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Abstract

A new single-letter achievable rate region is proposed for the two-user discrete memoryless multiple-

access channel(MAC) with noiseless feedback. The proposed region includes the Cover-Leung rate region

[1], and it is shown that the inclusion is strict. The proof uses a block-Markov superposition strategy

based on the observation that the messages of the two users are correlated given the feedback. The rates

of transmission are too high for each encoder to decode the other’s message directly using the feedback,

so they transmit correlated information in the next block to learn the message of one another. They then

cooperate in the following block to resolve the residual uncertainty of the decoder. Our coding scheme may

be viewed as a natural generalization of the Cover-Leung scheme with a delay of one extra block and a pair

of additional auxiliary random variables. We compute the proposed rate region for two different MACs

and compare the results with other known rate regions for the MAC with feedback. Finally, we show how

our coding scheme can be extended to obtain larger rate-regions with more auxiliary random variables.

1 Introduction

The two-user discrete memoryless multiple-access channel (MAC) is shown in Figure 1. The channel has

two inputs X1, X2, one output Y , and is characterized by a conditional probability law PY |X1X2
. A pair

of transmitters wish to reliably communicate independent information to a receiver by using the channel

simultaneously. The transmitters each have access to one channel input, and the receiver has access to the

channel output. The transmitters do not communicate with each other. The capacity region for this channel

without feedback (S1 and S2 open in Figure 1) was determined by Ahlswede [2] and Liao [3].

In a MAC with noiseless feedback, the encoders have access to all previous channel outputs before trans-

mitting the present channel input. Gaarder and Wolf [4] demonstrated that feedback can enlarge the MAC

capacity region using the example of a binary erasure MAC. Cover and Leung [1] then established a single-

letter achievable rate region for discrete memoryless MACs with feedback. The Cover-Leung (C-L) region was

shown to be the feedback capacity region for a class of discrete memoryless MACs [5]. However, the C-L region

∗This work was supported by NSF grants CCF-0448115 (CAREER), CCF-0915619. It was presented in part at the IEEE
International Symposium on Information Theory (ISIT) 2009, held in Seoul, South Korea. Submitted to IEEE Transaction on
Information Theory, August 20, 2009. This is a revised version.
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Ŵ1, Ŵ2
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Figure 1: The multiple-access channel. When S1, S2 are closed there is feedback to both encoders.

is smaller than the feedback capacity in general, the white Gaussian MAC being a notable example [6,7]. The

feedback capacity region of the white Gaussian MAC was determined in [6] using a Gaussian-specific scheme;

this scheme is an extension of the Schalkwijk-Kailath scheme [8] for the point-to-point white Gaussian channel

with feedback. The capacity region of the MAC with feedback was characterized by Kramer [9,10] in terms of

directed information. However, this is a ‘multi-letter’ characterization and is not computable. The existence

of a single-letter capacity characterization for the discrete memoryless MAC with feedback remains an open

question. A single-letter extension of the C-L region was proposed by Bross and Lapidoth in [11]. Outer

bounds to the capacity region of the MAC with noiseless feedback were established in [12] and [13]. In [14], it

was shown that the optimal transmission scheme for the MAC with noiseless feedback could be realized as a

state machine, with the state at any time being the aposteriori probability distribution of the messages of the

two transmitters.

There are also several papers concerning the capacity region of memoryless MACs with partial/noisy

feedback. Willems [15] showed that the C-L rate region can be achieved even with partial feedback, i.e.,

feedback to just one decoder. Achievable regions for memoryless MACs with noisy feedback were obtained

by Carleial [16] and Willems [17]; outer bounds for this setting were obtained in [18]. Recently, improved

achievable rates for the Gaussian MAC with partial or noisy feedback were derived in [19].

The basic idea behind reliable communication over a MAC with feedback is the following. Before commu-

nication begins, the two transmitters have independent messages to transmit. Suppose the transmitters use

the channel once by sending a pair of channel inputs which are functions of the corresponding messages. Then,

conditioned on the channel output, the messages of the two transmitters become statistically correlated. Since

the channel output is available at all terminals before the second transmission, the problem now becomes one

of transmitting correlated messages over the MAC. As more channel uses are expended, the posterior corre-

lation between the messages increases. This correlation can be exploited to combat interference and channel

noise more effectively in subsequent channel uses. The objective is to capture this idea quantitatively using a

single-letter information-theoretic characterization.
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The Gaarder-Wolf and the C-L schemes exploit feedback in two stages. Each message pair is conveyed to

the decoder over two successive blocks of transmission. In the first block, the two encoders transmit messages

at rates outside the no-feedback capacity region. At the end of this block, the decoder cannot decode the

message pair; however, the rates are low enough for each encoder to decode the message of the other using

the feedback. This is possible because each encoder has more information than the decoder. The decoder

now forms a list of highly likely pairs of messages. The two encoders can then cooperate and send a common

message to resolve the decoder’s uncertainty in the next block. In the C-L scheme, this procedure is repeated

over several blocks, with fresh information superimposed over resolution information in every block. This

block-Markov superposition scheme yields a single-letter achievable rate region for the MAC with feedback.

In this scheme, there are two kinds of communication that take place: (i) Fresh independent information

exchanged between the encoders, (ii) Common resolution information communicated to the receiver. This

scheme provides a strict improvement over the no-feedback capacity region.

Bross and Lapidoth [11] obtained a single-letter inner bound to the capacity rate region by constructing a

novel and sophisticated coding scheme which uses the C-L scheme as the starting point. In their scheme, the

two encoders spend additional time at the end of each block to engage in a two-way exchange. During this

time, each encoder computes a function of its input and the channel output, and communicates this function

to the other encoder. After the exchange, they are able to reconstruct the messages of one another in their

entirety. In the next block, the encoders cooperate to send the common resolution information to the decoder.

This coding scheme reduces to the C-L scheme when there is no two-way exchange.

In this paper, we propose a new achievable rate region for the MAC with feedback by taking a different

path, while still using C-L region as the starting point. To get some insight into the proposed approach,

consider a pair of transmission rates significantly larger than any rate pair in the no-feedback capacity region,

i.e., the proposed rate pair is outside even the C-L rate region. Below we describe a three-phase scheme to

communicate at these rates.

First Phase: The encoders transmit independent information at the chosen rates over the channel in the

first phase, and receive the corresponding block of channel outputs via the feedback link. The rates are too

high for each encoder to correctly decode the message of the other. At the end of this phase, encoder 1 has

its own message, and a list of highly likely messages of encoder 2. This list is created by collecting all the X2

sequences that are compatible (jointly typical) with its own channel input and the channel output, i.e., the

(X1, Y ) sequence pair. In other words, the list is a high conditional probability subset of the set of messages of

encoder 2; this set is clearly smaller than the original message set of encoder 2. Similarly, encoder 2 can form

a list of highly likely messages of encoder 1. Thus at the end of the first phase, the encoders have correlated

information. They wish to transmit this information over the next block.

Conditioned on the channel output sequence, the above lists of the two encoders together can be thought

of as a high-probability subset of M1 ×M2, where M1 and M2 denote the message sets of the two encoders.

A useful way to visualize this is in terms of a bipartite graph: the left vertices of the graph are the encoder

1 messages that are compatible with the Y sequence, and the right vertices are the encoder 2 messages that

are compatible with the Y sequence. A left vertex and a right vertex are connected by an edge if and only

if the corresponding messages are together compatible with the Y sequence, i.e., the corresponding (X1, X2)

sequence pair is jointly typical with the Y sequence. This bipartite graph (henceforth called a message graph)

captures the decoder’s uncertainty about the messages of the two encoders. In summary, the first phase

of communication can be thought of as transmission of independent information by two terminals over a
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Figure 3: Second phase: transmission of correlated information with common side information Z on common
output two-way channel. Z is the channel output of phase one.

common-output two-way channel with list decoding, as shown in Figure 2.

Second Phase: The situation at the end of the first phase is as if a random edge is picked from the above

message graph with encoder 1 knowing just the left vertex of this edge, and encoder 2 knowing just the right

vertex. The two encoders now have to communicate over the channel so that each of them can recover this edge.

The channel output block of the previous phase can be thought of as common side information observed by

all terminals. This second phase of communication can be thought of as two terminals transmitting correlated

information over a common output two-way channel with common side information, as shown in Figure 3.

We note that the common side-information is ‘source state’ rather than ‘channel state’- the output block of

the previous phase is correlated with the messages (source of information) of the current phase. The channel

behavior in the second phase does not depend on the common side information since the channel is assumed

to be memoryless.

One way to approach this communication problem is to use a strategy based on separate-source-channel

coding: first distributively compress the correlated messages to produce two nearly independent indices (con-

ditioned on the common side information), then transmit this pair of indices using a two-way channel code.

This strategy of separate source and channel coding is not optimal in general. A more efficient way to transmit

is to accomplish this jointly: each encoder maps its message and the side information directly to the channel

input. By doing this, at the end of the second phase, the two encoders can recover the messages of each other.

In other words, conditioned on the channel output blocks of the two phases, the messages of the two encoders

become perfectly correlated with high probability. The decoder however still cannot recover these messages

and has a list of highly likely message pairs.
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Figure 4: Third phase: transmission of information with common side information V on point-to-point channel.
V is the channel outputs of phase one and two.

Third Phase: In the final phase of communication, the encoders wish to send a common message over the

channel to the decoder so that its list of highly likely message pairs is disambiguated. This is shown in Figure

4. This phase can be thought of as transmission of a message over a point-to-point channel by an encoder to

a decoder, with both terminals having common side information (the channel output blocks of the previous

two phases) that is statistically correlated with the message. As before, the channel behavior in this phase is

independent of this side information owing to the memoryless nature of the channel. For this phase, separate

source and channel coding is optimal.

Having gone through the basic idea, let us consider some of the issues involved in obtaining a single-letter

characterization of the performance of such a system. Suppose one uses a random coding procedure for the first

phase based on single-letter product distributions on the channel inputs. Then the message graph obtained

at the end of this phase is a random subset of the conditionally jointly typical set of channel inputs given

the channel output. Due to the law of large numbers, with high probability, this message graph is nearly

semi-regular [20], i.e., the degrees of vertices on the left are nearly the same, and the degrees of those on the

right are nearly the same.

Transmission of correlated sources and correlated message graphs over the MAC has been studied in [21]

and [22], respectively. In the former, the correlated information is modeled as a pair of memoryless correlated

sources with a single-letter joint probability distribution. Unlike the model in [21], the statistical correlation of

the messages at the beginning of the second phase cannot be captured by a single-letter probability distribution;

rather, the correlation is captured by a message graph that is a random subset of a conditionally typical set.

In other words, the random edges in the message graph do not exhibit a memoryless-source-like behavior.

