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Abstract—In this paper, we consider quantum error correction quasi-cyclic (QC) parity-check matrices with arbitrarguéar
over depolarizing channels with non-binary low-density paity-  even row weightL > 4 and column weight/ such that

check codes defined over Galois field of size”. The proposed /5~ 7~ 9 However, the resulting codes do not outperform
qguantum error correcting codes are based on the binary quasi — = ’

cyclic CSS (Calderbank, Shor and Steane) codes. The resuitj the codes proposed by MacKay el all [9].[10]. o
quantum codes outperform the best known quantum codes and ~ Generally, LDPC CSS codes tend to have poor minimum
surpass the performance limit of the bounded distance decad. distance. The minimum distance of an LDPC CSS code is

By increasing the size of the underlying Galois field, i.e.2”, the  ypper-bounded by the row weight of the parity-check matrix.
error floors are considerably improved. This is due to the dual and sparse constraint on the parity-
Index Terms—LDPC code, non-binary LDPC codes, belief check matrices. When the LDPC CSS codes are used with
propagation, Galois field, iterative decoding, CSS codesugntum large code length, the poor minimum distance leads to high
error-correcting codes error floors. Therefore, it is desired to establish the qoiast
tion method of quantum LDPC codes with large minimum
l. INTRODUCTION distance. We should note that it is important to study quantu
In 1963, Gallager invented low-density parity-checkDPC codes with large minimum distance which grows with
(LDPC) codes[[1]. Due to the sparseness of the code represevde length[[13] for constructing quantum LDPC codes with
tation, LDPC codes are efficiently decoded by the sum-prodw@nishing decoding error probability.
algorithm. By a powerful optimization methodensity evo-  Non-binary LDPC codes are defined as codes G3&¢2")
lution [2], developed by Richardson and Urbanke, messagegh p > 2. The parity-check matrices of non-binary LDPC
of sum-product decoding can be statistically evaluatede Thodes are given as sparse matrices @/B(2”). In this paper,
optimized LDPC codes exhibit error correcting performancge investigate non-binary LDPC codes for quantum error
very close to the Shannon limiti[3]. Recently, LDPC codesorrection. It is empirically known that the best classicah-
have been generalized from a point of view of Galois fieldbjnary LDPC codes have column weight= 2 from a point
i.e. non-binary LDPC codes are proposed. Non-binary LDR@ view of error-correcting performande [14]. Moreoveredo
codes were invented by Gallager [1]. Davey and MacKay [4fie sparse representation of non-binary parity-checkioestr
found that non-binary LDPC codes can outperform binagf column weightJ = 2, the non-binary LDPC codes are
ones. efficiently decoded by FFT-based sum-product algorithnj.[15
Quantum LDPC codes, which are quantum error-correctingln this paper, we propose a construction method of a
codes, have been developed in a similar manner to (clagsidahary CSS code which can be viewed also as a pair of non-
LDPC codes. By the discovery of CSS (Calderbank, Shor ahthary LDPC codes. More precisely, the proposed constrcti
Steane) coded [5]/[6] and stabilizer codés [7], the notianethod produces a binary code p@i, D) such thatC > D+,
of parity-check measurement, which is a generalized notiand C' and D are also defined by non-binary sparse parity-
of parity-check matrix, is introduced to quantum inforroati check matrices ovelGF(2P) of column weightJ = 2.
theory. In particular, a parity-check measurement for a CS%is satisfies the constraint of CSS codes. To this end, we
code is characterized by a pair of parity-check matricechvhifirst constructP.J x PL binary QC parity-check matrix pair
satisfy the following condition: the product of one of therpa (HC,HD) with column weightJ = 2 and row weightL
and the transposed other is subjected to be a zero-matrix. such thatHcfllT) = 0 by the method developed in_[12].
Quantum LDPC codes were first introduced by Postdlin [8golving some linear equations &y, 1, we getPJ x PL
The above CSS constraint on the parity-check matrices makem-binary parity-check matrix paifHr, Ha) with column
the design of the quantum LDPC codes difficult. MacKay ateight.J = 2 and row weightZ such thatHrH} = 0. It is
al. proposed thbicyclecodes[[9] and Cayley graph based CS&nown that a natural linear map frofaF (2?) to GF(2)P*? is
codes|[[10]. In[[11], Poulin et al. proposed serial turbo sodgiven so that through this map, the non-binary LDPC matrix
for the quantum error correction. These codes can be decoged (Hr, Ha) can be viewed as a binary LDPC matrix pair
by an efficient iterative decoder. To the best of the author&-, Hp) such thatHcHlT) = 0. Numerical experiments
knowledge, these codes][9], [10], [11] are the best knovemow the resulting CSS codes outperform the best known
guantum error correcting codes among efficiently decodalgjsantum error correcting codes and surpass the performance
guantum LDPC codes so far. In_[12], Hagiwara and Imdimit of the bounded distance decoder. By increasing the siz
proposed a construction method of CSS code pair that tafsthe underlying Galois field, i.e2?, the error floors are
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Fig. 1. An example of b|nar3(J =2,L =6, P = 7)-QC parity-check matrix pa|(Hc, HD) constructed by the method in Theoréin 1 with= 2 and
7 = 3. It holds thatHcH = 0. For any rowm’ of Hp

