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Inferring Rankings Using Constrained Sensing
Srikanth Jagabathula and Devavrat Shah

Abstract—We consider the problem of recovering a function
over the space of permutations (or, the symmetric group) over n

elements from given partial information; the partial infor mation
we consider is related to the group theoretic Fourier Transform
of the function. This problem naturally arises in several settings
such as ranked elections, multi-object tracking, ranking systems,
and recommendation systems. Inspired by the work of Donoho
and Stark in the context of discrete-time functions, we focus
on non-negative functions with a sparse support (support size
≪ domain size). Our recovery method is based on finding the
sparsest solution (throughℓ0 optimization) that is consistent with
the available information. As the main result, we derive sufficient
conditions for functions that can be recovered exactly from
partial information through ℓ0 optimization. Under a natural
random model for the generation of functions, we quantify the
recoverability conditions by deriving bounds on the sparsity
(support size) for which the function satisfies the sufficient
conditions with a high probability as n → ∞. ℓ0 optimization
is computationally hard. Therefore, the popular compressive
sensing literature considers solving the convex relaxation, ℓ1

optimization, to find the sparsest solution. However, we show
that ℓ1 optimization fails to recover a function (even with
constant sparsity) generated using the random model with a high
probability as n → ∞. In order to overcome this problem, we
propose a novel iterative algorithm for the recovery of functions
that satisfy the sufficient conditions. Finally, using an Information
Theoretic framework, we study necessary conditions for exact
recovery to be possible.

Index Terms—Compressive sensing, Fourier analysis over sym-
metric group, functions over permutations, sparsest-fit.

I. I NTRODUCTION

FUNCTIONS over permutations serve as rich tools for
modeling uncertainty in several important practical ap-

plications; they correspond to a general model class, where
each model has a factorial number of parameters. However,
in many practical applications, only partial information is
available about the underlying functions; this is because either
the problem setting naturally makes only partial information
available, or memory constraints allow only partial information
to be maintained as opposed to the entire function – which
requires storing a factorial number of parameters in general.
In either case, the following important question arises: which
“types” of functions can be recovered from access to only
partial information? Intuitively, one expects a characterization
that relates the “complexity” of the functions that can be
recovered to the “amount” of partial information one has
access to. One of the main goals of this paper is to for-
malize this statement. More specifically, this paper considers
the problem ofexact recovery of a function over the space
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of permutations given only partial information. When the
function is a probability distribution, the partial information
we consider can be thought of as lower-order marginals;
more generally, the types of partial information we consider
are related to the group theoretic Fourier Transform of the
function, which provides a general way yo represent varying
“amounts” of partial information. In this context, our goalis
to (a) characterize a class of functions that can be recovered
exactly from the given partial information, and (b) design a
procedure for their recovery. We restrict ourselves to non-
negative functions, which span many of the useful practical
applications. Due to the generality of the setting we consider,
a thorough understanding of this problem impacts a wide-
ranging set of applications. Before we present the precise
problem formulation and give an overview of our approach,
we provide below a few motivating applications that can be
modeled effectively using functions over permutations.

A popular application where functions over permutations
naturally arise is the problem ofrank aggregation. This
problem arises in various contexts. The classical setting is
that of ranked election, which has been studied in the area
of Social Choice Theoryfor the past several decades. In
the ranked election problem, the goal is to determine a
“socially preferred” ranking ofn candidates contesting an
election using the individual preference lists (permutations
of candidates) of the voters. Since the “socially preferred”
outcome should be independent of the identities of voters, the
available information can be summarized as a function over
permutations that maps each permutationσ to the fraction
of voters that have the preference listσ. While described in
the context of elections, the ranked election setting is more
general and also applies to aggregating through polls the
population preferences on global issues, movies, movie stars,
etc. Similarly, rank aggregation has also been studied in the
context of aggregating webpage rankings [2], where one has
to aggregate rankings over a large number of webpages. Bulk
of the work done on the ranked election problem deals with
the question of aggregationgivenaccess to the entire function
over permutations that summarizes population preferences. In
many practical settings, however, determining the function
itself is non-trivial – even for reasonable small values ofn.
Like in the setting of polling, one typically can gather onlypar-
tial information about population preferences. Therefore, our
ability to recover functions over permutations from available
partial information impacts our ability to aggregate rankings.
Interestingly, in the context of ranked election, Diaconis[3]
showed through spectral analysis that a partial set of Fourier
coefficients of the function possesses “rich” information about
the underlying function. This hints to the possibility that,
in relevant applications, limited partial information canstill
capture a lot of structure of the underlying function.

http://arxiv.org/abs/0910.0895v3
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Another important problem, which has received a lot of
attention recently, is theIdentity Management Problemor
the Multi-object tracking problem. This problem is motivated
by applications in air traffic control and sensor networks,
where the goal is to track the identities ofn objects from
noisy measurements of identities and positions. Specifically,
consider an area with sensors deployed that can identify
the unique signature and the position associated with each
object when it passes close to it. Let the objects be labeled
1, 2, . . . , n and letx(t) = (x1(t), x2(t), . . . , xn(t)) denote the
vector of positions of then objects at timet. Whenever a
sensor registers the signature of an object the vectorx(t) is
updated. A problem, however, arises when two objects, say
i, j, pass close to a sensor simultaneously. Because the sensors
are inexpensive, they tend to confuse the signatures of the
two objects; thus, after the two objects pass, the sensor has
information about the positions of the objects, but it only
has beliefs about which position belongs to which object.
This problem is typically modeled as a probability distribution
over permutations, where, given a position vectorx(t), a
permutationσ of 1, 2, . . . , n describes the assignment of the
positions to objects. Because the measurements are noisy, to
each position vectorx(t), we assign, not a single permutation,
but a distribution over permutations. Since we now have a
distribution over permutations, the factorial blow-up makes it
challenging to maintain it. Thus, it is often approximated using
a partial set of Fourier coefficients. Recent work by [4], [5]
deals with updating the distribution with new observationsin
the Fourier domain. In order to obtain the final beliefs one has
to recover the distribution over permutations from a partial set
of Fourier coefficients.

Finally, consider the task of coming up with rankings for
teams in a sports league, for example, the “Formula-one” car
racing or American football, given the outcomes of various
games. In this context, one approach is to model the final
ranking of the teams using, not just one permutation, but a dis-
tribution over permutations. A similar approach has been taken
in ranking players in online games (cf. Microsoft’s TrueSkill
solution [6]), where the authors, instead of maintaining scores,
maintain a distribution over scores for each player. In this
context, clearly, we can gather only partial information and
the goal is to fit a model to this partial information. Similar
questions arise in recommendation systems in cases where
rankings, instead of ratings, are available or are preferred.

In summary, all the examples discussed above relate to
inferring a function over permutations using partial informa-
tion. To fix ideas, letSn denote the permutation group of
order n and f : Sn → R+ denote a non-negative function
defined over the permutations. We assume we have access to
partial information aboutf(·) that, as discussed subsequently,
corresponds to a subset of coefficients of the group theoretic
Fourier Transform off(·). We note here that a partial set
of Fourier coefficients not only provides a rigorous way to
compress the high-dimensional functionf(·) (as used in [4],
[5]), but also have natural interpretations, which makes iteasy
to gather in practice. Under this setup, our goal is to char-
acterize the functionsf that can be recovered. The problem
of exact recovery of functions from a partial information has

been widely studied in the context of discrete-time functions;
however, the existing approaches dont naturally extend to
our setup. One of the classical approaches for recovery is to
find the function with the minimum “energy” consistent with
the given partial information. This approach was extended to
functions over permutations in [7], where the authors obtain
lower bounds on the energy contained in subsets of Fourier
Transform coefficients to obtain betterℓ2 guarantees when
using the function the minimum “energy.” This approach, how-
ever, does not naturally extend to the case of exact recovery. In
another approach, which recently gained immense popularity,
the function is assumed to have a sparse support and conditions
are derived for the size of the support for which exact recovery
is possible. This work was pioneered by Donoho; in [1],
Donoho and Stark use generalized uncertainty principles to
recover a discrete-time function with sparse support from a
limited set of Fourier coefficients. Inspired by this, we restrict
our attention to functions with a sparse support.

Assuming that the function is sparse, our approach to
performing exact recovery is to find the function with the
sparsest support that is consistent with the given partial
information, henceforth referred to asℓ0 optimization. This
approach is often justified by the philosophy ofOccam’s
razor. We derive sufficient conditions in terms of sparsity
(support size) for functions that can be recovered throughℓ0
optimization. Furthermore, finding a function with the sparsest
support throughℓ0 minimization is in general computationally
hard. This problem is typically overcome by considering the
convex relaxation of theℓ0 optimization problem. However, as
we show in Theorem III.2, such a convex relaxation does not
yield exact recovery in our case. Thus, we propose a simple
iterative algorithm called the ‘sparsest-fit’ algorithm and prove
that the algorithm performs exact recovery of functions that
satisfy the sufficient conditions.

It is worth noting that our work has important connections
to the work done in the recently popular area ofcompressive
sensing. Broadly speaking, this work derives sufficient con-
ditions under which the sparsest function that is consistent
with the given information can be found by solving the
correspondingℓ1 relaxation problem. However, as discussed
below in the section on relevant work, the sufficient conditions
derived in this work do not apply to our setting. Therefore,
our work may be viewed as presenting an alternate set of
conditions under which theℓ0 optimization problem can be
solved efficiently.

A. Related Work

Fitting sparse models to observed data has been a classical
approach used in statistics for model recovery and is inspired
by the philosophy ofOccam’s Razor. Motivated by this, suf-
ficient conditions based on sparsity for learnability have been
of great interest over years in the context of communication,
signal processing and statistics, cf. [8], [9]. In recent years,
this approach has become of particular interest due to exciting
developments and wide ranging applications including:

• In signal processing (see [10], [11], [12], [13], [14])
where the goal is to estimate a ‘signal’ by means of
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minimal number of measurements. This is referred to as
compressive sensing.

• In coding theory through the design of low-density parity
check codes [15], [16], [17] or in the design Reed
Solomon codes [18] where the aim is to design a coding
scheme with maximal communication rate.

• In the context of streaming algorithms through the design
of ‘sketches’ (see [19], [20], [21], [22], [23]) for the
purpose of maintaining a minimal ‘memory state’ for the
streaming algorithm’s operation.

In all of the above work, the basic question (see [24])
pertains to the design of anm × n “measurement” matrix
A so thatx can be recovered efficiently from measurements
y = Ax (or its noisy version) using the “fewest” possible
number measurementsm. The setup of interest is whenx is
sparse and whenm < n or m ≪ n. The type of interesting
results (such as those cited above) pertain to characterization
of the sparsityK of x that can be recovered for a given number
of measurementsm. The usual tension is between the ability to
recoverx with largek using a sensing matrixA with minimal
m.

The sparsest recovery approach of this paper is similar (in
flavor) to the above stated work; in fact, as is shown subse-
quently, the partial information we consider can be writtenas
a linear transform of the functionf(·). However, the methods
or approaches of the prior work do not apply. Specifically, the
work considers finding the sparsest function consistent with
the given partial information by solving the corresponding
ℓ1 relaxation problem. The work derives a necessary and
sufficient condition, called theRestricted Nullspace Property,
on the structure of the matrixA that guarantees that the
solutions to theℓ0 and ℓ1 relaxation problems are the same
(see [11], [21]). However, such sufficient conditions trivially
fail in our setup (see [25]). Therefore, our work provides an
alternate set of conditions that guarantee efficient recovery of
the sparsest function.

B. Our Contributions

Recovery of a function over permutations from only partial
information is clearly a hard problem both from a theoretical
and computational standpoint. We make several contributions
in this paper to advance our understanding of the problem in
both these respects. As the main result, we obtain sufficient
conditions – in terms of sparsity – for functions that can
be recovered exactly from partial information. Specifically,
our result establishes a relation between the “complexity”(as
measured in sparsity) of the function that can be recovered
and the “amount” of partial information available.

Our recovery scheme consists of finding the sparsest so-
lution consistent with the given partial information through
ℓ0 optimization. We derive sufficient conditions under which
a function can be recovered throughℓ0 optimization. First,
we state the sufficient conditions for recovery throughℓ0
optimization in terms of the structural properties of the func-
tions. To understand the strength of the sufficient conditions,
we propose a random generative model for functions with
a given support size; we then obtain bounds on the size of

the support for which a function generated according to the
random generative model satisfies the sufficient conditions
with a high probability. To our surprise, it is indeed possible to
recover, with high probability, functions with seemingly large
sparsity for given partial information (see precise statement of
Theorems III.3-III.6 for details).

