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Abstract

Threshold effects in the estimation of parameters of non–linearly modulated, continuous–
time, wide-band waveforms, are examined from a statistical physics perspective. These thresh-
old effects are shown to be analogous to phase transitions of certain disordered physical systems
in thermal equilibrium. The main message, in this work, is in demonstrating that this physical
point of view may be insightful for understanding the interactions between two or more param-
eters to be estimated, from the aspects of the threshold effect.

Index Terms: Non–linear modulation, parameter estimation, threshold effect, additive white
Gaussian noise channel, bandwidth, statistical physics, disordered systems, random energy
model, phase transitions.
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1 Introduction

In waveform communication systems, the information is normally conveyed in a real–valued param-

eter (or parameters) of a continuous–time signal to be transmitted, whereas the receiver is based on

estimating this parameter from a noisy received version of this signal [19, Chap. 8]. This concept

of mapping a real–valued parameter, or a parameter vector, into a continuous–time signal, using a

certain modulation scheme, stands at the basis of the theory and practice of Shannon–Kotel’nikov

mappings, which can in turn be viewed as certain families of joint source–channel codes (see, e.g.,

[6],[7],[9],[14] as well as many references therein).

When the underlying modulation scheme is highly non–linear, like in frequency modulation

(FM), phase modulation (PM), pulse position modulation (PPM), or frequency position modulation

(FPM), it is well known that the estimation of the desired parameter is subjected to a threshold

effect. This threshold effect means that the wider is the bandwidth of the transmitted signal,

the better is the accuracy of the maximum likelihood (ML) estimator at the high signal–to–noise

ratio (SNR) regime, but on the other hand, it comes at the price of increasing also a certain

critical level of the SNR, referred to as the threshold SNR, below which this estimator breaks

down. This breakdown means that the estimator makes gross errors (a.k.a. anomalous errors) with

an overwhelmingly large probability, and in the high bandwidth regime, this breakdown becomes

abrupt, as the SNR crosses the threshold value. This threshold effect is not merely an artifact to be

attributed to a specific modulator and/or estimation method. It is a fundamental limitation which

is inherent to any (non–linear) communication system operating under a limited power constraint

over a wide-band channel.

In this paper, we propose a statistical–mechanical perspective on the threshold effect. According

to this perspective, the abrupt threshold effect of the wide-band regime is viewed as a phase

transition of a certain disordered physical system of interacting particles. Specifically, this physical

system turns out to be closely related (though not quite identical) to a well–known model in the

statistical physics literature, which is called the random energy model (REM). The REM is one

model (among many other models) for highly disordered magnetic materials, called spin glasses.

The REM was invented by Derrida in the early eighties of the previous century [3],[4],[5], and it was

shown more recently in [13, Chap. 6] (see also [11]) to be intimately related to phase transitions in
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the behavior of ensembles of random channel codes, not merely in the context of ordinary digital

decoding, but also in minimum mean square error (MMSE) signal estimation [12].

This paper, in contrast to [12], examines the physics of the threshold effect in the estimation

of a continuous–valued parameter, rather than the estimation of the signal itself. For the sake

of simplicity and concreteness, the analogy between the threshold effect and phase transitions is

demonstrated in the context of estimating the delay (or the position) of a narrow rectangular

pulse, but the methodology is generalizable to other situations, as discussed in the sequel. A phase

diagram with three phases (similarly as in [13]) is obtained in the plane of two design parameters

of the communication system, one pertaining to the signal bandwidth, and the other to a certain

notion of temperature (which will be made clear in the sequel).

Beyond the fact that this relationship, between the threshold effect in parameter estimation and

phase transitions in physics, may be interesting on its own right, we also believe that the physical

point of view may provide insights and tools for understanding the interactions and the collective

behavior of the joint ML estimators of two or more parameters, in the context of the threshold effect.

For example, suppose that both the amplitude and the delay of a narrow pulse are to be estimated.

While the amplitude estimation alone does not exhibit any threshold effect (as the modulation is

linear) and the delay estimation alone displays a phase diagram with three phases, it turns out that

when joint ML estimation of both amplitude and delay is considered, the interaction between them

exhibits a surprisingly more erratic behavior, than that of the delay parameter alone: It possesses

as many as five different phases in the plane of bandwidth vs. temperature. Moreover, the behavior

of the anomalous errors (below the threshold) pertaining to the amplitude and the delay are very

different in character, and it is the physical point of view that gives rise to understanding them.

The outline of this paper is as follows. In Section 2, we provide some basic background on the

threshold effect in non–linear modulation and estimation. In Section 3, we present the threshold

effect from the physics viewpoint and, in particular, we show how it is related to phase transitions

pertaining to the REM. In Section 4, we consider joint ML estimation of amplitude and delay, as

described in the previous paragraph, and provide the phase diagram. Finally, in Section 5, we

summarize and conclude this work.
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2 Background

We begin with some basic background on ML parameter estimation for non–linearly modulated

signals in additive white Gaussian noise (AWGN), the threshold effect pertaining to this estimation,

and then the signal design problem, first, for band–limited signals, and then in large bandwidth

limit. The material in this section, which is mostly classical and can be found in [19, Chap. 8], is

briefly reviewed here merely for the sake of completeness and convenience of the reader.

