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Abstract—Decoding sparse quantum codes can be accom-
plished by syndrome-based decoding using a belief propagation
(BP) algorithm. We significantly improve this decoding scheme by
developing a new feedback adjustment strategy for the standard
BP algorithm. In our feedback procedure, we exploit much of
the information from stabilizers, not just the syndrome but also
the values of the frustrated checks on individual qubits of the
code and the channel model. Furthermore we show that our
decoding algorithm is superior to belief propagation algorithms
using only the syndrome in the feedback procedure for all cases
of the depolarizing channel. Our algorithm does not increase the
measurement overhead compared to the previous method, as the
extra information comes for free from the requisite stabilizer
measurements.

Index Terms—Sparse quantum codes, quantum error correc-
tion, quantum channels, belief propagation, stabilizers.

I. Introduction

COMMUNICATION is limited by noise in channels,
but error correction methods can efficiently offset this

restriction in both classical [1], [2] and quantum [3], [4],
[5], [6], [7] cases. At a simple level, multiple copies of the
information can be transmitted, and a majority rule can be
applied to discern the correct code, but such coding is neither
practical nor efficient. Sparse graph coding, such as Gallager’s
low-density parity-check (LDPC) codes, offers an efficient
alternative that approaches the Shannon information limit[1],
[2]. Fortunately quantum coding and decoding strategies can
be constructed from their classical counterparts, but unfortu-
nately this mapping from classical to quantum coding can
be problematic due to the requirement that quantum codes
satisfy the duality-containing condition [8], [9]. Moreover,
due to increased challenges posed by these quantum codes,
performance improvement requires further progress in the
proposed decoding algorithm [10], [11].

The entanglement-assisted (EA) stabilizer formalism adds
error-free entangled bits as a consumable resource for perform-
ing quantum error correction. This EA approach overcomes
the duality-containing requirement and thus offers a rich lode
of quantum error correction protocols inspired by classical
protocols [12]. Using the EA approach, modern codes for
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classical channels, such as sparse codes, can easily be imported
as quantum error-correcting codes [13], [14].

Our aim is to improve belief propagation (BP) decoding
methods so that quantum coding is dramatically improved over
existing techniques. Specifically our numerical results pre-
sented here show that an improved BP method whose heuris-
tical feedback strategies based on exploiting all accessible
information from stabilizer measurements, yield a dramatically
improved block error rate (BER) for any depolarizing channel.
Our methods should work for any Pauli noise channel.

For n qubits, a Pauli channel is defined by the mapping

B
(

C
2n)

∋ ρ 7→
∑

E∈Gn

pE EρE†, pE ≥ 0,
∑

pE = 1 (1)

with Gn the n-fold tensor product of single-qubit Pauli opera-
torsΣ ∈ {I, X, Z, Y = XZ}. Our interest is focused on memory-
less channels wherein the error on each qubit is independent
of the error on any other qubit. In particular we consider the
depolarizing channel, which is the most-studied case [9], [10],
[11], [13], [27]: for fixed channel error probabilityp, the error
on qubitq is given by

B
(

C
2
)

∋ ρq 7→ pIρq + (1− pI)
(

XρqX + YρqY + ZρqZ
)

/3 (2)

with pI := 1− p denoting the probability of no error occurring.
In quantum settings, due to the inability to measure each

and every qubit, syndrome-based decoding is typically chosen.
Consequently, decoders using Pauli channels are generally
considered to be hard-decision decoders. In other words, in
quantum decoding, the conventional soft-decision techniques
are not applicable when the channel is in the Pauli channel
model. Generally, sparse quantum codes are decoded by using
syndrome-based BP decoding algorithms which automatically
imply hard-decision decoding. Though there is an equivalence
between syndrome-based decoding and a posteriori probabil-
ity decoding (signal-based decoding) under this setting, the
syndrome-based decoding results in a serious drawback to BP
decoder: the symmetric degeneracy error [10]. Fortunately,
Poulin and Chung (PC08) [10] propose a solution to the
symmetric degeneracy error by using the random perturbation
method.

Motivated by the soft-decision techniques used in classical
settings, which provide extra reliable information on the
message nodes thereby yielding a better error correcting ca-
pacity [16], we develop a new heuristical feedback adjustment
strategy for the standard BP decoder. When used in decoding
sparse quantum codes, our method can on one hand solve the
symmetric degeneracy error problem, and on the other hand
can provide more useful information to the message nodes.

http://arxiv.org/abs/0912.4546v2
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The difference between PC08 and our approach is that,
in PC08, they feed back only the syndrome of the decoder
output to adjust prior error probability distributions forre-
ceived qubits. These adjusted distributions are then fed back
into the decoder. We significantly improve this protocol by
feeding back not just the syndrome but also the values of
the frustrated checks on individual qubits of the code and the
channel model; accordingly we introduce a new adjustment
strategy. Specifically, our approach, which is based not only
on syndromes but also on frustrated checks obtained from full
stabilizer measurements and the channel model, yields a better
BER for the case of depolarizing quantum channels.

