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Abstract—Decoding sparse quantum codes can be accom-classical channels, such as sparse codes, can easily begohpo

plished by syndromg-bg;ed depoding using a bellief propadgeh gs guantum error-correcting codésl[13][.1[14].
(BP) algorithm. We significantly improve this decoding schene by Our aim is to improve belief propagation (BP) decoding

developing a new feedback adjustment strategy for the staratd L . .
BP algorithm. In our feedback procedure, we exploit much of methods so that quantum coding is dramatically improved ove

the information from stabilizers, not just the syndrome but also  €Xisting techniques. Specifically our numerical resulte-pr
the values of the frustrated checks on individual qubits of he sented here show that an improved BP method whose heuris-
code and the channel model. Furthermore we show that our tical feedback strategies based on exploiting all acckssib
decoding algorithm is superior to belief propagation algofthms o rmation from stabilizer measurements, yield a dracay

using only the syndrome in the feedback procedure for all cass . .
of the depolarizing channel. Our algorithm does not increas the improved block error rate (BER) for any depolarizing chdnne

measurement overhead compared to the previous method, asgh Our methods should work for any Pauli noise channel.

extra information comes for free from the requisite stabilizer For n qubits, a Pauli channel is defined by the mapping
measurements. ” .
> =
Index Terms—Sparse quantum codes, quantum error correc- B(C )Bp w Z PEPE, pe =0, Z pe=1 (1)

tion, quantum channels, belief propagation, stabilizers. E€Gn

with G, the n-fold tensor product of single-qubit Pauli opera-
torsX € {l, X, Z, Y = XZ}. Our interest is focused on memory-
less channels wherein the error on each qubit is independent
C OMMUNICATION is limited by noise in channels, of the error on any other qubit. In particular we consider the
but error correction methods carfieiently ofset this depolarizing channel, which is the most-studied case [I9)], [
restriction in both classical [1],.[2] and quantuml [3].] [41y11], [13], [27]: for fixed channel error probability, the error

[5], [6], [7] cases. At a simple level, multiple copies of theyn qupitq is given by
information can be transmitted, and a majority rule can be

applied to discern the correct code, but such coding is eeith 8(C%) 3 pq = Pipg + (L= pi) (XoaX + YpaY + ZpeZ) /3 (2)
practical nor icient. Sparse graph coding, such as Gallage(,’ﬁth b
low-density parity-check (LDPC) codesffers an éicient In quantum settings, due to the inability to measure each

alternative tha}t approaches tjh_e Shagndon m(;‘prmatlon [t and every qubit, syndrome-based decoding is typically ehos
[2]. Fortunately quantum coding and decoding strategies c,nsequently, decoders using Pauli channels are generally
be constructed from their classical counterparts, but o considered to be hard-decision decoders. In other words, in

nately this mgpping from classigal to quantum coding ngrhaantum decoding, the conventional soft-decision teakesq
be_problematlc _due to t_h? requwement that quantum co not applicable when the channel is in the Pauli channel
satisfy the duality-containing condition|[8].1[9]. Moreen ,4e| Generally, sparse quantum codes are decoded by using
due to increased challenges posed by these quantum codgsy,ome-hased BP decoding algorithms which automaticall
performance m_provement requires further progress in tnﬁply hard-decision decoding. Though there is an equivaden
proposed decoding algor!thrﬂlomll]. . , between syndrome-based decoding and a posteriori prebabil
The entanglement—gsssted (EA) stabilizer formalism adq§ decoding (signal-based decoding) under this settihg, t
_error—free entangled bits asa cons_umable resource faomef syndrome-based decoding results in a serious drawback to BP
ing quantum error correction. This EA approach_overcoma coder: the symmetric degeneracy erfor [10]. Fortunately
the duality-containing requirement and thu$eos a rich Iode. Poulin and Chung (PCO8) [10] propose a solution to the

of quantum error correction protocols inspired by claslsmgymmetric degeneracy error by using the random pertunbatio
protocols [12]. Using the EA approach, modern codes fof 4

|. INTRODUCTION

= 1- p denoting the probability of no error occurring.
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The diference between PCO08 and our approach is thatFor a linear block CECC, the code space can be viewed as
in PCO8, they feed back only the syndrome of the decodiie orthogonal projection space (solution space) of itckhe
output to adjust prior error probability distributions foe- matrix. The sender Alice transmits her message as a codeword
ceived qubits. These adjusted distributions are then fett bahat is encoded according to a specific check (or generator)
into the decoder. We significantly improve this protocol bynatrix through the channel. When receiver Bob obtains the
feeding back not just the syndrome but also the values dfannel output, the received vector may not be the solution
the frustrated checks on individual qubits of the code ard thector of the check matrix. Therefore Bob needs to apply
channel model; accordingly we introduce a new adjustmeatsmart algorithm to recover the codeworfli@ently. As
strategy. Specifically, our approach, which is based noy orthe check matrix is sparse, Bob employs the BP algorithm.
on syndromes but also on frustrated checks obtained from fEIrst, Bob measures each bit to obtain its posterior prdipabi
stabilizer measurements and the channel model, yieldser bedistribution. Subsequently, he puts these probabilitiés the
BER for the case of depolarizing quantum channels. BP decoder, and, based on the constraint that the codeword