considerably improved. A. Quasi-Cyclic Binary Construction

The rest of this paper is organized as follows. Seclion Il | et /7. and Ap be P.J x PL binary parity-check matrices
describes the construction method of a non-binary twistegsined as follows:

LDPC parity-check matrix pai(HG, Ha) of column weight
J = 2. Section[l] describes the decoding algorithm of the f[c = ([(CJ,Z))OSKJ,OSKL’
binary twisted code paifC, D). Sectior IV demonstrates the

(I(d
decoding performance of the proposed codes. (I(d;0))osi<rose<rs

01 0 0 O
0 01 0 O
PxP
II. CONSTRUCTION OFNON-BINARY MATRIX PAIR WITH 0 0 0 0| € {0,1} )
COLUMN WEIGHT 2 0 00 0 1
1 0 0 0 O

In this section, we will construct a binary code péi, D) I(cje) == 1(1)%.
defined by orthogonal parity-check matricék, and Hp, . .
where we call two matriceX andY” orthogonal if XY™ = 0. We refer to such ma.tnces ag (L, P)-QC matn.ces.

Let pN qubits be the code length. The binary codeandp ~ Hagiwara and Imai proposed [12] the following method for
are designed in such a way th@tand D can be representedconstructing a QC parity-check matrix paitfc, Hp). In the
also by non-binary sparse parity-check matrices GVE(2?) original paper [_12], the constr_uctlor_l method is more flexibl
of column sizeN and column weight/ = 2. To this end, we about the row size of the matrices, i.él¢ and Hp can have
start with binary QC matrices and extend them to matr|cgéﬁerem row sizes. For simplicity, in this paper, we foaurs

over GF(27). The following is the outline of construction /¢ and Hp with the same row sizd .
procedure. Theorem 1 ([16, Theorem 5.2]) DefineZ%}, := {z € Zp |

A) Choose integers/ = 2, P and L such thatPL = N. 3@ € Zp,za = 1}, andord(o) := min{m > 0 | o™ = 1}.
Construct a pair of orthogonaPJ % PL quasi-cyclic For integersP > 2,J,L,0 <o < P and0 <7 < P such

binary matricesd and Hp by following the procedure that

of [16]. o, 7 €1} ()
B) A pair of PJ x PL matricesHr and Ha overGF(2P) are ’ P

constructed by replacing non-zero entries of the matrices L/2 = ord(0), )

H¢ and Hp with elements ofGF(27). The orthogonality 1< J <ord(o),

condition Hr H} = 0.|mposes a set of linear constraints ord(c) # #7Z5,

on the non-zero entries dir and Hx, that can be solved j " .

by Gaussian elimination. L=o? €Zpforall 1 <j<ord(o), (3)
C) The entries of Hr and Hx are mapped to elements T# 10,07, ... 0O (4)

of GF(2)P*P that preserves addition and multiplication. .
These properties of the mapping imply that the resultlﬂﬁt Hc and Hp be two (J, L, P)-QC binary matrices such
matricesHo and Hp remain orthogonal.

an inner LDPC code and an outer code of rate 1 and length
p. Indeed, the code obtained at step A) is a quantum LDPC
code [16]. Steps B) and C) have the effect of replacing each
qubit by p qubits while preserving the orthogonality property.

Each step in the procedure is explained in the following
sub-sections.