We provide a detailed description of our basic BP decoder
for decoding sparse quantum codes. The basic BP decoder
introduced here is inspired by the strategy used for decoding
sparse classical quaternary codes under the BP algorithm.
Using this strategy, we can decode sparse quantum codes
directly regardless of whether they arise from classical binary
codes or not and regardless of whether they are Calderbank-
Shor-Steane (CSS) construction [4], [19] codes or not.

II. BP Iterative Decoding

In this section, we briefly reprise the essential elements
of BP iterative decoding for sparse quantum codes. In Sub-
sec. II-A we discuss the key idea of standard BP iterative
algorithms. Then we compare decoding of classical codes
vs quantum codes, and introduce the standard BP decoding
for quantum codes. Finally in Subsec. II-B we show how to
decode sparse quantum codes inGF(4) based on the standard
BP algorithm.

A. BP decoding algorithm for sparse quantum codes

Consider ak-bit message that is encoded into ann-bit
codeword, which is then transmitted through a noisy channel.
The received message is an error-prone vector over the output
alphabet, and there is no guarantee that decoding will reveal
the original codeword. However, the codeword can be guessed
with a high probability of being correct by maximizing the
probability for this codeword based on the observed output
vector [20]. Unfortunately for a linear block code, encoding k
information bits inton bits allows 2k possiblen-bit codewords,
and calculating conditional probabilities for individualcode-
words is too expensive in practice.

BP algorithms overcome this inefficiency for sparse
codes [1]. The strategy is to represent a linear-block classical
error-correcting code (CECC) by a Tanner graph comprising
message nodes and check nodes corresponding respectively to
received bits and check constraints. Then an iterative algorithm
recovers the values of received bits as follows [20], [21]. At
each round, probabilities are passed from message nodes{v} to
check nodes{c} and then from{c} back to{v}. The probabilities
from {v} to {c} are computed based on the observed value
of the message node and other probabilities passed from the
neighboring check nodes to the respective message node. It
turns out that, for decoding sparse codes, the BP algorithm
can provide a reasonable trade-off between complexity and
performance.

For a linear block CECC, the code space can be viewed as
the orthogonal projection space (solution space) of its check
matrix. The sender Alice transmits her message as a codeword
that is encoded according to a specific check (or generator)
matrix through the channel. When receiver Bob obtains the
channel output, the received vector may not be the solution
vector of the check matrix. Therefore Bob needs to apply
a smart algorithm to recover the codeword efficiently. As
the check matrix is sparse, Bob employs the BP algorithm.
First, Bob measures each bit to obtain its posterior probability
distribution. Subsequently, he puts these probabilities into the
BP decoder, and, based on the constraint that the codeword
should be the orthogonal vector of the check matrix, he infers
the original message. This procedure extends naturally to
sparse quantum codes.

In the quantum case, the stabilizer formalism for a quantum
error-correcting code (QECC) is useful. The code space within
C

2n
corresponds to the simultaneous+1 eigenspace of allm

generators of an abelian subgroup [5]

S = {S 1, . . . , S m} ⊂ Gn. (3)

Alice transmits her message as a codeword, which propagates
through the depolarizing quantum channel. Due to channel
errors, the received codeword may not be the simultaneous
+1 eigenspace ofS . Bob measuresS to obtain the syndrome1

s = (s1, . . . , sm) ∈ {−1, 1} and then estimates which errorE
from Eq. (1) has occurred based on the noise model and
the syndrome, which is effectively a check constraint. Bob
redresses the error by applying the same error operation he
inferred onto his received codeword to try to recover the
quantum code. For Pauli channels all errors aren-fold tensor
products of single-qubit Pauli operators hence square to the
identity; thus re-applying the same error should restore the
original codeword.

Due to the close analogy between CECCs and QECCs as
discussed above, it is tempting to extend the BP iterative
decoding algorithm to quantum settings. In fact a QECC can
also be represented by a decorated Tanner graph [17], [18].
Therefore, it is natural to transmit the messages from{c} to {v}
and the messages from the{v} to {c} according to the principles
of BP algorithms [17], [18].

Here we first briefly review the BP algorithm used for
decoding sparse quantum codes [10] but begin with necessary
terminology. The probability of Pauli errorEq occurring on
qubit q is pq(Eq). The neighborhood of qubitq is denoted
by n(q), and we definen(c) similarly as the set of qubits
connected to checkS c. The tensor product of Pauli errors
over n(c) is denotedEc. Then, following PC08’s notation, for
two 1-qubit case,E ·E′ = 1 means [E, E′] = 0 andE ·E′ = −1
means{E, E′} = 0. For two n-qubit Pauli operators such as
E = E1 ⊗ E2 ⊗ · · · ⊗ En and E′ = E′1 ⊗ E′2 ⊗ · · · ⊗ E′n, we have

E · E′ ≔
n

∏

k=1

Ek · E
′
k. (4)