We provide a detailed description of our basic BP decodshould be the orthogonal vector of the check matrix, he &fer
for decoding sparse quantum codes. The basic BP decotter original message. This procedure extends naturally to
introduced here is inspired by the strategy used for degpdisparse quantum codes.
sparse classical quaternary codes under the BP algorithmin the quantum case, the stabilizer formalism for a quantum
Using this strategy, we can decode sparse quantum codewr-correcting code (QECC) is useful. The code spacemwith
directly regardless of whether they arise from classicablyji C?" corresponds to the simultaneoud eigenspace of alin
codes or not and regardless of whether they are Calderbag&nerators of an abelian subgrolp [5]

Shor-Steane (CSS) construction [4],]19] codes or not.
S=1{Su...,Sml C Gn. 3)

II. BP ITeraTivE DECODING Alice transmits her message as a codeword, which propagates

In this section, we briefly reprise the essential elemeritsrough the depolarizing quantum channel. Due to channel
of BP iterative decoding for sparse quantum codes. In Subrrors, the received codeword may not be the simultaneous
sec.[T-A we discuss the key idea of standard BP iterativel eigenspace of. Bob measureS to obtain the syndrorﬂe
algorithms. Then we compare decoding of classical codes= (si,...,Sn) € {—1,1} and then estimates which err&
vs quantum codes, and introduce the standard BP decodirgm Eq. [1) has occurred based on the noise model and
for quantum codes. Finally in Subs€cTI-B we show how tthe syndrome, which isfiectively a check constraint. Bob
decode sparse quantum code$5iR(4) based on the standardredresses the error by applying the same error operation he
BP algorithm. inferred onto his received codeword to try to recover the
guantum code. For Pauli channels all errors mfeld tensor
products of single-qubit Pauli operators hence square éo th

A. BP decoding algorithm for sparse quantum codes ! X s
identity; thus re-applying the same error should restoee th

Consider ak-bit message that is encoded into arbit

d 4 which is then t tted th h ) h O[iginal codeword.
codeword, which 1S then transmitted through a noisy channel p, o 4, e close analogy between CECCs and QECCs as
The received message is an error-prone vector over the tout

#idcussed above, it is tempting to extend the BP iterative
alphabet, and there is no guarantee that decoding will revgé N ve, 1t ping X ! v

o oding algorithm to quantum settings. In fact a QECC can
the original codeword. However, the codeword can be guess
with a high probability of being correct by maximizing th zﬁé; be represented by a decorated Tanner giagh [17], [18].

eTherefore, it is natural to transmit the messages ftgnto {v}

probability for this codeword based on the observed outp'%d the messages from the to (¢} according to the principles

vector [20]. Unfortunately for a linear block code, encaglin .
information bits inton bits allows  possiblen-bit codewords, of BP algorithms[1], [1B].

and calculating conditional probabilities for individuabde- Here we first briefly review the BP algorithm used for

; U ) decoding sparse quantum codes| [10] but begin with necessary
words is too expensive in practice. . o ! .
terminology. The probability of Pauli errdgq occurring on

BP algorithms overcome this iffeciency for sparse o . o
: . s : qubit g is pg(Eg). The neighborhood of qubi is denoted
codes|[1]. The strategy is to represent a linear-block idaks by n(g), and we definen(c) similarly as the set of qubits

error-correcting code (CECC) by a Tanner gr.aph compr.isin nected to checlS.. The tensor product of Pauli errors
message nodes and check nodes corresponding respeal)|vea(/{e1r n(c) is denotede.. Then, following PC08'’s notation, for

received bits and check constraints. Then an iterativerittgo ; ’_ n_ ;o
recovers the values of received bits as follofvs| [20]] [214. AEWO 1-qubit casef-E' = 1 means, E] =0 andE-E’ = -1

each round, probabilities are passed from message rgdes rge_alr;s{;,EE ; : -C; EF O;:]V(;ICI)E?_FLSI;PE%U(; .c')F);rgor\zeSlrj]caCeas
check nodegc} and then fronic} back to{v}. The probabilites —~  *° 2 n B i n
from {v} to {c} are computed based on the observed value ) n )
of the message node and other probabilities passed from the E-E = 1_[ Ex- B (4)
neighboring check nodes to the respective message node. It k=1
turns out that, for decoding sparse codes, the BP algorithm