Consider the following estimation problem. We are given a parametric family of waveforms

{sm(t), − T/2 ≤ t ≤ +T/2}, where m is the parameter, which for convenience, will be assumed

a (deterministic) scalar that takes on values in some interval [−M,+M ], (M > 0). Now suppose

that we observe a noisy version of sm(t) along the time interval [−T/2,+T/2], i.e.,

r(t) = sm(t) + n(t), − T

2
≤ t ≤ +

T

2
(1)

where {n(t)} is a zero–mean Gaussian white noise with spectral density N0/2, and we wish to

estimate m from r = {r(t), − T/2 ≤ t ≤ +T/2}. Maximum likelihood (ML) estimation, in the

Gaussian case considered here, is obviously equivalent to the minimization of

∫ T

0
[r(t)− sm(t)]2dt (2)

w.r.t. m. The simplest example is the one where the parametrization of the signal is linear in m,

i.e., sm(t) = m · s(t), where {s(t), − T/2 ≤ t ≤ +T/2} is a given waveform (independent of m).

In this case, ML estimation yields

m̂ =

∫ T
0 r(t)s(t)dt
∫ T
0 s2(t)dt

=

∫ T
0 r(t)s(t)dt

E
, (3)

where E designates the energy of {s(t)}, i.e., E =
∫ T
0 s2(t)dt, and mean square error (MSE) is

readily obtained as

E{(m̂−m)2} =
N0

2E
. (4)

The estimation performance depends on the signal {s(t)} only via its energy, E. Since this MSE

achieves the Cramér–Rao lower bound, this is essentially the best one can do (at least as far as

unbiased estimators go) with linear parametrization, for a given SNR E/N0.
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The only way then to improve on this result, at least for very large SNR, is to extend the

scope to non–linear parametrizations of {sm(t)}. For example, m can stand for the delay (or the

position) of a given pulse s(t), i.e., sm(t) = s(t −m). Also, in the case of a sinusoidal waveform,

s(t) = A sin(ωt+ φ) (with A, ω and φ being fixed parameters), m can designate a frequency offset,

as in sm(t) = A sin[(ω + m)t + φ], or a phase offset as in sm(t) = A sin(ωt + φ + m). In these

examples, the MSE in the high SNR regime, depends not only on the SNR, E/N0, but also on the

shape of the waveform, i.e., on some notion of bandwidth: Rapidly varying signals can be estimated

more accurately than slowly varying ones. To demonstrate this, let us assume that the noise is

very weak, and the true parameter is m = m0. For small deviations from m0, we consider the

linearization

sm(t) ≈ sm0(t) + (m−m0)ṡm0(t), (5)

where ṡm0(t) = dsm(t)/dm|m=m0 . This is then essentially the same linear model as before where

the previous role of {s(t)} is played now by {ṡm0(t)}, and so, the MSE is about

E{(m̂−m)2} ≈ N0

2Ė
, (6)

where Ė is the energy of {ṡm0(t)}, which depends, of course, not only on E, but also on the shape

of {sm(t)}. For example, if m is a delay parameter, sm(t) = s(t−m), and {s(t)} contains a narrow

pulse (or pulses) compared to T , then Ė =
∫ T
0 ṡ2(t)dt, essentially independently of m, where ṡ(t)

is the time derivative of s(t). By the Parseval theorem,

∫ T

0
ṡ2(t)dt =

∫ +∞

−∞
df(2πf)2S(f), (7)

where S(f) is the Fourier transform of {s(t)}, and so, we have Ė =W 2E where W is the effective

bandwidth of s(t) in the second moment sense, a.k.a. the Gabor bandwidth. We then have

E{(m̂−m)2} ≈ N0

2W 2E
, (8)

which means that MSE depends, not only on E/N0, but also on the signal shape – in this case, its

Gabor bandwidth, W . One might be tempted to think that the larger is W , the better is the MSE.

However, there is a price for increasing W : the probability of anomalous errors increases.

To understand the effect of anomaly, it is instructive to look at the broader picture: Let us

assume that the parametric family of signals {sm(t) : −M ≤ m ≤ +M} lies in the linear space
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spanned by a set of K orthonormal basis functions {φi(t)}Ki=1, defined over −T/2 ≤ t ≤ +T/2, and

so, we can pass from continuous time signals to vectors of coefficients:

s(t) =

K
∑

i=1

si(m)φi(t) (9)

with

si(m) =

∫ T

0
s(t)φi(t)dt, (10)

and let us apply similar decompositions to r(t) and n(t), so as to obtain vectors of coefficients

r = (r1, . . . , rK), and n = (n1, . . . , nK), related by

ri = si(m) + ni, i = 1, 2, . . . ,K (11)

where ni ∼ N (0, N0/2), or

r = s(m) + n. (12)

As in the example of a delay parameter, let us assume that both the energy E of the signal {sm(t)}
itself, and the energy Ė of its derivative w.r.t. m, {ṡm(t)}, are fixed, independently of m. In

other words,
∑

i s
2
i (m) = E and

∑

i ṡ
2
i (m) = Ė for all m. Consider the locus of the signal vectors

[s1(m), . . . , sK(m)] in IRK as m varies from −M to +M . On the one hand, this locus is constrained

to lie on the hyper-surface of an K–dimensional sphere of radius
√
E, on the other hand, since the

high–SNR MSE behaves according to N0/(2Ė), we would like Ė =
∑

i ṡ
2
i (m) to be as large as

possible. But Ė is related to the length L of the signal locus in IRK according to

L =

∫ +M

−M
dm

√

∑

i

ṡ2i (m) = 2M
√

Ė, (13)

where we have used the assumption that the norm of ṡ(m) = (ṡ1(m), . . . , ṡK(m)) is independent

of m. Thus, the high–SNR MSE is about

E{(m̂−m)2} ≈ 2N0M
2

L2
, (14)

which means that we would like to make the signal locus as long as possible, in order to minimize

the high–SNR MSE.