1If [ S c, E] = 0, sc = 1 or elsesc = −1, wherec = 1, · · · ,m and S c can
be viewed as a check node in the Tanner graph of a QECC with stabilizer S
from Eq. (3).
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The messages from check nodes to qubit nodes are denoted

mc→q(Eq) ∝
∑

Eq′

q′∈n(c)\q

(

δsc,S c·Ec

∏

q′∈n(c)\q

mq′→c(Eq′)
)

, (5)

which is defined only up to a constant factor. The factor can be
fixed by normalization [10]. The messages from qubit nodes
to check nodes are similarly denoted as

mq→c(Eq) ∝ pq(Eq)
∏

c′∈n(q)\c

mc′→q(Eq), (6)

wherepq(Eq) is the initial probability in the definition of the
memoryless channel. Then the beliefsbq(Eq) are constructed
by first initializing mq→c(Eq) = pq(Eq), then evaluating ac-
cording to

bq(Eq) = pq(Eq)
∏

c∈n(q)

mc→q(Eq), (7)

after the iteration procedure based on Eqs. (5) and (6). In fact,
Eqs. (5) and (6) define a sum-product iterative procedure for
decoding sparse quantum codes. Hence this algorithm is also
called the sum-product algorithm (SPA), which is one of the
most important algorithms based on BP.

In order to clarify the BP decoding algorithm for sparse
quantum codes, we now show how to implement Eqs. (5) and
(6) in GF(4).

B. Decoding sparse quantum codes in GF(4)

There is a convenient isomorphism between the Pauli group
G1 generated by{I, X, Z, Y = XZ} and the Galois FieldGF(4)
generated by{0, 1, ω, ω̄ = ω2}. The isomorphism is explained
by the element identification

I ↔ 0, X ↔ 1, , Z ↔ ω, Y ↔ ω̄(ω2) (8)

and the operation identificationmultiplication↔addition and
commutativity↔trace inner product [5]. For the one-qubit
case, we have,

P,Q ∈ G1↔ P̂, Q̂ ∈ GF(4),

[P,Q] = 0⇔ Tr(P̂ × ¯̂Q) = 0, {P,Q} = 0⇔ Tr(P̂ × ¯̂Q) = 1
(9)

The isomorphism is readily extended to then-qubit case:

P,Q ∈ Gn ↔ uP, vQ ∈ GF(4)n,

[P,Q] = 0⇔ Tr(uP · vQ) = 0, {P,Q} = 0⇔ Tr(uP · vQ) = 1.
(10)

where ‘·’ used here (between two vectors) is a regular
inner product. That is, foru = (u1, u2, · · · , un) and v =
(v1, v2, · · · , vn), we have,

u · v ≔
k=n
∑

k=1

u1 × v̄1. (11)

The addition and multiplication rules ofGF(4) are shown in
Tables I and II, respectively.

We can import the strategy used for decoding sparse clas-
sical quaternary codes under BP to use for decoding sparse
quantum codes. This adaptation to quantum codes is achieved

TABLE I
Addition of GF(4)

+ 0 1 ω ω̄

0 0 1 ω ω̄

1 1 0 ω̄ ω

ω ω ω̄ 0 1

ω̄ ω̄ ω 1 0

TABLE II
multiplication of GF(4)

× 0 1 ω ω̄

0 0 0 0 0

1 0 1 ω ω̄

ω 0 ω ω̄ 1

ω̄ 0 ω̄ 1 ω

by transforming the check criterion (5) from commutativityto
trace inner product.

For example, supposesc = 1. Then the check criterion for
this check node should beS c · Ec = 1, which is equivalent to
[S c, Ec] = 0. According to isomorphism (10), Tr(uEc ·vS c) = 0,
which implies that eitheruEc · vS c = 0 or uEc · vS c = 1 because
Tr(0) = 0 and Tr(1)= 0. We definepq[x] as the probability
for Êq ×

ˆ̄S cq to take the valuex, with S cq the qth entry of S c,2

and p[x] the probability of uEc · vS c = 0 (excluding theqth

entry) to take the valuex. As q ∈ n(c),

S cq ∈ {X, Z, Y} =⇒ Ŝ cq ∈ {1, ω, ω̄}, x ∈ {0, 1, ω, ω̄}, (12)

Thus,

pq[0] = (p[0] + p[1]) /2 = pq[1], (13)

pq[ω] = (p[ω] + p[ω̄]) /2 = pq[ω̄]. (14)

Similarly, if sc = −1, then {S c, Ec} = 0, which implies
that eitheruEc · vS c = ω or uEc · vS c = ω̄ because Tr(ω) = 1
and Tr(ω̄) = 1. According to Table I,

pq[0] = (p[ω] + p[ω̄]) /2 = pq[1], (15)

pq[ω] = (p[0] + p[1]) /2 = pq[ω̄]. (16)

With this knowledge, the messagemc→q can be computed by:

mc→q(Eq) = pq[Êq ×
ˆ̄S cq ]. (17)

Given mc→q(Eq), mq→c(Eq) can then be derived directly by
substituting Eq. (17) into Eq. (6).