Finding the sparsest solution throughℓ0 optimization is
computationally hard. This problem is typically overcome by
considering theℓ1 convex relaxation of theℓ0 optimization
problem. However, as we show in Example II-C.1,ℓ1 relax-
ation does not always result in exact recovery, even when the
the sparsity of the underlying function is only4. In fact, a
necessary and sufficient condition forℓ1 relaxation to yield
the sparsest solutionx that satisfies the constraintsy = Ax
is the so called Restricted Nullspace Condition (RNC) on
the measurement matrixA; interestingly, the more popular
Restricted Isoperimetric Property (RIP) on the measurement
matrix A is a sufficient condition. However, as shown below,
the types of partial information we consider can be written as a
linear transform off(·). Therefore, Example II-C.1 shows that
in our setting, the measurement matrix does not satisfy RNC.
It is natural to wonder if Example II-C.1 is anomalous. We
show that this is indeed not the case. Specifically, we show
in Theorem III.2 that, with a high probability,ℓ1 relaxation
fails to recover a function generated according to the random
generative model.

Since convex relaxations fail in recovery, we exploit the
structural property of permutations to design a simple iter-
ative algorithm called the ‘sparsest-fit’ algorithm to perform
recovery. We prove that the algorithm recovers a function from
a partial set of its Fourier coefficients as long as the function
satisfies the sufficient conditions.

We also study the limitation ofany recovery algorithm
to recover a function exactly from a given form of partial
information. Through an application of classical information
theoretic Fano’s inequality, we obtain a bound on the sparsity
beyond which recovery is notasymptotically reliable; a recov-
ery scheme is called asymptotically reliable if the probability
of error asymptotically goes to0.

In summary, we obtain an intuitive characterization of the
“complexity” (as measured in sparsity) of the functions that
can be recovered from the given partial information. We show
how ℓ1 relaxation fails in recovery in this setting. Hence, the
sufficient conditions we derive correspond to an alternate set
of conditions that guarantee efficient recovery of the sparsest
function.

C. Organization

Section II introduces the model, useful notations and the
precise formulation of the problem. In Section III, we provide
the statements of our results. Section IV describes our iterative
algorithm that can recoverf from f̂(λ) when certain condi-
tions (see Condition 1) are satisfied. Sections V to XI provide
detailed proofs. Conclusions are presented Section XII.

II. PROBLEM STATEMENT

In this section, we introduce the necessary notations, defi-
nitions and provide the formal problem statement.
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A. Notations

Let n be the number of elements andSn be set of all pos-
siblen! permutations or rankings of these ofn elements. Our
interest is in learning non-negative valued functionsf defined
on Sn, i.e. f : Sn → R+, whereR+ = {x ∈ R : x ≥ 0}. The
support off is defined as

supp (f) = {σ ∈ Sn : f(σ) 6= 0} .
The cardinality of support,| supp (f) | will be called the
sparsity of f and will be denoted byK. We will also call
it the ℓ0 norm of f , denoted by|f |0.

In this paper, we wish to learnf from a partial set of
Fourier coefficients. To define the Fourier transform of a
function over the permutation group, we need some notations.
To this end, consider a partition ofn, i.e. an ordered tuple
λ = (λ1, λ2, . . . , λr), such thatλ1 ≥ λ2 ≥ . . . ≥ λr ≥ 1,
andn = λ1 + λ2 + . . .+ λr . For example,λ = (n− 1, 1) is
a partition ofn. Now consider a partition of then elements,
{1, . . . , n}, as per theλ partition, i.e. dividen elements into
r bins with ith bin havingλi elements. It is easy to see thatn
elements can be divided as per theλ partition in Dλ distinct
ways, with

Dλ =
n!

∏r
i=1 λi!

.

Let the distinct partitions be denoted byti, 1 ≤ i ≤ Dλ
1. For

example, forλ = (n− 1, 1) there areDλ = n!/(n− 1)! = n
distinct ways given by

ti ≡ {1, . . . , i− 1, i+ 1, . . . , n}{i}, 1 ≤ i ≤ n.

Given a permutationσ ∈ Sn, its action onti is defined through
its action on then elements ofti, resulting in aλ partition
with the n elements permuted. In the above example with
λ = (n− 1, 1), σ acts onti to give tσ(i), i.e.

σ : ti → tσ(i), whereti ≡ {1, . . . , i− 1, i+ 1, . . . , n}{i} and

tσ(i) ≡ {1, . . . , σ(i)− 1, σ(i) + 1, . . . , n}{σ(i)}.
Now, for a given partitionλ and a permutationσ ∈ Sn, define
a 0/1 valuedDλ ×Dλ matrix Mλ(σ) as

Mλ
ij(σ) =

{

1, if σ(tj) = ti

0, otherwise.
for all 1 ≤ i, j ≤ Dλ

This matrixMλ(σ) corresponds to a degreeDλ representation
of the permutation group.

B. Partial Information as a Fourier Coefficient

The partial information we consider in this paper is the
Fourier transform coefficient off at the representationMλ,
for eachλ. The motivation for considering Fourier coefficients
at representationsMλ is two fold: first, they provide a rigorous
way to compress the high-dimensional functionf(·) (as used
in [4], [5]), and second, as we shall see, Fourier coefficients at
representationsMλ have natural interpretations, which makes
it easy to gather in practice. In addition, each representation

1To keep notation simple, we useti instead of tλ
i

that takes explicit
dependence onλ into account.

Mλ contains a subset of the lower-order irreducible repre-
sentations; thus, for eachλ, Mλ conveniently captures the
information contained in a subset of the lower-order Fourier
coefficients up toλ. We now define the Fourier coefficient off
at the representationMλ, which we callλ-partial information.

Definition II.1 (λ-Partial Information). Given a function
f : Sn → R+ and partition λ. The Fourier Transform co-
efficient at representationMλ, which we call theλ-partial
information, is denoted bŷf(λ) and is defined as

f̂(λ) =
∑

σ∈Sn

f(σ)Mλ(σ).

Recall the example ofλ = (n−1, 1) with f as a probability
distribution onSn. Then, f̂(λ) is an n × n matrix with the
(i, j)th entry being the probability of elementj mapped to
elementi underf . That is,f̂(λ) corresponds to thefirst order
marginal off in this case.

C. Problem Formulation

We wish to recover a functionf based on its partial
information f̂(λ) based on partitionλ. As noted earlier, the
classical approach based on Occam’s razor suggests recovering
the function as a solution of the followingℓ0 optimization
problem:

minimize ‖g‖0 over g : Sn → R+

subject to ĝ(λ) = f̂(λ). (1)

We note that the question of recoveringf from f̂(λ) is very
similar to the question studied in the context of compressed
sensing, i.e. recoverx from y = Ax. To see this, with an
abuse of notation imaginêf(λ) as theD2

λ dimensional vector
andf asn! dimensional vector. Then,̂f(λ) = Af where each
column ofA corresponds toMλ(σ) for certain permutationσ.
The key difference from the compressed sensing literature is
thatA is given in our setup rather than being a design choice.

Question One. As the first question of interest, we wish
to identify precise conditions under whichℓ0 optimization
problem (1) recovers the original functionf as its unique
solution.

Unlike the popular literature (cf. compressed sensing), such
conditions can not be based on sparsity only. This is well
explained by the following (counter-)example. In addition, the
example also shows that linear independence of the support
of f does not guarantee uniqueness of the solution to theℓ0
optimization problem.

Example II-C.1. For any n ≥ 4, consider the four permuta-
tions σ1 = (1, 2), σ2 = (3, 4), σ3 = (1, 2)(3, 4) and σ4 = id,
whereid is the identity permutation. In addition, consider the
partition λ = (n− 1, 1). Then, it is easy to see that

Mλ(σ1) +Mλ(σ2) = Mλ(σ3) +Mλ(σ4).

We now consider three cases where a bound on sparsity is
not sufficient to guarantee the existence of a unique solution
to (1).
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1) This example shows that a sparsity bound (even4) on
f is not sufficient to guarantee thatf will indeed be the
sparsest solution. Specifically, suppose thatf(σi) = pi,
wherepi ∈ R+ for 1 ≤ i ≤ 4, and f(σ) = 0 for all
other σ ∈ Sn. Without loss of generality, letp1 ≤ p2.
Then,

f̂(λ)

=p1M
λ(σ1) + p2M

λ(σ2) + p3M
λ(σ3) + p4M

λ(σ4)

=(p2 − p1)M
λ(σ2) + (p3 + p1)M

λ(σ3)

+ (p4 + p1)M
λ(σ4).

Thus, functiong with g(σ2) = p2−p1, g(σ3) = p3+p1,
g(σ4) = p4 + p1 and g(σ) = 0 for all other σ ∈ Sn

is such thatĝ(λ) = f̂(λ) but ‖g‖0 = 3 < 4 = ‖f‖0.
That is, f can not be recovered as the solution ofℓ0
optimization problem(1) even when support off is only
4.

2) This example shows that althoughf might be a sparsest
solution, it may not be unique. In particular, suppose
that f(σ1) = f(σ2) = p andf(σ) = 0 for all otherσ ∈
Sn. Then,f̂(λ) = pMλ(σ1) + pMλ(σ2) = pMλ(σ3) +
pMλ(σ4). Thus,(1) does not have a unique solution.

3) Finally, this example shows that even though the sup-
port of f corresponds to a linearly independent set of
columns, the sparsest solution may not be unique. Now
suppose thatf(σi) = pi, wherepi ∈ R+ for 1 ≤ i ≤ 3,
and f(σ) = 0 for all other σ ∈ Sn. Without loss of
generality, letp1 ≤ p2. Then,

f̂(λ)

=p1M
λ(σ1) + p2M

λ(σ2) + p3M
λ(σ3)

=(p2 − p1)M
λ(σ2) + (p3 + p1)M

λ(σ3) + p1M
λ(σ4).

Here, note that
{

Mλ(σ1),M
λ(σ2),M

λ(σ3)
}

is linearly
independent, yet the solution to(1) is not unique.

Question Two. The resolution of the first question will
provide a way to recoverf by means of solving theℓ0
optimization problem in (1). However, in general, it is com-
putationally a hard problem. Therefore, we wish to obtain a
simple and possibly iterative algorithm to recoverf (and hence
for solving (1)).

Question Three.Once we identify the conditions for exact
recovery of f , the next natural question to ask is “how
restrictive are the conditions we imposed onf for exact
recovery?” In other words, as mentioned above, we know that
the sufficient conditions don’t translate to a simple sparsity
bound on functions, however, can we find a sparsity bound
such that “most,” if not all, functions that satisfy the sparsity
bound can be recovered? We make the notion of “most”
functions precise by proposing a natural random generative
model for functions with a given sparsity. Then, for given a
partitionλ, we want to obtainK(λ) so that ifK < K(λ) then
recovery off generated according to the generative model
from f̂(λ) is possible with high probability.

This question is essentially an inquiry into whether the
situation demonstrated by Example II-C.1 is contrived or not.
In other words, it is an inquiry into whether such exam-
ples happen with vanishingly low probability for a randomly
chosen function. To this end, we describe a natural random
function generation model.

Definition II.2 (Random Model). Given K ∈ Z+ and an
interval C = [a, b], 0 < a < b, a random functionf with
sparsityK and values inC is generated as follows: chooseK
permutations fromSn independently and uniformly at random
2, say σ1, . . . , σK ; select K values fromC uniformly at
random, sayp1, . . . , pK ; then functionf is defined as

f(σ) =

{

pi if σ = σi, 1 ≤ i ≤ K

0 otherwise.

We will denote this model asR(K,C ).

Question Four.Can we characterize a limitation on the
ability of any algorithm to recoverf from f̂(λ) ?

III. M AIN RESULTS

As the main result of this paper, we provide answers to the
four questions stated in Section II-C. We start with recalling
some notations. Letλ = (λ1, . . . , λr) be the given partition of
n. We wish to recover functionf : Sn → R+ from available
information f̂(λ). Let the sparsity off beK,

supp (f) = {σ1, . . . , σK}, and f(σk) = pk, 1 ≤ k ≤ K.

