
1

Recovering Compressively Sampled Signals

Using Partial Support Information
Michael P. Friedlander, Hassan Mansour*, Rayan Saab, and Özgür Yılmaz

Abstract

We study recovery conditions of weighted `1 minimization for signal reconstruction from compressed

sensing measurements when partial support information is available. We show that if at least 50% of the

(partial) support information is accurate, then weighted `1 minimization is stable and robust under weaker

sufficient conditions than the analogous conditions for standard `1 minimization. Moreover, weighted `1

minimization provides better upper bounds on the reconstruction error in terms of the measurement noise

and the compressibility of the signal to be recovered. We illustrate our results with extensive numerical

experiments on synthetic data and real audio and video signals.

Index Terms

Compressed sensing, weighted `1 minimization, adaptive recovery.

I. INTRODUCTION

Compressed sensing (see, e.g., [1]–[3]) is a paradigm for effective acquisition of signals that admit

sparse (or approximately sparse) representations in some transform domain. The approach can be used to

reliably recover such signals from significantly fewer linear measurements than their ambient dimension.

Because a wide range of natural and man-made signals—e.g., audio, natural and seismic images, video,

and wideband radio frequency signals—are sparse or approximately sparse in appropriate transform

domains, the potential applications of compressed sensing can be immense.
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Let ΣN
k := {x ∈ RN : ‖x‖0 ≤ k} be the set of all k-sparse signals in RN , and let

y := Ax+ e (1)

be a vector of measurements where A is a known n × N measurement matrix, and e denotes additive

noise that satisfies ‖e‖2 ≤ ε for some known ε ≥ 0. Compressed sensing theory states that it is possible to

recover x ∈ ΣN
k from y (given A) even when n� N , i.e., using very few measurements. For example,

when e = 0, one may recover an estimate x∗ of the signal x as the solution of the constrained `0

minimization problem

minimize
z∈RN

‖z‖0 subject to Az = y. (2)

In fact, using (2), any x ∈ ΣN
k can be recovered perfectly using n measurements when n > 2k and A

is in general position (see, e.g., [4]). However, `0 minimization is a combinatorial problem and quickly

becomes intractable as the dimensions increase. Instead, the convex relaxation

minimize
z∈RN

‖z‖1 subject to ‖Az − y‖2 ≤ ε (3)

can be used to recover the estimate x∗. Candés, Romberg and Tao [2] and Donoho [1] show that if

n & k log(N/k), then `1 minimization (3) can stably and robustly recover x from “incomplete” and

inaccurate measurements y = Ax + e, where A is an appropriately chosen n ×N measurement matrix

and ‖e‖2 ≤ ε. Note that compressed sensing is a non-adaptive data acquisition technique because the

measurement matrix A does not depend on x, the signal being measured. Furthermore, the recovery

method that we just described is itself non-adaptive because no information on x is used in (3). Our goal

in this paper is to examine a recovery method that is adaptive in the sense that it exploits prior support

information on x; the measurement process, however, remains non-adaptive.

A. Compressed sensing with prior support information

The `1 minimization problem (3) does not incorporate any prior information about the support of x.

However, in many applications it may be possible to draw an estimate of the support of the signal or

an estimate of its largest coefficients. For example, signals such as video and audio exhibit correlation

over temporal frames that can be exploited to estimate a portion of the support using previously decoded

frames.

Consider the example where x ∈ RN is a compressible signal, i.e., it can be well-approximated by

its k largest-in-magnitude entries, where k � N . If x represents the discrete cosine transform (DCT) or
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wavelet coefficients of an image, then the entries of x that correspond to the low frequency subbands are

most likely to be non-zero and carry most of the energy of the signal [5]. In such cases, it is beneficial

to incorporate this information in the recovery algorithm when x is compressively sampled.

B. Previous Work

We are especially interested in methods that incorporate prior support information by replacing the `1

minimization in (3) with weighted `1 minimization

minimize
z

‖z‖1,w subject to ‖Az − y‖2 ≤ ε, (4)

where w ∈ [0, 1]N and ‖z‖1,w :=
∑

i wi|zi| is the weighted `1 norm. In particular, in the methods that we

describe here (including our own proposed method), the main idea is to choose w such that the entries

of x that are “expected” to be large are penalized less in this weighted objective function.

The recovery of compressively sampled signals using prior support information has been previously

studied in the literature; see, e.g., [6]–[11]. In fact, the problem of sparse recovery with partially known

support was independently introduced in three works – in von Borries et al. [6], in Vaswani and Lu [8];

and in Khajehnejad et al. [11].

The work by Borries et al. [6] demonstrated empirically that incorporating support information of

a signal with a sparse discrete Fourier transform (DFT) allows for the number of compressed sensing

measurements to be reduced by exactly the size of the known part of the support. Borries et al. achieve

this by using a weighted `1 minimization approach with zero weights on the known support.

More recently, Vaswani and Lu [7]–[9] proposed a modified compressed sensing approach that again

incorporates known support elements using a weighted `1 minimization approach with zero weights on

the known support. Their work derives sufficient recovery conditions for the noise free case (i.e., set

e = 0 in (1) and ε = 0 in (4)) that are weaker than the analogous `1 minimization conditions of [2] in

the case where a large proportion of the support is known. This work is supplemented by a regularized

modified compressed sensing approach that deals with noisy measurements [9]. The work of Vaswani and

Lu was also extended by Jacques in [10] to the cases of compressible signals and noisy measurements.