Our problem is then to design a signal locus, as long as possible, which lies in the hyper-surface

of a K–dimensional sphere of radius
√
E. Since our room is limited by this energy constraint, a
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long locus would mean that it is very curvy, with many sharp foldings, and there must then be

pairs of points m1 and m2, which are far apart, yet s(m1) and s(m2) are close in the Euclidean

distance sense. In this case, if the noise vector n has a sufficiently large projection in the direction

of s(m2)−s(m1), it can cause a gross error, confusingm1 with m2. Moreover, in high dimension K,

there can be much more than one such problematic (orthogonal) direction in the above described

sense and then the event of anomalous error, which is the event that the noise projection is large in

at least one of these directions, gains an appreciably large probability. Thus, as the locus of s(m)

bends, various folds of the curve must be kept sufficiently far apart in all dimensions, so that the

noise cannot cause anomalous errors with high probability. The probability of anomaly then sets the

limit on the length of the curve, and hence also on the high SNR MSE. The maximum locus length L

is shown in [19] to grow exponentially at the rate of eCT in the large T limit, where C is the capacity

of the infinite–bandwidth AWGN channel, given by C = P/N0, with P = E/T being the signal

power. This maximum is essentially attained by the family frequency–position modulation (FPM)

signals (see [19]), as well as by pulse–position modulation (PPM) signals, considered hereafter.

As is shown in [19, Chap. 8], if the signal space is spanned by K ∼ 2WT dimensions of signals of

duration T and fixed bandwidth W , namely, K grows linearly with T for fixed W , the probability

of anomaly is about K · e−E/(2N0), and so, the total MSE behaves (see [19, eq. (8.100), p. 633])

roughly according to

E{(m̂−m)2} ≈ N0

2W 2E
+B ·Ke−E/(2N0), (15)

where B > 0 is some constant, the first term accounts for the high–SNR MSE, and the second

term is the MSE dictated by the probability of an anomalous error. Note that here the degradation

contributed by the anomalous error, as a function of N0, is graceful, in other words, there is still

no sharp breakdown of the kind that was described in the previous paragraph. This is because

of the fact that as long as W is fixed, the K = 2WT orthonormal basis functions may capture

only a very small fraction of the ‘problematic directions’ (as described in the previous paragraph)

of the entire plethora of ‘directions’ of the noise, which is of infinite bandwidth. In other words,

since the probability of a large noise projection in a certain direction is exponentially small, it

takes exponentially many directions to make the probability of a large projection in at least one

of them, considerably large. As the energies E and Ė, grow linearly with T (for fixed power and

bandwidth), the first term in (15) is proportional to 1/T while the second term decays exponentially
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in T . A natural question that arises then is whether there may be better trade-offs. The answer

is affirmative if W would be allowed to grow (exponentially fast) with T . Assuming then that

W ∝ eRT for some fixed parameter R > 0, the first term would then decay at the rate of e−2RT

whereas the second term may still continue to decay exponentially as long as R is not too large.

The exact behavior depends, of course, on the form of the parametric family of signals {sm(t)},
but for some classes of signals like those pertaining to FPM, it is shown in [19] that the probability

of anomaly decays according to e−TE(R), where E(R) is the error exponent function pertaining

to infinite–bandwidth orthogonal signals over the additive white Gaussian noise (AWGN) channel,

i.e.,

E(R) =

{

C
2 −R R < C

4

(
√
C −

√
R)2 C

4 ≤ R < C
(16)

Note that the best compromise between high-SNR MSE and anomalous MSE pertains to the

solution to the equation E(R) = 2R, namely, R = C/6. For R > C, the probability of anomaly

tends to 1 as T → ∞. Thus, we observe that in the regime of unlimited bandwidth, the threshold

effect pertaining to anomalous errors is indeed sharp, while in the band–limited case, it is not.

Our purpose, in this work, is to study the threshold effect of anomalous errors, in the unlimited

bandwidth regime, from a physical point of view, by relating the threshold effect to phase transitions

of large physical systems subjected to disorder, in particular, a REM–like model, as described in

the Introduction. The limit of large T would then correspond to the thermodynamic limit of a large

system, customarily considered in statistical physics. Moreover, as discussed earlier, the physical

point of view will help us to understand situations where there is more than one phase transition.

3 A Physical Perspective on the Threshold Effect

For the sake of concreteness, we consider the case where the parameter m is time delay, defined in

units of T .1 Let then

r(t) = s(t−mT ) + n(t), − T

2
≤ t ≤ +

T

2
, −M ≤ m ≤ +M, M <

1

2
. (17)

We will also assume that the signal autocorrelation function, i.e.,

Rs(τ)
∆
=

∫ +T/2

−T/2
dts(t)s(t+ τ), (18)

1More general situations will be discussed in the sequel.
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vanishes outside the interval [−∆,+∆]. In this case, it is natural to define the anomalous error

event as the event where the absolute value of the estimation error, |m̂ − m|, exceeds ∆. Since

the signal energy is E, then so is Rs(0). Assuming that the signal support lies entirely within the

interval [−T/2,+T/2] for all allowable values of m (i.e.,M ≤ 1
2−∆/T ), the energy of {s(t−mT )} is

independent of m, and then maximum likelihood estimation is equivalent to maximum correlation:

m̂ = arg max
m: |m|≤M

∫ +T/2

−T/2
dtr(t)s(t−mT ). (19)

