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Instantaneous Mutual Information and
Eigen-Channels in MIMO Mobile Rayleigh Fading

Shuangquan Wang†, and Ali Abdi‡, Senior Member, IEEE

Abstract—In this paper, we study two important metrics in
multiple-input multiple-output (MIMO) time-varying Rayleigh
flat fading channels. One is the eigen-channel, and the other
is the instantaneous mutual information (IMI). Their second-
order statistics, such as the correlation coefficient, level crossing
rate (LCR), and average fade/outage duration, are investigated,
assuming a general nonisotropic scattering environment. Exact
closed-form expressions are derived and Monte Carlo simulations
are provided to verify the accuracy of the analytical results. For
the eigen-channels, we found they tend to be spatio-temporally
uncorrelated in large MIMO systems. For the IMI, the results
show that its correlation coefficient can be well approximated
by the squared amplitude of the correlation coefficient of the
channel, under certain conditions. Moreover, we also found the
LCR of IMI is much more sensitive to the scattering environment
than that of each eigen-channel.

Index Terms—Eigen-channels, Instantaneous Mutual Informa-
tion, Autocorrelation Function, Correlation Coefficient, Level
Crossing Rate, Average Fade/Outage Duration, and Multiple-
Input Multiple-Output (MIMO).

I. INTRODUCTION

THE utilization of antenna arrays at the base station (BS)
and the mobile station (MS) in a wireless communication

system increases the capacity linearly with min(NT , NR),
under certain conditions, where NT and NR are numbers
of transmit and receive antenna elements, respectively, pro-
vided that the environment is sufficiently rich in multi-path
components [1][2]. This is due to the fact that a multiple-
input multiple-output (MIMO) channel can be decomposed
to several parallel single-input single-output (SISO) channels,
called eigen-channels, via singular value decomposition (SVD)
[2]–[9].

For a SISO channel, or any subchannel1 of a MIMO system,
there are numerous studies on key second-order statistics
such as correlation, level crossing rate (LCR), and average
fade duration (AFD) [10]–[14]. However, to the best of our
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1In this paper, each subchannel represents the radio link between each

transmit/receive pair of antennas.

knowledge, no such study on the eigen-channels of a MIMO
system is reported in the literature, possibly due to the lack
of knowledge regarding the joint probability density function
(PDF) of eigen-channels.

Regarding another important quantity, the instantaneous
mutual information (IMI), only some first-order statistics such
as the mean, variance, outage probability and PDF are studied
[9][15]–[18]. Clearly, those statistics do not show the dynamic
temporal behavior, such as correlations, LCR and average
outage durations (AOD) of the IMI in time-varying fading
channels. It is known that IMI can be feedbacked to the
rate scheduler in multi-user communication environments, to
increase the system throughput [16], where only the perfect
feedback is considered. However, it is hard to obtain perfect
feedback in practice due to the time-varying nature of the
channel, which makes the feedbacked IMI outdated. In this
case, the temporal correlation of IMI can be used to analyze
the scheduling performance with outdated IMI feedbacks.
Furthermore, one can improve the rate scheduling algorithm
by exploring the temporal correlation of IMI.

Several second-order statistics such as the correlation co-
efficient, LCR and AOD of IMI in single-input single-output
(SISO) systems are reported in [19]. However, there are a
limited number of results for a general MIMO channel. In [ 20],
some simulation results regarding the correlation coefficient,
LCR and AOD are reported, without analytical derivations. In
[21], lower and upper bounds, as well as some approximations
for the correlation coefficient of IMI are derived, without exact
results at high SNR. A large gap between the lower and upper
bounds and large approximation errors are observed in [ 21,
Figs. 2, 5].

In this paper, we study the general MIMO case using the
joint PDF of the eigenvalues [22]. Specifically, a number of
second-order statistics such as the autocorrelation function
(ACF), the correlation coefficient, LCR and AFD/AOD2 of
the eigen-channels and the IMI are studied in MIMO time-
varying Rayleigh flat fading channels. We assume all the
subchannels are spatially independent and identically dis-
tributed (i.i.d.), with the same temporal correlation coefficient,
considering general nonisotropic scattering propagation envi-
ronments. Closed-form expressions are derived, and Monte
Carlo simulations are provided to verify the accuracy of our
closed-form expressions. The simulation and analytical results
show that the eigen-channels tend to be spatio-temporally
uncorrelated in large MIMO systems, and the correlation

2Note that AFD is used for eigen-channels, whereas AOD is used for MIMO
IMI.
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coefficient of the IMI can be well approximated by the squared
amplitude of the correlation coefficient of the channel if
|NT − NR| is much larger than min (NT , NR). In addition,
we also observed that the LCR of IMI is much more sensitive
to the scattering environment than that of each eigen-channel.

The rest of this paper is organized as follows. Section
II introduces the channel model, as well as the angle-of-
arrival (AoA) model. Eigen-channels of a MIMO system are
discussed in Section III, where Subsection III-A is devoted
to the derivation of the normalized ACF (NACF) and the
correlation coefficient of eigen-channels of a MIMO system,
whereas Subsection III-B focuses on the LCR and AFD of the
eigen-channels. The MIMO IMI is investigated in Section IV,
in which Subsection IV-A addresses the NACF and the corre-
lation coefficient of the MIMO IMI as well as their low- and
high-SNR approximations, whereas Subsection IV-B studies
the LCR and AOD of the MIMO IMI using the well-known
Gaussian approximation. Numerical results and discussions are
presented in Section V, and concluding remarks are given in
Section VI.

Notation: ·† is reserved for matrix Hermitian, ·� for complex
conjugate, j for

√−1, E[·] for mathematical expectation, Im

for the m×m identity matrix, ‖ · ‖F for the Frobenius norm,
and f 2(x) for [f(x)]2. Finally, t∈[m,n] implies that t, m and
n are integers such that m ≤ t ≤ n with m ≤ n.

II. CHANNEL MODEL

In this paper, an NR × NT MIMO time-varying Rayleigh
flat fading channel is considered. Similar to [15], we consider
a piecewise constant approximation for the continuous-time
MIMO fading channel matrix coefficient H(t), represented by
{H(lTs)}L

l=1, where Ts is the symbol duration and L is the
number of samples. In the sequel, we drop Ts to simplify the
notation. In the lth symbol duration, the matrix of the channel
coefficients is given by

H(l) =

⎡⎢⎣ h1,1(l) · · · h1,NT (l)
...

. . .
...

hNR,1(l) · · · hNR,NT (l)

⎤⎥⎦ , l ∈ [1, L]. (1)

We assume all the NTNR subchannels
{hnr,nt(l), l ∈ [1, L]}(NR,NT )

(nr=1,nt=1) are i.i.d., with the same
temporal correlation coefficient, i.e.,

E[hmn(l)h�
pq(l − i)] = δm,pδn,qρh(i), (2)

where the Kronecker delta δm,p is 1 or 0 when m = p or
m �= p, respectively, and ρh(i) is defined and derived at the
end of this section, eq. (4).

In flat Rayleigh fading channels, each hnr,nt(l), l ∈ [1, L],
is a zero-mean complex Gaussian random process. In the l th

interval, hnr ,nt(l) can be represented as [13]

hnr ,nt(l) = hI
nr,nt

(l) + jhQ
nr,nt

(l),
= αnr,nt(l) exp[−jΦnr,nt(l)],

(3)

where the zero-mean real Gaussian random processes
hI

nr,nt
(l) and hQ

nr,nt
(l) are the real and imaginary parts of

hnr,nt(l), respectively. αnr ,nt(l) is the envelope of hnr ,nt(l)
and Φnr,nt(l) is the phase of hnr,nt(l). For each l, αnr ,nt(l)
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Figure 1. (a) A MIMO channel with NT transmit and NR receive antennas;
(b) The equivalent M parallel SISO channel representation.

has a Rayleigh distribution and Φnr ,nt(l) is distributed uni-
formly over [−π, π). Without loss of generality, we assume
each subchannel has unit power, i.e., E[α2

nr ,nt
(l)] = 1.

Using empirically-verified [13] multiple von Mises PDF’s
[19, (4)] for the AoA at the receiver in nonisotropic scattering
environments, shown as Fig. 1 of [19], the channel correlation
coefficient of hnr ,nt(l), ∀nr, nt, is given by [19, (7)]

ρh(i) = E[hnr,nt(l)h
�
nr,nt

(l − i)],

=
N∑

n=1

Pn

I0

(√
κ2

n − 4π2f2
Di

2T 2
s + j4πκnfDiTs cos θn

)
I0(κn)

, (4)

where Ik(z) = 1
π

� π

0 ez cos w cos(kw)dw is the kth order
modified Bessel function of the first kind, θn is the mean AoA
of the nth cluster of scatterers, κn controls the width of the nth

cluster of scatterers, Pn represents the contribution of the n th

cluster of scatterers such that
∑K

n=1 Pn = 1, 0 < Pn ≤ 1, K
is the number of clusters of scatterers, and fD is the maximum
Doppler frequency. When κn = 0, ∀n, which corresponds to
isotropic scattering, (4) reduces to ρh(i) = I0(j2πfDiTs) =
J0(2πfDiTs), which is the Clarke’s correlation model. In

(4), I0

(√
κ2

n − 4π2f2
Di

2T 2
s + j4πκnfDiTs cos θn

)
/I0(κn) is

the correlation of the nth cluster, and the overall channel
correlation is a weighted sum of correlations from all clusters.

