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Mutual Information of IID Complex Gaussian
Signals on Block Rayleigh-faded Channels

Fredrik Rusek, Angel Lozano and Nihar Jindal

Abstract—We present a method to compute, quickly and
efficiently, the mutual information achieved by an IID (in-
dependent identically distributed) complex Gaussian signal
on a block Rayleigh-faded channel without side informa-
tion at the receiver. The method accommodates both scalar
and MIMO (multiple-input multiple-output) settings. Op-
erationally, this mutual information represents the highest
spectral efficiency that can be attained using Gaussian
codebooks. Examples are provided that illustrate the loss
in spectral efficiency caused by fast fading and how that
loss is amplified when multiple transmit antennas are used.
These examples are further enriched by comparisons with
the channel capacity under perfect channel-state information
at the receiver, and with the spectral efficiency attained by
pilot-based transmission.

Keywords: Wireless communications; Mutual infor-
mation; MIMO; Multiantenna; Non-coherent, Spectral
efficiency

I. INTRODUCTION

IID (independent identically distributed) complex
Gaussian inputs are highly relevant in channels impaired
by Gaussian noise. Some of the arguments for this
relevance are that, with side information in the form of
perfect CSI (channel state information) at the receiver:
• These are the unique capacity-achieving inputs.
• Their mutual information represents very well the

mutual information of proper complex discrete con-
stellations (e.g., QAM) commonly used in wireless
systems. (This holds up to some power level that
depends on the cardinality of the constellation [1].)

Indeed, expressions for the perfect-CSI capacity achieved
by IID complex Gaussian inputs are available (cf. Section
IV) and thus such capacity can be easily evaluated.

Remove now the side information. No expressions are
available for the mutual information achieved by IID
complex Gaussian inputs save for the very special case
of memoryless channels [2]. Moreover, straight Monte-
Carlo computation is not feasible because it would en-
tail large-dimensional histograms. Only bounds [3], [4]
and asymptotic low- and high-power expansions [5]–
[8] are available for such mutual information. And yet,
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although no longer capacity-achieving without perfect
CSI [9], [10], IID complex Gaussian inputs remain highly
relevant. Operationally, the mutual information they
achieve represents the highest spectral efficiency that
can be attained using Gaussian codebooks. In fact, the
capacity-achieving inputs in the absence of perfect-CSI
become largely unfeasible in certain cases (in the low-
power regime, for example, they become unacceptably
peaky) and thus the capacity is sometimes less relevant
to system designers than the mutual information of IID
complex Gaussian inputs.

This paper presents analytical expressions for the
output distributions of a block Rayleigh-faded channel
fed with IID complex Gaussian inputs. Then, a simple
outer Monte-Carlo in conjunction with these distribu-
tions yields a semi-analytical method that allows eval-
uating, quickly and efficiently, the mutual information.
The method accommodates not only scalar channels, but
also MIMO (multiple-input multiple-output) settings.
Altogether, this allows answering questions such as:

• What is the impact of assuming side information?
• How close to the true channel capacity (without

side information) can IID complex Gaussian inputs
operate?

• How suboptimal are pilot-based schemes, i.e.,
schemes that form explicit channel estimates on
the basis of pilot observations at the receiver and
subsequently apply them to detect the data?

• At which power level is the power efficiency maxi-
mized (i.e., the energy per bit minimized)?

Not surprisingly, the answers to these questions end up
being a function of the fading rate and the numbers of
antennas. With the method presented, these relationships
can be precisely established, and some examples of this
are provided in the paper.

II. CHANNEL MODEL

Consider nT transmit and nR receive antennas and
let the nR × nT matrix H represent the discrete-time
fading channel. Under block Rayleigh-fading, the chan-
nel entries are drawn from a zero-mean unit-variance
complex Gaussian distribution at the beginning of each
fading block and they remain constant for the nb symbols
within that block, where nb is the coherence time in sym-
bols (or the coherence bandwidth if it is the frequency
domain being modeled). This process is repeated for
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every block in an IID fashion. There is no antenna cor-
relation and thus the entries of H are also independent.

Assembling into matrices the input, the output, and
the noise for the nb symbols within each block, their
relationship becomes

Y =
√

SNR

nT

HX +N (1)

where the input X is an nT×nb matrix while the output
Y and the noise N are nR × nb matrices. Both X and
N have IID zero-mean unit-variance complex Gaussian
entries. With that, SNR indicates the average signal-to-
noise ratio per receive antenna.

Each codeword spans a large number of fading blocks,
in the time and/or frequency domains, which endows
ergodic quantities with operational meaning.

Although a block-fading structure admittedly repre-
sents a drastic simplification of reality, it does capture
the essential nature of fading and generally yields re-
sults that are remarkably similar to those obtained with
continuous-fading models [11]. In fact, for a rectangular
Doppler spectrum, an exact correspondence in terms of
the estimation of H can be established between block-
and continuous-fading models [12] whereby

nb =
1

2fmTs
(2)

where fm and Ts are the maximum Doppler frequency
and the symbol period, respectively. Typically, fm =
(v/c)fc with v the velocity and fc the carrier frequency.
The mapping in (2) is in terms of the minimum mean-
square error in the estimation of H , and thus it is
exact for pilot-based schemes that rely on such explicit
estimation, but more broadly we take it as indicative of
the fading rate represented by a given value of nb.

