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Abstract—We establish several new results on Marton’s coding
scheme and its corresponding inner bound on the capacity region
of the general broadcast channel. We show that unlike the
Gaussian case, Marton’s coding scheme without superposition
coding is not optimal in general even for a degraded broadcast
channel with no common message. We then establish properties
of Marton’s inner bound that help restrict the search space for
computing the sum-rate. Next, we show that the inner bound is
optimal along certain directions. Finally, we propose a coding
scheme that may lead to a larger inner bound.

I. INTRODUCTION

In this paper, we consider the general two-receiver broadcast
channel with an input alphabet X , output alphabets Y and
Z , and conditional probability distribution function q(y, z|x).
The capacity region of this channel is defined as the set of
rate triples (R0, R1, R2) such that the sender X can reliably
communicate a common message at rate R0 to both receivers
and two private messages at rates R1 and R2 to receivers Y
and Z respectively, see [1] or [2]. The capacity region of this
channel is known for several special cases but unknown in
general. The best known general inner bound to the capacity
region is due to Marton [3][6].

In this paper, we study Marton’s inner bound. Marton’s
inner bound for a general two-receiver discrete-memoryless
broadcast channel is as follows:

Marton’s Inner bound [3][2][4][6]: The union of non-
negative rate triples (R0, R1, R2) satisfying the inequalities

R0 +R1 ≤ I(UW ;Y ), (1)
R0 +R2 ≤ I(VW ;Z), (2)

R0 +R1 +R2 ≤ I(UW ;Y ) + I(V ;Z|W )

− I(U ;V |W ), (3)
R0 +R1 +R2 ≤ I(U ;Y |W ) + I(VW ;Z)

− I(U ;V |W ), (4)
2R0 +R1 +R2 ≤ I(UW ;Y ) + I(VW ;Z)

− I(U ;V |W ), (5)

for some random variables (U, V,W,X, Y, Z) ∼
p(u, v, w, x)q(y, z|x) constitutes an inner bound to the
capacity region. Further to compute this region it suffices to
consider |U |, |V | ≤ |X|, |W | ≤ |X| + 4 and assume that X
is a deterministic function of (U, V,W ) [8].

In this paper we prove various results related to this inner
bound.

Insufficiency of Marton’s coding scheme without a super-
position variable: Random variable W corresponds to the
“superposition-coding” aspect of the bound, and the random
variables U and V correspond to the “Marton-coding” aspect
of the bound. Necessity of the “superposition-coding” aspect
of the inner bound had previously been observed for a non-
degraded broadcast channel [10]. For degraded channels, it is
known that W is unnecessary for achieving the capacity region
of Gaussian broadcast channels (through dirty paper coding)
[14]. We show that, unlike in the Gaussian broadcast channel
case, “Marton’s coding scheme” alone is not sufficient to
achieve the capacity region of the general degraded broadcast
channel.

Computing the sum rate in Marton’s inner bound: Given a
broadcast channel q(y, z|x) the maximum sum-rate achievable
via Marton’s strategy is given by

max
p(u,v,w,x)

min{I(W ;Y ), I(W ;Z)}+

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ). (6)

Further it suffices to consider |U |, |V | ≤ |X|, |W | ≤ |X|+ 1
and assume that X is a deterministic function of (U, V,W ) [8].
Note that min{I(W ;Y ), I(W ;Z)} depends only on p(w, x).
The last three terms I(U ;Y |W ) + I(V ;Z|W ) − I(U ;V |W )
can be written as∑
w

p(w)
(
I(U ;Y |W = w)+I(V ;Z|W = w)−I(U ;V |W = w)

)
.

Let us write the above optimization as follows:

max
p(w,x)

[
min{I(W ;Y ), I(W ;Z)}+∑
w

p(w) max
p(u,v|w,x)

[
I(U ;Y |W = w) + I(V ;Z|W = w)

− I(U ;V |W = w)
]]
.

One can think of the maximization in the following way

max
p(w,x)

min{I(W ;Y ), I(W ;Z)}+
∑
w

p(w)T (p(x|w))
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where T (p(x)) is the maximum of I(U ;Y ) + I(V ;Z) −
I(U ;V ) over all p(u, v|x) where X ∼ p(x) and X is a
deterministic function of (U, V ).

It is shown in [13] that the latter maximization problem
concerning T (p(x)) has a remarkable solution for all binary
input broadcast channels: it suffices to take U = X and V =
constant, or V = X and U = constant. In other words, for
all binary input broadcast channels we have

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ max{I(X;Y ), I(X;Z)}.
(7)

To prove this, authors of [13] consider different mappings from
U×V 7→ X . Because of the cardinality bound of two on U and
V , the authors argue that the XOR mapping (i.e. X = U ⊕ V
mod 2) and the AND mapping (i.e. X = U ∧V ) cannot occur
in any maximizer of I(U ;Y ) + I(V ;Z)− I(U ;V ).

We believe that finding the correct extension of equation (7)
to larger alphabets can be useful in (a) computing Marton’s
inner bound efficiently for a given channel, and (b) comparing
the Marton inner bound with its multi-letter characterizations
to see if Marton’s inner bound is optimal or not (see [11] for
a discussion of this line of attack).

One of the main results of this part is to generalize to larger
alphabets the statement that the XOR mapping cannot occur.
We show that one cannot find distinct u0, u1 in U , distinct
v0, v1 in V and distinct x0, x1 in X such that p(x0|u0, v0) =
p(x0|u1, v1) = p(x1|u1, v0) = p(x1|u0, v1) = 1.

Optimality of Marton’s inner bound along certain direc-
tions: We compute the maximum of λ0R0 + λ1R1 + λ2R2

over all (R0, R1, R2) in the capacity region where λ0, λ1 and
λ2 are real numbers such that λ0 ≥ λ1 + λ2. We observe that
Marton’s inner bound is tight along these directions.

An achievable region: Since capacity is defined in the limit
of large block length, it is natural to expect that optimal coding
schemes have an invariant structure with respect to shifts in
time. This suggests that capacity should be expressed via a
formula that has a fixed-point character, namely it should
involve joint distributions that are invariant under a time shift.
Following this general idea, we propose a new inner bound
for the capacity region. We don’t know if the proposed inner
bound is strictly better than Marton’s inner bound.

The rest of the paper is organized as follows. Section II
contains the main results of the paper, and section III contains
the proofs of these results, with some of the details relegated
to the appendices.

II. MAIN

Let C(q(y, z|x)) denote the capacity region of the broadcast
channel q(y, z|x), and CM (q(y, z|x)) denote Marton’s inner
bound for the channel q(y, z|x), defined in the introduction
by equations (1)-(5). The notation Xi is used to denote the
vector (X1, X2, ..., Xi), and Xn

i to denote (Xi, Xi+1, ..., Xn).

A. Insufficiency of Marton’s coding scheme without a super-
position variable

In Marton’s inner bound the auxiliary random variable W
corresponds to the “superposition-coding” aspect of the bound,

and the random variables U and V correspond to the “Marton-
coding” aspect of the bound. When R0 = 0 (private messages
only) and W = ∅, Marton’s inner bound reduces to the the
set of non-negative rate pairs (R1, R2) satisfying

R1 ≤ I(U ;Y |Q), (8)
R2 ≤ I(V ;Z|Q), (9)

R1 +R2 ≤ I(U ;Y |Q) + I(V ;Z|Q)− I(U ;V |Q), (10)

for some random variables (Q,U, V,X, Y, Z) ∼
p(q)p(u, v, x|q)q(y, z|x).

It is known that this inner bound is tight for Gaussian
broadcast channels (through dirty paper coding), implying that
W is unnecessary for achieving the capacity region of this
class of degraded broadcast channels [14]. We show through
an example that this is not the case in general.

Claim 1: There are degraded broadcast channels for which
Marton’s private message inner bound without W is strictly
contained in the capacity region of the channel (which is
known to equal the Marton region with superposition variable
in the case of degraded channels).

B. Computing the sum-rate for Marton’s Inner Bound

1) Extensions of the binary inequality: In this subsection
we are concerned with the following maximization problem
that is tightly related to the calculation of the sum rate
for Marton’s inner bound: given p(x), maximize I(U ;Y ) +
I(V ;Z) − I(U ;V ) over all p(u, v|x) where X is a function
of (U, V ).

To state our main result we need the following two defini-
tions:

Definition 1: The input symbols x0 and x1 are said to be
indistinguishable by the channel if q(y|x0) = q(y|x1) for all
y, and q(z|x0) = q(z|x1) for all z. A channel q(y, z|x) is
said to be irreducible if no two of its inputs symbols are
indistinguishable by the channel.

Definition 2: Let U = {u1, u2, ..., u|U|}, V = {v1, ..., v|V|}
be finite sets, and ξ be a deterministic mapping from U ×V to
X . One can represent the mapping by a table having |U| rows
and |V| columns; the rows are indexed by u1, u2, ...., u|U| and
the columns are indexed by v1, v2, ..., v|V|. In the cell (i, j), we
write ξ(ui, vj), for the symbol x that (ui, vj) is being mapped
to. The profile of the ith row is defined to be a vector of size
|X | counting the number of occurrences of the elements of X
in the ith row. In other words if X = {x1, x2, ..., x|X |}, the
kth element of the profile of the ith row is the number of times
that xk shows up in the ith row of the table. The profile of the
jth column is defined similarly. Define the profile of the table
to be a vector of size (|U|+ |V|)|X | formed by concatenating
the profile vectors of the rows and the columns of the table.
The profile vector of the mapping ξ is denoted by −→vξ .