Decoding based onGF(4) affords the advantage that sparse
quantum codes can be decoded without losing correlations be-
tween errors that would otherwise impact the coding scheme’s
performance. In particular sparse quantum codes can be de-
coded directly regardless of whether they arise from a classical
binary codes or not and regardless of whether they follow a
CSS construction code or not. For comparison, we henceforth
refer to the decoder based on this BP decoding algorithm as
the ‘standard BP decoder’.

2For Êq and ˆ̄S cq the mapped elements ofEq and S̄ cq in GF(4), see Eq. (9).
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III. Enhanced feedback BP iterative decoding for sparse
quantum codes

In 2008 PC08 proposed a random perturbation strategy
based on the syndrome of the BP decoder output3 to overcome
the symmetric degeneracy problem. The random perturbation
method is simple and efficient but unfortunately overlooks
many errors. As pointed out in PC08, all errors in their
simulations could be attributed to the decoder rather than to
the finite minimal distance of the code.

We observe the same problems as PC08 do when using
the random perturbation method. In particular, most errorsin
the simulations aredetected errors, not the undetected errors.
This result suggests that feeding back useful information to
the standard BP decode could help. The feedback would help
the BP decoder determine a valid outputEout, whose syndrome
s(Eout) is identical with the observed syndromes. Then Eout

will equal E with high probability, forE the error occurring
on the transmitted quantum state during transmission. In
this section, we present our enhanced feedback BP iterative
decoding algorithm, which provides useful information to the
BP decoder based on exploiting not only the syndrome but
also the stabilizer itself and the channel model in the feedback
procedure.

Then suppose that, subsequent to the standard BP decoding
procedure,s(Eout) is not identical with the observed syn-
drome s. Then evidently at least one entry ofEout occurring
on one of the qubits connected to checkS c has an error, for
S c a frustrated check. If we can reset the initial probability
distributions for errors occurring on the qubits connectedto
S c in a more reliable way, but not simply by adopting the prior
probability distributions obtained from the channel model,
more useful information could be provided to the BP decoder.
Furthermore symmetric degeneracy could also be overcome as
well. Thus it is reasonable to expect that BP decoding ability
will be significantly improved.

Our new feedback BP iterative decoder is devised as fol-
lows. First the standard BP decoder is used to identify the er-
ror E based on the observed syndrome and the prior probability
distributions of each entry ofE. When the standard BP decoder
fails (s(Eout) , s), we randomly choose a frustrated check,
say S c. There are only two results for this frustrated check:
sc = −1 andS c · Eout = 1 or elsesc = 1 andS c · Eout = −1.
Either way we choose a random qubit that connects toS c, for
example qubitq, and then resetpq(Eq) according to the value
of S cq (the entry to which qubitq corresponds inS c) and the
channel model as follows.

Let Σ1,2,3 ∈ {X, Z, Y = XZ} be three distinct elements. Sup-
poseS cq = Σ1, and the channel is the depolarizing channel
with crossover probabilityp = 1 − pI , for pI established in
Eq. (2). Then, ifsc = −1 andS c · Eout = 1, we reset

pq(I) = (1− pI)/2 = pq(Σ1), pq(Σ2) = pI/2 = pq(Σ3). (18)

3In addition to the random perturbation technique, PC08 alsoproposed
freezing and collision techniques. However, their simulations and our own
simulations indicate that the random perturbation technique has the best
performance of the three approaches. Therefore, we adopt the random pertur-
bation technique as the comparator.

For example, ifS cq = X, we obtain

pq(I) = (1− pI)/2 = pq(X), pq(Z) = pI/2 = pq(Y). (19)

Instead supposesc = 1 andS c · Eout = −1. Then we reset

pq(I) = pI/2 = pq(Σ1), pq(Σ2) = (1− pI)/2 = pq(Σ3). (20)

In this case, ifS cq = X, we obtain

pq(I) = pI/2 = pq(X), pq(Z) = (1− pI)/2 = pq(Y). (21)

Next, following a similar strategy to PC08’s, we feed back
this adjustment to the standard BP decoder and let it iterate
with this modified probability distribution forTpert (a pre-
determined fixed number of the reiteration) steps. If BP halts
during this period (i.e.s(Eout) corresponds to the syndromes),
the procedure is complete and terminates.

If c is still frustrated, we restore the probability distribu-
tion pq(Eq) and choose a different qubit connected toc, say
qubit q′, and resetp′q(E′q) based on the same strategy that has
already been used for resettingpq(Eq). If S c is not frustrated,
but the halting condition is not yet satisfied, we choose another
frustrated checkS c′ and adjust the probability distribution of
the error occurring on one of its qubits as we do for a frustrated
checkS c.