III. COMPUTATION OF THE MUTUAL INFORMATION

The mutual information under investigation can be
expressed as

Ī =
1
nb

[h(Y )− h(Y |X)] (3)

where h(·) denotes the differential entropy operator.
Our first result leverages the derivations in [13] to

obtain a closed-form expression for h(Y |X).

Proposition 1 Let Eq(·) denote the exponential integral, i.e.,
Eq(ζ) =

∫∞
1
t−qe−ζtdt. Then,

h(Y |X) = nR log2(e) enT/SNR
nT−1∑
i=0

i∑
j=0

2j∑
`=0

[(
2i− 2j
i− j

)
·
(

2j + 2nb − 2nT

2j − `
)

(−1)` (2j)! (nb − nT + `)!
22i−` j! `! (nb − nT + j)!

nb−nT+`∑
q=0

Eq+1

( nT

SNR

)+ nRnb log2(πe) (4)

Proof: See Appendix.

Having expressed h(Y |X) in (3), we now turn our
attention to h(Y ). The output Y is affected by a com-
bination of multiplicative and additive noise, and thus
Y is not Gaussian distributed. The unconditional out-
put distribution p(Y ), which had not been reported in
the literature to the best of our knowledge, constitutes
the central result in this paper. While the formula we
obtain appears too involved to allow for a closed-form
expression of h(Y ), the formula is easy to evaluate and
it thereby enables computing

h(Y ) = −
∫
p(Y ) log2 p(Y )dY (5)

= −E [log2 p(Y )] . (6)

through straight Monte-Carlo averaging. Our formula
for p(Y ) is given in the next proposition, where we use
the standard notation [z]+ = max{z, 0}.

Proposition 2 For 1 ≤ k ≤ min(nR, nT), define the func-
tions

fk(x)=
∫ ∞

0

exp
{
x SNR z

zSNR+nT

−z
}

zk−1+[nT−nR]+

(zSNR/nT+1)nb+1−nR
dz.

(7)
Let d = [d1, . . . , dnR ] be the eigenvalues of Y Y † and define
the nR × nR matrix Z with entries

Zij =


( nT

SNR

)j−1

fj(di), 1 ≤ i ≤ nR, 1 ≤ j ≤ s
dj−nT−1
i , 1 ≤ i ≤ nR, s+ 1 ≤ j ≤ nR

(8)
where s = min{nT, nR}. Then

p(Y ) =
π−nbnRe−‖Y ‖

2∏
1≤i,j≤nR

(dj − di)
∏nT−1
k=[nT−nR]+ k!

detZ. (9)

Proof: See Appendix.

In the special case of memoryless channels, i.e., for
nb = 1, the solution in Proposition 2 reduces to the one
in [2].

We also note that, due to the rotational invariance
of H , only the eigenvalues of Y Y † are relevant to the
distribution in (9).

Using (4) and (9), an algorithm to compute Ī can be
put forth as follows.

Algorithm 1: Evaluation of Ī.
1. Pre-compute fk(x), 1 ≤ k ≤ nR, on a discrete set
X with a suitable stepsize ∆x = xk − xk−1.
2. Generate a sufficiently large number of input and
output vectors according to (1).
3. For each input and output pair, apply (9) to
obtain p(Y ).
4. Compute the sample average of − log2 p(Y ) via
Monte Carlo, thereby obtaining h(Y ).
5. Compute h(Y |X) from (4) and apply (3).
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The accuracy can be made as high as desired by
averaging over more input/output sample pairs and
by increasing the precision in Step 1. For the results
presented in Section V, the number of samples and
the value of ∆x were chosen such that two decimal
digits are correct with 90% probability. With a standard
workstation, the entire computation process is a matter
of seconds.

As a final remark, we mention that Proposition 2 is
easily extendable to include all input distributions X
that are rotationally invariant and where the eigenvalue
distribution of X†X (or of XX†) is of the form

p(λ) = det2V (λ)
s∏

k=1

gk(λk),

where V (·) denotes a Vandermonde matrix and the
functions gk(·) are arbitrary. Further details are given in
the Appendix.

IV. BASELINES

Before exemplifying the method described in Section
III, we introduce the perfect-CSI capacity, a lower bound
to Ī, and the spectral efficiency achievable with pilot-
based communication, all of which serve as baselines.

A. Capacity with Perfect CSI
If the receiver is provided with perfect CSI on the side,

the ergodic capacity, in bits/s/Hz, equals

C(SNR) = E
[
log2 det

(
I +

SNR

nT

HH†
)]

(10)

closed forms for which can be found in [13], [14].

