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Abstract—We consider the problem of recovering a function
over the space of permutations (or, the symmetric group) oven
elements from given partial information; the partial infor mation
we consider is related to the group theoretic Fourier Transbrm
of the function. This problem naturally arises in several s&ings
such as ranked elections, multi-object tracking, ranking gstems,
and recommendation systems. Inspired by the work of Donoho
and Stark in the context of discrete-time functions, we foca
on non-negative functions with a sparse support (support ge
< domain size). Our recovery method is based on finding the
sparsest solution (through?, optimization) that is consistent with
the available information. As the main result, we derive suficient
conditions for functions that can be recovered exactly from
partial information through ¢, optimization. Under a natural
random model for the generation of functions, we quantify tre
recoverability conditions by deriving bounds on the sparsy
(support size) for which the function satisfies the sufficien
conditions with a high probability as n — oco. ¢, optimization
is computationally hard. Therefore, the popular compressie
sensing literature considers solving the convex relaxatip /1
optimization, to find the sparsest solution. However, we she
that ¢; optimization fails to recover a function (even with
constant sparsity) generated using the random model with aigh
probability as n — oco. In order to overcome this problem, we
propose a novel iterative algorithm for the recovery of fundions
that satisfy the sufficient conditions. Finally, using an Irformation
Theoretic framework, we study necessary conditions for ex
recovery to be possible.

Index Terms—Compressive sensing, Fourier analysis over sym-
metric group, functions over permutations, sparsest-fit.

I. INTRODUCTION
UNCTIONS over permutations serve as rich tools f

modeling uncertainty in several important practical a

of permutations given only partial information. When the

function is a probability distribution, the partial infoation

we consider can be thought of as lower-order marginals;
more generally, the types of partial information we conside

are related to the group theoretic Fourier Transform of the
function, which provides a general way yo represent varying
“amounts” of partial information. In this context, our gaal

to (a) characterize a class of functions that can be recdvere
exactly from the given partial information, and (b) design a

procedure for their recovery. We restrict ourselves to non-
negative functions, which span many of the useful practical
applications. Due to the generality of the setting we caarsid

a thorough understanding of this problem impacts a wide-
ranging set of applications. Before we present the precise
problem formulation and give an overview of our approach,

we provide below a few motivating applications that can be
modeled effectively using functions over permutations.

A popular application where functions over permutations
naturally arise is the problem ofank aggregation This
problem arises in various contexts. The classical setting i
that of ranked electionwhich has been studied in the area
of Social Choice Theoryfor the past several decades. In
the ranked election problem, the goal is to determine a
“socially preferred” ranking ofn candidates contesting an
election using the individual preference lists (permotadi
of candidates) of the voters. Since the “socially preferred
outcome should be independent of the identities of vothes, t
available information can be summarized as a function over

0q)ermutations that maps each permutatiorio the fraction
F5)_1‘ voters that have the preference list While described in

plications; they correspond to a general model class, whdhe context of elections, the ranked election setting isemor

each model has a factorial number of parameters. Howe

in many practical applications, only partial informatios iP°

available about the underlying functions; this is becaiitee
the problem setting naturally makes only partial inforroati
available, or memory constraints allow only partial infaton

to be maintained as opposed to the entire function — whi@h

Jagneral and also applies to aggregating through polls the

pulation preferences on global issues, movies, movis,sta
etc. Similarly, rank aggregation has also been studied én th
context of aggregating webpage rankings [2], where one has
to aggregate rankings over a large number of webpages. Bulk
the work done on the ranked election problem deals with

requires storing a factorial number of parameters in génerg'e question of aggregatigivenaccess to the entire function

In either case, the following important question arisesicivh

“types” of functions can be recovered from access to on

partial information? Intuitively, one expects a charaizegion

over permutations that summarizes population preferemces
|})any practical settings, however, determining the fumctio
itself is non-trivial — even for reasonable small valuesnof

that relates the “complexity” of the functions that can pkike in the setting of polling, one typically can gather opir-

recovered to the “amount” of partial information one hal

ial information about population preferences. Therefanar

access to. One of the main goals of this paper is to fAbility to recover functions over permutations from avalia

malize this statement. More specifically, this paper carsid

the problem ofexactrecovery of a function over the spacenterestingly,

partial information impacts our ability to aggregate ramgs.
in the context of ranked election, Diacof8f
showed through spectral analysis that a partial set of Eouri
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the underlying function. This hints to the possibility that
in relevant applications, limited partial information catill
capture a lot of structure of the underlying function.
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Another important problem, which has received a lot dfeen widely studied in the context of discrete-time funtdio
attention recently, is thddentity Management Probleror however, the existing approaches dont naturally extend to
the Multi-object tracking problemThis problem is motivated our setup. One of the classical approaches for recovery is to
by applications in air traffic control and sensor networksind the function with the minimum “energy” consistent with
where the goal is to track the identities af objects from the given partial information. This approach was extenaed t
noisy measurements of identities and positions. Spedificalfunctions over permutations inl[7], where the authors obtai
consider an area with sensors deployed that can identibyver bounds on the energy contained in subsets of Fourier
the unique signature and the position associated with eafansform coefficients to obtain bettés guarantees when
object when it passes close to it. Let the objects be labelesing the function the minimum “energy.” This approach, how
1,2,...,n and letz(t) = (z1(¢), z2(¢),...,2,(t)) denote the ever, does not naturally extend to the case of exact recovery
vector of positions of the: objects at timet. Whenever a another approach, which recently gained immense popylarit
sensor registers the signature of an object the veetoris the function is assumed to have a sparse support and cargitio
updated. A problem, however, arises when two objects, sage derived for the size of the support for which exact regpve
i, j, pass close to a sensor simultaneously. Because the senisoggossible. This work was pioneered by Donoho; [in [1],
are inexpensive, they tend to confuse the signatures of fhenoho and Stark use generalized uncertainty principles to
two objects; thus, after the two objects pass, the sensor hesover a discrete-time function with sparse support from a
information about the positions of the objects, but it onllimited set of Fourier coefficients. Inspired by this, wetries
has beliefs about which position belongs to which objeabur attention to functions with a sparse support.

This problem is typically modeled as a probability disttiba Assuming that the function is sparse, our approach to
over permutations, where, given a position vecidt), a performing exact recovery is to find the function with the
permutations of 1,2,...,n describes the assignment of thesparsest support that is consistent with the given partial
positions to objects. Because the measurements are noisyinformation, henceforth referred to &g optimization. This
each position vectar(¢), we assign, not a single permutationapproach is often justified by the philosophy @kccam’s

but a distribution over permutations. Since we now haverazor. We derive sufficient conditions in terms of sparsity
distribution over permutations, the factorial blow-up reakt (support size) for functions that can be recovered throfggh
challenging to maintain it. Thus, it is often approximatethg optimization. Furthermore, finding a function with the syest

a partial set of Fourier coefficients. Recent work by [4], [5$upport througHy minimization is in general computationally
deals with updating the distribution with new observatioms hard. This problem is typically overcome by considering the
the Fourier domain. In order to obtain the final beliefs ong haonvex relaxation of thé, optimization problem. However, as
to recover the distribution over permutations from a pas we show in Theorer 1lT]2, such a convex relaxation does not
of Fourier coefficients. yield exact recovery in our case. Thus, we propose a simple

Finally, consider the task of coming up with rankings foiterative algorithm called the ‘sparsest-fit' algorithnmdagorove
teams in a sports league, for example, the “Formula-one” ahat the algorithm performs exact recovery of functiong tha
racing or American football, given the outcomes of variousatisfy the sufficient conditions.
games. In this context, one approach is to model the finallt is worth noting that our work has important connections
ranking of the teams using, not just one permutation, busa dio the work done in the recently popular areacoimpressive
tribution over permutations. A similar approach has bekarta sensing Broadly speaking, this work derives sufficient con-
in ranking players in online games (cf. Microsoft’s TrudSki ditions under which the sparsest function that is consisten
solution [6]), where the authors, instead of maintainingres, with the given information can be found by solving the
maintain a distribution over scores for each player. In thiorresponding/; relaxation problem. However, as discussed
context, clearly, we can gather only partial informatiordanbelow in the section on relevant work, the sufficient codis
the goal is to fit a model to this partial information. Similaderived in this work do not apply to our setting. Therefore,
questions arise in recommendation systems in cases whene work may be viewed as presenting an alternate set of
rankings, instead of ratings, are available or are prederre conditions under which thé, optimization problem can be

In summary, all the examples discussed above relate solved efficiently.
inferring a function over permutations using partial imf@-
tion. To fix ideas, letS, denote the permutatiqn group ofA' Related Work
ordern and f: S, — R, denote a non-negative function
defined over the permutations. We assume we have access fotting sparse models to observed data has been a classical
partial information abouf(-) that, as discussed subsequentlPproach used in statistics for model recovery and is iadpir
corresponds to a subset of coefficients of the group theordly the philosophy ofOccam’s RazarMotivated by this, suf-
Fourier Transform off(-). We note here that a partial sefficient conditions based on sparsity for learnability haeer
of Fourier coefficients not only provides a rigorous way t6f great interest over years in the context of communication
compress the high-dimensional functigit) (as used in[[4], Signal processing and statistics, ¢fl [8]! [9]. In recenarge
[B]), but also have natural interpretations, which makesaiy this approach has become of particular interest due toiegcit
to gather in practice. Under this setup, our goal is to cha#evelopments and wide ranging applications including:
acterize the functiong that can be recovered. The problem « In signal processing (seé [10],_[11], [12], [13], [14])
of exact recovery of functions from a partial informatiorsha where the goal is to estimate a ‘signal’ by means of
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minimal number of measurements. This is referred to #se support for which a function generated according to the
compressive sensing. random generative model satisfies the sufficient conditions
« In coding theory through the design of low-density parityith a high probability. To our surprise, it is indeed po$sito
check codes[[15],[]116],[[17] or in the design Reedecover, with high probability, functions with seeminggrde
Solomon codes [18] where the aim is to design a codirsparsity for given partial information (see precise staphof
scheme with maximal communication rate. Theorem$ TILE-T.6 for details).
« In the context of streaming algorithms through the design Finding the sparsest solution throudh optimization is
of ‘sketches’ (see[[19],[120],[[21],[122],123]) for the computationally hard. This problem is typically overcome b
purpose of maintaining a minimal ‘memory state’ for theonsidering the/; convex relaxation of thé, optimization
streaming algorithm’s operation. problem. However, as we show in Example TI1C¢1, relax-
In all of the above work, the basic question (séel [24ftion does not always result in exact recovery, even when the
pertains to the design of am x n “measurement’ matrix the sparsity of the underlying function is only In fact, a
A so thatz can be recovered efficiently from measuremenfigcessary and sufficient condition féy relaxation to yield
y = Az (or its noisy version) using the “fewest” possibldhe sparsest solution that satisfies the constraings= Ax
number measurements. The setup of interest is when is is the so called Restricted Nu||Space Condition (RNC) on
sparse and whem < n or m < n. The type of interesting the measurement matri¥; interestingly, the more popular
results (such as those cited above) pertain to charadierizaRestricted Isoperimetric Property (RIP) on the measurémen
of the sparsityK of z that can be recovered for a given numbematrix A is a sufficient condition. However, as shown below,

of measurements.. The usual tension is between the ability téhe types of partial information we consider can be writtema
recoverz with large’ using a sensing matrix with minimal  linear transform off (-). Therefore, Example [-Cl1 shows that
m. in our setting, the measurement matrix does not satisfy RNC.