III. EIGEN-CHANNELS IN MIMO SYSTEMS

We set M = min (NT , NR) and N = max (NT , NR). Based
on singular value decomposition (SVD) [2]–[9], H(l) in (1)
can be diagonalized in the following form

H(l) = U(l)S(l)V†(l), (5)

where V(l), whose dimension is NT × M , satisfies
V†(l)V(l) = IM , U(l), which is NR × M , satisfies
U†(l)U(l) = IM , and S(l) is a diagonal matrix, given by
S(l) = diag [s1(l), · · · , sM (l)], in which sm(l), m ∈ [1,M ]
is the mth non-zero singular value of H(l).

We define λm(l) = s2m(l), ∀m. Therefore λm(l) is the
mth non-zero eigenvalue of H(l)H†(l). We further consider
{λm(l)}M

m=1 as unordered non-zero eigenvalues of H(l)H †(l).
Therefore, the MIMO channel H(l) is decomposed to M
identically distributed eigen-channels, {λm(l), l ∈ [1, L]}M

m=1,
by SVD, as shown in Fig. 1. For M = 1, there is only
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one eigen-channel, which corresponds to the maximal ratio
transmitter (MRT) if NR = 1, or the maximal ratio combiner
(MRC) if NT = 1. In each case, we have N i.i.d complex
Gaussian branches.

Since all the eigen-channels have identical statistics, we
only study one of them and denote it as λ(l), l ∈ [1, L]. To
simplify the notation, we use X and Y to denote λ(l) and
λ(l − i), respectively. The joint PDF of X and Y is given in
(4.11) of [22],

p(x, y) =
(xy)

ν
2 e

− x+y

1−�2
i Iν

(
2�i

√
xy

1−�2
i

)
M2(1 − 
2

i )

ν
i

M−1∑
k=0

k!Lν
k(x)Lν

k(y)
(k + ν)!
2k

i

+
(xy)νe−(x+y)

M2

M−1∑
0≤k<l

{
k!l!

(k + ν)!(l + ν)!

×
[

[Lν
k(x)Lν

l (y)]2 + [Lν
l (x)Lν

k(y)]2

−
(


2(l−k)
i + 


2(k−l)
i

)
Lν

k(x)Lν
l (x)Lν

k(y)Lν
l (y)

]}
, (6)

where Lα
n(x) = 1

n!e
xx−α dn

dxn (e−xxn+α) is the associated
Laguerre polynomial of order n [23, pp. 1061, 8.970.1],
ν = N −M , and 
i = |ρh(i)|, where ρh(i) is given in (4).
Lemma 7 shows that (6) can be rewritten as the product of the
two marginal PDFs plus a cross term. The cross term indicates
that two eigen-values at different time indices are dependent.

The joint PDF in (6) is very general and includes many
existing PDF’s as special cases [22].

• By integration over y, (6) reduces to the marginal PDF

p(x) =
1
M

M−1∑
m=0

m!
(m+ ν)!

[Lν
m(x)]2 xνe−x, (7)

which is the same as the PDF presented in [2]. When
M = 1, (7) further reduces to

p(x) =
1

(N − 1)!
xN−1e−x, (8)

which is the χ2 distribution with 2N degrees of freedom
[24, (2.32)], used for characterizing the PDF of outputs
of MRT or MRC [25].

• With M = 1, (6) reduces to

p(x, y) =
(xy)

N−1
2 exp

(
− x+y

1−�2
i

)
IN−1

(
2�i

√
xy

1−�2
i

)
(N − 1)! (1−
2

i ) 

N−1
i

, (9)

which is the joint PDF of outputs of MRT or MRC at the
lth and (l− i)th symbol durations [26]. It includes (3.14)
of [24] as a special case3. Furthermore, when N = 1,
i.e., a SISO channel, (9) simplifies to

p(x, y) =
1

1−
2
i

exp
(
− x+y

1−
2
i

)
I0

(
2
i

√
xy

1−
2
i

)
, (10)

which is identical to (8-103) [27, pp. 163], after a one-
to-one nonlinear mapping.

3Eq. (3.14) in [24] is developed for real uncorrelated Gaussian random
variables.

In the following subsections, we study the normalized cor-
relation and correlation coefficient of any two eigen-channels,
defined by, respectively,

r̃m,n(i) =
E [λm(l)λn(l − i)]√

E [λ2
m(l)]

√
E [λ2

n(l − i)]
, (11)

and

ρm,n(i) =
E [λm(l)λn(l − i)] − E [λm(l)] E [λn(l − i)]√

E [λ2
m(l)] − {E [λm(l)]}2/√

E [λ2
n(l − i)] − {E [λn(l − i)]}2 , (12)

A. Normalized Correlation and Correlation Coefficient of
Eigen-Channels

To derive the normalized correlation and correlation coeffi-
cient between any two eigen-channels, we need the following
lemmas.

Lemma 1: The first and second moments of the mth eigen-
channel are respectively given by

E[λm(l)] = N, (13)

E[λ2
m(l)] = N(N +M). (14)

Proof: See Appendix A.
Lemma 2: The autocorrelation of the mth eigen-channel,

defined as rm,m(i) = E [λm(l)λm(l − i)], is given by

rm,m(i) = N2 +
N
2

i

M
, i �= 0. (15)

Proof: See Appendix B
Lemma 3: The cross-correlation between the mth and nth

eigen-channels, defined as rm,n(i) = E [λm(l)λn(l − i)], is
given by

rm,n(i) =

{
N2 −N, i = 0,

N2 + N�2
i

M , i �= 0,
n �= m. (16)

Proof: See Appendix C.
Based on Lemmas 1-3, we obtain the closed-form expres-

sions for (11) and (12), which are given in the following
theorem.

Theorem 1: The normalized cross-correlation and the corre-
lation coefficient betweenmth and nth eigen-channels, defined
in (11) and (12), are respectively given by

r̃m,n(i) =

{
N+M−(M+1)(1−δm,n)

N+M , i = 0,
MN+�2

i

MN+M2 , i �= 0,
(17)

and

ρm,n(i) =

{
1 − M+1

M (1 − δm,n) , i = 0,
�2

i

M2 , i �= 0.
(18)

Proof: Lemma 1 shows that the eigen-channel is sta-
tionary in the wide sense. Moreover, all the eigen-channels
have the same statistics, therefore we have E [λn(l − i)] =
E [λm(l)] and E

[
λ2

n(l − i)
]

= E
[
λ2

m(l)
]
, ∀m,n ∈ [1,M ] and

∀l, i. By plugging (14)-(15) into (11), we obtain (17). Finally,
substitution of (13)-(15) into (12) results in (18).
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According to (17) and (18), one can see correlations at
non-zero lags do not depend on the channel indices m and
n. Moreover, at lag zero, correlations have two values only,
one for m = n and the other for m �= n. We also have the
following observations with regard to (17) and (18).

• If M is greater than 1, the normalized correlation and
the correlation coefficient are not continuous at i = 0,
as r̃m,n(1) and ρm,n(1) do not converge to r̃m,n(0) =
ρm,n(0) = 1 as Ts → 0, ∀m,n. This is because the
eigenvalues are not ordered.

• If M is large, all the M eigen-channels tend to be spatio-
temporally uncorrelated, due to

lim
M→∞

ρm,n(i) = δm,nδi,0. (19)

As an example, with isotropic scattering, (17) and (18),
respectively, reduce to

r̃m,n(i) =

{
N+M−(M+1)(1−δm,n)

N+M , i = 0,
MN+J2

0 (2πfDiTs)
MN+M2 , i �= 0,

(20)

and

ρm,n(i) =

{
1 − M+1

M (1 − δm,n) , i = 0,
J2
0 (2πfDiTs)

M2 , i �= 0,
(21)

B. LCR and AFD of an Eigen-Channel

In this subsection, we calculate the LCR and AFD of an
eigen-channel at a given level. To simplify the notation, the
eigen-channel index m is dropped in this subsection, as the
derived LCR and AFD results hold for any eigen-channel.