Now suppose that the decoder still cannot yield a valid
output after trying a pre-determined numberna feedback
adjustments for qubits according to the procedures mentioned
above. In other words, suppose that, after traversingna entries
associated with frustrated checks, no valid result is yielded by
the decoder. In this case, we allow the decoder to terminate
this procedure and report a failure. Without the termination
condition, the decoder is wasting time traversing all entries
associated with frustrated checks and thereby introducing
unwanted redundancy into the procedure.

Eqs. (18) and (20) are justified for the following reason.
Empirically, the decoder is naturally too biased towards the
identity I [10] due to the prior probability distribution obtained
from the channel model. This biased probability distribution
will lead to S c · Eout = 1 while sc = −1. Heuristically, we
resetpq(Eq) to make it anti-commute withS cq with a greater
probability, since at least one entry ofE anti-commutes with
its corresponding entry inS c. The channel is depolarizing that
is Pauli errorsX, Z, Y occur with equal probability, so, in
Eq. (18), we letΣ2 andΣ3 share the probability asI.4

When sc = 1, setting Eq to I is conducive to obtain-
ing S c · Eout = 1. Another Pauli operator could also be
conducive to makingS c · Eout = 1 but is ignored by the prior
probability distribution. We can readily ascertain this Pauli
operator according to the entries ofS c. According to Eq. (20),
we let this Pauli operator (Σ1) share the same probabilitypI

with I and haveΣ2 andΣ3 share the small probability 1− pI

equally.
Our strategy retains PC08’s capability of breaking the sym-

metric degeneracy while feeding back more useful information
to the BP decoder than PC08 in order to help the decoder
determine a valid output. More useful information comes from
retaining full information about the entire stabilizer rather

4Because (1−pI ) ≪ pI , we let I andΣ1 share (1−pI ) equally for simplicity.
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than just a syndrome. Specifically, our feedback adjustment
strategy is not solely based on the syndrome but also on the
channel model and on the individual values of the entries of
the frustrated checks (the checks are just the generators ofthe
stabilizer).

IV. A Case Study

In this section we illustrate our enhanced feedback iterative
decoding algorithm to show how it succeeds in helping the
BP decoder find a valid output. For [[n, k; c]] denoting an
EA QECC that encodesk qubits into n qubits with the
help of c ancillary ebits [12], we construct a simple EA
QECC for [[4, 1; 1]] as follows. According to the EA QECC
formalism, we start with a classical [4, 2] quaternary code with
check matrix

Hc =

(

1 ω 1 0
1 1 0 1

)

. (22)

First we transformHc to

H′c =

(

Hc

ωHc

)

=





























1 ω 1 0
1 1 0 1
ω ω̄ ω 0
ω ω 0 ω





























, (23)

then transformH′c to a set of (perhaps non-commuting) gen-
erators

Hq =





























X Z X I
X X I X
Z Y Z I
Z Z I Z





























. (24)

Next we transformHq into a canonical formĤq by mul-
tiplying the third generator by the second generator and
by multiplying the fourth generator by the first and second
generator. Thus, we obtain

Ĥq =





























X Z X I
X X I X
Y Z Z X
Z X X Y





























. (25)

Now, it is easy to check that the first generator anti-commutes
with the second generator, and the last two generators com-
mute with each other as well as commuting with the first
two generators. According to the EA QECC formalism, this
coding scheme needs one ebit to assist encoding. The extended
commuting set of generators is{H̃q} for

H̃q =





























X Z X I X
X X I X Z
Y Z Z X I
Z X X Y I





























, (26)

which is just the stabilizer of [[4, 1; 1]].
It is easy to check that̃Hq is isomorphic to

H̃′q =





























X I I I X
Z I I I Z
I Z I I I
I I Z I I





























, (27)

which means we can encode one logical qubit into four
physical bits with the help of one entangled pair plus two
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Fig. 1. Beliefs as a function of number of iterationsn for an EA QECC with
stabilizer generatorsXZXIX, XXIXZ, YZZXI andZXXYI and with syndrome
(−1,+1,+1,+1) using the standard BP decoding algorithm. The priorpq(Eq)
of the four sent qubits are obtained from the depolarizing channel with p =
0.1. (A), (B), (C) and (D) show the beliefs for qubits 1, 2, 3 and 4, respectively.
Qubit 5 is assumed to be held by the receiver and thus to be error-free. The
symbols�, ∆, © and∇ indicate the beliefs forI, X, Z and Y, respectively.
In this case, the output of the standard BP decoder isEout = IYII, which is
a detected error.

ancilla bits via a unitary transformation [12]. As the half of
the entangled pair being held by the receiver is assumed to
be error-free, the error-correcting capacity of [[4, 1; 1]] only
depends on the left part of̃Hq, which corresponds to the four
transmitted qubits held by the sender.