Answers One & Two.To answer the first two questions, we
need to find sufficiency conditions for recoveringf throughℓ0
optimization (1) and a simple algorithm to recover the func-
tion. For that, we first try to gain a qualitative understanding of
the conditions thatf must satisfy. Note that a necessary con-
dition for ℓ0 optimization to recoverf is that (1) must have a
uniquesolution; otherwise, without any additional information,
we wouldn’t know which of the multiple solutions is the true
solution. Clearly, sincêf(λ) =

∑

σ∈Sn
f(σ)Mλ(σ), (1) will

have a unique solution only if
{

Mλ(σ)
}

σ∈supp(f)
is linearly

independent. However, this linear independence conditionis,
in general, not sufficient to guarantee a unique solution; in
particular, even if

{

Mλ(σ)
}

σ∈supp(f)
is linearly indepen-

dent, there could exist
{

Mλ(σ′)
}

σ′∈H
such that f̂(λ) =

∑

σ′∈H Mλ(σ′) and |H| ≤ K, where K := |supp (f)|;
Example II-C.1 illustrates such a scenario. Thus, a sufficient
condition for f to be the unique sparsest solution of (1) is
that not only is

{

Mλ(σ)
}

σ∈supp(f)
linearly independent, but

{

Mλ(σ),Mλ(σ′)
}

σ∈supp(f),σ′∈H
is linearly independent for

all H ⊂ Sn such that|H| ≤ K; in other words, not only
we wantMλ(σ) for σ ∈ supp (f) to be linearly independent,
but we want them to be linearly independent even after the
addition of at mostK permutations to the support off .
Note that this condition is similar to the Restricted Isometry
Property (RIP) introduced in [10], which roughly translates

2Throughout, we will assume that the random selection is donewith
replacement.
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to the property thatℓ0 optimization recoversx of sparsity
K from y = Ax provided every subset of2K columns of
A is linearly independent. Motivated by this, we impose the
following conditions onf .

Condition 1 (Sufficiency Conditions). Let f satisfy the fol-
lowing:

◦ Unique Witness: for any σ ∈ supp (f), there exists1 ≤
iσ, jσ ≤ Dλ such thatMλ

iσjσ (σ) = 1, butMλ
iσjσ (σ

′) = 0,
for all σ′(6= σ) ∈ supp (f) .

◦ Linear Independence: for any collection of integers
c1, . . . , cK taking values in{−K, . . . ,K},

∑K
k=1 ckpk 6=

0, unlessc1 = . . . = cK = 0.

The above discussion motivates the “unique witness” con-
dition; indeed,Mλ(σ) for σ satisfying the “unique witness”
condition are linearly independent because every permutation
has a unique witness and no non-zero linear combination of
Mλ(σ) can yield zero. On the other hand, as shown in the
proof of Theorem III.1, thelinear independencecondition is
required for the uniqueness of the sparsest solution.

Now we state a formal result that establishes Condition 1
as sufficient for recovery off as the unique solution ofℓ0
optimization problem. Further, it allows for a simple, iterative
recovery algorithm. Thus, Theorem III.1 provides answers to
questionsOneandTwo of Section II-C.

Theorem III.1. Under Condition 1, the functionf is the
unique solution of theℓ0 optimization problem(1). Further,
a simple, iterative algorithm called the sparsest-fit algorithm,
described in Section IV, recoversf .

Linear Programs Don’t Work.Theorem III.1 states that
under Condition 1, theℓ0 optimization recoversf and the
sparsest-fit algorithm is a simple iterative algorithm to recover
it. In the context of compressive sensing literature (cf. [11],
[13], [14], [21]), it has been shown that convex relaxation
of ℓ0 optimization, such as the Linear Programing relaxation,
have the same solution in similar scenarios. Therefore, it is
natural to wonder whether such a relaxation would work in our
case. To this end, consider the following Linear Programing
relaxation of (1) stated as the followingℓ1 minimization
problem:

minimize ‖g‖1 over g : Sn → R+

subject to ĝ(λ) = f̂(λ). (2)

Example II-C.1 provides a scenario whereℓ1 relaxation fails
in recovery. In fact, we can prove a stronger result. The
following result establishes that – with a high probability–
a function generated randomly as per Definition II.2 cannot
be recovered by solving the linear program (2) because there
exists a functiong such that̂g(λ) = f̂(λ) and‖g‖1 = ‖f‖1.
Theorem III.2. Consider a functionf randomly generated
as per Definition II.2 with sparsityK ≥ 2. Then, as longs as
λ is not the partition(1, 1, . . . , 1) (n times), with probability
1 − o(1), there exists a functiong distinct fromf such that
ĝ(λ) = f̂(λ) and ‖g‖1 = ‖f‖1.

Answer Three.Next, we turn to the third question. Specifi-
cally, we study the conditions for high probability recoverabil-
ity of a random functionf in terms of its sparsity. That is, we
wish to identify the high probability recoverability threshold
K(λ). In what follows, we spell out the result starting with
few specific cases so as to better explain the dependency of
K(λ) on Dλ.

Case 1: λ = (n − 1, 1). HereDλ = n and f̂(λ) provides
the first order marginal information. As stated next, for this
case the achievable recoverability thresholdK(λ) scales3 as
n logn.

Theorem III.3. A randomly generatedf as per Definition II.2
can be recovered by the sparsest-fit algorithm with probability
1− o(1) as long asK ≤ (1− ε)n logn for any fixedε > 0.

Case 2: λ = (n−m,m) with 1 < m = O(1). HereDλ =
Θ(nm) andf̂(λ) provides themth ordermarginal information.
As stated next, for this case we find thatK(λ) scales at least
asnm logn.

Theorem III.4. A randomly generatedf as per Definition II.2
can be recovered from̂f(λ) by the sparsest-fit algorithm for
λ = (n−m,m),m = O(1), with probability1− o(1) as long
asK ≤ (1−ε)

m! nm logn for any fixedε > 0.

In general, for anyλ with λ1 = n − m and m = O(1),
arguments of Theorem III.4 can be adapted to show thatK(λ)
scales asnm logn. Theorems III.3 and III.4 suggest that the re-
coverability threshold scalesDλ logDλ for λ = (λ1, . . . , λr)
with λ1 = n−m for m = O(1). Next, we consider the case
of more generalλ.

Case 3: λ = (λ1, . . . , λr) with λ1 = n − O
(

n
2

9
−δ
)

for
any δ > 0. As stated next, for this case, the recoverability
thresholdK(λ) scales at least asDλ log logDλ.

Theorem III.5. A randomly generatedf as per Definition II.2
can be recovered from̂f(λ) by the sparsest-fit algorithm for
λ = (λ1, . . . , λr) with λ1 = n − n

2

9
−δ for any δ > 0, with

probability 1− o(1) as long asK ≤ (1− ε)Dλ log logDλ for
any fixedε > 0.

Case 4: Any λ = (λ1, . . . , λr). The results stated thus
far suggest that the threshold is essentiallyDλ, ignoring the
logarithm term. For generalλ, we establish a bound onK(λ)
as stated in Theorem III.6 below. Before stating the result,we
introduce some notation. For givenλ, defineα = (α1, . . . , αr)
with αi = λi/n, 1 ≤ i ≤ r. Let

H(α) = −
r
∑

i=1

αi logαi, and H ′(α) = −
r
∑

i=2

αi logαi.

Theorem III.6. Givenλ = (λ1, . . . , λr), a randomly gener-
atedf as per Definition II.2 can be recovered from̂f(λ) by
the sparsest-fit algorithm with probability1− o(1) as long as

K ≤ C D
γ(α)
λ , (3)

3Throughout this paper, bylog we mean the natural logarithm, i.e.loge,
unless otherwise stated.
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where

γ(α) =
M

M + 1

[

1− C′H(α)−H ′(α)

H(α)

]

,

with M =

⌊

1

1− α1

⌋

and 0 < C,C′ < ∞ are constants.

At a first glance, the above result seems very different
from the crisp formulas of Theorems III.3-III.5. Therefore,
let us consider a few special cases. First, observe that as
α1 ↑ 1, M/(M + 1) → 1. Further, as stated in Lemma III.1,
H ′(α)/H(α) → 1. Thus, we find that the bound on sparsity
essentially scales asDλ. Note that the cases 1, 2 and 3 fall
squarely under this scenario sinceα1 = λ1/n = 1 − o(1).
Thus, this general result contains the results of Theorems III.3-
III.5 (ignoring the logarithm terms).

Next, consider the other extreme ofα1 ↓ 0. Then,M → 1
and again by Lemma III.1,H ′(α)/H(α) → 1. Therefore, the
bound on sparsity scales as

√
Dλ. This ought to be the case

because forλ = (1, . . . , 1) we haveα1 = 1/n → 1, Dλ =
n!, and unique witness property holds only up too(

√
Dλ) =

o(
√
n!) due to the standard Birthday paradox.

In summary, Theorem III.6 appears reasonably tight for
the general form of partial informationλ. We now state the
Lemma III.1 used above (proof in Appendix A).

Lemma III.1. Consider anyα = (α1, . . . , αr) with 1 ≥ α1 ≥
· · · ≥ αr ≥ 0 and

∑r
i=1 αr = 1. Then,

lim
α1↑1

H ′(α)

H(α)
= 1,

lim
α1↓0

H ′(α)

H(α)
= 1.

Answer Four.Finally, we wish to understand the funda-
mental limitation on the ability to recoverf from f̂(λ) by
any algorithm. To obtain a meaningful bound (cf. Example
II-C.1), we shall examine this question under an appropriate
information theoretic setup.

To this end, as in random modelR(K,C ), consider a
function f generated with givenK and λ. For technical
reasons (or limitations), we will assume that the valuespis
are chosen from a discrete set. Specifically, let eachpi be
chosen from integers{1, . . . , T } instead of compact setC .
We will denote this random model byR(K,T ).

Consider any algorithm that attempts to recoverf from
f̂(λ) underR(K,T ). Let h be the estimation of the algorithm.
Define probability of error of the algorithm as

perr = Pr (h 6= f) .

We state the following result.

Theorem III.7. With respect to random modelR(K,T ), the
probability of error is uniformly bounded away from0 for all
n large enough and anyλ, if

K ≥ 3D2
λ

n logn

[

log

(

D2
λ

n logn
∨ T

)]

, (4)

where for any two numbersx andy, x∨y denotesmax {x, y}.

IV. SPARSEST-FIT ALGORITHM

As mentioned above, finding the sparsest distribution that
is consistent with the given partial information is in general a
computationally hard problem. In this section, we propose an
efficient algorithm to fit the sparsest distribution to the given
partial informationf̂(λ), for any partitionλ of n. The algo-
rithm we propose determines the sparsest distributionexactly
as long as the underlying distribution belongs to the general
family of distributions that satisfy the ‘unique witness’ and
‘linear independence’ conditions; we call this the ‘sparsest-
fit’ algorithm. In this case, it follows from Theorem III.1
that the ‘sparsest-fit’ algorithm indeed recovers the underlying
distributionf(·) exactly from partial information̂f(λ). When
the conditions are not satisfied, the algorithm produces a
certificate to that effect and aborts.

Using the degreeDλ representation of the permutations, the
algorithm processes the elements of the partial information
matrix f̂(λ) sequentially and incrementally builds the permu-
tations in the support. We describe the sparsest-fit algorithm
as a general procedure to recover a set of non-negative values
given sums of these values over a collection of subsets, which
for brevity we call subset sums. In this sense, it can be thought
of as a linear equation solver customized for a special class
of systems of linear equations.

Next we describe the algorithm in detail and prove the
relavant theorems.

A. Sparsest-fit algorithm

We now describe the sparsest-fit algorithm that was also
referred to in Theorems III.1, III.3-III.6 to recover function f
from f̂(λ) under Condition 1.