In [22], the correlation of the messages is modeled as a sequence of random edges from a sequence of nearly

semi-regular bipartite graphs with increasing size. Inspired by the approaches of both [21] and [22], for the

two-way communication in the second phase, we shall construct a joint-source-channel coding scheme that

exploits the common side information.

At the beginning of the third phase, the uncertainty list of the decoder consists of the likely message pairs

conditioned on the channel outputs of the previous two blocks. Due to the law of large numbers, each message

pair in this list is nearly equally likely to be the one transmitted by the encoders in the first phase. This leads

to a simple coding strategy for the third phase: a one-to-one mapping that maps the message pairs in the list

to an index set, followed by channel coding to transmit the index over a point-to-point channel.

Finally, we superimpose the three phases to obtain a new block-Markov superposition coding scheme.

Fresh information enters in each block and is resolved over the next two blocks. This scheme dictates the joint

distributions we may choose for coding.

It turns out that there is one more hurdle to cross before we obtain a single-letter characterization, viz.,

5



ensuring stationarity of the coding scheme. Recall that in the second phase, each encoder generates its channel

input based on its own message and the common side information. The channel inputs of the two encoders

are correlated, and we need the joint distribution of these correlated inputs to be the same in each block.

We ensure this by imposing a condition on the distributions used at the encoders to generate these correlated

channel inputs. This leads to stationarity, and then we have a single-letter characterization. We show that

this scheme yields a single-letter rate region involving three auxiliary random variables that includes the C-L

region, and that the inclusion is strict using two examples.

Looking back, we make a couple of comments. At the beginning of the first phase, it is easy to see that

the independent messages of the encoders can be thought of as a random edge in a fully connected bipartite

graph. In other words, since each pair of messages is equally likely to be transmitted in the first phase, every

left vertex in the message graph is connected to every right vertex. The message graph gets progressively

thinner over the three phases, until (with high probability) it reduces to a single edge at the end of the third

phase. We note that this thinning of the message graph could be accomplished in four phases or even more.

This results in improved rate regions involving a larger collection of auxiliary random variables.

In the rest of the paper, we shall consider a formal treatment of the problem. In Section 2, we give the

required definitions and state the main result of the paper. In Section 3, we use bipartite message graphs to

explain the main ideas behind the coding scheme quantitatively. In Section 4, we compare the proposed region

with others in the literature using a couple of examples. The formal proof of the main theorem is given in

Section 5. In Section 6, we show how our coding scheme can be extended to obtain larger rate regions with

additional auxiliary random variables. Section 7 concludes the paper.

Notation: We use uppercase letters to denote random variables, lower-case for their realizations and bold-

face notation for random vectors. Unless otherwise stated, all vectors have length N . Thus A , AN ,

(A1, . . . , AN ). For any α such that 0 < α < 1, ᾱ , 1 − α. Unless otherwise mentioned, logarithms are with

base 2, and entropy and mutual information are measured in bits.

2 Preliminaries and Main Result

A two-user discrete memoryless MAC is a quadruple (X1,X2,Y, PY |X1,X2
) of input alphabets X1,X2 and

output alphabet Y, and a set of probability distributions PY |X1X2
(.|x1, x2) on Y for all x1 ∈ X1, x2 ∈ X2. The

channel satisfies the following for all n = 1, 2, . . .,

Pr(Yn = yn|Xn
1 = x1, X

n
2 = x2, Y

n−1 = y) = PY |X1X2
(yn|x1n, x2n), n = 1, 2, . . .

for all yn ∈ Y, x1 ∈ Xn
1 , x2 ∈ Xn

1 and y ∈ Yn−1. There is noiseless feedback to both encoders (S1 and S2 are

both closed in Figure 1).

Definition 2.1. An (N,M1,M2) transmission system for a given MAC with feedback consists of

1. A sequence of mappings for each encoder:

e1n : {1, . . . ,M1} × Yn−1 → X1, n = 1, . . . , N

e2n : {1, . . . ,M2} × Yn−1 → X2, n = 1, . . . , N

6



2. A decoder mapping given by

g : YN → {1, . . . ,M1} × {1, . . . ,M2}

We assume that the messages (W1,W2) are drawn uniformly from the set {1, . . . ,M1} × {1, . . . ,M2}. The
channel input of encoder i at time n is given by Xin = ein(Wi, Y

n−1) for n = 1, 2, . . . , N and i = 1, 2. The

average error probability of the above transmission system is given by

τ =
1

M1M2

M1
∑

w1=1

M2
∑

w2=1

Pr(g(Y) 6= (w1, w2)|W1,W2 = w1, w2).

Definition 2.2. A rate pair (R1, R2) is said to be achievable for a given discrete memoryless MAC with

feedback if ∀ǫ > 0, there exists an N(ǫ) such that for all N > N(ǫ) there exists an (N,M1,M2) transmission

systems that satisfies the following conditions

1

N
logM1 ≥ R1 − ǫ,

1

N
logM2 ≥ R2 − ǫ, τ ≤ ǫ.

The set of all achievable rate pairs is the capacity region with feedback.

The following theorem is the main result of this paper.

Definition 2.3. For a given MAC (X1,X2,Y, PY |X1,X2
) define P as the set of all distributions P on U ×A×

B × X1 ×X2 × Y of the form

PUPABPX1|UAPX2|UBPY |X1X2
(1)

where U ,A and B are arbitrary finite sets. Consider two sets of random variables (U,A,B,X1, X2, Y ) and

(Ũ , Ã, B̃, X̃1, X̃2, Ỹ ) each having the above distribution P . For conciseness, often we refer to the collection

(U,A,B, Y ) as S, (Ũ , Ã, B̃, Ỹ ) as S̃, and U ×A× B × Y as S. Hence

PSX1X2 = PS̃X̃1X̃2
= P.

Define Q as the set of pairs of conditional distributions (QA|S̃,X̃1
, QB|S̃,X̃2

), that satisfy the following consis-

tency condition

∑

s̃,x̃1,x̃2∈S×X1×X2

PS̃X̃1X̃2
(s̃, x̃1, x̃2)QA|S̃,X̃1

(a|s̃, x̃1)QB|S̃,X̃2
(b|s̃, x̃2) = PAB(a, b), ∀(a, b) ∈ A× B. (2)

Then, for any (QA|S̃,X̃1
, QB|S̃,X̃2

) ∈ Q, the joint distribution of the two sets of random variables - (S̃, X̃1, X̃2)

and (S,X1, X2) - is given by

PS̃X̃1X̃2
QA|S̃,X̃1

QB|S̃,X̃2
PUX1X2Y |AB.

Theorem 1. For a MAC (X1,X2,Y, PY |X1,X2
), for any distribution P from P and a pair of conditional

distributions (QA|S̃,X̃1
, QB|S̃,X̃2

) from Q, the following rate-region is achievable.

R1 ≤ I(X1;Y |X2BUS̃X̃2)−
(

I(A;X2|Y BUS̃X̃2)− I(U ;Y |Ũ Ỹ )
)+

,

R2 ≤ I(X2;Y |X1AUS̃X̃1)−
(

I(B;X1|Y AUS̃X̃1)− I(U ;Y |Ũ Ỹ )
)+

,

R1 +R2 ≤ I(X1X2;Y |US̃) + I(U ;Y |Ũ Ỹ ).

(3)
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2N(R1+R2) · 2−NI(X1X2;Y |U)) edges

(b)

2NR1 2NR2 messages

Figure 5: Decoder’s message graph for the C-L scheme: (a) Before transmission (b) After receiving block
output Y

In the above, we have used x+ to denote max(0, x). If we set A = B = φ, we obtain the Cover-Leung

region, given as (4)-(6) in next section.

Remark : The rate region of Theorem 1 is convex.

3 The Coding Scheme

In this section, we give a sketch of the proof of the coding theorem. The discussion here will be informal. The

formal proof of the theorem is given in Section 5. As we have seen in Section 1, to visualize the ideas behind

the coding scheme, it is useful to represent the messages of the two encoders in terms of a bipartite graph. Let

us suppose that the encoders wish to use the channel N times and transmit independent information at rates

R1 and R2. Before transmission begins, the message graph is a fully connected bipartite graph with 2NR1

left vertices and 2NR2 right vertices. Figure 5(a) shows a bipartite graph, where each left vertex denotes a

message of encoder 1 and each right vertex, a message of encoder 2. An edge connecting two vertices represents

a message pair that has non-zero probability.

We shall first review the C-L scheme in the context of message graphs, and then extend the ideas to obtain

our coding scheme.

3.1 The Cover-Leung Scheme

Fact 1: Cover-Leung (C-L) Region [1]: Consider a joint distribution of the form PUX1X2Y = PUPX1|U

PX2|UPY |X1X2
, where PY |X1X2

is fixed by the channel and U is a discrete random variable with cardinality

min{|X1| · |X2|+ 1, |Y|+ 2}. Then the following rate pairs (R1, R2) are achievable.

R1 < I(X1;Y |X2U), (4)

R2 < I(X2;Y |X1U), (5)

R1 +R2 < I(X1X2;Y ). (6)
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In this scheme, there are L blocks of transmission, with a fresh pair of messages in each block. Let

(W1l,W2l), 1 ≤ l < L, denote the message pair for block l, drawn from sets of size 2NR1 and 2NR2 , respectively.

The codebooks of the two encoders for each block are drawn i.i.d according to distributions PX1|U and PX2|U ,

respectively, where U is an auxiliary random variable known to both transmitters. Let (X1l,X2l) denote the

codewords corresponding to the message pair. (W1l,W2l) (or equivalently, (X1l,X2l)) corresponds to a random

edge in the graph of Figure 5(a). After the decoder receives the output Yl, the message graph conditioned on

the channel output (posterior message graph) for block l is the set of all message pairs (W1l,W2l) that could

have occurred given Yl. We can define a high probability subset of the posterior message graph, which we

call the effective posterior message graph, as follows. Let Ll be the set of all message pairs (i, j) such that

(X1l(i),X2l(j),Yl) are jointly typical. The edges of the effective posterior message graph are the message

pairs contained in Ll.

If the rate pair (R1, R2) lies outside the no-feedback capacity region, the decoder cannot decode (W1l,W2l)

from the output Yl. Owing to feedback, both encoders know Yl at the end of block l. If R1 and R2 satisfy

(4) and (5), it can be shown that using the feedback, each encoder can correctly decode the message of the

other with high probability. In other words, each edge of the effective posterior message graph is uniquely

determined by knowing either the left vertex or the right vertex. Thus, upon receiving Yl, the effective

posterior message graph at the decoder has the structure shown in Figure 5(b). The number of edges in this

graph is approximately

2N(R1+R2−I(X1X2;Y |U)).

The two encoders cooperate to resolve this decoder uncertainty using a common codebook of U sequences.