The proposed code can be viewed as a concatenated code with = (I(¢j.0))o<j<t0<t<L,
((

I(dje))o<j<to<e<L,
oIt 0<i<L/)2
K { ToTIt L/2<(<L, ®)
—7097t 0<{<L)2 ©)
—gi—t L/2<{<L



Fig. 2. An example of non-binary matricd8r = (vm,n)o<m<M,0<n<N @Nd HA = (6m,n)o<m<M,0<n<N OVEr GF(2%) such thathHZ =0
with M = 14 and N = 42. Each non-zero entry is represented as the hexadecimal etuaffiog,, (ym,n), Wherea is a primitive element such that
ot +a+1=0.E.g.,a’ anda!! are represented as 0 and b, respectively.

then it holds thatH o /], = 0 and there are no cycles of sizeLemma 4. Let H¢, Hp be the two (2,L, P)-QC binary
4 in the Tanner graph ol and Hp,. matrices dealt in Theorefd 1. Lé{(m') := {ng,...,nr_1}

. ;
From Theorerﬁ]l we obtain twdP x LP binary matrices be the support of then"-th row of H. To be precise,

Hc andHD such thatHcHD = 0 and the Tanner graphs of N(m')={ng,...,nr_1} ={0<n< LP| Ar 7 # 0}.
He and Hp are free of cycles of size 4. We give an example. A

Let E(m’) be th t of - t iti h
Example 2. With parameters/ — 2.1 — 6.P — T.o — 9 et E(m') be the set of non-zero entry positionshfa: whose

. , [ is inN(m/). Tob ise,
andr = 3, from Theoreni]1, we are given.BP x LP binary column is inV(m’). To be precise

matrix pair (Hc, Hp) such thatAcH T = 0 as follows. E(m') :={(m,n) | émmn #0,n € N(m')}. @)
He = <§Ei§ :;8% :;E;L; :;Eg; :;Eg; §Eg;> , In this setting, in the Tanner graph dfi, for any m’ =
0,...,L—1,theL variable nodes corresponding to the column
Ay = (I(4) (2) I(1) I(6) I(3) 1(5)> . index inN (m’) and theL adjacent check nodes form a cycle of
I(1) I(4) I(2) I(5) I(6) I(3) length2L. In other words, there exist distinctme, ..., mz_1
The binary representation of these matrices are given infBig and L distinctng,...,n;_1, such that

It can be verified that there are no cycles of length 4 in Tanner
graphs Oflffc and HD- {(mai—1,m2i), (Mai, nai), (Ma2i, N2it1), (M2it1, N2it1)

10<i<L/2}=Em), ®

We observe a fundamental property &f- and Hp as
follows. where we denoter_; :=mp_1 andmp1 := my.

Observation 3. Let m’ := 5. Them/-th row of Hp has non- Proof. SinceJ = 2, it follows that Ho and Hp comprise
zero entries at theg = 2,ns = 7,n4 = 20,11 = 25,n5 = 29 2 x L sub-matrices of sizé” x P. For simplicity, we focus on
and ng = 38-th columns. Denote the set of these indices Iie m/-th row chosen from the upper half rows &fp, i.e.,
N(m') := {ng,...,ns}. Note that the index starts from 0.0 < m’ < P. The proof for? < m' < 2P is essentially the
These non-zero entries are represented in thick font in[Eig. same.
At each of these 6 columns M(m’), Hc hasJ = 2 non-zero First, we will clarify the suppon‘N( ") of the m’-th row
entries at of Hp. From [8), the upper half off, can be written byL

( 172)7 ( 577)7 (2720)7 ( 1725)7 ( 2’29)7 ( 5,38), sub-matrices as follows.

(12,2), (13,7), (11,20), (13,25), (12,29), (11,38). (I(=70-0) - [(—ro—(E/2-D)||[(=g—L/2) ... [(—g—(E-D))
Let these positions be denoted, respectively, by .