Setup.The formal description of the algorithm is given in
Fig. 1. The algorithm is described there as a generic procedure
to recover a set of non-negative values given a collection of
their subset sums. As explained in Fig. 1, the inputs to the al-
gorithm areL positive numbersq1, . . . , qL sorted in ascending
orderq1 ≤ q2 ≤ · · · ≤ qL. As stated in assumptions C1-C3 in
Fig. 1, the algorithm assumes that theL numbers are different
subset sums ofK distinct positive numbersp1, . . . , pK i.e.,
qℓ =

∑

Tℓ
pk for someTℓ ⊂ {1, 2, . . . ,K}, and the values

and subsets satisfy the conditions: for each1 ≤ k ≤ K,
pk = qℓ for some1 ≤ ℓ ≤ L and

∑

T pk 6= ∑

T ′ pk for
T 6= T ′. Given this setup, the sparsest-fit algorithm recovers
the valuespk and subset membership setsAk := {ℓ : k ∈ Tℓ}
for 1 ≤ k ≤ K usingqℓ, but without any knowledge ofK or
subsetsTℓ, 1 ≤ ℓ ≤ L.

Before we describe the algorithm, note that in order to use
the sparsest-fit algorithm to recoverf(·) we give the non-zero
elements of the partial information matrix̂f(λ) as inputsqℓ.
In this case,L equals the number of non-zero entries off̂(λ),
pk = f(σk), and the setsAk correspond toMλ(σk). Here,
assumption C1 of the algorithm is trivially satisfied. As we
argue in Section V, assumptions C2, C3 are implied by the
‘unique witness’ and ‘linear independence’ conditions.

Description. The formal description is given below in
the Fig. 1. The algorithm processes elementsq1, q2, . . . , qL
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sequentially and builds membership sets incrementally. It
maintains the number of non-empty membership sets at the
end of each iterationℓ as k(ℓ). Partial membership sets
are maintained as setsAk, which at the end of iterationℓ
equals{1 ≤ k ≤ k(ℓ) : k ∈ Tℓ′ for someℓ′ ≤ ℓ}. The values
found are maintained asp1, p2, . . . , pk(ℓ). The value ofk(0)
is initialized to zero and the setsAk are initialized to be empty.

In each iterationℓ, the algorithm checks if the valueqℓ can
be written as a subset sum of valuesp1, p2, . . . , pk(ℓ−1) for
some subsetT . If qℓ can be expressed as

∑

k∈T pk for some
T ⊂ {1, 2, . . . , k(ℓ− 1)}, then the algorithm addsℓ to sets
Ak for k ∈ T and updatesk(ℓ) as k(ℓ) = k(ℓ − 1) before
ending the iteration. In case there exists no such subsetT , the
algorithm updatesk(ℓ) as k(ℓ − 1) + 1, makes the setAk(ℓ)

non-empty by addingℓ to it, and setspk(ℓ) to qℓ. At the end
the algorithm outputs(pk, Ak) for 1 ≤ k ≤ k(L).

Input: Positive values{q1, q2, . . . , qL} sorted in ascending
order i.e.,q1 ≤ q2 ≤ . . . ≤ qL.

Assumptions:∃ positive values{p1, p2, . . . , pK} such that:

C1. For each1 ≤ ℓ ≤ L, qℓ =
∑

k∈Tℓ
pk, for someTℓ ⊆

{1, 2, . . . ,K}
C2. For each1 ≤ k ≤ K, there exists aqℓ such that

qℓ = pK .
C3.

∑

k∈T pk 6=∑k′∈T ′ pk′ , for all T, T ′ ⊆ {1, 2, . . . , J}
andT ∩ T ′ = ∅.

Output: {p1, p2, . . . , pK}, ∀ 1 ≤ k ≤ K setAk s.t.

Ak = {ℓ : qℓ =
∑

j∈T

pj and indexk belongs to setT }.

Algorithm:

initialization: p0 = 0, k(0) = 0, Ak = ∅ for all possiblek.
for ℓ = 1 to L

if qℓ =
∑

k∈T pk for some T ⊆ {0, 1, . . . , k(ℓ− 1)}
k(ℓ) = k(ℓ− 1)
Ak = Ak ∪ {ℓ} ∀ k ∈ T

else
k(ℓ) = k(ℓ− 1) + 1
pk(ℓ) = qℓ
Ak(ℓ) = Ak(ℓ) ∪ {ℓ}

end if
end for
OutputK = k(L) and (pk, Ak), 1 ≤ k ≤ K.

Fig. 1. Sparsest-fit algorithm

We now argue that under assumptions C1-C3 stated in
Fig. 1, the algorithm finds(pk, Ak) for 1 ≤ k ≤ K accurately.
Note that by Assumption C2, there exists at least oneqℓ such
that it is equal topk, for each1 ≤ k ≤ K. Assumption C3
guarantees that the condition in theif statement is not satisfied
whenever qℓ = pk(ℓ). Therefore, the algorithm correctly
assigns values to each of thepks. Note that the condition in

the if statement being true implies thatqℓ is a subset sum
of some subsetT ⊂

{

p1, p2, . . . , pk(ℓ−1)

}

. Assumption C3
ensures that if such a combination exists then it is unique.
Thus, when the condition is satisfied, indexℓ belongs only
to the setsAk such thatk ∈ T . When the condition in the
if statement is false, then from Assumptions C2 and C3 it
follows thatℓ is contained only inAk(ℓ). From this discussion
we conclude that the sparsest-fit algorithm correctly assigns all
the indices to each of theAks. Thus, the algorithm recovers
pk, Ak for 1 ≤ k ≤ K under Assumptions C1, C2 and C3.
We summarize it in the following Lemma.

Lemma IV.1. The sparsest-fit algorithm recoverspk, Ak for
1 ≤ k ≤ K under Assumptions C1, C2 and C3.

Complexity of the algorithm.Initially, we sort at mostD2
λ

elements. This has a complexity ofO(D2
λ logDλ). Further,

note that thefor loop in the algorithm iterates for at mostD2
λ

times. In each iteration, we are solving a subset-sum problem.
Since there are at mostK elements, the worst-case complexity
of subset-sum in each iteration isO(2K). Thus, the worst-case
complexity of the algorithm isO(D2

λ logDλ +D2
λ2

K). How-
ever, using the standard balls and bins argument, we can prove
that for K = O(Dλ logDλ), with a high probability, there
are at mostO(logDλ) elements in each subset-sum problem.
Thus, the complexity would then beO

(

exp(log2 Dλ)
)

with a
high probability.

V. PROOF OFTHEOREM III.1

The proof of Theorem III.1 requires us to establish two
claims : under Condition 1, (i) the sparsest-fit algorithm finds
f and (ii) theℓ0 optimization (1) hasf as it’s unique solution.
We establish these two claims in that order.

The sparsest-fit algorithm works.As noted in Section IV,
the sparsest-fit algorithm can be used to recoverf from
f̂(λ). As per Lemma IV.1, the correctness of the sparsest-
fit algorithm follows under Assumptions C1, C2 and C3. The
Assumption C1 is trivially satisfied in the context of recovering
f from f̂(λ) as discussed in Section IV. Next, we show that
Condition 1 implies C2 and C3. Note that theunique witness
of Condition 1 implies C2 while C3 is a direct implication
of linear independenceof Condition 1. Therefore, we have
established that the sparsest-fit algorithm recoversf from f̂(λ)
under Condition 1.

Unique Solution ofℓ0 Optimization.To arrive at a contra-
diction, assume that there exists a functiong : Sn → R+ such

that ĝ(λ) = f̂(λ) andL
△
= ‖g‖ℓ0 ≤ ‖f‖ℓ0 = K. Let

supp (f) = {σk ∈ Sn : 1 ≤ k ≤ K}, f(σk) = pk, 1 ≤ k ≤ K,

supp (g) = {ρℓ ∈ Sn : 1 ≤ ℓ ≤ L}, g(ρℓ) = qℓ, 1 ≤ ℓ ≤ L.

By hypothesis of Theorem III.1,f satisfies Condition 1. There-
fore, entries of matrix̂f(λ) contains the valuesp1, p2, . . . , pK .
Also, by our assumption̂f(λ) = ĝ(λ). Now, by definition,
each entry of the matrix̂g(λ) is a summation of a subset of
L numbers,qℓ, 1 ≤ ℓ ≤ L. Therefore, it follows that for each
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k, 1 ≤ k ≤ K, we have

pk =
∑

j∈Tk

qj , for some Tk ⊆ {1, 2, . . . , L} .

Equivalently,

p = Aq, (5)

wherep = [pk]1≤k≤K , q = [qℓ]1≤ℓ≤L A ∈ {0, 1}K×L.
Now consider the matrix̂f(λ). As noted before, each of its

entries is a summation of a subset of numberspk, 1 ≤ k ≤ K.
Further, eachpk, 1 ≤ k ≤ K contributes to exactlyDλ distinct
entries of f̂(λ). Therefore, it follows that the summation of
all entries off̂(λ) is Dλ(p1 + · · ·+ pK). That is,

∑

ij

f̂(λ)ij = Dλ

(

K
∑

k=1

pk

)

.

Similarly,
∑

ij

ĝ(λ)ij = Dλ

(

L
∑

ℓ=1

qℓ

)

.

But f̂(λ) = ĝ(λ). Therefore,

p · 1 = q · 1, (6)

where1 is vector of all1s of appropriate dimension (we have
abused the notation1 here): in LHS, it is of dimensionK, in
RHS it is of dimensionL. Also, from (5) we have

p · 1 = Aq · 1

=

L
∑

ℓ=1

cℓqℓ, (7)

for somecj ∈ Z+. From (6) and (7), it follows that
∑

j

qj =
∑

j

cjqj . (8)

Now, there are two options: (1) either all thecℓs are> 0, or (2)
some of them are equal to zero. In the case (1), whencℓ > 0
for all 1 ≤ ℓ ≤ L, it follows thatcℓ = 1 for each1 ≤ ℓ ≤ L; or
else, RHS of (8) will be strictly larger than LHS sinceqℓ > 0
for all 1 ≤ ℓ ≤ L by definition. Therefore, the matrixA in (5)
must contain exactly one non-zero entry, i.e.1, in each column.
Sincepk > 0 for all 1 ≤ k ≤ K, it follows that there must
be at leastK non-zero entries inA. Finally, sinceL ≤ K, it
follows that we must haveL = K. In summary, it must be that
A is aK×K matrix with each row and column having exactly
one 1, and rest of the entries0. That is,A is a permutation
matrix. That is,pk, 1 ≤ k ≤ K is permutation ofq1, . . . , qL
with L = K. By relabeling theqℓs, if required, without loss
of generality, we assume thatpk = qk, for 1 ≤ k ≤ K.
Since ĝ(λ) = f̂(λ) and pk = qk for 1 ≤ k ≤ K, it follows
that g also satisfies Condition 1. Therefore, the sparsest-fit
algorithm accurately recoversg from ĝ(λ). Since the input to
the algorithm is onlŷg(λ) and ĝ(λ) = f̂(λ), it follows that
g = f and we have reached contradiction to our assumption
that f is not the unique solution of optimization problem (1).

Now consider the remaining case (2) and suppose thatcℓ =
0 for someℓ. Then, it follows that some of the columns in

theA matrix are zeros. Removing those columns ofA we can
write

p = Ãq̃,

whereÃ is formed fromA by removing the zero columns and
q̃ is formed fromq by removingqℓs such thatcℓ = 0. Let L̃
be the size ofq̃. Since at least one column was removed,
L̃ < L ≤ K. The condition L̃ < K implies that the
vector p lies in a lower dimensional space. Further,Ã is a
0, 1 valued matrix. Therefore, it follows thatp violates the
linear independence property of Condition 1 resulting in a
contradiction. This completes the proof of Theorem III.1.

VI. PROOF OFTHEOREM III.2

We prove this theorem by showing that when two per-
mutations, sayσ1, σ2, are chosen uniformly at random, with
a high probability, the sum of their representation matrices
Mλ(σ1) +Mλ(σ2) can be decomposed in at least two ways.
For that, note that a permutation can be represented using
cycle notation, e.g. forn = 4, the permutation1 7→ 2, 2 7→
1, 3 7→ 4, 4 7→ 3 can be represented as a composition of two
cycles(12)(34). We call two cyclesdistinct if they have no
elements in common, e.g. the cycles(12) and(34) are distinct.
Given two permutationsσ1 andσ2, let σ1,2 = σ1σ2 be their
composition.