We now state the main result of this subsection.
Theorem 1: Take an arbitrary irreducible broadcast channel

q(y, z|x) where q(y|x) > 0, q(z|x) > 0 for all x, y, z.
Fix some p(x). Take any p(u, v|x) maximizing I(U ;Y ) +
I(V ;Z)− I(U ;V ) where X is a function of (U, V ). Without



loss of generality assume that p(u) > 0 for all u ∈ U ,
and p(v) > 0 for all v ∈ V . Let x = ξ(u, v) denote the
deterministic mapping from U × V to X . Then all of the
following conditions must hold:

• p(u, v) > 0, p(u, y) > 0, and p(v, z) > 0 for all u, v, y
and z.

• The profile vector of the mapping ξ, −→vξ , cannot be written
as

M∑
t=1

αt
−→vξt ,

where ξt (for t = 1, 2, 3, ...,M ) are deterministic map-
pings from U × V to X not equal to ξ, and αt are non-
negative numbers adding up to one, i.e.

∑M
t=1 αt = 1.

• Let the functions

fu : X → R for every u ∈ U ,
gv : X → R for every v ∈ V,

and h : X → R,

be defined by

fu(x) =
∑
y q(y|x) log p(u, y),

gv(x) =
∑
z q(z|x) log p(v, z),

h(x) = min
u′∈U,v′∈V

(
log(p(u′, v′))

−fu′(x)− gv′(x)
)
.

These definitions make sense because of the first bullet
of this theorem. Then, for any u and v, the following two
equations hold:

log(p(u, v)) = maxx[fu(x) + gv(x) + h(x)],

and

p(x0|u, v) = 1 for some x0 ∈ X ⇒
x0 ∈ argmaxx[fu(x) + gv(x) + h(x)].

Discussion 1: These constraints imply restrictions on the
maximizers. The second bullet implies that one cannot find
distinct u0, u1 in U , distinct v0, v1 in V and distinct x0, x1
in X such that p(x0|u0, v0) = p(x0|u1, v1) = p(x1|u1, v0) =
p(x1|u0, v1) = 1.1

Next, assume that all we know about the mapping pattern
is that x0 = ξ(u0, v0) = ξ(u1, v1) for some x0. Then the third

1Let the mapping ξ1 be equal to ξ except that (u0, v0) and (u1, v1) are
mapped to x1 (instead of x0), and (u1, v0) and (u0, v1) are mapped to x0
(instead of x1). Figure 1 illustrates this. The mapping ξ1 has the same profile
vector as ξ. Thus we can write the original profile as a convex combination
of other profiles (the condition in the displayed equation of the second bullet
is violated for the choice of M = 1, ξ1 and α1 = 1). Thus the second
bullet implies that it cannot happen. Similarly the mapping shown in Figure
2 cannot occur because there is another mapping with the same profile.

Fig. 1. If we have a mapping with the XOR structure, we can get another
mapping with the same profile by switching x0 and x1 of four cells of the
mappings.

Fig. 2. Another mapping that cannot occur because one can find another
mapping with the same profile.

bullet implies that p(u0, v0)p(u1, v1) ≤ p(u1, v0)p(u0, v1).
This holds since

log p(u0, v0) + log p(u1, v1) =

fu0
(x0) + gv0(x0) + h(x0) +

fu1
(x0) + gv1(x0) + h(x0) =

fu0
(x0) + gv1(x0) + h(x0) +

fu1
(x0) + gv0(x0) + h(x0) ≤

maxx fu0
(x) + gv1(x) + h(x) +

maxx fu1
(x) + gv0(x) + h(x) =

log p(u0, v1) + log p(u1, v0).

2) Sum rate evaluation: In this subsection we turn to
evaluation of the whole sum-rate expression of Marton’s
inner bound (including the W terms). We need the following
definition:

For any λ ∈ [0, 1], let

Tλ = maxp(u,v,w,x)
(
λI(W ;Y ) + (1− λ)I(W ;Z) +

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )
)
.

Computing the sum-rate for Marton’s inner bound is closely
related to the above maximization problem for λ ∈ [0, 1]:

Claim 2: The maximum of the sum-rate for Marton’s inner
bound is equal to minλ∈[0,1] Tλ.
Since the original submission of the conference version of this
paper, some interesting properties of Tλ such as its convexity
in λ, and its connection to the outer bound and its factorization
have been investigated in [11] and [12]. An alternative proof
of Claim 2 using a theorem by Terkelsen is also reported in
[11].



The main theorem of this section restricts the search space
for computing Tλ. In this section, we only deal with broadcast
channels q(y, z|x) with strictly positive transition matrices,
i.e. when q(y|x) > 0, q(z|x) > 0 for all x, y, z. In order to
evaluate Tλ when q(y|x) or q(z|x) become zero for some y or
z, one can use the continuity of Tλ in q(y, z|x) and take the
limit of Tλ for a sequence of channels with positive entries
converging to the desired channel. The reason for dealing with
this class of broadcast channels should become clear by the
following lemma which is a corollary to the first bullet of
Theorem 1.

Lemma 1: Take an arbitrary broadcast channel q(y, z|x)
with strictly positive transition matrices (i.e. q(y|x) >
0, q(z|x) > 0 for all x, y, z). Let p(u, v, w, x) be an arbitrary
joint distribution maximizing Tλ for some λ ∈ [0, 1] where
H(X|U, V,W ) = 0. If p(u,w) and p(v, w) are positive for
some triple (u, v, w), then it must be the case that p(u, v, w) >
0, p(u,w, y) > 0 and p(v, w, z) > 0 for all y and z.

Theorem 2: Take an arbitrary irreducible broadcast channel
q(y, z|x) with strictly positive transition matrices. In comput-
ing Tλ for some λ ∈ [0, 1], it suffices to take the maximum
over auxiliary random variables p(u, v, w, x)q(y, z|x) simul-
taneously satisfying the following constraints:
• |U| ≤ min(|X |, |Y|), |V| ≤ min(|X |, |Z|), |W| ≤ |X |.
• H(X|UVW ) = 0. Given w where p(w) > 0, we use x =
ξ(w)(u, v) to denote the deterministic mapping from Uw×
Vw to X . Here Uw is the set of u ∈ U such that p(u|w) >
0 and Vw is the set of v ∈ V such that p(v|w) > 0.

• For arbitrary w such that p(w) > 0, the profile vector of
the mapping ξ(w), −−→vξ(w) , cannot be written as

M∑
t=1

αt
−→vξt ,

where ξt (for t = 1, 2, 3, ...,M ) are deterministic map-
pings from Uw × Vw to X not equal to ξ(w), and αt are
non-negative numbers adding up to one, i.e.

∑M
t=1 αt =

1.
• For arbitrary w such that p(w) > 0, let the functions

fu,w : X → R for every u ∈ Uw,
gv,w : X → R for every v ∈ Vw,

and hw : X → R,

be defined by

fu,w(x) =
∑
y q(y|x) log p(uy|w),

gv,w(x) =
∑
z q(z|x) log p(vz|w),

hw(x) = min
u′∈Uw,v′∈Vw

(
log(p(u′v′|w))

−fu′,w(x)− gv′,w(x)
)
.

These definitions make sense because of Lemma 1. Then,
for any u ∈ Uw and v ∈ Vw, the following two equations
hold:

log(p(uv|w)) = maxx[fu,w(x) + gv,w(x) + hw(x)],

and

p(x0|u, v, w) = 1 for some x0 ∈ X ⇒
x0 ∈ argmaxx[fu,w(x) + gv,w(x) + hw(x)].

• Given any w, random variables Uw, Vw, Xw, Yw, Zw dis-
tributed according to p(u, v, x, y, z|w) satisfy the follow-
ing:

I(U ;Yw) ≥ I(U ;VwZw) for any U → Uw → VwXwYwZw,

I(V ;Zw) ≥ I(V ;UwYw) for any V → Vw → UwXwYwZw.

Discussion 2: The first constraint imposes cardinality
bounds on |U| and |V| that are better than those reported in [8].
However, we only claim the improved cardinality bounds for
Tλ and not the whole capacity region. The second constraint
is not new, and can be found in [8]. The other constraints are
useful in restricting the search space due to the constraints
imposed on p(u, v, w, x). For instance, the third and fourth
bullet restrict the set of possible mappings, as discussed in the
previous subsection.

C. Optimality along certain directions

In order to state the main result of this section we need the
following definition:

Definition 3: [7] Let Cd1(q(y, z|x)) and Cd2(q(y, z|x)) de-
note the degraded message set capacity regions, i.e. when
R1 = 0 and R2 = 0, respectively. The capacity region
Cd1(q(y, z|x)) is the set of of non-negative rate pairs (R0, R2)
satisfying

R0 ≤ I(W ;Y ),

R2 ≤ I(X;Z|W ),

R0 +R2 ≤ I(X;Z),

for some random variables (W,X, Y, Z) ∼ p(w, x)q(y, z|x).
The capacity region Cd2(q(y, z|x)) is defined similarly.

We now state the main result of this section:
Theorem 3: For a broadcast channel q(y, z|x) and real

numbers λ0, λ1 and λ2 such that λ0 ≥ λ1 + λ2,

max
(R0,R1,R2)∈C(q(y,z|x))

(λ0R0 + λ1R1 + λ2R2) =

max{ max
(R0,R2)∈Cd1 (q(y,z|x))

(λ0R0 + λ2R2),

max
(R0,R1)∈Cd2 (q(y,z|x))

(λ0R0 + λ1R1)},

where Cd1(q(y, z|x)) and Cd2(q(y, z|x)) are the degraded
message set capacity regions for the given channel.

Corollary 1: The above observation essentially says that if
λ0 ≥ λ1+λ2, then a maximum of λ0R0+λ1R1+λ2R2 over
triples (R0, R1, R2) in the capacity region occurs when either
R1 = 0 or R2 = 0.

