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Abstract: This paper investigates the capacity problem for some multiple-access scenarios with cooperative transmitters. First, a
general Multiple-Access Channel (MAC) with common information, i.e., a scenario where p transmitters send private messages and
also a common message to g receivers and each receiver decodes all of the messages, is considered. The capacity region of the discrete
memoryless channel is characterized. Then, the general Gaussian fading MAC with common information wherein partial Channel
State Information (CSI) is available at the transmitters (CSIT) and perfect CSl is available at the receivers (CSIR) is investigated. A
coding theorem is proved for this model that yields an exact characterization of the throughput capacity region. Finally, a two-
transmitter/one-receiver Gaussian fading MAC with conferencing encoders with partial CSIT and perfect CSIR is studied and its
capacity region is determined. For the Gaussian fading models with CSIR only (transmitters have no access to CSIT), some numerical
examples and simulation results are provided for Rayleigh fading.

Index Terms- Multiple access channel (MAC); cooperative encoders; conferencing; Gaussian fading channels; channel state
information (CSI).

l. INTRODUCTION

The classical Multiple Access Channel (MAC) first considered by Shannon [1] models a communication system in which
separated transmitters send independent messages to a receiver. The capacity region of the classical MAC was derived by
Ahlswede [2] and Liao [3]. The MAC with cooperative encoders was first investigated by Slepian and Wolf [4], (see also [5])
wherein the capacity region of a discrete MAC with common information was established. In a MAC with common information,
the transmitters send a common message (in addition to their respective private messages) to the receiver cooperatively. The
concept of cooperation between transmitters in a multiple-access scenario and its effect on the capacity region has been widely
studied. For a comprehensive review of the existing results for the two-transmitter/one-receive MAC with cooperative encoders,
see [6] and the literature therein. In another model, the transmitters of a MAC, where a private message is associated to each one,
cooperate with each other via conferencing that yields a larger capacity region. This model sometimes is referred to as MAC
with partially cooperating encoders. The notion of conferencing between transmitters of MAC was first introduced by Willems
[7] wherein the capacity region of a discrete memoryless two-transmitter/one-receiver MAC with conferencing encoders was
established. In this scenario, encoders are connected by communication links of finite capacity, which permit both encoders to
communicate over noise-free bit-pipes of given capacity. The capacity region of the Gaussian two-transmitter/one-receiver MAC
with conferencing encoders was characterized in [8].
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Cooperation between various nodes of a communication system via common message and conferencing was also studied for
other models. Specifically, in [9] a three-transmitter/one-receiver Gaussian MAC with encoders, partially cooperating over a ring
of finite-capacity unidirectional links, was studied. In [10], the capacity region of the compound MAC (a two-transmitter/two-
receiver MAC) with a common message, also with conferencing encoders was derived. The authors in [10] also studied the
interference channel with common information and also with conferencing encoders; the capacity region was established for
some special cases. A two-user broadcast channel where the decoders cooperate via conferencing links was investigated in [11].
The compound MAC with a common message and conferencing decoders and also the compound MAC when both of the
encoders and decoders cooperate via conferencing links was considered in [12]; the capacity region was established for some
cases, specially, the physically degraded channel.

Another important feature in communication systems, specifically in mobile wireless communications, is the fading
environment. The classical Gaussian fading MAC with Additive White Gaussian Noise (AWGN) was investigated in [13]-[15].
The authors in [13] and [14] characterized the capacity region of the Gaussian fading MAC where only the receiver can track the
time-varying channel, i.e., the receiver has access to the Channel State Information (CSI) perfectly while the transmitters have no
access to CSIL. In [15] the Gaussian fading MAC with perfect CSI at the transmitters and the receiver was studied and the
throughput capacities, the delay limited capacities, and the associated optimal resource allocation were obtained.

In this paper, we aim at studying the above features, i.e., cooperation among transmitters and fading environment, in a MAC,
simultaneously. To this end, we consider three multiple-access scenarios and provide an exact characterization of the capacity
region for each one. First, we consider a p-transmitter/g-reciever MAC coined as General MAC (GMAC) with a common
message. In this network, each transmitter sends a private message over the channel as well as all transmitters send a common
message cooperatively to the receivers. Each receiver decodes all transmitted messages. The capacity region of the discrete
GMAC without common message was previously obtained in [16]. Here, we extend the result of [4] to the case of p transmitters
and g receivers and characterize the capacity region of the discrete GMAC with a common message using the superposition
coding technique. Then, we will consider the Gaussian fading GMAC with a common message. We show that the encoding and
decoding schemes used to derive the capacity region of the discrete GMAC with a common message can constitute a frame to
describe the signaling procedure for the Gaussian fading channel. In fading networks, based on the availability of CSI at different
nodes (transmitters and receivers), the capacity region differs from one model to another. In a wide range of models for wireless
communications, it is common to measure the state of the channel at the destinations perfectly, and then feed it to the
transmitters through perfect or noisy feedback links. In our model for the Gaussian fading GMAC with a common message, we
consider the channel with partial CSI at the transmitters (CSIT) and perfect CSI at the receivers (CSIR). Here, partial CSIT is
modeled as the knowledge of a deterministic (potentially discrete-valued) function of CSI, where this deterministic function may
vary from one transmitter to another. This model, which had been previously studied for the classical Gaussian fading MAC in
[17], contains important benefits; it considers the general CSIT with full control over how much CSI is available. Specifically, it
unifies the characterization of the two models in which the transmitters have perfect or no knowledge of CSI [14], [15].
Furthermore, since each transmitter is associated to its own deterministic function, the model also includes the scenario in which
not all transmitters have access to CSI, which is more realistic. Under such a scenario, we prove a coding theorem for the
Gaussian fading GMAC with a common message yielding an exact characterization of its throughput capacity region. It should
be mentioned that the authors in [18] also studied the Gaussian fading MAC with a common message. The model studied in [18]
is a special case of our derivation; it only considers a two-transmitter/one-receiver MAC (p = 2, and ¢, = 1) with perfect CSI at
both transmitters. Also, the techniques used in [18] to derive the capacity region are different from ours, yielding different
formulation of the capacity region. However, we show that the result of [18] and ours in the respective special case are indeed
equivalent. This yields a new proof for the result of [18].

Finally, as a third scenario, we study a two-transmitter/one-receiver Gaussian fading MAC with conferencing encoders with
partial CSIT (the same model as before) and perfect CSIR, wherein it is assumed that the transmitters have access to CSIT after
the conferencing. We determine the throughput capacity region of this channel.

The rest of the paper is organized as follows: In Section II, preliminaries and channel models are introduced. The main results
are presented in Section III; in Subsection III-A, the GMAC with a common message and in Subsection III-B, the Gaussian
fading MAC with conferencing encoders are investigated. In Section IV, numerical examples and simulation results are provided
for the Gaussian Rayleigh fading. Finally, the paper is concluded in Section V.



1. PRELIMINARIES AND DEFINITIONS

In this paper, we use the following notations: random variables (r.v.) are denoted by upper case letters (e.g., X) and lower case
letters are used to show their realizations (e.g., x). The probability distribution function (p.d.f.) of a r.v. X with alphabet set X, is
denoted by Py (x) where x € X; Pyy(x|y) denotes the conditional p.d.f. of X givenY. A sequence of r.v.’s (X, ..., X,,) with the
same alphabet set X is denoted by X[* and its realization is denoted by (x;, ..., x,), x; € X, i = t, ..., n, where for the case of XT'
the subscript is dropped, occasionally. The set of all e-typical n-sequences x™ with respect to the p.d.f. Py(x), as defined in [19,
Ch. 3], is denoted by AZ(Py). The notation E[.] indicates the expectation operator, where sometimes to be more precise we use
Ex[.] to denote expectation with respect to the distribution of the r.v. X. We also use h(.) to represent the differential entropy.
The set of real numbers and also the set of all nonnegative real numbers is denoted by R and R, respectively. Finally, C(x) =

%log(l + x).
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Figure 1. The GMAC with a common message.

A) General Multiple Access Channel

A discrete memoryless p-transmitter/g-receiver GMAC {Xl, Xy s Xy, IP’(yl, e Vg lXa, s x;,), Y, Yy, s y4}, is a channel with
finite input alphabets X;, i = 1, ..., p, finite output alphabets Y;, j = 1, ..., g, and a conditional p.d.f. ]P)(yl, s YalX, o ,xp) that
describes the relation between the inputs and outputs of the channel. The channel is assumed to be memoryless, i.e.

n
Pr(yl, o, YT, o xR) = HIP(th, e YaelXie v Xpr), n21
t=1

(1)

where Pr(A|B) is the probability of the event A given B. Fig. 1 illustrates the channel model. In this paper, we consider a
communication setting in which each transmitter sends a private message (unknown to other transmitters) over the channel, as well
as all transmitters send a common message to the receivers cooperatively. Both of the common massage and the private messages
are decoded at each of the receivers.

