independent set constraints. With

such independent set constraints, the resource allocationproblem translates to medium access

control (or link scheduling) in wireless networks. For suchon-off scheduling, recently, efficient

algorithms have been proposed for both random access networks [12], [26] and CSMA networks

[21], [2]. More recently, with instantaneous carrier sensing, a throughput-optimal algorithm with

local exchange of control messages that approximate Max-Weight has been proposed in [25],

and a fully decentralized algorithm has been proposed in [15]. The decentralized queue-length

based scheduling algorithm in [15] and its variants have been shown to be throughput-optimal

in [14], [20], [13]. This body of literature on completely distributed on-off scheduling has been

extended to a framework that incorporates collisions in [16], [24]. Further, this decentralized

framework has been validated through experiments in [18].

However, independent set constraints can only model orthogonal channel access which, in

general, is known to be sub-optimal [5] (Section15.1). For wireless networks, the interaction

among nodes require a much more fine-grained characterization than independent set constraints.

This can be fully captured in terms of the network’srate region, i.e., the set of link-rates that

1For cooperative networks, throughput-optimal rate allocation does not follow from classical Max-Weight scheduling.In [17],

modified algorithms are developed for certain cooperative networks that guarantee throughput-optimality.
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are simultaneously sustainable in the network. As long as the data-rates of links are within

the rate region, simultaneous transmission is possible even by neighboring links in the network.

Therefore, it is crucial to perform efficient distributed joint rate allocation (and not just distributed

link scheduling) in wireless networks. Although distributed rate allocation is a very difficult

problem in general, in this work, we show that this problem can be solved by taking advantage

of physical-layer information.

In this work, we consider single-hop2 wireless networks. We develop a simple, completely

distributed algorithm for rate allocation in wireless networks that is throughput-optimal. In

particular, given any rate region for a wireless network, wedevelop a decentralized (local queue-

length based) algorithm that stabilizes all the queues for all arrival rates within the throughput

region. Thus, we can utilize the entire physical-layer throughput region of the system with

distributed rate allocation. To the best of our knowledge, this is the first paper to obtain such a

result. This is a very exciting result as our decentralized algorithm achieves the same throughput

region as optimal centralized cross-layer algorithms. Thealgorithm requires that each link can

determine the global feasibility of increasing its data-rate from the current data-rate. In Section

VIII-A, we provide details on techniques to determine rate feasibility, and explain reasons for

using this approach in practice.

The framework developed in this paper generalizes the distributed link scheduling framework.

As discussed before, the current distributed link scheduling algorithms primarily deal with binary

(on-off) decisions whereas our algorithm performs scheduling over multiple data-rates. Similar

to these existing distributed link scheduling algorithms,our algorithm is mathematically modeled

by a Markov process on the discrete set of data-rates. However, with multiple data-rates for each

link, the appropriate choice of the large number of transition rates is very complicated. Thus,

a key challenge is to design a Markov chain with fewer parameters that can be analyzed and

appropriately chosen for throughput-optimality. We overcome this challenge by showing that

transition rates with the following structure have this property. For link i, the transition rate to

a data-rateri,j from any other data-rate isexp(ri,jvi), wherevi is a single parameter associated

with link i that is updated based on its queue-length. The transition takes place only if the

2For networks that do not employ cooperative schemes, the results in this paper are likely to generalize using multi-hop by

combining “back-pressure” with the algorithmic frameworkof this paper.
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new data-rate is feasible. As expected, this reduces to the existing algorithmic framework in the

special case of binary (on-off) decisions.

For the general framework mentioned above, at an intuitive level, the techniques required

for proving throughput-optimality remain similar to existing techniques. However, there are few

additional technical issues that arise while analyzing thegeneral framework. First, we need to

account for more general constraints that arise from the setof possible rate allocation vectors.

Next, the choice of update rules forvi(t) with time t based on local queue-lengths that guarantee

throughput-optimality does not follow directly. The mixing time of the rate allocation Markov

chain plays an important role in choosing the update rules. For arbitrary throughput regions, any

rate allocation algorithm that approachǫ-close (for arbitrarily smallǫ) to the boundary possibly

requires an increasing1/ǫ number of data-rates per link. This leads to a potential increase in

the mixing time due to the increase in the size of the state-space. Thus, the analysis performed

in this paper is more general and essential to establish throughput-optimality of the algorithms

considered.

An important application of this algorithmic framework is for networks of white-space radios

[7], where multiple non-adjacent frequency bands are available for operation and multiple radios

are available at the wireless nodes. A scheduler needs to allocate different radios to different

bands in a distributed manner. This problem introduces multiple data-rates for every link even

in the CSMA framework, and hence, existing distributed algorithms cannot be directly applied.

We demonstrate that our framework provides a throughput-optimal distributed algorithm in this

setting.

Our main contributions are the following:

• We design a class of distributed cross-layer rate allocation algorithms for wireless networks

that utilize local queue-length and physical-layer measuring.

• We show that there are algorithms in this class that are (a) throughput-optimal, and (b)

completely decentralized.

• We demonstrate that an adaptation of these algorithms are throughput-optimal for multiple-

band multiple-radio distributed scheduling.
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TABLE I

BASIC NOTATION

I(·) Indicator function

a · b Dot product of vectorsa andb

‖a‖p Lp-norm of vectora

‖a‖0 Number of non-zero elements ofa

| · | Absolute value for scalars,

Cardinality for sets

E[·] Expectation operator

R+ Non-negative reals

Z+ Non-negative integers

Z++ Strictly positive integers

ei Unit vector alongi-th dimension, i.e.,

ei ∈ {0, 1}n with i-th component equal to1

and all other components equal to0

A. Notation

Vectors are considered to be column vectors and denoted by bold letters. For a vectora and

matrix B, aB := aTB, whereaT is the transpose ofa. For vectors,≤, ≥, <, > and = are

defined component-wise.0 denotes all-zeros vector and1 denotes all-ones vector. Other basic

notation used in the paper is given in Table I. Notation specific to proofs is introduced later as

needed.

B. Organization

The next section describes the system model. Section III explains the distributed rate allocation

algorithm. Section IV introduces relevant definitions and known results. Section V describes

the rate allocation Markov chain and the optimization framework. Section VI establishes the

throughput-optimality of the algorithm. The algorithm formultiple-band multiple-radio schedul-

ing is given in Section VII. Further discussions and simulation results are given in Section VIII.

We conclude with our remarks in Section IX. For readability,the proofs of the technical lemmas

in Section V and Section VI are moved to the Appendix.
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II. SYSTEM MODEL

Consider a wireless network consisting ofm nodes, labeledN := {1, 2, . . . , m}. In this

network, we are interested inn single-hop flows that correspond ton wireless links labeled

L := {1, 2, . . . , n}. Since we have a shared wireless medium, these links interact (or interfere)

in a potentially complex way. For single-hop flows, this interaction among links can be captured

through an-dimensionalrate regionfor the network, which is formally defined next.

Definition 1 (Rate Region):The rate region of a network is defined as the set of instanta-

neous rate vectorsc ∈ R
n
+ at which queues (introduced later) of alln links can be drained

simultaneously.

In this paper, we assume that the rate region is fixed3 (i.e., not time-varying). We denote the

rate region associated with the network byC ⊆ R
n
+. By definition, this rate region is compact.

We assume that the rate region has the following simple property: if c ∈ C, then ĉ ∈ C for all

ĉ ≤ c and ĉ ≥ 0. The above property states that rates can be decreased component-wise. Such

an assumption is fairly mild, and is satisfied by rate regionsresulting from most physical-layer

schemes. Next, we define the throughput region of the network.

Definition 2 (Throughput Region):The throughput region of a network, denoted byT , is

defined as the convex hull of the rate regionC of the network.

We use a continuous-time model to describe system dynamics.Time is denoted byt ∈ R+.

Every (transmitter of) linki ∈ L is associated with a queueQi(t) ∈ R+, which quantifies the

information (packets) remaining at timet waiting to be transmitted on linki. Let the cumulative

arrival of information at thei-th link during the time interval[0, t) beAi(t) ∈ R+ with Ai(0) := 0.

Rate allocationat time t is defined as the rate vector in the rate region at which the system is

being operated at timet. Let the rate allocation corresponding to thei-th link at timet be ri(t).

Then, for every linki ∈ L, the queue dynamics is given by

Qi(t) = Qi(s)−
∫ t

s

ri(z)I(Qi(z) > 0)dz + Ai(t)− Ai(s), (1)

where0 ≤ s < t. The vector ofn queues in the system is denoted byQ(t) := [Qi(t)]
n
i=1. The

queues are initially atQ(0) ∈ R
n
+.

We consider arrival processes at the queues in the network with the following properties.

3We consider fixed or slow-fading channels.
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• We assume every arrival process is such that increments overintegral times are independent

and identically distributed with Pr(Ai(1) = 0) > 0.

• We assume that all these increments belong to a bounded support [0, K], i.e.,Ai(k + 1)−
Ai(k) ∈ [0, K] for all k ∈ Z+.