Now consider two permutationsσ1 and σ2 such that they
have distinct cycles. For example,σ1 = (1, 2) andσ2 = (3, 4)
are permutations with distinct cycles. Thenσ1,2 = σ1σ2 =
(12)(34). We first prove the theorem forλ = (n − 1, 1) and
then extend it to a generalλ; thus, we fix the partitionλ =
(n− 1, 1). Then, we have:

Mλ(σ1) +Mλ(σ2) = Mλ(σ1,2) +Mλ(id) (9)

whereσ1 and σ2 have distinct cycles andid is the identity
permutation. Now, assuming thatp1 ≤ p2, consider the
following:

p1M
λ(σ1) + p2M

λ(σ2)

= p1M
λ(σ1,2) + p1M

λ(id) + (p2 − p1)M
λ(σ2).

Thus, given f̂(λ) = p1M
λ(σ1) + p2M

λ(σ2), it can be
decomposed in two distinct ways with both having the same
ℓ1 norm. Of course, the same analysis can be carried out when
f has a sparsityK. Thus, we conclude that wheneverf has
two permutations with distinct cycles in its support, theℓ1
minimization solution is not unique. Therefore, to establish
claim of Theorem III.2, it is sufficient to prove that when
we choose two permutations uniformly at random, they have
distinct cycles with a high probability.

To this end, letE denote the event that two permutations
chosen uniformly at random have distinct cycles. Since per-
mutations are chosen uniformly at random,Pr (E ) can be
computed by fixing one of the permutations to beid. Then,
Pr (E ) is the probability that a permutation chosen at random
has more than one cycle.

Let us evaluatePr (E c). For that, consider a permutation
having exactly one cycle with the cycle containingl elements.
The number of such permutations will be

(

n
l

)

(l− 1)!. This is
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because we can choose thel elements that form the cycle in
(

n
l

)

ways and thel numbers can be arranged in the cycle in
(l − 1)! ways. Therefore,

Pr(E c) =
1

n!

n
∑

l=1

(

n

l

)

(l − 1)! =

n
∑

r=1

1

l(n− l)!
(10)

Now, without loss of generality let’s assume thatn is even.
Then,

n/2
∑

l=1

1

l(n− l)!
≤

n/2
∑

l=1

1
(

n
2

)

!
=

1
(

n
2 − 1

)

!
(11)

The other half of the sum becomes

n
∑

l=n/2

1

l(n− l)!
≤

n/2
∑

k=0

1
n
2 k!

≤ 2

n

∞
∑

k=0

1

k!
≤ O(1)

n
(12)

Putting everything together, we have

Pr(E ) ≥ 1− Pr(E c) ≥ 1−
(

1
(

n
2 − 1

)

!
+

O(1)

n

)

→ 1 asn → ∞.

Thus, Theorem III.2 is true forλ = (n− 1, 1).
In order to extend the proof to a generalλ, we observe that

the standard cycle notation for a permutation we discussed
above can be extended toλ partitions for a generalλ.
Specifically, for any givenλ, observe that a permutation can
be imagined as a perfect matching in aDλ × Dλ bipartite
graph, which we call theλ-bipartite graph and denote it by
Gλ = (V λ

1 × V λ
2 , Eλ); hereV λ

1 andV λ
2 respectively denote

the left and right vertex sets with|V λ
1 | = |V λ

2 | = Dλ with
a node for everyλ partition of n. Let t1, t2, . . . , tDλ

denote
the Dλ λ-partitions ofn; then, the nodes inV λ

1 andV λ
2 can

be labeled byt1, t2, . . . , tDλ
. Since every perfect matching in

a bipartite graph can be decomposed into its corresponding
distinct cycles (the cycles can be obtained by superposing the
bipartite graph corresponding to identity permutation with the
λ-bipartite graph of the permutation), every permutation can
be written as a combination of distinct cycles in itsλ-bipartite
graph. The special case of this forλ = (n−1, 1) is the standard
cycle notation we discussed above; for brevity, we call theλ-
bipartite graph forλ = (n− 1, 1) the standard bipartite graph.

In order to prove the theorem for a generalλ, using an
argument similar to above, it can be shown that it is sufficient
to prove that a randomly chosen permutation contains at
least two distinct cycles in itsλ-bipartite graph with a high
probability. For that, it is sufficient to prove that a permutation
with at least two distinct cycles in its standard bipartite graph
has at least two distinct cycles in itsλ-bipartite graph for
any generalλ. The theorem then follows from the result we
established above that a randomly chosen permutation has at
least two distinct cycles in its standard bipartite graph with a
high probability.

To that end, consider a permutation,σ, with at least two
distinct cycles in the standard bipartite graph. LetA :=
(a1, a2, . . . , aℓ1) and B := (b1, b2, . . . , bℓ2) denote the first
two cycles in the standard bipartite graph; clearly,ℓ1ℓ2 ≥ 2
and at least one ofℓ1, ℓ2 is ≤ n/2. Without loss of generality

we assume thatℓ2 ≤ n/2. Let λ = (λ1, λ2, . . . , λr). Since
λ1 ≥ λ2 ≥ . . . ≥ λr, we haveλr ≤ n/2. First, we consider
the case whenλr < n/2. Now consider theλ-partition, t1,
of n constructed as follows:a1 placed in therth partition,
a2 in the first partition, all the elements of the second cycle
b1, b2, . . . , bℓ2 arbitrarily in the firstr − 1 partitions and the
rest placed arbitrarily. Note that such a construction is possible
by the assumption onλr . Let t′1 denoteσ(t1); then, t′1 6= t1
becauset1 does not containa2 in the rth partition while t′1
containsσ(a1) = a2 in the rth partition. Thus, the partition
t1 belongs to a cycle that has a length of at least2 partitions.
Thus, we have found one cycle, which we denote byC1. Now
consider a second partitiont2 constructed as follows:b1 placed
in therth partition,b2 in the first and the rest placed arbitrarily.
Again, note thatσ(t2) 6= t2. Thus, t2 belongs to a cycle of
length at least2, which we denote byC2. Now we have found
two cyclesC1, C2, and we are left with proving that they are
distinct. In order to establish the cycles are distinct, note that
none of the partitions in cycleC1 can bet2. This is true
because, by construction,t2 containsb1 in the rth partition
while none of the partitions inC1 can contain any elements
from the cycleB in the rth partition. This finishes the proof
for all λ such thatλr < n/2.

We now consider the case whenλr = n/2. Sinceλ1 ≥
λr, it follows that r = 2 and λ = (n/2, n/2). For ℓ2 <
n/2, it is still feasible to constructt1 andt2, and the theorem
follows from the arguments above. Now we consider the case
when ℓ1 = ℓ2 = n/2; let ℓ := ℓ1 = ℓ2. Note that now it
is infeasible to constructt1 as described above. Therefore,
we considert1 = {a1, b2, . . . , bℓ} {b1, a2, . . . , aℓ} and t2 =
{b1, a2, . . . , aℓ} {a1, b2, . . . , bℓ}. Clearly, t1 6= t2, σ(t1) 6= t1
and σ(t2) 6= t2. Thus, t1 and t2 belong to two cycles,C1

and C2, each with length at least2. It is easy to see that
these cycles are also distinct because everyλ−partition in the
cycleC1 will have only one element from cycleA in the first
partition and, hence,C1 cannot contain theλ−partition t2.
This completes the proof of the theorem.

VII. PROOF OFTHEOREM III.3 : λ = (n− 1, 1)

Our interest is in recovering a random functionf from
partial informationf̂(λ). To this end, let

K = ‖f‖0, supp (f) = {σk ∈ Sn : 1 ≤ k ≤ K},
and f(σk) = pk, 1 ≤ k ≤ K.

Hereσk andpk are randomly chosen as per the random model
R(K,C ) described in Section II. Forλ = (n−1, 1), Dλ = n;
then f̂(λ) is ann× n matrix with its (i, j)th entry being

f̂(λ)ij =
∑

k:σk(j)=i

pk, for 1 ≤ i, j ≤ n.

To establish Theorem III.3, we prove that as long asK ≤
C1n logn with C1 = 1−ε, f can be recovered by the sparsest-
fit algorithm with probability1 − o(1) for any fixedε > 0.
Specifically, we show that forK ≤ C1n logn, Condition 1
is satisfied with probability1 − o(1), which in turn implies
that the sparsest-fit algorithm recoversf as per Theorem III.1.
Note that the “linear independence” property of Condition 1
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is satisfied with probability1 underR(K,C ) aspk are chosen
from a distribution with continuous support. Therefore, weare
left with establishing “unique witness” property.

To this end, let4δ = ε so thatC1 ≤ 1 − 4δ. Let Ek be
the event thatσk satisfies the unique witness property,1 ≤
k ≤ K. UnderR(K,C ), sinceK permutations are chosen
from Sn independently and uniformly at random, it follows
thatPr(Ek) is the same for allk. Therefore, by union bound,
it is sufficient to establish thatK Pr(E c

1 ) = o(1). Since we
are interested inK = O(n log n), it is sufficient to establish
Pr(E c

1 ) = O(1/n2). Finally, once again due the symmetry, it is
sufficient to evaluatePr(E1) assumingσ1 = id, i.e. σ1(i) = i
for all 1 ≤ i ≤ n. Define

Fj = {σk(j) 6= j, for 2 ≤ k ≤ K}, for 1 ≤ j ≤ n.

It then follows that

Pr(E1) = Pr
(

∪n
j=1Fj

)

.

Therefore, for anyL ≤ n, we have

Pr(E c
1 ) = Pr

(

∩n
j=1F

c
j

)

≤ Pr
(

∩L
j=1F

c
j

)

= Pr (F c
1 )





L
∏

j=2

Pr
(

F
c
j

∣

∣

∣
∩j−1
ℓ=1 F

c
ℓ

)



 . (13)

Next we show that for the selection ofL = n1−δ, the RHS
of (13) is bounded above byexp(−nδ) = O(1/n2). That will
complete the proof of achievability.

For that, we start by boundingPr(F c
1 ):

Pr (F c
1 ) = 1− Pr (F1)

= 1−
(

1− 1

n

)K−1

. (14)

The last equality follows because all permutations are cho-
sen uniformly at random. Forj ≥ 2, we now evaluate
Pr
(

F c
j

∣

∣

∣
∩j−1
ℓ=1 F c

ℓ

)

. Given∩j−1
ℓ=1F c

ℓ , for anyk, 2 ≤ k ≤ K,

σk(j) will take a value fromn−j+1 values, possibly including
j, uniformly at random. Thus, we obtain the following bound:

Pr
(

F
c
j

∣

∣

∣
∩j−1
ℓ=1 F

c
ℓ

)

≤ 1−
(

1− 1

n− j + 1

)K−1

.(15)

From (13)-(15), we obtain that

Pr(E c
1 ) ≤

L
∏

j=1

(

1−
(

1− 1

n− j + 1

)K−1
)

≤
[

1−
(

1− 1

n− L

)K
]L

≤
[

1−
(

1− 1

n− L

)C1n logn
]L

, (16)

where we have usedK ≤ C1n logn in the last inequality.
SinceL = n1−δ, n − L = n(1 − o(1)). Using the standard
fact 1− x = e−x(1 +O(x2)) for smallx ∈ [0, 1), we have
(

1− 1

n− L

)

= exp

(

− 1

n− L

)(

1 +O

(

1

n2

))

.(17)

Finally, observe that
(

1 +O

(

1

n2

))C1n logn

= Θ(1).

Therefore, from (16) and (17), it follows that

Pr(E c
1 ) ≤

[

1−Θ

(

exp

(

−C1 log n

1− n−δ

))]L

≤ [1−Θ(exp (−(C1 + δ) logn))]
L

=

[

1−Θ

(

1

nC1+δ

)]L

≤ exp

(

−Θ

(

L

nC1+δ

))

= exp
(

−Ω(n2δ)
)

, (18)

where we have used the fact that1 − x ≤ e−x for x ∈ [0, 1]
and L = n1−δ, C1 ≤ 1 − 4δ. From (18), it follows that
Pr(E1) = O(1/n2). This completes the proof of achievability.

VIII. P ROOF OFTHEOREM III.4 : λ = (n−m,m)

Our interest is in recovering the random functionf from
partial informationf̂(λ). As in proof of Theorem III.3, we
use the notation

K = ‖f‖0, supp (f) = {σk ∈ Sn : 1 ≤ k ≤ K},
and f(σk) = pk, 1 ≤ k ≤ K.

Hereσk andpk are randomly chosen as per the random model
R(K,C ) described in Section II. Forλ = (n−m,m), Dλ =

n!
(n−m)!m! ∼ nm and f̂(λ) is anDλ ×Dλ matrix.