. . If [Sc,E] =0, sc =1 or elses; = -1, wherec = 1,--- ,mand S; can
can prowde a reasonable tradg-between compIeX|ty and be viewed as a check node in the Tanner graph of a QECC witlliztals
performance. from Eq. [3).
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The messages from check nodes to qubit nodes are denoted ADDIIQ,?';E;;F@)
MogEq) o > (dssce || Mec(Ba)), () o 1 o 2
Ey ren(c)\ —
qenNa e o
L . 111 0 w w
which is defined only up to a constant factor. The factor can be wle & 0o 1
fixed by normalization[[10]. The messages from qubit nodes gla o 1 o
to check nodes are similarly denoted as
TABLE I
mq—»c(Eq) & pq(EQ) I_l I’T’k;/_,q(Eq), (6) MULTIPLICATION OF GF(4)
cen(g)\c
where py(Eg) is the initial probability in the definition of the x|0 1 o o
memoryless channel. Then the beligf§E,) are constructed cjo 0 0 0
by first initializing my_c(Eq) = pqe(Eq), then evaluating ac- 1101 v w
cording to @ 8 @ ‘i’ 1
by(Eq) = Pq(Ea) ]_[ Meq(Eq)s ) ¢ ¢ ¢
cen(q)

after the iteration procedure based on EG5. () Bhd (6).d fa,, transforming the check criteriofil (5) from commutativiby
Egs. (5) and[{6) define a sum-product iterative procedure 05 . inner product.

decoding sparse quantum codes. Hence this algorithm is alsgor example, suppose = 1. Then the check criterion for

called the sum-product algorithm (SPA), which is one of thgic ~heck node should I8 - Ec = 1, which is equivalent to

most important algorithms based on BP. _ [Se. E¢] = 0. According to isomorphisni{10), Tré, -vs,) = O,
In order to clarify the BP decoding algorithm for sparsg . implies that eithet, - vs, = 0 or Ug, - Vs, = 1 because

guantum codes, we now show how to implement Hds. (5) alﬂj(o) = 0 and Tr(1)= 0. We definepq[] as the probability

®) in GF(4). for Ifq X S, to take the value, with S, the q" entry of S/
and p[x] the probability of ug, - vs, = 0 (excluding theg"
B. Decoding sparse quantum codes in GF(4) entry) to take the value. As g € n(c),

There is a convenient isomorphism between the Pauli group
G; generated byl, X, Z, Y = XZ} and the Galois Fiel&F(4)
generated by0, 1, w,w = w?}. The isomorphism is explainedThys
by the element identification

Se, €{XZY} = S e{lwwlxe{0lww), (12)

Pql0] = (p[O] + p[1]) /2 = pq[1], (13)
Polw] = (plw] + plw]) /2 = polw]. (14)
Similarly, if && = -1, then{S¢, Ec} = 0, which implies

that eitherug, - vs, = w or ug, - vs, = w because Tip) = 1
and Tr) = 1. According to Tablgll,

o0, Xel ,Zow Yo ow) (8)

and the operation identificatiomultiplication—addition and
commutativity—trace inner product [5]. For the one-qubit
case, we have,

P,QeG; o P,Qc GF4)

. = .= 0] = 2 =gl 15
[P.Ql=0&Tr(BxG) =0, (POl =0 T(PxO) =1 Pa[0] = (Plw] + Plw]) /2 = pol1], (15)
©) Plw] = (P[0] + P[1]) /2 = pala]. (16)
The isomorphism is readily extended to thubit case: With this knowledge, the message_.q can be computed by:
P.Qe Gn & up,vg € GF(4), . A
) Meq(Eq) = Pg[Eq X Sc,l- 17)

[PQ =0 Tr(up-vg) =0, {(P,Q} =0 Tr(up-vg) = 1.
(10)  Given meq(Eq), Me—c(Eq) can then be derived directly by
where * used here (between two vectors) is a regulatbstituting Eq.[(TI7) into EqLL6).
inner product. That is, fou = (U, Up,---,Uy) and v = Decoding based oGF(4) afords the advantage that sparse
(Vi Vo, -+ V), We have e quantum codes can be decoded without losing correlations be
e o tween errors that would otherwise impact the coding scheme’
a = _ 11 performance. In particular sparse quantum codes can be de-
u-ve= Z Uy X V1. (11) coded directly regardless of whether they arise from a idakss
k=1 .
N o ~ binary codes or not and regardless of whether they follow a
The addition and multiplication rules @F(4) are shown in  css construction code or not. For comparison, we henceforth

Tables] andl, respectively. _ refer to the decoder based on this BP decoding algorithm as
We can import the strategy used for decoding sparse Cl@ga ‘standard BP decoder’.

sical quaternary codes under BP to use for decoding sparse
quantum codes. This adaptation to quantum codes is achieveédor E; andS, the mapped elements & andS, in GF(4), see Eq[I9).
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I1l. ENHANCED FEEDBACK BP ITERATIVE DECODING FOR SPARSE For example, ifScq = X, we obtain
QUANTUM CODES

Po(l) = (1 - p1)/2 = py(X), Pa(2) = Pi/2= pa(Y).  (19)
In 2008 PCO08 proposed a random perturbation strategiaad —1andS. E..= -1 Th t
based on the syndrome of the BP decoder oftisubvercome cad SUPPOS&, = = andSe - Eou - nenwefrese
the symmetric degeneracy problem. The random perturbationpg(l) = pi/2 = pg(Z1), Pg(X2) = (1 - 1)/2 = pg(X3). (20)
method is simple and flcient but unfortunately overlooksJn this case. ifS. = X. we obtain
many errors. As pointed out in PCO08, all errors in their U B
simulations could be attributed to the decoder rather than t  pq(1) = p/2 = pg(X), pq(Z) = (1 — p1)/2 = pa(Y).  (21)
the finite minimal distance of the code. followi imil PCOg: toed back