If one treats m as a uniformly distributed random variable, the corresponding posterior density of

m given {r(t), − T/2 ≤ t ≤ T/2} is given by

P (m|{r(t), − T/2 ≤ t ≤ T/2}) =
exp

{

− 1
N0

∫ +T/2
−T/2 [r(t)− s(t−mT )]2dt

}

∫ +M
−M dm′ exp

{

− 1
N0

∫ +T/2
−T/2 [r(t)− s(t−m′T )]2dt

}

=
exp

{

2
N0

∫ +T/2
−T/2 r(t)s(t−mT )dt

}

∫ +M
−M dm′ exp

{

2
N0

∫ +T/2
−T/2

r(t)s(t−m′T )dt
} (20)

where in the second equality, we have cancelled out the factor exp{− 1
N0

∫ +T/2
−T/2 r

2(t)dt}, which

appears both in the numerator and the denominator, and we have used again the fact that the

energy, E, of {s(t −mT )} is independent of m. Owing to the exponential form of this posterior

distribution, it can be thought of, in the language of statistical mechanics, as the Boltzmann

distribution with inverse temperature β = 2/N0 and Hamiltonian (i.e., energy as a function of m):

H(m) = −
∫ +T/2

−T/2
dtr(t)s(t−mT ). (21)

This statistical–mechanical point of view suggests to expand the scope and define a family of

probability distributions parametrized by β, as follows:

Pβ(m|{r(t), − T/2 ≤ t ≤ T/2}) =
exp

{

β
∫ +T/2
−T/2 r(t)s(t−mT )dt

}

∫ +M
−M dm′ exp

{

β
∫ +T/2
−T/2 r(t)s(t−m′T )dt

} (22)

There are at least three meaningful choices of the value of the parameter β: The first is β = 0,

corresponding to the uniform distribution on [−M,+M ], which is the prior. The second choice is

β = 2/N0, which corresponds to the true posterior distribution, as said. Finally, as β → ∞, the

density Pβ(·|{r(t), −T/2 ≤ t ≤ T/2}) puts more and more weight on the value ofm that maximizes

the correlation
∫ +T/2
−T/2 dtr(t)s(t −mT ), namely, on the ML estimator m̂. It should be emphasized
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that if we vary the parameter β, this is not necessarily equivalent to a corresponding variation in

the choice of N0, according to β = 2/N0. For example, one may examine the behavior of the ML

estimator by letting β → ∞, but still analyze its performance for a given finite value of N0. This

is to say that Pβ(·|{r(t), − T/2 ≤ t ≤ T/2}) should only be thought of as an auxiliary posterior

density function, not as the real one. The denominator of Pβ(m|{r(t), −T/2 ≤ t ≤ T/2}), namely,

ζ(β) =

∫ +M

−M
dm exp

{

β

∫ +T/2

−T/2
r(t)s(t−mT )dt

}

(23)

can then be thought of as the partition function pertaining to the Boltzmann distribution Pβ(·|{r(t), −
T/2 ≤ t ≤ T/2}).

Now, without essential loss of generality, let us assume that the true parameter value is m =

0, that ∆ divides 2MT , and that the integer K = 2MT/∆ is an even number. Consider the

partition of the interval [−M,+M ] of possible values of m into sub-intervals of size ∆/T . Let

Mi = [i∆/T, (i+1)∆/T ) denote the i–th sub-interval, i = −K/2,−K/2+1, . . .−1, 0,+1, . . . , K/2.

We will find it convenient to view the ML estimation of m as a two–step procedure, where one first

maximizes the correlation
∫ +T/2
−T/2 dtr(t)s(t−mT ) within each sub-interval Mi, i.e., calculate

max
m∈Mi

∫ +T/2

−T/2
dtr(t)s(t−mT ), (24)

and then take the largest maximum over all i. Let us define

ǫ0 = max
|m|≤∆/T

∫ +T/2

−T/2
dtr(t)s(t−mT ) = max

m∈M0∪M−1

∫ +T/2

−T/2
dtr(t)s(t−mT ) (25)

and for i 6= 0,

ǫi = max
m∈Mi

∫ +T/2

−T/2
dtr(t)s(t−mT ), 1 ≤ i ≤ K/2 − 1 (26)

ǫi = max
m∈Mi−1

∫ +T/2

−T/2
dtr(t)s(t−mT ), − (K/2 − 1) ≤ i ≤ −1 (27)

Thus, for the purpose of analyzing the behavior of the ML estimator, we can use a modified version

of the partition function, defined as

Z(β) =

K/2−1
∑

i=−K/2+1

eβǫi , (28)

and analyze it in the limit of β → ∞ (the low temperature limit). Note that here, ǫi has the

meaning of the (negative) Hamiltonian pertaining to a ‘system configuration’ indexed by i.
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In order to characterize the behavior of Z(β), it is instructive to recognize that it is quite

similar to the random energy model (REM) of disordered spin glasses: According to the REM, the

energies {ǫi}, pertaining to various system configurations indexed by i, are i.i.d. random variables,

normally assumed zero–mean and Gaussian, but other distributions are possible too. This is not

quite exactly our case, but as we shall see shortly, this is close enough to allow the techniques

associated with the analysis of the REM to be applicable here.

First, observe that under these assumptions,

ǫ0 = max
|m|≤∆/T

∫ +T/2

−T/2
dt[s(t) + n(t)]s(t−mT )

= max
|m|≤∆/T

[

Rs(mT ) +

∫ +T/2

−T/2
dtn(t)s(t−mT )

]

(29)

whereas for i 6= 0,

ǫi = max
m∈Mi

∫ +T/2

−T/2
dtn(t)s(t−mT ), i > 0, (30)

and

ǫi = max
m∈Mi−1

∫ +T/2

−T/2
dtn(t)s(t−mT ), i < 0. (31)

As for ǫ0, we have, on the one hand

ǫ0 ≥ Rs(0) +

∫ +T/2

−T/2
dtn(t)s(t) = PT +

∫ +T/2

−T/2
dtn(t)s(t) (32)

and on the other hand,

ǫ0 ≤ max
|m|≤∆/T

Rs(mT ) + max
|m|≤∆/T

∫ +T/2

−T/2
dtn(t)s(t−mT ) = PT + max

|m|≤∆/T

∫ +T/2

−T/2
dtn(t)s(t−mT ).