Remark 1: Since Cd1(q(y, z|x)) ∪ Cd1(q(y, z|x)) ⊂
CM (q(y, z|x)) ⊂ C(q(y, z|x)), the above lemma implies that
Marton’s inner bound is tight along the direction of such



(λ0, λ1, λ2), i.e.

max
(R0,R1,R2)∈C(q(y,z|x))

(λ0R0 + λ1R1 + λ2R2) =

max
(R0,R1,R2)∈CM (q(y,z|x))

(λ0R0 + λ1R1 + λ2R2),

whenever λ0 ≥ λ1 + λ2.

D. An achievable region

Since capacity is defined in the limit of large block length,
it is natural to expect that optimal coding schemes have
an invariant structure with respect to shifts in time. This
suggests that capacity should be expressed via a formula
that has a fixed-point character, namely it should involve
joint distributions that are invariant under a time shift. The
following theorem is a proposed inner bound along these lines.

Theorem 4: For a broadcast channel q(y, z|x), consider
two i.i.d. copies (U1, V1,W1) and (U2, V2,W2) and a
conditional pmf r(x|u1, v1, w1, u2, v2, w2). Assume that
U1, V1,W1, U2, V2,W2, X1, X2, Y1, Y2, Z1, Z2 are distributed
according to

p(u1, v1, w1, u2, v2, w2, x1, y1, z1, x2, y2, z2) =

r(u1, v1, w1)r(u2, v2, w2)·
r(x2|u1, v1, w1, u2, v2, w2)q(y2, z2|x2)·
r̃(x1|u1, v1, w1)q(y1, z1|x1),

where r̃(x|u, v, w) is defined as∑
u′∈U,v′∈V,w′∈W

r(x|u′, v′, w′, u, v, w)r(u′, v′, w′).

Then a rate triple (R0, R1, R2) is achievable if

R0, R1, R2 ≥ 0,

R0 +R1 < I(U2W2;Y1Y2U1W1),

R0 +R2 < I(V2W2;Z1Z2V1W1),

R0 +R1 +R2 < I(V2;Z1Z2V1W1|W2)

+ I(U2W2;Y1Y2U1W1)− I(U2;V2|W2),

R0 +R1 +R2 < I(U2;Y1Y2U1W1|W2)

+ I(V2W2;Z1Z2V1W1)− I(U2;V2|W2),

2R0 +R1 +R2 < I(U2W2;Y1Y2U1W1)

+ I(V2W2;Z1Z2V1W1)− I(U2;V2|W2),

for some U1, V1,W1, U2, V2,W2, X1, X2 that satisfy the above
conditions.

Remark 2: The above inner bound reduces to
Marton’s inner bound if the conditional distribution
r(x|u1, v1, w1, u2, v2, w2) = r(x|u2, v2, w2), i.e.
U1V1W1 → U2V2W2 → X form a Markov chain.

III. PROOFS

Proof of Claim 1: Consider the degraded broadcast
channel p(y, z|x) = p(y|x)p(z|y), where the channel from
X to Y is a BSC(0.3) and the channel from Y to Z is as
follows: pZ|Y (0|0) = 0.6, pZ|Y (1|0) = 0.4, pZ|Y (0|1) = 0,
pZ|Y (1|1) = 1. We show that the private message capacity

region for this channel is strictly larger than Marton’s inner
bound without W .

We first intuitively sketch outline of the proof: take a non-
negative real α and consider the maximum of R1 + αR2

over the pairs (R1, R2) in the capacity region. Since the
broadcast channel is degraded, the maximum is equal to
maxV→X→Y Z I(X;Y |V ) + αI(V ;Z). Since X → Y → Z,
when the weight of the degraded receiver is less than or equal
to 1, an optimum V will be equal to a constant (corresponding
to R2 = 0). As we gradually increase α beyond one, the
optimum V gradually moves from a constant random variable
to X (corresponding to R1 = 0). Now, let us consider the
maximum of R1 + αR2 over the pairs (R1, R2) in Marton’s
inner bound without the auxiliary random variable W . The
latter maximum is equal to I(U ;Y ) + αI(V ;Z) − I(U ;V ).
When α ≤ 1, it is optimum to take U = X , V =constant
and dedicate all the rate to the stronger receiver. Simulation
results however indicate that as we increase α beyond one in
the problem of maximizing I(U ;Y ) + αI(V ;Z) − I(U ;V ),
U = X , V =constant continues to be optimal up to a thresh-
old. Beyond this threshold, suddenly U =constant, V = X
becomes the optimizing choice, and stays as the optimizing
choice afterwards. In other words, unlike the gradual transition
of the maximizing V for the actual region, there is a sharp
transition in the maximizing V for Marton’s inner bound
without W .

In the following, we provide a more detailed proof: the
maximum of R1 + 2.4R2 over pairs (R1, R2) in the capacity
region, is equal to maxV→X→Y Z I(X;Y |V ) + 2.4I(V ;Z).
Take the joint pmf of p(v, x) to be as follows: P (V = 0, X =
0) = 0, P (V = 0, X = 1) = 0.41, P (V = 1, X =
0) = 0.48, P (V = 1, X = 1) = 0.11. For this choice
of p(v, x), I(X;Y |V ) + 2.4I(V ;Z) = 0.1229.... Therefore
the maximum of R1 + 2.4R2 ≥ 0.1229.... The maximum of
R1+2.4R2 over Marton’s inner bound without W is equal to
supUV→X→Y Z I(U ;V ) + 2.4I(V ;Z) − I(U ;V ). Using the
perturbation method of [8], one can bound the cardinality
of U and V from above by |X |, and further assume that
X is a deterministic function of (U, V ). This makes the
domain compact, implying that the above supremum is indeed
a maximum.

Since X is a binary random variable, we need to search
over binary random variables U , V . Numerical simulations
show that the maximum is equal to 0.1215... < 0.1229... and
occurs when X = V and U = constant. Therefore Marton’s
inner bound without W is not tight for this broadcast channel.

Proof of Claim 2: In order to prove the observation, one
needs to argue that the following exchange of max and min is
legitimate:

maxp(u,v,w,x) minλ∈[0,1] λI(W ;Y ) + (1− λ)I(W ;Z) +

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) =

minλ∈[0,1] maxp(u,v,w,x) λI(W ;Y ) + (1− λ)I(W ;Z) +

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ).



Let RMarton−Sum denote the sum-rate for Marton’s inner
bound. We would like to show that RMarton−Sum is equal to
min0≤λ≤1 Tλ.

Let D be the union over all p(u, v, w, x) of real pairs
(d1, d2) satisfying

d1 ≤ I(W ;Y ) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ),

d2 ≤ I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ).

We claim that this region is convex. Take two points
(d1, d2) and (d′1, d

′
2) in the region. Corresponding to

these are joint distributions p(u1, v1, w1, x1)q(y1, z1|x1) and
p(u2, v2, w2, x2)q(y2, z2|x2). Take a uniform binary random
variable Q independent of all the previously defined random
variables. Set U = UQ, V = VQ, W = (Q,WQ), X = XQ,
Y = YQ, Z = ZQ. We will then have

I(W ;Y ) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) =

I(WQ, Q;YQ) + I(UQ;YQ|WQ, Q) +

I(VQ;ZQ|WQ, Q)− I(UQ;VQ|WQ, Q) ≥
I(WQ;YQ|Q) + I(UQ;YQ|WQ, Q) +

I(VQ;ZQ|WQ, Q)− I(UQ;VQ|WQ, Q) =
1
2

(
I(W1;Y1) + I(U1;Y1|W1) +

I(V1;Z1|W1)− I(U1;V1|W1)
)
+

1
2

(
I(W2;Y2) + I(U2;Y2|W2) +

I(V2;Z2|W2)− I(U2;V2|W2)
)
≥

1
2 (d1 + d′1).

Similarly,

I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) ≥
1
2 (d2 + d′2).

Thus, the point ( 12 (d1+d
′
1),

1
2 (d2+d

′
2)) is in the region. Thus,

D is convex.
Next, note that the point (RMarton−Sum, RMarton−Sum)

is in D. We claim that it is a boundary point of D. If
it is an interior point, there must exist ε > 0 such that
(RMarton−Sum + ε, RMarton−Sum + ε) is in D. This implies
the existence of some p(u, v, w, x) where

RMarton−Sum + ε ≤
I(W ;Y ) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ),

RMarton−Sum + ε ≤
I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ).

This implies that

RMarton−Sum + ε ≤
min(I(W ;Y ), I(W ;Z)) + I(U ;Y |W ) +

I(V ;Z|W )− I(U ;V |W )

for some p(u, v, w, x), which is a contradiction.
Using the supporting hyperplane theorem and the fact

that D is convex and closed, one can conclude that there
exists a supporting hyperplane to D at the boundary point

(RMarton−Sum, RMarton−Sum). We claim that this support-
ing hyperplane must have the equation λ∗d1 + (1− λ∗)d2 =
T (λ∗) for some λ∗ ∈ [0, 1]. The proof is as follows: any
supporting hyperplane has the formula λ∗d1+(1−λ∗)d2 = k
for some real λ∗ and real k. We claim that λ∗ must be in
[0, 1] and k = T (λ∗). Assume that for instance λ∗ < 0.
We know that D must be entirely contained in one of the
two closed half-spaces determined by the hyperplane. Note
that the points (0, 0), (−∞, 0) and (0,−∞) are in D (take
p(u, v, w, x) satisfying I(U ;V |W ) = 0 in the definition of
D). The value of λ∗d1 + (1 − λ∗)d2 at these points is equal
to 0, +∞ and −∞ respectively. Thus, D cannot possibly
be entirely contained in one of the two closed half-spaces
determined by the hyperplane. Similarly the case 1− λ∗ < 0
can be refuted. Therefore λ∗ must be in [0, 1]. Since the points
(−∞, 0) and (0,−∞) are in D, the half-space determined
by the hyperplane that contains D is the one determined by
the equation λ∗d1 + (1 − λ∗)d2 ≤ k for some k. Since
the half-space has at least one point of D, the value of
k must be equal to max(d1,d2)∈R λ

∗d1 + (1 − λ∗)d2. The
latter is equal to T (λ∗). Thus, the supporting hyperplane at
the boundary point (RMarton−Sum, RMarton−Sum) has the
equation λ∗d1 + (1− λ∗)d2 = T (λ∗) for some λ∗ ∈ [0, 1].