This codebook has size 2NR0 , with each codeword symbol chosen i.i.d according to PU . Each codeword indexes

an edge in the message graph of Figure 5(b). Since both encoders know the random edge (W1l,W2l), they

pick the appropriate codeword from this codebook and set it as Ul+1. Ul+1 can uniquely specify the edge in

the graph if the codebook size is greater than the number of edges in the graph of Figure 5(b). This happens

if

R0 > R1 +R2 − I(X1X2;Y |U). (7)

The codewords X1(l+1),X2(l+1) carry fresh messages for block (l + 1), and are picked conditioned on

Ul+1 according to PX1|U and PX2|U , respectively. Thus in each block, fresh information is superimposed on

resolution information for the previous block. The decoder can decode Ul+1 from Yl+1 if the rate R0 of the

U -codebook satisfies

R0 < I(U ;Y ) (8)

Combining (7) and (8), we obtain the final constraint (6) of the C-L rate region.

3.2 Proposed Coding scheme

Suppose the rate pair (R1, R2) lies outside the C-L region. Then at the end of each block l, the encoders

cannot decode the message of one another. The effective posterior message graph at the decoder on receiving

Yl now looks like Figure 6(b) with high probability - each vertex no longer has degree one. The degree of each

left vertex X1l is the number of codewords X2l that are jointly typical with (X1l,Yl). This number is approx-

imately 2N(R2−I(X2;Y |X1U)). Similarly, the degree of each right vertex is approximately 2N(R1−I(X1;Y |X2U)).

The number of left vertices is approximately equal to 2N(R1−I(X1;Y )) and the number of right vertices is ap-

9



deg .= R2 − I(X2; Y |X1U)

deg .= R1 − I(X1; Y |X2U)

2NR1

2N(R1+R2) edges

2NR2

(a) (b)

Figure 6: When (R1, R2) lie outside C-L region: a) Message graph before transmission b) After receiving
output Y

2NR1

2N(R1+R2) edges

2NR2

Al+1

Bl+1

X2lX1l

Bl+1

X1l X2l

Determines Ul+2

Al+1

(b)(a)
(c)

Figure 7: Message graph for the pair (W1l,W2l): a) Before block l b) After receiving Yl c) After receiving
Yl+1

proximately equal to 2N(R2−I(X2;Y )). This graph is nearly semi-regular. Moreover, since the channel output

is a random sequence, this graph is a random subset of the conditionally typical set of (X1, X2) given (Y, U).

Clearly, the uncertainty of the decoder about (W1l,W2l) now cannot be resolved with just a common

message since both encoders cannot agree on the edge in the effective posterior message graph. Of course,

conditioned on Yl, the messages are correlated, as opposed to independent. In other words, the effective

posterior message graph conditioned on Yl in Figure 6(b) has left and right degrees that are strictly less than

R1 and R2, respectively. The objective now is to efficiently transmit the random edge (W1l,W2l) from the

effective message graph of Figure 6(b).

Generate a sequence A for each jointly typical sequence pair (X1,Y), with symbols generated i.i.d from

the distribution PA|X1Y . Similarly, generate a sequence B for each jointly typical pair (X2,Y), according to

distribution PB|X2Y . Recall that (X1l,X2l) denotes the codeword pair transmitted in block l. Encoder 1 sets

Al+1 equal to the A-codeword corresponding to (X1l,Yl), and encoder 2 sets Bl+1 equal to the B-codeword

10



Yl−1

Bl

Al−1,Bl−1

Al

Yl−2

Figure 8: Correlation propagates across blocks

corresponding to (X2l,Yl). This is shown in Figure 7(b). The codewordX1(l+1), which carries a fresh message

for block (l + 1), is chosen conditioned on Al+1. Similarly, X2(l+1) is chosen conditioned on Bl+1. We note

that Al+1 and Bl+1 are correlated since they are chosen conditioned on (X1l,Yl) and (X2l,Yl), respectively.

At the end of block (l+ 1), the decoder and the two encoders receive Yl+1. Encoder 1 decodes Bl+1 from

(Yl+1,Al+1,X1l). Similarly, encoder 2 decodes Al+1 from (Yl+1,Bl+1,X2l). Assuming this is done correctly,

both encoders now know the message pair (W1l,W2l), but the decoder does not, since it may not be able

decode (Al+1,Bl+1) from Yl+1. Then the effective posterior message graph at the decoder on receiving Yl+1

is as shown in Figure 7(c). Since both encoders now know the edge in the effective posterior message graph

conditioned on (Yl,Yl+1) corresponding to (W1l,W2l), they can cooperate to resolve the decoder’s uncertainty

using a common sequence Ul+2 in block (l + 2).

To summarize, codewords (X1l,X2l) which carry the fresh messages for block l, can be decoded by neither

the decoder nor the encoders upon receiving Yl. So the encoders send correlated information (Al+1,Bl+1) in

block (l + 1) to help each other decode (W1l,W2l). They then cooperate to send Ul+2, so that the decoder

can decode (W1l,W2l) at the end of block (l+ 2). In the ‘one-step’ C-L coding scheme, the rates (R1, R2) are

low enough so that each encoder can decode the message of the other at the end of the same block. In other

words, the fully-connected graph of Figure 5(a) is thinned to the degree-1 graph of Figure 5(b) in one block.

In our ‘two-step’ strategy, the thinning of the fully-connected graph to the degree-1 graph takes place over

two blocks, going through the intermediate stage of Figure 7(b).

3.2.1 Stationarity of the coding scheme

The scheme proposed above has a shortcoming - it is not stationary and hence does not yield a single-letter rate

region. To see this, recall that for any block l, Al and Bl are produced conditioned on Yl−1. Yl−1 is produced

by the channel based on inputs (X1(l−1),X2(l−1)), which in turn depend on Al−1 and Bl−1, respectively. Thus

we have correlation that propagates across blocks, as shown in Figure 8. This means that the rate region we

obtain will be a multi-letter characterization that depends on the joint distribution of the variables in all B

blocks : {(Ul, Al, Bl, X1l, X2l, Yl)}Ll=1.

To obtain a single-letter rate region, we require a stationary distribution of sequences in each block. In

other words, we need the random sequences (U,A,B,X1X2,Y) to be characterized by the same single-letter

11



Table 1: Time-line of events for two successive blocks (each block of length N)

Time . . . (l − 1)N (l − 1)N + 1 . . . lN lN + 1 ·
instant block (l − 1) ends block l begins block l ends block (l + 1) begins
Encoder 1 . . . al−1,W1(l−2) al,W1(l−1)

knows: . . . yl−1 → yl →
. . . bl−1 → W2(l−2) bl → W2(l−1)

Encoder 1 . . . ul, al ul+1, al+1

produces: . . . → x1l → x1(l+1)

Encoder 2 . . . bl−1,W2(l−2) bl,W2(l−1)

knows: . . . yl−1 → yl →
. . . al−1 → W1(l−2) al → W1(l−1)

Encoder 2 . . . ul,bl ul+1,bl+1

produces: . . . → x2l → x2(l+1)

Decoder ul−1 → ul →
knows: W1(l−3),W2(l−3) W1(l−2),W2(l−2)

product distribution in each block. This will happen if we can ensure that the A,B sequences in each block

have the same single-letter distribution PAB . The correlation between Al+1 and Bl+1 cannot be arbitrary-

it is generated using the information available at each encoder at the end of block l. At this time, both

encoders know sl , (u, a,b,y)l. In addition, encoder 1 also knows x1l and hence we make it generate Al+1

according to the product distribution Qn

A|S̃X̃1
(.|sl,x1l). Similarly, we make encoder 2 generate Bl+1 according

to Qn

B|S̃X̃2
(.|sl,x2l). If the pair (QA|S̃X̃1

, QB|S̃X̃2
) ∈ Q, then equation (2) ensures that the pair (Al+1,Bl+1)

corresponding to (W1l,W2l) belongs to the typical set T (PAB) with high probability. This ensures stationarity

of the coding scheme. Table 1 illustrates the time-line of events at the encoders and the decoders for two

successive blocks.

Our block-Markov coding scheme, with conditions imposed to ensure stationarity, is similar in spirit to that

of Han for two-way channels [23]. Finally, a couple of comments on the chosen input distribution in (1). In

block (l+1), the encoders generate Al+1 and Bl+1 independently based on their own messages for block l and

the common side information Sl = (U,A,B,Y)l. Why do they not use Sl−1,Sl−2, . . . (the side information

accumulated from earlier blocks) as well? This is because (W1(l−2),W2(l−2)) is decoded at the decoder at the

end of block l, and (W1(l−2),W2(l−2)) determines (A,B)l−1. Hence, for block (l + 1), Sl−1,Sl−2, . . . is known

at all terminals and is just shared common randomness.

Secondly, notice that U , which carries common information sent by both encoders, is independent of the

random variables (A,B). It is sufficient to choose a distribution of the form PUPAB (rather than PUAB).

This is because separate source and channel coding is optimal when the encoders send common information

over the MAC. Joint source-channel coding is needed only for sending correlated information. Hence A,B are

generated conditioned on the information available at each encoder, but U is generated independently.

We remark that our scheme can be extended as follows. The above coding scheme thins the fully-connected

graph of Figure 7(a) to the degree-one graph of Figure 7(c) over two blocks. Instead, we could do it over

three blocks, going through two intermediate stages of progressively thinner (more correlated) graphs before

obtaining the perfectly correlated graph of Figure 7(c). This would yield a potentially larger rate region, albeit

with extra auxiliary random variables. This is discussed in Section 6.
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4 Comparisons

In this section, the rate region of Theorem 1 is compared with the other known regions for the memoryless

MAC with noiseless feedback. We first consider the white Gaussian MAC. Since its feedback capacity is

known [6], this channel provides a benchmark to compare the rate region of Theorem 1. We see that our

rate region yields rates strictly better than the C-L region, but smaller than the feedback capacity. Ozarow’s

capacity-achieving scheme in [6] is specific to the Gaussian case and does not extend to other MACs. The

rate regions of Kramer [9] and Bross and Lapidoth (B-L) [11] extend the C-L region for a discrete memoryless

MAC with feedback. We compare our scheme with these in Sections 4.2 and 4.3.

We mention that all the calculations in this section are done using the rate constraints in (46), an equivalent

representation of the rate constraints in (3). This equivalence is established by equations (47)-(49) in Section

5.

4.1 Additive White Gaussian MAC

Consider the AWGN MAC with power constraint P on each of the inputs. This channel, with X1 = X2 = Y =

R, is defined by

Y = X1 +X2 +N (9)

where N is a Gaussian noise random variable with mean 0 and variance σ2 that is independent of X1 and

X2. The inputs x1 and x2 for each block satisfy 1
N

∑N
n=1 x

2
1n ≤ P, 1

N

∑N
n=1 x

2
2n ≤ P. For this channel, the

equal-rate point on the boundary of the C-L region [1] is (RCL, RCL) where

RCL =
1

2
log

(

2

√

1 +
P

σ2
− 1

)

(10)

The achievable rate region of Theorem 1 for the discrete memoryless case can be extended to the AWGN

MAC using a similar proof, recognizing that in the Gaussian case superposition is equivalent to addition.