(33)

Considering the limit T → ∞ for fixed P , both the upper bound and the lower bound are dominated

by the first term, which grows linearly with T , while the second term is a random variable whose

standard deviation, for large T , scales in proportion to
√
T . Thus, for a typical realization of

{n(t),−T/2 ≤ t ≤ T/2}, ǫ0 ≈ PT , and so, its typical contribution to the partition function is given

by

Z0(β)
∆
= eβǫ0 ≈ eβPT . (34)

Consider now the contribution of all the other {ǫi} to the partition function, and define

Za(β) =
∑

i 6=0

eβǫi , (35)
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where the subscript a stands for ‘anomaly’, as this term pertains to anomalous errors. The total

partition function is, of course,

Z(β) = Z0(β) + Za(β). (36)

Now, for i 6= 0, {ǫi} are identically distributed RV’s, which are alternately independent, i.e.,

. . . , ǫ−3, ǫ−1, ǫ1, ǫ3, . . . are independent (since the noise is white and Rs(τ) vanishes for |τ | ≥ ∆),

and so are . . . , ǫ−4, ǫ−2, ǫ2, ǫ4, . . .. In order to evaluate the typical behavior of Za(β), we shall

represent it as

Za(β) =

∫

dǫN(ǫ)eβǫ, (37)

where N(ǫ)dǫ is the number of {ǫi} that fall between ǫ and ǫ+ dǫ, i.e.,

N(ǫ)dǫ =
∑

i 6=0

I(ǫ ≤ ǫi ≤ ǫ+ dǫ), (38)

where I(·) is the indicator function of an event. Obviously,

E{N(ǫ)dǫ} = K · Pr{ǫ ≤ ǫi ≤ ǫ+ dǫ} (39)

and so,

E{N(ǫ)} = K · f(ǫ), (40)

where f(ǫ) is the probability density function (pdf) of ǫi, for i 6= 0. Now, to accommodate the

asymptotic regime of W ∝ eRT , we take the signal duration to be ∆ = ∆0e
−RT , where ∆0 > 0 is a

fixed parameter, and so,

K =
2MT

∆0
· eRT . (41)

Thus, N(ǫ)dǫ is the sum of exponentially many binary random variables. As said earlier, although

these random variables are not independent, they are alternately independent, and so, if N(ǫ)dǫ is

represented as
∑

i 6=0 even
I(ǫ ≤ ǫi ≤ ǫ+ dǫ) +

∑

i odd

I(ǫ ≤ ǫi ≤ ǫ+ dǫ) (42)

then each of the two terms is the sum of i.i.d. binary random variables, whose typical value is zero

when K
2 · f(ǫ)dǫ << 1 and E{N(ǫ)dǫ} when K

2 · f(ǫ)dǫ >> 1. This means that, asymptotically,

for large T , only energy levels for which ln f(ǫ) > −RT will typically be populated by some {i}.

12



Let εT be the largest solution to the equation ln f(ǫ) > −RT . Then, the typical value of Za is

exponentially

Za(β,R)
·
=

∫ εT

−∞

T

∆0
· eRT f(ǫ)eβǫdǫ

·
= exp

{

max
ǫ≤εT

[RT + ln f(ǫ) + βǫ]

}

(43)

where
·
= denotes asymptotic equality in the exponential scale2 as T → ∞, and where we have

modified the notation from Za(β) to Za(β,R) to emphasize the dependence on the exponential

growth rate R of the parameter K. Any further derivation, from this point onward, requires the

knowledge of the pdf f(ǫ), which is known accurately only for certain specific choices of the pulse

shape. One of them, that we will assume here for concreteness, is the rectangular pulse

s(t) =

{ √

E
∆ |t| ≤ ∆

2

0 elsewhere
(44)

where E = PT , P being the average power of the signal. Therefore,

Rs(τ) = E

[

1− |τ |
∆

]

+

= PT

[

1− |τ |
∆

]

+

(45)

where [x]+
∆
= max{0, x}. From a result by Slepian [16] in a form that was later derived by Shepp [15]

(see also [20]), it is known that if Xθ is a zero–mean Gaussian random process with autocorrelation

function R(τ) = [1−|τ |]+, then the cumulative probability distribution function of Y = sup0≤θ≤1Xθ

is given by

F0(a) = Pr{Y ≤ a} = [1− Φ(a)]2 − ae−a2/2

√
2π

[1− Φ(a)]− e−a2

2π
(46)

where

Φ(a)
∆
=

1√
2π

∫ ∞

a
e−u2/2du. (47)

This means that the density of Y is given by

f0(a) =
dF0(a)

da
=
ae−a2

2π
+ [1−Φ(a)](1 + a2)

e−a2/2

√
2π

. (48)

This result applies, in our case, to the random process

Xθ =

√

2

N0PT
·
∫ +T/2

−T/2
dtn(t)s(t− θ∆), 0 ≤ θ ≤ 1, (49)

2For two non–negative functions a(T ) and b(T ), the notation a(T )
·

= b(T ) means that limT→∞

1
T
ln a(T )

b(T )
= 0.
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which means that for i 6= 0, the probability density function of ǫi is given by

f(ǫ) =

√

2

N0PT
· f0

(

ǫ
√

N0PT/2

)

. (50)

Thus,

Za(β,R)
·
= exp

{

RT +
1

2
ln

(

2

N0PT

)

+max
ǫ≤εT

[

ln f0

(

ǫ
√

N0PT/2

)