Since (RMarton−Sum, RMarton−Sum) lies on this hyper-
plane, λ∗RMarton−Sum + (1 − λ∗)RMarton−Sum = T (λ∗)
implies that RMarton−Sum = T (λ∗) for some λ∗ ∈ [0, 1].
Therefore

min
0≤λ≤1

Tλ ≤ RMarton−Sum.

On the other hand, for every λ, Tλ ≥ RMarton−Sum. There-
fore

min
0≤λ≤1

Tλ ≥ RMarton−Sum.

Proof of Theorem 1: We begin by proving the first bullet.
p(u, y) is positive for all u, y because there must exist some
x such that p(u, x) > 0. Since the transition matrices have
positive entries and p(u, y) ≥ p(u, x)q(y|x), p(u, y) will be
positive for all y. A similar argument proves that p(v, z) > 0
for all v, z. Next assume that p(u, v) = 0 for some (u, v). Take
some u′, v′ such that p(u′, v′) > 0. Let us reduce p(u′, v′) by
ε and increase p(u, v) by ε. Furthermore, have (u, v) mapped
to the same x that (u′, v′) was mapped to; this ensures that
the marginal distribution of X is preserved. One can write

I(U ;Y ) + I(V ;Z)− I(U ;V ) =

H(Y ) +H(Z) +H(UV )−H(UY )−H(V Z).

The only change in this expression comes from the change
in H(UV ) − H(UY ) − H(V Z). The derivative of H(UV )
with respect to ε, at ε = 0, will be infinity. But the derivative
of H(UY ) and H(V Z) will be finite since p(u, y), p(u′, y),
p(v, z) and p(v′, z) are positive for all y and z. So, the first
derivative of H(UV )−H(UY )−H(V Z) with respect to ε, at
ε = 0, will be positive. This is a contradiction since p(u, v|x)
was assumed to maximize I(U ;Y ) + I(V ;Z)− I(U ;V ).



We now prove the second bullet. Assume that U =
{u1, u2, ...., u|U|} and V = {v1, v2, ...., v|V|}. Let πi,j =
p(ui, vj) for i = 1, ..., |U|, j = 1, ..., |V|. From the first bullet
we know that πi,j > 0 for all i and j. Let ε = mini,j πi,j .
Take some ε ∈ (0, ε). Let x = ξ0(u, v) denote the deterministic
mapping from U × V to X .

We prove the statement by contradiction. Assume that

−→vξ0 =

M∑
t=1

αt
−→vξt ,

for some mappings ξt (t = 1, 2, ..,M ) distinct from ξ0 and
non-negative numbers αt adding up to one.

Let random variables Ti,j (for i = 1, ..., |U|, j =
1, 2, 3, ..., |V|) be M + 1-ary random variables mutually in-
dependent of each other, and of U, V,X, Y, Z satisfying:
• p(Ti,j = 0) = 1− ε

πi,j
,

• p(Ti,j = 1) = ε
πi,j

α1,
• p(Ti,j = 2) = ε

πi,j
α2,

• p(Ti,j = 3) = ε
πi,j

α3,
• ...
• p(Ti,j =M) = ε

πi,j
αM .

Let X̃ be defined as follows:
• On the event that (U, V ) = (ui, vj), let X̃ be equal to
ξTi,j (ui, vj). In other words, if Ti,j = 0, X̃ is equal to
ξ0(ui, vj); if Ti,j = 1, X̃ is equal to ξ1(ui, vj), etc.

We claim that p(X̃ = x|U = ui) = p(X = x|U = ui)
for all i = 1, 2, 3, ..., |U| and x; and similarly p(X̃ = x|V =
vj) = p(X = x|V = vj) for all j = 1, 2, 3, ..., |V| and x.
This is proved in Appendix B. Note that the above property
implies that X̃ and X have the same marginal distributions.

Let Ỹ and Z̃ be defined such that UV (Ti,j)i:1,2,..,j=1,2,.. →
X̃ → Ỹ Z̃, and the conditional law of ỹ and z̃ given x̃ is
the same as q(y, z|x). Here (Ti,j)i:1,2,..,j=1,2,.. denotes the
collection of all Ti,j for all i and j.

Without loss of generality, let us assume α1 6= 0. Since the
mapping ξ0(·, ·) is not equal to ξ1(·, ·), there must exist (i, j)
such that ξ0(ui, vj) 6= ξ1(ui, vj). Let us label the input symbol
ξ0(ui, vj) by x0, and the input symbol ξ1(ui, vj) by x1. We
know that the channel is irreducible. Let us then assume that
there is some y such that q(y|x0) 6= q(y|x1); the proof for
the case when there is some z such that q(z|x0) 6= q(z|x1) is
similar. Let Ũ = (U, Ti,j) and Ṽ = V .

Since p(X̃ = x|U = u) = p(X = x|U = u) for all u and
x, and p(X̃ = x|V = v) = p(X = x|V = v) for all v and x,
we have
• I(U ; Ỹ ) = I(U ;Y ),
• I(V ; Z̃) = I(V ;Z).

Therefore I(Ṽ ; Z̃) = I(V ;Z) and I(Ũ ; Ỹ ) = I(U ;Y ) +
I(Ti,j ; Ỹ |U). Furthermore since Ti,j is independent of U, V ,
we have I(Ũ ; Ṽ ) = I(U ;V ). Therefore

I(Ũ ; Ỹ ) + I(Ṽ ; Z̃)− I(Ũ ; Ṽ )−
(
I(U ;Y ) + I(V ;Z)− I(U ;V )

)
= I(Ti,j ; Ỹ |U).

Since p(u, v, x) was maximizing I(U ;Y ) + I(V ;Z) −
I(U ;V ) under the fixed marginal distribution on x, we must
have I(Ti,j ; Ỹ |U) = 0. Therefore I(Ti,j ; Ỹ |U = ui) = 0
holds as well.

In Appendix C, we prove that the following are true

p(X̃ = x0|U = ui, Ti,j = 0) 6= p(X̃ = x0|U = ui, Ti,j = 1),

p(X̃ = x1|U = ui, Ti,j = 0) 6= p(X̃ = x1|U = ui, Ti,j = 1).

But for any x /∈ {x0, x1},

p(X̃ = x|U = ui, Ti,j = 0) = p(X̃ = x|U = ui, Ti,j = 1).

Remember that we assumed that there is some y such that
q(y|x0) 6= q(y|x1). In Appendix D, we show that

p(Ỹ = y|U = ui, Ti,j = 0) 6= p(Ỹ = y|U = ui, Ti,j = 1).

This implies that Ỹ and Ti,j are not conditionally independent
given U = ui. Therefore I(Ti,j ; Ỹ |U = ui) 6= 0 which is a
contradiction.

We now prove the third bullet. The proof begins by noting
that the definition of h(x) implies that for any (u, v, x),

h(x) ≤ log(p(u, v))− fu(x)− gv(x).

Therefore, for any (u, v, x),

log(p(u, v)) ≥ fu(x) + gv(x) + h(x).

Thus,

log(p(u, v)) ≥ maxx
(
fu(x) + gv(x) + h(x)

)
. (11)

Note that the first partial derivative of H(UV )−H(UY )−
H(V Z) with respect to p(u, v, x) is proportional to

− log p(u, v)− 1 +
∑
y q(y|x) log p(u, y) + 1 +∑

z q(z|x) log p(v, z) + 1 =

− log p(u, v) + fu(x) + gv(x) + 1.

Assume that the triple (u, v, x) is such that p(u, v, x) > 0.
Take some arbitrary u′ and v′. Reducing p(u, v, x) by a small
ε and increasing p(u′, v′, x) by ε does not affect the marginal
distribution of X and hence should not increase the expression
H(UV )−H(UY )−H(V Z). Therefore the first derivative of
H(UV )−H(UY )−H(V Z) with respect to p(u, v, x) must
be greater than or equal to the first derivative of H(UV ) −
H(UY )−H(V Z) with respect to p(u′, v′, x). Thus,

− log p(u, v) + fu(x) + gv(x) + 1 ≥
− log p(u′, v′) + fu′(x) + gv′(x) + 1.

In other words, for any arbitrary u′ and v′, we have

log p(u, v)− fu(x)− gv(x) ≤
log p(u′, v′)− fu′(x)− gv′(x).

Therefore

log p(u, v)− fu(x)− gv(x) ≤
minu′,v′ log p(u

′, v′)− fu′(x)− gv′(x) = h(x).



Thus, log p(u, v) ≤ fu(x) + gv(x) + h(x) whenever
p(u, v, x) > 0. This together with equation (11) imply that

log(p(u, v)) = maxx fu(x) + gv(x) + h(x),

and

p(x0|u, v) = 1 for some x0 ∈ X ⇒
x0 ∈ argmaxxfu(x) + gv(x) + h(x).

Proof of Lemma 1: This is a consequence of bullet one
of Theorem 1.

Proof of Theorem 2: From the set of pmfs p(u, v, w, x)
that maximize the expression λI(W ;Y ) + (1− λ)I(W ;Z) +
I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ), let p0(u, v, w, x) be
the one that achieves the largest value of I(W ;Y )+I(W ;Z).
In Appendix A, we prove that one can find p(û, v̂, ŵ, x̂) such
that

• λI(W ;Y )+(1−λ)I(W ;Z)+I(U ;Y |W )+I(V ;Z|W )−
I(U ;V |W ) is equal to λI(Ŵ ; Ŷ ) + (1 − λ)I(Ŵ ; Ẑ) +

I(Û ; Ŷ |Ŵ ) + I(V̂ ; Ẑ|Ŵ )− I(Û ; V̂ |Ŵ ),
• I(W ;Y ) + I(W ;Z) is equal to I(Ŵ ; Ŷ ) + I(Ŵ ; Ẑ),
• |Û | ≤ min(|X |, |Y|),
• |V̂| ≤ min(|X |, |Z|),
• |Ŵ| ≤ |X |,
• H(X̂|Û V̂ Ŵ ) = 0.