Suppose the qubits of [[4, 1; 1]] are sent through a depo-
larizing channel and errorE = IIZX is applied to the four
transmitted qubits. Measurement of the stabilizer revealsthe
error syndromes = (−1,+1,+1,+1). In Fig. 1, we display the
performance of the standard BP decoder under this setting.
From Fig. 1, it is easy to check that the syndrome of the output
of the standard BP decoder is (−1,−1,−1,−1).5 We now use
the standard BP decoder with PC08’s random perturbation.
Comparing between the error syndromes = (−1,+1,+1,+1)
and the syndrome of the output of the standard BP decoder
(−1,−1,−1,−1), the probability distributions of the errors
occurring on the qubits connected to the second, third or fourth
checks can be reset. For all these cases, the decoder could not
yield an appropriate recovery. Here as an example, we use
PC08’s random perturbation strategy for the frustrated check
S 2 and show the corresponding performance in Fig. 2.

Finally, we use our enhanced feedback BP decoding algo-
rithm. By the same method, our feedback strategy can reset the
probability distributions of the errors occurring on the qubits
connected to the second, third or the fourth checks. When the
decoder chooses the fourth entry (X) of the frustrated checkS 2

5It is not surprising that the standard BP decoder has failed because
[[4, 1; 1]] is designed to correct one error but not two errors.
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Fig. 2. Same as for Fig. 1 but using the standard BP decoding algorithm
replaced by PC08 and applying random perturbation strengthδ = 1 to the
prior for qubits 1, 2 and 4.
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Fig. 3. Same as for Fig. 2 but using our enhanced feedback iterative decoding
algorithm. Here we resetp4(E4) according to Eq. (20). In this case, only three
iterations were required to yield a valid outputEout = IIZX, which is exactly
the error occurring on [[4, 1;1]] during its transmission.

and resetsp4(E4) according to Eq. (20), the correct decoding
result arises in just a few iterations. We show the performance
of our approach in Fig. 3.

In this example, PC08’s method could not help the standard
BP decoder to yield a valid output, However, our enhanced
feedback BP decoding algorithm yields a valid output in just
a few iterations. In fact even if the error occurring on the
first four qubits is notIIZX but YZII, which has the same

syndromes = (−1,+1,+1,+1) as IIZX, our decoding output
IIZX can still recover the transmitted quantum state because

IIZXI × YZIII = YZZXI, (28)

which is just the third generator of the extended stabilizer.
Because it is hard to check whetherE · Eout ∈ S when the
number of generators ofS is large, we chooseE = Eout as the
success criterion of the decoding result in our simulations.

V. Simulation Results

We have applied our enhanced feedback iterative BP de-
coding algorithm to a variety of sparse quantum codes, in-
cluding conventional sparse quantum codes and EA sparse
quantum codes over depolarizing channels. In each case, our
improved BP decoder yields significantly lower BER over
both the standard BP decoder and the BP decoder with
PC08’s random perturbation. In the following subsections,we
simulate decoding of sparse quantum codes with different code
parameters (including block lengths, rates, and row weight)
under the three decoders to demonstrate the superiority of our
approach.

A. Example: Conventional Sparse Quantum Codes

Conventional sparse quantum codes can be constructed
from sparse classical dual-containing codes. One of the most
successful dual-containing constructions is the so-called “Con-
struction B” [9], which is built as follows. First we take an
n/2× n/2 cyclic matrixC with row weight L/2, and define

H0 =
[

C,CT
]

. (29)

Then we delete some rows fromH0 to obtain a matrix
H with m rows. By construction,H is dual-containing. A
conventional sparse quantum code with lengthn can thus be
given according to CSS construction.

Our first example is based on this strategy. We first construct
a cyclic binary LDPC code [63, 37] with row weight 8 based
on finite geometries [26]. This code has a 63× 63 cyclic
check matrix with 26 independent rows and 37 redundant
rows. Hence, we can construct a conventional sparse quantum
code with n = 126, m = 26, andL = 16. We refer to this
[[126, 74]] quantum LDPC code with ratek/n = 74/126 and
row weight 16 as ‘Conventional”.6 We show the performance
of the standard BP decoder, the BP decoder with PC08’s
random perturbation and our enhanced feedback BP decoder
when applied to Conventional over depolarizing channels in
Fig. 4.7

6Note that in order to improve the performance of this code, wehave
preserved those redundant rows.

7In our simulation, we take the maximum number of entries traversed by
the enhanced feedback decoder round down to one fifth of the code length for
short codes, one tenth of the code length for medium codes andone fortieth
for long codes.
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Fig. 4. Block error rate vs cross-over probability of depolarizing channelp
for three different BP decoders when applied to Conventional. The maximum
number of iterations is 90. The maximal number of iterationsbetween each
perturbation is 40. The strength of the random perturbationused here isδ =
0.1. The maximal number of entries traversed by enhanced feedback decoder
round down to one fifth of the code length, which equals 25 here.

B. Examples: EA Sparse Quantum Codes

EA sparse quantum codes can be constructed from arbitrary
binary or quaternary sparse classical codes [12]. Here we
present the decoding of three EA sparse quantum codes
that are constructed in the same way as the construction
of [[4, 1; 1]] discussed in Sec. IV. These three codes have dif-
ferent net rate (including positive, zero and negative net rates),
different block lengths and different row weight distributions.