We observe the same problems as PC08 do when usiﬂé\‘ext oflowing a similar strategy to S, we feed bac

the random perturbation method. In particular, most eriors ' adjustment to the standard BP decoder and let it iterate

the simulations areletected errors, not the undetected error \.Nith this modified probability distribution folper. (a pre-

This result suggests that feeding back useful information getermined fixed number of the reiteration) steps. If BPshalt

the standard BP decode could help. The feedback would h%‘f.bring this period (i.es(Eow) corresponds to the syndrorsk
the

the BP decoder determine a valid outjdt, whose syndrome pro_cedgre is complete and terminates. S
S(Eou) is identical with the observed syndronseThen Eou . If cis still frustrated, we restore the probability distribu-
will equal E with high probability, forE the error occurring t'og.tpq,(E“) ;nd Ch?oé,e S ffe:jent Ctiﬁb't connetctetd tqtﬁa%/h
on the transmitted quantum state during transmission. GyPrta’, an resepy(Eq) ased on the same strategy that has
this section, we present our enhanced feedback BP iterat@;reeady be?” used fc_)r rgsettnp)g(Eq). !f .SC is not frustrated,
decoding algorithm, which provides useful information e t ut the halting condition is not yet satisfied, we choose lagrot

BP decoder based on exploiting not only the syndrome bfrltlstrated checls, and adjust the probability distribution of

also the stabilizer itself and the channel model in the faekb t%e error occurring on one of its qubits as we do for a frustrat

procedure. checksSe.

Then suppose that, subsequent to the standard BP decodinNOW suppose that the decode_r still cannot yield a valid

rocedure,s(Eqy) is not identical with the observed s n_ouﬂ)ut after trying a pre-determined numbey feedback
b \ouv Y adjustments for qubits according to the procedures mesdion
dromes. Then evm_iently at least one entry Bb, occurring above. In other words, suppose that, after traveraingntries
on one of the qubits connected to chéﬂ(ha_s an error, fo_r_ associated with frustrated checks, no valid result is yieldy
Sc a frustrated check. If we can reset the initial probabllltyhe decoder. In this case. we allow the decoder to terminate
distributions for errors occurring on the qubits connedied _, . ) ' : ; L

. . . : . this procedure and report a failure. Without the termimatio

Scina more .re"f"‘b"? way, but .not simply by adopting the prlo%ondition the decoder is wasting time traversing all estri
probability distributions obtained from the channel modeassociated with frustrated checks and thereby introducing

more useful information could be provided to the BP decoder, .
unwanted redundancy into the procedure.

Furthermore symmetric degeneracy could also be overcome aEqs [TB) and[T20) are justified for the following reason

well. Thus it is reasonable to expect that BP decoding gb”ikmpirically the decoder is naturally too biased towards th

will be significantly improved. '?entityl [10] due to the prior probability distribution obtained

. . . . i
Our new feedback BP iterative decoder is devised as f? om the channel model. This biased probability distribati

lows. First the standard BP decoder is used to identify the il lead to S. - E . = 1 while s = —1. Heuristically, we
. C out — - . ’

ror E ba§ed on the observed syndrome and the prior prObab'lnlg'setpq(Eq) to make it anti-commute witls., with a greater
distributions of each entry d&. When the standard BP decode robability, since at least one entry Bfanti-commutes with

fails (S(Eou) # ), we randomly choose a frustrated chec ts corresponding entry i8.. The channel is depolarizing that

say S¢. There are only two results for this frustrated checlf'S Pauli errorsX. Z. Y occur with equal probability. so. in
s =-1andS.-Eqi=1o0relses =1 andS; - Eoyt = —1. ) q P Y, 80,

. ; Eq. (I8), we letZ, and 3 share the probability afl
Either way we choose a random qubit that connectS:tdor When's, = 1, settingEq to | is conducive to obtain-

e?asmpliqubiq, and t::.eﬂ res:_pq(Eq) accor((jjingréo thedvarllue ing S¢ - Eoit = 1. Another Pauli operator could also be
of Se, (the entry to which qubig corresponds irSc) and the conducive to makind. - Eqyt = 1 but is ignored by the prior

channel model as follows. - probability distribution. We can readily ascertain thisulPa
Let 2123 € (X, Z,Y = XZ} be three distinct elements. SUPgperator according to the entries®§. According to Eq.[2D),
poseSc, = X1, and the channel is the depolarizing channgle |et this Pauli operatorsf) share the same probability
with crossover probabilityp = 1 - p;, for p, established in i | and haveZ, and =5 share the small probability 4 p,
Eq. (2). Then, ifs; = -1 andS. - Equt = 1, we reset equally.
_ 3 _ 3 Our strategy retains PC08'’s capability of breaking the sym-
Po(1) = (1= P1)/2 = Pg(Za). Pa(Z2) = Pi/2= Pa(Za).  (18) 1 apyic degeneracy while feeding back more useful inforomati
N _ _ to the BP decoder than PC08 in order to help the decoder
°In addition to the random perturbation technique, PC08 glsiposed - jatarmine a valid output. More useful information comesrfro
freezing and collision techniques. However, their simata and our own L . o . .
simulations indicate that the random perturbation teammidias the best retaining full information about the entire stabilizer hat

performance of the three approaches. Therefore, we adepatidom pertur-
bation technique as the comparator. “Because (L p) < pi, we letl andx; share (& p;) equally for simplicity.
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than just a syndrome. Specifically, our feedback adjustme A o (B)
strategy is not solely based on the syndrome but also on 1

channel model and on the individual values of the entries os
the frustrated checks (the checks are just the generatding of
stabilizer).