Based on these properties, the (mean)arrival rate corresponding to thei-th link is λi := E[Ai(1)].

We denote the vector of arrival rates byλ. Without loss of generality4, we assumeλmin :=

mini λi > 0. It follows from the strong law of large numbers that, with probability 1,

lim
t→∞

Ai(t)

t
= λi. (2)

In summary, our system model incorporates general interference constraints through a arbitrary

rate region and focuses on single-hop flows. We proceed to describe the rate allocation algorithm

and the main results of this paper.

III. RATE ALLOCATION ALGORITHM &

MAIN RESULTS

The goal of this paper is to design a completely decentralized algorithm for rate allocation

that stabilizesall the queues as long as the arrival rate vector is within thethroughput region.

By assumption, every link can determine rate feasibility, i.e., every link can determine whether

increasing its data-rate from the current rate allocation results in a net feasible rate vector. More

formally, every link i ∈ L at time t, if required, can obtain the informationI(r(t) + αei ∈
C), for anyα ∈ R. More details on determining rate feasibility are given in Section VIII.

The rate allocation vector at timet is denoted byr(t) := [ri(t)]
n
i=1. For decentralized rate

allocation, we develop an algorithm that uses only local queue information for choosingr(t)

over timet. Further, we perform rate allocation over a chosen limited (finite) set of rate vectors

that arefeasible. We choose a finite set of rate levels corresponding to every link, and form

vectors that are feasible. The details are as follows:

1) For each linki ∈ L, a set of rate levelsRi = {ri,j}kij=0 are chosen from[0, ci] with

ri,0 = 0, ri,ki = ci and ri,j−1 < ri,j. Here,ci is the maximum possible transmission rate

for the i-th link, i.e., ci := argmaxα∈R+
αei ∈ C, andki ∈ Z++ is the number of levels

4If λi = 0, then this link can be removed from the system.
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other than zero. Since the rate region is compact, without loss of generality5, we assume

0 < K ≤ ci ≤ K̄ < ∞.

2) The set of rate allocation vectors, denoted byR, is given byR = {[r1, r2, . . . , rn] : ri ∈
Ri for all i ∈ L, and [r1, r2, . . . , rn] ∈ C}.

The convex hull of the set of rate allocation vectorsR is denoted byRc. Define Ro
c =

{r ∈ R
n
+ : r < t for somet ∈ Rc}, the set ofstrictly feasible rates. For rate regions that are

polytopes, the partitionsRi can be chosen such thatRc = T . For any compact rate region, it

is fairly straightforward to choose partitionsRi with ki ≤ ⌈2ci/ǫ⌉ ≤
⌈

2K̄/ǫ
⌉

such thatc ∈ Rc

if c + ǫ
2
1 ∈ T . The trivial partition withǫ/2 as step size in all dimensions satisfy the above

property. Thus, for any givenǫ > 0, we can obtain a set of rate allocation vectorsR such that

|R| ≤
⌈

2K̄/ǫ
⌉n

(3)

andc ∈ Rc if c+ ǫ
2
1 ∈ T .

Before describing the algorithm, we define two notions of throughput performance of a rate

allocation algorithm.

Definition 3 (Rate stable):We say that a rate allocation algorithm is rate-stable if, for any

λ ∈ Ro
c, the departure rate corresponding to every queue is equal toits arrival rate, i.e., for all

i ∈ L, with probability1,

lim
t→∞

1

t

∫ t

0

ri(z)I(Qi(z) > 0)dz = λi.

From (1),(2), this is same as, for alli ∈ L, with probability1,

lim
t→∞

Qi(t)/t = 0.

Definition 4 (Throughput optimal):We say that a rate allocation algorithm is throughput-

optimal if, for any givenǫ > 0, the algorithm makes the underlying network Markov chain

positive Harris recurrent(defined in Section IV) for allλ such thatλ+ ǫ1 ∈ T . By definition,

the algorithm can depend on the value ofǫ.

Next, we describea class of algorithms to determiner(t) as a function of time based on a

continuous-time Markov chain. Recall thatRi = {ri,j}kij=0 is the set of possible rates/states for

allocation associated with thei-th link. In these algorithms, thei-th link useski independent

5If ci = 0, then this link can be removed from the system.
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Y = X1 +X2 + Z

X1

X2

Fig. 1. Gaussian Multiple Access Channel

exponential clocks with rates/parameters6 {Ui,j}kij=0 (or equivalently exponential clocks with

mean times{1/Ui,j}kij=0). The clock with (time varying) parameterUi,j is associated with the

stateri,j . Based on these clocks, thei-th link obtainsri(t) as follows:

1) If the clock associated with a state (sayj = m) ticks and further if transitioning to that

stateri,m is feasible, thenri(t) is changed tori,m;

2) Otherwise,ri(t) remains the same.

The above procedure continues, i.e, all the clocks run continuously. Defineui,j := logUi,j , ∀i ∈
L, j ∈ {0, 1, . . . , ki}. It turns out that the appropriate structure to introduce isas follows:

ui,j = ri,jvi, ∀i ∈ L, j ∈ {0, 1, . . . , ki},

where vi ∈ R, ∀i ∈ L. We denote the vector consisting of these new set of parameters by

v := [vi]
n
i=1.

Example 1:Consider a Gaussian multiple access channel with two links as shown in Figure

1 with average power constraintP at the transmitters and noise varianceN at the receiver. The

capacity region of this channel is shown in Figure 2 whereC(x) = 0.5 log2(1 + x). In this

case, orthogonal access schemes limit the throughput region to the triangle (strictly within the

pentagon) shown using dash-line. In this example, if we allow for capacity-achieving physical-

layer schemes, the rate region (and hence the throughput region) is identical to the pentagon

6These should not to be confused with the rates for allocation.
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Fig. 2. Information-theoretic Capacity Region

shown in Figure 2. The natural choice for the set of rate levels at link-1 isR1 = {0, a, b}
wherea = C(P/P + N) and b = C(P/N). Similarly, R2 = {0, a, b}. This leads to the set of

rate allocation vectorsR = {[0, 0], [0, a], [0, b], [a, 0], [a, a], [a, b], [b, 0], [b, a]}. It is clear that the

convex combination of this set is the throughput region itself. For this example, the state-space

of the Markov chain and transitions to and from state(b, a) are shown in Figure 3.

A distributed algorithm needs to choose the parametersv in a decentralized manner. For

providing the intuition behind the algorithm, we perform this in two steps. In the first step, we

develop the non-adaptive version of the algorithm that has the knowledge ofλ. This algorithm

is called non-adaptive as the algorithm requires the explicit knowledge ofλ. The rate allocation

at time t = 0 is set to ber(0) = 0. This algorithm usesv∗ at all times which is a function of

λ, and is given by

v∗ = argmax
v∈Rn

λ · v − log

(

∑

r∈R

exp (r · v)
)

.

We show in Section V that, givenλ ∈ Ro
c, the above optimization problem has a unique solution

that is finite, and therefore has a validv∗. An important result regarding this non-adaptive

algorithm is the following theorem.
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0, 0 

0, a 

0, b a, b 

a, a 

a, 0 b, 0 

b, a 

exp(bv1) 
exp(bv1) 

exp(av1) 
exp(0) 

exp(av2) 

exp(0) 

Fig. 3. Rate Allocation Markov Chain (transitions to/from(b, a) state alone shown)

Theorem 1:The above non-adaptive algorithm is rate-stable for any givenλ ∈ Ro
c .

Proof Outline: For anyλ ∈ Ro
c , there is at least one distribution onR that has expectation

asλ. For the Markov chain specified by anyv ∈ R
n, there is a stationary distribution on the

state-spaceR. The valuev∗ is chosen such that it minimizes the Kullback-Leibler divergence

of the induced stationary distribution from the distribution corresponding toλ. For the Markov

chain specified byv∗, the expected value of the stationary distribution turns out to beλ. This

leads to rate-stable performance of the algorithm. The proof details are given in Section V.

In the second step, we develop theadaptive algorithm, wherev is obtained as a function

of time t denoted byv(t)7. This algorithm is called adaptive as the algorithm does not require

the knowledge ofλ. The values ofv(t) are updated during fixed (not random variables) time

instancesτl for l ∈ Z++. We setτ0 = 0 andv(0) = 0. During intervalt ∈ [τl, τl+1) the algorithm

usesv(t) = v(τl). The length of the intervals areTl = τl+1 − τl. During interval[τl, τl+1), let

the empirical arrival ratebe

λ̂i(l) =
Ai(τl+1)− Ai(τl)

Tl
(4)

7This implies that the exponential clocks used have time varying rates. These are well-defined non-homogeneous Poisson

processes.
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and theempirical offered service ratebe

ŝi(l) =
1

Tl

∫ τl+1

τl

ri(z)dz. (5)

The update equation corresponding to the algorithm for thei-th link is given by

vi(τl+1) =
[

vi(τl) + αl

(

λ̂i(l) +
ǫ

4
− ŝi(l)

)]

D
(6)

where[θ]D = min(θ,D)I(θ ≥ 0) + max(θ,−D)I(θ < 0), i.e., [θ]D is the projection ofθ to the

closest point in[−D,D], andαl are the step sizes. Thus, the algorithm parameters are interval

lengthsTl, step sizesαl andD.