+ βǫ

]}

. (51)

Now, the exact form of f0 may not lend itself to convenient analysis, but considering the asymptotic

limit of T → ∞, it is not difficult to see (due to the scaling by
√

N0PT/2 in the argument of f0(·))
that the maximum at the exponent of the last expression is attained for values of ǫ that grow

without bound as T → ∞. It would therefore be convenient to approximate f0(a) given above by

its dominant term for very large a, which is given by

f0(a) ≈
a2e−a2/2

√
2π

. (52)

On substituting this approximation, we first find an approximation to εT according to

2 ln

(

εT√
N0PT

)

− ε2T
N0PT

= −RT. (53)

For large T , the first term is negligible compared to the second term and the right–hand side, and

so, εT is well approximated as

εT =
√

N0PR · T. (54)

Next, we use the approximate form of f0 in the maximization of ln f0(ǫ/
√

N0PT/2)+βǫ, i.e., solve

the problem

max
ǫ≤

√
N0PRT

[

ln

(

2ǫ2

N0PT

)

− ǫ2

N0PT
+ βǫ

]

(55)

whose maximizer, for large T , is easily found to be approximated by

ǫ∗ = min

{

√

N0PR · T, βN0PT

2

}

. (56)

On substituting this back into the expression of Za(β,R), and defining

ψa(β,R) = lim
T→∞

lnZa(β,R)

T
, (57)

we get

ψa(β,R) =

{

R+ β2N0P
4 β < βc(R)

β
√
N0PR β > βc(R)

(58)
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where

βc(R) =
2

N0

√

R

C
, (59)

C = P/N0 being the capacity of infinite–bandwidth AWGN channel. Thus, we see that Za(β,R)

undergoes a phase transition at β = βc(R): For β < βc(R), Za(β,R) is dominated by an exponential

number of {i} for which ǫi is about βN0PT/2. As β exceeds βc(R), the system pertaining to Za

undergoes a phase transition, where Za(β,R) becomes dominated by a sub-exponential number of

{i} at the ‘ground state’ level of
√
N0PR · T . This sub-exponential number of dominant ground–

state ‘configurations’ corresponds to a zero entropy, yet disordered phase, which is called in the

terminology of physicists, the glassy phase (see [13, Chap. 5]).

Taking now into account the contribution of Z0(β), and defining

ψ(β,R) = lim
T→∞

lnZ(β,R)

T
, (60)

we end up with three phases, as can be seen in the following expression

ψ(β,R) =







βP {R < P (β − β2N0/4), β < 2/N0}
⋃{R < C, β ≥ 2/N0}

R+ β2N0P
4 {R > C, β < βc(R)}

⋃{P (β − β2N0/4) < R < C, β < 2/N0}
β
√
N0PR elsewhere

(61)

The phase diagram is depicted in Fig. 1. As said earlier, for ML estimation, the relevant regime

is β → ∞, where as can be seen, the system undergoes a phase transition as R exceeds C. This

phase transition captures the threshold effect in the estimation of the delay parameter m, in this

example.

As long as R < C, the probability of anomaly is still vanishingly small, and the dominant event

is that of a small error (less than ∆/T in absolute value). The critical point, where all three phases

meet, is the point (C, 2/N0). Note that β = 2/N0 is the ‘natural’ value of β that arises in the true

posterior of m given {r(t), − T/2 ≤ t ≤ T/2}.

As we can see, the physical perspective provides some insight, not only concerning the estimation

of the parameter m, but moreover, about the posterior of m given the noisy signal {r(t), − T/2 ≤
t ≤ T/2}. If we use the ‘correct’ value of β or larger i.e., β ≥ 2/N0, then as long as R < C, the

posterior possesses a very sharp peak around the true value of m and the width of this peak does

not exceed ∆/T from either side. This is the ordered phase, or the ferromagnetic phase, in the

jargon of physicists. As R crosses C, then the behavior is as follows: If β = 2/N0, the posterior
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Figure 1: Phase diagram for ML estimation of a delay parameter.

changes abruptly and instead of one peak around the truem, it becomes dominated by exponentially

many ‘spikes’ scattered across the whole interval [−M,+M ]. This is the paramagnetic phase. If,

on the other hand, β > 2/N0, then there is an intermediate range of rates R ∈ [C, β2N0P/4],

where the number of such spikes is still sub–exponential, which means the glassy phase. Finally,

as one continues to increase R above β2N0P/4, the number of spikes becomes exponential (the

paramagnetic phase).

On the other hand, for β < 2/N0, the abrupt transition to exponentially many spikes happens

for R = P (β − β2N0/4), which is less than C. The fixed bandwidth regime corresponds to the

vertical axis (R = 0) in the phase diagram, and as can be seen, no phase transition occurs along

this axis at any finite temperature. This is in agreement with our earlier discussion on the graceful

behavior of the probability of anomaly at fixed bandwidth.

It is instructive to compare the behavior of the ML estimator to the Weiss–Weinstein lower

bound [18], [17] because this bound is claimed to capture the threshold effect. As we have seen,

the ML estimator has the following ranges of exponential behavior as a function of R:

E{(m̂−m)2} ∼







e−2RT R < C/6

e−E(R)T C/6 < R < C
e−0·T R > C

(62)

On the other hand, the Weiss–Weinstein bound (WWB) for estimating a rectangular pulse in

16



Gaussian white noise is given (in our notation) by

WWB = max
h≥0

h2[1− h/T ]2+ exp{−[h/∆]+CT/2}
2 [1− (1− 2h/T )+ exp{−[h/∆]+CT/2}] , (63)

where [x]+ = max{x, 0} and [x]+ = min{x, 1}. Examining this bound under the asymptotic regime

of T → ∞ with ∆ = ∆0e
−RT , yields the following behavior:

WWB ∼
{

e−2RT R < C/4

e−CT/2 R > C/4
(64)

In agreement with the analysis in [17], we readily observe that for a given R and for high SNR

(C = P/N0 → ∞), both quantities are of the exponential order of e−2RT , whereas for low SNR

(C → 0), both are about e−CT/2 ∼ e−0·T . However, if we look at both quantities as functions of R

for fixed C > 0, there is a different behavior. Not only the phase transition points differ, but also

the large R asymptotics disagree. Thus, the WWB indeed captures the threshold effect of the ML

estimator, but in a slightly weaker sense when it comes to the asymptotic wide-band regime.