The sparsest recovery approach of this paper is similar {fnis natural to wonder if Example II-Cl1 is anomalous. We
flavor) to the above stated work; in fact, as is shown subsdlow that this is indeed not the case. Specifically, we show
quently, the partial information we consider can be writasn in Theorem(TIL.2 that, with a high probability,, relaxation
a linear transform of the functioyi(-). However, the methods fails to recover a function generated according to the ramdo
or approaches of the prior work do not apply. Specificallg, tffenerative model. _ . _
work considers finding the sparsest function consistenih wit Since convex relaxations fail in recovery, we exploit the
the given partial information by solving the correspondingiructural property of permutations to design a simple- iter
¢, relaxation problem. The work derives a necessary aRdve algorithm called the ‘sparsest-fit' algorithm to merh
sufficient condition, called thRestricted Nullspace Property fécovery. We prove that the algorithm recovers a functiomfr
on the structure of the matrixl that guarantees that the? Partial set of its Fourier coefficients as long as the famcti
solutions to the’, and ¢; relaxation problems are the saméalisfies the sufficient conditions. _

(see [T1], [21]). However, such sufficient conditions @ity ~ We also study the limitation ofny recovery algorithm
fail in our setup (see [25]). Therefore, our work provides aif récover a function exactly from a given form of partial

alternate set of conditions that guarantee efficient reyoot information. Through an application of classical inforinat
the sparsest function. theoretic Fano’s inequality, we obtain a bound on the sparsi

beyond which recovery is naisymptotically reliablea recov-
o ery scheme is called asymptotically reliable if the probgbi
B. Our Contributions of error asymptotically goes t0.

Recovery of a function over permutations from only partial In summary, we obtain an intuitive characterization of the
information is clearly a hard problem both from a theordticicomplexity” (as measured in sparsity) of the functionsttha
and computational standpoint. We make several contribstiocan be recovered from the given partial information. We show
in this paper to advance our understanding of the problemhaw ¢; relaxation fails in recovery in this setting. Hence, the
both these respects. As the main result, we obtain sufficigutficient conditions we derive correspond to an alternate s
conditions — in terms of sparsity — for functions that caaf conditions that guarantee efficient recovery of the sgsirs
be recovered exactly from partial information. Specifigall function.
our result establishes a relation between the “complexag”
measured in sparsity) of the function that can be recovered Organization
and the “amount” of partial information available. Section[) introduces the model, useful notations and the

Our recovery scheme consists of finding the sparsest gwecise formulation of the problem. In Section I1l, we prwi
lution consistent with the given partial information thghu the statements of our results. Secfion IV describes ouatiter
¢, optimization. We derive sufficient conditions under whiclalgorithm that can recovef from f(\) when certain condi-

a function can be recovered throudh optimization. First, tions (see Conditiohl1) are satisfied. Sectiohs Vb XI previd
we state the sufficient conditions for recovery through detailed proofs. Conclusions are presented Se€figh XII.
optimization in terms of the structural properties of thadu

tions. To understand the strength of the sufficient conatitio Il. PROBLEM STATEMENT

we propose a random generative model for functions with In this section, we introduce the necessary notations, defi-
a given support size; we then obtain bounds on the size nifions and provide the formal problem statement.
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A. Notations M?* contains a subset of the lower-order irreducible repre-
Let n be the number of elements aig be set of all pos- sentations; thus, for each, M* conveniently captures the

sible n! permutations or rankings of these ofelements. Our information contained in a subset of the lower-order Faurie
interest is in learning non-negative valued functigndefined Coefficients up to\. We now define the Fourier coefficient of
on S, i.e.f: S, — Ry, whereR, = {z € R: 2 >0}. The atthe representatial/*, which we call\-partial information.

support off is defined as Definition 1.1 (\-Partial Information) Given a function
- —f{oeb,: o). f: S, — R4 and partition \. The Fourier Transform co-
supp (/) = {o f(e) # 0} efficient at representationMA, which we call theA-partial

The cardinality of support]supp (f)| will be called the information, is denoted by ()\) and is defined as

sparsity of f and will be denoted byK. We will also call .

it the £, norm of f, denoted by f|o. FO) =" flo)M (o).

In this paper, we wish to learrf from a partial set of o€Sy
Fourier coefficients. To define the Fourier transform of a Recall the example of = (n—1,1) with f as a probability

function over the permutation group, we need some nOtatio'a?stribution onS,. Then, f(\) is ann x n matrix with the
n- 1

To this end, consider a partition of, i.e. an ordered tuple (i,7)th entry being the probability of elemeptmapped to

A= (A, A, such thathy > A2 > o 2 A 2 1 glgmeny underf. That is, f(\) corresponds to thérst order
andn =X + X2+ ...+ \.. For exampleA = (n — 1,1) is marginal of f in this case.

a partition ofn. Now consider a partition of the elements,
{1,...,n}, as per the\ partition, i.e. dividen elements into
r bins with ith bin having); elements. It is easy to see that C. Problem Formulation

elements can be divided as per theartition in D, distinct We wish to recover a functiory based on its partial

ways, with l information f()\) based on partition\. As noted earlier, the
D) = Ti' classical approach based on Occam’s razor suggests reapver
[Tz X! the function as a solution of the following, optimization

Let the distinct partitions be denoted by1 < i < D). For problem:
example, forA = (n — 1,1) there areD) =n!/(n— 1) =n .
distinft Ways/\givén by ) A /( ) minimize llgllo over g:Sn — Ry
subject to dg(A) = f(A). 1)
ti={1,...,i—1,i+1,....n}i}, 1<i<n.

We note that the question of recoverifigrom f(/\) is very
similar to the question studied in the context of compressed
LEgnsing, i.e. recover from y = Az. To see this, with an

use of notation imaging(\) as theD? dimensional vector
and f asn! dimensional vector. Ther,(\) = Af where each
ot — (. Wheret; = {1,...,i—1,i+1,...,n}{i} and cch]Iurlr(m ogﬁfcorresp?ndstﬁﬂ(a) for certsin permutlation.

_ . . : The key difference from the compressed sensing literatre i
toy = {1, 0() = 1,0() +1,...,nHo ()} that A is given in our setup rather than being a design choice.

Given a permutation € .S,,, its action or; is defined through
its action on then elements oft;, resulting in a\ partition
with the n elements permuted. In the above example wi
A= (n—1,1), o acts ont; to givet,, i.e.

Now, for a given partitiom\ and a permutation € S,,, define . ) ) . )
a0/1 valued D, x Dy matrix M*(c) as Question One. As the first question of interest, we wish

to identify precise conditions under whicky optimization
1, if o(t;) =1t roblem recovers the original functiofi as its unique
M) = Tl =t i <ij<py P o @) g h g
0, otherwise. soluton.
_ _ _ Unlike the popular literature (cf. compressed sensing)hsu
This matrixM* (o) corresponds to a degré®, representation conditions can not be based on sparsity only. This is well

of the permutation group. explained by the following (counter-)example. In addititie
example also shows that linear independence of the support
B. Partial Information as a Fourier Coefficient of f does not guarantee uniqueness of the solution td/ghe

The partial information we consider in this paper is thgptlmlzatmn problem.

Fourier transform coefficient of at the representation/*, Example II-C.1. For anyn > 4, consider the four permuta-
for each\. The motivation for considering Fourier coefficientsions o; = (1,2), o2 = (3,4), 03 = (1,2)(3,4) and o4 = id,

at representation&/* is two fold: first, they provide a rigorous whereid is the identity permutation. In addition, consider the
way to compress the high-dimensional functipfi) (as used partition A = (n — 1,1). Then, it is easy to see that

in [4], [B]), and second, as we shall see, Fourier coeffisiant N N N N
representationd/* have natural interpretations, which makes M?(o1) + M*(02) = M"(03) + M"(04).

it easy to gather in practice. In addition, each represiemat We now consider three cases where a bound on sparsity is

1To keep notation simple, we usg instead oft} that takes explicit NOt sufficient to guarantee the existence of a unique saiutio
dependence on into account. to
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1) This example shows that a sparsity bound (e¥eon This question is essentially an inquiry into whether the
f is not sufficient to guarantee thdtwill indeed be the situation demonstrated by Example TI-C.1 is contrived ar. no
sparsest solution. Specifically, suppose tfigt;) = p;, In other words, it is an inquiry into whether such exam-
wherep; € Ry for 1 < i < 4, and f(o) = 0 for all ples happen with vanishingly low probability for a randomly
other o € S,. Without loss of generality, lei; < p;. chosen function. To this end, we describe a natural random
Then, function generation model.

f()\) Definition 1.2 (Random Model) Given K € Z, and an
N N N N interval ¥ = [a,b], 0 < a < b, a random functionf with
=p1M*(01) + paM~(02) + psM~(03) + paM"(04)  gparsityk and values ir¢ is generated as follows: choo$é

=(p2 — p1)M*(02) + (p3 + p1)M*(03) éJermutations froms,, independently and uniformly at random
+ (pa + p1) M (04). , say o1,...,0x; select K values from% uniformly at
(pat M) random, sayp, ..., pk; then functionf is defined as
Thus, functiorny with g(o2) = pa —p1, g(o3) = p3+p1, o i oo l<i<K
9(04) = pa + p1 and g(o) = 0 for all other o € S, IO =30 sinores
is such thatj(\) = f(\) but |lgllo = 3 < 4 = ||f|o. otherwise.