Remark 1:Clearly, both empirical arrival rate and empirical offeredservice rate used in the

above algorithm can be computed by thei-th link without any external information. In fact, the

difference is simply the difference of its queue-length over the previous interval appropriately

scaled by the inverse of the length of the previous interval.

The following theorem providesǫ-optimal performance guarantee for the adaptive algorithm.

Theorem 2:Consider any givenǫ > 0, ǫ ≤ 4λmin. Then, there exists some choice of algorithm

parametersTl = T (n, ǫ), αl = α(n, ǫ) andD = D(n, ǫ) such that the appropriate network Markov

chain under the adaptive algorithm is positive Harris recurrent if λ+ ǫ1 ∈ T , i.e., the algorithm

is throughput-optimal.

Proof Outline: The update in (6) can be intuitively thought of as a gradient decent technique

to solve an optimization problem that will lead tov∗ whose induced stationary distribution onR
has expected valuestrictly greater thanλ. However, the arrival rate and offered service rate are

replaced with their empirical values for decentralized operation. We consider the two time scales

involved in the algorithm - update intervalT andN update intervals. The main steps involved

in establishing the throughput-optimality are the following. First, we show that, sufficiently long

T can be chosen such that the empirical values used in the algorithm are arbitrarily close to

the true values. Using this, we next show that the average offered empirical service rate over

N update intervals isstrictly higher than the arrival rate. Finally, we show that this results in

a drift that is sufficient to guarantee positive Harris recurrence.The proof details are given in

Section VI.
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IV. DEFINITIONS & K NOWN RESULTS

We provide definitions and known results that are key in establishing the main results of

this paper. We begin with definitions on two measures of difference between two probability

distributions.

Definition 5 (Kullback-Leibler (KL) divergence):Consider two probability mass functionsπ

and µ on a finite setX . Then, the KL divergence fromπ to µ is defined asD(µ‖π) =
∑

x∈X µ(x) log µ(x)
π(x)

.

Definition 6 (Total Variation):Consider two probability mass functionsπ andµ on a finite set

X . Then, the total variation distance betweenπ andµ is defined as‖µ−π‖TV = 1
2

∑

x∈X |µ(x)−
π(x)|.

Next, we provide two known results that are used later. Result 1 follows directly from

[3](Theorem3.2), and Result 2 is in [3](Theorem4.3).

Result 1 (Mixing Time):Consider any finite state-space, aperiodic, irreducible, discrete-time

Markov chain with transition probability matrixP and the stationary distributionα. Let αmin

be the minimum value inα and the second largest eigenvalue modulus (SLEM) beσmax. Then,

for any ρ > 0, starting from any initial distribution (at time 0), the distribution at timeτ ∈ Z++

associated with the Markov chain, denoted byβ(τ), is such that‖β(τ)−α‖TV ≤ ρ if

τ ≥
1
2
log(1/αmin) + log(1/ρ)

log(1/σmax)
. (7)

Result 2 (Conductance Bounds):Consider the setting as above. The ergodic flow out ofS ⊆
X is defined asF (S) :=∑

x∈S,x̂∈Sc α(x)P (x, x̂) and the conductance is defined as

Φ = min

{

F (S)
∑

x∈S α(x)
: φ ⊂ S ⊂ X ,

∑

x∈S

α(x) ≤ 1

2

}

. (8)

Then, the SLEMσmax is bounded by conductance as follows:

1− 2Φ ≤ σmax ≤ 1− Φ2/2. (9)

Lastly, we provide the definition of positive Harris recurrence. For details on properties

associated with positive Harris recurrence, see [22], [6].

Definition 7 (Positive Harris recurrence):Con-sider a discrete-time time-homogeneous Markov

chain on a complete, separable metric spaceX. Let BX denote the Borelσ-algebra onX, and

Xτ denote the state of the Markov chain at timeτ ∈ Z+. Define stopping timeTA := inf{τ ≥
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0 : Xτ ∈ A} for anyA ∈ BX . The setA is called Harris recurrent ifPr(TA < ∞|X(0) = x) = 1

for anyx ∈ X. A Markov chain is called Harris recurrent if there exits aσ-finite measureµ on

(X,BX ) such that ifµ(A) > 0 for someA ∈ BX , thenA is Harris recurrent. It is known that

if X is Harris recurrent an essentially unique invariant measure exists. If the invariant measure

is finite, then it may be normalized to a probability measure.In this case,X is called positive

Harris recurrent.

V. RATE ALLOCATION MARKOV CHAIN & RATE STABILITY

Rate allocation Markov chain: The main challenge is to design a Markov chain with fewer

parameters that can be analyzed and appropriately chosen for throughput-optimality. First, we

identify a class of Markov chains that are relatively easy toanalyze. Consider the class of

algorithms introduced in Section III. The core of this classof algorithms is a continuous-time

Markov chain with state-spaceR, which is the (finite) set of rate allocation vectors. Define

f(r̂, r) := exp

(

n
∑

i=1

ki
∑

j=0

ui,jI(ri = ri,j)I(ri 6= r̂i)

)

, (10)

where r̂ = [r̂1, r̂2, . . . , r̂n] ∈ R, r = [r1, r2, . . . , rn] ∈ R andui,j are the parameters introduced

in Section III. Now, the transition rate from stater̂ ∈ R to stater ∈ R can be expressed as

q(r̂, r) =







f(r̂, r), if ‖r̂− r‖0 = 1,

0, if ‖r̂− r‖0 > 1.

And, the diagonal elements of the rate matrix are given byq(r̂, r̂) = −∑
r∈R,r 6=r̂

q(r̂, r) for all

r̂ ∈ R. This follow directly from the description of the algorithm. This class of algorithms are

carefully designed such that it is tractable for analysis. In particular, the following lemma shows

that this Markov chain is reversible and the stationary distribution has exponential form.

Lemma 3:The rate allocation Markov chain(R, q) is reversible and has the stationary distri-

bution

π(r) =
exp

(

∑n
i=1

∑ki
j=0 ui,jI(ri = ri,j)

)

∑

r̃∈R exp
(

∑n
i=1

∑ki
j=0 ui,jI(r̃i = ri,j)

) . (11)

Furthermore, this Markov chain converges to this stationary distribution starting from any initial

distribution.

November 9, 2018 DRAFT



15

Proof: The proof follows from detailed balance equationsπ(r)q(r, r̂) = π(r̂)q(r̂, r) for

all r, r̂ ∈ R and known results on convergence to stationary distribution for irreducible finite

state-space continuous-time Markov chains [1].

Theoffered service ratevector under the stationary distribution iss :=
∑

r∈R π(r)r. In general,

for λ ∈ Ro
c , we expect to find values for parametersui,j as a function ofλ andR such that

s = λ. Due the exponential form in (30), it turns out that the rightstructure to introduce is

ui,j = ri,jvi, ∀i ∈ L, j ∈ {0, 1, . . . , ki}, (12)

wherevi ∈ R, ∀i ∈ L, and obtain suitable values forv = [vi]
n
i=1 as a function ofλ andR such

that s = λ. To emphasize the dependency onv, from now onwards, we denote the stationary

distribution byπv(r) and the offered service rate vector by

sv =
∑

r∈R

πv(r)r. (13)

Substituting (12), we can simplify (30) to obtain

πv(r) =
exp(r · v)

∑

r̃∈R exp(r̃ · v) . (14)

Optimization framework: We utilize the optimization framework in [15] to show that values

for v exist such thatsv = λ. In particular, we show that the unique solution to an optimization

problem given byv∗ has the propertysv∗ = λ. Next, we describe the intuitive steps to arrive

at the optimization problem. Ifλ ∈ Ro
c , then λ can be expressed as a convex combination

of r ∈ R, i.e., there exists a valid probability distributionµ(r) such thatλ =
∑

r∈R µ(r)r.

For a given distributionµ(r), we are interested in choosingv such thatπv(r) is close to

µ(r). We consider the KL divergence ofπv(r) from µ(r) given byD (µ(r)‖πv(r)). Minimizing

D (µ(r)‖πv(r)) over the parameterv is equivalent in terms of the optimal solution(s) to max-

imizing F (µ(r), πv(r)) := −D (µ(r)‖πv(r)) − H(µ(r)) over the parameterv asH(µ(r)) is a

constant. SimplifyingF (µ(r), πv(r)) leads the optimization problem as follows:

F (µ(r), πv(r)) =
∑

r∈R

µ(r) logπv(r)

(a)
=

∑

r∈R

µ(r)r · v − log

(

∑

r∈R

exp(r · v)
)

(b)
= λ · v − log

(

∑

r∈R

exp(r · v)
)

.
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Here,(a) follows from (14) and(b) follows from the assumptionλ =
∑

r∈R µ(r)r. Now onwards,

we denote the objective function byF (v,λ). To summarize, the optimization problem of interest

is, givenλ ∈ Ro
c ,

maximize F (v,λ) = λ · v− log
(
∑

r∈R exp(r · v)
)

(15)

subject to v ∈ R
n.