Thus the constraints in the first and second bullets are satisfied
by p(û, v̂, ŵ, x̂). The second and third bullets of Theorem 1
imply that p(û, v̂, ŵ, x̂) will automatically satisfy the third and
fourth bullet of Theorem 2. In Appendix E, we show that
the fifth bullet of Theorem 2 holds for any joint distribution
that maximizes the expression λI(W ;Y )+(1−λ)I(W ;Z)+
I(U ;Y |W )+ I(V ;Z|W )− I(U ;V |W ), and at the same time
has the largest possible value of I(W ;Y ) + I(W ;Z). Thus it
must also hold for p(û, v̂, ŵ, x̂).

Proof of Theorem 3: It suffices to show that

max
(R0,R1,R2)∈C(q(y,z|x))

(λ0R0 + λ1R1 + λ2R2) ≤

max{ max
(R0,R2)∈Cd1 (q(y,z|x))

(λ0R0 + λ2R2),

max
(R0,R1)∈Cd2 (q(y,z|x))

(λ0R0 + λ1R1)}.

The key step is to show that if (R0, R1, R2) is in the capacity
region of a broadcast channel, then (R0+min{R1, R2}, R1−
min{R1, R2}, R2 − min{R1, R2}) is also in the capac-
ity region. Since λ0 ≥ λ1 + λ2, we then have that
λ0(R0 +min{R1, R2}) + λ1(R1−min{R1, R2}) + λ2(R2−
min{R1, R2}) ≥ λ0R0 + λ1R1 + λ2R2, so at the maximum
we must have min(R1, R2) = 0. One can prove this property
using the result of Willems [9], which shows that the maximal
probability of error capacity region is equal to the average
probability of error capacity region. Willems’s proof of his re-
sult, however, is rather involved. Instead, we provide a simple
direct proof. Consider an arbitrary code (M0,M1,M2, X

n, ε).

We show that

λ0
n
H(M0) +

λ1
n
H(M1) +

λ2
n
H(M2)−O(ε) ≤

max( max
(R0,R2)∈Cd1 (q(y,z|x))

λ0R0 + λ2R2,

max
(R0,R1)∈Cd2 (q(y,z|x))

λ0R0 + λ1R1),

where O(ε) denotes a constant (depending only on |X |, |Y|,
|Z|) times ε.

Assume without loss of generality that H(M2) ≤ H(M1),
i.e. R2 ≤ R1. Let Ŵ =M0M2, X̂ = Xn, Ŷ = Y n, Ẑ = Zn.
Note that q(ŷ, ẑ|x̂) is the n-fold version of q(y, z|x). Let us
look at Cd1(q(ŷ, ẑ|x̂)), evaluated at the joint pmf p(ŵ, x̂):

R̂0 ≤ I(Ŵ ; Ẑ),

R̂1 ≤ I(X̂; Ŷ |Ŵ ),

R̂0 + R̂1 ≤ I(X̂; Ŷ ).

Note that, by Fano’s inequality,

I(Ŵ ; Ẑ) = I(M0M2;Z
n) = H(M0) +H(M2)−O(nε),

I(X̂; Ŷ |Ŵ ) = I(Xn;Y n|M0M2) = H(M1)−O(nε),

I(X̂; Ŷ ) = I(Xn;Y n) ≥ H(M0) +H(M1)−O(nε).

Therefore R̂0 = H(M0) +H(M2)−O(nε) = n(R0 +R2)−
O(nε) and R̂1 = H(M1) −H(M2) = n(R1 − R2) − O(nε)
is in Cd1(q(ŷ, ẑ|x̂)). Since q(ŷ, ẑ|x̂) is the n-fold version
of q(y, z|x) and Cd1(q(ŷ, ẑ|x̂)) is the degraded message set
capacity region for q(ŷ, ẑ|x̂), we must have: Cd1(q(ŷ, ẑ|x̂)) =
n · Cd1(q(y, z|x)), where the multiplication here is pointwise.
Thus, ( R̂0

n ,
R̂1

n ) ∈ Cd1(q(y, z|x)). We can complete the proof
by letting ε→ 0, and conclude that (R0 +R2, R1 −R2, 0) ∈
Cd1(q(y, z|x)), and thus also in the capacity region.

Proof of Theorem 4: Consider a natural number n, and
define the super symbols X̃ = X1X2...Xn, Ỹ = Y1Y2...Yn,
Z̃ = Z1Z2...Zn representing n-inputs and n-outputs of the
product broadcast channel

qn(y1y2...yn, z1z2...zn|x1x2...xn) =
n∏
i=1

q(yi, zi|xi).

Since the capacity region of the product channel qn(ỹ, z̃|x̃)
is n times the capacity region of q(y, z|x), we have
1
nCM (qn(y1y2...yn, z1z2...zn|x1x2...xn)) ⊂ C(q(y, z|x)).
Given an arbitrary joint pmf p(un, vn, wn, xn), one can
then show that the following region is an inner bound to



C(q(y, z|x)):

R0, R1, R2 ≥ 0,

R0 +R1 ≤
1

n
I(UnWn;Y n), (12)

R0 +R2 ≤
1

n
I(V nWn;Zn), (13)

R0 +R1 +R2 ≤
1

n

[
I(UnWn;Y n) + I(V n;Zn|Wn)

− I(Un;V n|Wn)
]
, (14)

R0 +R1 +R2 ≤
1

n

[
I(Un;Y n|Wn) + I(V nWn;Zn)

− I(Un;V n|Wn)
]
, (15)

2R0 +R1 +R2 ≤
1

n

[
I(UnWn;Y n) + I(V nWn;Zn)

− I(Un;V n|Wn)
]
, (16)

where Un, V n,Wn, Xn, Y n, Zn are distributed according to
p(un, vn, wn, xn)q(yn, zn|xn). Clearly if we assume that
(Un, V n,Wn, Xn) is n i.i.d. copies of p(u, v, w, x) we get
back the one-letter version of Marton’s inner bound.

Assume that

p(un, vn, wn) =

n∏
i=1

r(ui, vi, wi).

Note that Ui, Vi,Wi are i.i.d. copies of (U, V,W ) distributed
according to r(u, v, w). We further use the given conditional
law r(x|u1, v1, w1, u2, v2, w2) to define the joint distribution
of Xn given Un, V n,Wn as

p(xn2 |un, vn, wn) =
n∏
i=2

r(xi|ui−1, vi−1, wi−1, ui, vi, wi),

X1 = constant.

We then have

I(UnWn;Y n) = H(UnWn)−H(UnWn|Y n) =
n∑
i=1

H(UiWi)−H(UiWi|U i−1W i−1Y n) =

n∑
i=1

I(UiWi;U
i−1W i−1Y n) ≥

n∑
i=2

I(UiWi;Ui−1Wi−1YiYi−1)

= (n− 1)I(U2W2;Y1Y2U1W1).

Similarly I(V nWn;Zn) ≥ (n − 1)I(V2W2;V1W1Z1Z2).
Next, note that

I(V n;Zn|Wn) = H(V n|Wn)−H(V n|WnZn) =
n∑
i=1

H(Vi|Wi)−H(Vi|V i−1WnZn) =

n∑
i=1

I(Vi;V
i−1WnZn|Wi) ≥

n∑
i=2

I(Vi;Vi−1Wi−1ZiZi−1|Wi) =

(n− 1)I(V2;V1W1Z2Z1|W2).

Similarly, I(Un;Y n|Wn) ≥ (n − 1)I(U2;Y1Y2U1W1|W2).
Lastly, note that I(Un;V n|Wn) = n · I(U ;V |W ). We obtain
the desired result by substituting these values into equations
(12)-(16), and letting n→∞.
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APPENDIX A

Suppose p0(u, v, w, x) is a joint distribution that maximizes
λI(W ;Y ) + (1 − λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W ) −
I(U ;V |W ), and among all such joint distributions has the
largest value of I(W ;Y ) + I(W ;Z). In this appendix, we
prove that one can find p(û, v̂, ŵ, x̂) such that
• λI(W ;Y )+(1−λ)I(W ;Z)+I(U ;Y |W )+I(V ;Z|W )−
I(U ;V |W ) is equal to λI(Ŵ ; Ŷ ) + (1 − λ)I(Ŵ ; Ẑ) +

I(Û ; Ŷ |Ŵ ) + I(V̂ ; Ẑ|Ŵ )− I(Û ; V̂ |Ŵ ),
• I(W ;Y ) + I(W ;Z) is equal to I(Ŵ ; Ŷ ) + I(Ŵ ; Ẑ),
• |Û | ≤ min(|X |, |Y|),

http://arxiv.org/abs/0904.4541


• |V̂| ≤ min(|X |, |Z|),
• |Ŵ| ≤ |X |,
• H(X̂|Û V̂ Ŵ ) = 0.

We begin by reducing the cardinality of W . Assume that
|W| > |X | and p(w) 6= 0 for all w. There must therefore
exists a function L :W → R where

E[L(W )|X] = 0,

∃w : p(w) 6= 0, L(w) 6= 0.

Let us perturb p0(u, v, w, x) along L as follows:

pε(u, v, w, x, y, z) = p0(u, v, w, x, y, z) · [1 + εL(w)],

where ε is a real number in some interval [−ε1, ε2] for some
positive reals ε1 and ε2.