1) LCR of an Eigen-Channel: Similar to the calculation of
zero crossing rate in discrete time [28, Ch. 4], we define the
binary sequence {Zl}L

l=1, based on the eigen-channel samples
{λ(l)}L

l=1, as

Zl =

{
1, if λ(l) ≥ λth,

0, if λ(l) < λth,
(22)

where λth is a fixed threshold. The number of crossings of
{λ(l)}L

l=1 with λth, within the time interval Ts ≤ t ≤ LTs,
denoted by Dλth , can be defined in terms of {Zl}L

l=1 [28,
(4.1)]

Dλth =
L∑

l=2

(Zl − Zl−1)
2 , (23)

which includes both up- and down-crossings.
After some simple manipulations, the expected crossing rate

at the level λth can be written as

E[Dλth ]
(L− 1)Ts

=
2Pr{Zl = 1} − 2Pr{Zl = 1, Zl−1 = 1}

Ts
, (24)

where Pr{·} is the probability of an event. Therefore, the
expected down crossing rate at λ th, denoted by Nλ(λth), is
half of (24), given by

Nλ(λth) =
φλ(λth) − ϕλ(λth)

Ts
, (25)

where φλ(λth) = Pr{Zl = 1} and ϕλ(λth) = Pr{Zl =
1, Zl−1 = 1}. Analytical expressions for φλ(λth) and ϕλ(λth)
are stated in the following theorem.

Theorem 2: For a given threshold λ th, φλ(λth) and ϕλ(λth)
are, respectively, given by

φλ(λth)=
1
M

M−1∑
m=0

m∑
p=0

m∑
q=0

m!
(
m+ν
m−p

)(
m+ν
m−q

)
Γ(p+q+ν+1, λth)

(m+ν)!p!q!(−1)p+q
,

(26)
and

ϕλ(λth) = φ2
λ(λth) +

1
M2

∞∑
j=M

M−1∑
k=0

{
j!k!
2(j−k)

1

(j + ν)!(k + ν)!

×
[

j∑
p=0

k∑
q=0

(
j+ν
j−p

)(
k+ν
k−q

)
p!q!(−1)p+q

Γ(p+ q + ν + 1, λth)

]2
⎫⎬⎭ , (27)

where Γ(a, z) =
�∞

z
ta−1e−tdt [23, pp. 949, 8.350.2] is

the upper incomplete gamma function,
(
n
k

)
is the binomial

coefficient, given by n!
k!(n−k)! , and 
1 = |ρh(1)|, defined

before, i.e.,


1 =

∣∣∣∣∣∣
N∑

n=1

Pn

I0

(√
κ2

n−4π2f2
DT

2
s +j4πκnfDTs cos θn

)
I0(κn)

∣∣∣∣∣∣ . (28)

Proof: Lν
n(x) is a polynomial of order n, and can be

represented as [23, pp. 1061, 8.970.1]

Lν
n(x) =

n∑
k=0

(
n+ ν

n− k

)
(−x)k

k!
. (29)

By plugging (29) into (7), the univariate PDF of an eigen-
channel, and integrating over x from λ th to ∞, we obtain (26).
Similarly, substitution of (29) into (64), the bivariate PDF of
an eigen-channel, and integration over x from λ th to ∞ results
in (27).

By plugging (26) and (27) into (25), we obtain the expected
crossing rate at the level λth.

2) AFD of an Eigen-Channel: The cumulative distribution
function (CDF) of λ(l), ∀l, is obtained as

Fλ(λth) = Pr {X ≤ λth} = 1 − φλ(λth), (30)

where φλ(λth) is given in (26).
The AFD of the eigen-channel {λ(l)}L

l=1 is therefore given
by

tλ(λth) =
Fλ(λth)
Nλ(λth)

=
[1 − φλ(λth)]Ts

φλ(λth) − ϕλ(λth)
, (31)

where φλ(λth) and ϕλ(λth) are given in (26) and (27),
respectively.

IV. MIMO IMI

In this section, the NACF, the correlation coefficient, LCR
and AOD of IMI in a MIMO system are investigated in
detail. In the presence of the additive white Gaussian noise, if
perfect channel state information {H(l)}L

l=1, is available at the
receiver only, the ergodic channel capacity is given by [ 2][9]

C = E

[
ln det

(
INR +

η

NT
HlH

†
l

)]
, (32)

in nats/s/Hz, where η is the average SNR at each receive
antenna, and Hl denotes H(l).



5

In the above equation, at any given time index l,
ln det

(
INR + η

NT
HlH

†
l

)
is a random variable as it depends

on the random channel matrix H l. Therefore

Il = ln det
(
INR +

η

NT
HlH

†
l

)
, l = 1, 2, · · · , (33)

is a discrete-time random process with the ergodic capacity as
its mean.

By plugging (5) into (33), we can express the IMI in terms
of M eigenvalues as

Il =
M∑

m=1

ln
(

1 +
η

NT
λm(l)

)
, l = 1, 2, · · · . (34)

A. NACF and Correlation Coefficient of MIMO IMI

In this subsection, we derive exact closed-form expression
fors the NACF and the correlation coefficient of MIMO IMI,
and their approximations at low- and high-SNR regimes, using
the following lemmas.

Lemma 4: The mean and second moment of I l are respec-
tively given by (35) and (36)

E[Il] =
M−1∑
m=0

m∑
p=0

m∑
q=0

m!
(
m+ν
m−p

)(
m+ν
m−q

)
(m+ν)!p!q!(−1)p+q

×G3,1
2,3

(
NT

η

∣∣∣∣ 0, 1
0, 0, p+ q + ν + 1

)
, (35)

E[I2
l ] = 2e

NT
η

M−1∑
m=0

m∑
p=0

m∑
q=0

p+q+ν∑
j=0

⎡⎢⎣(−1)ν−jm!
(
m+ν
m−p

)(
η

NT

)p+q+ν+1

×
(
m+ν
m−q

)(
p+q+ν

j

)
(m+ν)!p!q!

G4,0
3,4

(
NT

η

∣∣∣∣ −j,−j,−j
0,−j − 1,−j − 1,−j − 1

)]

−
M−1∑
j=0

M−1∑
k=0

j!k!
(j+ν)!(k+ν)!

[
j∑

p=0

k∑
q=0

(
j+ν
j−p

)(
k+ν
k−q

)
p!q!(−1)p+q

×G3,1
2,3

(
NT

η

∣∣∣∣ 0, 1
0, 0, p+q+ν+1

)]2

+ {E[Il]}2, (36)

where G is Meijer’s G function [23, pp. 1096, 9.301].
Proof: See Appendix D.

Lemma 5: The ACF of MIMO IMI, defined as rI(i) =
E[IlIl−i], is shown to be

rI(i) = {E[Il]}2 +
∞∑

j=M

M−1∑
k=0

{
j!k!
2(j−k)

i

(j+ν)!(k+ν)!
×

[
j∑

p=0

k∑
q=0

(
j+ν
j−p

)(
k+ν
k−q

)
p!q!(−1)p+q

G3,1
2,3

(
NT

η

∣∣∣∣ 0, 1
0, 0, p+q+ν+1

)]2
⎫⎬⎭. (37)

Proof: By plugging (29) into (64), and using (76), we
obtain (37) immediately.

With Lemmas 4 and 5, the NACF and the correlation
coefficient can be calculated according to

r̃I(i) =
rI(i)
E[I2

l ]
, (38)

and

ρI(i) =
rI(i) − {E[Il]}2

E[I2
l ] − {E[Il]}2

, (39)

by inserting (36) and (35) into (38), and (36), (35) and (37)
into (39), respectively.

In general, it seems difficult to further simplify (36), (35)
and (37). However, we note that

ln(1 + ωx) ≈
{
ωx, ω → 0,
ln(ωx), ω → ∞.

(40)

Using (40), we obtain asymptotic closed-form expressions
for the NACF, r̃I(i), and the correlation coefficient, ρI(i), at
low- and high-SNR regimes, as follows.

1) The Low-SNR Regime: If η → 0, based on (40), (34)
can be approximated by

Il ≈
M∑

m=1

η

NT
λm(l), (41)

which is the same as the low-SNR approximation of I l in a
MIMO system with orthogonal space-time block code (OS-
TBC) transmission [29], due to

∑M
m=1 λm(l) = tr

[
HlH

†
l

]
=

‖Hl‖2
F . Therefore, the NACF and correlation coefficient of

interest are equal to those derived for the OSTBC-MIMO
system at low SNRs, as stated in the following proposition.

Proposition 1: At the low-SNR regime, the NACF and the
correlation coefficient are given by [29]

r̃I(i) ≈ NRNT + 
2
i

NRNT + 1
, (42)

ρI(i) ≈ 
2
i . (43)

2) The High-SNR Regime: If η → ∞, based on (40), (34)
can be approximated by

Il ≈
M∑

m=1

ln
[
η

NT
λm(l)

]
, (44)

whose NACF and correlation coefficient are presented in the
following theorem.

Theorem 3: At high SNRs, the NACF and the correlation
coefficient are given by (45) and (46), respectively, where
pFq (a1, · · · , ap; b1, · · · , bq; z) is the generalized hypergeo-
metric function [23, pp. 1071, 9.14.1], ζ(·, ·) is the Riemann
zeta function, given by ζ(z, q) =

∑∞
k=0

1
(q+k)z [23, pp. 1101,

9.521.1], and ψk is the digamma function [23, pp. 954,
8.365.4].