That is, f can not be recovered as the solution @f \We will denote this model aB(K,%).

optimization problengd]) even when support gfis only

4. ) Question Four.Can we characterize a limitation on the
2) This example shows that althoughmight be a sparsest ability of any algorithm to recoverf from f()\) ?

solution, it may not be unique. In particular, suppose

that f(01) = f(02) = pand f(o) = 0 for all othero € I1l. M AIN RESULTS

£ _ A A _ A
Sn. Then,f(A) = pM~(ay) +pM*(03) = pM*(s) + As the main result of this paper, we provide answers to the

pM?*(a4). Thus,(D) does not have a unique solution. . . ; i ; .
3) Finally, this example shows that even though the Sufqur questions stated in Sectibn 1]-C. We start with reoglli

port of f corresponds to a linearly independent set o ome notations. LeX = (X1,..., A-) be the given partition of

. . . We wish to recover functiorf : — R, from available
columns, the sparsest solution may not be unique. NG\ f : Sn +

suppose thaf(o:) — pi, wherep; € R, for 1 < i < 3, ifformation f(A). Let the sparsity off be K,
and f(o) = 0 for all other o € S,,. Without loss of supp(f) ={o1,...,0x}, and f(ox) =pr, 1<k <K.
generality, letp; < po. Then,

. Answers One & TwoTlo answer the first two questions, we

fN) need to find sufficiency conditions for recoverifighrough?,
=p1 M (01) + poM*(02) + psM* (03) optimization [[1) and a simple algorithm to recover the func-
o A A A tion. For that, we first try to gain a qualitative understaugdbf
=(p2 = p)M(02) + (P + p1) M7 (03) + pLM(0). the conditions thaf must satisfy. Note that a necessary con-
Here, note thal{M’\(al), M s), M’\(ag)} is linearly diti_on for éo_optimizatio_n to r_ecovegf is that_ Q) m_ust have_ a
independent, yet the solution (@) is not unique. uniguesolution; otherwise, without any additional information,
we wouldn’t know which of the multiple solutions is the true
Question Two. The resolution of the first question will solution. Qlearly, smcg“(/\) - Zafsn f(U)Mk(U.)’ @) will
provide a way to recovelrf by means of solving the have a unique solution oqu '_{M (7)}aesupp(f') 1S Imea_rly
optimization problem in[{1). However, in general, it is Com!_ndependent. However, this linear independence condisipn

putationally a hard problem. Therefore, we wish to obtain 'd 9€neral, not sufficient to guarantee a unique solution; in
particular, even if{M*(c)} is linearly indepen-

simple and possibly iterative algorithm to recoyefand hence oesupp(f) N
for solving [2)). dent, there could exis{M*(o")} ,_,, such thatf(\) =
>pen Mo') and |H| < K, where K := |supp (f);

Question ThreeOnce we identify the conditions for exaCtExampIe[El illustrates such a scenario. Thus. a sufficie
recovery of f, the next natural question to ask is “howqngition for f to be the unique sparsest solution Bf (1) is
restrictive are the conditions we imposed g¢gnfor exact nat not only iS{MA(O.)} linearly independent, but
recovery?” In other words, as mentioned above, we know th{'ﬂlij( ) M) aesupp(fi)s inearly independent for
the sufficient conditions don't translate to a simple spgrsi 7 7 )J gesupp(f),0' €M y P

Al H c S, such that[#| < K; in other words, not only

bound on functions, however, can we find a sparsity bou 5 ) )
such that “most” if not all, functions that satisfy the sgigr W€ Wantd/ (0) for o & supp (f) to be linearly independent,
ut we want them to be linearly independent even after the

bound can be recovered? We make the notion of “mo diti ¢ i . h
functions precise by proposing a natural random generatﬁg ition of at MOSLX' permutations to the support of.

model for functions with a given sparsity. Then, for given glote that this cpndition is §imilar to the Restricted Isomet
partition \, we want to obtairk (\) so that ifK’ < K (\) then Property (RIP) introduced in_[10], which roughly transkte

recovery Off ger!erateq aCPording to _t.he generative mOdeIZThroughout, we will assume that the random selection is daith
from f(\) is possible with high probability. replacement.
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to the property that, optimization recoverse of sparsity ~ Answer ThreeNext, we turn to the third question. Specifi-

K from y = Ax provided every subset dfK columns of cally, we study the conditions for high probability recoaei-

A is linearly independent. Motivated by this, we impose thigy of a random functiory in terms of its sparsity. That is, we

following conditions onf. wish to identify the high probability recoverability thiesid

" - " . K (A). In what follows, we spell out the result starting with

E)Svri]r?lt'lon 1 (Sufficiency Conditions)Let f satisfy the fol- few specific cases so as to better explain the dependency of
9: K(X\) on D,.

o Unique Witnessfor any o € supp (f), there existsl < R )
iv,js < Dy such thaMi);jU (0) =1, bUtJ\/[i);jg (0') =0, Cgse tA=(n - 1, 1). Herepk =n and f(}\) prowdes_
for all o’ (£ o) € supp (f) . the first order.margmal mformat_l(_Jn. As stated next, for this

o Linear Independencefor any collection of integers ¢@5€ the achievable recoverability threshaf@)) scaled as
c1,...,cx taking values il —K, ..., K}, Zszl ckpr # nlogn.

0, unlessc; = ... =cg = 0. Theorem I111.3. A randomly generated as per Definitiof II.2

fan be recovered by the sparsest-fit algorithm with proligbil

The above discussion motivates the “unique witness” co .
(1) as long asK < (1 — e)nlogn for any fixede > 0.

dition; indeed,M* (o) for o satisfying the “unique witness” 1-o
condition are linearly independent because every perioatat _
has a unique witness and no non-zero linear combination ofc@S€ 2 A = (n —m,m) with 1 <m = O(1). Here D =
M*(o) can yield zero. On the other hand, as shown in tHa(n™) andf(A) provu_jes thenth or_dermargmal information.
proof of TheoreniTILL, thdinear independenceondition is As stated next, for this case we find thid{\) scales at least
required for the uniqueness of the sparsest solution. asn™ logn.

Now we state a formal result that establishes ConditionTheorem 1l1.4. A randomly generated as per Definitiof L2
as sufficient for recovery of as the unique solution ofy can be recovered fronf()\) by the sparsest-fit algorithm for
optimization problem. Further, it allows for a simple, @&ve )\ = (n—m,m), m = O(1), with probability1 — o(1) as long
recovery algorithm. Thus, Theordm 1ll.1 provides answers gs K < %;f)nm logn for any fixeds > 0.

questiongOne and Two of Section 1I-C. ]
In general, for any\ with Ay = n —m andm = O(1),

Theorem Il.1. Under Condition[lL, the functiory is the arguments of TheoremTll.4 can be adapted to show Ah@at)

unique solution of the, optimization problem(). Further, scales as™ logn. TheoremEIIL.B and 1[4 suggest that the re-

a simple, iterative algorithm called the sparsest-fit aigfum, coverability threshold scaleB) log D, for A = (\1,..., \;)

described in Section 1V, recovefs with A\; =n —m for m = O(1). Next, we consider the case
of more general\.

Linear Programs Don't Work.Theorem[I[.1 states that ) 5
under Conditior(11, the/, optimization recovers’ and the 2S¢ 3A = (Ar,.... A;) with A= O (no? for”
sparsest-fit algorithm is a simple iterative algorithm tooeer Ny 6 > 0. As stated next, for this case, the recoverability
it. In the context of compressive sensing literature (cifj[1 thresholdK(A) scales at least ab loglog D.

[13], [14], [21]). it has been shown that convex relaxatioffhegrem II1.5. A randomly generated as per Definitiof L2

of £y optimization, such as the Linear Programing relaxatiogan be recovered fronf()\) by the sparsest-fit algorithm for
have the same solution in similar scenarios. Therefores it \ — (AL,--.,Ar) With Ay = n — n3=9 for any § > 0, with

natural to wonder whether such a relaxation would work in ogopability 1 — o(1) as long ask < (1 —e)D, loglog Dy for
case. To this end, consider the following Linear Programingy fixeds > 0.
relaxation of [[1) stated as the following minimization

problem: Case 4 Any A = (\1,...,\). The results stated thus
far suggest that the threshold is essentidlly, ignoring the

A logarithm term. For general, we establish a bound ofi (1))
subject to  g(A) = f(A). (2) as stated in Theoref 1.6 below. Before stating the resust,

) . ) _introduce some notation. For givendefinea = (a1, ..., o)
Example[I-C.1 provides a scenario wheterelaxation fails \ith o, = ;/n, 1 <i < . Let

in recovery. In fact, we can prove a stronger result. The i, ,
following result establishes that — with a high probability H(a) = — ZO" loga;, and H'(a)= _ZO" log 0.
a function generated randomly as per Definition]Il.2 cannot ’ v " ’

be recovered by solving the linear progrédm (2) because thqfﬁeorem 6. GivenA = (Aw,..., ), a randomly gener-

exists a functiory such thag(}) = f(A) and|lgfl = || f[l+- ated f as per Definitior .2 can be recovered frofi{f\) by
Theorem II.2. Consider a functionf randomly generated the sparsest-fit algorithm with probability— o(1) as long as
as per Definitior IL.2 with sparsity’ > 2. Then, as longs as K < op'@ 3

A is not the partition(1,1,...,1) (n times), with probability = A ®)
1 - 0(1)1 there exists a functiop distinct from f such that 3Throughout this paper, blog we mean the natural logarithm, i.lg,,

g(A) = f(\) and||g|l1 = || f]]1- unless otherwise stated.

minimize llgllx over g:S, =Ry

i=1
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where IV. SPARSESTFIT ALGORITHM
(a) = M T C,H(a) — H'(a) As mentioned above, finding the sparsest distribution that
MO =7 +1 H(a) ’ is consistent with the given partial information is in gealex
. 1 computationally hard problem. In this section, we propase a
with M = L _ OqJ efficient algorithm to fit the sparsest distribution to theegi

partial informationf(/\), for any partition\ of n. The algo-
rithm we propose determines the sparsest distribugiactly
At a first glance, the above result seems very differeas long as the underlying distribution belongs to the gdnera
from the crisp formulas of Theorenis TL3-MM.5. Therefprefamily of distributions that satisfy the ‘unique witnessich
let us consider a few special cases. First, observe that ligear independence’ conditions; we call this the ‘spatse
a1 71, M/(M +1) — 1. Further, as stated in Lemrhall.1,fit" algorithm. In this case, it follows from Theorein IIl.1
H'(a)/H () — 1. Thus, we find that the bound on sparsitghat the ‘sparsest-fit’ algorithm indeed recovers the ulydey
essentially scales aB,. Note that the cases 1, 2 and 3 falfistribution f(-) exactly from partial informatiory (\). When
squarely under this scenario sinae = \;/n = 1 — o(1). the conditions are not satisfied, the algorithm produces a
Thus, this general result contains the results of TheordiBs | certificate to that effect and aborts.
L5l (ignoring the logarithm terms). Using the degre®,, representation of the permutations, the
Next, consider the other extreme @f | 0. Then,A/ — 1 algorithm processes the elements of the partial informatio
and again by Lemm@TIl 15’ («)/H (a) — 1. Therefore, the matrix f(\) sequentially and incrementally builds the permu-
bound on sparsity scales 84D,. This ought to be the casetations in the support. We describe the sparsest-fit algurit

and0 < C,C’ < oo are constants.

because for\ = (1,...,1) we havea; = 1/n — 1, D), = as a general procedure to recover a set of non-negativesvalue
n!, and unique witness property holds only upot@/D,) = given sums of these values over a collection of subsets,hwhic
o(v/n!) due to the standard Birthday paradox. for brevity we call subset sums. In this sense, it can be thbug

In summary, Theorem I1]6 appears reasonably tight f@f as a linear equation solver customized for a special class
the general form of partial informatioh. We now state the of systems of linear equations.
Lemma[lll.1 used above (proof in AppendiX A). Next we describe the algorithm in detail and prove the
relavant theorems.