For the GMAC described by (1) with a common message, a length-n code €,, with a common message set W, = {1, ..., 2"Ro}
and private message sets W; = {1, ..., 2"Ri},i = 1, ..., p, is defined by a set of encoder functions {G; (. )}f’=1 as:

CWyxW, - X', i=1,..,p
and a set of decoder functions {D; (. )};,Zzlas:

DY > Wo X W, X .. X W,



The rate of the code is the (p + 1)-tuple (RO, R4, ...,R‘,p). The average error probability of decoding at the j™ receiver p»

ej’
j=1,..,q9,1s given by:
1
c _ _ _ N
Pl =—=— Z Pr({D;(v") # (Wo, Wy, ..., W, )} (Wo, Wy, ..., W,,) is sent)
Zn(ZFORL) _ d
Wo,W1,...Wy
(2
and the total average error probability of the code PEG" is given by:
1 n
pSn = s Z Pr U{i)j(an) % (Wo, Wy, ..., W, )} ¢ |(Wo, Wy, ..., W,,) is sent
20T ey =1
3)
Note that Pf" < Zj’zl Pf]’?. The (p + 1)-tuple (RO, Ry, ..., R‘,p) of nonnegative real numbers is said to be achievable if for every

€ > 0 and for all sufficiently large n there exists a length-n code €,, such that Pf” < €. The closure of the set of all achievable
rates is the capacity region.

In addition to the previous communication setting in which the input and output alphabets of the channel are of finite size, we
also investigate the Gaussian fading GMAC with a common message. The channel is formulated as:

V4
Yj,t = ZS]'iIXi,t + Zj,t' t 2 1, ] = 1, ,%
i=1

4)

where {Y]t} {X,-,t};ozl are the R-valued received signal at the j™ receiver and the R-valued transmitted signal of the it"

t=1"
transmitter, respectively; {Sji‘t}:ilis the R, -valued fading coefficient experienced by the signal of the i transmitter at the j"
receiver, and {Z j‘t}:o:lis independent identically distributed (i.i.d.) Additive White Gaussian Noise (AWGN) process at the j&*

channel with zero mean and variance ajz. The fading processes {Sji’t}:o:l,i =1,..,.pJ=1,..,4, are assumed to be jointly

stationary and ergodic but not necessarily independent of each other. For the system given in (4) we define the state process of
the channel as the following g X p matrix:

Sll,t 51;;,»:
Se=| ¢+ , t=>1

Siie v Sy
a1, artl, s,

(5)
Furthermore, we assume that the state process of the channel {S,}{2 is independent of the AWGN process {Z j_t}:o:l, j=1,..,9.

Partial CSIT and perfect CSIR: In this paper, we consider the channel model in (4) with partial CSIT; the i** transmitter at each
time instant knows a version of the current CSI determined by a deterministic function of the state process of the channel. In
other words, the CSI available at the i*" transmitter is given by &: [Ry];x, = €10 = 1, ..., p, where [Ry],x,, is the space of all

@ X p matrices with R, -valued entries and &; is an arbitrary set (maybe finite) associated to the i transmitter. Thus, for the
channel in (4) the i*" encoder consists of a set of functions {@i,t}:zlwhere:

Ci oWy XxW; XE; - R, t=1,..,n i=1..,p

and the input symbol of the channel due to the i*" transmitter at each time instant ¢, is given by X;, = @i,t(WO! w;, E,-,t), where
E;, = &(S;) € E;. Furthermore, we assume that the receivers have access to perfect CSI, i.e., the j™ decoder function j =
1,..., g, is given by:



Dj:YJ x ([]R+],W,)n - Wy X Wy X .. X W,
which estimates the messages as:
~ (D O ~ ()
(6?7, ... w,7) = 2, (2, ™)
where S™ = (54, S,, ..., Sp,) s the state process of the channel.

An average power constraint is imposed on the codewords of each encoder. Thus, the i transmitter is subjected to an average
power constraint P; € R, in the following way:

1
—E
n

n

Z (Xi,t(WO' Wi, fi(St)))z <P, i=1,.,p.

t=1

(6)
B) Multiple Access Channels with Conferencing Encoders
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Figure 2. The MAC with conferencing encoders.

A discrete two-transmitter/one-receiver MAC with conferencing encoders {X;, X5, P(y|x1, X2), Y, C12, C21}, is a channel with
two (finite) input alphabet sets Xy, X,, an (finite) output alphabet set and a conditional probability distribution P(y|x;, x,) which
characterizes the channel. In addition, encoders are connected to each other with two links of capacities C;,, C,,. Fig. 2 depicts
the channel model.

A length-n code €(n, K, Cy5, C5,) for the MAC with conferencing encoders has two message sets W; = {1, ..., 2MRiY i =1,2:
before transmitting of messages over the channel, the two encoders hold a conference, i.e., the code €(n, K, C,5, C5,) consists of
two sets of K communicating functions {ki_l, ,/ai_,(},i = 1,2, and two sets of (finite) conferencing alphabets {Vi,p ...,Vi_K},i =
1,2. Each communicating function #;,,i = 1,2, for k = 1, ..., K, maps the message W; and the sequence of the previously
received symbols from the other transmitter into the k" symbol V; ;. € V; . In notations we have:

Forj: Wy X VEH 5V, Vik = AWy, VED),
Fogj: Wy X VI 5V, Vo = R (Wo, V1),

(7)
A conference is said to be (C;5, C,1)-permissible [7] if the sets of communicating functions are such that:
K K
Z log”vl,k” = nClZ' Z 10g||172,k|| < TlC21
k=1 k=1
®)

where ||Vl-’k|| denotes the cardinality of V; .



After the conferencing, transmitter 1 knows the sequence VX = (V2,1’ ---'Vz,K) and transmitter 2 knows the sequence V" =
(Vi1 ., Vo). Furthermore, the code €(n, K, Cy,, C,;) has two encoder functions {€;, ,} described as:

W, X VK 5> XP, GuW, x VK - X7

also the decoder is given by:

D:Y" > W, X W,

The rate of the code €(n, K, C;,, C,1) is the pair (R, R,) and the error probability of the code Pf(n’K‘C“‘C“) is defined as:

1
C(MK,C12,Ca1) _ _ N
PG = s N PR # (0, W)}, ) i sent).
W1, Wy
C))
A rate pair (R, R,) of nonnegative numbers is said to be achievable for the MAC with conferencing encoders if for every € > 0
and for all sufficiently large n, there exists a code €(n, K, Cy5, C31) such that the resulting conference of the code is (C;4, C5q)-

permissible and Pf(n‘K’C“’C“) < €. The capacity region of the MAC with conferencing encoders is the closure of all achievable
rate pairs.

The MAC with conferencing encoders was first introduced in [7] where the capacity region of the discrete channel model was
derived. In this paper, we investigate the Gaussian fading MAC with conferencing encoders in which the channel is formulated
as:

Ve =81 X1t + S0 Xor + Zy, t=>1
(10)
where {V.}7L,, {Xi‘t}le,i = 1,2, are the R-valued received signal and the R-valued transmitted signal of the i** transmitter,
respectively; {Si‘t};,i = 1,2, is the R, -valued fading coefficient experienced by the signal of the i*" transmitter, and {Z,}5=,is

i.i.d. AWGN process with zero mean and variance o?. The fading processes {Si,t};;i = 1,2, are assumed to be jointly

stationary and ergodic but not necessarily independent of each other. For the channel given by (10) we define the state process of
the channel as S; = (Sl,t:SZ,t)' t > 1. The definition of conference for the channel in (10) is the same as discrete channel and is
given by (7) and (8). Similar to the communication system in (4), we consider the Gaussian fading MAC with conferencing
encoders with partial CSIT and perfect CSIR, where CSIT is known to the encoders after the conferencing. At each time instant,
CSIT at the i** transmitter, i = 1,2, is a deterministic function of the current state of channel. Let &;: R2 — &; be the mapping that
describes CSIT at the i" transmitter, where &; is an arbitrary set (maybe finite) associated to the i*" transmitter, i = 1,2. Assume
that the information that transmitter 1 obtains after the conferencing is VX = (VZ,I' e VZ,K) and for transmitter 2 is VX =

(V1,1: . V1,1<)- By these assumptions the i*" encoder consists of a set of functions {@i,t}?zla i=12,wherefort=1,..,n:

@Lt:Wl X VZK X 81 il R,
C W, XV XE, - R

Thus, the input symbol of the channel due to transmitter 1 at each time instant ¢ is given by X; , = €, (Wl, %48 El,t)a where
Ei: = & (Se) € &y, (respectively for transmitter 2, X, , = @z,t(Wz' |48 EZ,t)z where E,; = &,(S;) € &,). We also assume that the
receiver knows perfect CSI, i.e., the decoder function is given by:

D:Y" x (R2)™ » W, X W,
which estimates the messages as:
(Wl' Wz) = D(Yn, Sn)

where S™ = (53, 5,, ..., S,,) is the state process of the channel.



Finally, we note that an average power constraint is also imposed on the codewords of each encoder and the i*" transmitter is
subjected to an average power constraint P; € R, i = 1,2. Precisely speaking, for the codewords of transmitter 1:

1
—E
n

D (X W, v 665)) | <
t=1

a1

and to obtain the power constraint on the codewords of transmitter 2 one can exchange the indices 1 and 2 in (11).

In the next section, we state our main results for the GMAC with a common message and also for the Gaussian fading MAC with
conferencing encoders.