For the joint distribution PUABX1X2Y in (1), define U ∼ N (0, 1) and (A,B) jointly Gaussian with mean

zero and covariance matrix

KAB =

[

1 λ

λ 1

]

. (11)

The input distributions PX1|UA and PX2|UB are defined by

X1 =
√
αP IX1 +

√

βP A+

√

α+ βP U,

X2 =
√
αP IX2 +

√

βP B +

√

α+ βP U

(12)

where IX1 , IX2 are independent N (0, 1) random variables, α, β > 0 and α+ β ≤ 1. IX1 and IX2 represent the

fresh information and U is the resolution information for the decoder sent cooperatively by the encoders. A is

the information that encoder 2 decodes using feedback, and B the information that encoder 1 decodes using

feedback.

Recall that S̃ , (Ũ , Ã, B̃, Ỹ ). The distributions QA|S̃X̃1
and QB|S̃X̃2

to generate A and B at the encoders
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Table 2: Comparison of equal-rate boundary points (in bits)

P/σ2

0.5 1 5 10 100
RCL 0.2678 0.4353 0.9815 1.2470 2.1277
R∗ 0.2753 0.4499 1.0067 1.2709 2.1400

RFBcap 0.2834 0.4642 1.0241 1.2847 2.1439

using the feedback information are defined as

QA|S̃X̃1
: A =k1

X̃1 −
√

α+ βP Ũ −√
βP Ã√

αP
+ k2f(Ũ , Ã, B̃, Ỹ ),

QB|S̃X̃2
: B =− k1

X̃2 −
√

α+ βP Ũ −√
βP B̃√

αP
− k2f(Ũ , Ã, B̃, Ỹ )

(13)

where k1, k2 ∈ R and

f(Y,A,B, U) ,
Y −√

βP A−√
βP B − 2

√

α+ βP U√
2αP + σ2

. (14)

It can be verified that this choice of (QA|S̃X̃1
, QB|S̃X̃2

) satisfies the consistency condition (2) (required for

Theorem 1) if the following equations are satisfied.

E[A2] = E[B2] = 1, E[AB] = λ. (15)

Evaluating the conditions in (15) using (14) and (13), we have

1 = E[A2] =k21 + k22 + 2k1k2

√

αP

2αP + σ2
, (16)

λ = E[AB] = −k22 − 2k1k2

√

αP

2αP + σ2
, (17)

Adding (16) and (17), we get k21 = 1 + λ. Substituting k1 = ±
√
1 + λ in (16) yields a quadratic equation

that can be solved to obtain k2. The condition for the quadratic to yield a valid (real) solution for k2 is

λ ≤ αP

αP + σ2
. (18)

4.1.1 Evaluating the rates

For a valid (α, β, λ) the achievable rates can be evaluated from Theorem 1 to be

R1, R2 < min{G,H},

R1 +R2 <
1

2

(

1 +
2P

σ2
(1 + α+ β + λβ)

)

,
(19)
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where

G =
1

2
log

(

1 +
αP

σ2
+

βP (1 + λ)

αP + σ2

)

,

H =
1

2
log(1 + α

P

σ2
) +

1

2
log(1 +

4 α+ β P/σ2

2(α+ β + βλ)P/σ2 + 1
) +

1

2
log

(

1 +
β(1 + λ)P/σ2

(1 + 2αP/σ2)(1 + αP/σ2)

)

.

For different values of the signal-to-noise ratio P/σ2, we (numerically) compute the equal-rate point (R∗, R∗)

on the boundary of (19). For various values of P/σ2, Table 2 compares R∗ with RCL, the equal-rate point of

the C-L region given by (10), and with the equal rate-point RFBcap on the boundary of the feedback capacity

region [6]. We observe that our equal-rate points represent a significant improvement over the C-L region, and

are close to the feedback capacity for large SNR.

4.2 Comparison with Kramer’s Generalization of the Cover-Leung Region

In [9, Section 5.3-5.4], a multi-letter generalization of the Cover-Leung region using was proposed. This

characterization was based on directed information, and is given below.

Definition 4.1. For a triple of M -dimensional random vectors (AM , BM , CM ) jointly distributed according

to PAM ,BM ,CM =
∏M

i=1 PAi,Bi,Ci|Ai−1,Bi−1,Ci−1 , we define

I(AM → BM ) =
M
∑

i=1

I(Ai;Bi|Bi−1), (20)

I(AM → BM ||CM ) =

M
∑

i=1

I(Ai;Bi|Bi−1 Ci). (21)

The first quantity above is called the directed information from AM to BM , and the second quantity is the

directed information from AM to BM causally conditioned on CM . For any random variable V jointly dis-

tributed with these random vectors, the above definitions are extended in the natural way when we condition

on V :

I(AM → BM |V ) =

M
∑

i=1

I(Ai;Bi|Bi−1 V ), (22)

I(AM → BM ||CM |V ) =
M
∑

i=1

I(Ai;Bi|Bi−1 Ci V ). (23)

Fact 2 (Generalized C-L region [9]): For any positive integer M , consider a joint distribution of the form

PUMXM
1 XM

2 Y M (uM , xM
1 , xM

2 , yM ) =

M
∏

i=1

PU (ui) PX1i|UX
i−1
1 Y i−1(x1i|ui x

i−1
1 yi−1) PX2i|UX

i−1
2 Y i−1(x2i|ui x

i−1
2 yi−1) PY |X1X2

(yi|x1i x2i)

where PY |X1X2
is fixed by the channel, and the other distributions can be picked arbitrarily. Then the following
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rate pairs (R1, R2) are achievable over the MAC with noiseless feedback:

R1 ≤ 1

M
I(XM

1 → Y M ||XM
2 |UM ),

R2 ≤ 1

M
I(XM

2 → Y M ||XM
1 |UM ),

R1 +R2 ≤ 1

M
I(XM

1 XM
2 → Y M ).

(24)

With M = 2, the equal rate point on the boundary of (24) was computed for a few examples in [9]. For the

AWGN MAC with P/σ2 = 10, the best equal rate pair was R1 = R2 = 1.2566 bits, which is smaller than the

rate 1.2709 bits obtained using Theorem 1 (see Table 2). We now compare the region of Theorem 1 with the

generalized C-L region for M = 2. This is a fair comparison because in each of these regions, we have five

distributions to pick: PU , and two conditional distributions for each encoder.

Consider the joint distribution of the generalized C-L scheme for M = 2:

PU (u1) PX11|U (x11|u1) PX21|U (x21|u1) PY |X1X2
(y1|x11x21)

· PU (u2)PX12|UX11Y1
(x12|u2 x11 y1) PX22|UX21Y1

(x22|u2 x21 y1) PY |X1X2
(y2|x12x22).

The generalized C-L scheme uses block-Markov superposition with L blocks of transmission, each block being

of length N . (Without loss of generality, we will assume that the block length N is even.) At the beginning of

each block, to resolve the decoder’s residual uncertainty, both encoders agree on the U codeword (u1, . . . , uN ),

chosen i.i.d according to PU . Each of the 2NR1 codewords of encoder 1 is generated according the following

distribution:

PX11|U (x11|u1) PX12|UX11Y1
(x12|u2 x11 y1) PX11|U (x13|u3) PX12|UX11Y1

(x14|u3 x13 y3)

. . . PX11|U (x1(N−1)|uN−1) PX12|UX11Y1
(x1N |uN x1(N−1) yN−1).

(25)

In other words, the odd-numbered symbols of the block are chosen conditioned on just U (like in the C-L

scheme), while the even-numbered symbols are chosen conditioned on the preceding input symbol and the

corresponding output. Equivalently, we can think of the block of length N being divided into two sub-blocks

of length N
2 , where the first sub-block has symbols chosen i.i.d according to PX11|U , and the symbols of the

second sub-block are chosen iid according to PX12|UX11Y , i.e., conditioned on the inputs and outputs of the

first sub-block.

We can now establish an analogy between this coding scheme and that of Theorem 1. In Theorem 1, choose

A = (X̃1, Ỹ ) and B = (X̃2, Ỹ ). (Recall that ˜ is used to denote symbols of the previous block.) It can be

verified that the consistency condition (2) is trivially satisfied for this choice of A and B. With this choice,

the encoder 1 generates its inputs in each block according to PX1|UX̃1Ỹ
, and encoder 2 generates its inputs

according to PX2|UX̃2Ỹ
. In particular, note that encoder 1 chooses the channel inputs for the entire block

conditioned on the channel outputs and its own inputs of the previous block. In contrast, the generalized C-L

scheme uses such a conditional input distribution only for one half of each block (the second sub-block). In

the other half, the input symbols are conditionally independent given U . Since our coding scheme utilizes

the correlation generated by feedback for the entire block, we expect it to yield higher rates. Of course, this

comparison was made with the specific choice A = (X̃1, Ỹ ), B = (X̃2, Ỹ ). Other choices of A and B may yield
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higher rates in Theorem 1 - the AWGN MAC in the previous subsection is such an example.

We emphasize that this is only a qualitative comparison of the two coding schemes. Due to the differences

in the dynamics of the two schemes (the decoder decodes with a delay of two blocks in our scheme, and with

a delay of one block in the generalized C-L scheme), we cannot formally show that generalized C-L region for

M = 2 is strictly contained in the rate region of Theorem 1 for the above choice of A and B.

4.3 Comparison with Bross-Lapidoth Region

Bross and Lapidoth (B-L) [11] established a rate region that extends the Cover-Leung region. The B-L scheme,

described below, transmits L blocks of messages using block-Markov superposition coding. Each block consists

of two phases - a MAC phase, and a two-way phase. The MAC phase of block l is N time units long. In this

phase, the encoders send fresh information for block l superimposed over Ul, the resolution information for

the decoder. The sequence Ul resolves the decoder’s list of messages for block (l − 1). This part of the B-L

scheme is identical to the Cover-Leung scheme.

At the end of the MAC phase of block l, the channel output Yl is available to the decoder as well as

the encoders. The transmission rates are too high for the encoders to decode the message of one another

using Yl. So they engage in a two-way phase lasting η · N time units after the MAC phase. In the two way

phase, the encoders exchange some functions of the information available to each of them - encoder 1 conveys

V1 = g1(X1, Y ) to encoder 2, and encoder 2 conveys V2 = g2(X2, Y ) to encoder 1. At the end of this phase,

lasting ηN time units, encoders 1 and 2 decode V2l and V1l, respectively
1. Encoder 1 then decodes X1l from

(Yl,X1l,V1l,V2l). Similarly encoder 2 can decode X2l from (Yl,X2l,V1l,V2l). At this point, the decoder

still cannot decode (V1l,V2l), and is left with a list of (V1l,V2l). This list has exponential size, denoted by

2NRL . Further, for each pair (V1l,V2l), there is a list of messages (X1l,X2l). Both these lists will be resolved

by Ul+1 in the MAC phase of the next block.