(mo,m0), (m2,n2), (mana), (Mo, n1), (ma,ns), (ma,ns) For each sub-matrix, then’-th row has the only one non-
(m ’n )’ (m ’n )’ (m ’n )’ (m ’n )’ (m ’n )’ (m ’n )’ zero entry. For) < i < L/?, let no; be the c_olum_n _mdex
5 105 AL T2/ RS, T4, AT TR ATES 51> A8 T83) - of such a non-zero entry in theth sub-matrix. Similarly,
We denote the set of these positionsiyn’). In the Tanner et n,;,, be the column index of such a non-zero entry
graph of Hc, those non-zero entries frofmo, no) to (ms,m0) in the ([—i]; /> + L/2)-th sub-matrix. Obviously/N (m’) =
consist of a cycle of sizeL = 12. Along this cycle, the row {no, . nL—l} andng,...,nr_1 are distinct. Note that the
index moves back and forth between the above and belgg\zth ., n_s-th andn;-th columns are in the./2 right
of He. Indeed,0 < ma; < P < may1 < 2P for i = half (L —1)-th, ..., (L/2 4 1)-th and(L/2)-th sub-matrices
O L/2 — 1. On the other hand, the column index movegf HD- respect|ve|y Then’-th row OfI( ) has the 0n|y non-

back and forth between the left and right B. Indeed,0 < zero entry at thez + m’)-th column. From this, it follows
ng; < LP/2 <ngip1 < LPfori=0,...,L/2-1. that we can rewrite

We claim that this observation is general for an{-th row ng; = [~7o~t +m']p +iP. )
of D¢. The following lemma will be a key ingredient for ‘ ] , T
constructing non-binary matricé$, and Hr in Sectior(1I-B. ngiy1 = [0 2 +mp + ([=ilL2 + L/2)P, - (10)
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Fig. 3. An example of binarp M x pN matricesHc and Hp such thatHcH}, = 0 with p =4, M = 14 and N = 42. Non-zero entries are represented
in black. The codes have many cycles of size 4 as binary c@egshe other hand, the codes have no cycles of size 4 as nan¢hindes.

where we definéz], € Z for x € Z as0 < [z, < t such that  For HrHJ} = 0, it is required that then’-th row of Hx is
[z]: =2 (mod t). in the null-space ofdr for each0 < m’ < JP. From Lemma

Secondly, we will prove[{8) by clarifying the structure of, this is equivalent to
E(m'). Define

. . Tmo,mno  VYmo,n1 6ml’n0
mo; i = [—0" — 10" +m']p, . :
Moj_1 1 = [—ai_l —To m'|p + P. ' ' . =0,
Ymp_omnp_2 Ymp_amnp_1 :
We claim that(infl,ngi), (in,TLQi) S E(m’) for 0 <i< Ymr_1,n0 Ymp_1,mnp_1 5m’ —
L/2. Consider the non-zero entry in thg, i)-th sub-matrix (11)

for j = 0,1, and0 < i < L/2. Let the position be denoted by

(m,na;). From [B) andi < L/2, it follows that them-th row for each0 < m’ < JP. In order to find the non-zero entries of
of };[Cz Has o710 entrios ét tHér =7+ + m]p + iP)-th Hr and Hx, this equation needs to have non-trivial solutions,

column. Therefore, it follows froni{9) thdtn, na;) € E(m’) ?.e., the determinant of the left matrix, denotedIhy, in (I1)
if and only if is 0:

[U_jﬂ +m]p +iP = [—TO'_i +m/]p +iP, det(I'm/) = Ymo,no * " Ymr_1ini_r = Ymoma - '%n,_,l,no(fz()).
for j = 0, 1. Thus, we conclude that = my; 1 andm = mg; . N . .
for j = 0,1, respectively, which proves the claim. In a simil _'V'de E(m') in @) into two parts as in the proof of Lemma

manner, it can be shown théty;, n2;11), (Ma2it1,N2it1) €

E(m’) for 0 < i < L/2, where we denotedny 1 := m;. E(m') = Ey(m") U Ex(m/),

These provel(s). o Ey(m') = {(mo,no), (m1,m), .., (mr1,n1-1)},
Finally, we show that theL non-zero entries inE(m/’) Bo(m!) =

consist of a cycle of lengtL. To this end, it is suffice to show 2(m) = {(mo, m1), (ma,m2), ..., (Mr—-1,m0)}.