Il. MAIN RESULTS

111-A) General multiple access channel with a common message

The main result of this subsection is given in Theorem 1 where we provide an exact characterization of the capacity region for
the Gaussian fading GMAC defined by (4) with common message. Firstly, we derive the capacity region of the discrete
memoryless GMAC (1) with a common message using the superposition coding technique. As we see later, the achievability
proof of the capacity region for this channel is useful to obtain the capacity region for the Gaussian fading GMAC (4) with
common message.

Proposition I: The capacity region of the discrete memoryless GMAC with p transmitters and g receivers and with common
information denoted by C2;,M4C  is given by:

(Ro, Ry, Ry, .., R,) ERY™!

VAC{,..p} Vel .. q}

eazome = ] D Re < (ke Y1 (X dien V)
cm

k€eA

)’

v
Z Ry < 1(Xy, ... X, Y))
k=0

(12)
where U is an auxiliary random variable and the joint p.d.f. of the r.v.’s (U, X4, ... X Y1, s Y%) is given by:
»
Pyx,.x,v,.v, (u, X1y s Xpy Y1s ---'3’4) = Py(w) 1_[ Py v (x;[w) HD()’D s Vg X1, ---:x;a)
i=1
(13)

Proof of Proposition 1: This proposition is an extension of the result of [4] to the case of p transmitters and g receivers. In
Appendix I, we provide a complete proof of the direct part (achievability proof); similar encoding and decoding schemes are
exploited to obtain the capacity region of the Gaussian fading GMAC (4) with common message, as shown in the next theorem.
The proof of the converse part will be omitted for brevity.

Remarks:

1) The cardinality of the auxiliary r.v. U is bounded above as ||U|| < H‘lellxi” + g X 2% — 1. This can be proved through
the standard methods using the Support lemma [20, p. 310].

2) By setting p = 2 and g = 1, the result of Proposition 1 reduces to the capacity region of a two user discrete MAC with
a common message obtained in [4].

3) By setting p = g = 2, the result of Proposition 1 reduces to the capacity region of a compound MAC with a common

message derived in [10].
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4) By setting U = @ and R, = 0, the result of Proposition 1 reduces to the capacity region of a GMAC without common
message derived in [16].

Now, we consider the Gaussian fading GMAC (4) with common message. In the following theorem, we characterize the
throughput capacity region [15] of this channel.

Theorem 1: Consider the Gaussian fading GMAC in (4) with a common message, with partial CSIT and perfect CSIR. The

capacity region denoted by C’frﬁ_GMAC, is given by:
(Ro,Ry, Ry, .., R,) ERY™!
vaAc{l.,p},Vjie{l .., g}
Z R, < E -(C (ZkeA((Sjk)z<Pk(fk)(1—912c(5k))>>]
o2
CCGr{l—GMAC _ & I j
{wio):m[wiwolsp;-?}?il » [ 32, (i) orEr)
{0i():050;0)=1};_, +2 L1<k<isp(SjkSjiekEr)ei EDVor ER)ei(E))
Ry < Eg|C L
o2
k=0 /

(14)

where S € [R,],x, is a 1.v. representing the state process of the channel (the matrix of fading coefficients) and S;; € R,,i =
1,..,pJj=1,..,q, is a r.v. representing the corresponding entry of S, E; € £;,i = 1, ..., p, is a r.v. representing the CSIT
available at the i*" transmitter which is a deterministic function of S: E; = &;(S). In addition, the function ¢;: £; > R, satisfying
the following constraint:

E[p;(ED] < P, i=1.,p
(15)

denotes the power allocation policy for the i** transmitter and g;: €, = [0,1],i = 1, ..., p, is an arbitrary (limited) deterministic
function that takes its values from the interval [0,1].

Remarks:

1) By settingg =1, and Ry =0, 0,(.() =0,k =1,...,p, and also E, =S5,k =1, ..., p, (perfect CSIT), then the rate
region (14) reduces to the capacity region of a p-user Gaussian fading MAC without common message with perfect
CSIT and also perfect CSIR, obtained previously in [15, Part I, Th. 2.1].

2) We observe that the throughput capacity region of the Gaussian fading GMAC with common message given in (14)
depends only on the stationary (first order) distribution of the joint fading processes, i.e., Ps(s) where S is the matrix of
fading coefficients and not on the correlation structure (memory of the state process). A same observation could be
found in [15, Part I, Th. 2.1] for the capacity of Gaussian fading MAC without common message, as indicated in [15,
Part IT].

3) As we see from (14), the improvement in the capacity because of having partial knowledge of the CSI at the transmitters
comes from the ability to allocate powers (according to the functions @;: ; » R*, i = 1, ..., p, with constraints (15))
and also from the functions g;: €; = [0,1],i = 1, ..., p. The functions g;(.) appeared in the capacity formulation (14)
arise from the existence of the common message in the system which causes that the transmitted signals to be
correlated. Precisely speaking, by (24) the transmitted signals of i*" and j** encoders are correlated according to a
correlation coefficient denoted by V; ;,i,j = 1, ..., p, which is given as follows:

E[X.X] IE[ ’(pi(Ei)(Pj(Ej)Qi(Ei)Qj(Ej)]

Y= =

/IE[XE]JE[X]?] JE[¢i(Ez)]E[¢j(Ej)]

(16)



As mentioned before, for the case where there is no common message in the system these functions disappear, i.e.,
0x() =0,k =1, ..., p; therefore, the improvement in the capacity comes only from the ability to allocate powers [15,
Part II, Th. 2.1] and the transmitted signals are uncorrelated.

4) Lagrangian characterization of the capacity region: One can solve for the boundary surface of the rate region (14) to
explicitly characterize the capacity region. Due to the convexity of the capacity region the boundary surface of

CCG,,Z_GMAC given by (14), is the closure of all points R* = (R(’;, R}, R, ..., R;,) such that R* is a solution to the following
optimization problem:
»
(o 2X R,,);M R;,  subjectto (Ro,Ry, Ry ...,R,) € CIL-MAC

17)

For some (uo,,ul, Uz, wer,y ,uﬁ) € ]R‘fﬂ. Now consider the following set:

9 2 {(R,P): P € RY,R € 5/~ (p)}

(18)

Gf=GMAC (P) represents the capacity assuming that the power constraint associated to the i** transmitter is given

by the Lth entry of P. By concavity of the logarithm function, it can be shown that d is a convex set. Therefore, there
exist Lagrange multipliers (/11,/12, z,) € RY, such that R* is a solution to the following equivalent optimization
problem:

where C_;,

»
(Rp)eazu‘ t Zlip"
=1

(19)

As a fact, the capacity region (14) remains unchanged if we replace the power constraint inequalities in (15) with
equality. Furthermore, the CGf “GMAC 5iven by (14) is a union taken over the set of all functions {¢;(.): E[¢;(E;)] =
Pl}i=1 and {0;(.):0 < o;(.) < 1}i=1. Thus we can rewrite (19) as an optimization over the set of such functions, as

follows:

max Z Zwm(n
R{9;():0=0;0}. 1}

{0i(): 0<Q1()<1} iz
subjectto R € €5/~ GMAC({%( N {0i():0<0,()<1})
(20)

where CGf GMAC({(pL( N {0:(.):0<0;(.) <137 ) is the capacity where we fix ¢;(.) -functions and g;(.) -
functions to be as in the arguments. Solving this optimization problem is not the subject of this paper and we relegate it
to future work.

Proof of Theorem 1: We prove this theorem in two parts; first we prove the achievability of (14) through a random coding
technique and then we provide a converse theorem.

Achievability part: It is worth noting that for the case where there is no common message in the system, the optimal signaling for
the channel is rather trivial (see [15, App. A, p. 2812]). However, the same does not hold for the channel with common message.
Here, we prove the achievability scheme through a random coding argument where the encoding and decoding procedure is
based on the superposition technique. Let (U, V;, ..., V,,) be a sequence of auxiliary r.v.’s with alphabets U € U and V; € V;,i =
1, ..., p. First, we show that for the Gaussian fading GMAC (4) with a common message, with partial CSIT and perfect CSIR,
the following rate region is achievable:



(Ro, Ry, Ry, .., R,) € R
VACL..,p} Ve, .., q}

Z Ri < I({Vidkens Yi|{Viikea U, S)
icea

’

Py ﬂf;lpviw

»
OV pUXERYL, z R < I(U Vi, ...,V Y}1S)
k=0

Xi=fi(Vi,UE;)
(21)
where:
P
Y}=ZS]ka+Z], ]=1;’%
k=1
(22)
and the joint p.d.f. of the r.v.’s (S, Ey, ..., E,,, U, V4, ..., V,} is given by:
»
PSEl...EpUVI...V;;(S’ €1, ey ep, U, Vq, eeny U}?) = PSEl...Ep(S' €1, ey ep)Pu(u) n PVllu(Vllu)
i=1
(23)

Furthermore, {f;(.): V; X U X & - R}?_ _is a set of deterministic functions such that X; = f;(V;, U, E;),i = 1, ..., p, satisfies the
power constraint policy of the it" transmitter: E[X?] < P;.

To prove this, we use a random codebook generation technique as follows:

1) Fix the distribution Pyy, v, (w vy, .., v,) = Pu( 17, Py, y(v;|uw) and the set of deterministic functions {f;(.): V; x
Ux & - R, such that E|(f,(V;, U, E))’| < Pi=1,...p.