To summarize, transmission of each block l takes (1 + η)N units of time: N for the MAC phase, and η ·N
for the encoders to exchange (V1, V2). At the end of each block (of length (1 + η)N), the encoders can decode

the messages of one another. The two-way phase in the B-L scheme is characterized by a trade-off between η

and RL: the more time we allocate for the two-way phase, the smaller the list-size of the decoder at the end

of the phase. A set of sufficient conditions is derived in [11] for a pair (η,RL) to be achievable in the two-way

phase.

In our coding scheme, A and B play a role similar to V1 and V2 above - they are generated based on

the information available to the encoders at the end of the block. The key difference lies in how they are

exchanged. In the B-L scheme, an extra ηN time units is spent in each block to exchange V1, V2. Our scheme

superimposes this information onto the next block; here each block l carries three layers of information - the

base layer U to resolve the decoder’s list of block (l − 2), information exchange through A and B for the

encoders to learn the messages of block (l − 1), and fresh messages corresponding to block l.

Note that each block in our scheme has length N , as opposed to (1 + η)N in B-L. In other words, our

scheme may be viewed as superimposing the two-way phase of the B-L scheme onto the MAC phase. In

general, superposition is a more efficient way of exchanging correlated information than dedicating extra time

for the exchange2; however, in order to obtain a single-letter rate region with superposition-based information

1V1 is a length N vector of the form V11, V12, . . . , V1N formed by the function g2 acting on (X1,Y) symbol-by-symbol. V2

is defined similarly.
2For similar reasons, the Cover-Leung scheme outperforms the Gaarder-Wolf scheme for the binary erasure MAC [1, 4].
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exchange, we cannot choose PAB arbitrarily - it needs to satisfy the consistency condition (2). Hence a direct

comparison of our rate region with the Bross-Lapidoth region appears difficult. Both the B-L region and our

region are non-convex optimization problems, and there are no efficient ways to solve these. (In fact, the

C-L region and the no-feedback MAC capacity region are non-convex optimization problems as well.) In [11],

the Poisson two-user MAC with feedback was considered as an example. It was shown that computing the

feedback capacity of the Poisson MAC is equivalent to computing the feedback capacity of the following binary

MAC. The binary MAC, with inputs (X1, X2) and output Y is specified by

PY |X1X2
(1|01) = PY |X1X2

(1|10) = q, PY |X1X2
(1|11) = 2q, PY |X1X2

(1|00) = 0

where 0 < q < 0.5. Note that if an encoder input is 0 and the channel output is 1, the other input is uniquely

determined. In all other cases, one input, together with the output, does not determine the other input. Thus

the condition for C-L optimality [5] is not satisfied.

It was shown in [11] that feedback capacity region of the two-user Poisson MAC is the set of all rate pairs

limq→0(
R1(q)

q
, R2(q)

q
), where (R1(q), R2(q)) are achievable for the above binary MAC with feedback achievable

for the above binary channel with parameter q. We shall compare the maximal equal rate points for this

channel for small q. The maximum symmetric sum rate in the C-L region is [11]

1

q
(R1 +R2) = 0.4994 + o(1) nats. (26)

where o(1) → 0 as q → 0. Our rate region from Theorem 1 yields the symmetric sum-rate

1

q
(R1 +R2) = 0.5132 + o(1) nats. (27)

The computation is found in Appendix A. The B-L symmetric sum rate reported in [11] is 1
q
(R1 + R2) =

0.553 + o(1) nats, but there appears to be an error in the calculation, which we have communicated to the

authors.

5 Proof of Theorem 1

5.1 Preliminaries

We shall use the notion of strong typicality as defined in [24]. Consider three finite sets V ,Z1 and Z2, and an

arbitrary distribution PV Z1Z2 on them.

Definition 5.1. For any distribution PV on V, a sequence vN ∈ VN is said to be ǫ-typical with respect to PV ,

if
∣

∣

∣

∣

1

N
#(a|vN )− PV (a)

∣

∣

∣

∣

≤ ǫ

|V| ,

for all a ∈ V, and no a ∈ V with PV (a) = 0 occurs in vN , where #(a|vN ) denotes the number of occurrences

of a in vN . Let A
(N)
ǫ (PV ) denote the set of all sequences that are ǫ-typical with respect to PV .

The following are some of the properties of typical sequences that will be used in the proof.

Property 0: For all ǫ > 0, and for all sufficiently large N , we have PN
V [A

(N)
ǫ (PV )] > 1− ǫ.
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Property 1: Let vN ∈ A
(N)
ǫ (PV ) for some fixed ǫ > 0. If a random vector ZN

1 is generated from the product

distribution
∏N

i=1 PZ1|V (·|vi), then for all sufficiently large N , we have Pr[(vN , ZN
1 ) 6∈ A

(N)
ǫ̃ (PV Z1)] < ǫ, where

ǫ̃ = ǫ(|V|+ |Z1|).
Property 2: Let vN ∈ A

(N)
ǫ (PV ) for some fixed ǫ > 0. If a random vector ZN

1 is generated from the product

distribution
∏N

i=1 PZ1|V (·|vi) and ZN
2 is generated from the product distribution

∏N

i=1 PZ2|V (·|vi), then for all

sufficiently large N , we have

Pr[(vN , ZN
1 , ZN

2 ) ∈ A
(N)
ǫ̃ (PV Z1Z2)] <

2Nδ(ǫ) 2NH(Z1Z2|V )

2NH(Z1|V ) 2NH(Z2|V )
,

where ǫ̃ = ǫ(|V|+ |Z1||Z2|), and δ(ǫ) is a continuous positive function of ǫ that goes to 0 as ǫ → 0.

5.2 Random Codebook generation

Fix a distribution PUABX1X2Y from P as in (1), and a pair of conditional distribution (QA|S̃,X̃1
, QB|S̃,X̃2

)

from Q. Fix a non-negative integer L. There are L blocks in encoding and decoding. Fix ǫ > 0, and positive

integers N,M1 and M2. M1 and M2 denote the size of the message sets of the two transmitters in each block.

Let M0[1] = M0[2] = 1, and fix (L − 2) positive integers M0[l] for l = 3, . . . , L. Let ǫ[l] = ǫ(2|S||X1||X2|)l−1.

Recall that S denotes the collection (U,A,B, Y ) and S denotes U ×A× B × Y.
For l = 2, . . . , L, independently perform the following random experiments.

• For every (s,x1) ∈ SN ×XN
1 , generate one sequence A[l,s,x1] from

∏N

n=1 QA|S̃,X̃1
(·|sn, x1n).

• Similarly, for every (s,x2) ∈ SN ×XN
2 , generate one sequence B[l,s,x2] from

∏N
n=1 QB|S̃,X̃2

(·|sn, x2n).

For l = 1, independently perform the following random experiment.

• Generate a pair of sequences (AN
[1,−,−], B

N
[1,−,−]) from the product distribution PN

AB .

For l ∈ 1, . . . , L, independently perform the following random experiments.

• Choose M0[l] sequences U[l,m], m = 1, 2, . . . ,M0[l]. independently, where each sequence is generated

from the product distribution PN
U .

• For each (u, a) ∈ UN × AN , generate M1 sequences X1[l,i,u,a], i = 1, 2, . . . ,M1, independently where

each sequence is generated from
∏N

n=1 PX1|UA(·|un, an).

• Similarly, for each (u,b) ∈ UN × BN , generate M2 sequences X2[l,i,u,b], i = 1, 2, . . . ,M2, independently

where each sequence is generated from
∏N

n=1 PX2|UB(·|un, bn).

Upon receiving the channel output of block l, the decoder decodes the message pair corresponding to block

(l − 2), while the encoders decode the messages (of one another) corresponding to block (l − 1). This is

explained below.

5.3 Encoding Operation

Let W1[l] and W2[l] denote the transmitters’ messages for block l- these are independent random variables

uniformly distributed over {1, 2, . . . ,M1} and {1, 2, . . . ,M2}, respectively for l = {1, 2, . . . , (L − 2)}. We set

W1[0] = W2[0] = W1[L−1] = W2[L−1] = W1[L] = W2[L] = 1. For each block l, the encoder 1 chooses a triple
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of sequences from UN ×AN ×XN
1 according to the encoding rule given below. Similarly encoder 2 chooses a

triple of sequences from UN × BN ×XN
2 . We denote such a triple chosen by encoder 1 as (U1[l],A[l],X1[l]).

Similarly, the corresponding random sequences at encoder 2 are denoted by (U2[l],B[l],X2[l]). We will later

see that with high probability U1[l] = U2[l]. The MAC output sequence in block l is denoted by Y[l]. Since

output feedback is available at both the encoders, each encoder maintains a copy of the decoder, so all three

terminals are in synchrony.

Block 1:

• Encoder 1 computes U1[1] = U[1,1], A[1] = A[1,−,−], and X1[1] = X1[1,W1[1],U1[1],A[1]]. Then sends X1[1]

as the channel input sequence.

• Encoder 2 computes U2[1] = U[1,1], B[1] = B[1,−,−], and X2[1] = X2[1,W2[1],U2[1],B[1]]. Then sends X2[1]

as the channel input sequence.

• The MAC produces Y[1].

• Encoder 1 sets j[0] = 1. It computes B̂[1] = B[1], and S1[1] = (U1[1],A[1], B̂[1],Y[1]).

• Encoder 2 sets i[0] = 1. It computes Â[1] = A[1], and S2[1] = (U2[1], Â[1],B[1],Y[1]). 3

• Both encoders create the list L[0] as the set containing the ordered pair (1, 1).

Blocks l = 2, . . . , L: The encoders perform the following sequence of operations.

• If the message pair (W1[l − 2], j[l − 2]) is present in the list L[l − 2], Encoder 1 computes k1[l] as the

index of this message pair in the list L[l − 2]. Otherwise, it sets k1[l] = 1. Encoder 1 then computes

U1[l] = U[l,k1[l]], A[l] = A[l,S1[l−1],X1[l−1]], and X1[l] = X1[l,W1[l],U1[l],A[l]]. It then sends X1[l] as the

channel input sequence.

• If the message pair (i[l − 2],W2[l − 2]) is present in the list L[l − 2], Encoder 2 computes k2[l] as the

index of this message pair in the list L[l − 2]. Otherwise, it sets k2[l] = 1. Encoder 2 then computes

U2[l] = U[l,k2[l]], B[l] = B[l,S2[l−1],X2[l−1]], and X2[l] = X2[l,W2[l],U2[l],B[l]]. It then sends X1[l] as the

channel input sequence.

• The MAC produces Y[l].