Lemma lll.1. Consider anyx = (a1, ...,q,)with1 > a3 >
>, >0and)]_, a, = 1. Then, _ .
H'(a) A. Sparsest-fit algorithm
. « ) , .
hml H(a) =1, We now describe the sparsest-fit algorithm that was also
ot referred to in Theorenis 1Tl L, TMB-MII6 to recover fumah f
lim H'(e) _ 1 from f(\) under Conditiofi 1.
a1l0 H(a)

Setup.The formal description of the algorithm is given in

Answer Four.Finally, we wish to understand the fundafig.[l. The algorithm is described there as a generic proeedu
mental limitation on the ability to recovef from f()\) by !0 recover a set of non-negative values given a collection of
any algorithm. To obtain a meaningful bound (cf. Exampli€ir subset sums. As explained in Hig. 1, the inputs to the al

, we shall examine this question under an approgrig@orithm areL positive numberg;, . . ., ¢, sorted in ascending
information theoretic setup. orderg; < gz <--- < qr. As stated in assumptions C1-C3 in

To this end, as in random modet(K, %), consider a Fig.[l, the algorithm assumes that thenumbers are different
function f generated with givenk and . For technical subset sums of< distinct positive numberg,...,px ie.,
reasons (or limitations), we will assume that the valpes ¢¢ = >_, px for someT, C {1,2,..., K}, and the values
are chosen from a discrete set. Specifically, let eactbe and subsets satisfy the conditions: for each< £ < K,
chosen from integerg1,..., T} instead of compact se’. Pr = q¢ for somel < ¢ < L and} ;.px # > 5 pi for
We will denote this random model b (K, T'). T # T'. Given this setup, the sparsest-fit algorithm recovers

Consider any algorithm that attempts to recoyefrom the valuesgy and subset membership sets := {(: k € T}
f(\) underR(K,T). Let h be the estimation of the algorithm.for 1 <k < K usingg,, but without any knowledge ok™ or

Define probability of error of the algorithm as subsetsl;, 1 </ < L.
Before we describe the algorithm, note that in order to use
perr =Pr(h # f). the sparsest-fit algorithm to recovgf-) we give the non-zero
We state the following result. elements of the partial information matrj(\) as inputsg.

In this case L equals the number of non-zero entriesf¢h),

pr = f(ox), and the setsd;, correspond taM*(ay,). Here,
assumption C1 of the algorithm is trivially satisfied. As we
argue in Sectiof V, assumptions C2, C3 are implied by the
3D3 [10 ( D3 Y T)] @ ‘unique witness’ and ‘linear independence’ conditions.
nlogn ’

Theorem II.7. With respect to random modél(K,T'), the
probability of error is uniformly bounded away frofnfor all
n large enough and any, if

K

nlogn Description. The formal description is given below in

where for any two numbersandy, zVy denotesnax {z,y}. the Fig.[1. The algorithm processes elementsp. ..., qr.
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sequentially and builds membership sets incrementally.
maintains the number of non-empty membership sets at thlesome subsef” C {pl,pg, e
Partial membership setsensures that if such a combination exists then it is unique.

end of each iteratior/ as k().
are maintained as setd,, which at the end of iteratiod
equals{l < k < k({): k € T, for some¢’ < ¢}. The values
found are maintained gs, pa, . .., pr). The value ofk(0)
is initialized to zero and the sety; are initialized to be empty.

In each iteratior?, the algorithm checks if the valug can
be written as a subset sum of values pa, . . ., pr—1) for
some subset'. If ¢, can be expressed {s:keT pi for some
T C {1,2,...,k(¢{ — 1)}, then the algorithm addé to sets
Ay, for k € T and updates:(¢) ask(¢) = k(¢ — 1) before
ending the iteration. In case there exists no such substte
algorithm updates:(¢) ask(¢ — 1) + 1, makes the se#l;
non-empty by adding to it, and setsy ) to q.. At the end
the algorithm output$py, Ax) for 1 < k < k(L).

Input: Positive valuesq1, g2, ..., qr} sorted in ascendirhg

orderie.,q1 < ¢ <...<qr.

Assumptions: 3 positive values{p1, po, ..., px } such that:
Cl. Foreachl < /¢ <L, q =) ;cq, Pk for someT, C

{1,2,...,K}

C2. For eachl < k < K, there exists a, such that
d¢ = PK-

C3. ZkeTpk # Zk’eT’pk" for all T, T C {1,2, .. ,J}
andTNT' = 0.

Output: {p1,p2,...,px}, V1 <k <K setA; s.t.

Ap={l:q = ij and indexk belongs to sef'}.

JET
Algorithm:
initialization: pg = 0, k(0) = 0, Ax = 0 for all possiblek.
for /=1 to L
if qo=23 pcppr for some T C{0,1,...,k({—1)}
k() =k({—1)
AkZAkU{é} V keT
else
k() =k({—1)+1
Pre) = qe
Aoy = Ay U{L}
end if
end for

Output K = k(L) and (pg, Ak), 1 < k < K.

Fig. 1. Sparsest-fit algorithm

the if statement being true implies that is a subset sum
. Pr(—1) }- Assumption C3

Thus, when the condition is satisfied, indéxelongs only

to the setsA; such thatk € T. When the condition in the

if statement is false, then from Assumptions C2 and C3 it
follows that/ is contained only in4;,,). From this discussion
we conclude that the sparsest-fit algorithm correctly assadl

the indices to each of thd;s. Thus, the algorithm recovers
P, A for 1 < k < K under Assumptions C1, C2 and C3.
We summarize it in the following Lemma.

Lemma IV.1. The sparsest-fit algorithm recovepg, A, for
1 < k < K under Assumptions C1, C2 and C3.

Complexity of the algorithminitially, we sort at mostD3
elements. This has a complexity 6f(D3 log D,). Further,
note that thefor loop in the algorithm iterates for at moBt
times. In each iteration, we are solving a subset-sum pnoble
Since there are at mo&f elements, the worst-case complexity
of subset-sum in each iteration@¥2%). Thus, the worst-case
complexity of the algorithm i€)(D? log Dy + D32%). How-
ever, using the standard balls and bins argument, we cae prov
that for K = O(Dylog D), with a high probability, there
are at mosO(log D)) elements in each subset-sum problem.
Thus, the complexity would then i@ (exp(log® Dy)) with a
high probability.

V. PROOF OFTHEOREM[III. 1

The proof of Theorenf II[J1 requires us to establish two
claims : under Conditiohl1, (i) the sparsest-fit algorithnu$in
f and (i) the/, optimization [1) has' as it's unique solution.
We establish these two claims in that order.

The sparsest-fit algorithm work#&s noted in Section 1V,
the sparsest-fit algorithm can be used to recoyefrom
f(\). As per Lemmd IV, the correctness of the sparsest-
fit algorithm follows under Assumptions C1, C2 and C3. The
Assumption C1 is trivially satisfied in the context of recong
f from f()\) as discussed in SectiénllV. Next, we show that
Condition[1 implies C2 and C3. Note that thaique witness
of Condition[1 implies C2 while C3 is a direct implication
of linear independencef Condition[1. Therefore, we have
established that the sparsest-fit algorithm recoydrem f (A)
under ConditioIL.

Unique Solution o, Optimization.To arrive at a contra-
diction, assume that there exists a functignS,, — R such

thatg(\) = f(A) and L £ [|glle, < [ f]le = K. Let

supp (f) = {0k € S, : 1 <k < K}, f(oy) =pk, 1 <k <K,

We now argue that under assumptions C1-C3 stated k‘hpp (9)={pe€Sp:1<t<LY, glpe) =qu,1 <t<L.

Fig.[d, the algorithm findépy, Ax) for 1 < k < K accurately.
Note that by Assumption C2, there exists at least gnsuch
that it is equal topg, for eachl < k < K. Assumption C3

By hypothesis of Theorem IIll }f satisfies Conditionl1. There-
fore, entries of matriy(\) contains the valuegy, po, . . ., px.

guarantees that the condition in tiiestatement is not satisfiedAlso, by our assumptiory’(\) = §(A). Now, by definition,
wheneverq, = py). Therefore, the algorithm correctlyeach entry of the matrig(A) is a summation of a subset of
assigns values to each of thgs. Note that the condition in L numbersg,,1 < ¢ < L. Therefore, it follows that for each
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k,1 <k <K, we have the A matrix are zeros. Removing those columnsdofve can
write
= E i for some T, C {1,2,...,L}. oo
Pk Z q; k= { } p= Aq,
k

whereA is formed fromA by removing the zero columns and
g is formed fromg by removingg,s such that, = 0. Let L
p = Ag, (5) be the size ofg. Since at least one column was removed,
L < L < K. The conditon < K implies that the
vector p lies in a lower dimensional space. Further,is a
entries is a summation of a subset of numhegrs <k < K. Q’ ! va!ued matrix. Therefore, it fOHOWS. _thqt violate§ th?
linear independence property of Conditibh 1 resulting in a

Further, eachy, 1 < k < K contributes to exactlyp,, distinct . .
entries of f(\). Therefore, it follows that the summation ofcontradlcuon. This completes the proof of Theofem JIl.1.

all entries of f(\) is D(p1 + - -- + px). That is,

Equivalently,

wherep = [pipli<k<k, ¢ = [gehgegL A€ {0, 1} XL,
Now consider the matri¥ (). As noted before, each of its

VI. PROOF oFTHEOREM[IL.Z]

Zf()‘)ij — D, (im) _ We_prove this theorem by showing that when two per-
” Pt mutations, say, o2, are chosen uniformly at random, with
a high probability, the sum of their representation magice
L M*(a1) + M*(02) can be decomposed in at least two ways.
ZQ(/\)ij — D, <Z qg> ' For that, npte that a permutation can be_ represented using
> cycle notation, e.g. fon = 4, the permutation — 2,2 +—
. 1,3 — 4,4 — 3 can be represented as a composition of two
But f(\) = g(\). Therefore, cycles (12)(34). We call two cycleddistinct if they have no
1 - 4.1 ) elements in common, e.g. the cycld®) and(34) are distinct.
p 5 Given two permutations; andos, let o1 52 = o102 be their
where1 is vector of allls of appropriate dimension (we havecomposition.
abused the notatioh here): in LHS, it is of dimensiod, in Now consider two permutations; and o, such that they