The approach of Jacques is based on studying the innovative basis pursuit denoising (iBPDN) problem,

which minimizes weighted `1-norm of the solution with with zero weights applied to the support estimate;

Jacques and shows that (iBPDN) has a similar stability behavior to the unweighted `1 problem.

A similar method is proposed by Khajehnejad et al. [11] for the recovery of compressively sampled

signals with support information. The performance of this method is analyzed using a Grassman angle
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approach. Prior information is defined in terms of two disjoint sets that partition {1, . . . , N}. The elements

in the first set have a probability P1 of being nonzero, and the elements in the second set have a probability

P2 of being nonzero, where P1 6= P2. The authors propose weighted `1 minimization to recover the

unknown vector where different weights w1 and w2 are assigned to the elements in the two sets. In

particular, they find the class of signals x, depending on Pj and wj , j = 1, 2, which can be recovered

with high probability using weighted `1.

Finally, the weighted `1 minimization problem is related to the “adaptive lasso” described the statistics

literature and studied by Zou in [12]; it is defined by

minimize
z

‖y −Az‖22 + λn

N∑
j=1

wj |zj |,

where λn varies with the sample size n such that λn/
√
n → 0 and λnn

(γ−1)/2 → ∞ for some γ > 0,

and the weights wj = 1/|x̂j |γ , where x̂ is given signal estimate that is root-n consistent∗. However, the

problem studied by Zou addresses the overdetermined scenario where the ambient dimension N of the

signal is fixed and the number of measurements n→∞. In this case, Zou shows that the adaptive lasso

enjoys the oracle properties but acknowledges that when N > n→∞ it is nontrivial to find a consistent

estimate for constructing the weights in the adaptive lasso.

C. Contributions

In this paper we adopt the weighted `1 minimization approach described by (4). Given a support

estimate T̃ ⊂ {1, 2, . . . , N} for x, we set wj = ω ∈ [0, 1] whenever j ∈ T̃ , and wj = 1 otherwise.

Unlike Borries et al. or Vaswani et al., in our results we allow ω to be non-zero. We derive stability and

robustness guarantees for weighted `1 minimization that generalize the results of [2]. Our results take

into consideration the accuracy of the support estimate. In particular, we prove that if the (partial) support

estimate is at least 50% accurate, then weighted `1 minimization outperforms standard `1 minimization

in terms of accuracy, stability, and robustness. Finally, we note that when ω = 0, our results hold under

weaker sufficient conditions than those in [7].

In Section II, we review the `1 recovery guarantees of [2]. In Section III, we state our main result and

compare our theoretical results with standard `1 recovery as well as the results of [7], [8]. In Sections IV

∗Root-n consistency means that if x̂∗ is the solution to the adaptive lasso problem, then
√
n(x̂∗ − x) → N (0, σ2) in

distribution, where σ depends on the noise variance and the covariance of the measurement matrix A.
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and V, we present the outcome of numerical experiments on synthetic and on audio and video signals.

We conclude with the proof of our main theorem in Section VI.

II. COMPRESSED SENSING OVERVIEW

Consider an arbitrary signal x ∈ RN and let xk ∈ ΣN
k be its best k-term approximation. Let T0 =

supp(xk), where T0 ⊆ {1, . . . , N} and |T0| ≤ k. We wish to reconstruct the signal x from y = Ax+ e,

where A is a known n×N measurement matrix with n� N , and e denotes the (unknown) measurement

error that satisfies ‖e‖2 ≤ ε for some known margin ε > 0.

As we mentioned in the introduction, it was shown in [2] that x can be stably and robustly recovered

from the measurements y by solving the optimization problem (2) if the measurement matrix A has the

restricted isometry property (RIP), also defined by [2].

Definition 1. The restricted isometry constant δk of a matrix A is the smallest number such that for all

k-sparse vectors u ∈ ΣN
k ,

(1− δk)‖u‖22 ≤ ‖Au‖22 ≤ (1 + δk)‖u‖22. (5)

Candès et al. [2] use the RIP to provide conditions and bounds for stable and robust recovery of x by

solving (3).

Theorem 2 (Candès, Romberg, Tao [2]). Suppose that x is an arbitrary vector in RN , and let xk be the

best k-term approximation of x. Suppose that there exists an a ∈ 1
kZ with a > 1 and

δak + aδ(1+a)k < a− 1. (6)

Then the solution x∗ to (3) obeys

‖x∗ − x‖2 ≤ C0ε+ C1k
−1/2‖x− xk‖1. (7)

Remark 2.1. The constants in Theorem 2 are explicitly given by

C0 =
2(1+a−1/2)√

1−δ(a+1)k−a−1/2
√
1+δak

, C1 =
2a−1/2(

√
1−δ(a+1)k+

√
1+δak)√

1−δ(a+1)k−a−1/2
√
1+δak

. (8)

From Theorem 2, one can see that if A satisfies (the slightly stronger condition)

δ(a+1)k <
a− 1

a+ 1
, (9)

then the constrained `1 minimization problem in (3) recovers x with an approximation error that scales
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well with measurement noise and the “compressibility” of x. Moreover, if x is sufficiently sparse (i.e.,

x = xk), and the measurement process is noise-free, then Theorem 2 guarantees exact recovery of x

from y.

III. COMPRESSED SENSING WITH PARTIAL SUPPORT ESTIMATION

In this section, we present our main result showing that weighted `1 minimization can be used to stably

and robustly recover sparse and compressible signals from noisy measurements when there is partial (and

possibly partly inaccurate) prior support information. Our result holds under weaker sufficient conditions

than its counterpart for `1 minimization when the support estimate is more than 50% accurate. Moreover,

it results in smaller error bounds. We also compare our results with the modified compressed sensing

approach proposed in [7].