Proof: See Appendix E.
Theorem 3 includes the high-SNR approximation for the

OSTBC-MIMO system in [29] as a special case. In fact, with
M = 1, (45) and (46) simplify to the corresponding resutls in
[29] by replacing N with MN , i.e.,

r̃I(i)≈
�2

i

MN 3F2

(
1, 1, 1; 2,MN+1; 
2

i

)
+
(
ψMN +ln η

NT

)2

ζ(2,MN) +
(
ψMN + ln η

NT

)2 ,

(49)

ρI(i)≈
�2

i

MN 3F2

(
1, 1, 1; 2,MN + 1; 
2

i

)
ζ(2,MN)

, (50)
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r̃I(i) ≈
∑M−1

m=0
M !(m+ν)!�

2(M−m)
i 4F3(M−m,M−m,M+1,1;M−m+1,M−m+1,N+1;�2

i )

(M−m)2N !m! +
(∑M−1

m=0ψN−m +M ln η
NT

)2

∑M−1
m=0 ζ(2, N −m) +

(∑M−1
m=0ψN−m +M ln η

NT

)2 , (45)

ρI(i) ≈
∑M−1

m=0
M !(m+ν)!�

2(M−m)
i

(M−m)2N !m! 4F3(M −m,M −m,M + 1, 1;M −m+ 1,M −m+ 1, N + 1; 
2
i )∑M−1

m=0 ζ(2, N −m)
, (46)

φI(Ith) =

M︷ ︸︸ ︷�
∏M

m=1

(
1+ η xm

NT

)
>exp(Ith)

∏M
m=1 x

ν
m

∏M
m<n(xm − xn)2

M !
∏M−1

m=0 m!(m+ ν)! exp
(∑M

m=1 xm

)
︸ ︷︷ ︸

p(x1,x2,··· ,xM)

M∏
m=1

dxm, (47)

ϕI(Ith) =

2M︷ ︸︸ ︷�
∏

M

m=1

(
1+ η xm

NT

)
>exp(Ith)∏

M

m=1

(
1+ η ym

NT

)
>exp(Ith)

∏M
m<n[(xm−xn)(ym−yn)]2

∏M
m=1(

√
xmym)ν det

∣∣∣Iν( 2�1
√

xmyn

1−�2
1

)∣∣∣
M !M !

∏M−1
m=0 m!(m+ ν)!
MN−M

1 (1 − 
2
1)M exp

(∑M

m=1
xm+ym

1−�2
1

)
︸ ︷︷ ︸

p(x1,x2,··· ,xM ,y1,y2,··· ,yM)

M∏
m=1

dxmdym. (48)

Table I
TAYLOR EXPANSION OF (46) AND THE MAXIMUM DIFFERENCE BETWEEN

(43) AND (46) FOR DIFFERENT (M, N)’S

(M, N) Taylor Series of (46) max0≤�i≤1 |(43) − (46)|‡

(1, 1) 0.608�2
i + 0.152�4

i + O(�6
i ) 0.160

(2, 2) 0.437�2
i + 0.218�4

i + O(�6
i ) 0.230

(3, 3) 0.372�2
i + 0.186�4

i + O(�6
i ) 0.274

(4, 4) 0.337�2
i + 0.168�4

i + O(�6
i ) 0.304

(4, 8) 0.725�2
i + 0.178�4

i + O(�6
i ) 0.085

...
...

...

(4, 12) 0.824�2
i + 0.135�4

i + O(�6
i ) 0.050

...
...

...

(4, 16) 0.870�2
i + 0.107�4

i + O(�6
i ) 0.036

‡ The maximum difference is calculated via the function FindMaximum
in Mathematica� .

where the identity 4F3 (1, 1, 1, 2; 2, 2,MN + 1;x) =
3F2 (1, 1, 1; 2,MN + 1;x) is used.

Based on Theorem 3, we conclude that if ν = 0 and M →
∞, (46) reduces to

lim
M→∞

ρI(i) =
− ln

(
1 − 
2

i

)
limp→∞

∑p
k=1

1
k

= δi,0, (51)

where we the first “=” is obtained by collecting the terms
in (46), and the second “=” is due to 
i < 1, i �= 0. We
conjecture that the second “=” of (51) holds for any finite ν
at high SNRs, i.e., limM→∞ ρI(i) = δi,0, ∀ν <∞. It implies
that MIMO IMI is asymptotically uncorrelated at high SNRs,
if the difference between the numbers of Tx and Rx antennas
is finite.

To better understand Theorem 3, the Taylor expansion of
(46) and the maximum difference between (43) and (46) is
listed in Table I, for different values of M and N . From Table
I, the following observations can be made.

• If ν = N−M is fixed, the maximum difference between
the low- and high-SNR approximations increases when
M increases, which is supported by the first four rows of
Table I, i.e., (M,N) = (1, 1), (2, 2), (3, 3), and (4, 4).

• From the last several rows of Table I, i.e., (M,N) =
(4, 4), (4, 8), (4, 12) and (4, 16), one may conclude that
if M is fixed, the maximum difference between the low-
and high-SNR approximations decreases as ν increases.
Furthermore, ρI(i) can be well approximated by 
2

i , with
negligible error for any SNR, when ν

M is not small.

B. LCR and AOD of MIMO IMI

The technique developed in Subsection III-B is also valid
for calculating the LCR and AOD of MIMO IMI, i.e., we can
obtain them by replacing φλ(λth) and ϕλ(λth) with φI(Ith) =
Pr{Il > Ith} and ϕI(Ith) = Pr{Il > Ith, Il−1 > Ith} in (25)
and (31), respectively. Therefore, we only need to calculate,
φI(Ith) and ϕI(Ith), which are presented in the following
theorem.

Theorem 4: At any given level Ith, φI(Ith) and ϕI(Ith) can
be expressed in terms of multiple integrals, given by (47) and
(48), respectively.

Proof: Let {Xm}M
m=1 and {Ym}M

m=1 be M un-
ordered eigenvalues of H(l)H†(l) and H(l − 1)H†(l −
1), respectively. Then the joint PDF of {Xm}M

m=1

is given by p(x1, x2, · · · , xM ) in (47) [30], and the
joint PDF of {Xm}M

m=1 and {Ym}M
m=1 is given by

p(x1, x2, · · · , xM , y1, y2, · · · , yM ) in (48) [22]. Moreover,
according to (34), the event {Il > Ith} is equivalent to{∏M

m=1

(
1 + η Xm

NT

)
> eIth

}
, which leads to (47). Similarly,

one can see that the two events, {Il > Ith, Il−1 > Ith}
and

{∏M
m=1

(
1 + η Xm

NT

)
> eIth ,

∏M
m=1

(
1 + η Ym

NT

)
> eIth

}
,

have the same probability, which results in (48).
Although (47) and (48) can be used to calculate the LCR and

AOD of MIMO IMI for small M ’s, e.g., M = 2, via numerical
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multiple integrals, it is impractical for large M ’s. Fortunately,
we can approximate Il as a Gaussian random variable for
large M ’s and N ’s, which is summarized in the following
proposition.

Proposition 2: If M and N are large, Il can be approxi-
mated as a Gaussian random variable with mean μI = E [Il]
and variance σ2

I = E
[I2

l

]−{E [Il]}2, where E [Il] and E
[I2

l

]
are given by (35) and (36), respectively [16]–[18]. Moreover,
we approximate Il and Il−i by a bivariate Gaussian random
vector with mean (E [Il] ,E [Il])

T and the covariance matrix

ΣI = σ2
I
(

1 ρI(i)
ρI(i) 1

)
, where ρI(i) is presented in (39).

An intuition explanation for Proposition 2 is that according
to (34), Il is the sum of M random variables. When M is
large, Il becomes approximately Gaussian according to the
central limit theorem. Based on Proposition 2, we have the
following theorem for the LCR and AOD of MIMO IMI.

Theorem 5: Using the Gaussian approximation, we can
express the LCR and AOD of MIMO IMI as

NI(Ith) =
1
πTs

� π
2

π
4 +

arcsin[ρI(1)]
2

exp

(
− Ĩ2

th

2 sin2 θ

)
dθ, (52)

tI(Ith) =
1 −Q

(
Ĩth

)
NI(Ith)

, (53)

where Ĩth = Ith−μI
σI

is the normalized threshold, and Q(x) =
1√
2π

�∞
x
e−

t2
2 dt is the Gaussian Q-function.

Proof: See Appendix F.
Theorem 5 requires μI , σ2

I and ρI(1), which can be obtained
from (35), (36) and (39). However, for low and high SNRs, we
may use their corresponding approximations. For high SNRs,
they are given by (83), (84) and (46), whereas for low SNRs
we have μI = ηNR, σ2

I = η2NR

NT
[29], and ρI(1) = 
2

1,
obtained from (43). In practice, the LCR and AOD at μI ,
the ergodic capacity, are of interest, which simplify Theorem
5 considerably.