IV. A Case Srupy

In this section we illustrate our enhanced feedback itezati
decoding algorithm to show how it succeeds in helping tr o?

4 8 12 16 20 0 4 8 12 16 20

BP decoder find a valid output. Forn[k; c]] denoting an Number of iterations, n Number of iterations, n
EA QECC that encodek qubits into n qubits with the ©) (D)
help of ¢ ancillary ebits [[I2], we construct a simple EA ** 1'03/,9\5/9\6\8
QECC for [[4 1;1]] as follows. According to the EA QECC s 08 :
formalism, we start with a classical,[2] quaternary code with
check matrix £06 208
H =(1 w 1 0) (22) 8o &
¢ 1 1 0 1) ' '
First we transformH. to 02 02
1 w 1 0 0‘0 4 8 12 16 2( 0‘0 4 lf\ 12 16 4422?)
HY = Hc {1 1 0 1 23) Number of iterations, n Number of iterations, n
C\wHe ) | w o w 0F ( Fig. 1. Beliefs as a function of number of iteratiom$or an EA QECC with
w w 0 w stabilizer generatorXZXIX, XXIXZ, YZZXI andZXXY| and with syndrome

(-1,+1,+1,+1) using the standard BP decoding algorithm. The ppig(Eq)

then transforrrHé to a set of (perhaps non-(;ommuting) genof the four sent qubits are obtaineq from the erolarizingndel with p =
erators 0.1. (A), (B), (C) and O) show the beliefs for qublts 1, 2, 3 and 4, respectively.
X Z X | Qubit 5 is assumed to be held by the receiver and thus to befezm The
symbolso, A, O andV indicate the beliefs fot, X, Z andY, respectively.
Hq — X X I X (24) In this case, the output of the standard BP decodd,ig = IYII, which is
Z Y Z | | a detected error.
Z | Z

z

Next we transformHg into a canonical formHg by mul-  ancilla bits via a unitary transformation [12]. As the haff o
tiplying the third generator by the second generator anmlde entangled pair being held by the receiver is assumed to
by multiplying the fourth generator by the first and seconide error-free, the error-correcting capacity of,[[41]] only
generator. Thus, we obtain depends on the left part cbiq, which corresponds to the four
X | transmitted qubits held by the sender.
| X _Sl_Jppose the qubits of [[4;1]] are sent t_hrough a depo-
7z x| (25) larizing channel and erroE = 11ZX is applied to the four
X Y transmitted qubits. Measurement of the stabilizer revieads
o . . error syndromes = (-1, +1, +1, +1). In Fig.[d, we display the
Now, it is easy to check that the first generator anti-comBUtgerformance of the standard BP decoder under this setting.
with the second generator, and the last two generators cofilom Fig[], it is easy to check that the syndrome of the output
mute with each other as well as commuting with the firgl ihe standard BP decoder is1 -1, -1, —1) We now use
two generators. According to the EA QECC formalism, thighe standard BP decoder with PC08's random perturbation.
coding scheme needs one ebit to assist encoding. The edten8gmparing between the error syndrome: (=1, +1, +1, +1)

X
A X
z

X N X N

commuting set of generators {bi,} for and the syndrome of the output of the standard BP decoder
X Z X 11X (-1,-1,-1,-1), the probability distributions of the errors
~ X X | X|z occurring on the qubits connected to the second, third atliou
Hq = Y 7z 7z X!|1 I (26)  checks can be reset. For all these cases, the decoder cauld no
Z X X Y|I

yield an appropriate recovery. Here as an example, we use
PCO08’s random perturbation strategy for the frustratectkhe
S, and show the corresponding performance in Elg. 2.
Finally, we use our enhanced feedback BP decoding algo-
rithm. By the same method, our feedback strategy can reset th
probability distributions of the errors occurring on thebgs
connected to the second, third or the fourth checks. When the
decoder chooses the fourth enti) ©f the frustrated chec&,

which is just the stabilizer of [[4; 1]].
It is easy to check thatl, is isomorphic to

: (27)

Wh'Ch me‘?ms \_Ne can encode one Ioglcal qu!t Into four5It is not surprising that the standard BP decoder has failedatise
physical bits with the help of one entangled pair plus twm,1;1]] is designed to correct one error but not two errors.
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4 8 12 16 2( 0 4 8 12 16 20
Number of iterations, n Number of iterations, n
() (D)
1.0 1.0
[P/‘E'—E/Q\s\i
0.8 0.8
© 0.6 906
ko) ) ©
© 7]
mo4 M 0.4
v
0.2 0.2
S e
0 S 2 i S
0 4 8 12 16 2C 0 4 8 12 16 20

Number of iterations, n Number of iterations, n

Fig. 2. Same as for Fid] 1 but using the standard BP decoduyitdm
replaced by PC08 and applying random perturbation strefigthl to the
prior for qubits 1, 2 and 4.