Similarly,

(=1

RHS it is of dimensionL. Also, from [8) we have have distinct cycles. For example, = (1,2) andoy = (3,4)
are permutations with distinct cycles. Then, = o102 =
p-l = Ag-1 (12)(34). We first prove the theorem fox = (n — 1,1) and
B L 7 then extend it to a general; thus, we fix the partitiom\ =
- ;C"qe’ Y (n —1,1). Then, we have:
for somec; € Z, . From [8) and[{7), it follows that M o1) + M (02) = M*(01,2) + M*(id) 9)
qu _ chqj. 8) where crl.and oo have d|st|.nct cycles andll is the_ldenuty
7 ; permutation. Now, assuming that; < ps, consider the
following:
Now, there are two options: (1) either all thes are> 0, or (2) g
some of them are equal to zero. In the case (1), when 0 pr M o1) +p2MA(02)
forall1 < ¢ < L, itfollows thatc, = 1 for eachl < ¢ < L; or _ leA(ULQ) _|_p1M>\(id) + (p2 _pl)MA(O,Q).

else, RHS of[(B) will be strictly larger than LHS singe> 0

for all 1 < ¢ < L by definition. Therefore, the matrid in (§) Thus, given f(/\) = p1M*oy) + paM*oy), it can be
must contain exactly one non-zero entry, i.ein each column. decomposed in two distinct ways with both having the same
Sincep, > 0 for all 1 < k& < K, it follows that there must ¢; norm. Of course, the same analysis can be carried out when
be at leastK’ non-zero entries iM. Finally, sinceL < K, it f has a sparsity. Thus, we conclude that whenevgrhas
follows that we must havé = K. In summary, it must be that two permutations with distinct cycles in its support, the

Ais aK x K matrix with each row and column having exactlyminimization solution is not unique. Therefore, to estsibli
onel, and rest of the entrie@. That is, A is a permutation claim of TheorenIIl.2, it is sufficient to prove that when

matrix. That is,px,1 < k < K is permutation ofg;,...,qr we choose two permutations uniformly at random, they have
with L = K. By relabeling they,s, if required, without loss distinct cycles with a high probability.
of generality, we assume thaf, = g, for 1 < k < K. To this end, let& denote the event that two permutations

Sinceg(\) = f()\) andp, = g for 1 < k < K, it follows chosen uniformly at random have distinct cycles. Since per-

that ¢ also satisfies Condition] 1. Therefore, the sparsestdiitutations are chosen uniformly at randoi; (&) can be

algorithm accurately recoversfrom g(\). Since the input to computed by fixing one of the permutations to ide Then,

the algorithm is onlyj(\) and §(\) = f()), it follows that Pr (&) is the probability that a permutation chosen at random

g = f and we have reached contradiction to our assumptibas more than one cycle.

that f is not the unique solution of optimization probleld (1). Let us evaluatePr (£). For that, consider a permutation
Now consider the remaining case (2) and supposedhat having exactly one cycle with the cycle containinglements.

0 for some¢. Then, it follows that some of the columns inThe number of such permutations will §&) (! — 1)!. This is
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because we can choose thelements that form the cycle inwe assume thats < n/2. Let A\ = (A1, Aa,..., \). Since
(’l‘) ways and théd numbers can be arranged in the cycle in; > X2 > ... > A, we have)\, < n/2. First, we consider
(I — 1)! ways. Therefore, the case wher\, < n/2. Now consider the\-partition, ¢,

n of n constructed as followsa; placed in therth partition,

1 (10) a2 in the first partition, all the elements of the second cycle
— l(n—1)! by, ba, . .., by, arbitrarily in the firstr — 1 partitions and the
rest placed arbitrarily. Note that such a construction ssfie

by the assumption on,. Let ¢{ denotec(t;); then,t] # t1

Pr(£°) = %lz: (’Z) (1—1) =

Now, without loss of generality let's assume thatis even.

A

Then, oL o ro
n/2 n/2 because; does not contaim, in the rth partition whilet}
Z _1 < Z L (11) containso(ai) = az in the rth partition. Thus, the partition
=D = (5) (5-1)! t1 belongs to a cycle that has a length of at leagartitions.

Thus, we have found one cycle, which we denote’lyy Now

The other half of the sum becomes consider a second partitiagn constructed as follow$; placed

n 1 /2 1 21 (1) in therth partition,b in the first and the rest placed arbitrarily.
> 1) <> A > =, (12 again, note thatr(t,) # to. Thus,t, belongs to a cycle of
l=n/2 k=0 2 k=0 length at leas?, which we denote by’,. Now we have found
Putting everything together, we have two cyclesCy, Cy, and we are left with proving that they are
distinct. In order to establish the cycles are distinctertbiat
Pr(€) >1— Pr(6°) >1— 1 T 0(1) none of the partitions. in cycle’]l_ can .betg. This is .t_rue
(% - 1)! n because, by constructiofy containsb; in the rth partition

while none of the partitions i, can contain any elements
from the cycleB in the rth partition. This finishes the proof
Thus, Theoreri Il is true fok = (n — 1, 1). for all A such that\, < n/2.
In order to extend the proof to a generalwe observe that We now consider the case when = n/2. Since \; >
the standard cycle notation for a permutation we discussgg it follows thatr = 2 and A = (n/2,n/2). For {5 <
above can be extended td partitions for a general\. n/2, it is still feasible to construat; and¢,, and the theorem
Specifically, for any given\, observe that a permutation carfollows from the arguments above. Now we consider the case
be imagined as a perfect matching in&, x D, bipartite when?¢; = ¢» = n/2; let £ := ¢; = ¢5. Note that now it
graph, which we call the\-bipartite graph and denote it byis infeasible to construct; as described above. Therefore,
G* = (V* x Vi), E*); hereV and V3 respectively denote we considert; = {ay, b, ..., b} {b1,az,...,a;} andty, =
the left and right vertex sets with)| = [V3)| = Dy with  {by,a0,...,a;} {a1,bs, ..., be}. Clearly,t; # ta, o(t1) # t1
a node for every\ partition of n. Let t1,ts,...,tp, denote ando(tz) # t2. Thus,t; and ¢, belong to two cycles(C)
the D, A-partitions ofn; then, the nodes iv;* and V> can and C,, each with length at least. It is easy to see that
be labeled by, ts,...,tp,. Since every perfect matching inthese cycles are also distinct because everpartition in the
a bipartite graph can be decomposed into its correspondigle C; will have only one element from cycld in the first
distinct cycles (the cycles can be obtained by superposiag partition and, hence’; cannot contain the\—partition ..
bipartite graph corresponding to identity permutatiortmifie  This completes the proof of the theorem.
A-bipartite graph of the permutation), every permutation ca
be written as a combination of distinct cycles in dipartite VIl. PROOF OFTHEOREMIIL3l: A = (n — 1,1)
graph. The special case of this for= (n—1, 1) is the standard
cycle notation we discussed above; for brevity, we call the
bipartite graph for\ = (n — 1, 1) the standard bipartite graph.
In order to prove the theorem for a genepal using an K =|fllo, supp(f)={or € Sn:1<k<K},
argument similar to above, it can be shown thgt it is suff_lmen and f(ox) =pi, 1 <k < K.
to prove that a randomly chosen permutation contains at
least two distinct cycles in its-bipartite graph with a high Hereo, andp; are randomly chosen as per the random model
probability. For that, it is sufficient to prove that a peratign R(/, ¢’) described in Sectidnlll. Fox = (n—1,1), Dy = n;
with at least two distinct cycles in its standard bipartitagh then f()) is ann x n matrix with its (¢, j)th entry being
has at least two distinct cycles in its-bipartite graph for A
any general\. The theorem then follows from the result we FN)ij = Z Pks
established above that a randomly chosen permutation has at kiow(5)=i
least two distinct cycles in its standard bipartite grapthvei To establish Theorein 1113, we prove that as longkas<
high probability. Cinlogn with C; = 1—¢, f can be recovered by the sparsest-
To that end, consider a permutation, with at least two fit algorithm with probabilityl — o(1) for any fixede > 0.
distinct cycles in the standard bipartite graph. L&t := Specifically, we show that foK < Cjnlogn, Condition[1
(a1,a2,...,ap,) and B := (b1,be,...,bs,) denote the first is satisfied with probabilityl — o(1), which in turn implies
two cycles in the standard bipartite graph; cleaflyl, > 2 that the sparsest-fit algorithm recoveras per TheoremIII]1.
and at least one df;, /> is < n/2. Without loss of generality Note that the “linear independence” property of Condifidn 1

— 1 asn — oc.

Our interest is in recovering a random functighnfrom
partial informationf (). To this end, let

for 1<i,j<n.
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is satisfied with probability underR(K,¥’) aspy are chosen Finally, observe that

from a distribution with continuous support. Therefore, ave Cinlogn

left with establishing “unique witness” property. (1 +0 (%)) =0(1).
To this end, let4d = ¢ so thatC; < 1 — 44. Let &, be n

the event that, satisfies the unique witness property< Therefore, from[(16) and (17), it follows that

k < K. Under R(K,¥), since K permutations are chosen

from S,, independently and uniformly at random, it follows Pr(&f) < [1 ) (exp < G 10g_2>)}
that Pr(&) is the same for alk. Therefore, by union bound, 1-n
it is sufficient to establish thak Pr(&f) = o(1). Since we < [1— O (exp (—(Cy + 6)logn))]"
are interested i = O(nlogn), it is sufficient to establish 1 L
Pr(&f) = O(1/n?). Finally, once again due the symmetry, it is = [1 © (Wﬂ
sufficient to evaluat®r(&;) assumingr; = id, i.e.o1(i) =1 I
for all 1 < i < n. Define < exp < © (W))
jj = {Uk(]) #4, for 2<k< K}, for 1<j<n. = exp (—Q(n25)) 7 (18)

It then follows that where we have used the fact that- 2 < e~* for 2 € [0, 1]

Pr(&) = Pr (U}_.7;) . andL = n'=% C; < 1 — 46. From [I8), it follows that
Pr(&1) = O(1/n?). This completes the proof of achievability.
Therefore, for anyL < n, we have
Pr(&f) = Pr(M_,FY) VIIl. PROOF OFTHEOREMIMTLAI: A = (n — m,m)
Pr (ﬁ{ y{:) Our interest is iq recovering the random functignfrom
partial information f()). As in proof of Theoreni 1ILB, we
= Pr (& H Pr (g\c

IN

use the notation
K =|fllo, supp(f) ={ox € Sn:1<k <K},

n_ }J) .(13)