Corollary 1: The LCR and AOD of MIMO IMI at the level
μI are, respectively, given by

NI(μI) =
π − 2 arcsin [ρI(1)]

4πTs
, (54)

tI(μI) =
2πTs

π − 2 arcsin [ρI(1)]
. (55)

V. NUMERICAL RESULTS AND DISCUSSION

In this paper, a generic power spectrum [19, (8)] [29] is
used to simulate time-varying Rayleigh flat fading channels
with nonisotropic scattering, according to the spectral method
[31]. Similar to [29], to verify the accuracy of the derived
formulas, we consider two types of scattering environments:
isotropic scattering and nonisotropic scattering with three
clusters of scatterers. For nonisotropic scattering, parameters
of the three clusters are given by [P1, κ1, θ1] =

[
1
3 , 6, 0

]
,

[P2, κ2, θ2] =
[

1
2 , 6,

π
4

]
, and [P3, κ3, θ3] =

[
1
6 , 8,

25π
18

]
, re-

spectively. In addition, in all the simulations, the maximum
Doppler frequency fD is set to 10Hz, and Ts = 1

20fD
seconds.

The AoA distributions and the corresponding channel corre-
lation coefficients for the above two scattering environments
are plotted in Fig. 2.
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Figure 2. The AoA distributions for two scattering examples and the
corresponding channel correlation coefficients.

In the following subsections, Monte Carlo simulations are
performed to verify NACF, the correlation coefficient, LCR
and AFD of eigen-channels and the MIMO IMI of two
MIMO systems in the above two propagation environments:
one is 4 × 4 and the other is 12 × 3. The NACF and the
correlation coefficient bear almost the same information. The
same comment applies to LCR and AFD. Therefore, we only
report the simulation results for the correlation coefficient and
the LCR, to save space.

A. Eigen-Channels

In this subsection, the correlation coefficient and the LCR
of eigen-channels are considered for both isotropic and non-
isotropic scattering environments.

1) Isotropic Scattering: This is Clarke’s model [10], with
uniform AoA. The comparison between the simulation and
theoretical results is given in Fig. 3.
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Figure 3. The correlation coefficient and the LCR of an eigen-channel, in
4 × 4 and 12 × 3 MIMO systems with isotropic scattering.
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Figure 4. The correlation coefficient and the LCR of an eigen-channel, in
4 × 4 and 12 × 3 MIMO systems with nonisotropic scattering.

2) Nonisotropic Scattering: This is a general case, with an
arbitrary AoA distribution [19][29]. The comparison results
are presented in Fig. 4.

In Figs. 3 and 4, the upper left and right subfigures show
the correlation coefficient and the LCR of eigen-channels in a
4× 4 MIMO system, respectively, whereas the lower left and
right subfigures show the results in a 12 × 3 MIMO system.
In all figures, “Simu.” means simulation. In the correlation
coefficient plots, “Theo.” means they are calculated according
to (18), and “(k = l)” denotes the autocorrelation coefficient,
whereas “(k �= l)” indicates the cross-correlation coefficient.
In the LCR plots, “Theo” indicates that the curve is computed
using (25)-(28).

Based on the plots in Figs. 3 and 4, we can see that
the derived analytical formulas perfectly match Monte Carlo
simulations.

One possible application of correlation is power allocation
in time-varying MIMO systems. Depending on the temporal
correlation of eigen-channels, power allocation needs to be
properly updated. For example, if temporal correlation is high,
it means eigen-channels are not changing rapidly and therefore
the chosen power allocation to different channels can be
maintained for a certain period of time. On the other hand, if
temporal correlation is low and eigen-channels are fluctuating
fast, then one may need to change power allocation frequently.

B. MIMO IMI

In this subsection, the correlation coefficient and the LCR of
MIMO IMI are presented for both isotropic and nonisotropic
scattering environments at low- and high-SNR regimes. In the
simulations and theoretical calculations, we set η = −20 dB
for low SNR, and η = 30 dB for high SNR.

1) Isotropic Scattering: For this case, the comparison re-
sults are shown in Fig. 5.

2) Nonisotropic Scattering: The comparison results regard-
ing nonisotropic scattering are given in Fig. 6.

In Figs. 5 and 6, the upper three subfigures present the
correlation coefficient and the LCR of the MIMO IMI in
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Figure 5. The correlation coefficient and the LCR of the MIMO IMI at low-
and high-SNR regimes, in 4 × 4 and 12 × 3 MIMO systems with isotropic
scattering.

a 4 × 4 system. Specifically, the upper left subfigure shows
the correlation coefficient at low- and high-SNR regimes, the
upper middle subfigure gives the LCR of the MIMO IMI at
the low-SNR regime, whereas the upper right gives the LCR at
the high-SNR regime. In addition, the lower three subfigures
present the corresponding results in the 12× 3 system. In the
correlation coefficient plots, “Theo. (Low SNR)” corresponds
to (43), whereas “Theo. (High SNR)” corresponds to (46). In
the LCR plots, “Theo.” means the values are computed from
(52), where we used low- and high-SNR approximations for
the mean μI and variance σ2

I , listed immediately after Theorem
5.

From Figs. 5 and 6, the following observations can be made.
• Correlation coefficient: If ν = max(NT , NR) −

min(NT , NR) is large compared to M = min(NT , NR),
we can approximate the correlation coefficient of MIMO
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Figure 6. The correlation coefficient and the LCR of the MIMO IMI at low-
and high-SNR regimes, in 4×4 and 12×3 MIMO systems with nonisotropic
scattering.
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Figure 7. The correlation coefficient of the MIMO IMI at η = 15 dB
(moderate SNR), in a 4 × 4 system with isotropic scattering.

IMI by the squared amplitude of the channel correla-
tion coefficient for all SNRs, since low- and hign-SNR
approximations are very close to each other (see the
results for the 12 × 3 system). However, if ν is small
compared to M , the gap between the low- and high-
SNR approximations is large (see the results for the
4 × 4 system). Therefore, we need to resort to the exact
formulas in (36), (35), (37) and (39) to calculate the
accurate values of the correlation coefficient, for not so
small or large SNRs. For example, at η = 15 dB, the
simulation and exact theoretical curves, as well as low-
and high-SNR approximations are shown in Fig. 7, for
the correlation coefficient of the MIMO IMI in a 4 × 4
system.

• LCR: The Gaussian approximation works well at both
low and high SNRs in large MIMO systems, e.g., the
considered 12×3 channel. But it is not the case in small
MIMO systems, say 4×4, where the Gaussian approxima-
tion has an obvious deviation from the simulation result
at high SNR. This is because the central limit theorem
does not hold for IMI in small MIMO systems4. For this
case, we can numerically compute the multiple integrals
given in (47) and (48), to calculate the LCR.

• LCR: Compared Fig. 3 and Fig. 4, we find the LCR
of an eigen-channel is not sensitive to the scattering
environment, which is not the case for the LCR of MIMO
IMI. Furthermore, based on Figs. 5 and 6, we can see that
the IMI in a nonisotropic scattering environment has less
fluctuations than that in the isotropic scattering scenario.

The LCR of IMI can find applications in rate-adaptive
systems. In such systems, IMI is fedback to the rate scheduler
[16]. When IMI crosses a certain threshold, transmitted con-
stellation needs to be changed accordingly [32]. The adaptation
rate is given by the LCR of IMI. Using the derived formulas,
a system designer can determine how adaptation rate may

4In fact, there are obvious differences between the true PDF and the
Gaussian approximation in Fig. 1 of [17] at η = 15 dB. Larger deviations
are also observed at higher SNRs, say, η = 20 dB, in Fig. 1 of [17].

depend on the physical parameters of the channel such as
mean angle of arrivals and angle spreads. This can help the
designer to optimize the design for a variety of propagation
environments.

VI. CONCLUSION

In this paper, closed-form expressions for several key
second-order statistics such as the autocorrelation function,
the correlation coefficient, level crossing rate and average
fade/outage duration of eigen-channels and the instantaneous
mutual information (IMI) are derived in MIMO time-varying
Rayleigh flat fading channels.

Simulation and analytical results show that the eigen-
channels tend to be spatio-temporally uncorrelated in large
MIMO systems, and the correlation coefficient of the IMI
can be well approximated by the squared amplitude of the
correlation coefficient of the channel, if the difference between
the number of Tx and Rx antennas is much larger than the
minimum number of Tx and Rx antennas. In addition, we
have also observed that the LCR of an eigen-channel is less
sensitive to the scattering environment than the IMI.

The analytical expressions, supported by Monte Carlo
simulations, provide quantitative information regarding the
dynamic behavior of MIMO channels. They also serve as
useful tools for MIMO system designs. For example, one
may improve the performance of the feedbacked-IMI-based
rate scheduler in a multiuser MIMO system by exploiting the
temporal correlation of the IMI of each user.