Q) (B)

34 8 12 16 2( 0
Number of iterations, n
©

1.0 1.0

3 4 8 12 16 20
Number of iterations, n

(D)

Y Y
34 8 12 16 20

Number of iterations, n

0
0 34 8 12 16 2( 0
Number of iterations, n

Fig. 3. Same as for Fiff] 2 but using our enhanced feedbagkivtedecoding

syndromes = (-1, +1,+1, +1) asl1ZX, our decoding output
[1ZX can still recover the transmitted quantum state because
1ZXI x YZIIl =YZZXI, (28)
which is just the third generator of the extended stabilizer
Because it is hard to check whethér- Eq € S when the

number of generators & is large, we choos& = Eq as the
success criterion of the decoding result in our simulations

V. SimuLATION RESULTS

We have applied our enhanced feedback iterative BP de-
coding algorithm to a variety of sparse quantum codes, in-
cluding conventional sparse quantum codes and EA sparse
guantum codes over depolarizing channels. In each case, our
improved BP decoder yields significantly lower BER over
both the standard BP decoder and the BP decoder with
PCO08’s random perturbation. In the following subsections,
simulate decoding of sparse quantum codes wiffeint code
parameters (including block lengths, rates, and row wgight
under the three decoders to demonstrate the superiorityrof o
approach.

A. Example: Conventional Sparse Quantum Codes

Conventional sparse quantum codes can be constructed
from sparse classical dual-containing codes. One of thé mos
successful dual-containing constructions is the so-g¢d{Gmn-
struction B” [9], which is built as follows. First we take an
n/2 x n/2 cyclic matrixC with row weightL/2, and define

Ho=[C.CT]. (29)
Then we delete some rows frorHg to obtain a matrix
H with m rows. By constructionH is dual-containing. A
conventional sparse quantum code with lengtban thus be
given according to CSS construction.

Our first example is based on this strategy. We first construct
a cyclic binary LDPC code [63, 37] with row weight 8 based
on finite geometries[[26]. This code has a %%3 cyclic
check matrix with 26 independent rows and 37 redundant
rows. Hence, we can construct a conventional sparse quantum
code withn = 126, m = 26, andL = 16. We refer to this

algorithm. Here we reseis(E4) according to EqI{Z0). In this case, only three[[126’ 74]] guantum LDPC code with rate/n = 74/126 and

iterations were required to yield a valid outpigy: = 11ZX, which is exactly
the error occurring on [[4, 1;1]] during its transmission.

row weight 16 as ‘Conventionalf We show the performance
of the standard BP decoder, the BP decoder with PC08'’s
random perturbation and our enhanced feedback BP decoder

and reset4(E4) according to Eq.[{20), the correct decodingvhen applied to Conventional over depolarizing channels in
result arises in just a few iterations. We show the perforreanFig. Al

of our approach in Fid.]13.

In this example_, PCO08's methOd could not help the standardnote that in order to improve the performance of this code, hage
BP decoder to yield a valid output, However, our enhancedserved those redundant rows.
feedback BP decoding algorithm yields a valid output in just In our simulation, we take the maximum number of entriesersed by

a few iterations. In fact even if the error occurring on thg,

the enhanced feedback decoder round down to one fifth of tihe lemgth for
ort codes, one tenth of the code length for medium code®aadortieth

first four qubits is notl1ZX but YZII, which has the same for long codes.
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& 102}
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—~A— Standard BP decoder 10 4 —=&— Standard BP decoder
d —e— PC08 —6—PC08
_4 —v— Enhanced Feedback 4‘ —<v— Enhanced Feedback
10 : 3 ‘ : :
0.015 0.02 0.03 0.04 0.05 100.02 0.03 0.04 0.05 0.06
Cross—over probability of depolarizing channel, p Cross—over probability of depolarizing channel, p

Fig. 4. Block error rate vs cross-over probability of depiziag channelp  Fig. 5.  Same as for Fig. 4 but replacing Conventional by EA-1.
for three diferent BP decoders when applied to Conventional. The maximum

number of iterations is 90. The maximal number of iteratibeswveen each
perturbation is 40. The strength of the random perturbatised here i = ) N )
0.1. The maximal number of entries traversed by enhanced &ekdtiecoder generators and 8 commuting generatordiy we obtain an

round down to one fifth of the code length, which equals 25.here EA sparse quantum code [[8,]@4' 404]] according to the
EA stabilizer formalism. Here we take this code as our second
example of EA sparse quantum codes whose net rate is