A. Weighted `1 minimization with estimated support

Let T0 be the support of xk, and let T̃ , the support estimate, be a subset of {1, 2, . . . , N} with cardinality

k1 := |T̃ | = ρk, where 0 ≤ ρ ≤ a for some a > 1. As before, we wish to recover an arbitrary vector

x ∈ RN from noisy compressive measurements y = Ax + e, where e satisfies ‖e‖2 ≤ ε. To recover

x ∈ RN , we now consider the weighted `1 minimization problem with the following choice of weights:

minimize
z

‖z‖1,w subject to ‖Az − y‖2 ≤ ε with wi =


1, i ∈ T̃ c,

ω, i ∈ T̃ .
(10)

Here, 0 ≤ ω ≤ 1 and ‖z‖1,w is as defined in (4). Our main result follows.

Theorem 3. Let x be in RN and let xk be its best k-term approximation, supported on T0. Let T̃ ⊂

{1, . . . , N} be an arbitrary set and define ρ and α as before such that |T̃ | = ρk and |T̃ ∩ T0| = αρk.

Suppose that there exists an a ∈ 1
kZ, with a ≥ (1−α)ρ, a > 1, and the measurement matrix A has RIP

with

δak +
a(

ω + (1− ω)
√

1 + ρ− 2αρ
)2 δ(a+1)k <

a(
ω + (1− ω)

√
1 + ρ− 2αρ

)2 − 1, (11)

for some given 0 ≤ ω ≤ 1. Then the solution x∗ to (10) obeys

‖x∗ − x‖2 ≤ C ′0ε+ C ′1k
−1/2

(
ω‖x− xk‖1 + (1− ω)‖xT̃ c∩T c0 ‖1

)
, (12)

where C ′0 and C ′1 are well-behaved constants that depend on the measurement matrix A, the weight ω,

and the parameters α and ρ.
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The proof of the theorem is presented in section VI.

Remark 3.1. Note that the parameters in Theorem 3 specify two important ratios: ρ determines the ratio

of the size of the estimated support to the size of the actual support of xk (or the support of x if x

is k-sparse). On the other hand, α determines the ratio of the number of indices in supp(xk) that were

accurately estimated in T̃ to the size of T̃ . Specifically, α = |T̃∩T0|
|T̃ |

.

Remark 3.2. The constants C ′0 and C ′1 are explicitly given by the expressions

C ′0 =
2
(

1 + ω+(1−ω)
√
1+ρ−2αρ√
a

)
√

1− δ(a+1)k −
ω+(1−ω)

√
1+ρ−2αρ√
a

√
1 + δak

, C ′1 =
2a−1/2

(√
1− δ(a+1)k +

√
1 + δak

)√
1− δ(a+1)k −

ω+(1−ω)
√
1+ρ−2αρ√
a

√
1 + δak

.

(13)

Consequently, Theorem 3, with ω = 1, reduces to the stable and robust recovery theorem of [2], which

we stated above—see Theorem 2.

Remark 3.3. It is sufficient that A satisfies

δ(a+1)k < δ̂(ω) :=
a−

(
ω + (1− ω)

√
1 + ρ− 2αρ

)2
a+

(
ω + (1− ω)

√
1 + ρ− 2αρ

)2 (14)

for Theorem 3 to hold, i.e., to guarantee stable and robust recovery of the signal x from measurements

y = Ax+ e (with constants C ′0 and C ′1 given in (13) and (14)).

Remark 3.4. Theorems 2 and 3 guarantee stable and robust recovery for matrices A satisfying a condition

on δ(a+1)k with a > 1. A slightly different approach was used by Candès [13] to handle the case a = 1.

Candès proved that if δ2k < (
√

2 + 1)−1, then `1 minimization (3) achieves stable and robust recovery.

Following the same technique, with appropriate modifications to handle the weighted `1 objective, we

can derive the analogous alternative sufficient condition

δ2k <
(√

2(ω + (1− ω)
√

1 + ρ− 2αρ) + 1
)−1

, (15)

which guarantees stable and robust recovery using weighted `1 minimization (10). We omit the details

of this calculation.

B. Comparison to standard `1 recovery

In this section, we compare the sufficient conditions for Theorem 3 and Theorem 2 as well as the

associated constants of these two theorems. The following observation is easy to verify.

Proposition 4. Let C0, C1, C
′
0, and C ′1 be as above. Then
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Fig. 1: Comparison of the sufficient conditions for recovery and stability constants for weighted `1
reconstruction with various of α. In all the figures, we set a = 3 and ρ = 1. (a) δ̂(ω) vs. ω, (b) C ′0 vs.
ω, (c) C ′1 vs. ω. In (b) and (c) we fix δ(a+1)k = 0.1.

(i) If ω = 1, then C ′0 = C0, C ′1 = C1, and the sufficient conditions for Theorem 3, given in (11), are

identical to those of Theorem 2, given in (6).

(ii) If α = 0.5, then, again C ′0 = C0, C ′1 = C1, and the sufficient conditions for Theorem 3, given in

(11), are identical to those of Theorem 2, given in (6).

(iii) Suppose 0 ≤ ω < 1. Then C ′0 < C0 and C ′1 < C1 if and only if α > 0.5.