APPENDIX A
PROOF OF LEMMA 1

Although the mean and second moment of λm(l) were
respectively given by (57) and (58) in [16] via a smart indirect
method, we calculate them directly using its marginal PDF in
(7), as follows.

Using 8.902.2 [23, pp. 1043], we can rewrite (7) as

p(x)=
(M−1)!xν

(M+ν−1)!ex

{[
Lν

M−1(x)
]′
Lν

M(x)−[Lν
M(x)]′Lν

M−1(x)
}
,

(56)
where ′ mean the derivative with respect to x. With [23, pp.
1062, 8.971.2]

[Lν
n(x)]′ = −Lν+1

n−1(x) (57)

and [23, pp. 1062, 8.971.5]

Lk
n(x) = Lk+1

n (x) − Lk+1
n−1(x), (58)

(56) further reduces to

p(x)=
(M−1)!xν

(M+ν−1)!ex

{[
Lν+1

M−1(x)
]2−Lν+1

M (x)Lν+1
M−2(x)

}
, (59)

where the convention Lk
m(x) = 0,m < 0 should be used when

it is applicable.
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Using (59), we obtain E[λm(l)] as

E[λm(l)] =
� ∞

0

xp(x)dx,

=
(M−1)!

(M+ν−1)!

{� ∞

0

xν+1e−x
[
Lν+1

M−1(x)
]2
dx

−
� ∞

0

xν+1e−xLν+1
M (x)Lν+1

M−2(x)dx
}
,

= M + ν, (60)

where the orthogonality of Laguerre polynomials [ 33, pp. 267,
7.414.3] is used, i.e.� ∞

0

e−xxνLν
k(x)Lν

l (x) =
(k + ν)!
k!

δk,l. (61)

The last line results in (13), considering N = M + ν.
By substituting (58) with k = ν + 1 into (59) and using

(61), we can easily obtain (14).

APPENDIX B
PROOF OF LEMMA 2

A. The case of i = 0
For i = 0, the value of E[λ2

m(l)] is given in (14).

B. The case of i �= 0
For i �= 0, we need the following two lemmas.
Lemma 6: While j, k and ν are non-negative integers, the

value of the integral,
I1(j, k, ν) =

�∞
0
xν+1e−xLν

j (x)Lν
k(x)dx, is given by

I1(j, k, ν)=

⎧⎪⎨⎪⎩
(2k+ν+1)(k+ν)!

k! , |j − k| = 0,
− [min(j,k)+ν+1]!

[min(j,k)]! , |j − k| = 1,
0, |j − k| ≥ 2.

(62)

Proof: Using (58), we have

Lν
j (x)Lν

k(x) = Lν+1
j (x)Lν+1

k (x) + Lν+1
j−1 (x)Lν+1

k−1(x)

− Lν+1
j (x)Lν+1

k−1(x) − Lν+1
j−1 (x)Lν+1

k (x). (63)

Substitution of (63) into I1(j, k, ν) results in (62), with the
aid of (61) and the convention Lk

m(x) = 0,m < 0.
Lemma 7: The joint PDF in (6) can be written in the

following equivalent form

p(x, y) =
1
M2

∞∑
j=M

M−1∑
k=0

[
j!k!
2(j−k)

i

(j + ν)!(k + ν)!
xνyν

ex+y

×Lν
j (x)Lν

j (y)Lν
k(x)Lν

k(y)
]
+ p(x)p(y), (64)

where p(·) is the marginal PDF given by (7).
Proof: By applying the Hille-Hardy formula [33, pp. 185,

(46)]
∞∑

k=0

k!zk

(k + ν)!
Lν

k(x)Lν
k(y) =

(xyz)−
ν
2

1 − z
exp

(
−z x+ y

1− z

)
× Iν

(
2
√
xyz

1 − z

)
, |z| < 1, (65)

to (6), we can obtain (64) through the following steps.

(xy)
ν
2 e

− x+y

1−�2
i Iν

(
2�i

√
xy

1−�2
i

)
M2(1 − 
2

i )

ν
i

=
(xy)ν

M2ex+y

(
xy
2

i

)− ν
2 e

−�2
i

x+y

1−�2
i Iν

(
2
√

xy�2
i

1−�2
i

)
(1 − 
2

i )
,

=
xνyν

M2ex+y

∞∑
j=0

j!
(j + ν)!


2j
i L

ν
j (x)Lν

j (y),

=
xνyν

M2ex+y

⎡⎣M−1∑
j=0

j!
(j + ν)!


2j
i L

ν
j (x)Lν

j (y)

+
∞∑

j=M

j!
(j + ν)!


2j
i L

ν
j (x)Lν

j (y)

⎤⎦ (66)

Using (66), the first part of (6) can be written as

(xy)
ν
2 e

− x+y

1−�2
i Iν

(
2�i

√
xy

1−�2
i

)
M2(1 − 
2

i )

ν
i

M−1∑
k=0

k!Lν
k(x)Lν

k(y)
(k + ν)!
2k

i

=
xνyν

M2ex+y

M−1∑
j=0

j!
2j
i L

ν
j (x)Lν

j (y)
(j + ν)!

M−1∑
k=0

k!Lν
k(x)Lν

k(y)
(k + ν)!
2k

i

+
xνyν

M2ex+y

∞∑
j=M

j!
2j
i L

ν
j (x)Lν

j (y)
(j + ν)!

M−1∑
k=0

k!Lν
k(x)Lν

k(y)
(k + ν)!
2k

i

,

=
xνyν

M2ex+y

M−1∑
j=0

M−1∑
k=0

j!k!
2(j−k)
i Lν

k(x)Lν
k(y)Lν

j (x)Lν
j (y)

(j + ν)!(k + ν)!︸ ︷︷ ︸
Λ(x,y)

+
xνyν

M2ex+y

∞∑
j=M

M−1∑
k=0

j!k!
2(j−k)
i Lν

k(x)Lν
k(y)Lν

j (x)Lν
j (y)

(j + ν)!(k + ν)!
,

(67)

where the last part is the same as the first part of (64). In
addition,

M−1∑
0≤k<l

k!l!
(k + ν)!(l + ν)!

{
[Lν

k(x)Lν
l (y)]2 + [Lν

l (x)Lν
k(y)]2

}
,

=
M−1∑
k=0

M−1∑
l=k+1

k!l! [Lν
k(x)Lν

l (y)]2

(k + ν)!(l + ν)!

+
M−1∑
l=0

l−1∑
k=0

k!l! [Lν
l (x)Lν

k(y)]2

(k + ν)!(l + ν)!
,

=
M−1∑
k=0

M−1∑
l=k+1

k!l! [Lν
k(x)Lν

l (y)]2

(k + ν)!(l + ν)!

+
M−1∑
k=0

k−1∑
l=0

k!l! [Lν
k(x)Lν

l (y)]2

(k + ν)!(l + ν)!
,

=
M−1∑
k=0

M−1∑
l=0,l �=k

k!l! [Lν
k(x)Lν

l (y)]2

(k + ν)!(l + ν)!
. (68)

Note that after the first "=" sign in (68), the double summa-
tion

∑M−1
0≤k<l is written as the sum of

∑M−1
k=0

∑M−1
l=k+1 and
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∑M−1
l=0

∑l−1
k=0, whereas in the second double summation after

the second "=" sign in (68), the order of k and l is changed
due to the symmetry of the summand with respect to k and l.
Similarly, one can have

M−1∑
0≤k<l

k!l!
[


2(l−k)
i + 


2(k−l)
i

]
Lν

k(x)Lν
l (x)Lν

k(y)Lν
l (y)

(k + ν)!(l + ν)!

=
M−1∑
k=0

M−1∑
l=0,l �=k

k!l!
2(k−l)
i Lν

k(x)Lν
l (x)Lν

k(y)Lν
l (y)

(k + ν)!(l + ν)!︸ ︷︷ ︸
Θ(x,y)

. (69)

Subtracting Θ(x, y) in (69) from Λ(x, y) in (67) leads to
Λ(x, y)−Θ(x, y) =

∑M−1
k=0

∑
l=k

k!l![Lν
k(x)Lν

l (y)]2

(k+ν)!(l+ν)! . By adding

this to (68) we obtain
∑M−1

k=0
k![Lν

k(x)]2

(k+ν)!

∑M−1
l=0

l![Lν
l (y)]2

(l+ν)! .

Upon multiplying this by xνyν

M2ex+y , we obtain the second part
of (64), which completes the proof.

Lemma 7 shows the joint PDF is the summation of a cross
term and the product of two marginal PDFs. Therefore,

rm,m(i) = E [λm(l)λm(l − i)]

= {E [λm(l)]}2+

∞�

0

xy

M2

∞∑
j=M

M−1∑
k=0

[
j!k!
2(j−k)

i

(j + ν)!(k + ν)!