2) Generate at random 2™ i.i.d. sequences u™ according to P(u™) = [T, Py (u,). Label these sequences u™(w,), where
wy € {1, ..., 2"Ro},

3) For each u™(wy) , generate 2™ | i={1,2,..,p} , sequences v according to the p.df
P(vmu”(wo)) =1k, PVi|U(vi,t|ut). Label these sequences v]*(wy, w;), where w; € {1, ..., 2"Ri},

Encoding: To send a common message W, and a private message w;, at each time instant t, 1 < t < n, the i encoder assuming
observation of e;; € €; as CSIT, sends x;, = fi(vi’t(wo, w;), ur (W), €;;) over the channel.

Decoding at the jth receiver, j € {1,2, ...,q}: The jth receiver assuming reception of the signal sequence y;* and tracking the state

process of the channel perfectly as s™ , tries to find a unique (VTJO, Wl,...,@,) such  that

(™ @), v Bo, W), .., v (B0, @), ¥J'5™) € AL (Pouv,., v, )-

By analysis of the error probability that is similar to the proof of direct part of Proposition 1 (given in Appendix I), and noting
that the state process is stationary, the channel is memoryless and the codewords (U™, V7', ..., V,;') were generated i.i.d. and

independent of the state process S™, one can see that the probability of error tends to zero provided that the rate tuple
(R(,, Ry, Ry, ..., Ri,) belongs to the rate region (21).

Now, to prove the achievability of (14) let (U, Vy, V5, ..., V,,) be a sequence of Gaussian-distributed r.v.’s with zero mean and unit
variance, independent of each other and also independent of the state matrix S;

In addition, let {¢;: €; » ]R+}f7=1 be a set of power allocation policy functions which satisfy the power constraints in (15) and
{0i: & = [0,1]}7_, be a set of arbitrary deterministic functions with range [0,1]. Define the r.v.’s (X, X5, ..., X,,) as:
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Xi £ Voi(E) (Qi(Ei)U + ’1 - QiZ(Ei)Vi>' i=1..p.

Note that in definition (24), (Ey,...,E,) is the sequence of CSITs at the transmitters with joint p.d.f. determined by
PSEl...Ep (s, €1y s e;,). One can easily check that the r.v.’s (X1, X5, ..., X,) defined in (24) satisfy:

(24)

Es[X?] = Eslp:(ED1 <P, i=1,..,p.

(25)
Thus by substituting (U, Vy, V, ..., V,,) and (X1, X5, ..., X,) as defined in (24) in the rate region given by (21) we have:
vaACc{l,..,p},Vje{,.., g}
(@)

I({Vidken: YilVidkea U.S) = k(Y| WVidea Kidken U, S) — h(G|Vidir, (Xidio1, U, S)

» »
=h z SieXi + Zj|[{Viken (Xidkea U, S | — h z SieXie + Zi|{ViYee—1, Xidp-1 U S

k=1 k=1
) 1
= h (Z Sk Xy + Z;|U, 5) - E1og(2neaj2)

kea
1

=h (Z Sikv 9 (Ex) (Qk(Ek)U + ’1 - lec(Ek)Vk> + Z;|U, 5) - Elog(ereajz)

ke

f 1

ke
= h 1 2 S = 11 2 2
= Es Sjiey| i (8 ()) | 1 — k(G (Vi | +Z|S = s || — 5 log(2meq)

kea
2
_ E [(C <ZkeA<(5jk) <Pk(fk)(1—@ﬁ(5k))>>]
9
(26)

where the equality (a) is due to the fact that X, is known given (Vk, UE, = fk(S)) and (b) is because from (24)
{Vidkea Xidkea) = U, S = {X; }rea forms a Markov chain. Furthermore, we can write:

U' {Vk}f:p {Xk}le; S

»

k=1

»
(U, ...V, Y|S) = h ZSijk +2Z
k=1

1
S|- Elog(Zneajz)

»
=h Sk @ (E)<Q (E)U + 1—92(E)V>+Z-
kz=1 iV P (Exc) | 0x (B / i () Vi f
»
=Es|h Zsjk /‘Pk(fk(s)) (Qk(fk(s))U‘i' /1—Qi(fk(s))Vk>+Zj

k=1

1
S=s||- Elog(Zneajz)

11



Zp=1(5jk)2¢k(Ek)
Es|C +2 31 <k<isp(SjkSjiokEr)0i(ENV orEx)oi(E))
2

%j

(27)
Now, by substituting (26) and (27) in the rate region (21) we obtain the achievability of (14).
Converse part: To prove the converse part we first derive an outer bound on C’f,{l_GMAC in terms of mutual information functions,
in the following lemma.
Lemma 1: 5/ ~A%s outer bounded by:
(Ro, Ry, Ry, - R,) € RZ™
vac{l,..,p},Vj€e{l, .., q},
O/ ~GMAC U Z Ry < I({Xi3ken; Y l{Xidkeas U, S)
cm = kea
, )
Z Ry < I1(Xy, .., X, Y|S)
k=0
(28)
over all joint p.d.f. of the form:
y
Psg,.5,u%,..x, (s.€1, €U, Xy, 0, X,,) = Psg, .z, (s.e,...e,)Py(w) 1_[ Py, e, (x:lu, €)
i=1
(29)

that satisfy the power constraints: E[X?] < P;,i = 1,..., p; where S € [R,] gxp 18 @ I.v. representing the state process of the
channel defined in (5) and E; € &; is the r.v. representing the CSIT available at the i*" transmitter that is (by definition of the
channel) a deterministic function of S: E; = &;(S),i = 1, ..., p. We also note that PSEI...E,, (5, €1, ) eﬁ) is obtained from the (first
order) distribution of the channel state process, i.e., Ps(s), which describes the behavior of the (matrix) fading coefficients.

Proof: See Appendix II.

Now, to see that the rate region (14) is also an outer bound for the capacity region of the underlying channel, i.e., CCGTZ_GMAC, it is

sufficient to show that is a superset of (28). However, we prove a stronger result that is the rate region described by (28) is
equivalent to that one given by (14). First notice that one can define the sequence of r.v.’s (X1, X5, ..., X,,) as in (24) where
U, v, Vs, ..., V;,) is a sequence of Gaussian-distributed r.v.’s with zero mean and unit variance, independent of each other and
also independent of the state matrix S, to satisfy the joint p.d.f. (29) and also the power constraints Eg[X?] < P,,i = 1,..., .
Thus by substituting (U, Xy, X5, ..., X,,) as defined in (24) in the rate region described by (28) one can see that (14) results.
Conversely, we show that the rate region (28) does not exceed any points of (14); first, we state some useful technical lemmas
from probability theory in the following:

For arbitrary r.v.’s X and Y, VAR(X|Y = y) is defined as:

VARX|Y =y) £ E[X?|Y = y] — (E[X|Y = y])?
(30)

in fact, it is the variance of X with respect to the distribution Py|y(x|y) and therefore a positive quantity.

Lemma 2: Consider three r.v.’s X, Y and Z:

I) Assume that Y and Z are independent. The following holds:

12



Ey[E[X?|Y,Z = z]| = E[X?|Z = 2]

(1)

IT) Assume that X and Z are R-valued and X — Y — Z forms a Markov chain. Then:
VAR(X + Z|Y = y) = VARX|Y = y) + VAR(Z|Y = y).

(32)
Proof: By direct computation.
Lemma 3: Consider the r.v.’s (S, E, E,, U, X;, X,) with the joint p.d.f. given as follows:

2
Psg g,ux, %, (s,e1,€2 U, X1, %) = Psp g, (s,e1,€)Py(u) 1_[ Px,juE; (xilu, e;)
i=1
(33)

where X; and X, are R-valued and there exist deterministic functions &;(.) such that: E; = &;(S),i = 1,2. Then, the following
inequality holds:

E[X1X,|S = 5] < VEy[(EX1|U, E; = & (DA EG[(EIXIU, E, = §2()D?] .
(34)

Proof: Since S is independent of U, we can write:

E[X,X,|S = s] = Ey[E[X;X,|U, S = s]|
@
= Ey[E[X,|U, S = s]E[X,|U,S = s]]

(b)
= Ey[E[X,|U, Ey = & (]E[X,|U, E;, = &(5)]]

()
< VEG[(E[X,|U, Ey = & (S)DIWEG[(EXL|U, E; = &()]D?]
(35)

where (a) is true because X, — (U,S) —» X, forms a Markov chain, (b) is true since § — (U, E, = 51(5)) — X; and also
S - (U, E,=¢&, (S)) — X, form Markov chains, and finally (c) is due to the Cauchy-Schwarz inequality.

Now, consider the rate region described in (28). For i = 1, ..., p, define deterministic functions ¢;(.): €, = R* such that:

Ve, €&+ ¢i(e) £ E[XF|E; = ¢]
(36)
and also deterministic functions g;(.): €; = [0,1] as follows:
Ey[(E[X;|U, E; = €;])?]
Ve €& : (e;) = :
L L Ql L \] (pl(el)
(37)
Notice that:
E[X?|U = u,E; = ¢] — (E[X;|U = w,E; = ¢])* = VAR(X;|U = w,E; = ¢;) = 0,
(38)
which yields:
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(a)
E[X?|E; = e;] — Ey[(E[X;|U, E; = e])?] = Ey[E[X?|U,E; = ;] — (E[X;|U,E; = ¢;])*] 2 0
(39)
where (a) is obtained from Part I of Lemma 2. Therefore, for each e; € &;, 0,(e;) belongs to the interval [0,1] and the notation

0;(.):&; = [0,1] is well-defined. Furthermore, from (36) we have:

Elp:(E)] = E[EIXZ[E]]| = EXZ1 < P, i=1,...,p.