Next we show that for the selection @f = n'~9, the RHS and f(ox) =pr,1 <k < K.
of (I3) is bounded above @XP(.—.”(S) = O(1/n?). Thatwill  Hereo,, andp;, are randomly chosen as per the random model
complete the proof of achievability. (K %) descrlbed in Sectlolﬁlll Fok = (n—m,m), Dy =
Pr(#f) = 1-Pr(%) To ‘establish The_orer@M, we shall prove that as long as
K1 K < Cin™logn with 0 < C; < % a constant,f can be
- 1- <1 _ l) . (14) recovered by the sparsest-fit algorithm with probability-
n o(1). We shall do so by verifying that the Conditidh 1 holds

The last equality follows because all permutations are cheith probabilityl —o(1), so that the sparsest-fit algorithm will
sen uniformly at random. Foj > 2, we now evaluate recoverf as per Theorern Ill]1. As noted earlier, the “linear
Pr (.7¢ ﬂz_i Z¢). Given ﬂi_ie%i for anyk,2 < k < K, independence” of Conditionl 1 is satisfied with probability

o1(j )WI | take a value from—j+1 values, possibly including - under R(K,%). Therefore, we are left with establishing the

j, uniformly at random. Thus, we obtain the following bound:Uniqué Witness” property.
To this end, for the purpose of bounding, without loss of

K—-1
1 (1— 26) nm

Pr( e m] 1 yc) < 1-(1- : (15) generality, let u? atlsssume that = “—~n" logn for some
g n—j+1 0 >0.SetL = Following arguments similar to those in

From [I3){I5), we obtain that the proof of Theorem I3, it will be sufficient to establigat
. K1 Pr(&° = O(1/n*™); where & is the event that permutation

Pr(&°) < H 1-(1- 1 B o1 = id satisfies the unique witness property.

ner) = ) n—j+1 To this end, recall thaff(\) is a Dy x D, matrix. Each
= I row (and column) of this matrix corresponds to a distinct
< 1 K partition ofn : t;,1 < i < D,. Without loss of generality, let

s (1= (1- n—1L us order theD, A partitions ofn so that theith partition,;,

o L is defined as followst; = {1,...,n—m}{n—m+1,...,n},

1nlogn < i<
< l ( > ] ’ (16) and for2 <i< L,

t;={1,...,n—imn—(i—1)m+1,...,n}

where we have used& < Cinlogn in the last inequality. (n—im+1,....n—(i—1)m}.
SinceL = n'~% n — L = n(l — o(1)). Using the standard .

fact1 — z = e~*(1 + O(z?)) for smallz € [0,1), we have  Note that sincer; = id, we haveo (t;) =¢; forall 1 <i <
D). Define

1 1 1
(1_n—L) - eXp(_n—L) (HO( ))(17) F; = {owty) #t;, for 2<k<K}, for 1<j< D,
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Then it follows that Now Lm = o(n) and hencen — Lm = n(1 — o(1)). Using
1—x=e2%(1+O(x?)) for smallz € [0,1), we have
Pr(4) = Pr (U2 7).

(- =)
Therefore, (n — Lm)™

- () (o). e

Pr(&f) = Pr (mley‘;)
< Pr(nk,7) Finally, observe that sinc& = O(n™ logn),
L ) 1 K
= pr(7y) [[Pr (32; iz} 32;) . (19) <1 +0 <n2—m>) = 0(1).
=2
! Thus, from [2B) and(24), it follows that
First, we boundPr(.#7). Each permutatiom, k # 1, maps -
t1={1,....,n—m}{n—m+1,...,n} to{ok(1),...0n(n— Pr(&Y) < 1—®<exp< L m))}
m)M ow(n —m +1),...,00(n)}. Thereforegy(t1) = t iff : (1 m/”
or maps set of elementg, —m + 1,...,n} to the same set < l1—0 (e _ (1 —20)logn 10gn
of elements. Therefore, -0 P (1 —ndm)m
1 < [1—O(exp(— (1—35/2)10gn )*
Pr(op(t1) =t1) = ™ - 1 L
" ml < 1_®<n135/2)]
= 271_61 (n — 1) < exp (—Q(Ln71+35/2))
m!
< 20 _ 5/2
S —Imr (20) < exp( Q(nd/ ))
Therefore, it follows that = 0 <2L> . (25)
n m
Pr(7y) = 1-Pr (%) In above, we have used the fact that z < e~ for z € [0, 1]
1—Pr(og(t1) #t1, 2<k<K) and choice ofL, = n'~%. This completes the proof of Theorem
K Mr.4
= 1-J] @ =Pr(on(ts) =t1)) ]
k=2 IX. PROOF OFTHEOREMIILGl My =n—n5%,§ >0
< 1-(1- m! ® 21) So far we have obtained the sharp result that algorithm
- (n — Lm)™ ' the sparsest-fit algorithm recovefsup to sparsity essentially

‘ Ln™logn for A with A\; = n—m wherem = O(1). Now we
g/ ﬁ‘;) for 2 < j < L. investigate this further whem scales withn, i.e. m = w(1).

Next we evaluatePr (9‘; i
et \i = n — p with p < ns—% for somed > 0. For such

Given N)_.Z¢, we have (at least partial) information abou

the action ofoy,2 < k < K over elements{n — (j — A= (A, ),

1)m + 1,...,n}. Conditional on this, we are interested in D — n!

the action ofo;, ont;, i.e.{n — jm+1,...,n — jm+ m}. o [1izy A!

Specifically, we want to (upper) bound the probability that n!

these elements are mapped to themselves. Giver] 7y, < N

eacho—;C will map {n — jm+1,...,n — jm +m} to one of < pvM o= e (26)

the ("~U~D™) possibilities with equal probability. Further,

{n— jm+1 .,n—jm+m} is not a possibility. Therefore, Our interest is in the case whéf < (1—¢)D) loglog D, for

for the purpose of upper bound, we obtain that anye > 0. For this, the structure of arguments will be similar
to those used in Theores TlI.3 and 111.4. Specifically, itlwi

i1 1 et be sufficient to establish th&t(&) = O(1/D3), whereé is
Pr (yj(': M1 9’7) s 1-11- ( —(j—l)m) the event that permutation = id satisfies the unique witness
m K property.
< 1- (1 B m! ) 22) To this end, we order the rows (and corresponding columns)
- (n— Lm)™ of the D, x D, matrix f()) in a specific manner. Specifically,

we are interested in thé = 3n3—2 log®n rows that we

call t,,1 < ¢ < L and they are as follows: the first row,

| K1 L corresponds to a partition where elemefis. .., A\;} belong
Pr(6f) < |1- (1 _ m ) . (23 1o the first partition andA\; + 1,...,n} are partitioned into
( )m remainingr — 1 parts of sizels,...,\, in that order. The

From [19)4(22), we obtain that
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partition t5 corresponds to the one in which the first parffrom [27){3D), we obtain that
contains the\; elements{1,...,n —2u,n — p+1,...,n},

while the otherr — 1 parts contain{n — 2y +1,...,n — L 1 K

: P nin =2y n -y Pr(sy) < J[[1-(1-

in that order. More generally, fo3 < ¢ < L, t, contains 1 ‘ D))

{1,....,n—Lu,n — ({ = D)+ 1,...,n} in the first partition =1 .

and remaining elementsn — fp+1,...,n — ({ — 1)u} in 1 K

the rest of ther — 1 parts in that order. By our choice df, < 1= <1 - DA(L)) (31)

Lp = o(n) and, hence, the above is well defined. Next, we

boundPr(&Y) using thesel, rows. In above we have used the fact that

Now o1 = id and hencery(¢;) = ¢; for all 1 < i < D,.

Define Dy = Dyqy = ... = Dyu).

T ={ou(t;) #t;, for 2<k <K}, for 1<j<D\x Consider

Then it follows that Dy _ (=G =Dw! M —jp)

B D+ (n—gp)! (M — (G —1)p)!

Pr(&) = Pr (ujgly‘j). B (= D —0)

Ho=G=0

Therefore,
n pp—l 1 G=Dpu—t
Pr(&f) = Pr (mf;ly;) = </\—1) g Ppycsire; (32)
- 1
< Pr (QJL:P?JC) .
. Therefore, it follows that
= Pr () H Pr (yyc ﬂg;} yec) -(27) D (L= (L=Du 4
j=2 2 <£) n_ (33)
D) A1 £=0 1- >\L1

First, we boundPr(%#7). Each permutatiom;,1 < k < K
mapst; to one of theD, possible other\ partitions with Using1 + x < e® for anyx € (-1,1), 1 —x > e~2* for

equal probability. Therefore, it follows that z € (0,1/2) and Ly = o(n), we have that for any,0 < ¢ <
) (L—1)p
Pr(ox(t1) =1t = —. 28
ot =t) = @) 1 1-fekog
Thus, 15 1 f—;
_ _ < . 02—ty 202
c _ _ X _ -
Pr(/l) =1 Pr(/l) — p n/\l A%
= 1—Pr(op(t1) #t1, 2<k<K) m 202
K < exp (T v) (34)
n
= 1= ] (0 =Pr(on(t1) = 1)) b
k=2 Therefore, we obtain
1 K
= 1- (1 — —) . (29) L 2 3 3 3
D, Dy < (n o L2 2L3u 35
Daz) = (/\1> P ( o e ) )G9
Next we evaluatéPr (ﬁ‘f‘ QZ;} 3“;) for 2 < j < L. Given
. ow
m;;iﬂ«‘;, we have (at least partial) information about the ac-
tion of 0,2 < k < K over element§n—(j—1)u+1,...,n}. n\ X o\
Conditional on this, we are interested in the actiorogfon (A_1> = (1 + )\_1)
t;. Given the partial information, each of thg will map ¢; to L2
one of at leastD, ;) different options with equal probability < exp ()\—) (36)
for A(j) = (\1 — ( — D, Ao, ..., Ar) — this is because the !