The first EA sparse quantum code we consider is
[[128, 79; 49]], which is constructed from an irregular qua-
ternary sparse classical code [128, 79] with girth g ≥ 6. The
classical code [128, 79] is designed by using the progressive-
edge-growth (PEG) algorithm under the constraint that the
degree distribution of bit nodes is [14]

{2 : 33%, 3 : 33%, 4 : 22%, 5 : 22%}. (30)

As there are 49 pairs of anti-commuting generators inĤq

according to the construction method of Eq. (25), then the
EA formalism yields the EA sparse quantum code

[[n, 2k − n + c; c]] = [[128, 2× 79− 128+ 49; 49]], (31)

which can be constructed from the classical quaternary code
[n, k] = [128, 79] [12]. The code [[128, 79; 49]] has a positive
net rate

k − c
n
=

79− 49
128

. (32)

Here we refer to this code as “EA-1” and show the per-
formance of the three decoders with respect to EA-1 over
depolarizing channels. The performance, in terms of block
error rate, is summarized in Fig. 5.

Our second EA sparse quantum code is [[816, 404; 404]],
which is constructed from a binary regular sparse classical
code [816, 408]. The classical [816, 408], which has a rate 0.5,
row weight 6 and column weight 3, was constructed by
MacKay [22]. As there arec = 404 pairs of anti-commuting
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Fig. 5. Same as for Fig. 4 but replacing Conventional by EA-1.

generators and 8 commuting generators inĤq, we obtain an
EA sparse quantum code [[816, 404; 404]] according to the
EA stabilizer formalism. Here we take this code as our second
example of EA sparse quantum codes whose net rate is

k − c
n
=

404− 404
816

= 0, (33)

and call it “EA-2”. We show the performance of the three
decoders when applied to EA-2 over depolarizing channels in
Fig. 6 in terms of BER.8
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Fig. 6. Same as for Fig. 4 but replacing Conventional by EA-2 and changing
the maximum number of entries traversed by the enhanced feedback decoder
round down to one tenth of the code length, which equals 81 here.

The third EA sparse quantum code is [[1920, 638; 1278]],
which is constructed from [1920, 640], a famous sparse clas-
sical code proposed as the international standard for cellular
telephones. The [1920, 640] code, which has a rate 1/3 and
row weight 4, was also constructed by MacKay [23]. Fol-
lowing the construction procedure mentioned in Sec. IV, the
number of anti-commuting pairs in̂Hq is 1278; thus, we obtain

8Net rates for EA quantum codes can be negative or zero. See Appendix
for more detail.
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an EA sparse quantum code [[1920, 638; 1278]]. Here we take
this code as our third example of EA sparse quantum codes,
this time with a negative net rate

k − c
n
=

638− 1278
1920

= −
1
3
. (34)

We name it “EA-3” and show the performance of the three BP
decoders when applied to EA-3 over depolarizing channels in
Fig. 7.
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Fig. 7. Same as for Fig. 4 but using Conventional replaced by EA-3 and
changing the maximal number of entries traversed by enhanced feedback
decoder round down to one fortieth of the code length that is 43.

C. Time efficiency simulation

We evaluate and compare the time consumed by each
decoder according to the average number of iterations

ANoI :=
nt

nb
, (35)

consumed by one codeword, withnt the total number of
iterations to finish decodingnb blocks. In our simulation
nb = 20000. In Figs. 8 and 9 we show the time efficiency
(complexity) comparison for the three decoders applied to
Conventional, EA-1, EA-2 and EA-3. Evidently our algorithm
has a smaller ANoI than PC08, which shows improved decod-
ing efficiency when compared to PC08.

D. Discussion

From Figs. 4-9, it is evident that our strategy yields a sig-
nificantly lower BER with a lower ANoI for both conventional
sparse quantum codes and EA sparse quantum codes. As an
example of the effectiveness of our new decoder, consider the
casep ≈ 0.015, Fig. 4 shows that the enhanced-feedback BP
decoder yields a 6 dB gain over PC08 and an 8 dB gain over
the standard BP decoder while reducing the ANoI from 3.1 for
PC08 to 2.2 for our enhanced-feedback BP decoder as seen
in Fig. 8.