Consider the expression λI(W ;Y ) + (1 − λ)I(W ;Z) +
I(U ;Y |W )+ I(V ;Z|W )− I(U ;V |W ) at pε(u, v, w, x, y, z).
It can be verified that the expression is a linear function of
ε under this perturbation. Since a maximum of this expres-
sion occurs at ε = 0, which is a point strictly inside the
interval [−ε1, ε2], it must be the case that this expression
is a constant function of ε. Next consider the expression
I(W ;Y ) + I(W ;Z) at pε(u, v, w, x, y, z). It can be verified
that the expression is a linear function of ε under this per-
turbation. Note that p0(u, v, w, x) is a joint distribution that
has the largest value of I(W ;Y ) + I(W ;Z) among all joint
distributions that maximize λI(W ;Y ) + (1 − λ)I(W ;Z) +
I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ). Thus a maximum of
I(W ;Y ) + I(W ;Z) occurs at ε = 0, which is a point strictly
inside the interval [−ε1, ε2]. But this can only happen when
I(W ;Y ) + I(W ;Z) is a constant function of ε. Now, taking
ε = −ε1 or ε = ε2 gives us a joint distribution with the
same values of λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W ) +
I(V ;Z|W )− I(U ;V |W ) and I(W ;Y ) + I(W ;Z), but with
a smaller support on W . Using this argument, one can reduce
the cardinality of W to |X |.

Next, we show how one can reduce the cardinality of U to
find p(û, v̂, ŵ, x̂) such that
• λI(W ;Y )+(1−λ)I(W ;Z)+I(U ;Y |W )+I(V ;Z|W )−
I(U ;V |W ) is equal to λI(Ŵ ; Ŷ ) + (1 − λ)I(Ŵ ; Ẑ) +

I(Û ; Ŷ |Ŵ ) + I(V̂ ; Ẑ|Ŵ )− I(Û ; V̂ |Ŵ ),
• I(W ;Y ) + I(W ;Z) is equal to I(Ŵ ; Ŷ ) + I(Ŵ ; Ẑ),
• |Û | ≤ min(|X |, |Y|),
• |Ŵ| ≤ |X |.

We can repeat a similar procedure to impose the con-
straint |V̂| ≤ min(|X |, |Z|). Imposing the extra constraint
H(X̂|Û V̂ Ŵ ) = 0 will be discussed at the end.

If |X | ≤ |Y|, establishing the cardinality bound of |X | on
U suffices. This cardinality bound is proved in Theorem 1 of
[8]. This cardinality bound can be shown using perturbations
of the type L : U ×W → R where

E[L(U,W )|WX] = 0.

Note that these perturbations preserve the marginal distribution
of p(w, x), and thus also I(W ;Y )+I(W ;Z). The interesting

case is therefore when |X | > |Y|. Assume that |U| > |Y|. If
for every w ∈ W , p(u|w) 6= 0 for at most |Y| elements u, we
are done, since we can relabel the elements in the range of
U to ensure that only an alphabet of size at most |Y| is used,
without affecting any of the mutual information terms in the
expression of interest. There must therefore exists a function
L : U ×W → R where

E[L(U,W )|WY ] = 0,

∃(u,w) : p0(u,w) 6= 0, L(u,w) 6= 0.

Let us perturb p0(u, v, w, x) along the random variable L : U×
W → R. Random variables Ũ , Ṽ , W̃ , X̃, Ỹ , Z̃ are distributed
according to pε(ũ, ṽ, w̃, x̃, ỹ, z̃) defined as follows

pε(ũ, ṽ, w̃, x̃, ỹ, z̃) = p0(ũ, ṽ, w̃, x̃, ỹ, z̃) · [1 + εL(ũ, w̃)],

where ε is a real number in some interval [−ε1, ε2].
The first derivative of λI(W ;Y ) + (1 − λ)I(W ;Z) +

I(U ;Y |W ) + I(V ;Z|W ) − I(U ;V |W ) with respect to ε, at
ε = 0 should be zero. Since

λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W )

+I(V ;Z|W )− I(U ;V |W ) =

λ
(
H(W ) +H(Y )−H(WY )

)
+(1− λ)

(
H(W ) +H(Z)−H(WZ)

)
+

H(YW ) +H(ZW )−H(UYW )

−H(V ZW ) +H(UVW )−H(W ),

we will have:

λ
(
HL(W ) +HL(Y )−HL(WY )

)
+

(1− λ)
(
HL(W ) +HL(Z)−HL(WZ)

)
+HL(YW ) +HL(ZW )−HL(UYW )

−HL(V ZW ) +HL(UVW )−HL(W ) = 0,

where HL(W ) denotes
∑
w E[L|W = w]p(w) log 1

p(w) and
similarly for the other terms. Using Lemma 2 of [8], we have:

λI(W̃ ; Ỹ ) + (1− λ)I(W̃ ; Z̃) + I(Ũ ; Ỹ |W̃ )

+I(Ṽ ; Z̃|W̃ )− I(Ũ ; Ṽ |W̃ ) =

λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W )

+I(V ;Z|W )− I(U ;V |W ) +

λ
(
− E

[
r
(
ε · E[L|W ]

)]
− E

[
r
(
ε · E[L|Y ]

)]
+E
[
r
(
ε · E[L|WY ]

)])
+

(1− λ)
(
− E

[
r
(
ε · E[L|W ]

)]
− E

[
r
(
ε · E[L|Z]

)]
+E
[
r
(
ε · E[L|WZ]

)])
+

−E
[
r
(
ε · E[L|YW ]

)]
− E

[
r
(
ε · E[L|ZW ]

)]
+E
[
r
(
ε · E[L|UYW ]

)]
+ E

[
r
(
ε · E[L|VWZ]

)]
−E
[
r
(
ε · E[L|UVW ]

)]
+ E

[
r
(
ε · E[L|W ]

)]
,



where r(x) = (1+x) log(1+x). Since E[L(U,W )|WY ] = 0,
and L is a function of UW , we have:

λI(W̃ ; Ỹ ) + (1− λ)I(W̃ ; Z̃) + I(Ũ ; Ỹ |W̃ )

+I(Ṽ ; Z̃|W̃ )− I(Ũ ; Ṽ |W̃ ) =

λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W )

+I(V ;Z|W )− I(U ;V |W ) +

(1− λ)
(
− E

[
r
(
ε · E[L|Z]

)]
+ E

[
r
(
ε · E[L|WZ]

)])
−E
[
r
(
ε · E[L|ZW ]

)]
+ E

[
r
(
ε · E[L|VWZ]

)]
.

Since r(x) = (1+x) log(1+x) is a convex function, we have

−E
[
r
(
ε · E[L|Z]

)]
+ E

[
r
(
ε · E[L|WZ]

)]
≥ 0,

−E
[
r
(
ε · E[L|WZ]

)]
+ E

[
r
(
ε · E[L|VWZ]

)]
≥ 0.

Therefore for any ε ∈ [−ε1, ε2], we have

λI(W̃ ; Ỹ ) + (1− λ)I(W̃ ; Z̃) + I(Ũ ; Ỹ |W̃ )

+I(Ṽ ; Z̃|W̃ )− I(Ũ ; Ṽ |W̃ ) ≥
λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W )

+I(V ;Z|W )− I(U ;V |W ).

This implies that λI(W̃ ; Ỹ )+(1−λ)I(W̃ ; Z̃)+I(Ũ ; Ỹ |W̃ )+

I(Ṽ ; Z̃|W̃ ) − I(Ũ ; Ṽ |W̃ ) is a constant function of ε. The
maximum of I(W̃ ; Ỹ )+ I(W̃ ; Z̃) as a function of ε occurs at
ε = 0. Therefore

IL(W ;Y ) + IL(W ;Z) = 0,

where IL(W ;Y ) denotes
∑
u,w,y p(u,w, y)L(u,w) log

p(w,y)
p(w)p(y) ,

etc. (see Lemma 2 of [8]).
Using Lemma 2 of [8], one can observe that [I(W̃ ; Ỹ ) +

I(W̃ ; Z̃)]− [I(W ;Y ) + I(W ;Z)] equals

−E
[
r
(
ε · E[L|Z]

)]
+ E

[
r
(
ε · E[L|WZ]

)]
≥ 0.

But this can only happen when I(W̃ ; Ỹ ) + I(W̃ ; Z̃) is a
constant function of ε. Now, taking ε = −ε1 or ε = ε2 gives us
auxiliary random variable (Ũ , W̃ ) with smaller support than
that of (U,W ). We can continue this process as long as there
exists w ∈ W , such that p(u|w) 6= 0 for more than |Y|
elements u.

It remains to show that one can impose the extra constraint
H(X̂|Û V̂ Ŵ ) = 0. Fix p(u, v, w). Consider the expressions
λI(W ;Y ) + (1 − λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W ) −
I(U ;V |W ) and I(W ;Y ) + I(W ;Z) as functions of the
conditional distribution of r(x|u, v, w). We know that for in-
stance that the former expression is maximized at p(x|u, v, w).
Further, the extreme points of the corresponding region for
r(x|u, v, w) satisfy r(x|u, v, w) ∈ {0, 1}. Both of the expres-
sions are convex functions of r(x|u, v, w). This is because
I(W ;Y ) is convex in the conditional distribution p(y|w);
similarly I(U ;Y |W = w) is convex for any fixed value of
w. The term I(U ;V |W ) that appears with a negative sign is
constant since the joint distribution of p(u, v, w) is fixed.

We can express p(x|u, v, w) as a linear combination of
the extreme points of the region formed by all conditional

distributions r(x|u, v, w). Since the maximum of λI(W ;Y )+
(1 − λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W ) − I(U ;V |W )
occurs at some p(x|u, v, w) and the expression is convex in
r(x|u, v, w), the maximum must also occur at all the extreme
points showing up in the linear combination. One can use the
convexity of I(W ;Y )+ I(W ;Z) in r(x|u, v, w) to show that
the value of I(W ;Y ) + I(W ;Z) at all these extreme points
must be also equal to that at p(x|u, v, w).