Next, we illustrate how the slightly stronger sufficient conditions given in (14) and the respective

stability constants vary with α and ω. Recall that when ω = 1, (14) reduces to (9). In Figure 1 (a), we

plot, for different values of α, δ̂(ω) as defined in (14), versus ω, where we set the parameter a = 3. We
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observe that as α increases the sufficient condition on the RIP constant becomes weaker, allowing for a

wider class of measurement matrices A. For example, with a = 3, when 70% of the support estimate is

accurate, with ω = 0.2 it suffices to have δ̂(ω) < 0.763, compared with δ̂(1) < 0.5 for `1 minimization.

Figures 1 (b) and (c) illustrate that for a fixed matrix A, the constants C ′0 and C ′1 decrease as α increases.

Note that compared to setting ω = 0, assigning non-zero weights ω adds robustness to the weighted `1

problem in the case when α < 0.5, i.e., when we have an inaccurate support estimate T̃ with more

than half the entries falling outside the support of the best k-term approximation of x. This could be

beneficial in applications where the accuracy of the support estimates vary significantly from one signal to

the next. Furthermore, in numerical experiments (see Section IV) we observe that using non-zero weights

improves the quality of the reconstruction, especially in the noisy and compressible settings, not only

when α < 0.5 but also in some cases where α > 0.5. A mathematical understanding of this behavior

and of how to optimally choose the weight ω is beyond the scope of this paper.

C. The zero weight case: ω = 0

One special case of the weighted `1 problem that is of interest is the zero weight case, i.e., set ω = 0

in (10). It can be seen from Figure 1 that recovery using weighted `1 minimization (10) achieves the

smallest error bound constants at ω = 0 when α > 0.5. On the other hand, the recovery performance is

worst when ω = 0 and α < 0.5, i.e., when the support estimate is highly inaccurate.

Several contributions in the literature adopt the zero-weight approach, mainly in applications where

prior support information is assumed to be highly accurate, i.e., α is close to 1, e.g., see [6], [7], [14].

The most recent study to address this problem is the work by Vaswani and Lu [7] where a sufficient

condition in terms of the RIP of the matrix A is derived for exact recovery in the noise free case. Another

work by the same authors [14] addresses the noisy case, however, the recovery algorithm in this case

is different from (10) in that the objective function is modified to include a regularization term. The

sufficient condition derived in Corollary 1 of [7] is expressed as

2δ2u + δ3u + δk + δ2k+u + 2δ2k+2u < 1, (16)

where u = (1−αρ)k is the size of the unkown support. Recall that α is such that αρk is the size of the

known support.

Below we compare our condition (15) with that of [7] given in (16) for different values of the unknown
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Fig. 2: Comparison between the values of u/k that satisfy each of the sufficient conditions (16) and (17).
The measurement matrix has Gaussian entries with n/N = 0.5.

support size u. We consider the case ρ = 1, u > 0, and n/N = 0.5. Thus, (15) reduces to

δ2k <
1

2
√
u/k + 1

. (17)

Since the two sufficient conditions, i.e., (17) and (16), are expressed in terms of RIP constants of different-

sized submatrices of A, a simple comparison of the upper bounds is not informative. For this reeason,

we restrict our attention to measurement matrices drawn from the Gaussian ensemble and we estimate

the associated RIP constants (i.e., δ2k, δ2u, . . . ) for such matrices using the bounds derived in [15]. In

particular, we calculate the ratios u/k that satisfy the conditions (16) and (17), respectively, and plot

the results in Figure 2. Observe that for the same measurement matrix A and sparsity level k/n, our

sufficient condition guarantees the recovery of k-sparse signals with significantly less accurate prior

support information compared to the condition of Vaswani et al. [7].

It is clear in Figure 2 that our recovery guarantees are superior to those of [7] at least when the aspect

ratio of the measurement matrix is n/N = 0.5. Next, we shall focus on cases where we have a highly

accurate estimate of the full support of the k-sparse vector x. In other words, we set ρ = 1 as above and

consider values of α that are close to 1. For these cases, we will compare our theoretical guarantees to

those of [7] for various values of the measurement matrix aspect ratio. To that end, we observe that the
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n/N k/n δk δ2k u/k
0.1 0.0029 0.4343 0.6153 0.0978
0.2 0.0031 0.4343 0.6139 0.0989
0.3 0.003218 0.4343 0.61176 0.1007
0.4 0.003315 0.4343 0.61077 0.1015
0.5 0.003394 0.4343 0.60989 0.1023

TABLE I: Maximum unknown support size u/k for which (17) holds while (16) fails to hold. For a
given aspect ratio n/N , we compute the value of k/n for which δk = 0.4343. This value, using (17),
yields the corresponding bound on u/k.

left-hand side of (16) is increasing in u. Thus, for any u, (16) can hold only if

δk + 3δ2k < 1 =⇒ δk < 0.4343,

which is obtained by setting u = 0 in (16) and observing that δ0 = 0 by definition. On the other hand,

using the bounds from [15], we can estimate δ2k and find the corresponding range of u for (17) to hold

in the case when A is a Gaussian random matrix. The upper bound on the range of u/k for various

aspect ratios of the measurement matrix is reported in Table I. We conclude that in various cases with

different measurement matrix aspect ratios our theoretical results guarantee recovery while the results of

[7] fail to provide any recovery guarantee.

We finish this section by comparing the recovery guarantees we obtain in the zero-weight case with

conditions that guarantee recovery via `1 minimization without using any prior support information. To

this end, we present the phase diagrams of measurement matrices A with Gaussian entries that satisfy

the conditions on the restricted isometry constants δ(a+1)k given in (9) and (14) with ω = 0, respectively.

We use the bounds derived in [15] and plot the curves in Figure 3 for matrices satisfying the sufficient

conditions on δ4k with ρ = 1 and α = 0.3, 0.6, and 0.8.