(40)
Now for the mutual information function terms in the rate region (28) we can proceed as:
vAc{l, .., p},Vji€efl, ..,q},
I({Xk}keAi Y [{X 3 kea U,S) =h ZSijk + Zj|{Xikea U,S | — h Z i Xk + Zj (XYoo U
(@ 1
= h (Z SikXi + Z;|U, s) - E1og,r(2meaj2)
kea
)
= Es|Ey (ZSijk+Z —uS—s ] ——log(Znea )
ke
1 1 )
< Es|Ey Elog 2meVAR ZSijk +ZjlU=uS=s - Elog(ereaj )
kea
2 2 1 2
= Eg |Ey —log 2me Z( k) VAR(X, U =u,S =) + oj —Elog(Zneaj)
keA
(2 Eg [IEU [(C (ZkEA(Sjk)ZVAR(ZXk|U:urEk:9k)>]]
9j
= E [IEU [(C (EkEA(Sjk)z(]E[XIE|U=quk=zek]_(]E[Xi|U:qui:eiD2) H
o2
j
o [(C (zkeA(s,k) Ey [E[E|U=wBy=ey |- (BLX;|U=u.5;= J)Z])]
o2
J
Ykea (Sk]) <Pk(Ek)(1 Qk(Ek))>
IES C —
j
(41)

where (a) is true since from the joint p.d.f. (29), {Xi}rea = (U, S) = {Xj}xea forms a Markov chain, (b) is true since U and S are
independent of each other, (¢) is due to the fact that from (29) S - (U, E,) — X, forms a Markov chain, (d) is due to Jensen’s
inequality and (f) is obtained from definitions (36) and (37). Moreover, for the bounds on the sum rate we have:

I(Xy,..X,; Yj|S) =h Zsjkxk+z 19,08

S|-h Zsjkxk+zj
k=1

14



1
S |- Elog(Zneajz)

»
k=1

» ) 2
=Eg|h ZSijk+Zj5=s —Elog(Zneaj)

k=1

2

r
1 1 2
< Eg Elog 2melE Z SipXek +Zj | |S=s —Elog(Zneaj )
k=1

2
Tio=1(Sjr) E[xg|s=s]
+2 X1 <k<isp(SjkS jiElXkXi|S=5])
2

9j

=IE5(C

S (Sjk) E[XE|E=¢(s)]

(QIE ¢ | +2Zaskeis(SikS iV BUER U B=EOD AV [EXIUE =6 D7)
> S 7

o5
J

22 (i) orEr)
@IE C +2 B1<k<izp(SjkSjiok (Er) i BV @ E) 9 (E)
- 'S

2
%j

(42)

where (a) is obtained from Lemma 3 and also because by the joint p.d.f. (29) S = E} — X} forms a Markov chain. The equality
(b) is obtained from (36) and (37). Now by substituting (41) and (42) in (28) we obtain the fact that no point outside the rate
region (14) is achievable. This completes the proof of Theorem 2. m

As mentioned in introduction, the capacity region of the Gaussian fading two transmitter/one receiver MAC with common
message where perfect CSI is available at both transmitters and the receiver was previously characterized in [18]. It is clear that
the result of [18] is a special case of Theorem 1. On the other hand, it can be verified that the techniques used in [18] to derive its
result are different from ours, yielding different formulation of the capacity region. Nonetheless, it is expected that these two
formulations are equivalent. Let us consider the two-transmitter/one-receiver Gaussian fading MAC with a common message
formulated as (10), where for notational convenience we set 62 = 1. Moreover, assume that both transmitters and also the
receiver have access to perfect CSI. Using Theorem 1, the capacity region under these conditions is given by:

(Rp,R1,Ry) ERS

R, < Bs[€ (5?0, ()(1 - 03())]

R, < Eg [(C ((52)24’2(5)(1 - 9%(5)))]

B T M )

Qi(.):]RZ—>[0,1] 2 2
=1 (51)%91(S) + (52)%92(S) >]
=12 Ry+ R, + R, <Eg|C
o TRt = s [ ("‘2515291(5)92(5) 0182 (S)

(43)
where S = (S;,5,) € RZ is a r.v. representing the state process of the channel, ¢;(.): R%2 — R, is the power allocation policy for
the i*" transmitter satisfying the following constraint:
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(44)
and g;(.):R%2 — [0,1] is an arbitrary deterministic function. This is a consequence of Theorem 1 by setting p = 2, ¢ = 1, and

E; =5 =1(5,S5,),i =12, (perfect CSIT) in (14).

Now, let us bring out the formulation of [18] for the capacity region of the underlying channel, i.e., the two-transmitter/one-
receiver Gaussian fading MAC with a common message with perfect CSIT and perfect CSIR. Using our notations, this
formulation is given by:

(Ro,R1,Ry) € R
Ry < E[C(p:(1))]
R, < Es[C(p,(H))]
cORIo[0,1] | R1 T R = Es[C(p, (H) + p, ()]
pi(-i)::ﬂiizﬂh Ry + Ry + Ry < Eg[C(py(H) + po(H) + po(H))]

(45)

where § = (51,S,) € R%2, H = (5§%,52) € R, and the functions ¢(.): R2 — [0,1] and p;(.): R2 - R, i = 0,1,2, satisfy the
following conditions:

E [pls(f) Q(H);zZ)o(H)] <P,
po(H) (1= o(H)) po(H)
Eg 522 + 522 <P

(46)
As we see, the formulation (43) is completely different from (45). Next, we prove that these two formulations describe the same
rate region.

Proposition 2: The rate region described by (43) is equivalent to (45)-(46).

Proof of Proposition 2: First consider the rate region (43). Let ¢;(.): R2 —» R,,i = 1,2, be two arbitrary deterministic functions
satisfying E[;(S)] < P;,i = 1,2. Also, assume that 9;(.): R% — [0,1],i = 1,2, are two arbitrary deterministic functions. Define
the functions p;(.): R% - R,,i = 0,1,2, and o(.): RZ2 — [0,1] as follows:

(po(H = (52.59) 2 (S:0: V@) + S0, ) )

pi(H = (S2,59)) 2 (51)%01(S)(1 - 0%(S))

p2(H = (5£,53)) 2 (5)%92(S)(1 - 05(5))
5101(5)\/m

5191(5)\/m + SzQz(s)m

tQ(H =(S3,59) =

(47)

Note that S = (5, S,) = (\/ﬁ, \/5_22) It can be easily verified that the functions p;(.),i = 0,1,2, and ¢(. ) defined by (47) satisfy

(46). Now by substituting p;(.),i = 0,1,2, and o(.) as defined by (47), in (45) we obtain that the rate region (43) is a subset of
(45). Conversely, consider the rate region (45). Letp;(.):R2 - R,,i = 0,1,2, and o(.): RZ - [0,1] be arbitrary deterministic
functions that satisfy (46). Define the functions ¢;(.): R2 - R,,i = 1,2, and g;(.): R2 - [0,1],i = 1,2, as follows:
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52'52 52’52 2 52'52
(P1(5= (51’52)) é?71( 1,53) | 0(5%,83)°po (ST, S3)

57 Sz
$2.52) (1= 0(S2, 52)) p, (52,52
¢2(5=(51,52))ép2(512 2)+( o(st gz) Po(Si. 52)
2 2

0(S%,SHVpo(SE, S7)
VP1(S2, 52) + 0(S2,52)2py(SZ,52)

(1 - o(52,S))Vpo(SZ,5D)

Jp2(52.53) + (1 - 0(52,53)) Po(S2,53)

91(5 = (51'52)) =

92(5 = (51'52)) £

(48)

From (46), it is easily seen that E[¢g;(S)] < P,,i = 1,2. Thus, we can substitute ¢;(.): R2 - R,,i = 1,2, and g¢;(.): R2 -
[0,1],i = 1,2, as defined by (48), in (43) and then find (45), verifying that (45) is a subset of (43). This completes the proof. m

In fact, Theorem 1 (specialized for the case of a two-transmitter/one-receiver MAC with perfect CSI at both transmitters and the
receiver) together with Proposition 2 result in an alternative proof of the capacity region for the Gaussian fading MAC with a
common message studied in [18].

111-B) Two-transmitter one-receiver multiple access channel with conferencing encoders

In this section, we consider the MAC with conferencing encoders. The capacity region of a discrete two-user MAC with
conferencing encoders was obtained in [7]. In the sequence, we first state the result of Willems [7] and then derive the capacity
region of a two-user Gaussian fading MAC with conferencing encoders.

Proposition 3 [7]: Consider a discrete two-user memoryless MAC with encoders connected by communication links of capacities

C;2 and G4, as depicted in Fig. 2. The capacity region denoted by €274 (Cy2, C51), is given by:

(Rl!RZ) S ]Ri
Ry <I(Xy;Y|X,,U) + Cyy
o CaC = ] ARSIV, U) + Gy
PuPx,[uPxyu | Ri + Ry S 1(Xy, X35 Y|U) + Cpp + Cpy
R, + R, <1(X.,X5Y)

(49)

To prove the achievability of the rate region in (49) for the two-user MAC with conferencing encoders, Willems [7] used a two-
user discrete MAC with a common message. The capacity region of such a channel had already been obtained in [4] by Slepian
and Wolf, (see also Remark 3 of Theorem 1). In the following theorem, we exploit the technique proposed by Willems [7] to
obtain the capacity region of the two-user Gaussian fading MAC with conferencing encoders.