×x
νyνLν

j (x)Lν
j (y)Lν

k(x)Lν
k(y)

ex+y

]
dxdy,

= N2 +
∞∑

j=M

M−1∑
k=0

{
j!k!
2(j−k)

i

M2(j + ν)!(k + ν)!

×
[� ∞

0

xν+1e−xLν
j (x)Lν

k(x)dx
]2

}

= N2 +
∞∑

j=M

M−1∑
k=0

j!k!
2(j−k)
i [I1(j, k, ν)]

2

M2(j + ν)!(k + ν)!
,

= N2 +
1
M2

M !(M − 1)!
2
i [I1(M,M − 1, ν)]2

(M + ν)!(M + ν − 1)!
,

(70)

where the last result is based on I1(j, k, ν) = 0, ∀|j− k| ≥ 2,
according to Lemma 6. It further reduces to (15), based on
(62) and N = M + ν.

APPENDIX C
PROOF OF LEMMA 3

A. The case of i = 0
For i = 0, we need the following proposition.
Proposition 3: If (x1, x2) are a pair of eigenvalues of the

set {λm(l)}M
m=1, then their joint PDF is given by [22]

p(x1, x2) =
(x1x2)νe−(x1+x2)

M(M − 1)

M−1∑
p,q=0
p�=q

p!q!
(p+ ν)!(q + ν)!

×
{[
Lν

p(x1)Lν
q (x2)

]2−Lν
p(x1)Lν

q (x1)Lν
p(x2)Lν

q (x2)
}
. (71)

Note that (71) is different from (6). By reordering the items,
we can rewrite (71) as

p(x1, x2) =
M

M − 1
p(x1)p(x2) − (x1x2)νe−(x1+x2)

M(M − 1)

×
M−1∑
j=0

M−1∑
k=0

j!k!Lν
j (x1)Lν

k(x1)Lν
j (x2)Lν

k(x2)
(j + ν)!(k + ν)!

. (72)

Using Lemma 6 and (72), it is easy to obtain

rm,n(i)=
M

M−1
N2− S

M(M−1)
, (73)

where S =
∑M−1

j=0

∑M−1
k=0

j!k![I1(j,k,ν)]2

(j+ν)!(k+ν)! . According to (62),
we have

S=
M−1∑
k=0

(2k+ν+1)2+2
M−2∑
k=0

(k+1)(k+ν+1),

=MN(M +N − 1),

(74)

where the last line is derived based on
∑n

k=0 k = n(n+1)
2

[23, pp. 2, 0.121.1] and
∑n

k=0 k
2 = n(n+1)(2n+1)

6 [23, pp. 2,
0.121.2].

Substitution of (74) into (73) proves the first part of Lemma
3, i.e., i = 0. Note that the same result was derived in Lemma
A of [16] via an indirect method.

B. The case of i �= 0
Note that {λm(l)}M

m=1 and {λm(l− i)}M
m=1 are unordered

eigenvalues of H(l)H†(l) and H(l− i)H†(l− i), respectively,
for i �= 0. So the bivariate PDF of {λm(l), λn(l− i)}, m �= n,
is the same as that of {λm(l), λm(l − i)}, the latter given
in (6). Therefore, rm,n(i) = rm,m(i), i �= 0, ∀m,n, where

rm,m(i) = N2 + N�2
i

M , i �= 0, is proved in Appendix B.

APPENDIX D
PROOF OF LEMMA 4

According to (34), we have

E[Il] = ME

[
ln

(
1 +

η

NT
λm(l)

)]
,

= M

� ∞

0

ln
(

1 +
η

NT
x

)
p(x)dx,

(75)

where p(x) is given in (7). Substitution of (7) and (29) into
(75) results in (35), with the aid of the following integral
identity [29]� ∞

0

xke−x ln(1+ωx)dx = G3,1
2,3

(
1
ω

∣∣∣∣ 0, 1
0, 0, k+1

)
, (76)

where G is Meijer’s G function [23, pp. 1096, 9.301]. Eq.

(76) is derived using e−x = G1,0
0,1

(
x

∣∣∣∣ ·0
)

, ln(1 + ωx) =

G1,2
2,2

(
ωx

∣∣∣∣ 1, 11, 0

)
[34, (11)], the integral in [34, (21)], and

zkGm,n
p,q

(
z

∣∣∣∣ (ap)
(bq)

)
= Gm,n

p,q

(
z

∣∣∣∣ k + (ap)
k + (bq)

)
[35, pp. 521,

8.2.2.15], in which (ap) = a1, a2, · · · , ap and (bq) =
b1, b2, · · · , bq.
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Similarly, we have

E[I2
l ] = ME

[
ln2

(
1 +

η

NT
λm(l)

)]
+M(M−1)

× E

[
ln
(
1+

η

NT
λm(l)

)
ln
(
1+

η

NT
λn(l)

)]
︸ ︷︷ ︸

m �=n

,

= M

� ∞

0

ln2

(
1 +

η

NT
x

)
p(x)dx +M(M−1)

×
∞�

0

ln
(
1+

η

NT
x1

)
ln
(
1+

η

NT
x2

)
p(x1, x2)dx1dx2,

(77)

where p(x) and p(x1, x2) are given in (7) and (72), respec-
tively. Substitution of (7), (29) and (72) into (77) leads us to
(36), upon using (76) and the following integral equality [29]� ∞

0

xke−x ln2(1 + ωx)dx

z=1+ωx=
e

1
ω

∑k
j=0

(
k
j

)
(−1)k−j

�∞
1 zje−

z
ω ln2 zdz

ωk+1
,

=
e

1
ω

∑k
j=0

(
k
j

)
(−1)k−j ∂2

∂ν2

[
ωνΓ

(
ν, 1

ω

)]∣∣
ν=j+1

ωk+1
,

=

2e
1
ω

k∑
j=0

(
k
j

)
(−1)k−jG4,0

3,4

(
1
ω

∣∣∣∣ −j,−j,−j
0,−j−1,−j−1,−j−1

)
ωk+1

,

(78)

where in the first result the binomial expansion is used: (x+
a)k =

∑k
j=0

(
k
j

)
xj(−1)k−j [23, pp. 26], the second result is

obtained based on the integral identity 4.358.1 in [ 23, pp. 607],
and the last result is derived with the aid of Eqs. (29) and (39)

in [36] and zkGm,n
p,q

(
z

∣∣∣∣ (ap)
(bq)

)
= Gm,n

p,q

(
z

∣∣∣∣ k + (ap)
k + (bq)

)
[35,

pp. 521, 8.2.2.15].

APPENDIX E
PROOF OF THEOREM 3

First we derive the expressions for the first and second
moments of Il in (44), based on the following lemma.

Lemma 8: Let X = (xm,n) be a random matrix with M
rows and N columns, M ≤ N , where each element is a zero
mean unit variance complex Gaussian random variable and
all the N columns are i.i.d M -variate random vectors with
the same M ×M positive definite covariance matrix Σ. The
mean and variance of ln det

(
XX†) are

E
[
ln det

(
XX†)] =

M−1∑
m=0

ψN−m + ln detΣ, (79)

var
[
ln det

(
XX†)] =

M−1∑
m=0

ζ(2, N −m). (80)

Proof: According to Theorem 1.1 of [37],
det(XX†)
2−M detΣ has

the same distribution as the product of M independent χ2

random variables with 2N , 2(N − 1), · · · , 2(N − M + 1)

degrees of freedom, respectively. Therefore, we can express
ln det

(
XX†) as

ln det
(
XX†) d=

M−1∑
m=0

ln
(

M
√

detΣ ym

)
, (81)

where the notation
d= indicates “equal to in distribution”, 2ym

is a χ2 random variable with 2(N −m) degrees of freedom,
and {ym}M−1

m=0 are independent.
Based on the results in [29], we have E [ln ym] =

HN−m−1 − C and var [ln ym] = ζ(2, N − m), where Hk

is the kth harmonic number [38, pp. 29, (2.13)], defined by
Hk =

∑k
j=1

1
j for k ≥ 1 with H0 = 0, and C = 0.577215 · · ·

is the Euler-Mascheroni constant [23, pp. xxx]. This completes
the proof if we note ψk+1 = Hk − C [23, pp. 952, 8.365.4].

It is interesting to observe that the correlation matrix Σ
affects the mean of ln det

(
XX†) in (79), but has no impact

on its variance in (80).
According to Theorem 1.1.2 of [39] we have

M∏
m=1

λm(l) =

⎧⎨⎩det
(
HlH

†
l

)
, NR ≤ NT ,

det
(
H†

l Hl

)
, NR > NT .