APPENDIX B

In this Appendix we complete the proof of Theorem 1 by
proving that p(X̃ = x|U = ui) = p(X = x|U = ui) for all
i = 1, 2, 3, ..., |U| and x; and similarly p(X̃ = x|V = vj) =
p(X = x|V = vj) for all j = 1, 2, 3, ..., |V| and x.

Note that

p(X̃ = x|U = ui) =∑
j p(V = vj |U = ui)p(X̃ = x|U = ui, V = vj) =∑

j p(V = vj |U = ui)
∑M
k=0 p(Ti,j = k)1[ξk(ui, vj) = x] =∑

j p(V = vj |U = ui)(1− ε
πi,j

)1[ξ0(ui, vj) = x] +∑
j p(V = vj |U = ui)

∑M
k=1

ε
πi,j

αk1[ξk(ui, vj) = x] =∑
j p(V = vj |U = ui)(

πi,j−ε
πi,j

)1[ξ0(ui, vj) = x] +∑M
k=1

∑
j p(V = vj |U = ui)

ε
πi,j

αk1[ξk(ui, vj) = x].

Note that p(V = vj |U = ui) =
p(V=vj ,U=ui)

p(U=ui)
=

πi,j

p(U=ui)
.

Therefore

p(X̃ = x|U = ui) =∑
j

πi,j−ε
p(U=ui)

1[ξ0(ui, vj) = x] +∑M
k=1

∑
j

ε
p(U=ui)

αk1[ξk(ui, vj) = x] =∑
j

πi,j

p(U=ui)
1[ξ0(ui, vj) = x]

− ε
p(U=ui)

∑
j 1[ξ0(ui, vj) = x] +

ε
p(U=ui)

∑M
k=1 αk

∑
j 1[ξk(ui, vj) = x].

But since

−→vξ0 =

M∑
t=1

αt
−→vξt ,

the profiles of the ith rows must also satisfy the same property:

∑
j

1[ξ0(ui, vj) = x] =

M∑
k=1

αk
∑
j

1[ξk(ui, vj) = x].

Therefore,

p(X̃ = x|U = ui) =∑
j

πi,j

p(U=ui)
1[ξ0(ui, vj) = x] + 0− 0 =∑

j
πi,j

p(U=ui)
1[ξ0(ui, vj) = x] = p(X = x|U = ui).

The equation p(X̃ = x|V = vj) = p(X = x|V = vj) for
all j = 1, 2, 3, ..., |V| and x can be proved similarly.



APPENDIX C
Note that

p(X̃ = x0|U = ui, Ti,j = 0) =

p(X̃ = x0|U = ui, Ti,j = 0, V = vj)p(V = vj |U = ui, Ti,j = 0)

+

p(X̃ = x0|U = ui, Ti,j = 0, V 6= vj)p(V 6= vj |U = ui, Ti,j = 0).

Since under the event (U, V ) = (ui, vj) and Ti,j = 0, X̃ is
equal to x0, the term p(X̃ = x0|U = ui, Ti,j = 0, V = vj)
will be equal to one. Since (U, V ) is independent of Ti,j , we
have

p(V = vj |U = ui, Ti,j = 0) = p(V = vj |U = ui),

p(V 6= vj |U = ui, Ti,j = 0) = p(V 6= vj |U = ui).

Lastly p(X̃ = x0|U = ui, Ti,j = 0, V 6= vj) is equal to
p(X̃ = x0|U = ui, V 6= vj) since under the event that (U =

ui, V 6= vj), X̃ will be independent of Ti,j (note that T·,·
random variables were mutually independent of each other).
Therefore,

p(X̃ = x0|U = ui, Ti,j = 0) = (17)
p(V = vj |U = ui) +

p(X̃ = x0|U = ui, V 6= vj)p(V 6= vj |U = ui).

Next, note that

p(X̃ = x0|U = ui, Ti,j = 1) =

p(X̃ = x0|U = ui, Ti,j = 1, V = vj)p(V = vj |U = ui, Ti,j = 1)+

p(X̃ = x0|U = ui, Ti,j = 1, V 6= vj)p(V 6= vj |U = ui, Ti,j = 1).

Since under the event (U, V ) = (ui, vj) and Ti,j = 1, X̃ is
equal to x1, the term p(X̃ = x0|U = ui, Ti,j = 1, V = vj)
will be equal to zero. Following an argument like above, one
can show that

p(X̃ = x0|U = ui, Ti,j = 1) = (18)

0 + p(X̃ = x0|U = ui, V 6= vj)p(V 6= vj |U = ui).

Comparing equations (17) and (18), and noting that p(V =
vj |U = ui) > 0, we conclude that

p(X̃ = x0|U = ui, Ti,j = 0) 6= p(X̃ = x0|U = ui, Ti,j = 1).

The proof for

p(X̃ = x1|U = ui, Ti,j = 0) 6= p(X̃ = x1|U = ui, Ti,j = 1)

is similar.
It remains to show that for any x /∈ {x0, x1},

p(X̃ = x|U = ui, Ti,j = 0) = p(X̃ = x|U = ui, Ti,j = 1).

Note that

p(X̃ = x|U = ui, Ti,j = 1) =

p(X̃ = x|U = ui, Ti,j = 1, V = vj)p(V = vj |U = ui, Ti,j = 1)+

p(X̃ = x|U = ui, Ti,j = 1, V 6= vj)p(V 6= vj |U = ui, Ti,j = 1) =

0 + p(X̃ = x|U = ui, V 6= vj)p(V 6= vj |U = ui) =

p(X̃ = x|U = ui, Ti,j = 0).

APPENDIX D

We prove the statement by contradiction. Assume that

p(Ỹ = y|U = ui, Ti,j = 0) = p(Ỹ = y|U = ui, Ti,j = 1).

We have

p(Ỹ = y|U = ui, Ti,j = 0) =

p(Ỹ = y|U = ui, Ti,j = 0, X̃ = x0)p(X̃ = x0|U = ui, Ti,j = 0)+

p(Ỹ = y|U = ui, Ti,j = 0, X̃ = x1)p(X̃ = x1|U = ui, Ti,j = 0)+∑
x∈X ,x/∈{x0,x1}

(
p(Ỹ = y|U = ui, Ti,j = 0, X̃ = x)×

p(X̃ = x|U = ui, Ti,j = 0)
)
=

p(Ỹ = y|X̃ = x0)p(X̃ = x0|U = ui, Ti,j = 0)+

p(Ỹ = y|X̃ = x1)p(X̃ = x1|U = ui, Ti,j = 0)+∑
xX ,x/∈{x0,x1}

(
p(Ỹ = y|X̃ = x)p(X̃ = x|U = ui, Ti,j = 0)

)
.

Similarly,

p(Ỹ = y|U = ui, Ti,j = 1) =

p(Ỹ = y|X̃ = x0)p(X̃ = x0|U = ui, Ti,j = 1)+

p(Ỹ = y|X̃ = x1)p(X̃ = x1|U = ui, Ti,j = 1)+∑
xX ,x/∈{x0,x1}

(
p(Ỹ = y|X̃ = x)p(X̃ = x|U = ui, Ti,j = 1)

)
.

It was shown in Appendix C that

p(X̃ = x0|U = ui, Ti,j = 0) 6= p(X̃ = x0|U = ui, Ti,j = 1),

p(X̃ = x1|U = ui, Ti,j = 0) 6= p(X̃ = x1|U = ui, Ti,j = 1).

But for any x /∈ {x0, x1},

p(X̃ = x|U = ui, Ti,j = 0) = (19)

p(X̃ = x|U = ui, Ti,j = 1).

Thus, we must have

p(Ỹ = y|X̃ = x0)p(X̃ = x0|U = ui, Ti,j = 0) +

p(Ỹ = y|X̃ = x1)p(X̃ = x1|U = ui, Ti,j = 0) =

p(Ỹ = y|X̃ = x0)p(X̃ = x0|U = ui, Ti,j = 1) +

p(Ỹ = y|X̃ = x1)p(X̃ = x1|U = ui, Ti,j = 1).

This implies that

p(X̃=x0|U=ui,Ti,j=1)−p(X̃=x0|U=ui,Ti,j=0)

p(X̃=x1|U=ui,Ti,j=0)−p(X̃=x1|U=ui,Ti,j=1)
= p(Ỹ=y|X̃=x1)

p(Ỹ=y|X̃=x0)
.

Note that the nominator and denominator are positive by what
was proved in Appendix C.

On the other hand, we also have by equation (19):

p(X̃ = x0|U = ui, Ti,j = 0) +

p(X̃ = x1|U = ui, Ti,j = 0) =

p(X̃ = x0|U = ui, Ti,j = 1) +

p(X̃ = x1|U = ui, Ti,j = 1).



This implies that

p(X̃=x0|U=ui,Ti,j=1)−p(X̃=x0|U=ui,Ti,j=0)

p(X̃=x1|U=ui,Ti,j=0)−p(X̃=x1|U=ui,Ti,j=1)
= 1.

Hence,

p(Ỹ=y|X̃=x1)

p(Ỹ=y|X̃=x0)
= 1.

But we know that p(Ỹ = y|X̃ = x0) 6= p(Ỹ = y|X̃ = x1)
since the input values x0 and x1 are distinguishable by the Y
receiver. This is a contradiction.