To establish Theorem III.4, we shall prove that as long as
K ≤ C1n

m logn with 0 < C1 < 1
m! a constant,f can be

recovered by the sparsest-fit algorithm with probability1 −
o(1). We shall do so by verifying that the Condition 1 holds
with probability1−o(1), so that the sparsest-fit algorithm will
recoverf as per Theorem III.1. As noted earlier, the “linear
independence” of Condition 1 is satisfied with probability1
underR(K,C ). Therefore, we are left with establishing the
“unique witness” property.

To this end, for the purpose of bounding, without loss of
generality, let us assume thatK = (1−2δ)

m! nm logn for some
δ > 0. SetL = n1−δ. Following arguments similar to those in
the proof of Theorem III.3, it will be sufficient to establishthat
Pr(E c

1 = O(1/n2m); whereE1 is the event that permutation
σ1 = id satisfies the unique witness property.

To this end, recall that̂f(λ) is a Dλ × Dλ matrix. Each
row (and column) of this matrix corresponds to a distinctλ
partition ofn : ti, 1 ≤ i ≤ Dλ. Without loss of generality, let
us order theDλ λ partitions ofn so that theith partition,ti,
is defined as follows:t1 = {1, . . . , n−m}{n−m+1, . . . , n},
and for2 ≤ i ≤ L,

ti = {1, . . . , n− im, n− (i− 1)m+ 1, . . . , n}
{n− im+ 1, . . . , n− (i − 1)m}.

Note that sinceσ1 = id, we haveσ1(ti) = ti for all 1 ≤ i ≤
Dλ. Define

Fj = {σk(tj) 6= tj , for 2 ≤ k ≤ K}, for 1 ≤ j ≤ Dλ.
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Then it follows that

Pr(E1) = Pr
(

∪Dλ

j=1Fj

)

.

Therefore,

Pr(E c
1 ) = Pr

(

∩Dλ

j=1F
c
j

)

≤ Pr
(

∩L
j=1F

c
j

)

= Pr (F c
1 )





L
∏

j=2

Pr
(

F
c
j

∣

∣

∣
∩j−1
ℓ=1 F

c
ℓ

)



 . (19)

First, we boundPr(F c
1 ). Each permutationσk, k 6= 1, maps

t1 = {1, . . . , n−m}{n−m+1, . . . , n} to {σk(1), . . . σk(n−
m)}{σk(n −m + 1), . . . , σk(n)}. Therefore,σk(t1) = t1 iff
σk maps set of elements{n−m+ 1, . . . , n} to the same set
of elements. Therefore,

Pr (σk(t1) = t1) =
1
(

n
m

)

=
m!

∏m−1
ℓ=0 (n− ℓ)

.

≤ m!

(n− Lm)m
. (20)

Therefore, it follows that

Pr (F c
1 ) = 1− Pr (F1)

= 1− Pr (σk(t1) 6= t1, 2 ≤ k ≤ K)

= 1−
K
∏

k=2

(1− Pr (σk(t1) = t1))

≤ 1−
(

1− m!

(n− Lm)m

)K

. (21)

Next we evaluatePr
(

F c
j

∣

∣

∣
∩j−1
ℓ=1 F c

ℓ

)

for 2 ≤ j ≤ L.

Given ∩j−1
ℓ=1F c

ℓ , we have (at least partial) information about
the action ofσk, 2 ≤ k ≤ K over elements{n − (j −
1)m + 1, . . . , n}. Conditional on this, we are interested in
the action ofσk on tj , i.e. {n− jm+ 1, . . . , n− jm +m}.
Specifically, we want to (upper) bound the probability that
these elements are mapped to themselves. Given∩j−1

ℓ=1F
c
ℓ ,

eachσk will map {n− jm+ 1, . . . , n− jm+m} to one of
the

(

n−(j−1)m
m

)

possibilities with equal probability. Further,
{n− jm+1, . . . , n− jm+m} is not a possibility. Therefore,
for the purpose of upper bound, we obtain that

Pr
(

F
c
j

∣

∣

∣
∩j−1
ℓ=1 F

c
ℓ

)

≤ 1−
(

1− 1
(

n−(j−1)m
m

)

)K−1

≤ 1−
(

1− m!

(n− Lm)m

)K

.(22)

From (19)-(22), we obtain that

Pr(E c
1 ) ≤

[

1−
(

1− m!

(n− Lm)m

)K
]L

. (23)

Now Lm = o(n) and hencen − Lm = n(1 − o(1)). Using
1− x = e−x(1 + O(x2)) for small x ∈ [0, 1), we have

(

1− m!

(n− Lm)m

)

= exp

(

− m!

(n− Lm)m

)(

1 +O

(

1

n2m

))

. (24)

Finally, observe that sinceK = O(nm logn),
(

1 +O

(

1

n2m

))K

= Θ(1).

Thus, from (23) and (24), it follows that

Pr(E c
1 ) ≤

[

1−Θ

(

exp

(

− Km!

nm(1− Lm/n)m

))]L

≤
[

1−Θ

(

exp

(

− (1− 2δ) logn

(1− n−δm)m

))]L

≤ [1−Θ(exp (−(1− 3δ/2) logn))]
L

≤
[

1−Θ

(

1

n1−3δ/2

)]L

≤ exp
(

−Ω(Ln−1+3δ/2)
)

≤ exp
(

−Ω(nδ/2)
)

= O

(

1

n2m

)

. (25)

In above, we have used the fact that1−x ≤ e−x for x ∈ [0, 1]
and choice ofL = n1−δ. This completes the proof of Theorem
III.4.

IX. PROOF OFTHEOREM III.5: λ1 = n− n
2

9
−δ, δ > 0

So far we have obtained the sharp result that algorithm
the sparsest-fit algorithm recoversf up to sparsity essentially
1
m!n

m logn for λ with λ1 = n−m wherem = O(1). Now we
investigate this further whenm scales withn, i.e. m = ω(1).
Let λ1 = n − µ with µ ≤ n

2

9
−δ for someδ > 0. For such

λ = (λ1, . . . , λr),

Dλ =
n!

∏r
i=1 λi!

≤ n!

λ1!

≤ nn−λ1 = nµ. (26)

Our interest is in the case whenK ≤ (1−ε)Dλ log logDλ for
anyε > 0. For this, the structure of arguments will be similar
to those used in Theorems III.3 and III.4. Specifically, it will
be sufficient to establish thatPr(E c

1 ) = O(1/D2
λ), whereE1 is

the event that permutationσ1 = id satisfies the unique witness
property.

To this end, we order the rows (and corresponding columns)
of theDλ×Dλ matrix f̂(λ) in a specific manner. Specifically,
we are interested in theL = 3n

4

9
−2δ log3 n rows that we

call tℓ, 1 ≤ ℓ ≤ L and they are as follows: the first row,t1
corresponds to a partition where elements{1, . . . , λ1} belong
to the first partition and{λ1 + 1, . . . , n} are partitioned into
remainingr − 1 parts of sizeλ2, . . . , λr in that order. The
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partition t2 corresponds to the one in which the first part
contains theλ1 elements{1, . . . , n − 2µ, n − µ + 1, . . . , n},
while the otherr − 1 parts contain{n− 2µ+ 1, . . . , n− µ}
in that order. More generally, for3 ≤ ℓ ≤ L, tℓ contains
{1, . . . , n− ℓµ, n− (ℓ− 1)µ+ 1, . . . , n} in the first partition
and remaining elements{n − ℓµ + 1, . . . , n − (ℓ − 1)µ} in
the rest of ther − 1 parts in that order. By our choice ofL,
Lµ = o(n) and, hence, the above is well defined. Next, we
boundPr(E c

1 ) using theseL rows.
Now σ1 = id and henceσ1(ti) = ti for all 1 ≤ i ≤ Dλ.

Define

Fj = {σk(tj) 6= tj , for 2 ≤ k ≤ K}, for 1 ≤ j ≤ Dλ.

Then it follows that

Pr(E1) = Pr
(

∪Dλ

j=1Fj

)

.

Therefore,

Pr(E c
1 ) = Pr

(

∩Dλ

j=1F
c
j

)

≤ Pr
(

∩L
j=1F

c
j

)

= Pr (F c
1 )





L
∏

j=2

Pr
(

F
c
j

∣

∣

∣
∩j−1
ℓ=1 F

c
ℓ

)



 . (27)

First, we boundPr(F c
1 ). Each permutationσk, 1 ≤ k ≤ K

maps t1 to one of theDλ possible otherλ partitions with
equal probability. Therefore, it follows that

Pr (σk(t1) = t1) =
1

Dλ
. (28)

Thus,

Pr (F c
1 ) = 1− Pr (F1)

= 1− Pr (σk(t1) 6= t1, 2 ≤ k ≤ K)

= 1−
K
∏

k=2

(1− Pr (σk(t1) = t1))

= 1−
(

1− 1

Dλ

)K

. (29)

Next we evaluatePr
(

F c
j

∣

∣

∣
∩j−1
ℓ=1 F c

ℓ

)

for 2 ≤ j ≤ L. Given

∩j−1
ℓ=1F

c
ℓ , we have (at least partial) information about the ac-

tion of σk, 2 ≤ k ≤ K over elements{n−(j−1)µ+1, . . . , n}.
Conditional on this, we are interested in the action ofσk on
tj . Given the partial information, each of theσk will map tj to
one of at leastDλ(j) different options with equal probability
for λ(j) = (λ1 − (j − 1)µ, λ2, . . . , λr) – this is because the
elements1, . . . , λ1− (j−1)µ in the first part and all elements
in the remainingr− 1 parts are mapped completely randomly
conditional on∩j−1

ℓ=1F
c
ℓ . Therefore, it follows that

Pr
(

F
c
j

∣

∣

∣
∩j−1
ℓ=1 F

c
ℓ

)

≤ 1−
(

1− 1

Dλ(j)

)K

. (30)

From (27)-(30), we obtain that

Pr(E c
1 ) ≤

L
∏

j=1

[

1−
(

1− 1

Dλ(j)

)K
]

≤
[

1−
(

1− 1

Dλ(L)

)K
]L

. (31)

In above we have used the fact that

Dλ = Dλ(1) ≥ . . . ≥ Dλ(L).

Consider

Dλ(j)

Dλ(j+1)
=

(n− (j − 1)µ)! (λ1 − jµ)!

(n− jµ)! (λ1 − (j − 1)µ)!

=

µ−1
∏

ℓ=0

(n− (j − 1)µ− ℓ)

(λ1 − (j − 1)µ− ℓ)

=

(

n

λ1

)µ µ−1
∏

ℓ=0

1− (j−1)µ−ℓ
n

1− (j−1)µ−ℓ
λ1

(32)

Therefore, it follows that

Dλ(1)

Dλ(L)
=

(

n

λ1

)(L−1)µ (L−1)µ
∏

ℓ=0

1− ℓ
n

1− ℓ
λ1

. (33)

Using 1 + x ≤ ex for any x ∈ (−1, 1), 1 − x ≥ e−2x for
x ∈ (0, 1/2) andLµ = o(n), we have that for anyℓ, 0 ≤ ℓ ≤
(L− 1)µ

1− ℓ
n

1− ℓ
λ1

=
1− ℓ

n + ℓ
λ1

− ℓ2

nλ1

1− ℓ2

λ2

1

≤ exp

(

− ℓ2 − ℓµ

nλ1
+

2ℓ2

λ2
1

)

≤ exp

(

ℓµ

nλ1
+

2ℓ2

λ2
1

)

. (34)

Therefore, we obtain

Dλ(1)

Dλ(L)
≤

(

n

λ1

)Lµ

exp

(

Θ

(

L2µ3

nλ1
+

2L3µ3

λ2
1

))

.(35)

Now

(

n

λ1

)Lµ

=

(

1 +
µ

λ1

)Lµ

≤ exp

(

Lµ2

λ1

)

. (36)

It can be checked that for given choice ofL, µ, we have
Lµ2 = o(λ1), L3µ3 = o(λ2

1) andL2µ3 = o(nλ1). Therefore,
in summary we have that

Dλ(1)

Dλ(L)
= 1 + o(1). (37)
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Using similar approximations to evaluate the bound on RHS
of (31) along with (26) yields,

Pr(E c
1 ) ≤ exp

(

−L exp

(

− K

Dλ(L)

))

= exp (−L exp (−(1− ε) log logDλ(1 + o(1))))

≤ exp (−L exp (− log logDλ))

= exp

(

− L

logDλ

)

= exp

(

−3n
4

9
−2δ log3 n

logDλ

)

≤ exp (−2 logDλ)

=
1

D2
λ

. (38)

This completes the proof of Theorem III.5.