• After receiving Y[l], Encoder 1 wishes to decode W2[l− 1]. It uses (U1[l− 1],U1[l]) in place of (U2[l−
1],U2[l]) for this task. Encoder 1 attempts to find a unique index j[l− 1] such that the following pair of

tuples

(S1[l−1],X1[l−1],X2[(l−1),j[l−1],U1[l−1],B̂[l−1]]), (U1[l],A[l],X1[l],Y[l],B[l,S1[l−1],X2[l−1,j[l−1],U1[l−1],B̂[l−1]]]
),

are ǫ[l]-typical. If there exists no such index or if more than one such index is found, it sets j[l− 1] = 1.

If successful, it computes an estimate of B[l] using the following equation:

B̂[l] = B[l,S1[l−1],X2[l−1,j[l−1],U1[l−1],B̂[l−1]]]
.

It then computes S1[l] = (U1[l],A[l], B̂[l],Y[l]).

3We see that S1[1] = S2[1]. In future blocks, this will only hold with high probability.
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• After receiving Y[l], Encoder 2 wishes to decode W1[l− 1]. It uses (U2[l− 1],U2[l]) in place of (U1[l−
1],U1[l]) for this task. Encoder 2 attempts to find a unique index i[l− 1] such that the following pair of

tuples

(S2[l−1],X2[l−1],X1[(l−1),i[l−1],U2[l−1],Â[l−1]]), (U2[l],B[l],X2[l],Y[l],A[l,S2[l−1],X1[l−1,i[l−1],U2[l−1],Â[l−1]]]
),

are ǫ[l]-typical. If there exists no such index or if more than one such index is found, it sets i[l− 1] = 1.

If successful, it computes an estimate of A[l] using the following equation:

Â[l] = A[l,S2[l−1],X1[l−1,i[l−1],U2[l−1],Â[l−1]]]
.

It then computes S2[l] = (U2[l], Â[l],B[l],Y[l]).

• Both encoders then execute the decoding operation (described below) corresponding to block l. This

step results in a list of message pairs L[l − 1] of block l − 1.

5.4 Decoding Operation

Block 1:

• The decoder receives Y[1], and sets k[1] = 1,

Block 2:

• Upon receiving Y[2], the decoder sets k[2] = 1. It then sets Ā[1] = A[1], B̄[1] = B[1]. The decoder

computes S[1] = (U[1,k[1]], Ā[1], B̄[1],Y[1]).

• The decoder computes the following list of message pairs:

L[1] =
{

(i, j) : (S[1],X1[1,i,U[1,k[1]],Ā[1]],X2[1,j,U[1,k[1]],B̄[1]]) is ǫ[l]-typical and

(U[2,k[2]],Y[2],A[2,S[1],X1[1,i,U[1,k[1]],Ā[1]]]
B[2,S[1],X2[1,j,U[1,k[1]],B̄[1]]]

) is ǫ[l]-typical
}

Block l, l = 3, . . . , L:

• Upon receiving Y[l], the decoder determines the unique index k[l] ∈ {1, 2, . . . ,M0[l]} such that

(Y[l],U[l,k[l]],Y[l − 1],U[l−1,k[l−1]]) is ǫ[l]-typical. If no such index exists or more than one such index

exists, then the decoder declares error. If successful in the above operation, the decoder computes the

k[l]th pair in the list L[l − 2], and declares it as the reconstruction (Ŵ1[l− 2], Ŵ2[l− 2]) of the message

pair.

• The decoder computes an estimate of A[l − 1] using the equation

Ā[l − 1] = A[l−1,S[l−2],X1[l−2,Ŵ1[l−2],U[l−2,k[l−2]],Ā[l−2]]]
.

Similarly, the decoder computes an estimate of B[l− 1] using the equation

B̄[l − 1] = B[l−1,S[l−2],X2[l−2,Ŵ2[l−2],U[l−2,k[l−2]],B̄[l−2]]]
.
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The decoder then computes

S[l − 1] = (U[l−1,k[l−1]], Ā[l − 1], B̄[l − 1],Y[l − 1]).

• The decoder then computes the following list of message pairs:

L[l − 1] =
{

(i, j) : (S[l − 1],X1[l−1,i,U[l−1,k[l−1]],Ā[l−1]],X2[l−1,j,U[l−1,k[l−1]],B̄[l−1]]) is ǫ[l]-typical and

(U[l,k[l]],Y[l],A[l,S[l−1],X1[l−1,i,U[l−1,k[l−1]],Ā[l−1]]]
B[l,S[l−1],X2[l−1,j,U[l−1,k[l−1]],B̄[l−1]]]

) is ǫ[l]-typical
}

.

5.5 Error Analysis

For block l ∈ {1, 2, . . . , L}, if U1[l] = U2[l], then let U[l] = U1[l], otherwise, let U[l] be a fixed deterministic

sequence that does not depend on l.

Block 1

Let E[1]c be the event that (U[1],A[1],B[1],X1[1],X2[1],Y[1]) is ǫ[1]-typical with respect to PUABX1X2Y . By

Property 0, we have Pr[E[1]] ≤ ǫ for all sufficiently large N .

Block 2

Let E1[2] be the event that after receiving Y[2], Encoder 1 fails to decode W2[1]. Similarly let E2[2] be the

event that after receiving Y[2], Encoder 2 fails to decode W1[1]. Let E3[2] be the event that at the decoder

|L[1]| > 2N(I(U ;Y |ŨỸ )−2δ1(ǫ[2])), where δ1(·) is a continuous positive function that tends to 0 as its argument

tends to 0. δ1 is a function similar to that used in Property 2 of typical sequences. The error event E[2] in

Block 2 is given by E[2] = E1[2] ∪ E2[2] ∪ E3[2].

By Property 1, the conditional probability that the tuples (U[1],A[1],B[1],X1[1],X2[1],Y[1]) and (U[2],A[2],B[2],

X1[2],X2[2],Y[2]) are not ǫ[2]-typical with respect to PS̃,X̃1,X̃2,S,X1,X2
conditioned on the event E[1]c is smaller

than ǫ for all sufficiently large N . Using this and Property 2 of typical sequences, we have the following upper

bound on Pr[E1[2]|E[1]c]:

Pr[E1[2]|E[1]c] ≤ ǫ+

M2
∑

j=1

2Nδ1(ǫ[2])2NH(X̃2B|S̃X̃1UAX1Y )

2NH(X̃2|ŨB̃)2NH(B|S̃X̃2)

(a)
= ǫ+

M2
∑

j=1

2Nδ1(ǫ[2])2−NI(X̃2;Ỹ |ŨÃB̃X̃1)2−NI(X̃2B;Y |S̃X̃1UAX1)

(b)
= ǫ+

M2
∑

j=1

2Nδ1(ǫ[2])2−NI(X2;Y |UABX1)2−NI(X̃2B;Y |S̃X̃1UAX1)

(c)
= ǫ+

M2
∑

j=1

2Nδ1(ǫ[2])2−NI(X2;Y |UAX1X̃1S̃)

(d)

≤ 2ǫ,

(28)
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where (a) can be obtained using the chain rule of mutual information along with the Markov chain

S̃X̃1X̃2 → UAB → X1X2 → Y, (29)

(b) follows from the fact that (S̃, X̃1, X̃2) has the same distribution as (S,X1, X2), and (c) can be obtained as

follows using (29):

I(X2;Y |UABX1) + I(X̃2B;Y |S̃X̃1UAX1) = I(X2;Y |UABX1S̃X̃1X̃2) + I(X̃2B;Y |S̃X̃1UAX1)

= I(X2X̃2B;Y |S̃X̃1UAX1) = I(X2;Y |UAX1X̃1S̃).

(d) holds for all sufficiently large N if

1

N
logM2 < I(X2;Y |S̃X̃1UAX1)− 4δ1(ǫ[2]). (30)

Similarly Pr[E2[2]|E[1]c] ≤ 2ǫ for all sufficiently large N if

1

N
logM1 < I(X1;Y |S̃X̃2UBX2)− 4δ1(ǫ[2]). (31)

To bound Pr[E3[2]|E[1]c], start by defining Ψk,l = 1 if (k, l) ∈ L[1]. Then

E(|L[1]|) = EΨW1[1],W2[1] +
∑

i6=W1[1]

EΨi,W2[1] +
∑

j 6=W2[1]

EΨW1[1],j +
∑

i6=W1[1],j 6=W2[1]

EΨi,j (32)

Now, using Property 2 of typical sequences we have for j 6= W2[1],

EΨW1[1],j ≤
2Nδ1(ǫ[2])2NH(X̃2B|S̃X̃1UAY )

2NH(X̃2|ŨB̃)2NH(B|S̃X̃2)

(a)
= 2Nδ1(ǫ[2])2−NI(X̃2;Ỹ |ŨÃB̃X̃1)2−NI(B;Y |S̃X̃1UA)

(33)

where (a) is obtained by using the chain rule of mutual information and the Markov chain (29) as follows.

H(X̃2|Ũ B̃) +H(B|S̃X̃2)−H(X̃2B|S̃X̃1UAY ) = I(X̃2; ÃX̃1Ỹ UAY |Ũ B̃) + I(B; X̃1UAY |S̃X̃2)

= I(X̃2; Ỹ |Ũ ÃB̃X̃1) + I(X̃2;Y |S̃X̃1UA) + I(B;Y |S̃X̃1X̃2UA)

= I(X̃2; Ỹ |Ũ ÃB̃X̃1) + I(BX̃2;Y |S̃X̃1UA)

= I(X̃2; Ỹ |Ũ ÃB̃X̃1) + I(B;Y |S̃X̃1UA).

(34)

Using the fact that (S̃, X̃1, X̃2) has the same distribution as (S,X1, X2), (33) becomes

1

N
log





∑

j 6=W2[1]

EΨW1[1],j



 ≤ 1

N
logM2 − I(X2;Y |UABX1)− I(B;Y |S̃X̃1UA) + δ1(ǫ[2]). (35)
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Similarly

1

N
log





∑

i6=W1[1]

EΨi,W2[1]



 ≤ 1

N
logM1 − I(X1;Y |UABX2)− I(A;Y |S̃X̃2UB) + δ1(ǫ[2]). (36)

Using Property 2 of typical sequences, we have for i 6= W1[1] and j 6= W2[1],

EΨi,j ≤
2Nδ1(ǫ[2])2NH(X̃1X̃2AB|S̃UY )

2NH(X̃1|ŨÃ)2NH(X̃2|ŨB̃)2NH(A|S̃X̃1)2NH(B|S̃X̃2)

(a)
= 2Nδ1(ǫ[2])2−NI(X̃1X̃2;Ỹ |ŨÃB̃)2−NI(AB;Y |US̃)

(37)

where (a) is obtained by using the chain rule of mutual information and the Markov chain (29) following steps

similar to those in (33). Hence

1

N
log





∑

i6=W1 [1],j 6=W2[1]

EΨi,j



 ≤ 1

N
logM1 +

1

N
logM2 − I(X1X2;Y |UAB)− I(AB;Y |US̃) + δ1(ǫ[2]). (38)

Using (35),(36) and (38), (32) can be written as

E|L1| ≤ 1 +M12
−N(I(X1;Y |UABX2)+I(A;Y |S̃X̃2UB)−δ1(ǫ[2])) +M22

−N(I(X2;Y |UABX1)+I(B;Y |S̃X̃1UA)−δ1(ǫ[2]))

+M1M22
−N(I(X1X2;Y |UAB)+I(AB;Y |US̃)−δ1(ǫ[2])).