IV. NUMERICAL EXAMPLES

In this section, we present numerical experiments that illustrate the benefits of using weighted `1

minimization to recover sparse and compressible signals when partial prior support information (which

is possibly inaccurate) is available. To that end, we compare the recovery capabilities of standard `1 and

weighted `1 minimization for a suite of synthetically generated sparse and compressible signals. In all of

our experiments, we use SPGL1 [16], [17] to solve the standard and weighted `1 minimization problems.
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Fig. 3: Comparison between the phase diagrams of measurement matrices with Gaussian entries satisfying
the sufficient recovery conditions of standard `1 minimization and weighted `1 minimization with ω = 0
and α = 0.3, 0.6, and 0.8. The plots are calculated using the upper bounds on the restricted isometry
constants derived in [15].

A. The sparse case

We first generate signals x with an ambient dimension N = 500 and fixed sparsity k = 40. We

compute the (noisy) compressed measurements of x using a Gaussian random measurement matrix A

with dimensions n×N where we vary n between 80 and 200 with an increment of 20. In the experiments

where the measurements are noisy, we set ε = ‖x‖2/20.

Figure 4 shows the average reconstruction signal to noise ratio (SNR) over 20 experiments when using

weighted `1 minimization depending on the number of measurements, both in the noise-free and noisy

cases. The SNR is measured in dB and is given by

SNR(x, x∗) = 10 log10

(
‖x‖22

‖x− x∗‖22

)
, (18)

where x is the true signal and x∗ is the recovered signal. The recovery is done via (10) using a support

estimate of size |T̃ | = 40 (i.e., ρ = 1) where

• the accuracy α of the support estimate ranges between zero and 1,

• the constant weight ω ranges between zero and 1 (recall that when ω = 1 (10) is equivalent to
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standard `1 minimization).

Figure 4 (a) illustrates that in the noise free case, the experimental results are consistent with the

theoretical bounds derived in Theorem 3. More specifically, it can be seen that when α ≥ 0.5 the best

recovery is achieved for a weight ω = 0 whereas a ω = 1 results in the worst SNR. On the other hand,

when α < 0.5 the performance of the recovery algorithms is shifted towards larger values of ω in the

severely underdetermined cases (small n). Figure 5 shows the average recovered SNR using weighted

`1 minimization for different values of the parameter ρ. It is evident from the figure that using a larger

support estimate favours better reconstruction, However, it can be seen in both the noise free and noisy

measurement vector cases that the recovery is more sensitive to the accuracy α of the support estimate

than its size relative to k.

Remark 4.1. Recall from Section III-B—see Figure 1—that when x is sparse and α ≥ 0.5, ω = 0 results

in the smallest error bound constants. Otherwise, i.e., when α < 0.5, ω = 1 minimizes the error constants.

However, this does not match entirely with our experimental observations. It can be seen from Figure 4

(b) that, in general, the best recovery is obtained for intermediate values of ω.

To explain this behaviour, consider the case where the measurement matrix does not satisfy the RIP

conditions for the full recovery of a k-sparse x via weighted `1 minimization. In such cases, x can be

regarded as compressible: Fix k̂ < k be such that Theorem 3 holds for all k̂-sparse signals and for all

ω ∈ [0, 1]. Suppose T̂ is the support of the best k̂ term approximation of x. Then Theorem 3 guarantees

stable and robust recovery of x where the recovery error is bounded by

‖x∗ − x‖2 ≤
C ′1(ω)√

k̂

(
ω‖xT̂ c‖1 + (1− ω)‖xT̃ c∩T̂ c‖1

)
,

where T̃ is the prior support estimate. Denote by α̂ = |T̂∩T̃ |
|T̃ |

and note that since T̂ ⊂ T0, then α̂ < α.

Focusing our attention on the case when α̂ < 0.5 (where it is observed that 0 < ω < 1 results in the

best recovery), we make the following observations:

(i) The constant C ′1 in the error bound above increases as ω goes to zero (see Figure 1).

(ii) Since T̂ c ∩ T̃ c ⊆ T̂ c, the term ω‖xT̂ c‖1 + (1− ω)‖xT̃ c∩T̂ c‖1 decreases as ω goes to zero.

Therefore, for a fixed k̂, there exists 0 ≤ ω ≤ 1 that minimizes the product of the constant C ′1 and the

term ω‖xT̂ c‖1 + (1 − ω)‖xT̃ c∩T̂ c‖1. Consequently, when the algorithm cannot recover the full support

of x, an intermediate value of ω in [0, 1] may result in the smallest recovery error. A full mathematical

analysis of the above observations needs to take into account all the interdependencies between ω, k̂, α̂

as well as the parameters in Theorem 3 and is beyond the scope of this paper.

September 7, 2018 DRAFT



14

80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160
 =0.7

number of measurements n

SN
R

 

 

 = 0
 = 0.3
 = 0.5
 = 0.7
 = 1

80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160
 =0.5

number of measurements n

SN
R

 

 
 = 0
 = 0.3
 = 0.5
 = 0.7
 = 1

80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160
 =0.3

number of measurements n

SN
R

 

 
 = 0
 = 0.3
 = 0.5
 = 0.7
 = 1

(a) Noise Free

80 100 120 140 160 180 200
0

5

10

15

20

25

 =0.7

number of measurements n

SN
R

 

 

 = 0
 = 0.3
 = 0.5
 = 0.7
 = 1

80 100 120 140 160 180 200
0

5

10

15

20

25

 =0.5

number of measurements n

SN
R

 

 

 = 0
 = 0.3
 = 0.5
 = 0.7
 = 1

80 100 120 140 160 180 200
0

5

10

15

20

25

 =0.3

number of measurements n

SN
R

 

 

 = 0
 = 0.3
 = 0.5
 = 0.7
 = 1

(b) 5% Noise Variance

Fig. 4: Performance of weighted `1 recovery in terms of SNR averaged over 20 experiments for sparse
signals x with k = 40, N = 500, while varying the number of measurements n. From left to right,
α = 0.7, α = 0.5, and α = 0.3.