X. PROOF OFTHEOREM III.6: GENERAL λ

We shall establish the bound on sparsity up to which
recovery of f is possible fromf̂(λ) using the sparsest-fit
algorithm for generalλ. Let λ = (λ1, . . . , λr), r ≥ 2 with
λ1 ≥ · · · ≥ λr ≥ 1. As before, let

K = ‖f‖0, supp (f) = {σk ∈ Sn : 1 ≤ k ≤ K},
and f(σk) = pk, 1 ≤ k ≤ K.

Hereσk andpk are randomly chosen as per the random model
R(K,C ) described in Section II. And, we are given partial
information f̂(λ) which isDλ ×Dλ matrix with

Dλ =
n!

∏r
i=1 λi!

.

Finally, recall definitionα = (αi)1≤i≤r with αi = λi/n, 1 ≤
i ≤ r,

H(α) = −
r
∑

i=1

αi logαi, and H ′(α) = −
r
∑

i=2

αi logαi.

As usual, to establish that the sparsest-fit algorithm recoversf
from f̂(λ), we will need to establish “unique witness” property
as “linear independence” is satisfied due to choice ofpks as
per random modelR(K,C ).

For the ease of exposition, we will need an additional
notation ofλ-bipartite graph: it is a complete bipartite graph
Gλ = (V λ

1 ×V λ
2 , Eλ) with verticesV λ

1 , V λ
2 having a node each

for a distinctλ partition of n and thus|V λ
1 | = |V λ

2 | = Dλ.
Action of a permutationσ ∈ Sn, represented by a0/1 valued
Dλ × Dλ matrix, is equivalent to a perfect matching inGλ.
In this notation, a permutationσ has “unique witness” with
respect to a collection of permutations, if and only if thereis
an edge in the matching corresponding toσ that is not present
in any other permutation’s matching.

Let EL denote the event thatL ≥ 2 permutations chosen
uniformly at random satisfy the “unique witness” property.To
establish Theorem III.6, we wish to show thatPr(E c

K) = o(1)
as long asK ≤ K∗

1 (λ) whereK∗
1 (λ) is defined as per (3). To

do so, we shall studyPr(E c
L+1|EL) for L ≥ 1. Now consider

the bipartite graph,Gλ
L, which is subgraph ofGλ, formed by

the superimposition of the perfect matchings corresponding
to the L random permutations,σi, 1 ≤ i ≤ L. Now, the
probability of E c

L+1 given thatEL has happened is equal to
the probability that a new permutation, generated uniformly at
random, has its perfect matching so that all its edges end up
overlapping with those ofGλ

L. Therefore, in order to evaluate
this probability we count the number such permutations.

For the ease of exposition, we will first count the number of
such permutations for the cases whenλ = (n− 1, 1) followed
by λ = (n − 2, 2). Later, we shall extend the analysis to
a generalλ. As mentioned before, forλ = (n − 1, 1), the
correspondingGλ is a complete graph withn nodes on left and
right. With a bit of abuse of notation, the left and right vertices
be labeled1, 2, . . . , n. Now each permutation, sayσ ∈ Sn,
corresponds to a perfect matching inGλ with an edge from
left i to right j if and only if σ(i) = j. Now, considerGλ

L,
the superimposition of all the perfect matching of the given
L permutations. We want to count (or obtain an upper bound
on) the number of permutations that will have corresponding
perfect matching so that all of its edges overlap with edges of
Gλ

L. Now each permutation maps a vertex on left to a vertex
on right. In the graphGλ

L, each vertexi on the left has degree
of at mostL. Therefore, if we wish a choose a permutation so
that all of its perfect matching’s edges overlap with those of
GL

λ , it has at mostL choices for each vertex on left. There are
n vertices in total on left. Therefore, total number of choices
are bounded above byLn. From this, we conclude that for
λ = (n− 1, 1),

Pr(E c
L+1|EL) ≤

Ln

n!
.

In a similar manner, whenλ = (n − 2, 2), the complete
bipartite graphGλ has Dλ =

(

n
2

)

nodes on the left and
right; each permutation corresponds to a perfect matching in
this graph. We label each vertex, on left and right, inGλ

by unordered pairs{i, j}, for 1 ≤ i < j ≤ n. Again,
we wish to bound givenPr(E c

L+1|EL). For this, letGλ
L, a

subgraph ofGλ, be obtained by the union of edges that
belong to the perfect matchings of givenL permutations.
We would like to count the number possible permutations
that will have corresponding matching with edges overlapping
with those of Gλ

L. For this, we consider the⌊n/2⌋ pairs
{1, 2} , {3, 4} , . . . , {2⌊n/2⌋ − 1, 2⌊n/2⌋}. Now if n is even
then they end up covering alln elements. If not, we consider
the last,nth element,{n} as an additional set.

Now using a similar argument as before, we conclude that
there are at mostL⌊n/2⌋ ways of mapping each of these⌊n/2⌋
pairs such that all of these edges overlap with the edges of
Gλ

L. Note that this mapping fixes what each of these⌈n/2⌉
unordered pairs get mapped to. Given this mapping, there
are 2! ways of fixing the order in each unordered pair. For
example, if an unordered pair{i, j} maps to unordered pair
{k, l} there there are2! = 2 options: : i 7→ k, j 7→ l or
i 7→ l, j 7→ k. Thus, once we fix the mapping of each
of the ⌈n/2⌉ disjoint unordered pairs, there can be at most
(2!)⌈n/2⌉ permutations with the given mapping of unordered
pairs. Finally, note that once the mapping of these⌊n/2⌋
pairs is decided, ifn is even that there is no element that
is left to be mapped. Forn odd, since mapping of then− 1
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elements is decided, so is that of{n}. Therefore, in summary
in both evenn or oddn case, there are at mostL⌊n/2⌋(2!)⌈n/2⌉

permutations that have all of the edge of corresponding perfect
matching inGλ overlapping with the edges ofGλ

L. Therefore,

Pr(E c
L+1|EL) ≤

L⌊n/2⌋(2!)⌊n/2⌋

n!
.

Now consider the case of generalλ = (λ1, λ2, . . . , λr). Let
M = ⌊n/(n − λ1)⌋ andN = n −M(n − λ1). Clearly, 0 ≤
N < n−λ1. Now we partition the set{1, 2, . . . , n} into M+1
partitions covering all elements:{1, . . . , n − λ1}, . . . , {(n −
λ1)(M−1)+1, . . . , (n−λ1)M} and{(n−λ1)M+1, . . . , n}.
As before, for the purpose of upper bounding the number of
permutations that have corresponding perfect matchings inGλ

overlapping with edges ofGλ
L, each of the firstM partitions

can be mapped inL different ways; in total at mostLM ways.
For each of these mappings, we have options at the most

(λ2!λ3! . . . λr!)
M .

Given the mapping of the firstM partitions, the mapping of
theN elements of theM+1st partition is determined (without
ordering). Therefore, the additional choice is at mostN !. In
summary, the total number of permutations can be at most

LM

(

r
∏

i=2

λi!

)M

N !.

Using this bound, we obtain

Pr
(

E
c
L+1|EL

)

≤ 1

n!
LM

(

r
∏

i=2

λi!

)M

N !. (39)

Let,

xL
△
=

1

n!
LM

(

r
∏

i=2

λi!

)M

N !.

Note thatEk+1 ⊂ Ek for k ≥ 1. Therefore, it follows that

Pr (EK) = Pr (EK ∩ EK−1)

= Pr (EK |EK−1) Pr (EK−1) . (40)

Recursive application of argument behind (40) and fact that
Pr(E1) = 1, we have

Pr (EK) = Pr (E1)

K−1
∏

L=1

Pr (EL+1|EL)

=
K−1
∏

L=1

(

1− Pr
(

E
c
L+1|EL

))

=

K−1
∏

L=1

(1− xL)

≥ 1−
(

K−1
∑

L=1

xL

)

. (41)

Using (39), it follows thatxk+1 ≥ xk for k ≥ 1. Therefore,

K
∑

L=2

xL ≤ KxK

≤ 1

n!
KM+1

(

r
∏

i=2

λi!

)M

N !

=
1

n!
KM+1

(

n!

λ1!Dλ

)M

N !

=
KM+1

DM
λ

(

n!

λ1!

)M
N !

n!

=
KM+1

DM
λ

(

n!

λ1!(n− λ1)!

)M
N !((n− λ1)!)

M

n!
.(42)

Since n = N + M(n − λ1), we have a binomial and a
multinomial coefficient in RHS of (42). We simplify this
expression by obtaining an approximation for a multinomial
coefficient through Stirling’s approximation. For that, first
consider a general multinomial coefficientm!/(k1!k2! . . . kl!)
with m =

∑

i ki. Then, using the Stirling’s approximation
logn! = n logn− n+0.5 logn+O(1), for anyn, we obtain

log

(

m!

k1!k2! . . . kl!

)

= m logm−m+ 0.5 logm+O(1)−
l
∑

i=1

(ki log ki − ki + 0.5 log ki +O(1))

= m

l
∑

i=1

ki
m

log
m

ki
+ 0.5 log

m

k1k2 . . . kl
−O(l)

Thus, we can write

M log
n!

λ1!(n− λ1)!

= Mnα1 log
1

α1
+Mn(1− α1) log

1

1− α1
(43)

+ 0.5 log
1

nMαM
1 (1− α1)M

−O(M)

whereα1 = λ1/n. Similarly, we can write

log
n!

N !((n− λ1)!)M

= nδ log
1

δ
+Mn(1− α1) log

1

1− α1
(44)

+ 0.5 log
1

nMδ(1− α1)M
−O(M)

whereδ = N/n. It now follows from (43) and (44) that

M log
n!

λ1!(n− λ1)!
− log

n!

N !((n− λ1)!)M

= −Mnα1 logα1 + δn log δ (45)

+ 0.5 log
δ

αM
1

+O(M)
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Since δ < 1, δn log δ ≤ 0 and log(δ/αM
1 ) ≤ −M logα1.

Thus, we can write

M log
n!

λ1!(n− λ1)!
− log

n!

N !((n− λ1)!)M

≤ Mnα1 log(1/α1) +O(M log(1/α1))

= O(Mnα1 log(1/α1)) (46)

It now follows from (42), (45) and (46) that

log

(

K
∑

L=2

xL

)

≤(M + 1) logK −M logDλ +O(Mnα1 log(1/α1)) (47)

Therefore, forPr(EK) = 1− o(1), a sufficient condition is

logK +
c logn

M + 1

≤ M

M + 1
logDλ − M

M + 1
O(nα1 log(1/α1)) (48)

for some c > 0. We now claim that log n =
O(Mnα1 log(1/α1)). The claim is clearly true forα1 → θ
for some 0 < θ < 1. Now supposeα1 → 1. Then,
M ≥ 1/(1−α1)−1 = α1/(1−α1) = x, say. This implies that
Mα1 log(1/α1) ≥ α1x log(1 + 1/x) → 1 asα1 → 1. Thus,
Mnα1 log(1/α1) = n(1 + o(1)) for α1 → 1 as n → ∞.
Hence, the claim is true forα1 → 1 as n → ∞. Finally,
considerα1 → 0 asn → ∞. Note that the functionh(x) =
x log(1/x) is increasing on(0, ǫ) for some0 < ǫ < 1. Thus,
for n large enough,nα1 log(1/α1) ≥ logn sinceα1 ≥ 1/n.
SinceM ≥ 1, it now follows thatMnα1 log(1/α1) ≥ logn
for n large enough andα1 → 0. This establishes the claim.

Since logn = O(Mnα1 log(1/α1)), it now follows that
(48) is implied by

logK ≤ M

M + 1
logDλ − M

M + 1
O(nα1 log(1/α1))

=
M

M + 1
logDλ

[

1− O(nα1 log(1/α1))

logDλ

]

(49)

Now considerDλ = n!/(λ1!λ2! . . . λr!). Then, we claim
that for largen

logDλ ≥ 0.5nH(α). (50)

In order to see why the claim is true, note that Stirling’s
approximation suggests,

logn! = n logn− n+ 0.5 logn+O(1),

logλi! = λi logλi − λi + 0.5 logλi +O(1).