For another point of view, in Fig. 5, we can see that
to guarantee EA-1 having a decoding error below 10−3, the
standard BP decoder allowsp ≈ 0.020 and PC08 allowsp ≈
0.022. This value is increased dramatically top ≈ 0.029

0.015 0.02 0.03 0.04 0.05 0.06
10

0

10
1

10
2

10
3

Cross−over probability of depolarizing channel, p

A
N

o
I

Standard BP (Conventional)

PC08 (Conventional)

Enhanced (Conventional)

Standard BP (EA−1)

PC08 (EA−1)

Enhanced (EA−1)

Fig. 8. Same as for Fig. 4 but replacing block error rate by average number
of iterations and adding EA-1 as another example.
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Fig. 9. Same as for Fig. 8 but replacing Conventional and EA-1by EA-2
and EA-3 and changing the maximal number of entries traversed by enhanced
feedback decoder from rounding down to one fifth of the code length to one
tenth of the code length for EA-2 and to one fortieth of the code length for
EA-3.

using our enhanced feedback BP decoder with a similar ANoI
performance as PC08. As for the decoding of EA-2 (Fig. 6),
when p = 0.09, the BER performance of PC08’s method is
1.75 times better than that of the standard BP decoder with
2.78 times more ANoI, and the BER performance of our
approach is approximately 10 times better than that of the
standard BP decoder with only 1.3 times more ANoI.

Notably, interesting results appear in the decoding of EA-3.
From Fig. 7 and 9 we see that PC08 could not significantly
improve the standard BP decoder even with high ANoI, yet our
approach does improve the performance of EA-3 significantly
with almost the same ANoI as the standard BP decoder
excepting the last two nodes.
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Our algorithm is capable of turning the detectable errors
into new outputs whose syndromes are identical with corre-
sponding observed syndromes. We refer to these outputs as
valid outputs can be classified into three cases: (1)Eout = E;
(2) Eout , E but Eout × E ∈ S ; (3) Eout × E < S . The
first two cases will yield correct outputs that can recover the
sent quantum states successfully. However, it is hard to check
whetherEout × E ∈ S which makes distinguishing cases (2)
and (3) difficult. Therefore, we choose (1) as the success
criterion for the decoding result in our numerical simulation.

Some detectable errors are turned into undetectable errors
by our decoder. In order to show how often our algorithm re-
sults in an undetectable error, we classify all the results yielded
by our algorithm (not just valid outputs) when the original BP
protocol fails9 into three cases: (1); cases (2) or (3); remain
as detectable errors. In Fig. 10, we take Conventional as an
example to depict the number of blocks that fall into each
whereas the original BP protocol fails 50 times. It is evident
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Fig. 10. Block numbers fall into the three cases mentioned incontext vs
cross-over probability of depolarizing channelp for our enhanced BP decoder
when applied to Conventional while the original BP decoder fails 50 times.
The maximum number of iterations is 90. The maximal number ofiterations
between each perturbation is 40. The maximal number of entries traversed by
enhanced feedback decoder round down to one fifth of the code length..

to see from Fig. 10 that most of the detectable errors will be
turned to correct output but not undetectable errors by using
our enhanced feedback BP decoder.

VI. Conclusion

We have developed an enhanced feedback BP decoding
algorithm whose feedback adjustment strategy is not based
solely on the syndrome but also on the channel model and on
the individual values of the entries of the frustrated checks.
Our approach retains the capability of breaking the symmetric
degeneracy while also feeding back extra useful information to
the BP decoder. Therefore, our feedback adjustment strategy
yields a better error correcting capacity with relative less
iterations compared to the proposed decoding algorithms for
sparse quantum codes. We have considered three cases: the

9The ‘fails’ means that the syndrome of the output of the original BP
decoder is not identical with the observed syndrome. In other words, a detected
errors yielded by the original BP decoder.

standard BP decoder adapted from classical decoding to de-
code quantum codes, the superior BP decoder with Poulin and
Chung’s random perturbation [10], and the BP decoder with
our new feedback adjustment strategy introduced here.

We used theGF(4) representation of quantum codes to
construct our feedback-based algorithm and exploit not just
the syndrome but all the measurement resulting from stabilizer
measurements. Then we used the block error rate (BER)
and average number of iterations (ANoI) to demonstrate a
dramatic better error correcting capacity improvement with
relative less iterations. This result was achieved using new
feedback adjustment strategy vs the two alternatives: standard
BP decoder and the BP decoder with random perturbation.

Appendix

As shown in Section V, the net rate for EA-2 and EA-3
are 0 and−1/3 respectively. As pointed out by Brun, Devetak
and Hsieh, “in general, net rates for EA quantum codes can be
positive, negative, or zero. The zero rate does not mean that
no qubits are transmitted by this code! Rather, it implies that
a number of bits of entanglement is needed that is equal to
the number of bits transmitted.” Compared to quantum codes
with high net rates, EA quantum codes with zero or negative
net rates employ many more physical qubits including a great
number of bits of entanglement that being assumed to be error-
free,10 thus these codes can tolerate stronger noise. Therefore,
it is not surprising that EA-2 and EA-3 greatly increasep the
cross-over probability of depolarizing channel when compared
to quantum codes with similar code length and higher net rates.

For comparison, based on “Construction B” [9] (same as the
construction of Conventional), we construct a quantum code
with a similar code length as EA-2 but having a relative higher
net rate. We name this example as EX which has a code length
of 800 and a net rate 1/2. In Fig. 11, we see that EX has
comparable BER performance to other examples presented in
existing literatures which have similar parameters as EX but
significantly worse than EA-2.11
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