B. The compressible case

Next, we generate a signal x whose coefficients decay like j−p where j ∈ {1, . . . , N} and p > 1.

In Figure 6, we illustrate the recovered signal SNR versus the size of the support estimate for p = 1.1.

To calculate α we set k = 40, i.e., we are interested in the best 40-term approximation. Notice that on

average, a weight ω ≈ 0.5 results in the best recovery. This behavior is consistent with the explanation

provided above where an intermediate value of ω balances the tradeoff between the error bound constants

and the norm of the off-support components. We repeat this experiment with p = 1.5, k = 20 and p = 2,

k = 10. The results are reported in Figures 7 and 8, and show the same qualitative behaviour.

V. STYLIZED APPLICATIONS

In this section, we apply standard and weighted `1 minimization to recover real video and audio signals

that are compressively sampled.
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Fig. 5: Performance of weighted `1 recovery in terms of SNR averaged over 20 experiments for sparse
signals x with k = 40, N = 500, n = 100 while varying the size of the support estimate ρ as a proportion
of k. From left to right, α = 0.7, α = 0.5, and α = 0.3.

A. Recovery of video signals

One natural application for weighted `1 minimization is video compressed sensing. Traditional video

acquisition techniques capture a full frame (or image) in the pixel domain at a specific frame rate. The

number of pixels acquired per image defines the spatial sampling rate, while the number of frames

acquired per second defines the temporal sampling rate. Since the temporal sampling rate is usually high,

a group of adjacent video frames are temporally correlated which is reflected in their spatial transform

coefficients having nonzero entries in roughly the same locations.

Our aim here is to reduce the number of samples acquired for each video frame while keeping the

same reconstruction quality by recovering using weighted `1 minimization. Here, we assume that for

every video frame j, the measurements yj , j ∈ {0, 1, . . . ,m−1}, are acquired by storing the readings of

a random subset of the CCD array with m denoting the total number of frames in the video sequence.
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Fig. 6: Performance of weighted `1 recovery in terms of SNR averaged over 10 experiments for
compressible signals x with n = 100, N = 500. The coefficients decay with a power p = 1.1. The
accuracy of the support estimate α is calculated with respect to the best k = 40 term approximation.
From left to right, α = 0.7, α = 0.5, and α = 0.3.

Let nj be the number of measurements acquired per frame j and N be the spatial resolution (number of

pixels) to be recovered per frame. Let D be the spatial sparsifying transform. The measurement matrix

Aj can then be written as Aj = RjD, where Rj is an nj×N restriction matrix, and D is an orthonormal

basis. Note that the restriction matrix Rj randomly selects nj pixels from the N pixels in the CCD array

to store their readings.

For the first frame, j = 0, n0 measurements are captured and the transform coefficients x0 are recovered

by solving the standard `1 minimization problem

x̂0 = arg min
x

‖x‖1 subject to Ax = y0.

For every subsequent frame j ≥ 1, a support estimate Ṽj is chosen to be the union of the locations of the

nonzero entries of x̂j−1 and x̂j−2 that contribute a certain percentage of the energy of x̂j−1 and x̂j−2,

respectively. Consequently, the coefficients x̂j are recovered from nj < n0 measurements yj by solving
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Fig. 7: Performance of weighted `1 recovery in terms of SNR averaged over 10 experiments for
compressible signals x with n = 100, N = 500. The coefficients decay with a power p = 1.5. The
accuracy of the support estimate α is calculated with respect to the best k = 20 term approximation.
From left to right, α = 0.7, α = 0.5, and α = 0.3.

the following weighted `1 minimization problem

x̂j = arg min
x

‖x‖1,w subject to Ax = yj , with wi =


1, i ∈ Ṽ c

j ,

ω, i ∈ Ṽj ,

where 0 ≤ ω ≤ 1.

In our experiments, we use the Foreman sequence at QCIF resolution, i.e., every frame contains

144×176 pixels. We only consider the luma (grayscale) component of the sequence. Every frame is split

into four blocks, each of size N = 72 × 88 which are processed independently. We set n0 = N/2 and

nj = N/2.2 and nj = N/2.4 for j ≥ 1. The two dimensional discrete cosine transform (DCT) is used

as the spatial sparsifying basis allowing for the support estimate Ṽj to include the DC component and

the union of the AC coefficients that contribute to 97% of the energy in the AC coefficients of each of

x̂j−1 and x̂j−2. The signals x̂j are then recovered using weighted `1 minimization for ω equal to 0, 0.1,
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Fig. 8: Performance of weighted `1 recovery in terms of SNR averaged over 10 experiments for
compressible signals x with n = 100, N = 500. The coefficients decay with a power p = 2. The
accuracy of the support estimate α is calculated with respect to the best k = 10 term approximation.
From left to right, α = 0.7, α = 0.5, and α = 0.3.

0.5, and 1.