(82)

By applying Lemma 8 and (82) to (44) with Σ = IM , we have
the mean of Il given below

E [Il] ≈ E

{
M∑

m=1

ln
[
η

NT
λm(l)

]}
,

= E

[
ln

M∏
m=1

λm(l)

]
+M ln

η

NT
,

(82)
= E

[
ln det

(
H†

l Hl

)]
+M ln

η

NT
,

Lemma 8=
Σ=IM

M−1∑
m=0

ψN−m +M ln
η

NT
, (83)

where the third result assumes NR > NT , without loss of
generality. Similarly, the variance of I l is given by

var [Il] ≈ var
[
M ln

η

NT
+ ln det

(
H†

l Hl

)]
,

= var
[
ln det

(
H†

l Hl

)]
,

=
M−1∑
m=0

ζ(2, N −m), (84)

where the constant term M ln η
NT

does not affect the variance.
These two are consistent with the results in [16], where an
implicit complex extension of Theorem 3.3.4 of [ 39] was used.
Clearly, the second moment of Il is given by

E
[I2

l

]
= {E[Il]}2 + var [Il] ,

≈
M−1∑
m=0

ζ(2, N−m)+

(
M−1∑
m=0

ψN−m+M ln
η

NT

)2

. (85)

For calculating the autocorrelation of I l, we need the
following lemma.
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Lemma 9: With j, k and ν as non-negative integers and
j �= k, the value of the integral
I2(j, k, ν) =

�∞
0 (lnx) xνe−xLν

j (x)Lν
k(x)dx is given by

I2(j, k, ν) =
[min(j, k) + ν]!

[min(j, k)]! [min(j, k) − max(j, k)]
. (86)

Proof: First we consider j > k. Substitution of Lν
k(x)

with (29) into I2(j, k, ν) gives

I2(j, k, ν) =
k∑

p=0

(
k+ν
k−p

)
(−1)p

p!

� ∞

0

(lnx)xp+νe−xLν
j (x)dx,

=
k∑

p=0

(
k+ν
k−p

)
(−1)p

p!
(−1)p−1p!(j−p−1)!(p+ν)!

j!
,

= − (k+ν)!
j!

k∑
p=0

(j−p−1)!
(k−p)! , (87)

where the second line comes from 2.19.6.2 [40, pp. 469].
Using

∑m
q=0

(
n+q

n

)
=

(
n+m+1

n+1

)
[23, pp. 4, 0.151.1], we have∑k

p=0
(j−p−1)!
(k−p)!

q=k−p
=

∑k
q=0

(
j−k−1−q

j−k−1

)
(j−k−1)! =

(
j

j−k

)
(j−

k − 1)! = j!
k!(j−k) , which reduces (87) to

I2(j, k, ν) =
(k+ν)!
k!(k − j)

. (88)

Similarly, for j < k, we obtain

I2(j, k, ν) =
(j+ν)!
j!(j − k)

. (89)

Combination of (88) and (89) results in (86).
Now we proceed to prove (45) and (46). Based on the high-

SNR approximation of Il in (44), we have

rI(i) ≈
M∑

m=1

M∑
n=1

E

[
ln
η λm(l)
NT

ln
η λn(l − i)

NT

]
,

= M2
E

[
ln
η λ1(l)
NT

ln
η λ1(l − i)

NT

]
,

= M2

[
ln2 η

NT
+ 2 ln

η

NT
E[lnλ(l)] + rlnλ(i)

]
, (90)

where rlnλ(i) = E [lnλ(l) lnλ(l − i)]. Using (64) and Lemma
9, rlnλ(i) can be evaluated as

rlnλ(i) =
∞∑

j=M

M−1∑
k=0

j!k!
2(j−k)
i I2

2 (j, k, ν)
M2(j + ν)!(k + ν)!

+{E[ln λ(l)]}2
.

(91)

By substituting (86) and (91) into (90), we obtain

rI(i) ≈
M−1∑
k=0

S(k, ν, 
i) + {E[Il]}2
, (92)

where S(k, ν, 
i) =
∑∞

j=M
j!(k+ν)!�

2(j−k)
i

k!(j+ν)!(j−k)2 , and E[Il] ≈
ME

[
ln η λ(l)

NT

]
is approximated by (83). By introducing a new

variable p = j −M in S(k, ν, 
i) and using the Pochhammer

symbol (x)n = x(x + 1) · · · (x + n − 1), we can rewrite
S(k, ν, 
i) as

S(k, ν, 
i) =
M !(k + ν)!
2(M−k)

i

(M − k)2N !k!

×
∞∑

p=0

[(M − k)p]
2 (M + 1)p(1)p

[(M − k + 1)p]
2 (N + 1)p


2p
i

p!
,

=
M !(k + ν)!
2(M−k)

i

(M − k)2N !k! 4F3

(
M−k,M−k,

M+1, 1;M−k+1,M−k+1, N+1; 
2
i

)
, (93)

where N = M+ν, and the last line comes from the definition
of the generalized hypergeometric function [23, pp. 1071,
9.14.1].

Substitution of (85), (92) and (93) into (38) results in (45).
Similarly, with (83), (84), (92) and (93), (39) reduces to (46).

APPENDIX F
PROOF OF THEOREM 5

To simplify the notation, we set X = Il, Y = Il−1, and
ρ = ρI(1). According to Proposition 2, we have the PDF of
X and the joint PDF of X and Y as

p(x) =
1√

2πσI
exp

[
− (x− μI)2

2 σ2
I

]
, (94)

and

p(x, y) =
exp

[
− (x−μI)2+(y−μI)2−2ρ(x−μI)(y−μI)

2 σ2
I (1−ρ2)

]
√

2π(1 − ρ2)σI
. (95)

In what follows, we calculate φI(Ith) =
�∞

Ith
p(x)dx and

ϕI(Ith) =
�∞

Ith
p(x, y)dxdy for the cases of Ith ≥ μI and

Ith < μI .

A. The Case of Ith ≥ μI
According to (4.2) [25] we obtain

φI(Ith)
Ith≥μI= Q

(
Ĩth

)
=

1
π

� π
2

0

exp

(
− Ĩ2

th

2 sin2 θ

)
dθ, (96)

where Ĩth = Ith−μI
σI

. Similarly, using (4.18) [25] and the
following equality

arctan
(√

1 + ρ

1 − ρ

)
=
π

4
+

arcsin (ρ)
2

, (97)

we obtain

ϕI(Ith)
Ith≥μI= Q

(
Ĩth, Ĩth; ρ

)
,

(97)
=

1
π

� π
4 +

arcsin(ρ)
2

0

exp

(
− Ĩ2

th

2 sin2 θ

)
dθ. (98)

Substitution of (96) and (98) into (25) results in (52). More-
over, FI(Ith) =

� Ith
−∞ p(x)dx = 1 − Q

(
Ĩth

)
. By plugging

FI(Ith) and (52) into (31) we obtain (53).



14

B. The Case of Ith < μI
In this case, the normalized threshold Ĩth is less than 0. The

integration region in the definition of φI(Ith) is
{
x|x ≥ Ĩth

}
,

and the complementary region is
{
x|x < Ĩth

}
, where the

integral is equal to the integral over
{
x|x >

∣∣∣Ĩth∣∣∣}, given by
(96), due to the symmetry of the Gaussian PDF. The integral
on the whole region is 1. Therefore, φI(Ith) = 1−Q

(∣∣∣Ĩth∣∣∣),
as written below

φI(Ith)
Ith<μI= 1 − 1

π

� π
2

0

exp

(
− Ĩ2

th

2 sin2 θ

)
dθ. (99)

For φI(Ith), its integral region is U0 ={
(x, y)|x ≥ Ĩth, y ≥ Ĩth

}
. Define the integral regions

U1 =
{
(x, y)|x < Ĩth

}
and U2 =

{
(x, y)|y < Ĩth

}
.

The intersection of U1 and U2 is U3 = U1 ∩ U2 ={
(x, y)|x < Ĩth, y < Ĩth

}
. Then the whole 2-D integral

region is U = (U0 ∪U1 ∪U2) \U3 with
�

U
p(x, y)dxdy = 1.

The integral over U1 or U2 is Q
(∣∣∣Ĩth∣∣∣), and given

by (96). The integral over U3 is the same as that over{
(x, y)|x >

∣∣∣Ĩth∣∣∣ , y > ∣∣∣Ĩth∣∣∣}, due to the symmetry of the

bivariate Gaussian PDF. The integral is Q
(∣∣∣Ĩth∣∣∣ , ∣∣∣Ĩth∣∣∣ ; ρ),

given by (98). Therefore,

ϕI(Ith)
Ith<μI= 1 −

[
2Q

(∣∣∣Ĩth∣∣∣)−Q
(∣∣∣Ĩth∣∣∣ , ∣∣∣Ĩth∣∣∣ ; ρ)] ,

= 1 − 2
π

� π
2

0

exp

(
− Ĩ2

th

2 sin2 θ

)
dθ

+
1
π

� π
4 +

arcsin(ρ)
2

0

exp

(
− Ĩ2

th

2 sin2 θ

)
dθ. (100)

We obtain (52) by substituting (99) and (100) into (25).
Similarly, we get (53) easily by plugging FI(Ith) and (52)
into (31).
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