(39)

Using (39) in the Markov inequality, one can show that for all sufficiently large N ,

P
(

|L[1]| < 2N(A+2δ1(ǫ[2]))
)

> 1− ǫ

where

A ,max

{

1

N
logM1 +

1

N
logM2 − I(X1X2;Y |ABU)− I(AB;Y |US̃),

1

N
logM1 − I(X1;Y |X2ABU)− I(A;Y |UBS̃X̃2),

1

N
logM2 − I(X2;Y |X1ABU)− I(B;Y |UAS̃X̃1)

}

.

Hence Pr[E3[2]|E[1]c] < 2ǫ if

1

N
logM1 +

1

N
logM2 − I(X1X2;Y |ABU)− I(AB;Y |US̃) ≤ I(U ;Y |Ũ Ỹ )− 4δ1(ǫ[2]),

1

N
logM1 − I(X1;Y |X2ABU)− I(A;Y |UBS̃X̃2) ≤ I(U ;Y |Ũ Ỹ )− 4δ1(ǫ[2]),

1

N
logM2 − I(X2;Y |X1ABU)− I(B;Y |UAS̃X̃1) ≤ I(U ;Y |Ũ Ỹ )− 4δ1(ǫ[2]).

(40)

Hence Pr[E[2]|E[1]c] < 6ǫ if (30), (31) and (40) are satisfied.
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Block l : 3, . . . , L

Let E1[l] be the event that after receiving Y[l], Encoder 1 fails to decode W2[l− 1]. Similarly let E2[l] be the

event that after receiving Y[l], Encoder 2 fails to decode W1[l− 1]. Let E3[l] be the event that at the decoder

|L[l − 1]| > 2n(I(U ;Y |ŨỸ )−2δ1(ǫ[l])). Let E4[l] be the event that the decoder fails to correctly decode U[l]. The

error event E[l] in Block l is given by E[l] = E1[l] ∪ E2[l] ∪ E3[l] ∪ E4[l].

Using the arguments similar to those used in Block 2, it can be shown that Pr[Ei[l]|E[l − 1]c] < 2ǫ for

i = 1, 2, 3 for all sufficiently large N , if the conditions given by equations (30), (31) and (40) are satisfied with

ǫ[2] replaced by ǫ[l]. Moreover, using standard arguments one can also show that Pr[E4[l]|E[l − 1]c] < 2ǫ for

all sufficiently large N if

1

N
logM0[l] = I(U ; Ũ Ỹ Y )− 2δ1(ǫ[l]) = I(U ;Y |Ũ Ỹ )− 2δ1(ǫ[l]).

Hence Pr[E[l]|E[l − 1]c] < 8ǫ for all sufficiently large N .

Overall Decoding Error Probability

This implies that if (M1,M2) satisfies the following conditions:

1

N
logM2 ≤ I(X2;Y |S̃X̃1UAX1)− θ (41)

1

N
logM1 ≤ I(X1;Y |S̃X̃2UBX2)− θ (42)

1

N
logM1 +

1

N
logM2 ≤ I(X1X2;Y |ABU) + I(AB;Y |US̃) + I(U ;Y |Ũ Ỹ )− θ (43)

1

N
logM1 ≤ I(X1;Y |X2ABU) + I(A;Y |UBS̃X̃2) + I(U ;Y |Ũ Ỹ )− θ (44)

1

N
logM2 ≤ I(X2;Y |X1ABU) + I(B;Y |UAS̃X̃1) + I(U ;Y |Ỹ Ỹ )− θ (45)

where θ =
∑L

l=1 4δ1(ǫ[l]), we can make the probability of decoding error over L blocks satisfy

Pr[E] = Pr

[

L
⋃

l=1

E[l]

]

≤ 8Lǫ

by appropriately choosing M0[l] for l = 3, . . . , L. This implies that the following rate region is achievable.

R1 ≤ I(X1;Y |UABX2) + I(A;Y |UBS̃X̃2) + I(U ;Y |Ũ Ỹ )

R2 ≤ I(X2;Y |UABX1) + I(B;Y |UAS̃X̃1) + I(U ;Y |Ũ Ỹ )

R1 ≤ I(X1;Y |UBX2S̃X̃2)

R2 ≤ I(X2;Y |UAX1S̃X̃1)

R1 +R2 ≤ I(X1X2;Y |ABU) + I(AB;Y |US̃) + I(U ;Y |Ũ Ỹ ).

(46)
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Next we show that the above rate region is equivalent to that given in Theorem 1. Using the Markov chain

(29), we get

I(X1X2;Y |ABU) + I(AB;Y |US̃) = I(X1X2;Y |ABUS̃) + I(AB;Y |US̃)

= I(ABX1, X2;Y |US̃) = I(X1, X2;Y |US̃).
(47)

Moreover,

I(X1;Y |UABX2) + I(A;Y |UBS̃X̃2) = I(X1;Y |UABX2S̃X̃2) + I(A;Y |UBS̃X̃2)

= I(X1;Y X2|UABS̃X̃2) + I(A;Y |UBS̃X̃2)

= I(X1;Y X2|UABS̃X̃2) + I(A;Y X2|UBS̃X̃2)− I(A;X2|UBY S̃X̃2)

= I(AX1;Y X2|UBS̃X̃2)− I(A;X2|UBY S̃X̃2)

= I(AX1;Y |UBX2S̃X̃2)− I(A;X2|UBY S̃X̃2)

= I(X1;Y |UBX2S̃X̃2)− I(A;X2|UBY S̃X̃2).

(48)

Similarly,

I(X2;Y |UABX1) + I(B;Y |UAS̃X̃1) = I(X2;Y |UAX1S̃X̃1)− I(B;X1|UAY S̃X̃1). (49)

(47), (48) and (49) imply the desired result.

6 Extension of Coding Scheme

In the superposition coding scheme of Theorem 1, the codewords X1l and X2l in block l have three layers

each:

1. The first layer is the common random variable Ul indexing the message pair (W1(l−2),W2(l−2)).

2. The second layer is the pair of correlated random variables (Al,Bl) indexing the message pair (W1(l−1),W2(l−1)).

3. The final layer of the codewords X1l and X2l carries the fresh pair of messages (W1l,W2l).

Recall that encoders 1 and 2 decode W1(l−1) and W2(l−1), respectively, from Yl at the end of block l. They

then cooperate in block (l + 1) to resolve the residual uncertainty of the decoder about (W1(l−1),W2(l−1)).

The above coding scheme reduces the graph of independent messages in Figure 7(a) to an effective graph of

perfectly correlated messages of Figure 7(c) over two blocks, going through an intermediate step - the correlated

message graph of Figure 7(b). We can extend the coding scheme by thinning the fully-connected graph to

the perfectly correlated graph over three blocks, i.e., going through two intermediate steps with progressively

thinner graphs in each step. This yields a potentially larger rate region, as described below.

Let the rate pair (R1, R2) lie outside the region of Theorem 1. Consider the transmission of message pair

(W1l,W2l) through (X1l,X2l) in block l. The message pair is one of the edges on the graph of Figure 9(a).

• At the end of block l, the effective message graph of the decoder given Yb is shown in Figure 9(b).

This is a correlated message graph. For each sequence X1, choose one sequence A′, conditioned on the
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Figure 9: Decoder’s message graph for message pair (m1b,m2b): a) Before block b b) After receiving Yb c)
After receiving Yb+1 d)After receiving Yb+2
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information at encoder 1. Similarly, choose one sequence B′ for each X2, based on the information at

encoder 2. TheA′ andB′ sequences corresponding toX1l andX2l are set toA
′
l+1 andB′

l+1, respectively.

Note that A′ and B′ here are similar to A and B of the original coding scheme.

• At the end of block (l+ 1), both encoders and the decoder receive Yl+1. The degree of each left vertex

in the graph of Figure 9(b) is too large for encoder 2 to decode A′
l+1 from Yl+1. Similarly, encoder 1

cannot decode B′
l+1 from Yl+1. So we have the correlated message graph of Figure 9(c)- this graph is

a subgraph of the graph in Figure 9(b). An edge in graph 9(b) is present in graph 9(c) if and only if

the corresponding (A′
l+1,B

′
l+1) pair is jointly typical with Yl+1. At the end of block (l+1), though the

encoders do not know the edge (W1l,W2l) , observe that we have thinned the message graph. In other

words, the degree of each vertex in graph 9(c) is strictly smaller than its degree in graph 9(b).

• Each left vertex in graph 9(c) represents a pair (X1l,A
′
l+1). For each such pair, choose one sequence A

conditioned on the information at encoder 1 at the end of block (l + 1). Similarly, for each right vertex

(X2l,B
′
l+1), choose one sequence B at encoder 2. The A and B sequences corresponding to (X1l,A

′
l+1)

and (X2l,B
′
l+1) are set to Al+2 and Bl+2, respectively.

• At the end of block (l+2), the two encoders can decode Al+2 and Bl+2 from Yl+2 with high probability.

(The graph of Figure 9(c) should be sufficiently ‘thin’ to ensure this). They now know the edge (W1l,W2l),

and the message graph is as shown in Figure 9(d). The two encoders cooperate to send Ul+3 resolve the

decoder’s residual uncertainty.

Thus in this extended scheme, each message pair is decoded by the encoders with a delay of two blocks, and

by the decoder with delay of one block.

Stationarity: To obtain a single-letter rate region, we require a stationary distribution of sequences in each

block. In other words, we need the random sequences (U,A′,B′,A,B,X1,X2,Y) to be characterized by the

same single-letter product distribution in each block. This will happen if we can ensure that the A′,B′,A,B

sequences in each block have the same single-letter distribution PA′B′AB.

The correlation between (A′
l+1,Al+1) and (B′

l+1,Bl+1) is generated using the information available at

each encoder at the end of block l. At this time, both encoders know sl , (u, a,b,y)l. In addition, en-

coder 1 also knows (a′l,x1l) and hence we make it generate (A′,A)l+1 according to the product distribution

Qn

A′A|S̃Ã′X̃1
(.|sl, a′l,x1l). Recall that we use ˜ to denote the sequence of the previous block. Similarly, we make

encoder 2 generate generate (B′,B)l+1 according to the product distribution Qn

B′B|S̃B̃′X̃2
(.|sl,b′

l,x2l).