Theorem 2: The capacity region of the two-user Gaussian fading MAC (10) with conferencing encoders connected to each other
Gf-MAC

conf (Cy3, C31), when the transmitters have access to partial CSIT and the

with links of capacities C;, and C,;, denoted by C
receiver has access to perfect CSIR, is given by:
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(RlvRZ) € R%—
R, < Eq [(C <<s1)2<p1<E1>(1—e%<E1>)>] te,

g2

R, < E [(C ((sz)zmwz)(l—e%wz)))] +

a2

CGf—MAC Ci), C —
con (i Cn) TR 151020 ER (10 (En))

2 )] + C12 + C21

(5% @1(E1)+(52)? 92 (E2)
254S: E. E E E;
R, + R, < E|C +2515201( 1)92(022%/471( 1)¢2(E2)

010920 | Ry + Ry < Eg [<C<
21(),020)

(50)

where S = (5;,5,) € (R*)?is a r.v. representing the state process of the channel and E; € &;, is a r.v. representing CSIT
available at the i*" transmitter, i = 1,2, which is a deterministic function of S, i.e. E; = £,(S). Furthermore, ¢,(.): &; = R* is
the power allocation policy for the i*"* transmitter, that satisfies the following constraint:

E[p;(ED] <P, i=12
(61

and g;(.): €&; — [0,1] is an arbitrary (limited) deterministic function that takes its values from the interval [0,1].

Proof of Theorem 2: To prove the achievability of (50), we directly apply Willems' approach [7] for the discrete model to the
Gaussian fading channel. Consider a block length-n code with 2™f1 messages w, for transmitter 1 and 2"fz messages w, for
transmitter 2. Partition the set {1,...,2""1} into 2™R12 cells each containing 2"(R1~R12) glements. We label the cells ¢; €
{1,..,2™2} and the elements inside each cell t; € {1, ..., 2"F1=R12)} Let c; (wy) = 8, if wy is inside the cell &, . A similar
partitioning is done for the message set {1,...,2"2}. We define R, = min{R,,C;,} and R,; = min{R,, C,;}. Now since
Ry, < Cyp and Ry < Cyy, it is possible for encoder 1 to send ¢;(w;) € {1, ...,2"R12} to encoder 2 and for encoder 2 to send
c;(wy) € {1, ...,2"R21} to encoder 1, by holding a (C;,, C»;)-permissible conference. Thus, one can define a common message
for the encoders as:

Wwo = (c1(wy), c2(wy)).
We also note that t; and t, are unknown to encoders 2 and 1, respectively. Therefore, W, € {1, ...,2"(R12+R21)} can be
considered as a common message and t; € {1,...,2"®1"Ri2)} and ¢, € {1, ..., 2"R2=R21)} a5 private messages. Now, from the
result of Theorem 1 specialized for the case of a two-user Gaussian fading MAC with a common message, we conclude that

(R4, R;) is achievable for the two-user Gaussian fading MAC with conferencing encoders if the rates Ry, R, Rq5, Rz, satisfy the
following:

(51)2<P1(E1)(1—0%(E1)))]

o2

OSRl_R12S]ES|:C(

(sz)2<pz<52)(1—e%(52)))]

o2

OSRZ_RzlleSI:(C(

A

2 (S)2erER(1-02(E
Ry + Ry — (Ryz + Ryy) < Eg [(C (B (e (1 w))] >
(51)?@1(E1)+(52)? 92 (E2)

+251S; E. E. E. E.
R, +R, < E|C 15201 ( 1)92222)\/471( 1)¢2(E2)

(52)
for some power allocation policy functions ¢;(.),i = 1,2, satisfying (51) and also two arbitrary deterministic functions g;: §; —
[0,1],i = 1,2. On the other hand, by definition of R;, and R,,, one can easily see that the rates Ry, R,, Ry, Ry, satisfy (52), if

and only if (R, R,) € Cffn}MAC (C12,Cy1), where Cffn}MAC (C13,Cyq) is given by (50). This proves the achievability of (50). For
Gf-MAC

the converse part similar to Theorem 1, we first derive an outer bound on Cconf

(C12,Cyq) in terms of mutual information
functions, in the following lemma.
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Lemma 4: The capacity region of the two-user Gaussian fading MAC with conferencing encoders, i.e., C’ffn_fMAC(Clz, Cy1), is

outer bounded by:

(RI'RZ) € Ri
Ry <I1(Xy;Y|X5,U,S) + Cyyp
Cccofn}MAC(Cu' C21) € Ry < 1(X5;Y1X1,U,8) + Gy
PUPx,uE;Px,uE, | Ry + Ry < 1(Xy,X5;Y|U,S) + Cp + Cyy
E[xf]<Pii=12  \Ry 4+ R, < I(X1, X5 Y|S)

(53)

where S = (51,S,) € (RY)? is a r.v. representing the state process of the channel and E; € &;, is a r.v. representing CSIT
available at the i** transmitter, which is a deterministic function of S: E; = &;(S),i = 1,2.

Proof: See Appendix II1.

Now, note that the mutual information functions in the rate region described by (53) and also the joint p.d.f. over which the union
in (53) is taken are exactly the same as (28), (29), respectively, when specialized for the case of a two-user MAC. Thus, one can
proceed as in proof of Theorem 1 to optimize the rate region given in (53) using suitable joint p.d.f.’s, and show that the rate

GI=MAC(C . C,,) given by (50). This completes the proof of Theorem 2.m

region given in (53) is equivalent to C 5, <

IV. NUMERICAL EXAMPLES AND SIMULATIONS

In this section, we provide some numerical results for the Gaussian fading two transmitter/one receiver MACs studied in the
previous section. We consider the Gaussian fading channel with no CSIT (the transmitters have no knowledge of CSI) and
perfect CSIR. At first, we briefly review the results obtained in previous section under these assumptions, in the following.

Corollary: Consider a two-user Gaussian fading MAC (10) with no CSIT and perfect CSIR:

I) The capacity region of the channel with a common message, denoted by C23-¢5'T is given by:

(Ro, Ry, Ry) ERY
R, < g [(C ((sl)ZP;gl—a%))]

_ (52)*P2(1-03)
coresm = | ] | RS Es[e(BRE)
0sere2s1 | R 4 R, < Es [(C ((51)2P1(1—@%)+(Sz)2Pz(1—Q§))]

P
(51)2P1+(S2)? P, +2515201 02+ PIPZ)]
Z
o

Ro + Ry + R, < Es|c(
(54)

IT) The capacity region of the channel model with connected encoders by links of capacities C;, and C,;, denoted by

Coort ST (Cy2, Cy1), is given by:

(Ro, Ry, Ry) € RY
R, < Egc(@le) 4 ¢,
e e = | (ResEs[c(TE)] v e :
0<01,0251 R, + R, < E [(C ((51)2"1(1‘9%):2(52)21’2(1—95))] +Cyy + Cyy
Rt R < By [ (P20 5000 P

(55)
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Proof: Part I is obtained from Theorem 1 by assuming a two-user MAC and also setting E,, = @,k = 1,2. For part II set E}, =
@,k = 1,2, in ¢7MAC(C,,, C,,) given by (50). m

conf

Now, we examine a few implications of our results for the channel model in (10), for a Rayleigh fading environment. Assume

that the fading processes {Sl't}:ozland {Sz,t}t ) in (10) are independent of each other and Sy, k = 1,2, is a Rayleigh-distributed
r.v. with a p.d.f. given by:
Pg, (s) = 2se™s%, s=0
(56)

In the following, our discussion is concerned to the systems with capacities given by (54) and (55), where the state process of the
channel is described by (56).

A=A
B=10xPR
B =100+ P,

R =1000 < P,

[
i

RO psHEZ)

L5
2

Tz R1(bpsHz
R2(bps/Hz) 2.3 2 (tpsiz)

Figure 3. The capacity region of the two-user Gaussian fading MAC with common message, C25~¢5!T. The sum power for all plots is fixed and is equal to
P, + P, = 23.01 dB, and also P, = 0 dB.

We have plotted the capacity region of the two-user Gaussian MAC with common message, C19~5!T in Fig. 3, under different
values of the power ratio of transmitters % (boundaries in each plane with solid lines). The sum power of the two transmitters,
2

i.e., P, + P, is fixed for all plots. As we see from Fig. 3, when both transmitters have the same power, i.e., % = 1, the maximum
2

rate of R, is attained. This can be justified as follows. It could be easily verified from (54) that the maximum achievable rate of
the common message Ry, is given by:

X Ry = Eg [(C ((51)2P1+(52)2P2+25152\/ﬁ)]

ma >
ROEC?,%_CSIT o
(57)

On the other hand, for fixed value of P; + P,, the geometric average ./ P; P, is maximum when P; = P,, (note that S; and S, are
positive-valued i.i.d. r.v.’s). Therefore, when the powers P; and P, become far from each other, the maximum achievable value

of the rate R, i.e., the cut-off point on the R, axis, decreases. Note that for values of % that are greater than 10, the variation of
2

the power P, is less than 10 percent, therefore the increment in the maximum achievable rate of R4, i.e., the cut-off point on the
R;-axis, is not significant, as can be seen from Fig 3.
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Figure 4. The capacity region of the two-user Gaussian fading MAC with conferencing encoders, cgl,,"n;“”(clz, Cyy),forC, =Cyy 2C,and P, =P, 2 P =
20 dB.