APPENDIX E

The proof follows from the following two statements:
Statement 1: Assume that p∗(u, v, w, x) is an arbitrary

joint distribution maximizing λI(W ;Y ) + (1− λ)I(W ;Z) +
I(U ;Y |W )+I(V ;Z|W )−I(U ;V |W ), and having the largest
value of I(W ;Y ) + I(W ;Z) among all maximizing joint
distributions. For every w, p∗(x|w) must belong to the set
T (q(y, z|x)) defined as follows. Let T (q(y, z|x)) be the set
of pmfs on X , t(x), such that

max
p(u,v,w|x)t(x)q(y,z|x)

{
λI(W ;Y ) + (1− λ)I(W ;Z)

+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )
}

= max
p(u,v|x)t(x)q(y,z|x)

(I(U ;Y ) + I(V ;Z)− I(U ;V )),

and I(W ;Y ) = I(W ;Z) = 0 for any2 pmf p(u, v, w|x)t(x)
that maximizes the expression λI(W ;Y )+(1−λ)I(W ;Z)+
I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ).3

Statement 2: Let q(y, z|x) be a general broadcast channel,
and t(x) ∈ T (q(y, z|x)). Consider the maximization prob-
lem: maxp(u,v|x)t(x)q(y,z|x)(I(U ;Y ) + I(V ;Z) − I(U ;V )).
Assume that a maximum occurs at p∗(u, v|x). Then the
following holds for random variables (U, V,X, Y, Z) ∼
p∗(u, v|x)t(x)q(y, z|x):
• I(U ;Y ) ≥ I(U ;V Z) for every U → U → V XY Z.
• I(V ;Z) ≥ I(V ;UY ) for every V → V → UXY Z.

A. Proof of Statement 1:

Assume that the marginal pmf of X given W = w does not
belong to T for some w. By the definition then, at least one
of the following must hold:

Case 1: Corresponding to p∗X|W=w(x) is the conditional
distribution p(û, v̂, ŵ|x̂) such that

I(U ;Y |W = w) + I(V ;Z|W = w)− I(U ;V |W = w) <

λI(Ŵ ; Ŷ ) + (1− λ)I(Ŵ ; Ẑ) + I(Û ; Ŷ |Ŵ )

+ I(V̂ ; Ẑ|Ŵ )− I(Û ; V̂ |Ŵ ) (20)

where p(û, v̂, ŵ, x̂, ŷ, ẑ) = p(û, v̂, ŵ|x̂)p∗X|W=w(x̂)q(ŷ, ẑ|x̂).

2Note that such a pmf may not unique.
3We have used maximum and not supremum in the above conditions since

cardinality bounds on the auxiliary random variables exist [8].

Case 2: Corresponding to p∗X|W=w(x) is the conditional
distribution p(û, v̂, ŵ|x̂) such that

I(U ;Y |W = w) + I(V ;Z|W = w)− I(U ;V |W = w) =

λI(Ŵ ; Ŷ ) + (1− λ)I(Ŵ ; Ẑ) + I(Û ; Ŷ |Ŵ )

+ I(V̂ ; Ẑ|Ŵ )− I(Û ; V̂ |Ŵ )

but I(Ŵ ; Ŷ ) + I(Ŵ ; Ẑ) > 0, where p(û, v̂, ŵ, x̂, ŷ, ẑ) =
p(û, v̂, ŵ|x̂)p∗X|W=w(x̂)q(ŷ, ẑ|x̂).

Define Ũ , Ṽ , W̃ jointly distributed with U , V , W , X , Y , Z
as follows: whenever W 6= w, the random variables Ũ = U ,
Ṽ = V , W̃ = W . For W = w, the Markov chain Ũ Ṽ W̃ →
X → UVWY Z holds, and p(ũ, ṽ, w̃|x) = p(û, v̂, ŵ|x̂). Next,
assume that U ′ = Ũ , V ′ = Ṽ , W ′ =WW̃ .

If case 1 holds, we prove that λI(W ′;Y ) + (1 −
λ)I(W ′;Z)+ I(U ′;Y |W ′)+ I(V ′;Z|W ′)− I(U ′;V ′|W ′) >
λI(W ;Y ) + (1 − λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W ) −
I(U ;V |W ), which results in a contradiction. If case 2 holds,
we prove that λI(W ′;Y )+(1−λ)I(W ′;Z)+I(U ′;Y |W ′)+
I(V ′;Z|W ′)−I(U ′;V ′|W ′) = λI(W ;Y )+(1−λ)I(W ;Z)+
I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) but that I(W ′;Y ) +
I(W ′;Z) > I(W ;Y ) + I(W ;Z), which results in a contra-
diction.

Assume that case 1 holds. Since W ′ = WW̃ , I(W ′;Y ) =

I(W ;Y ) + I(W̃ ;Y |W ) and I(W ′;Z) = I(W ;Z) +

I(W̃ ;Z|W ), we need to show that

λI(W̃ ;Y |W ) + (1− λ)I(W̃ ;Z|W ) + I(Ũ ;Y |WW̃ ) +

I(Ṽ ;Z|WW̃ )− I(Ũ ; Ṽ |WW̃ ) >

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

Remember that whenever W 6= w, random variables Ũ , Ṽ ,
W̃ were defined to be equal to U , V , W . Therefore we need
to show that

p(W = w)
[
λI(W̃ ;Y |W = w) + (1− λ)I(W̃ ;Z|W = w) +

I(Ũ ;Y |W = w, W̃ ) + I(Ṽ ;Z|W = w, W̃ )

−I(Ũ ; Ṽ |W = w, W̃ )
]
>

p(W = w)
[
I(U ;Y |W = w) + I(V ;Z|W = w)

−I(U ;V |W = w)
]
.

On the event W = w, random variables Ũ , Ṽ , W̃ were defined
so that p(ũ, ṽ, w̃|x) is equal to p(û, v̂, ŵ|x̂). Furthermore the
marginal distribution of p(x̂) is p∗(x|W = w). Therefore
I(W̃ ;Y |W = w) = I(Ŵ ; Ŷ ), I(W̃ ;Z|W = w) = I(Ŵ ; Ẑ),
I(Ũ ;Y |W = w, W̃ ) = I(Û ; Ŷ |Ŵ ), etc. Thus it remains to
show that

λI(Ŵ ; Ŷ ) + (1− λ)I(Ŵ ; Ẑ) + I(Û ; Ŷ |Ŵ )

+I(V̂ ; Ẑ|Ŵ )− I(Û ; V̂ |Ŵ ) >

I(U ;Y |W = w) + I(V ;Z|W = w)− I(U ;V |W = w).

This holds because of equation (20). This concludes the proof
for case 1.



Now, assume that case 2 holds. Following, the above proof
for case 1, one can get

λI(W ′;Y ) + (1− λ)I(W ′;Z) + I(U ′;Y |W ′)
+I(V ′;Z|W ′)− I(U ′;V ′|W ′) ≥

λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W )

+I(V ;Z|W )− I(U ;V |W ).

Note that I(W ′;Y ) + I(W ′;Z) = I(W ;Y ) + I(W̃ ;Y |W ) +

I(W ;Z) + I(W̃ ;Z|W ). Thus, we need to show that
I(W̃ ;Y |W ) + I(W̃ ;Z|W ) > 0. Note that

I(W̃ ;Y |W ) + I(W̃ ;Z|W ) =

p(W = w)
(
I(W̃ ;Y |W = w) + I(W̃ ;Z|W = w)

)
= p(W = w)

(
I(Ŵ ; Ŷ ) + I(Ŵ ; Ẑ)

)
> 0.

B. Proof of Statement 2:

Take an arbitrary U satisfying U → U → V XY Z. Let
Ŵ = U , Û = U , V̂ = V . Since t(x) ∈ T (q(y, z|x)), and
p∗(u, v|x) maximizes I(U ;Y ) + I(V ;Z) − I(U ;V ), we can
write:

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≥
λI(Ŵ ;Y ) + (1− λ)I(Ŵ ;Z) + I(Û ;Y |Ŵ ) + I(V̂ ;Z|Ŵ )

− I(Û ; V̂ |Ŵ ), (21)

and furthermore if equality holds, we must have I(Ŵ ;Y ) =

I(Ŵ ;Z) = 0. We prove that this implies that I(U ;Y ) ≥
I(U ;V Z).

We can write:

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≥
λI(Ŵ ;Y ) + (1− λ)I(Ŵ ;Z) + I(Û ;Y |Ŵ ) + I(V̂ ;Z|Ŵ )

−I(Û ; V̂ |Ŵ ) =

λI(U ;Y ) + (1− λ)I(U ;Z) + I(U ;Y |U)

+I(V ;Z|U)− I(U ;V |U).

Since U → U → V XY Z, we have I(U ;Y ) = I(UU ;Y ) and
I(U ;V ) = I(UU ;V ). This implies that

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≥
λI(U ;Y ) + (1− λ)I(U ;Z) + I(V ;Z|U)

or,

I(U ;Y ) + I(V ;Z) ≥ λI(U ;Y ) + (1− λ)I(U ;Z) + I(V ;ZU)

or,

(1− λ)I(U ;Y ) ≥ (1− λ)I(U ;Z) + I(V ;U |Z).

In other words

(1− λ)I(U ;Y ) ≥ (1− λ)I(U ;V Z) + λI(V ;U |Z). (22)

Let us consider the following two cases:
• λ < 1: In this case, equation (22) implies that I(U ;Y ) ≥
I(U ;V Z) + λ

1−λI(V ;U |Z). This inequality implies the
desired inequality I(U ;Y ) ≥ I(U ;V Z).

• λ = 1: In this case, equation (22) implies that
I(V ;U |Z) = 0. Furthermore equation (21) will hold
with equality. Since t(x) ∈ T , we must have I(U ;Y ) =
I(U ;Z) = 0.
The fact that I(V ;U |Z) = I(U ;Y ) = I(U ;Z) = 0
implies that I(U ;Y ) = I(U ;ZV ) = 0. Therefore the
inequality I(U ;Y ) ≥ I(U ;ZV ) also holds in this case.

In each case, we are done. The proof for the inequality
I(V ;Z) ≥ I(V ;Y U) is similar.
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