If the pair (QA′A|S̃Ã′X̃1
, QB′B|S̃B̃′X̃2

) satisfy the consistency condition defined below, the pair (A′,B′,A,B)l+1

belongs to the typical set T (PA′B′AB) with high probability. This ensures stationarity of the coding scheme.

We state the coding theorem below.

Definition 6.1. For a given MAC (X1,X2,Y, PY |X1,X2
) define P as the set of all distributions P on U ×A×

B × A′ × B′ ×X1 ×X2 × Y of the form

PUPA′B′ABPX1|UA′APX2|UB′BPY |X1X2
(50)

where U ,A′,A,B′,B are arbitrary finite sets. Consider two sets of random variables (U,A′, B′, A,B,X1, X2, Y )

and (Ũ , Ã′, B̃′, Ã, B̃, X̃1, X̃2, Ỹ ) each having the above distribution P . For conciseness, we refer to the collection
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(U,A,B, Y ) as S, and to (Ũ , Ã, B̃, Ỹ ) as S̃. Hence

PS,X1,X2 = PS̃,X̃1,X̃2
= P.

Define Q as the set of pairs of conditional distributions (QA′A|S̃,Ã′,X̃1
, QB′B|S̃,B̃′,X̃2

) of the form

QA′A|S̃,Ã′,X̃1
= QA|S̃,Ã′ ·QA′|A,X̃1,S̃,Ã′

QB′B|S̃,B̃′,X̃2
= QB|S̃,B̃′ ·QB′|B,X̃2,S̃,B̃′

that satisfy the following consistency condition ∀(a′, b′, a, b) ∈ A′ × B′ ×A× B.
∑

s̃,ã′,b̃′,x̃1,x̃2

PS̃,Ã′,B̃′,X̃1,X̃2
(s̃, ã′, b̃′, x̃1, x̃2)QA′A|S̃,Ã′,X̃1

(a′ a|s̃, ã′, x̃1)QB′B|S̃,B̃′,X̃2
(b′ b|s̃, b̃′, x̃2) = PA′B′AB(a

′, b′, a, b).

(51)

Then, for any (QA′A|S̃,Ã′,X̃1
, QB′B|S̃,B̃′,X̃2

) ∈ Q, the joint distribution of the two sets of random variables -

(S̃, Ã′, B̃′, X̃1, X̃2) and (S,A′, B′, X1, X2) - is given by

PS̃Ã′B̃′X̃1X̃2
QA′A|S̃,Ã′,X̃1

QB′B|S̃,B̃′,X̃2
PUX1X2Y |A′B′AB.

Theorem 2. For a MAC (X1,X2,Y, PY |X1,X2
), for any distribution P from P and a pair of conditional

distributions (QA′A|S̃,Ã′,X̃1
, QB′B|S̃,B̃′,X̃2

) from Q, the following rate-region is achievable.

R1 < I(X1;Y |X2B
′BS̃U),

R1 < I(X1;Y |X2A
′B′ABS̃U) + I(A′;Y |B′ABS̃U) + I(A;Y |BS̃U) + I(U ;Y ),

R2 < I(X2;Y |X1A
′AS̃U),

R2 < I(X2;Y |X1A
′B′ABS̃U) + I(B′;Y |A′ABS̃U) + I(B;Y |AS̃U) + I(U ;Y ),

R1 +R2 < I(X1X2;Y |US̃) + I(U ;Y ).

(52)

The proof essentially consists of: a) Computing the left and right degrees of the message graph at each

stage in Figure 9, b) ensuring both encoders can decode (A,B) (the edge from the graph 9(c)) in each block

b, and c) ensuring that the decoder can decode U in each block.

We omit the formal proof since it is an extended version of the arguments in Section 5.

7 Conclusion

We proposed a new single-letter achievable rate region for the two-user discrete memoryless MAC with noiseless

feedback. This rate region is achieved through a block-Markov superposition coding scheme, based on the

observation that the messages of the two users are correlated given the feedback. We can represent the

messages of the two users as left and right vertices of a bipartite graph. Before transmission, the graph is fully

connected, i.e., the messages are independent. The idea is to use the feedback to thin the graph gradually,

until it reduces to a set of disjoint edges. At this point, each encoder knows the message of the other, and

they can cooperate to resolve the decoder’s residual uncertainty. It is not clear if this idea can be applied to a

MAC with partial/noisy feedback - the difficulty lies in identifying common information between the encoders
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to summarize at the end of each block. However, this method of exploiting correlated information could be

useful in other multi-terminal communication problems.
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APPENDIX

A Computing the symmetric sum rate

The random variables U,A,B,X1, X2 are all chosen to have binary alphabet. The stationary input distribution

has the form PU · PAB · PX1|AU · PX2|BU and is defined as follows.

PU (0) = p0, PU (1) = p1 = 1− p0, (53)

PAB(1, 1) = y, PAB(0, 1) = PAB(0, 1) = x, PAB(0, 0) = 1− 2x− y, (54)

PX1|UA(1|u, 0) = PX1|UB(1|u, 0) = pu0, PX1|UA(1|u, 1) = PX2|UB(1|u, 1) = pu1, u ∈ {0, 1}. (55)

Recall that S̃ = (Ũ , Ã, B̃, Ỹ ). The distributions QA|X̃1S̃
and QB|X̃1S̃

, which generate A and B using the

feedback information, are defined as follows.

QA|X̃1S̃
: A =

{

1 if X̃1 6= Ỹ

0 if X̃1 = Ỹ
(56)

QB|X̃2S̃
: B =

{

1 if X̃2 6= Ỹ

0 if X̃2 = Ỹ
(57)

For (56) and (57) to generate a joint distribution PAB as in (54), the consistency condition given by (2)

needs to be satisfied. Thus we need

PAB(1, 1) = y = P (X̃1 = 1, X̃2 = 1, Ỹ = 0), (58)

PAB(0, 1) = x = P (X̃1 = 0, X̃2 = 1, Ỹ = 0) + P (X̃1 = 1, X̃2 = 0, Ỹ = 1), (59)

PAB(1, 0) = x = P (X̃1 = 1, X̃2 = 0, Ỹ = 1) + P (X̃1 = 0, X̃2 = 1, Ỹ = 0). (60)

We can expand (58) as

y = P (X̃1 = 1, X̃2 = 1)(1− q) =
∑

u

pu (yp
2
u1 + 2xpu0pu1 + (1− 2x− y)p2u0) (1− q). (61)

As q → 0, the above condition becomes

y =
∑

u

pu(yp
2
u1 + 2xpu0pu1 + (1 − 2x− y)p2u0). (62)

Similarly, as q → 0, (59) and (60) become

x =
∑

u

pu(y(1− pu1)pu1 + x(1− pu1)pu0 + x(1− pu0)pu1 + (1− 2x− y)(1 − pu0)pu0). (63)

(63) and (62) can be written in matrix form as

[

1−∑u pu(pu1 − pu0)(1− 2pu0)
∑

u pu[pu0(1− pu0)− pu1(1 − pu1)]

2
∑

u pupu0(pu0 − pu1) 1−∑u pu(p
2
u1 − p2u0)

][

x

y

]

=

[

∑

u pupu0(1− pu0)
∑

u pu p2u0.

]

(64)
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(64) uniquely determines x and y given the values of pu, pu0 and pu1 for u ∈ {0, 1}. Therefore the joint

distribution is completely determined.

A.1 The information quantities

We calculate the information quantities in nats below. We use the notation h(.) to denote the binary entropy

function:

h(x) = −x lnx− (1− x) ln(1 − x), 0 ≤ x ≤ 1. (65)

H(Y ) = h(2q(x+ y)),

H(Y |U) =

1
∑

u=0

pu · h(2q((x+ y)pu1 + (1− x− y)pu0)),

H(Y |X1X2) = 2xh(q) + yh(2q),

H(Y |ABU) =

1
∑

u=0

pu[2xh(q(pu1 + pu0)) + yh(2qpu1) + (1− 2x− y)h(2qpu0)],

H(Y |X2ABU) = x
∑

u

pu[(1− p0u)h(qp1u) + p0uh(q(1 + p1u)) + (1− p1u)h(qp0u) + p1uh(q(1 + p0u))]

+ y
∑

u

pu[(1− p1u)h(qp1u) + p1uh(q(1 + p1u))] + (1− 2x− y)
∑

pu

[(1− p0u)h(qp0u) + p0uh(q(1 + p0u))],

H(Y |Ỹ U) = H(Y |U) + o(q),

H(Y |UBỸ X̃2) =
∑

u

pu

[

(x+ y)h

(

q (pu1 +
xpu0 + ypu1

x+ y
)

)

+ (1 − x− y)h

(

q (pu0 +
(1− 2x− y)pu0 + xpu1

1− x− y
)

)]

+ o(q),

H(Y |UBX2Ỹ X̃2) =
∑

u

pu(x+ y)

(

pu1h

(

q (1 +
xpu0 + ypu1

x+ y
)

)

+ (1− pu1)h

(

q
xpu0 + ypu1

x+ y

))

+
∑

u

pu(1 − x− y)

(

pu0h

(

q (1 +
(1 − 2x− y)pu0 + xpu1

1− x− y
)

)

+ (1 − pu0)h

(

q
(1 − 2x− y)pu0 + xpu1

1− x− y

))

+ o(q).

In the above, o(q) is any function such that o(q)
q

→ 0 as q → 0. Using this in the rate constraints of (46), we

can obtain the bounds for R1 and R1+R2 Due to the symmetry of the input distribution, the bound for R2 is

the same as that for R1 above. Optimizing over pu, pu0, pu1 for u ∈ {0, 1}, we obtain an achievable symmetric

sum rate of

R1 +R2 = 0.5132q+ o(q) nats (66)

for

P (U = 0) = p0 = 0.0024, P (U = 1) = 1− p0 = 0.9976, (67)

PX1|UA(1|0, 0) = p00 = 0.791, (68)

PX1|UA(1|1, 0) = p10 = ǫ, where ǫ is a constant very close to 0, (69)

PX1|UA(1|0, 1) = p01 = 0.861, (70)

PX1|UA(1|1, 1) = p11 = 0.996. (71)

33


	1 Introduction
	2 Preliminaries and Main Result
	3 The Coding Scheme
	3.1 The Cover-Leung Scheme
	3.2 Proposed Coding scheme
	3.2.1 Stationarity of the coding scheme


	4 Comparisons
	4.1 Additive White Gaussian MAC
	4.1.1 Evaluating the rates

	4.2 Comparison with Kramer's Generalization of the Cover-Leung Region
	4.3 Comparison with Bross-Lapidoth Region

	5 Proof of Theorem ??
	5.1 Preliminaries
	5.2 Random Codebook generation
	5.3 Encoding Operation
	5.4 Decoding Operation
	5.5 Error Analysis

	6 Extension of Coding Scheme
	7 Conclusion
	A Computing the symmetric sum rate
	A.1 The information quantities