In Fig. 4, the capacity region of the two-user Gaussian fading MAC with conferencing encoders, i.e., C’Z‘o"n_fCSIT(Clz,Cn) is
plotted for the case C;, = C,; = C, and P, = P, = P (boundaries with solid lines). When there is no conferencing, i.e. C = 0,
the capacity region forms a pentagon. It is clear from the figure that as C increases beyond zero the capacity region enlarges.

However, no further improvement is possible for values of C such that C > Eg [(C ((51)2P1+(52)2:§+25152VPlpz)], (in Fig. 4, for

C = 4.04 (bps/Hz)). In fact, for values of C equal or greater than Eg [(C ((51)2P1+(52)2P2+25152VPle)], the capacity region forms a

a2
triangle whose boundary lines are given by R; = 0, R, = 0, and also:

Ry +R, =Eg [(C ((51)2P1+(Sz)2P2+25152\/ﬁ)]

(58)

In this case, the conferencing rate C is high enough such that each encoder can perfectly communicate the intended message to
the other encoder by holding a conference before transmission, hence the channel reduces to a MAC in which both of the
transmitters would send a same message W = (Wy, W,). Therefore, the capacity region is given by (58) which is the same as the
maximum achievable rate of R, for the Gaussian fading MAC with common message given by (57), and no further improvement
can be obtained by increasing the rate of conferencing.

CZl: 0 (bps/Hz)
B — C121: 0.3
C121: 0.47

R2 (bpsHz)

0 0.5 1 1.5 2 2.5 3 3.5 4
R1 (bps/Hz)

Figure 5. The capacity region of the two-user Gaussian fading MAC with one encoder communicating to the other, C’Z’o"n}cs’T(O, Cy,), for P, = 23.01 dB,
P, =20 dB.
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Now consider the case where only one of the encoders is connected to the other via a link of given capacity. In Fig. 5, the
capacity region of the two-user Gaussian fading MAC with one encoder communicating to the other, i.e., Cinf " (0, C;1), has
been plotted. Therefore, in this situation the second encoder can communicate to the first encoder via a link of capacity C,;. It is
clear from the figure that as the rate of conferencing C,, increases, the capacity region enlarges, however, since only the second
encoder can cooperate its message with the first one via conferencing, the maximum achievable rate of R; (the cut-off point at
R;-axis), does not change. In Fig. 5 it has been assumed that the associated power of the second encoder is half of that one for

the first encoder, i.e. P, = %Pl. This causes the capacity region with no conferencing (C,; = 0) to be an asymmetric region (the

region with blue boundary in Fig. 5), such that the value of the cut-off point on the R,-axis is less than that one on the R;-axis.
As we see from Fig. 5, by holding a conference with the rate of C,; = 0.47 (bps/Hz), (the region with green boundary), however,
the second encoder can cooperate some part of its message to the first one, thus the maximum achievable rate of R, is the same
as that one for R4, i.e., the cut-off points on both axes are the same. This means that conferencing can compensate for the lack of
power. In general, one can see that when the second transmitter is restricted by P, = a P; where 0 < a < 1, a conferencing link

of capacity C,;(a) = Eg [(C (M)] could compensate for the lack of power, depicted by C,;(0.5) = 0.47 (bps/Hz) in Fig.

o'2+(52)2aP2

5. Moreover, as in previous setup, for values of C,; greater than Eg [(C ((51)2P1+(S2)2:§+25152V Plpz)], (in Fig. 5 for C,; = 3.81
(bps/Hz)), no further improvement of the capacity region is possible. In fact, for values of C,; equal or greater than
Eg [(C ((Sl)ZP”(SZ)zP“ZSlSZVPIPZ)], by holding a conference, the second transmitter can cooperate perfectly with the first one, and

a2

the channel acts as a MAC with degraded message sets: a common message is sent by both transmitters and a private message by
the first transmitter. Therefore, the shape of the capacity region is similar to the capacity region of MAC with common message
in (Ry, R;)-plane, depicted in Fig .3.

V. CONCLUSION

In this paper, we characterized the capacity region for some multiple-access scenarios with cooperative transmitters. Firstly, the
general MAC with common information was considered. The capacity region of the discrete memoryless channel was
characterized. Then, the general Gaussian fading MAC with common information with partial CSI at the transmitters and perfect
CSI at the receivers was investigated. A coding theorem was proved for this model yielding an exact characterization of the
throughput capacity region. Finally, the capacity region of a two-transmitter/one-receiver Gaussian fading MAC with
conferencing encoders with partial CSIT and perfect CSIR was determined. For the Gaussian fading systems in a Rayleigh
fading environment, some numerical examples and simulations were provided and the effect of conferencing on the
improvement of the capacity region was explored. In future work, we will study the problem of optimal resource allocation for
the Gaussian fading channels with partial CSIT and perfect CSIR that were considered in this paper.
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APPENDIX [

PROOF OF THEOREM 1

To prove achievability of (12) a length-n random codebook €, is constructed as follows:

1) Fix the distribution Pyy, x, (u, X1, e x;,) =PI, Py, ju (i [w).

2) Generate randomly 2™R0 i.i.d. sequences u™ according to P(u™) = [, Py (u.). Label these sequences u™(w,), where
wp € {1, ..., 2"Ro},
3) For each u™(w,) , generate 2™ | i={1,2,..,p} , sequences x* according to the p.df

P(x!"u™(wp)) = [T, PXi|U(xi_t|ut). Label these sequences x[*(wy, w;), where w; € {1, ..., 2"Ri},
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Encoding: To send a common message w, and a private message w;, the i*" encoder sends the codeword x!*(wy, w;) over the
channel.

Decoding at the j th receiver, j€{12,...,q9}: After receiving y}l, the j th receiver tries to find a unique (v’l?o, Wy, ., Wﬂ,) such that

(™ (@), 2 (W, @), ., 6 (@, W), ¥7) € A2 (Pusy.x, v, )-
Analyszs of probability of error: From (3) we have: PG" < PG" + 4 Pe 4> Where Pf}‘ is given by (2). Now we compute each
P, j ™ (error probability at the jt* receiver). Define the events:

ED 2 {(UPGo), X2, ia), o, X3 (0, 1), V) € A2 (Pusyyr,)} T =1ma

Lo,l1,.

By symmetry of the random code construction, the conditional probability of error does not depend on the choice of indices.
Thus, the conditional probability of error is the same as the unconditional probability of error, such that without loss of generality
we can assume that (WO, Wi, -, Wﬂ,) is sent. Then we have:

Wo,W1,.. i0,i1,-lp

L (iositsmip)#

(W0 Ws....7)

PSn = pr (E(n Wp)CU U )

) ¢ ) W
<Pr{(EDs, 5,) }+Pr U ED ot Z Pr U EL

(o1, mip) AC{1,...p} {(il r )lik=vT/k ifké/l,}

g% Wo P)ip#=wy if keA

(59)

c
from the Asymptotic Equipartition Property (AEP) theorem [19, Ch. 3], Pr {(E‘fvjo)w1 w,,) }—> Oasn—oooand e > 0.
Furthermore, from [19, Th. 15.2.1 and 15.2.3] one can see:

( \
Pr U ED it =0
(ioi1rmip)
io#Wo

(60)
Provided that 0 < Zp oRk = I(U Xy eer Xps ) n - o and € = 0. From this and by considering that I(U Xy eer Xps ) =

I(Xl, . j) due to the Markov structure U — Xj, ..., X,, = Y}, the last bound in (12) is obtained. Again, from [19, Th. 15.2.1
and 15.2.3] we can see :

Pr ED Lo

Woil1,lp
G525 ) J
(61)
Provided that 0 < Ye Ri < I({Xk}ke,l; Yi[{X i }keas U) ,n—> o and € > 0. The above bounds show that the average
probability of error is arbitrarily small provided that (RO, Ry, Ry, ..., R;,) belongs to the rate region (12), as desired. m
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APPENDIX I1

PROOF OF LEMMA 1

Consider a length-n code with average error probability Pe(n), where Pe(n) — 0asn - oo. Let A be a subset of {1, ..., p}. Define
newrv.sU, t =1,..,n,as: U, 2 W,.