EA sparse quantum codes can be constructed from arbitrary k-c = 404- 404
binary or quaternary sparse classical codes [12]. Here we n 816
present the decoding of three EA sparse quantum codé¥l call it “EA-2". We show the performance of the three
that are constructed in the same way as the constructié@coders when applied to EA-2 over depolarizing channels in
of [[4, 1; 1]] discussed in SeE1V. These three codes have dffig. [ in terms of BER]
ferent net rate (including positive, zero and negative atds),
different block lengths and fiierent row weight distributions. 10

The first EA sparse quantum code we consider is
[[128,79;49]], which is constructed from an irregular qua-
ternary sparse classical code [128] with girth g > 6. The
classical code [1289] is designed by using the progressive-
edge-growth (PEG) algorithm under the constraint that the

B. Examples. EA Sparse Quantum Codes

=0, (33)

0

degree distribution of bit nodes is [14] %
{2:33%3:33%4:22%5: 22%. (30)
As there are 49 pairs of anti-commuting generatorsHin I — A Standard BP decoder |l
according to the construction method of EQ.](25), then the q |l —o—PCos
EA formalism yields the EA sparse quantum code . '-| —— Enhanced Feedback
10 : : ‘
[[n,2k-n+c;c]] =[[128,2x 79— 128+ 49;49]] (31) 0.09 0.10 0.11 0.12 0.13

Cross—over probability of depolarizing channel, p
which can be constructed from the classical quaternary code

[n, K] =128, 79] HE] The code [[12879; 49]] has a positive Fig. 6. Same as for Fig. 4 but replacing Conventional by EAx@ ehanging
net rate the maximum number of entries traversed by the enhanceddekdlecoder
k—-c 79-49 round down to one tenth of the code length, which equals 8&.her

n 128 (32)

. B ., The third EA sparse quantum code is [[19888; 1278]],
]Ic-|ere we reffetL totr:hls ZOde das E'_A{;ll and ?htOWErel P€{¥nich is constructed from [192640], a famous sparse clas-
ormance ot the hree decoders with respect to "+ OV§feal code proposed as the international standard forlaellu
depolarizing channels. The performance, in terms of b|0(t‘, ephones. The [192640] code, which has a rate’3 and
error rate, is summarized in Figl 5. row weight 4, was also constructed by MacKay][23]. Fol-

Qur _second EA sparse q“ar?t“m code is [[8BL; 404]], _lowing the construction procedure mentioned in $egd. 1V, the
which is constructed from a binary regular sparse Class"%ﬂrvmberof anti-commuting pairs #g is 1278; thus, we obtain
code [816408]. The classical [81,808], which has a rate.D, d ’

row Weight 6 and column Weight ‘?’! was C_OnStrUCte.d by 8Net rates for EA quantum codes can be negative or zero. Seenéipp
MacKay [22]. As there are = 404 pairs of anti-commuting for more detail.
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an EA sparse quantum code [[19B38; 1278]]. Here we take —A— Standard BP (Conventional)
this code as our third example of EA sparse quantum codes, —o©—PCO08 (Conventional.)
this time with a negative net rate —v— Enhanced (Conventional)
—A~ - Standard BP (EA-1)
k-c _638-1278 1 (34) —O- PCO8 (EA-1)
n 1920 = 3 .| v~ Enhanced (EA-1)

We name it “EA-3” and show the performance of the three BP
decoders when applied to EA-3 over depolarizing channels in
Fig.[d.

10 2
<
1072}
1% : : :
e 0.015 0.02 0.03 0.04 0.05 0.06
g Cross—over probability of depolarizing channel, p
/
10T Fig. 8. Same as for Fig. 4 but replacing block error rate byaye number
of iterations and adding EA-1 as another example.
y —=4— Standard BP decoder
©— PCO08 —A— Standard BP (EA-2)
- s Enhanced Eeedback o— PCO8 (EA-2)
0.17 0.18 0.19 0.20 0.21 —<— Enhanced (EA-2)
Cross—over probability of depolarizing channel, p —A— - Standard BP (EA-3)
—O— PCO08 (EA-3)
Fig. 7. Same as for Fig. 4 but using Conventional replaced Ay3Eand —v— - Enhanced (EA-3)
changing the maximal number of entries traversed by enldafeedback 10* ‘ ‘ ‘
decoder round down to one fortieth of the code length thaBis 4
,,,,, /
. . . 2]
C. Time efficiency ssimulation 5
) 3 o) /‘7
We evaluate and compare the time consumed by each Z 0 A Sl o]
decoder according to the average number of iterations % L
N = Xk : )
ANol := —, (35)  MOETT o
Ny
consumed by one codeword, with the total number of 10° ‘ ‘ ‘ ‘ ‘
iterations to finish decodingy blocks. In our simulation 009 011 013 015 017 019 0.21
Ny = 20000. In Figs. 8 and 9 we show the timficency Cross—over probability of depolarizing channel, p

(complexity) comparison for the three decoders applied to _ _ _

Conventional, EA-1, EA-2 and EA-3. Evidently our algorithnf'9; 8- _Same as for Fig. 8 but replacing Conventional and BA-IEA-2
' ' o : q&é\d EA-3 and changing the maximal number of entries tradebgeenhanced

has a smaller ANol than PC08, which shows improved decogedback decoder from rounding down to one fifth of the codette to one

ing efficiency when compared to PCO08. tenth of the code length for EA-2 and to one fortieth of theecdehgth for
EA-3.