that mo, ma, ..., mp_o are distinct, andn,, ms,...,mr—1  Then [12) can be transformed to

are distinct. Assumeny; = moy fori # i’. Then we have’ + 1

o~ +m' =" + 707" +m' (mod P). Some calculations I v II b=t (13)

reveal that(1 — 0¥ ~/)(¢’ — 70=") = 0 (mod P). From [3) (m,n)€B1(m’) (m,n)€ B2 (m")

it follows that o* — 70~ = 0 (mod P), which contradicts Fora® € GF(2?), definelog, (a®) := 2 (mod 2 —1). Then
with (@). Hence, we conclude= i'. In the same manner, welog,, is well-defined. The equation above is equivalent to the

can showm,,ms,...,my_1 are distinct. O following linear equation oveZs»_;.
. . . . 1 — 1 =0. (14
B. Non-binary matrix pair construction Z O8a Tm,n Z 8o Tm,n (14)
(m,n)€E1 (m/) (m,n)€Ba(m’)

Define M := JP and N := LP. So far, we obtain

N A i i /I
orthogonal matricedTc: = (ém.n)o<menrocnen and Hp = Thus, we haveJ/P linear equations ove¥.,»_; for m’ =

(dm.,n)o<m<,o<n<n Whose Tanner graphs are free of cycleg’l.' o JtP —1 Solv;ntgi]theseclillr&e?r eqlljaélnons by the fGt?]us&an
of size 4. In this sub-section, we will construct orthogonael imination, we get the candidate solution space of the non-

non-binaryM x N matriceSHr = (o n)o<mer 0<men AN zero entries offr such that[{I¥) holds fon’ =0, ..., JP—1.
Ha = (50m) overGFW(lég) s_ch<h tﬁzi_;< 20 Picking non-zero entries afft randomly from the candidate
iffAé_ ";"Ooéﬁgg/[’og";]vo itt dy,, £ 0 ObviOLTéry the solution space and solvinfg{11), we obtain non-zero entrfies

Tanner graphs offr and Ha are free of cycles of size 4. WeHA' We give an e>A<ampIe.A
will determine the non-zero entries éfr and Ha such that Example 5. Using H- and Hp given in ExamplE]2, we get an
HrHJ = 0 in the rest of this sub-section. M x N non-binary matrix pair(Hr, Ha) over GF(2?7) such



that HrHY = 0 with M = JP = 14 and N = LP = 42. entry of HrHJ. Then, for any0 < m < M and0 < n < N,
The resulting(Hr, Ha) is depicted in Fig[R. _
o(Fr, Ha) Is dep . (HeH ) = St A ) A(Gi)

This construction can be viewed as pickif@ir, Ha) _ ZN—l A(ymrbor)
randomly from{(Hr, Ha) | HrH} = 0}, whereHr and Ha AV
are constrained to have non-zero entries at the same pssitio = A(X k=0 Ym.kOn,k)
as H¢ and Hp, respectively. Sincél and Hp is equivalent = A((HrH))m.n) = A(0) = 0.

with some column permutatiori_[112], the construction has

symmetry for Hr and Ha. This symmetry leads to almost

the same decoding performance which will be observed Bxample 7. Using Hr and Ha given in Exampl€l5, we get a

computer experiments in SectibnlIV. pM x pN binary matrix pair(H¢, Hp) such thatHcHJ, = 0
with p = 4,pM = pJP = 56 and pN = pLP = 168. The
resulting (H¢, Hp) is depicted in Fig[B.

C. Binary Quasi-Cyclic CSS LDPC Codes

So far, we obtained/ x N sparse non-binarGF(2?) Ill. DECODING ALGORITHM
parity-check matricesin and Hr, where N := PL and In this section, we describe the decoding algorithm for the
M := PJ. It is known that non-binary codes have the binar¢SS code pai{C, D) constructed by the proposed method
representation of their parity-check matrices. In thistisa¢ in Section[l andII-C. The decoding algorithm is based on
we show that two parity-check matricd$r and Ha over the decoding algorithm of classical non-binary LDPC codes
GF(2P) such thatHrH) = 0 can be represented by two[15]. The input of the decoding algorithm is the syndrome.
binary matricest - and Hp such thatHcHJ, = 0. We assume the depolarizing channels [9, Section V] with
Let GF(2P) has a primitive element with its primitive depolarizing probability2 f.,,/3, where f,, can be viewed as
polynomial 7(z) = f;ol mxt + 2P, It is known [17] that the marginal probability foX andz errors.
the following mapA from GF(2?) to GF(2)P*? is bijective Let M x N be the size of the non-binary parity-check matrix
and its image is isomorphic t6F(2?) as a field by sum and Hr over GF(2P). The code length i N qubits. We deal