The following lemma regarding the optimization problem in (15) is a key ingredient to the

main results.

Lemma 4:Let λ ∈ Ro
c. The optimization problem in (15) has a unique solutionv∗(λ), which

is finite. In addition, the offered service rate vector underv∗ is equal to the arrival rate vector,

i.e., sv∗ = λ.

Proof: See Appendix.

The important observations are that the objective functionis concave inv and the gradient with

respect tov is λ − sv. With offered service rate equal to arrival rate, the next step is to show

that the queues drain at rate equal toλ.

A. Proof of Theorem 1

Rate stability of the non-adaptive algorithm: We establish the rate stability of the non-

adaptive algorithm with the result given in Lemma 4 as follows.

Consider time instancesνl for l ∈ Z+ with ν0 = 0, and interval lengthΓl := νl+1−νl = l+1.

The queue at thei-th link can be upper bounded as follows. The offered serviceduring the

time interval is[νk, νk+1) is used to serve the arrivals during the time interval[νk−1, νk) alone.

Consider a timet, and choosel such thatt ∈ [νl, νl+1). Using (1) and the above upper bounding

technique, we obtain

Qi(t) = Ai(t)−
∫ t

0

ri(z)I(Qi(z) > 0)dz

≤
l−2
∑

k=0

[

Ai(νk+1)−Ai(νk)−
∫ νk+2

νk+1

ri(z)dz

]

+

+Ai(t)− Ai(νl−1), (16)

where[θ]+ = max(0, θ).
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For each interval[νk, νk+1), define the following two random variables:

αi(k) :=
Ai(νk+1)− Ai(νk)

Γk
, and

βi(k) :=
1

Γk

∫ νk+1

νk

ri(z)dz.

It follows from the strong law of large numbers that, with probability 1, limk→∞ αi(k) = λi.

From Lemma 4 and ergodic theorem for Markov chains, it follows that, with probability1,

limk→∞ βi(k+1) = λi. Since the arrival processAi(t) is non-decreasing and the increments are

bounded byK, we have

Ai(t)− Ai(νl−1) ≤ Ai(νl+1)− Ai(νl−1)

≤ K(νl+1 − νl−1)

= K(Γl−1 + Γl). (17)

Rewriting (16) with above defined random variables and applying (17) along withνl ≤ t and

Γk ≤ Γk+1, we obtain

Qi(t)

t
≤ 1

νl

l−2
∑

k=0

Γk [αi(k)− βi(k + 1)]+

+
K(Γl−1 + Γl)

νl
. (18)

In (18), the second term on the right hand side (RHS) goes to zero asΓl/νl → 0 as l → ∞.

The first term on the RHS of (18) goes to zero with probability1 asαi(k) − βi(k + 1) → 0,

νl ≥
∑l−2

k=0 Γk andνl → ∞. Thus, for any givenλ ∈ Ro
c, with probability1,

lim
t→∞

Qi(t)

t
= 0, ∀i ∈ L,

which completes the proof.

This result is important due to the following two reasons.

1) The result shows that this algorithm has good performance, and an algorithm that ap-

proaches the operating point of this algorithm has the potential to perform “well.” Essen-

tially, this aspect is utilized to obtain the adaptive algorithm.

2) The non-adaptive algorithm does not require the knowledge of the number of nodes orǫ,

as required by the adaptive algorithm. This suggests the existence of similar gradient-like

algorithms that perform “well” with different algorithm parameters that may not depend on
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the number of nodes orǫ. We do not address this question in the paper, but the non-adaptive

algorithm will serve as the starting point to address such issues.

VI. THROUGHPUT OPTIMALITY OF ALGORITHM

In this section, we establish the throughput-optimality ofthe adaptive algorithm for a particular

choice of parameters. The algorithm parameters used in thissection are dependent on the number

of links n andǫ. It is evident from the theorem thatǫ determines how close the algorithm is to

optimal performance. Define

C(n) := 35(2K̄ +K)2
(

K̄2n2

2
+ n

)

.

We set all the step sizes (irrespective of interval) to

αl = α(n, ǫ) := ǫ2/C(n), (19)

andD used in the projection to

D = D(n, ǫ) :=
16K̄

K

n

ǫ
log

⌈

2K̄

ǫ

⌉

+ K̄. (20)

All the interval lengths (irrespective of interval) are setto

Tl = T (n, ǫ) := exp

(

K̂

(

n2

ǫ
log

n

ǫ

))

(21)

for some large enough constantK̂ > 0.

Remark 2:The large value ofT (n, ǫ) in (21) is due to the poor bound on the conductance of

the rate allocation Markov chain. The parameters given by (19), (20) and (21) are one possible

choice of the parameters. We would like to emphasize that this choice is primarily for the purpose

of the proofs. The choice of right parameters (and even the update functions) in practice are

subject to further study especially based on the network configuration and delay requirements.

Some comments on this are given in Section VIII.

We start with the optimization framework developed in the previous section. For the adaptive

algorithm, the relevant optimization problem is as follows: givenλ such thatλ+ ǫ
2
1 ∈ Rc,

maximize Fǫ(v) := F
(

v,λ+
ǫ

4
1
)

(22)

subject to v ∈ R
n.

The following result is an extension of Lemma 4.
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Lemma 5:Consider any givenǫ > 0 andλ. Then, the optimization problem in (22) is strictly

concave inv with gradient∇Fǫ(v) = λ+ ǫ
4
1− sv and Hessian

H(F (v)) = −
(

Eπv

[

rrT
]

− Eπv
[r]Eπv

[

rT
])

.

Further, letλ+ ǫ
2
1 ∈ Rc. Then, it has a unique solutionv∗, which is finite, such that the offered

service rate vector underv∗ is equal toλ + ǫ
4
1, i.e., sv∗ = λ + ǫ

4
1. In addition, if ǫ ≤ 4λmin,

then the optimal valuev∗ is such that

‖v∗‖∞ ≤ 16K̄

K

n

ǫ
log

⌈

2K̄

ǫ

⌉

. (23)

Proof: See Appendix.

The update step in (6), which is central to the adaptive algorithm, can be intuitively thought

of as a gradient decent technique to solve the above optimization problem. Technically, it is

different as the arrival rate and offered service rate are replaced with their empirical values for

decentralized operation. The algorithm parameters can be chosen in order to account for this.

This forms the central theme of this section.

A. Within update interval

Consider a time interval[τl, τl+1). During this interval the algorithm uses parametersvi(τl).

For simplicity, in this subsection, we denotevi(τl) by vi and the vector byv andE[·|v] by E[·].
For the rate allocation Markov chain (MC) introduced in Section V, we obtain an upper bound

on the convergence time or the mixing time.

To obtain this bound, we performuniformizationof the CTMC (continuous-time MC) and use

results given in Section IV on the mixing time of DTMC (discrete-time MC). The uniformization

constant used isA := n exp(K̄‖v‖∞). The resulting DTMC has the same state-spaceR with

transition probability matrixP . The transition probability from statêr ∈ R to stater ∈ R, r 6= r̂

is P (r̂, r) = q(r̂, r)/A, and from statêr ∈ R to itself isP (r̂, r̂) = 1+q(r̂, r̂)/A. With our choice

of parametersui,j given by (12), we can simplify (10) to

f(r̂, r) = exp

(

n
∑

i=1

riviI(ri 6= r̂i)

)

. (24)

For all r̂, r ∈ R, r 6= r̂, clearly q(r̂, r) ≤ exp(K̄‖v‖∞). Since at mostn elements in every row

of the transition rate matrix of the CTMC is positive|q(r̂, r̂)| ≤ A for all r̂ ∈ R. Therefore,P

is a valid probability transition matrix.
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The DTMC has the same stationary distribution as the CTMC. Inaddition, the CTMC and

the DTMC have one-to-one correspondence through an underlying independent Poisson process

with rateA. In this subsection, timet denotes the time within the update interval, i.e.,t = 0

denotes global timeτl. Let µ(t) be the distribution overR given by the CTMC at timet, and

ζ be a Poisson random variable with parameterAt. Then, we have

µ(t) =
∑

m∈Z+

Pr(ζ = m)µ(0)Pm

= µ(0) exp(At(P − I)), (25)

where I is the identity matrix. Next, we provide the upper bound on the mixing time of the

CTMC.

Lemma 6:Consider anyρ1 > 0. Then, there exists a constantK1 > 0, such that, if

t ≥ exp

(

K1

(

n‖v‖∞ + n log
1

ǫ

))

log
1

ρ1
, (26)

then the total variation between the probability distribution µ(t) at timet given by (25) and the

stationary distributionπv given by (14) is smaller thanρ1, i.e., ‖µ(t)− πv‖TV ≤ ρ1.

Proof: See Appendix.

Lemma 6 is used to show that the error associated with using empirical values for arrival rate

and offered service rate in the update rule (6) can be made arbitrarily small by choosing large

enoughT . This is formally stated in the next lemma.