Therefore,

logDλ ≥ nH(α) + 0.5 log(n/λ1)−
r
∑

i=2

0.5(O(1) + logλi).

Now consider,

λi log(n/λi)− log λi −O(1)

=

(

λi −
logλi

log(n/λi)

)

log(n/λi)−O(1) (51)

Sinceλi ≤ n/2 for i ≥ 2, log(n/λi) ≥ log 2. Thus, the first
term in the RHS of (51) is non-negative for anyλi ≥ 1. In
addition, for everyλi, eitherλi−logλi → ∞ or log(n/λi) →
∞ as n → ∞. Therefore, the term on the RHS of (51) is
asymptotically non-negative. Hence,

logDλ ≥ 0.5nH(α). (52)

Thus, it now follows from (50) that (49) is implied by

logK ≤ M

M + 1
logDλ

[

1− O(α1 log(1/α1))

H(α)

]

.

That is, we have “unique witness” property satisfied as long
as

K = O
(

D
γ(α)
λ

)

, (53)

where

γ(α) =
M

M + 1

[

1− C′H(α) −H ′(α)

H(α)

]

, (54)

andC′ is some constant. This completes the proof of Theorem
III.6.

XI. PROOF OFTHEOREM III.7: L IMITATION ON RECOVERY

In order to make a statement about the inability ofany
algorithm to recoverf using f̂(λ), we rely on the formalism
of classical information theory. In particular, we establish
a bound on the sparsity off beyond which recovery is
not asymptotically reliable (precise definition of asymptotic
reliability is provided later).

A. Information theory preliminaries

Here we recall some necessary Information Theory prelim-
inaries. Further details can be found in the book by Cover and
Thomas [26].

Consider a discrete random variableX that is uniformly
distributed over a finite setX . Let X be transmittedover
a noisy channel to a receiver; suppose the receiver receives
a random variableY , which takes values in a finite set
Y . Essentially, such “transmission over noisy channel” setup
describes any two random variablesX,Y defined through a
joint probability distribution over a common probability space.

Now let X̂ = g(Y ) be an estimation of the transmitted in-
formation that the receiver produces based on the observation
Y using some functiong : Y → X . Define probability of
error asperr = Pr(X 6= X̂). SinceX is uniformly distributed
over X , it follows that

perr =
1

|X |
∑

x∈X

Pr(g(Y ) 6= x|x). (55)

Recovery ofX is called asymptotically reliable ifperr → 0
as |X | → ∞. Therefore, in order to show that recovery is
not asymptotically reliable, it is sufficient to prove thatperr

is bounded away from0 as |X | → ∞. In order to obtain a
lower bound onperr, we use Fano’s inequality:

H(X |X̂) ≤ 1 + perr log|X |. (56)
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Using (56), we can write

H(X) = I(X ; X̂) +H(X |X̂)

≤ I(X ; X̂) + perr log|X |+ 1
(a)

≤ I(X ;Y ) + perr log|X |+ 1

= H(Y )−H(Y |X) + perr log|X |+ 1

≤ H(Y ) + perr log|X |+ 1, (57)

where we usedH(Y |X) ≥ 0 for a discrete4 valued random
variable. The inequality (a) follows from the data processing
inequality: if we have Markov chainX → Y → X̂, then
I(X ; X̂) ≤ I(X ;Y ). SinceH(X) = log|X |, from (57) we
obtain

perr ≥ 1− H(Y ) + 1

log|X | . (58)

Therefore, to establish that probability of error is bounded
away from zero, it is sufficient to show that

H(Y ) + 1

log|X | ≤ 1− δ, (59)

for any fixed constantδ > 0.

B. Proof of theorem III.7.

Our goal is to show that whenK is large enough (in
particular, as claimed in the statement of Theorem III.7), the
probability of error ofany recovery algorithm is uniformly
bounded away from0. For that, we first fix a recovery algo-
rithm, and then utilize the above setup to show that recovery
is not asymptotically reliable whenK is large. Specifically,
we use (59), for which we need to identify random variables
X andY .

To this end, for a givenK andT , let f be generated as per
the random modelR(K,T ). Let random variableX represent
the support of functionf i.e., X takes values inX = SK

n .
Givenλ, let f̂(λ) be the partial information that the recovery
algorithm uses to recoverf . Let random variableY represent
f̂(λ), theDλ×Dλ matrix. Leth = h(Y ) denote the estimate
of f , and g = g(Y ) = supph denote the estimate of the
support off produced by the given recovery algorithm. Then,

Pr (h 6= f) ≥ Pr (supph 6= supp f)

= Pr (g(Y ) 6= X) . (60)

Therefore, in order to uniformly lower bound the probability of
error of the recovery algorithm, it is sufficient to lower bound
its probability of making an error in recovering the supportof
f . Therefore, we focus on

perr = Pr (g(Y ) 6= X) .

It follows from the discussion in Section XI-A that in order
to show thatperr is uniformly bounded away from0, it is
sufficient to show that for some constantδ > 0

H(Y ) + 1

log|X | ≤ 1− δ. (61)

4The counterpart of this inequality for a continuous valued random variable
is not true. This led us to study the limitation of recovery algorithm over model
R(K, T ) rather thanR(K,C ).

Observe that|X | = (n!)K . Therefore, using Stirling’s ap-
proximation, it follows that

log|X | = (1 + o(1))Kn logn. (62)

Now Y = f̂(λ) is a Dλ × Dλ matrix. Let Y = [Yij ] with
Yij , 1 ≤ i, j ≤ Dλ, taking values in{1, . . . ,KT }; it is easy
to see thatH(Yij) ≤ logKT . Therefore, it follows that

H(Y ) ≤
Dλ
∑

i,j=1

H(Yij)

≤ D2
λ logKT = D2

λ (logK + log T ) . (63)

For small enough constantδ > 0, it is easy to see that the
condition of (61) will follow if K satisfies the following two
inequalities:

D2
λ logK

Kn logn
≤ 1

3
(1 + δ) ⇐ K

logK
≥ 3(1− δ/2)D2

λ

n logn
, (64)

D2
λ logT

Kn logn
≤ 1

3
(1 + δ) ⇐ K ≥ 3(1− δ/2)D2

λ logT

n logn
. (65)

In order to obtain a bound onK from (64), consider the fol-
lowing: for large numbersx, y, let y = (c+ε)x log x, for some
constantsc, ε > 0. Then,log y = log x+log log x+log(c+ε)
which is (1 + o(1)) log x. Therefore,

y

log y
=

c+ ε

1 + o(1)
x ≥ cx, (66)

for x → ∞ and constantsc, ε > 0. Also, observe thaty/ log y
is a non-decreasing function; hence, it follows that fory ≥
(c+ε)x log x, y/ log y ≥ cx for largex. Now takex =

D2

λ

n logn ,
c = 3, ε = 1 and y = K. Note thatDλ ≥ n for all λ of
interest; therefore,x → ∞ asn → ∞. Hence, (64) is satisfied
for the choice of

K ≥ 4D2
λ

n logn

(

log
D2

λ

n logn

)

. (67)

From (61), (64), (65), and (67) it follows that the probability
of error of any algorithm is at leastδ > 0 for n large enough
and anyλ if

K ≥ 4D2
λ

n logn

[

log

(

D2
λ

n logn
∨ T

)]

. (68)

This completes the proof of Theorem III.7.

XII. C ONCLUSION

In summary, we considered the problem ofexactly recov-
ering a non-negative function over the space of permutations
from a given partial set of Fourier coefficients. This problem
is motivated by the wide ranging applications it has across
several disciplines. This problem has been widely studied in
the context of discrete-time functions in the recently popular
compressive sensingliterature. However, unlike our setup,
where we want to perform exact recovery from agiven setof
Fourier coefficients, the work in the existing literature pertains
to the choice of a limited set of Fourier coefficients that can
be used to perform exact recovery.

Inspired by the work of Donoho and Stark [1] in the context
of discrete-time functions, we focused on the recovery of



IEEE TRANSACTIONS ON INFORMATION THEORY 18

non-negative functions with a sparse support (support size≪
domain size). Our recovery scheme consisted of finding the
function with the sparsest support, consistent with the given
information, throughℓ0 optimization. As we showed through
some counter-examples, this procedure, however, will not
recover the exact solution in all the cases. Thus, we identified
sufficient conditions under which a function can be recovered
throughℓ0 optimization. For each kind of partial information,
we then quantified the sufficient conditions in terms of the
“complexity” of the functions that can be recovered. Since
the sparsity (support size) of a function is a natural measure
of its complexity, we quantified the sufficient conditions in
terms of the sparsity of the function. In particular, we pro-
posed a natural random generative model for the functions
of a given sparsity. Then, we derived bounds on sparsity for
which a function generated according to the random model
satisfies the sufficient conditions with a high probability as
n → ∞. Specifically, we showed that, for partial information
corresponding to partitionλ, the sparsity bound essentially
scales asDM/(M+1)

λ . For λ1/n → 1, this bound essentially
becomesDλ and forλ1/n → 0, the bound essentially becomes
D

1/2
λ .
Even though we found sufficient conditions for the re-

coverability of functions by finding the sparsest solution,ℓ0
optimization is in general computationally hard to carry out.
This problem is typically overcome by considering its convex
relaxation, theℓ1 optimization problem. However, we showed
that ℓ1 optimization fails to recover a function generated by
the random model with a high probability. Thus, we proposed
a novel iterative algorithm to performℓ0 optimization for
functions that satisfy the sufficient conditions, and extended it
to the general case when the underlying distribution may not
satisfy the sufficient conditions and the observations maybe
noisy.

We studied the limitation of any recovery algorithm by
means of information theoretic tools. While the bounds we
obtained are useful in general, due to technical limitations,
they do not apply to the random model we considered. Closing
this gap and understanding recovery conditions in the presence
of noise are natural next steps.
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APPENDIX

PROOF OFAUXILIARY LEMMA

Here we present the proof of Lemma III.1. For this, first
consider the limitα1 ↑ 1. Specifically, letα1 = 1 − ε, for
a very small positiveε. Then,

∑r
i=2 αi = 1 − α1 = ε. By

definition, we haveH ′(α)/H(α) ≤ 1; therefore, in order to
prove thatH ′(α)/H(α) → 1 asα1 ↑ 1, it is sufficient to prove
thatH ′(α)/H(α) ≥ 1− o(1) asα1 ↑ 1. For that, consider

H ′(α)

H(α)
=

H ′(α)

α1 log(1/α1) +H ′(α)

= 1− α1 log(1/α1)

α1 log(1/α1) +H ′(α)
. (69)

In order to obtain a lower bound, we minimizeH ′(α)/H(α)
overα ≥ 0. It follows from (69) that, for a givenα1 = 1− ε,
H ′(α)/H(α) is minimized for the choice ofαi, i ≥ 2 that
minimizesH ′(α). Thus, we maximize

∑r
i=2 αi logαi subject

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&amp;path=ASIN/0471241954
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to αi ≥ 0 and
∑r

i=2 αi = 1 − α1 = ε. Here we are
maximizing a convex function over a convex set. Therefore,
maximization is achieved on the boundary of the convex set.
That is, the maximum isε log ε; consequently, the minimum
value of H ′(α) = ε log(1/ε). Therefore, it follows that for
α1 = 1− ε,

1 ≥ H ′(α)

H(α)
≥ 1− −(1− ε) log(1 − ε)

ε log(1/ε)− (1− ε) log(1− ε)

≈ 1− ε

ε log(1/ε) + ε

≈ 1− 1

1 + log(1/ε)
ε→0→ 1. (70)

To prove a similar claim forα1 ↓ 0, let α1 = ε for a
small, positiveε. Then, it follows thatr = Ω(1/ε) since
∑r

i=1 αi = 1 and α1 ≥ αi for all i, 2 ≤ i ≤ r. Using a
convex maximization based argument similar to the one we
used above, it can be checked thatH ′(α) = Ω(log(1/ε)).
Therefore, it follows thatα1 log(1/α1)/H

′(α) → 0 asα1 ↓ 0.
That is,H ′(α)/H(α) → 1 asα1 ↓ 0. This completes the proof
of Lemma III.1.
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