Discussing Some Extensions

It is interesting to slightly expand the scope to a situation of mismatched estimation. Suppose that

instead of ML estimation based on the known waveform s(t), the estimator is based on maximizing

the temporal correlation with another waveform, s̃(t −mT ), whose energy is E = PT and whose

width is ∆̃ = ∆0e
−R̃T . In this case, the phase diagram, in the plane of β vs. R̃, will remain

essentially the same as in Fig. 1, except that there will be a degradation by a factor of ρ in β, and

by a factor of ρ2 in the rate, where

ρ
∆
=

1

E

∫ +T/2

−T/2
s(t)s̃(t)dt. (65)

In other words, the triple point will be (ρ2C, 2ρ/N0), the vertical straight–line ferromagnetic–

glassy phase boundary will be R̃ = ρ2C, rather than R = C. The other phase boundaries will be as

follows: the paramagnetic–ferromagnetic boundary is the parabola R̃ = P (ρβ − β2N0/4), and the

paramagnetic–glassy boundary would continue to be the parabola β = βc(R̃), where the function

βc(·) is as defined before. The dependence on the parameter R of the real signal is solely via its

effect on the parameter ρ.

Our derivations above are somewhat specific to the example of time delay estimation, and for

the special case of a rectangular pulse. Therefore, a few words about the more general picture
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are in order. First, consider time delay estimation of more general signals. We assumed that

Rs(τ) vanishes for |τ | ≥ ∆, but this still leaves room for more general pulses with support ∆, not

necessarily the rectangular one. Unfortunately, as said earlier, the exact pdf of ǫi, i 6= 0, is not

known for a general autocorrelation function that is induced by a general choice of s(t). However,

for our asymptotic analysis in the regime of T → ∞, what counts (as we have seen) is actually

merely the tail behavior of this pdf, and this tail is known, under fairly general conditions (see [1,

p. 40], with a reference also to [10]), to behave the same way as the tail of the Gaussian pdf of

zero mean and variance N0PT/2. Therefore, our approximate analysis in the large T limit would

continue to apply for other pulse shapes as well.

Second, consider the estimation of parameters other than delay (e.g., frequency offset or phase),

still requiring that the time correlation between sm(t) and sm′(t) would essentially vanish whenever

|m − m′| exceeds a certain threshold (in our earlier example, ∆/T ). In this case, as we have

seen, the high–SNR MSE is inversely proportional to the squared norm, Ė, of the vector ṡ(m)

of derivatives of {si(m)} w.r.t. m. Again, assuming that this norm is independent of m, it is

proportional to the length of the signal locus, as discussed earlier. For a good trade-off between

the high–SNR MSE and the anomalous MSE, we would like to modulate the parameter in such a

way that for a given E, the quantity Ė would grow exponentially with T , i.e., Ė ∝ e2RT , as an

extension of our earlier discussion in the case of a time delay. For example, in the case of frequency–

position modulation, where s(t) = A cos(2π(fc + mW )t + φ), |m| ≤ M , W << fc, both fc and

W should be proportional to eRT . The corresponding analysis of ǫi and the associated partition

function would be, in principle, similarly as before, except that one should consider the process

Xθ =
∫ +T/2
−T/2 n(t) cos(2π(fc + θW )t+ φ)dt, and the remarks of the previous paragraph continue to

apply. Similar comments apply to other kinds of parametrization.

4 Joint ML Estimation of Amplitude and Delay

We now extend our earlier study to the model

r(t) = α · s(t−mT ) + n(t), − T

2
≤ t ≤ +

T

2
(66)

18



where now both α and m are parameters to be estimated, and where it is assumed that m ∈
[−M,+M ] as before and α ∈ [αmin, αmax], with 0 < αmin ≤ 1 ≤ αmax and

1

αmax − αmin
·
∫ αmax

αmin

α2dα = 1 (67)

which means that the average energy (w.r.t. the uniform distribution within the interval [αmin, αmax])

of the received signal is still E. Here the energy of the received signal depends on α, as it is given

by α2E. The relevant partition function would be

Z(β,R) =

∫ αmax

αmin

dα
∑

i

exp[β(αǫi − α2PT/2)]
∆
=

∫ αmax

αmin

dαZ(α, β,R). (68)

The analysis of Za(α, β,R) (which is the same expression except that the sum excludes i = 0) in

the framework of a REM–like model, is precisely the same as before except that β is replaced by

βα and there is another multiplicative factor of exp{−βα2PT/2}. Accordingly, re–defining

ψa(α, β,R) = lim
T→∞

lnZa(α, β,R)

T
, (69)

we get the following results: For β ≤ βc(R)/αmax,

ψa(α, β,R) = R+
βα2P

4
(βN0 − 2) ∀αmin ≤ α ≤ αmax. (70)

Similarly, β ≥ βc(R)/αmin

ψa(α, β,R) = β

(

α
√

N0PR− α2P

2

)