Lemma 7:Considerρ2 > 0. Then, there exists a constantK2 > 0, such that, if the updating

period

T ≥ exp

(

K2

(

n‖v‖∞ + n log
1

ǫ

))

1

ρ2
,

then for any time interval[τl, τl+1)

E

[∥

∥

∥
λ̂(l)− λ

∥

∥

∥

1

]

+ E [‖ŝ(l)− sv‖1] ≤ ρ2. (27)

Proof: See Appendix.

Thus, the important result is that due to the mixing of the rate allocation Markov chain, the

empirical offered service rate isclose to the offered service rate. The next step is to address

whether the offered service rates over multiple update intervals ishigher than the arrival rates.
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B. Over multiple update intervals

We consider multiple update intervals, and establish that the average empirical offered service

rate is strictly higher than the arrival rate. This result follows from the observation that, if

the error in approximating the true values by empirical values are sufficiently small, then the

expected value of the gradient ofFǫ(v) over sufficiently large number of intervals should be

small. In this case, we can expect the average offered service rate to be close tosv∗. Since,sv∗

is strictly higher than arrival rates, we can expect the average offered service rate to be strictly

higher than the arrival rate. The result is formally stated next.

Lemma 8:ConsiderN(n, ǫ) := (7× 35nD2)/(αǫ2) update intervals. Then, the average of

empirical service rates over these update intervals is greater than or equal toλ+ ǫ
8
1, i.e.,

1

N

N
∑

l=1

E [ŝ(l)] ≥ λ+
ǫ

8
1.

Proof: See Appendix.

Now, we proceed to show that the appropriate ‘drift’ required for stability is obtained.

C. Proof of Theorem 2

Consider the underlying network Markov chainX(l) consisting of all the queues in the

network, the update parameters, and the resulting rate allocation vectors at timeτl, i.e.,X(l) =

(Q(τl),v(τl), r(τl)) for l ∈ Z+. It follows from the system model and the algorithm description

that X(l) is a time-homogenous Markov chain on an uncountable state-spaceX . The σ-field

on X considered is the Borelσ-field associated with the product topology. For more details on

dealing with general state-space Markov chains, we refer readers to [22].

We consider a Lyapunov functionV : X → R+ of the form,V (x) =
∑n

i=1(Q
2
i + v2i + r2i ) for

x = (Q,v, r). In order to establish positive Harris recurrence, for anyλ such thatλ+ ǫ1 ∈ T ,

we use multi-step8 Lyapunov and Foster’sdrift criteria to establish positive recurrence of a set

of the formV (x) ≤ κ, for someκ > 0. From the assumption on the arrival processes, it follows

that V (x) ≤ κ is a closedpetiteset (for definition and details see [22], [13]). It is well known

that these two results imply positive Harris recurrence [22].

8This is a special case of the state-dependent drift criteriain [22].
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Next, we obtain the required drift criteria. For simplicity, we denoteE[·|X(0)] by E[·] in the

rest of this section. Consider

E[Q2
i (TN)−Q2

i (0)] = E[(Qi(TN)−Qi(0))
2

+2Qi(0)(Qi(TN)−Qi(0))]

(a)

≤ (max(K, K̄)TN)2 +

2Qi(0)E[Qi(TN)−Qi(0)].

Here, (a) follows from the fact that over unit time queue difference belong to [−K̄,K]. Now,

we look at two cases. IfQi(0) > K̄TN , clearly Qi(t) > 0 during interval[0, TN ] as service

rate is less than or equal tōK. For this case, from Lemma 8,

2Qi(0)E[Qi(TN)−Qi(0)] = 2Qi(0)T

(

N
∑

l=1

(λi − E[ŝi(l)]

)

≤ − ǫ

4
TNQi(0)

(a)

≤ − ǫ

4
TNQi(0) +

ǫ

4
K̄(TN)2.

Here, (a) is trivial, but the extra term is added to ensure that the RHS evaluates to a non-

negative value forQi(0) ≤ K̄TN . If Qi(0) ≤ K̄TN , then clearly2Qi(0)E[Qi(TN)−Qi(0)] ≤
2K̄K(TN)2. Since the bounds for each case do not evaluate to negative values for the other

case, we have

E[Q2
i (TN)−Q2

i (0)] ≤ − ǫ

4
TNQi(0) + ((K + K̄)2 +

ǫ

4
K̄)(TN)2.

Since bothv andr are bounded, there exists some fixedM(n, ǫ) such that

E[v2i (TN)− v2i (0)] + E[r2i (TN)− r2i (0)] ≤ M(n, ǫ).

Summing up over alli ∈ L, we obtain

E[V (X(N))− V (X(0))] ≤ − ǫ

4
TN

(

n
∑

i=1

Qi(0)

)

+nM(n, ǫ) + n
(

(K + K̄)2 +
ǫ

4
K̄
)

(TN)2.

This shows that there exists someκ > 0 such that for allx with V (x) > κ there is strict negative

drift. Hence, the setV (x) ≤ κ is positive recurrent. Sinceλ + ǫ
2
1 ∈ Rc, clearlyλ + ǫ1 ∈ T .

This completes the proof of Theorem 2.
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In summary, given any rate region for a wireless network, the(queue-length based) algorithm

hasǫ-optimal performance.

VII. A PPLICATIONS: WHITE-SPACE NETWORKS

An important application of our algorithmic framework is inthe domain of white-space

networks [23], [10]. White-space radios are typically required to sense the environment [9].

Therefore, these radios are designed with highly accurate sensing capabilities. Even though

these are primarily designed for sensing the presence of primary radios, the same capability can

exploited for sensing secondary radios. In this section, weconsider a networks of secondary

nodes that use the same spectrum, but different from that used by primary nodes. In particular,

we assume that the secondary nodes have already found spectrum that are not utilized by primary

nodes.

Since such a white-space network of secondary nodes are not centrally controlled, it is desirable

to obtain simple distributed algorithms. However, the scheduling problem in these white-space

networks is different from the link scheduling problem in traditional wireless networks [7]. First,

the available spectrum for the operation of this network is fragmented with different propagation

characteristics. Second, these secondary nodes are usually equipped with multiple radios to

operate simultaneously in different bands. This is referred to as the multiple-band multiple-radio

scheduling problem. Next, we describe the multiple-band multiple-radio scheduling problem in

detail.

Consider the network model introduced in Section II. Define functionss : L 7→ N that maps

links to source nodes, andd : L 7→ N that maps links to destination nodes. The available

spectrum for the operation of this network is fragmented. The spectrum consists ofM bands,

labeledB = {1, 2, . . . ,M}, with bandwidthsB1, B2, . . . , BM . The transmission from a node

to another node gets different spectral efficiencies on different bands. For a linki, let ci,b be

the spectral efficiency that nodes(i) gets when it transmits on bandb to noded(i). The link

interference graphs are also different on different bands.Let Gb = (L, Eb) be the link interference

graph on bandb, i.e, the transmission of linku interfere with the transmission of linkv in band

b if (u, v) ∈ Eb. We assume that the link interference is symmetric, i.e., if(u, v) ∈ Eb then

(v, u) ∈ Eb. These capture the frequency dependent propagation characteristics and the spatial

variation of the quality of spectrum. Further, each nodej is equipped withaj radios.
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At time t, the decision whether linki is operated in bandb is represented by binary decision

variablesσi,b(t), with 1 representing “true” and0 representing “false”. The decision variables has

to satisfy the constraints that arise from the following.(i) Interference constraints: In every band,

the set of allocated links must be non-interfering.(ii) Radio constraints: The total number of

radios at each node is limited, and these radios are half-duplex, i.e., a link requires its end nodes

to dedicate one radio each for a transmission to happen. Moreformally, the set of constraints

are:

σu,b(t) + σv,b(t) ≤ 1, ∀(u, v) ∈ Eb, ∀b ∈ B, (28)
∑

i:j∈{s(i),d(i)}

∑

b∈B

σi,b(t) ≤ aj , ∀j ∈ N . (29)

For a feasible schedule, the rate of flow supported on linki is

ri(t) =
∑

b∈B

σi,b(t)ci,bBb.

We denote the vector of above rates byr(t). The throughput regionT ⊆ R
n
+ is defined as the

convex hull of the set of all feasible rate vectors. Note thatthe queue dynamics is exactly same

as described in Section II.

A. Distributed Algorithm

In this section, we present an adaptation of the developed algorithm that is throughput-

optimal for multiple-band multiple-radio scheduling. Forsimplicity, we assume that perfect and

instantaneous carrier sensing is possible on every band. The scheduling vector corresponding to

link i is σi(t) = {σi,b(t)}b∈B. For this link, the possible states are

{θi : θi = {θi,b}b∈B, θi,b ∈ {0, 1}, ‖θi‖0 ≤ min{as(i), ad(i)}}.