multiple as matrices. with a p-bit sequence as a non-binary symbol which is simply
_ _ _ referred to as symbol. Moreover, we deal with the symbol
GF(2P) 3 o' — A(a*) := A(a)" € GF(2)P*P, interchangeably as a symbol @GF (27).
A(0) =0, Note that the channel is the normal depolarizing channel.
00 0 0 We assume the decoder knows Fhe depolarizing probability
100 0 m 3 fm/2. For each rown = _1, .. ..,M in Hr, let N,,, be the _set
01 0 0 = of the non-zero entry indices in tha-th row. To be precise,
Ala) = 2 Ny = {n | ¥mn # 0}. The decoder is given the syndrome
- : symbolss,,, € GF(2)? for m =1,..., M. To be precise, the
00 0 1 7w decoder does not know the flipped qubits but their syndromes:
Moreover, it holds that 5=, AYmn)y,,, (15)
neEN,,
A(a')u(a?) = v(a™™?), whereA is the isomorphism defined in Section )-C apd €
wherea’ = Z’j’;é aja’ € GF(2P), GF(2)? is ap-bit sequence corresponding to theth p-qubit

sequence of flippe@ N qubits.

For simplicity, we concentrate on the decoding algorithm fo
C, since the decoding algorithm fdp is given by replacing
I with A, and A(-) with AT(-) in the following algorithm.
The decoding algorithm of C
initialization:

Fact 6. Let Hp and Ha be matrices oveGF(27)M*N and For each columm =1,...,N in Hr, let M,, be the set of
let Ho and Hp be two matrices ove®F (2)?M*rN sych that the non-zero entry indices in theth column. To be precise,
M,, :=={m | vm.n # 0}. For each columm in Hyp for n =

andu(a’) := (ag,...,am_1)" € GF(2).

Furthermore, with an abuse of notation we defitie(a’)) :=
v(a).

Hr = (Ym,n)o<m<M,0<n<N» 1,..., N, calculate the initial probabilityoglo) (e) as follows.
Ha = Omalosmemosnen, P (e) = Prle, = elY, = 0) = fHE (1= f)r "o

¢ = (Almn))osmerognen for e € GF(2)?, where f,, is the flip probability of the

(AT
Hp = (A" (0m.n))osm< 0<n<n- channel and¥y(e) is the Hamming weight ot. For each
Then, it holds that ifHir H{ = 0, thenHcHJ = 0. C?OI)umn (8) = L...,Nin Hr, copy the initial message

Pum = pn € [0,1]% for m € M,,. Set the iteration round as
Proof: Let (HoH},)m.» be the(m,n)-th p x p binary ¢:= 0.
sub-matrix of Ho H}, and let(HrHJ )., be the(m,n)-th



horizontal step: and Hp with J = 2, L, and P. Secondly, by the scheme
Each rowm has L incoming messagep% for v € N,,. described in Sectiof]ll, constructP? x LPw non-binary
The m-th row sends the following messagé,+" e [0,1]2" matricesHy and Ha over GF(27). Finally, by the scheme

n

to each columm € N,,,. described in Sectidn IHC, we haye P x pL P binary matrices
0 _ . ) Hc_ and Hp. Thu;, we obtainC' and D are defined by the
Prm (€) = Prn (A(Vnm Je) for e € GF(2), (16) parity-check matricesZ: and Hp,, respectively. Note thaf’
57(521) -1, ® ZN’%)W and D can not only be viewed as binary codes definedy
o W ENm\{n} and Hp but also be viewed as non-binary codes defined by

Hr and Ha. The code length of the proposed CSS code is
given asn = pLP qubits or equivalentlyL P symbols. The
wherel; is a probability onGF(2)? such thatl; (e) =1 quantum rateRq of the proposed CSS code is given as

for ¢ = s,, and 0 otherwise, and; ® ¢» € [0,1]*" is a R —1—9J/L

convolution ofg; € [0,1]*" and g € [0,1]%". To be precise, q=1-2J/L

g\t (e) = G (A(vnm)e) for e € GR(2)P. (17)

= 9mn

Fig.[4 shows the block error probability of the constituent
— p
(01 @ g2)(e) = ' Z p(h (f)az(g) for e € GF(2)". codesC and D of the proposed CSS code pdif, D) over
l’%ic;i(;) the depolarizing channel with marginal flip probabilify, of
T X and Z errors. Parameter are chosén= 2, L = 6,8 and