D. Discussion

From Figs[D, it is evident that our strategy yields a sigssing our enhanced feedback BP decoder with a similar ANol
nificantly lower BER with a lower ANol for both conventionalperformance as PC08. As for the decoding of EA-2 (Elg. 6),
sparse quantum codes and EA sparse quantum codes. Asvhan p = 0.09, the BER performance of PC08's method is
example of the fectiveness of our new decoder, consider thk75 times better than that of the standard BP decoder with
casep ~ 0.015, Fig. 4 shows that the enhanced-feedback BF78 times more ANol, and the BER performance of our
decoder yields a 6 dB gain over PC08 and an 8 dB gain owgsproach is approximately 10 times better than that of the
the standard BP decoder while reducing the ANol from 3.1 fetandard BP decoder with only3ltimes more ANol.

PCO08 to 2.2 for our enhanced-feedback BP decoder as seeNotably, interesting results appear in the decoding of EA-3
in Fig. 8. From Fig.[T and19 we see that PCO8 could not significantly

For another point of view, in Figl]l5, we can see thamprove the standard BP decoder even with high ANol, yet our
to guarantee EA-1 having a decoding error below®1@he approach does improve the performance of EA-3 significantly
standard BP decoder allows~ 0.020 and PC08 allowp ~ with almost the same ANol as the standard BP decoder
0.022. This value is increased dramatically po~ 0.029 excepting the last two nodes.
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Our algorithm is capable of turning the detectable errostandard BP decoder adapted from classical decoding to de-
into new outputs whose syndromes are identical with correede quantum codes, the superior BP decoder with Poulin and
sponding observed syndromes. We refer to these outputsCiming’s random perturbatioh [10], and the BP decoder with
valid outputs can be classified into three cases:Hd) = E; our new feedback adjustment strategy introduced here.

(2) Eout # E but Equu x E € S; (3) Equ x E ¢ S. The We used theGF(4) representation of quantum codes to
first two cases will yield correct outputs that can recover tlrconstruct our feedback-based algorithm and exploit ndat jus
sent quantum states successfully. However, it is hard tokcheéhe syndrome but all the measurement resulting from seagili
whetherEqy x E € S which makes distinguishing cases (2Jneasurements. Then we used the block error rate (BER)
and (3) dificult. Therefore, we choose (1) as the successid average number of iterations (ANol) to demonstrate a
criterion for the decoding result in our numerical simwati dramatic better error correcting capacity improvementhwit

Some detectable errors are turned into undetectable ern@igtive less iterations. This result was achieved using ne
by our decoder. In order to show how often our algorithm réeedback adjustment strategy vs the two alternativesdatan
sults in an undetectable error, we classify all the resuélslgd BP decoder and the BP decoder with random perturbation.
by our algorithm (not just valid outputs) when the origind B
protocol fail§ into three cases: (1); cases (2) or (3); remain APPENDIX
as detectable errors. In Fig.]10, we take Conventlpnal as an, . oo in Section V. the net rate for EA-2 and EA-3
example to depict the number of blocks that fall into each : X
whereas the original BP protocol fails 50 times. It is ev'lder‘?Ire 0 a_nd—lu/.3 respectively. As pointed out by Brun, Devetak

and Hsieh, “in general, net rates for EA quantum codes can be
positive, negative, or zero. The zero rate does not mean that
no qubits are transmitted by this code! Rather, it implies th
-Case§ (2)or (3) a number of bits of entanglement is needed that is equal to
[_JRemain as detectable errors the number of bits transmitted.” Compared to quantum codes

50
with high net rates, EA quantum codes with zero or negative
40} ] net rates employ many more physical qubits including a great
number of bits of entanglement that being assumed to be-error

I Case (1)

301 free[ thus these codes can tolerate stronger noise. Therefore,
it is not surprising that EA-2 and EA-3 greatly incregs¢he
cross-over probability of depolarizing channel when coraga
to quantum codes with similar code length and higher nesrate
For comparison, based on “Construction BI' [9] (same as the
construction of Conventional), we construct a quantum code
with a similar code length as EA-2 but having a relative highe
net rate. We name this example as EX which has a code length
Fig. 10. Block numbers fall into the three cases mentionedointext vs of 800 and a net rate/2. In Flg'm’ we see that EX has .
cross-over probability of depolarizing chanmefor our enhanced BP decoder COMparable BER performance to other examples presented in

when applied to Conventional while the original BP decodgisf50 times. existing literatures which have similar parameters as EX bu
The maximum number of iterations is 90. The maximal numbetenétions s i

between each perturbation is 40. The maximal number ofesntraversed by S|gn|f|cantly worse than EA-@
enhanced feedback decoder round down to one fifth of the edgh.

201

Block number

10t

0.0150.02 0.03 0.04 0.05
Cross—over probability of depolarizing channel, p
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