The link uses an independent exponential clock corresponding to each state with transition rate

exp(
∑

b∈B θbci,bBbvi) for stateθ. Based on these clocks, the link obtainsσi(t) as follows:

1) If the clock associated with a state (sayθ) ticks and transitioning to that stateσi(t) = θ

is feasible9, thenσi(t) is changed toθ;

2) Otherwise,σi(t) remains the same.

9This is determined using carrier sensing and radio constraints at the source and the destination of that link.
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The above procedure continues. The parametervi is updated over time as a function of the

queue-lengthQi(t) as described in Section III. This makes the algorithm completely distributed.

The vector of{vi}i∈L is denoted byv.

In order to establish that this algorithm is throughput-optimal, we show a correspondence

between it and the rate allocation algorithm in Section III.Consider a fixedv. The above

algorithm forms a Markov chain on the set of feasible states.Let S(t) denote the matrix formed

by vectors{σi(t)}i∈L, andS denote the set of feasible matrices satisfying (28) and (29). The

transition rate from statêS = {θ̂i}i∈L to stateS = {θi}i∈L can be expressed as

q(Ŝ, S) =







f(Ŝ, S), if
∑n

i=1 I(θl 6= θ̂i) = 1,

0, if
∑n

i=1 I(θi 6= θ̂i) > 1,

where

f(Ŝ, S) = exp

(

n
∑

i=1

∑

b∈B

θi,bci,bBbviI(θi 6= θ̂i)

)

.

And, the diagonal elements of the rate matrix are given byq(Ŝ, Ŝ) = −∑S∈S,S 6=Ŝ q(Ŝ, S) for

all Ŝ ∈ S.

Now, the following lemma is immediate.

Lemma 9:The Markov chain(S, q) is reversible and has the stationary distribution

πv(S) =
exp

(
∑n

i=1

∑

b∈B θi,bci,bBbvi
)

∑

S̃∈S exp
(

∑n
i=1

∑

b∈B θ̂i,bci,bBbvi

)

=
exp (r(S) · v)

∑

S̃∈S exp
(

r(Ŝ) · v
) .

Furthermore, this Markov chain converges to this stationary distribution starting from any initial

distribution.

The offered service ratevector under the stationary distribution issv =
∑

S∈S πv(S)r(S).

Thus, we show a one-to-one correspondence to the rate allocation algorithm. As a consequence,

we establish the throughput-optimality of the algorithm described in this section based on

Theorem 2.

VIII. D ISCUSSION& SIMULATION

A. Determining Rate Feasibility

Although our algorithm removes the control overhead associated with queue-length exchanges

in the network, it still requires each link to determine ratefeasibility. To elaborate, feasibility
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implies data-rates of other links are not impacted, i.e., other links are able to maintain their data-

rates in spite of the change in the given link’s data-rate. Each link can possibly change its coding

and modulation strategies to ensure this. A link can determine whether a data-rate is feasible if

it knows the current set of data-rates associated with otherlinks. An important fact that makes

the algorithm of practical value is that a link needs to know only data-rates associated with

those links that it interferes with. Therefore, in a large network, every link needs to learn data-

rates associated with few physically near-by links from control messages, for example, through

ACK/NACKs when ARQ is present. We refer to the process of determining rate feasibility from

the interactions of physically near-by links as “channel measuring”. This can be considered as

a natural extension ofsensingin CSMA.

In order to further explain “channel measuring”, we consider an example with a simplified

physical-layer model. In this model, a transmitter can potentially communicate with a receiver if

the receiver is within distanced0. This transmitter can communicate at data-raterj , 1 ≤ j ≤ k, if

there are no other transmitters within distancedj to it. We considerr1 ≤ r2 ≤ . . . ≤ rk andd0 ≤
d1 ≤ . . . ≤ dk. In this setting, for channel measuring, a transmitter needs to simply determine

the distance of the nearest active transmitter. Even thoughwe used an over simplified physical-

layer model, this shows that channel measuring is a very natural technique for determining rate

feasibility. Furthermore, it suggests that slightly more complicated schemes than carrier sensing

may be enough to obtain significant throughput gains.

For complex physical-layer interactions, we acknowledge that channel measuring requires a

well-designed physical-layer control architecture, which, by itself, is a fairly non-trivial problem.

However, radios that perform complex physical-layer signaling are increasingly common and each

node has access to current channel interference level, information from beacons, pilot signals

and its own location. These will definitely help such radios to perform channel measuring using

existing physical-layer control overhead.

B. Algorithm Parameters

In this paper, we show that the algorithm provide throughput-optimal performance for par-

ticular choice of algorithm parameters. Although this has significant theoretical value, these

parameters may not be directly suitable in practice. In particular, we may have to limit the

update interval length and attempt rates as large values of update interval can result in large
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Fig. 4. Queue-length trace from simulation

queue-lengths, and large attempt rates can result in frequent changes in data-rates. There are

certain hardware and physical-layer coding limitations onfrequently changing data-rates, and

frequent attempts lead to increased sensing/measuring overhead. These limitations can be easily

dealt with through modified algorithm parameters.

Our approach in the paper motivates a more general class of algorithms that can be throughput-

optimal for appropriate choice of parameters. We can consider the general class with update rule

vi(τl+1) = h
(

vi(τl), λ̂i(l)− ŝi(l)
)

for some functionh(·). Next, we provide a “good” choice of this function based on simulation

results.

C. Simulation

Consider the same Gaussian multiple access channel examplewith two links as before. This

is shown in Figure 1. This is simply an illustrative example to show scheduling over multiple

data-rate levels. Similar simulation results apply for anynumber of users. Let the average power
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constraint at the transmitters beP = 3 and noise variance at the receiver beN = 1. The

information-theoretic capacity region of this channel is the pentagon shown in Figure 2 where

C(x) = 0.5 log2(1 + x). The set of rate levels chosen by both transmitters are{0, a, b} where

a = 0.4 and b = 1. The only infeasible rate allocation pair is[1, 1]. Consider the following

arrival processes at both the transmitters. At integral times, the queues are incremented by an

i.i.d. Bernoulli random variable such that the arrival rateis λ = ρa+b
2

, whereρ > 0 represents

the load in the system. Clearly, the network will be unstablefor ρ > 1.

For this system, we perform Monte-Carlo simulations with update intervalT = 10 and update

rule vi(τl+1) = log(1 +Q(τl+1)). This function results in linear update near origin and prevents

the rapid growth ofvi with queue-length. We provide a trace of the queue-length process for

ρ = 0.9 andρ = 1.1 in Figure 4. We observe that the algorithm supports90% load in the system

without large increase in queue-lengths. Intuitively, this symmetric operating point is one of the

difficult operating points for a distributed algorithm. More importantly, the sum-rateρ(a + b)

obtained is close to the information-theoretic sum-capacity of this system. Thus, simulations

show that our algorithm is of significant practice value.

IX. CONCLUSION

Decentralized algorithms that use local sensing-based information are highly desirable in

practice for wireless networks. In this paper, we develop such an algorithm that guarantees

throughput-optimality. Thus, we show that efficient network algorithms can be designed that

fully utilizes underlying physical-layer schemes. The algorithm is of practical value due to its

decentralized nature, and due to its applications both in the newly introduced channel measure-

ment framework, and already existing carrier sensing framework. Since this paper improves the

current state-of-the-art in distributed resource allocation to account for more complex resource-

sharing constraints, it has applications in other areas as well, for example, in performing resource

allocation in energy networks. The algorithmic framework in this paper can be used to perform

utility maximization, i.e., adaptively choose the arrivalrates at the links such that a certain utility

function is maximized.

The channel measurement framework introduced in this papermotivates further research. First,

we need to better understand the feasibility of channel measurement with existing and newly

developed radios. This needs development of good physical-layer architectures that minimize
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the probability of inaccurate measurement and measurementdelay. Further, we need to study

the impact of imperfect channel measurement on throughput.
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APPENDIX

A. Optimization framework

1) Proof of Lemma 4:The steps involved are the following. First, we prove that, for any fixed

λ ∈ R
n
+, the objective functionF (v,λ) is strictly concave inv. Next, we show that for any

fixed λ ∈ Ro
c , the optimal valuev∗ lies inside a compact subset ofRn. These two statements

show the existence of a unique solution that is finite. This along with certain necessary condition

for optimality completes the proof.

For notational simplicity, we denoteF (v,λ) by F (v) and the normalization constant or

partition function byZ(v) :=
∑

r∈R exp(r · v). Using calculus, it is straightforward to obtain

the gradient (first-order partial derivatives) and the Hessian (second-order partial derivatives) of

F (v) in the following form:

∇F (v) = λ− Eπv
[r]

= λ− sv; (30)

H(F (v)) = −
(

Eπv

[

rrT
]

− Eπv
[r]Eπv

[

rT
])

. (31)
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Here,sv in (30) is the offered service rate vector given by (13), andEπv
[Φ] :=

∑

r∈R πv(r)Φ

for any matrix, vector or scalarΦ.