Figure 9 illustrates the recovery of the first 30 frames of the Foreman sequence using weighted `1

minimization. The reconstruction quality is reported in terms of the peak signal to noise ratio (PSNR)

given by the expression

PSNR(x, x̂) = 10 log10

(
N × 2552

‖x− x̂‖22

)
. (19)

The figure demonstrates that recovery with ω = 0.5 results in an improvement in PSNR averaging around

1 dB compared to standard `1 using the same number of measurements. A striking observation is that

weighted `1 minimization outperforms standard `1 also with fewer measurements, i.e., in the case where

nj = n0, ∀j for standard `1, whereas nj = n0/2.2 for weighted `1.
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Fig. 9: Recovery of the first 30 frames of the Foreman sequence at QCIF resolution. The first frame
is recovered from n0 = N/2 measurements, while the remaining frames are recovered from (a) nj =
N/2.2 and (b) nj = N/2.4 measurements. Recovery is performed using weighted `1 minimization with
ω ∈ {0, 0.1, 0.5, 1}. The support estimate is derived from the union of the supports of the previous two
frames. The black curve corresponds to the recovered PSNR using standard `1 minimization with a fixed
number of measurements nj = n0, ∀j ∈ {1, . . . , 30}.

B. Recovery of audio signals

For our second stylized application, we examine the performance of weighted `1 minimization for the

recovery of compressed sensing measurements of speech signals. In particular, the original signals are

sampled at 44.1 kHz, but only 1/4th of the samples are retained (with their indices chosen randomly

from the uniform distribution). This yields the measurements y = Rs, where s is the speech signal and

R is a restriction (of the identity) operator. Consequently, by dividing the measurements into blocks of

size N , we can write y = [yT1 , y
T
2 , ...]

T . Here each yj = Rjsj is the measurement vector corresponding

to the jth block of the signal, and Rj ∈ Rnj×N is the associated restriction matrix. The signals we use

in our experiments consist of 21 such blocks. We make the following assumptions about speech signals:

1) The signal blocks are compressible in the DCT domain (for example, the MP3 compression standard

uses a version of the DCT to compress audio signals.)

2) The support set corresponding to the largest coefficients in adjacent blocks does not change much

from block to block.

3) Speech signals have large low-frequency coefficients.

Thus, for the reconstruction of the jth block, we choose the support estimate T̃ = T̃ 1 ∪ T̃ 2. Here, T̃ 1

is the set corresponding to frequencies up to 4kHz and T̃ 2 is the set corresponding to the largest nj/16

recovered coefficients of the previous block (for the first block T̃ 2 is empty). The results of experiments
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on two speech signals (one male and one female) with N = 2048, and ω ∈ {0, 1/6, 2/6, . . . , 1} are

illustrated in Figure 10.
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Fig. 10: SNRs of two reconstructed signals (male and female voices) from compressed sensing
measurements plotted against ω. For both speech signals, an intermediate value of ω yields the best
performance.

VI. PROOF OF THEOREM 3

Recall that T̃ , an arbitrary subset of {1, 2, . . . , N}, is of size ρk where 0 ≤ ρ ≤ a and a is some

number larger than 1. Let the set T̃α = T0 ∩ T̃ and T̃β = T c0 ∩ T̃ , where |T̃α| = α|T̃ | = αρk and

α+ β = 1. Figure 11 illustrates these sets and shows the relationship to the weight vector w.

Fig. 11: Illustration of the signal x and weight vector w emphasizing the relationship between the sets
T0 and T̃ .
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Let x∗ = x+ h be a minimizer of the weighted `1 problem (10). Then

‖x+ h‖1,w ≤ ‖x‖1,w.

Moreover, by the choice of weights in (10), we have

ω‖xT̃ + hT̃ ‖1 + ‖xT̃ c + hT̃ c‖1 ≤ ω‖xT̃ ‖1 + ‖xT̃ c‖1.

Consequently,

‖xT̃ c∩T0
+ hT̃ c∩T0

‖1 + ‖xT̃ c∩T c0 + hT̃ c∩T c0
‖1 + ω‖xT̃∩T0

+ hT̃∩T0
‖1 + ω‖xT̃∩T c0 + hT̃∩T c0

‖1

≤ ‖xT̃ c∩T0
‖1 + ‖xT̃ c∩T c0 ‖1 + ω‖xT̃∩T0

‖1 + ω‖xT̃∩T c0 ‖1.

Next, we use the forward and reverse triangle inequalities to get

ω‖hT̃∩T c0 ‖1 + ‖hT̃ c∩T c0 ‖1 ≤ ‖hT̃ c∩T0
‖1 + ω‖hT̃∩T0

‖1 + 2
(
‖xT̃ c∩T c0 ‖1 + ω‖xT̃∩T c0 ‖1

)
.

Adding and subtracting ω‖hT̃ c∩T c0 ‖1 on the left hand side, and ω‖hT̃ c∩T0
‖1 on the right, we obtain

ω‖hT̃∩T c0 ‖1 + ω‖hT̃ c∩T c0 ‖1 + ‖hT̃ c∩T c0 ‖1 − ω‖hT̃ c∩T c0 ‖1

≤ ω‖hT̃∩T0
‖1 + ω‖hT̃ c∩T0

‖1 + ‖hT̃ c∩T0
‖1 − ω‖hT̃ c∩T0

‖1

+ 2
(
ω‖xT̃∩T c0 ‖1 + ω‖xT̃ c∩T c0 ‖1 + ‖xT̃ c∩T c0 ‖1 − ω‖xT̃ c∩T c0 ‖1

)
.