∀αmin ≤ α ≤ αmax. (71)

Finally, for β ∈ (βc(R)/αmax, βc(R)/αmin) we have:

ψa(α, β,R) =







R+ βα2P
4 (βN0 − 2) αmin ≤ α ≤ 2

βN0

√

R
C

β
(

α
√
N0PR− α2P

2

)

2
βN0

√

R
C ≤ α ≤ αmax

(72)

Upon maximizing over α, we get five different phases of ψa(β,R) = maxα ψa(α, β,R), three glassy

phases and two paramagnetic ones:

ψa(β,R) =







































β
(

αmin

√
N0PR− α2

minP
2

)

R < α2
minC and β > βc(R)

αmin

βN0R
2 R ∈ (α2

minC,α
2
maxC) and β > 2

N0

β
(

αmax

√
N0PR− α2

maxP
2

)

R > α2
maxC and β > βc(R)

αmax

R+
βα2

minP
4 (βN0 − 2) β ≤ min

{

βc(R)
αmin

, 2
N0

}

R+ βα2
maxP
4 (βN0 − 2) R > α2

maxC and β ∈
(

2
N0
, βc(R)
αmax

)

(73)

19



β

R

R = α2
maxCR = α2

minC

β = 2
N0

ψa(β,R) = R+
βα2

min
P

4 (βN0 − 2)

ψa(β,R) = β(αmax

√
N0PR− α2

maxP/2)

β = βc(R)
αmax

ψa(β,R) = R+
βα2

max
P

4 (βN0 − 2)

ψ
a
(β
,R

)
=
β
(α

m
in

√
N

0
P
R
−
α
2 m
in
P
/
2
)

β = βc(R)
αmin

ψ
a
(β
,R

)
=

β
N

0
R

2

Figure 2: Phase diagram of Za(β,R) for joint ML estimation of amplitude and delay.

In Figure 2, we show the phase diagram of ψa(β,R). As can be seen, the paramagnetic phase is

split into the two sub–phases, according to β < 2/N0 and β > 2/N0, whereas the glassy phase is

split into three parts, according to the range of R.

Finally, when we take into account the contribution of Z0(β) = eβPT/2, where it is assumed that

that true values of the parameters are α0 = 1 and m0 = 0, we end up with the following expression

for the re–defined

ψ(β,R)
∆
= lim

T→∞
lnZ(β,R)

T
(74)

which is given by

ψ(β,R) =







































βP
2

{

R < C and β > 2
N0

}

⋃

{

R < Rβ and β ≤ 2
N0

}

βN0R
2 R ∈ (C,α2

maxC) and β > 2
N0

β
(

αmax

√
N0PR− α2

maxP
2

)

R > α2
maxC and β > βc(R)

αmax

R+ βα2
maxP
4 (βN0 − 2) R > α2

maxC and β ∈
(

2
N0
, βc(R)
αmax

)

R+
βα2

minP
4 (βN0 − 2) R > Rβ and β ≤ 2

N0

(75)

where

Rβ
∆
=
P

2

[

β(1 + α2
min)−

β2N0α
2
min

2

]

. (76)

The phase diagram of this function is depicted in Fig. 3.
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Discussion

Although the model is linear in the parameter α, its interaction with m exhibits, in general, more

phases than the parameter m alone, and it causes anomalies in the estimation of α as well, but

these anomalies have a different character than those associated with m: While the anomaly makes

the estimator of m become an essentially uniformly distributed random variable within the interval

[−M,+M ], the anomalous estimator of α tends to concentrate on a deterministic value as T → ∞.

To see why this is true, observe that in the limit of large β (which is relevant for ML estimation), as

long as R < C, the estimation error is typically not anomalous. For C < R < α2
maxC, the dominant

value of α̂ is
√

R/C, whereas for R > α2
maxC, the dominant value of α̂ is αmax. For low β, we also

identify the region where the posterior of (α,m) is dominated by points where α = αmin.

Referring to Fig. 3, in the special case where αmax = ∞, the eastern glassy phase and the

northern paramagnetic phase disappear, and we end up with three phases only: the ordered phase

(unaltered), the southern paramagnetic phase, and the western glassy phase. If, in addition, αmin =

0 (i.e., we know nothing a–priori on α), then the curve R = Rβ becomes a straight line (R = βP/2)

and in the paramagnetic region, we get ψ(β,R) = R. On the other hand, the case αmin = αmax = 1

(i.e., α = 1 and there is no uncertainty in α), we are back to the earlier case of a delay parameter

only.

5 Summary and Conclusion

In this paper, we proposed a statistical–mechanical perspective on the threshold effect in parameter

estimation of non–linearly modulated wide-band signals corrupted by additive white Gaussian noise.

The proposed framework, which is mapped into a REM–like model of disordered spin glasses,

provides a fairly comprehensive picture of the behavior of the ML estimator as a function of the

bandwidth parameter R and the temperature parameter β. We then extended the scope to joint

ML estimator of two parameters.

The concepts and the techniques exercised in this paper are believed to generalize to other signal

models, as well as to joint ML estimation of more than two parameters. The proposed approach

may therefore serve as a yardstick for gaining insights and understanding concerning the threshold

behavior in more complicated situations, including models which are expected to exhibit more
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Figure 3: Phase diagram of Z(β,R) for joint ML estimation of amplitude and delay.

than one threshold with respect to the SNR (which means more than one phase transition in the

analogous physical model). For example, models of superimposed signals, where each component

signal has its own threshold SNR, or combinations of threshold effects due to non–linearity (as

studied here) with threshold effects that stem from ambiguity. The latter is characteristic, for

example, when the delay of a narrow-band signal is to be estimated (see, e.g., [17]).
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