In order to establish thatF (v) is strictly concave inv, we show that the HessianH is negative

definite, i.e., for any non-zeroη ∈ Rn, ηTHη < 0. SinceH is the negative of a covariance

matrix, it is clear thatH is negative semi-definite, i.e., from (31),

ηTHη = −Eπv

[

ηT (r− Eπv
[r])(r− Eπv

[r])Tη
]

= −Eπv

[

(

ηT (r− Eπv
[r])
)2
]

≤ 0. (32)

We next prove that the HessianH is negative definite by contradiction. Consider a fixedv.

Suppose that there existsη 6= 0 such thatηTHη = 0. Then, from (32), it follows that the

random variableηT (r − Eπv
[r]) is zero with probability1. For any fixedv, all feasible states

have non-zero probability. In particular,πv(0) > 0 andπv(ciei) > 0 for all i ∈ L. Therefore,

the random variable must evaluate to zero atr = 0 andr = ciei, i.e.,

−ηT
Eπv

[r] = ηici − ηT
Eπv

[r] = 0,

which impliesη = 0. This provides a contradiction and establishes that the HessianH is negative

definite.

Next, we prove that the optimal valuev∗ belongs to a compact set. Letλ + δK̄1 ∈ Rc for

some0 < δ < 1. Note that for anyλ ∈ Ro
c there exists such aδ. Consider av ∈ R

n. Define

vmin = mini vi, l = argmini vi, andvmax = maxi vi. Let

λ̂ = λ−min(δK̄, λmin)I(vmin < 0)el.

Clearly, λ̂ + min(δK̄, λmin)1 ∈ Rc, and hence, there exists a distributionµ on R such that

λ̂+min(δK̄, λmin) = Eµ[r]. Sinceλ̂ ≤ K̄1, we have

λ̂ ≤ λ̂+min(δK̄, λmin)

1 + min(δ, λmin/K̄)
=
∑

r∈R

µ(r)r

1 + min(δ, λmin/K̄)
(33)

and

∑

r∈R

µ(r)

1 + min(δ, λmin/K̄)
=

1

1 + min(δ, λmin/K̄)

< 1− min(δ, λmin/K̄)

2
. (34)
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From (33), (34) and the fact that0, ciei ∈ R, it follows that there exists a non-negative measure

µ̂ on R such thatλ̂ =
∑

r∈R µ̂(r)r with
∑

r∈R µ̂(r) = 1 − 0.5min(δ, λmin/K̄). Now, define a

distribution

µ̃(r) =



















µ̂(clel) +
min(δ,λmin/K̄)

4
I(vmin < 0), if r = clel,

µ̂(0) + min(δ,λmin/K̄)
4

(2− I(vmin < 0)) , if r = 0,

µ̂(r), otherwise.

Define λ̃ = Eµ̃[r]. Now, we have

λ̃ = λ−
(

1− cl
4K̄

)

min(δK̄, λmin)I(vmin < 0)el.

Clearly,λ · v ≤ λ̃ · v. Substituting these inequalities in (15), we obtain

F (v) = λ · v − logZ(v)

≤ λ̃ · v − logZ(v)

=
∑

r∈R

µ̃(r)r · v − logZ(v) =
∑

r∈R

µ̃(r) log
exp(r · v)
Z(v)

(a)

≤ min

(

µ̃(clel) log
exp(clel · v)

Z(v)
, µ̃(0) log

exp(0 · v)
Z(v)

)

(b)

≤ min

(

min(δ, λmin/K̄)I(vmin < 0)

4
log

exp(K̄vmin)

1
,

min(δ, λmin/K̄)

4
log

1

exp(Kvmax)

)

. (35)

Here, (a) follows from exp(r · v) ≤ Z(v) for any r ∈ R, and (b) follows from K ≤ ci ≤ K̄

for any i ∈ L. Let v∗ = sup
v∈Rn F (v). Then, by definition,F (v∗) ≥ F (0) = − log |R|. From

(35), we obtain the bounds

v∗max ≤
4 log |R|

Kmin(δ, λmin/K̄)
(36)

and

v∗min ≥ − 4 log |R|
K̄min(δ, λmin/K̄)

. (37)

Thus, there exists a unique solution which is finite. Finally, the necessary condition in (30) for

optimality completes the proof.

November 9, 2018 DRAFT



33

2) Proof of Lemma 5:The first part of the proof follows directly from Lemma 4. The second

part also follows from the proof of Lemma 4 as explained next.In the proof, replaceλ with

λ+ ǫ
4
1 and chooseδ = ǫ

4K̄
. Now from (36), (37) and (3), we obtain

‖v∗‖∞ ≤ 4nK̄ log
⌈

2K̄/ǫ
⌉

min
(

ǫ
4
, λmin

)

1

K
. (38)

This follows fromK ≤ K̄. If ǫ ≤ 4λmin, then (38) simplifies to (23).

B. Mixing within update interval

1) Proof of Lemma 6:Consider the matrixP̂ = exp(P − I). It is fairly straightforward

to verify that P̂ corresponds the probability transmission matrix of a reversible Markov chain

with the same stationary distributionπv. Now, the steps involved to complete the proof are the

following. We need to obtain a lower bound on the conductanceassociated withP̂ and apply

Result 2. Then, we can apply Result 1 tôP at τ = ⌊At⌋.
From (14),πv(r) = (exp(r · v))/Z(v), where the partition function

Z(v) =
∑

r∈R

exp(r · v).

From (3), it is clear thatZ(v) ≤
⌈

2K̄/ǫ
⌉n

exp(K̄n‖v‖∞). In addition,exp(r·v) ≥ exp(−K̄n‖v‖∞).

Therefore, for allr ∈ R,

πv(r) ≥
exp(−2K̄n‖v‖∞)

⌈

2K̄/ǫ
⌉n . (39)

Consider two states that differ in one dimension, i.e.,r, r̂ ∈ R, ‖r − r̂‖0 = 1, then the

transition probabilityP̂ (r, r̂) is lower bounded by the product of the probability that a Poisson

random variable with parameter1 is one andP (r, r̂). This follows from the fact that these two

(independent) events together contribute to the transition probability P̂ (r, r̂). Hence,

P̂ (r, r̂) ≥ e−1P (r, r̂)

= e−1f(r, r̂)

A

≥ exp(−2K̄‖v‖∞)

ne
,

wheref(r, r̂) is given by (24) andA = n exp(K̄‖v‖∞). To lower bound conductance in (8),

the following observation can be used. If bothS andSc are non-empty, then there is at least
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one state inS and another state inSc that differ in one dimension alone. This follows from the

fact that the state-space is connected through these one dimensional transitions alone. Applying

this, we obtain

Φ ≥ exp(−2K̄(n+ 1)‖v‖∞)

ne
⌈

2K̄/ǫ
⌉n . (40)

Using (9), and substituting (40), (39) in (7), we have the required result‖µ(t)−πv‖TV ≤ ρ1 if

t = exp

(

Θ

(

n‖v‖∞ + n log
1

ǫ

))

log
1

ρ1
.

This completes the proof.

2) Proof of Lemma 7:In the proof, we suppressl in the notation, denotesv by s, and denote

πv by π. From triangle inequality and linearity of expectations, we have

E

[∥

∥

∥
λ̂(l)− λ

∥

∥

∥

1

]

+ E [‖ŝ(l)− sv(l)‖1] ≤
n
∑

i=1

E

[

|λ̂i − λi|
]

+

n
∑

i=1

E [|ŝi − E[ŝi]|] +
n
∑

i=1

|E[ŝi]− si|. (41)

Now, we focus oni-th link and upper bound each of the three terms on the RHS of (41)

corresponding to this link separately byρ2/3n.

For bounding the first term in (41), denote the arrivals over integral times as{ξk}Tk=1. From

our assumption on arrival processes, these are i.i.d. random variables with variance at mostK2.

Hence,

E

[

|λ̂i − λi|
]

≤
(

E

[

(λ̂i − λi)
2
])

1

2

=



E





(

1

T

T
∑

k=1

ξk − λi

)2








1

2

≤ K√
T
. (42)

Next, we consider the expected offered service rate under distributionµ(t), whereµ(t) denotes

the distribution overR given by the algorithm at timet. From (13), we have

|Eµ(t)[ri]− si| = |Eµ(t)[ri]− Eπ[ri]|

≤ 2K̄‖µ(t)− π‖TV . (43)
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If we look at two timesz andy such that0 ≤ z ≤ y, then

E[ri(z)ri(y)] = E[ri(z)E[ri(y)|ri(z)]]

≤ E[ri(z)]max
β∈Ri

E[ri(y)|ri(z) = β]. (44)

We use (43) and (44) along with Lemma 6 to obtain bounds on the last two terms in (41). Let

B(ρ1) be large enough time such that it satisfies (26).