_elementsl,._. ._7)\1 —(j —1)p in the first part and all elements|; an be checked that for given choice &f i, we have
in the remaining — 1 parts are mapped completely randoml)]cuz = o(A\1), L343 = 0(\2) and L2 = o(n)\;). Therefore

oy 1—1 c . H . il
conditional onN;_;.%;. Therefore, it follows that in summary we have that

Pr (ﬂf

K
) . (30) Dy _ 1+ o(1). (37)

Nl FE) <1 (1 -

A
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Using similar approximations to evaluate the bound on RHBe superimposition of the perfect matchings correspandin

of (31) along with [[Z6) yields, to the L random permutationsg;,1 < i < L. Now, the
K probability of &7, given that&y, has happened is equal to
Pr(&f) < exp (—L exp (— )) the probability that a new permutation, generated unifgratl
ML) random, has its perfect matching so that all its edges end up
= exp(—Lexp(—(1 —¢)loglog Dx(1 + 0(1)))) overlapping with those of:} . Therefore, in order to evaluate
< exp(—Lexp(—loglog D)) this probability we count the number such permutations.
L For the ease of exposition, we will first count the number of
- p (_1Og D)\) such permutations for the cases whee: (n—1,1) followed
a0t 25 oo by A = (n — 2,2). Later, we shall extend the analysis to
— exp <_”'70g"> a general\. As mentioned before, foh = (n — 1,1), the
log D corresponding* is a complete graph with nodes on left and
< exp(—2logDy) right. With a bit of abuse of notation, the left and right veet
1 be labeledl, 2,...,n. Now each permutation, say € S,,
- D_§ (38) corresponds to a perfect matchingd* with an edge from

left 4 to right j if and only if o(i) = j. Now, considerG?},
the superimposition of all the perfect matching of the given
L permutations. We want to count (or obtain an upper bound
X. PROOF OFTHEOREMIIL6} GENERAL A on) the number of permutations that will have corresponding
We shall establish the bound on sparsity up to whidperfect matching so that all of its edges overlap with eddes o
recovery of f is possible fromf()\) using the sparsest-fit G7- Now each permutation maps a vertex on left to a vertex

This completes the proof of Theordm TlI.5.

algorithm for general\. Let A = (X\1,...,\.),” > 2 with On right. In the graplG?}, each vertex on the left has degree
A\ >---> )\, > 1. As before, let of at mostL. Therefore, if we wish a choose a permutation so
that all of its perfect matching’s edges overlap with thofe o

K = |fllo, supp(f) ={or € Sn:1<k <K}, G¥%, it has at most. choices for each vertex on left. There are

and f(ox) =pi,1 <k < K. n vertices in total on left. Therefore, total number of chasice

are bounded above h§™. From this, we conclude that for
Hereo, andp;, are randomly chosen as per the random mod/QI_ (n—1,1)

R(K,%) described in Sectioh]ll. And, we are given partial B . n
information f(\) which is Dy x D, matrix with Pr(&714]61) < ol
Dy — n! In a similar manner, whe\ = (n — 2,2), the complete
AT A bipartite graphG* has Dy = (%) nodes on the left and

right; each permutation corresponds to a perfect matching i
this graph. We label each vertex, on left and right,Gn
by unordered pairs{i,j}, for 1 < i < j < n. Again,
r r we wish to bound giverPr(&¢ ., ,|&7). For this, letG7, a
H(a) = _Zo‘i loga;, and H'(a)= _Zo‘i logai. supgraph ofG*, be obtain(edelJ/ trze union of edgfés that
i=1 =2 belong to the perfect matchings of giveh permutations.

As usual, to establish that the sparsest-fit algorithm re/ We would like to count the number possible permutations
from (), we will need to establish “unique witness” propertyhat will have corresponding matching with edges overlagpi
as “linear independence” is satisfied due to choiceaf as with those of G}. For this, we consider thén/2] pairs
per random modeR(K, %). {1,2},4{3,4},...,{2|n/2] — 1,2|n/2]}. Now if n is even

For the ease of exposition, we will need an additiongthen they end up covering all elements. If not, we consider
notation of A-bipartite graph: it is a complete bipartite graphhe last,nth element{n} as an additional set.
G* = (V' x V3, E*) with verticesV;*, V3! having a node each  Now using a similar argument as before, we conclude that
for a distinct\ partition of n and thus|V;)| = |V;}| = D,. there are at most!™/2) ways of mapping each of these /2|
Action of a permutatiorw € S,,, represented by @/1 valued pairs such that all of these edges overlap with the edges of
D, x D, matrix, is equivalent to a perfect matching @*. G7. Note that this mapping fixes what each of thésg2]
In this notation, a permutatios has “unique witness” with unordered pairs get mapped to. Given this mapping, there
respect to a collection of permutations, if and only if thexe are 2! ways of fixing the order in each unordered pair. For
an edge in the matching correspondingrtthat is not present example, if an unordered pa{i, j} maps to unordered pair
in any other permutation’s matching. {k,1} there there ar@! = 2 options: :i — k, j — [ or

Let & denote the event that > 2 permutations choseni — [, j — k. Thus, once we fix the mapping of each
uniformly at random satisfy the “unique witness” propeffiy. of the [n/2] disjoint unordered pairs, there can be at most
establish TheoremI6, we wish to show tHat(&%) = o(1)  (2!)[*/?1 permutations with the given mapping of unordered
as long asf < K} (\) whereK;()\) is defined as pef13). To pairs. Finally, note that once the mapping of thdse'2]
do so, we shall studyr(&7,,|67) for L > 1. Now consider pairs is decided, if» is even that there is no element that
the bipartite graph}, which is subgraph o&*, formed by is left to be mapped. For odd, since mapping of the — 1

Finally, recall definitiona = (a;)1<i<r With o; = Aj/n, 1 <
1 <7,
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elements is decided, so is that{ff}. Therefore, in summary Using [39), it follows thatry, 1 > zj for k£ > 1. Therefore,
in both evern or oddn case, there are at makt™/2J (2!)[/2] .
permutations that have all of the edge of correspondingeperf Z

matching inG* overlapping with the edges @i} . Therefore, =~ < Kok
M
. Lln/21 (21 n/2] 1 r
Pr(&74161) < Y T < HKM“ H Al N
=2
Now consider the case of genepak (A1, A2, ..., ). Let _ iKMH n M v
M =|n/(n—X)] andN =n — M(n — \y). Clearly,0 < n! A\ !D, :
N < n—2X;. Now we partition the sef1,2,...,n} into M+1 KM+ £ o\ M N
partitions covering all elementdl,...,n — A}, ..., {(n — = i <F> —
M)(M—=1)41,...,(n=X\)M} and{(n—X\)M+1,...,n}. A vsmw o
As before, for the purpose of upper bounding the number of KM n! N!((n — )\1)!)1,‘{,2)
permutations that have corresponding perfect matching&'in N DY\ Ml(n — Ap)! n! v

overlapping with edges afi}, each of the first\/ partitions ) )
can be mapped i different ways; in total at most™ ways. Sinceén = N + M(n — A;), we have a binomial and a

For each of these mappings, we have options at the most multinomial coefficient in RHS of[(42). We simplify this
expression by obtaining an approximation for a multinomial

(AaAs! . A NM. coefficient through Stirling’s approximation. For that,sfir
consider a general multinomial coefficiemtl / (k1'ks! . .. k;!)
Given the mapping of the first/ partitions, the mapping of With m = . k;. Then, using the Stirling’s approximation
the N elements of thé\/ + 1st partition is determined (without log n! = nlogn —n 4 0.5logn + O(1), for anyn, we obtain
ordering). Therefore, the additional choice is at mad&t In

summary, the total number of permutations can be at most ml
1 -
.M Og<k1!k2!...kl!>
M <H/\i!> NI = mlogm —m+ 0.5logm + O(1)—
=2 l

Z (kilogk; — k; + 0.5logk; + O(1))

Using this bound, we obtain =

M Lk m m
. 1 4 =mY “log— +0.5log ——— — O(1
Thus, we can write
Let,
ILé iLM <H/\i!> NI o8 Al(n = Ap)!
n! 1. 1
=2 = Mnajlog— + Mn(1 — a;)log T (43)
Note thaté 1 C & for k > 1. Therefore, it follows that ™ 1 o
+0.5log —+—7 - — O(M)
Pr(&x) = Pr(€xn&x_i) ntoq’(l — o)
= Pr(8x|€x-1)Pr(Ex-1). (40) whereay = Ay /n. Similarly, we can write
Recursive application of argument behifd](40) and fact that log I
Pr(&)) = 1, we have NI((n— A )HM
1 1
K1 = ndlog 5 + Mn(1l — aq)log T (44)
Pr (& = Pr(& Pr(&p11|6 1
(i) ) }1 (Gralén) +0.5log ——————— — O(M)
o nM§(1 —ap)M
= (1 =Pr(&f4l6L)) whered = N/n. It now follows from [43) and[{44) that
L=1
K—1 TL' ’I’L'
Mlog ————— —log ———————+
= J[a-= BN — ) BN ((n— Aa)HM
L=1 = — Mnaylogag + dnlogd (45)

Y

K-1
b
1-— (Lzle> (41) +0.510ga—%[ + O(M)
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Sinced < 1, dnlogs < 0 andlog(6/al) < —Mloga;.
Thus, we can write

n! n!
=)l NI = AD™
Mnaqlog(1/ar) + O(M log(1/aq))
O(Mnay log(1/ax))

It now follows from [42), [45) and (46) that

g (i )

<(M +1)log K — Mlog Dy + O(Mnay log(1/ay)) (47)

Mlog)\
1

IN

(46)

Therefore, forPr(&%x) = 1 — o(1), a sufficient condition is

clogn
M+1

log K +

log D) — O(nay log(1/aq)) (48)

< M
TM+1 M+1
for some ¢ > 0. We now claim thatlogn
O(Mnaylog(1/aq)). The claim is clearly true foryy, — 6
for some0 < 6 < 1. Now supposea; — 1. Then,
M>1/(1-a1)—1=a1/(1—a1) = z, say. This implies that
Moy log(l/a1) > aqzlog(l +1/2) — 1 asa; — 1. Thus,
Mnaqlog(1/a1) = n(l + o(1)) for «; — 1 asn — .
Hence, the claim is true fon; — 1 asn — oo. Finally,
considera; — 0 asn — oo. Note that the functiork(z) =
xlog(1/x) is increasing or(0, ) for some0 < ¢ < 1. Thus,
for n large enoughna; log(1/a1) > logn sincea; > 1/n.
Since M > 1, it now follows thatMnaq log(1/ay) > logn
for n large enough and; — 0. This establishes the claim.
Sincelogn = O(Mna;log(1/aq)), it now follows that

(48) is implied by

M M
< —
log K < 1 log D n 1O(na1 log(1/aq))
O(naq log(1/an))
= log Dy |1 — 49
M1 8 log D), (49)

Now considerDy, = n!/(A!Xa!...
that for largen

Arl). Then, we claim

log Dy > 0.5nH (). (50)

In order to see why the claim is true, note that Stirling’s Now et X —

approximation suggests,

logn! = nlogn—n+0.5logn+ O(1),
log X! = MNlogh — A +0.5logA; + O(1).
Therefore,

205

log Dy > nH(a)+0.5log(n/A)

Now consider,
Ailog(n/N;) —log A; — O(1)

_<)\1-— log >log(n/ki)—0(1)

Tog(n/ %) 1)

) +log \;).