The convolutions are efficiently calculated via FFT and IFF{4 for Rq = 1/3,1/2 and 5/7, respectively. The depolarizing

[18], [19]. Increment the iteration round ds= ¢ + 1. probability is given by3f./2. The correlations betweek
errors andz errors are neglected. Due to the symmetry of

vertical step: ] construction ofC and D, the block error probability of the

Each columnn = 1,...,N in Hx has.J = 2 non-zero constituent code§’ andD are almost the same, hence we plot

entries. Let)M, be the set 93‘; the CO';*{“” indices of thene plock error probability of eithe€ or D. It is observed
non-zero entry. The messagé, € [0,1]* sent fromn t0  hat for fixedg = 27 and Rq, the codes with larger code

m € M, is given by length tend to have higher error floors. This is due to the fact
p® (e) = €49 (e) H 9 (¢) for = € GF(2)? that the proposed codes have poor minimum distance which
e e ) mne= ’ is upper-bounded byL. The error floors can be improved

] o by using largerp, i.e., larger fieldGF(2?P), which leads to
where ¢ is the normalization factor so thatyne requirements of more complex decoding computations

¢
deGF(g)y pgw)n(ﬁ) = 1 O(Ngqlog(q)), whereq = 2P,
tentative decision ! _ . Fig. [ compares the proposed quantum codes with the
For eachn = 1,...,N, the tentatively estimated-th pest quantum codes so far. The horizontal axis is the flip
transmitted symbol is given as probability at which the block error probability of one ofeth
) ) ) : o
éﬁf) — argmax ng) (e) H q%%(g)_ constituent classical code B85 x 107%. Thg vertical axis is
ccQF(2)P eM the quantum rate?q of quantum codes. Since the proposed
. . ! , CSS codes have constituent classical codeand D of the
If (&, .-, &y) has the same syndrome s, ..., s5,) Which g5 e classical rat&c = 1 — J/L, the quantum rateRq is
is defined in[(Ib), in other words, fon = 1 LP ;
' ' R given asRq = 2Rc — 1 =1—2J/L. It can be seen that the
Z AYmn)e?) =5, € GF(2)P proposed codes outperform the state-of-the-art codesaciy f

the proposed codes surpass the BDD curve which is the limit
of the bounded distance decoder, while the other codes fall
inside the BDD curve.

n€ENm,

forallc=1,..., M, the decoder outputg,, ...,&y) as the
estimated error. Otherwise, repeat the latter 3 decodaygsst
If the iteration round reaches a pre-determined number, the
decoder OUtput§ATIL.

Note that, in this algorithm, the correlations between We proposed a novel construction method of CSS codes.
errors andz errors are neglected. In/[9, Section VI, C] MacKayf he resulting CSS codes can be viewed as non-binary LDPC
et al. used the knowledge about the channel properties fides overGF(2?). Due to the sparse representation of
decoding, which improved the decoding performance. THie parity-check matrices, the proposed codes are effigient
most complex part of the decoding is the horizontal stegecoded. The simulation results over the depolarizingcéisn
which requiresO(Nqlog(¢)) multiplications and additions show that the proposed codes outperform the other quantum

V. CONCLUSION

when calculated via FFT, where= 27. error correcting codes which exhibited the best decoding
performance so far. The error floors are lowered by incrgasin
IV. NUMERICAL RESULT the size of the underlying Galois field, i.@~.

In this section, we demonstrate the proposed CSS code pair
decoded by the algorithm described in the previous section. ACKNOWLEDGMENT
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Fig. 5. The performance of the proposed CSS code(6giD) compared with the best CSS codes so far from [9], [10] Anil §¥&} the depolarizing channel
with marginal flip probabilityf,, of X andz errors. Each point is plotted at which the block probakitof both two constituent codes dre 10~°. The block
probability of the entire CSS code Is— (1 —5 x 107°)2 ~ 10~*. The Shannon limit of the depolarizing channBly = 1 — h(3fm/2) — 3 fm/2log,(3),
whereh(-) is the binary entropy function. The curve labelled S2 is tbieievable quantum rate if the correlations betw#esrrors andz errors are neglected:
Rq =1—2h(fm). The curve labeled BDD is the performance limit when the llmehdistance decoder is employed and the correlations betwerrors
andz errors are neglectedRq = 1 — 2h(2fm). The code length i qubits. The proposed codes are defined &¥&¥(q).
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