By Fano’s inequality, for j = 1, ..., g, we have:

n ) R = HWidien) = I(Widkess V7 5™) + H(Wideeal ¥, 5™)
k€eA

< I((Wikens 7 8™) + ned™ < 1({Widke; Y% S™ Wo, (Wi higa) + ned™”

= [((Widkea; YHIS™ Wo, (Wikiga) + ned”
n

B Z I({(Widkeas ;elS™ Wo, Widkea V) + ney ™
t=1
n
— Z[h(y}.flsn, WO; {Wk}ké./l! }/jt_l) — h(Y}‘tlsn’ Wo, {Wk}keA’ {Wk}keL’ }/jt—l)] + ne‘fl],/l)

n
(@) i
= Z [h (Y},t|5n' Wo, (Wikea ;'™ {Xk,t}ke/l) —h (Yj,tlsnr Wo, Wikea Widkea Y1 {Xk,t}ke/l' {Xk,t}keA)] +ne "

t=1
AN 7 i ()
= Z [h (yf"fluf’ {Xk't}k&/l'st) —h (yf'rflUt’ {Xk't}ke./l’ {Xk't}ke/l'st)] ey
t=1

1 (Xt Vel T (X)) + e

n
=1

t
(62)

where e,(lj " - 0asn — . The equality in (a) is due to the fact that X} . is a deterministic function of (WO, Wi, Ex = & (St)),
the inequality in (b) holds because conditioning does not increase entropy and also Y;, conditioned on ({Xk’t}:zl,St) is

independent of (S =1 ST Wo, (Wi tkea (Wi ke A,th_l). For the sum rate (last bound in (28)), again by Fano’s inequality we
have:

¥4
nz Ry = H(Wo, Wy, .., W,) = 1(Wo, Wi, .., Wy Y7, S™) + H(Wo, Wi, ..., W, |V, S™)
k=0

< 1(Wo, Wy, e, W, Y7, 8™) + ne’

n

_ Z 1(Wo, Wi, woc, Wy Y, Y72, S) + e
t=1

n
= D [R5 = R (G Wo, W o W, 7, 57)] + e

t=1
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n
@ Z[h(yj_tmf—l,sn) — B(Y; ([ Wo, Wy, e, W, YL, 8™, X, 4y o, X, )| + el
t=1

~

n
b ,
< Z[h(ymst) — h(Y; | X100 s X i S| + e
1

t=

=

n

_ Z I(Xpt0 o, X Vi 1Se) + el

t=1

(63)
where eflj) — 0 as n—>oo. The equality in (a) is due to the fact that (Xl,t""'Xp,t) is a deterministic function of
(WO, Wy, .., W, Eq, ...,Eﬁ) and the inequality in (b) holds because conditioning does not increase entropy and also
(WO, Wy, ..., W, th_l,St'l,Sg‘) - (St,Xl’t, ...,Xl,‘t) - Y;, forms a Markov chain. Note that for i = 1, ..., p, we have:

» »
Pr (xi,t|w0, et {xk't}kzl,k:ti) = Z Pr (x,-_t, wi|wo, €; ¢, {xk't}kzl,kii) = Z Pr(wi)Pr(xl-,t|w0, €it) W,-).

wi wi
(64)
Thus, the following Markov relationship holds:
» ~ )
{Xk't}kzl,kii - (Ut, Ei,t) - X i=1..,p
(65)

In this step, we introduce a time-sharing r.v. Q uniformly distributed over the set {1, ..., n} and independent of other r.v.’s. Define
Xi2Xipand E; 2 Ejp for i=1,..,p,Y,2Ypand Z; £ Zjpfor j=1,..,p, S 2 S fori=1,..,p,j=1,..,q, U2
UQ, and also the state matrix S £ So- We Note that:

Y]=ZS]I-XL+Z]‘ ]=1,,%

v
i=1

(66)
where Z;,j = 1, ..., g, is a zero mean Gaussian r.v. with variance sz, which is independent of Q, X;,i = 1, ..., p, and also the
state matrix S. Therefore, from (62) and (63) we can write:

Z Ry < I({Xidkens Yi1Uq, Q. {Xidken S) + e

keA

»
z R < 1(Xy, 0, X5 Y115, Q) + € < 1(Q, Xy, o, X, Vi1S) + €2 = 1(Xy, o, X, V1S) + €7
k=0

(67)

where the last equality is due to that @ — S, Xy, ..., X,, = Y; forms a Markov chain, as arises from (66). On the other hand, from
the Markov relationships in (65), the following Markov chains result:

{Xk}le_k¢i - (Q: U’ El) - Xiv i= 1: Ry 4
(68)

Now by redefining U £ (Q, U ) and by letting n tends to infinity in (67), we obtain:

25



(D R < 1(Xiheni KU, KiJien )
keA

P
ZRk <I(Xy, .., X, Y5S)
k=0

(69)

where the joint p.d.f. of the r.v.’s {X;}7_,,{E;}?_,, U satisfies (29). Furthermore, by definition of the code, the transmitted

codewords should satisfy the power constraints in (6). Thus, the bounds in (69) should be considered under the following power
constraints:

EX?1<P, i=1,.,p

(70)

This completes the proof. m

APPENDIX IIT

PROOF OF LEMMA 4

Consider a length-n code with average error probability Pe(n), for the two-user Gaussian fading MAC with conferencing
encoders, such that ™ — 0 as n — co. Define new r.v.’s U, t = 1,...,7n, as: U, £ (VK,VX).

Using Fano’s inequality we can write:

nR, < HW,) = I(W,; Y™, S™) + H(W,|Y™, S™)

< I(Wy; Y™, S™) + nel™ < 1(Wy; Y™, 8™, W) + el
= [(Wy; Y™, S™M|W,) + nel”

< I(Wy; Y™, S™, VE VE|W,) + nel

= I(Wy; Y™, SMVE, VK, W) + I(Wy; VI, VE W) + nel”

(7D

where E,(ll) — 0 asn — 0. Now, for the first term in (71) we have:

I(Wy; Yn'5n|V1K’ VzK' W,) = I(Wy; Yn|V1K' VZK' W,,8™)

n
= Z I(Wl, Ytlle’ VZK, Wz, Sn, Yt_l)
t=1

h(Ytlle! VZK! WZ! Snl Yt_l) - h(ytlle! VZK' WZ! Sn; Yt—l’ Wl)

n
=1

t
n

@ _ _
= Z h(Y\VE, VE Wy, S™ YL, X, ) — h(Y [V VE W, SV YL W, Xy 1, X )

t=1

® © iy _
< D 1Vl U Ko S) = RV T Xs 1 X2 5,)

t=1

26



n

= Z I(Xl‘t; YtIUt'XZ,t'St)

t=1
(72)

where the equality (a) is due to that X, , is a deterministic function of (Wz, VEE, =& (St)), and the inequality (b) is because

conditioning does not increase entropy and also VY; conditioned on (X 160 X260 St) is independent of
(VE, VK W,,§t=1, 8™, YE"1 W,) . Furthermore, by exactly the same procedure as in [7, p. 443], we have:
I(Wy; VI VS W) < nCyy

(73)
Combining (71)-(73), we obtain:

n
nR, < Z 1(Xy0 Y|y X, S) + nCyp + nel”

t=1
(74)

Similarly one can show that:

n
nR, < Z 1(X5 Ye|Up, X1t St) + 1Cyy + neld
t=1

(75)

2 .
where e,(1 ) 5 0asn — 0. For the sum rate, we can write:

n(Ry + Ry) < H(W,, Wy) = [(Wy, Wy; Y™, S™) + H(W,, W, |Y™, S™)
< I(Wy, Wy; Y™, S™) + nel>
< [(Wy, Wy; Y™, S™, VK, VE) + nel®

= [(Wy, Wy; Y™, SMVE, VE) + (W, Wy; VE, VE) + ne®

(76)

where E,(13) — 0 asn — 0. Now, observe that:

T(Wy, Wy Y7, STV, V) = T(Wy, Wo; YRV, V5, S™)

n
= ZI(Wl,WZ; Y|V, vE, syt

t=1

h(Ytlle! VZK! Sn! Yt_l) - h(YtIVIK! VZKI STl’ Yt_l! Wl! WZ)

n
=1

t

n
= Z h(Y, |V, VE, S™, YY) — (Y VK, VE, S YL, Wy, Wy, Xy 0, Xor)

t=1

n

< D R0, = (%10 X Xar,S:)

t=1
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n

= Z I(Xl,t'XZ,t; Ytlﬁt'st)

t=1
(77)
and again similar to [7, p. 443]
[(Wy, Wy VI, V) < n(Cip + Co1)
(78)
Therefore, by combining (76)-(78) we obtain:
n
n(Ry +Ry) < z 1(X1,0 X565 Vel U, S) +1(Cip + Coy) + ne,(13)
t=1
(79)
To derive the last bound on the sum rate in (53) we proceed as:
n(Ry + Ry) < I(Wy, Wy; Y, S™) + nel®
n
- Z I(Wy, Wa; Y,1S™, Y1) + ne?
t=1
n
= D ROLIS™, V) = ROGIS™, VO, W, W) + el
t=1
n
= D RIS, YY) = (YIS, Y W W X Xy ) + el
t=1
n
< Z h(Y,|S) — h(Y| X1 Xo, Se) + nfr(;g)
t=1
n
- Z (X100 X203 Ye1Se) + ne®
t=1
(80)

By combining (74), (75), (79) and (80), applying a time-sharing argument similar to Appendix I, and then letting n tends to
infinity, the bounds in (53) are derived, where the fact that the underlying signaling satisfies the power constraints in (11) should
also be considered. Finally, considering the code construction defined in Section II, one can verify that the following Markov
relationships hold:

Xop ™ (ﬁtr El,t) - X1t
Xt = (Ut' EZ,t) - X
(81)

The above Markov chains justify the distribution over which the union in (53) is taken. This completes the proof. m
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