For the second term in (41), using (5), we have

(E [|ŝi − E[ŝi]|])2 ≤ E
[

(ŝi − E[ŝi])
2]

= E
[

(ŝi)
2]− (E[ŝi])

2

= E

[

(

1

T

∫ T

0

ri(z)dz

)2
]

−
(

E

[

1

T

∫ T

0

ri(z)dz

])2

=
1

T 2

∫ T

0

∫ T

0

(E [ri(z)ri(y)]− E [ri(z)]E [ri(y)]) dydz

=
2

T 2

∫ T

0

∫ T

z

(E [ri(z)ri(y)]− E [ri(z)]E [ri(y)]) dydz

≤ 2

T 2

∫ T

0

E[ri(z)]Îdz, (45)

where the inner integral

Î =

∫ T

z

(

max
β∈Ri

E[ri(y)|ri(z) = β]− E [ri(y)]

)

dy.

Here, we used (44). Now, from (43) and Lemma 6 on mixing time, bothmaxβ∈Ri
E[ri(y)|ri(z) =

β] andE [ri(y)] arecloseto si by total variationρ1 each ify ≥ z +B(ρ1). Formally, we bound

Î as follows:

Î ≤
∫ z+B(ρ1)

z

K̄dy +

∫ T

z+B(ρ1)

4ρ1K̄dy

≤ B(ρ1)K̄ + 4ρ1K̄T. (46)

Substituting (46)in (45), we obtain

E [|ŝi − E[ŝi]|] ≤
(

2

T 2

∫ T

0

E[ri(z)](B(ρ1)K̄ + 4ρ1K̄T )dz

)

1

2

≤
(

2

T
K̄2B(ρ1) + 8K̄2ρ1

)
1

2

, (47)

where we usedE[ri(z)] ≤ K̄.
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For the third term, from (5) and (43) and using techniques applied above, we obtain

|E[ŝi]− si| =

∣

∣

∣

∣

1

T

∫ T

0

E [ri(z)] dz − si

∣

∣

∣

∣

≤ K̄B(ρ1)

T
+ 2K̄ρ1. (48)

With ρ1 = ρ22/(144n
2K̄2) and the choice of

T = exp

(

Θ

(

n‖v‖∞ + n log
1

ǫ

))

1

ρ2
,

it is fairly straightforward to see that RHS of (42), (47) and(48) can be made smaller than

ρ2/3n. This completes the proof of Lemma 7.

C. ‘Drift’ over multiple intervals

1) Proof of Lemma 8:For simplicity, we denotev(τl) by vl. DefineG(v) := Fǫ(v)− ‖v −
v∗‖22. Let [θ]D denote component-wise[θi]D. This function has the following monotone property.

The proof is given later in this section.

Lemma 10:Consider anyv ∈ [−D,D]n, ∆v ∈ [−1, 1]n. Then,G([v+∆v]D) ≥ G(v+∆v).

Also, 0 ≥ G(v) ≥ −7nD2.

Let the error term in thel-th time interval be

el = (λ̂(l)− ŝ(l))− (λ− svl
)

and êl = α(∇Fǫ(vl) + el). From Lemma 5, the update equation in (6) can be written asvl+1 =

vl + êl. We have∇Fǫ(vl) ∈ [−K̄, K̄]n, el ∈ [−K̄ andvl,v
∗ ∈ [−D,D]n. Therefore,‖êl‖∞ ≤

α(2K̄ +K) ≤ 1. From Lemma 10 and Taylor’s expansion, we obtain

G(vl+1) = G([vl + êl]D)

≥ G(vl + êl)

= Fǫ(vl + êl)− ‖vl + êl − v∗‖22
= G(vl) +∇Fǫ(vl) · êl +

1

2
êlH êl

−‖êl‖22 − 2(vl − v∗) · êl, (49)

whereH is the Hessian ofFǫ(·) evaluated at somẽv aroundvl. The elements of the matrixH

belong to[−K̄2, K̄2], el ∈ [−K̄,K]n, ∇Fǫ(vl) ∈ [−K̄, K̄]n andvl,v
∗ ∈ [−D,D]n. Therefore,
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‖êl‖∞ ≤ α(2K̄ +K). Using these, we have

1

2
êlH êl − ‖êl‖22 ≥ −α2c,

wherec = (2K̄ +K)2
(

K̄2n2

2
+ n
)

. SinceFǫ(v) is concave with optimumv∗,

Fǫ(v
∗) ≤ Fǫ(vl) +∇Fǫ(vl) · (vl − v∗).

It follows that∇Fǫ(vl) · (vl − v∗) ≥ 0. Applying these to (49), we obtain

G(vl+1) ≥ G(vl) + α‖∇Fǫ(vl)‖22 + α∇Fǫ(vl) · el − α2c

−2α(vl − v∗) · ∇Fǫ(vl)− 2α(vl − v∗) · el,

≥ G(vl) + α‖∇Fǫ(vl)‖22 − αK̄‖el‖1 − α2c

−4αD‖el‖1,

≥ G(vl) + α‖∇Fǫ(vl)‖22 − 5αD‖el‖1 − α2c.

Here, we used̄K ≤ D.

Next, performing telescopic sum and then usingG(v1) ≥ −7nD2 from Lemma 10, we obtain,

G(vN+1) =

N
∑

l=1

(G(vl+1)−G(vl)) +G(v1)

≥ α

N
∑

l=1

‖∇Fǫ(vl)‖22 − 5αD

N
∑

l=1

‖el‖1

−α2cN − 7nD2.

SinceG(vN+1) ≤ 0, and then applying (27), we get

1

N

N
∑

l=1

‖∇Fǫ(vl)‖22 ≤ 5D

N

N
∑

l=1

‖el‖1 + αc+
7nD2

αN

≤ 5Dρ2 + αc+
7nD2

αN
. (50)
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Applying Cauchy-Schwarz inequality, we obtain

1

N

N
∑

l=1

E [∇Fǫ(vl)] ≤ 1

N

N
∑

l=1

E [‖∇Fǫ(vl)‖2]1

≤

√

√

√

√

1

N

N
∑

l=1

(E [‖∇Fǫ(vl)‖2])21

≤

√

√

√

√

1

N

N
∑

l=1

E [‖∇Fǫ(vl)‖22]1

≤
√

5Dρ2 + αc+
7nD2

αN
1. (51)

Next, we look at the average of the empirical service rates over N update intervals. From

(27) and Lemma 5, we obtain

1

N

N
∑

l=1

E [ŝ(l)]− λ =
1

N

N
∑

l=1

E [svl
− λ+ ŝ(l)− svl

]

≥ 1

N

N
∑

l=1

E [svl
− λ]− ρ21

=
1

N

N
∑

l=1

E

[ ǫ

4
1−∇Fǫ(vl)

]

− ρ21.

Substituting (51) and proceeding, we obtain

1

N

N
∑

l=1

E [ŝ(l)]− λ ≥
(

ǫ

4
−
√

5Dρ2 + αc+
7nD2

αN
− ρ2

)

1.

Now, chooseρ2 = ǫ2

5×35D
. Then,
√

5Dρ2 + αc+
7nD2

αN
=

√

ǫ2

35
+

ǫ2

35
+

ǫ2

35

=

√

ǫ2

34
=

ǫ

9
. (52)

It is easy to checkρ2 + ǫ
9
≤ ǫ

8
. This completes the proof.

2) Proof of Lemma 10:Let v̂ = v+∆v. Clearly,‖v̂‖∞ ≤ D+1. In order to proveG([v̂]D) ≥
G(v̂), it is sufficient to prove the following. For any dimensioni ∈ L, G([v̂]D,i) ≥ G(v̂), where

[v̂]D,i is defined as: thei-th component of[v̂]D,i is same as the i-th component of[v̂]D, and

all other components of[v̂]D,i are same as the corresponding components ofv̂. It is sufficient
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to prove this as we can repeatedly applyG([v̂]D,i) ≥ G(v̂) along all dimensions to obtain

G([v̂]D) ≥ G(v̂).

Consider anyi ∈ L. If v̂i ∈ [−D,D], thenG([v̂]D,i) = G(v̂). Therefore, the only non-trivial

cases arêvi ∈ (D,D + 1] and v̂i ∈ [−(D + 1),−D). We consider these cases separately, and

apply |∂Fǫ/∂vi| ≤ K̄, and‖v∗‖∞ ≤ D − K̄. For v̂i ∈ (D,D + 1], we have

G([v̂]D,i)−G(v̂) =

Fǫ([v̂]D,i)− Fǫ(v̂)− ((D − v∗i )
2 − (v̂i − v∗i )

2)

≥ −K̄(v̂i −D) + (v̂i −D)(v̂i +D − 2v∗i )

≥ (v̂i −D)(−K̄ + v̂i +D − 2v∗i ) ≥ 0.

The other case follows from similar arguments.

SinceFǫ(v) ≤ 0, clearlyG(v) ≤ 0. Next, we obtain a simple lower bound onG(v) as follows:

G(v) = Fǫ(v)− ‖v − v∗‖22

= (λ+
ǫ

4
1) · v − log

(

∑

r̃∈R

exp(r̃ · v)
)

− ‖v− v∗‖22

≥ −K̄nD − log
(⌈

2K̄/ǫ
⌉n

exp(K̄nD)
)

− n(2D)2

= −n
(

2K̄D + log
⌈

2K̄/ǫ
⌉

+ 4D2
)

≥ −7nD2.

This completes the proof.
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