16

Since\; < n/2 for i > 2, log(n/\;) > log2. Thus, the first
term in the RHS of[(51) is non-negative for any > 1. In
addition, for every\;, either\; —log \; — oo orlog(n/\;) —

co asn — oo. Therefore, the term on the RHS ¢f [51) is
asymptotically non-negative. Hence,

logDy > 0.5nH(«). (52)
Thus, it now follows from[(BD) tha{{49) is implied by
O(av log(1/an))
< -
log K < M+110gD,\ [1 ()
That is, we have “unique witness” property satisfied as long
as
K = O (D;“’)) , (53)
where
M H(a) — H'(a)
= 1-C'——— 54
o) = g [1- e s

andC’ is some constant. This completes the proof of Theorem

XI.

In order to make a statement about the inability asfy
algorithm to recoverf using f()\), we rely on the formalism
of classical information theory. In particular, we establi
a bound on the sparsity of beyond which recovery is
not asymptotically reliable (precise definition of asynijmo
reliability is provided later).

PROOF OFTHEOREMIIL. 7! L IMITATION ON RECOVERY

A. Information theory preliminaries

Here we recall some necessary Information Theory prelim-
inaries. Further details can be found in the book by Cover and
Thomas|[[26].

Consider a discrete random variahlé that is uniformly
distributed over a finite sef2”. Let X be transmittedover
a noisy channel to a receiver; suppose the receiver receives
a random variableY, which takes values in a finite set
% . Essentially, such “transmission over noisy channel” getu
describes any two random variabla@s Y defined through a
Joint probability distribution over a common probabilitgace.
g(Y') be an estimation of the transmitted in-
formation that the receiver produces based on the obsenvati
Y using some functiory : # — 2 . Define probability of
error asper = Pr(X # X). Since X is uniformly distributed
over 2, it follows that

Perr = |£f| Z Pr

reX

Y) # alo). (55)
Recovery of X is called asymptotically reliable ipe;r — 0

as | 2’| — oo. Therefore, in order to show that recovery is
not asymptotically reliable, it is sufficient to prove that;

is bounded away frond as|Z2’| — co. In order to obtain a
lower bound orperr, we use Fano’s inequality:

H(XlX) < 1+perr10g|f%|' (56)
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Using [56), we can write Observe thal.2’| = (n!)X. Therefore, using Stirling’s ap-
HX) = I(X; A)+H(X|X) proximation, it follows that

< I(X;X)+ perlog|Z| + 1 log|2"] = (1+40(1))Knlogn. (62)
(@ Now Y = f(\) is a Dy x D, matrix. LetY = [Y;;] with
< I(X;Y log| 2| + 1 A AT "
< I(X5Y) + perlog] 2] + Yi;,1 <i,j < Dy, taking values in{1,..., KT}; it is easy
= H({Y) - H(Y|X) + perlog| 2] +1 to see thatd (Y;;) < log KT. Therefore, it follows that
< H(Y) +perr10g|%| +1, (57) Dy

where we usedd (Y|X) > 0 for a discretd valued random HY) < Z H(Y;j)

variable. The inequality (a) follows from the data procegsi i,j=1

inequality: if we have Markov chain’ — Y — X, then
I(X;X) < I(X;Y). Since H(X) = log| 2|, from (&1) we

IN

D3log KT = D3 (logK +1logT). (63)

For small enough constart > 0, it is easy to see that the

obtain
HY) 4+ 1 condition of [61) will follow if K satisfies the following two
Per > 1-— % (58) inequalities:
0og
. - . D?logK 1 K 3(1—-6/2)D2
Therefore, to establish that probability of error is bowhde% <3 (1+6) < o > ( 1 /2) A (64)
away from zero, it is sufficient to show that DQGL Ong . 08 31 6/;)8%711 -
) log - ) og
—A 2" < (14946 K> . (65
% 1—94, (59) Knlogn_3( +9) = - nlogn (65)
) ©8 In order to obtain a bound o from (64), consider the fol-
for any fixed constand > 0. lowing: for large numbers, y, lety = (c+¢)x log z, for some
constants;, e > 0. Then,logy = log z +loglog z +log(c+¢)
B. Proof of theorer IILI7. which is (1 + o(1)) log z. Therefore,
Our goal is to show that wher is large enough (in y c+¢e
particular, as claimed in the statement of Theofemllll.f@g, t gy 1tom’ = (66)

probability of error ofany recovery algorithm is uniformly

bounded away frond. For that, we first fix a recovery algo-for « — oo and constants, e > 0. Also, observe thay/ log y
rithm, and then utilize the above setup to show that recovefy@ Non-decreasing function; hence, it follows thathjzoiz
is not asymptotically reliable whei is large. Specifically, (c+¢&)zlogz,y/logy > cx for largex. Now takex = 22,
we use[(5B), for which we need to identify random variables= 3, ¢ = 1 andy = K. Note thatD, > n for all A of

X andY. interest; thereforey; — co asn — oo. Hence, [(64) is satisfied
To this end, for a giver andT, let f be generated as perfor the choice of

the random modeR (K, T"). Let random variableX represent 4D3 D3

the support of functiory i.e., X takes values in2" = SK. K =2 nlogn ( nlogn) (67)

Given ), let f(/\) be the partial information that the recoveryFro
algorithm uses to recovefi. Let random variablé” represent
f(X\), the Dy x Dy matrix. Leth = h(Y") denote the estimate

m [61), [64),[(65), and (67) it follows that the probatlili

of error of any algorithm is at least> 0 for n large enough

of f, andg = g(Y) = supph denote the estimate of the?"d WA If
: _ , ,
support off produced by the given recovery algorithm. Then, K > 41DA [10 ( 1D/\ y T)] | )
Pr(h# f) > Pr(supph # supp f) nlogn nlogn
= Pr(g(Y)#X). (60) This completes the proof of TheordmTII.7.
Therefore, in order to uniformly lower bound the probajpitif XIl. CONCLUSION

error of the recovery algorithm, it is sufficient to lower b
its probability of making an error in recovering the suppafrt
f. Therefore, we focus on

In summary, we considered the problemeofactly recov-
ering a non-negative function over the space of permutstion
from a given partial set of Fourier coefficients. This praoble
perr = Pr(g(Y) # X). is motivated by the wide ranging applications it has across

. L . . several disciplines. This problem has been widely studmed i
It follows from the discussion in Sectign _XI}A that in order, pAne P . . y

: ) ... the context of discrete-time functions in the recently dapu
to show thatpe is uniformly bounded away frond, it is

- compressive sensinliterature. However, unlike our setup,
sufficient to show that for some constahnt- 0 where we want to perform exact recovery frongigen setof

H(Y)+1 < 1-4. (61) Fourier coefficients, the work in the existing literaturetp@s
log| 2| B to the choice of a limited set of Fourier coefficients that can
4The counterpart of this inequality for a continuous valuaddom variable be used to perform exact recovery.
is not true. This led us to study the limitation of recoveryaalthm over model In_splred by the Work_ of Donoho and Stark [1] in the context
R(K,T) rather thanR(K, %). of discrete-time functions, we focused on the recovery of
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non-negative functions with a sparse support (support<ize [9]
domain size). Our recovery scheme consisted of finding tpl%]
function with the sparsest support, consistent with themgiv
information, through?, optimization. As we showed through
some counter-examples, this procedure, however, will ndtl
recover the exact solution in all the cases. Thus, we idedtifi
sufficient conditions under which a function can be recoder¢i2]
through?, optimization. For each kind of partial information,
we then quantified the sufficient conditions in terms of thg,
“complexity” of the functions that can be recovered. Since
the sparsity (support size) of a function is a natural measur
of its complexity, we quantified the sufficient conditions irh4]
terms of the sparsity of the function. In particular, we pro-
posed a natural random generative model for the functioi8l
of a given sparsity. Then, we derived bounds on sparsity f b]
which a function generated according to the random model
satisfies the sufficient conditions with a high probability al7]
n — oo. Specifically, we showed that, for partial information
corresponding to partitior\, the sparsity bound essentially[ig]
scales ast\w M+ For A1/n — 1, this bound essentially
becomed, and for\; /n — 0, the bound essentially become§19]
Dy/?.

Even though we found sufficient conditions for the re[-zo]
coverability of functions by finding the sparsest solutiéa,
optimization is in general computationally hard to carryt.ou
This problem is typically overcome by considering its conve
relaxation, the/; optimization problem. However, we showed
that ¢, optimization fails to recover a function generated bfg2]
the random model with a high probability. Thus, we proposed
a novel iterative algorithm to performi, optimization for |23
functions that satisfy the sufficient conditions, and edthit
to the general case when the underlying distribution may not
satisfy the sufficient conditions and the observations reaypq;
noisy.

We studied the limitation of any recovery algorithm b3f25]
means of information theoretic tools. While the bounds we
obtained are useful in general, due to technical limitatjon[26]
they do not apply to the random model we considered. Closing
this gap and understanding recovery conditions in the poese
of noise are natural next steps.
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APPENDIX
PROOF OFAUXILIARY LEMMA

Here we present the proof of LemrhaTll.1. For this, first
consider the limita; 1 1. Specifically, leta; = 1 — ¢, for
a very small positives. Then,>) ,a; = 1 —
definition, we haveH’(a)/H («) < 1; therefore, in order to
prove thatd'(a))/H () — 1 asay 1 1, it is sufficient to prove

butions on permutations Advances in Neural Information Processingthat H'(a)/H(a) > 1 —o0(1) asay 1 1. For that, consider

€. By

H'(e)
H(a)

H'(a)
aqlog(l/ay) + H' ()
oy log(1/on)
arlog(l/ar) + H' (o)

(69)

In order to obtain a lower bound, we minimiZ&' («)/H («)
overa > 0. It follows from (69) that, for a givery; = 1 —«,
H'(a)/H(a) is minimized for the choice oty;,7 > 2 that
minimizesH'(«). Thus, we maximiz&_._, «; log «; subject
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oo, >0and) . ,a, = 1 — o = e. Here we are
maximizing a convex function over a convex set. Therefore,
maximization is achieved on the boundary of the convex set.
That is, the maximum ig loge; consequently, the minimum
value of H'(«) = elog(1/e). Therefore, it follows that for

ap =1—¢,

H'(«a) B —(1—¢)log(l —¢)
12 H(a) = slog(la/s) —(1—¢)log(l —¢)
~ 1_510g(1/5)+5
1
~ T T e
=0, (70)

To prove a similar claim fora; | 0, let a; = ¢ for a
small, positivee. Then, it follows thatr = Q(1/¢) since
Si_ja; =1landay > o for all i,2 < ¢ < r. Using a
convex maximization based argument similar to the one we
used above, it can be checked tHat(a) = Q(log(1/¢)).
Therefore, it follows thaty; log(1/a1)/H'(a) — 0 @asa; | 0.
Thatis,H'(«)/H(a) — 1 asa; | 0. This completes the proof
of Lemmallll.].
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