Since ‖hT c0 ‖1 = ‖hT̃∩T c0 ‖1 + ‖hT̃ c∩T c0 ‖1, this easily reduces to

ω‖hT c0 ‖1+(1−ω)‖hT̃ c∩T c0 ‖1 ≤ ω‖hT0
‖1+(1−ω)‖hT̃ c∩T0

‖1+2
(
ω‖xT c0 ‖1 + (1− ω)‖xT̃ c∩T c0 ‖1

)
. (20)

But, we can also write

‖hT c0 ‖1 = ω‖hT c0 ‖1 + (1− ω)‖hT̃ c∩T c0 ‖1 + (1− ω)‖hT̃∩T c0 ‖1.

Combining the above with (20), we obtain

⇒ ‖hT c0 ‖1 ≤ ω‖hT0
‖1 + (1− ω)‖hT̃ c∩T0

‖1 + (1− ω)‖hT̃∩T c0 ‖1 + 2
(
ω‖xT c0 ‖1 + (1− ω)‖xT̃ c∩T c0 ‖1

)
= ω‖hT0

‖1 + (1− ω)
(
‖hT̃ c∩T0

‖1 + ‖hT̃∩T c0 ‖1
)

+ 2
(
ω‖xT c0 ‖1 + (1− ω)‖xT̃ c∩T c0 ‖1

)
.

Since, the set T̃α = T0 ∩ T̃ , we can write ‖hT̃ c∩T0
‖1 + ‖hT̃∩T c0 ‖1 = ‖hT0∪T̃\T̃α‖1 and simplify the bound

September 7, 2018 DRAFT



22

on ‖hT c0 ‖1 to the following expression:

‖hT c0 ‖1 ≤ ω‖hT0
‖1 + (1− ω)‖hT0∪T̃\T̃α‖1 + 2

(
ω‖xT c0 ‖1 + (1− ω)‖xT̃ c∩T c0 ‖1

)
. (21)

Next we sort the coefficients of hT c0 partitioning T c0 it into disjoint sets Tj , j ∈ {1, 2, . . .} each of size

ak, where a > 1. That is, T1 indexes the ak largest in magnitude coefficients of hT c0 , T2 indexes the

second ak largest in magnitude coefficients of hT c0 , and so on. Note that this gives hT c0 =
∑

j≥1 hTj ,

with

‖hTj‖2 ≤
√
ak‖hTj‖∞ ≤ (ak)−1/2‖hTj−1

‖1. (22)

Let T01 = T0 ∪ T1, then using (22) and the triangle inequality we have

‖hT c01‖2 ≤
∑
j≥2
‖hTj‖2 ≤ (ak)−1/2

∑
j≥1
‖hTj‖1

≤ (ak)−1/2‖hT c0 ‖1.
(23)

Combining the above expression with (21) we get

‖hT c01‖2 ≤ (ak)−1/2
(
ω‖hT0

‖1 + (1− ω)‖hT0∪T̃\T̃α‖1 + 2
(
ω‖xT c0 ‖1 + (1− ω)‖xT̃ c∩T c0 ‖1

))
. (24)

Next, consider the feasibility of x∗ and x. Both vectors are feasible, so we have ‖Ah‖2 ≤ 2ε and

‖AhT01
‖2 ≤ 2ε+ ‖AhT c01‖2 ≤ 2ε+

∑
j≥2
‖AhTj‖2

≤ 2ε+
√

1 + δak
∑
j≥2
‖hTj‖2.

From (23) and (24) we get

‖AhT01
‖2 ≤ 2ε+ 2

√
1+δak√
ak

(
ω‖xT c0 ‖1 + (1− ω)‖xT̃ c∩T c0 ‖1

)
+ ω

√
1+δak√
ak
‖hT0
‖1 + (1− ω)

√
1+δak√
ak
‖hT0∪T̃\T̃α‖1

Noting that |T0 ∪ T̃ \ T̃α| = (1 + ρ− 2αρ)k,√
1− δ(a+1)k‖hT01

‖2 ≤ 2ε+ 2
√
1+δak√
ak

(
ω‖xT c0 ‖1 + (1− ω)‖xT̃ c∩T c0 ‖1

)
+ ω

√
1+δak√
a
‖hT0
‖2 + (1− ω)

√
1+δak√
a

√
1 + ρ− 2αρ‖hT0∪T̃\T̃α‖2.

Since the set T1 contains the largest ak coefficients of hT c0 with a > 1, and |T̃ \ T̃α| = (1− α)ρk ≤ ak,
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then ‖hT0∪T̃\T̃α‖2 ≤ ‖hT01
‖2. We also have ‖hT0

‖2 ≤ ‖hT01
‖2, thus

‖hT01
‖2 ≤

2ε+ 2
√
1+δak√
ak

(
ω‖xT c0 ‖1 + (1− ω)‖xT̃ c∩T c0 ‖1

)
√

1− δ(a+1)k −
ω+(1−ω)

√
1+ρ−2αρ√
a

√
1 + δak

. (25)

Finally, using ‖h‖2 ≤ ‖hT01
‖2 + ‖hT c01‖2, we combine (24) and (25) to get

‖h‖2 ≤
2
(

1 + ω+(1−ω)
√
1+ρ−2αρ√
a

)
ε+ 2

√
1−δ(a+1)k+

√
1+δak√

ak

(
ω‖xT c0 ‖1 + (1− ω)‖xT̃ c∩T c0 ‖1

)
√

1− δ(a+1)k −
ω+(1−ω)

√
1+ρ−2αρ√
a

√
1 + δak

, (26)

with the condition that the denominator is positive, equivalently

δak +
a(

ω + (1− ω)
√

1 + ρ− 2αρ
)2 δ(a+1)k <

a(
ω + (1− ω)

√
1 + ρ− 2αρ

)2 − 1. (27)
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