B. Mutual Information Lower Bound
A simple application of Jensen’s inequality to the

bound in [15, Theorem 2] yields the following.

Proposition 3 The mutual information achieved by IID
Gaussian inputs satisfies Ī(SNR) ≥ Īlower(SNR) with

Īlower(SNR) = C(SNR)− nTnR

nb
log2

(
1 + SNR

nb

nT

)
. (11)

C. Pilot-Based Communication
In pilot-based communication, np pilot symbols are

inserted within each fading block, leaving nb − np sym-
bols available for data. The channel is estimated on
the basis of the pilot observations at the receiver, and
this estimate is subsequently utilized to detect the data.
We analyze here the spectral efficiency achievable with
separate processing of the pilots and the data symbols,
which refers to estimating the channel on the basis of
only the received pilots and then decoding the data
(through nearest neighbor decoding) as if that estimate
was perfect [16].

During the transmission of pilot symbols,

Y p =
√

SNR

nT

HP +Np (12)

where the output, Y p, and the noise, Np, are nR × np

matrices. The entries of Np are IID zero-mean unit-
variance complex Gaussian while P is deterministic and
satisfies PP † = npI [17].

During the transmission of data symbols, in turn, (1)
applies with X and N of dimension nT × (nb − np) and
nR × (nb − np), respectively.

The value of np, which can be optimized by solving
a convex problem, depends on SNR, nb and nT. This op-
timization, and the ensuing spectral efficiency, has been
studied extensively, e.g., [3], [5], [17]–[22]. In bits/s/Hz,
such spectral efficiency equals

max
np:1≤np≤nb

(
1− np

nb

)
C

(
SNR2np/nT

1 + SNR (1 + np/nT)

)
(13)

where C(·) is the perfect-CSI capacity in (10).
If the pilot and data symbols are not required to have

the same power, i.e., if pilot power-boosting is allowed,
then it is optimal to set np = nT and to optimize only
over the relative powers of pilots and data. This results
in a different convex optimization, which in this case can
be solved explicitly [17] leading to1(

1− nT

nb

)
C

(
nbSNR

nb − 2nT

(√
γ −

√
γ − 1

)2
)

(14)

in bits/s/Hz, and with

γ =
nbSNR + nT

nbSNR nb−2nT
nb−nT

. (15)

The spectral efficiency in (14) is superior to that in
(13). However, pilot power boosting increases the peak-
iness of the overall signal distribution, rendering it less
amenable to efficient amplification.

V. SOME EXAMPLES

Recalling (2), and in order to calibrate the relevant
values of nb, the following observations can be made
in the context of emerging systems such as 3GPP LTE
[23] or IEEE 802.16 WiMAX [24]:
• The carrier frequency fc typically lies between 1 and

5 GHz.
• The symbol period is Ts ≈ 100 µs. However, it could

be shortened to Ts ≈ 10-20 µs and the flat-faded
model in (1) would still apply. (For wider band-
widths, a frequency-selective model would be re-
quired and the computation algorithm would have
to be modified accordingly.)

• Vehicular velocities up to v ≈ 120 Km/h are of
interest, and for high-speed trains this extends to
v ≈ 300 Km/h.

1Eq. (14) requires that nb > 2 nT; variations thereof are also available
for nb ≤ 2 nT [17].
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Fig. 1. In solid, Ī(SNR) for nT = nR = 1 with nb = 100. In dashed,
the perfect-CSI capacity.

With all of this taken into account, nb can take values
ranging from just over unity to several hundred. As the
following example evidences, for large nb the perfect-
CSI capacity accurately represents the achievable mutual
information.

Example 1 Let nT = nR = 1 and let nb = 100. Shown in
Fig. 1 are the mutual information and the perfect-CSI capacity
as function of SNR.

For the remainder of this section, we shall thus focus
on scenarios where nb is small. Specifically, we shall use
nb = 10 and nb = 4. These will tend to correspond
to vehicular and high-speed-train velocities, possibly in
conjunction with relatively long symbol periods and
relatively high carrier frequencies.

Example 2 Let nT = nR = 1 and let nb = 10. Shown in
Fig. 2 is the mutual information as function of SNR. Also
shown are the spectral efficiencies achieved by pilot-based
communication, with and without pilot power boosting, and
the perfect-CSI capacity.

We observe that a hefty share of the perfect-CSI
capacity is achieved at high SNR, although this share
diminishes with the SNR. We further observe that, by
optimizing the pilot overhead or the pilot power boost
at every SNR, pilot-based communication schemes can
perform remarkably close to the fundamental communi-
cation limit of IID complex Gaussian inputs in this case.

Example 3 Shown in Fig. 3 is a re-evaluation of Example 2
with nb = 4.

In this case, the relative gap between the perfect-
CSI capacity and the achievable mutual information is
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Fig. 2. In solid, Ī(SNR) for nT = nR = 1 with nb = 10. Also in solid,
spectral efficiencies achieved by pilot-based communication, with and
without pilot power boosting. In dashed, the perfect-CSI capacity.
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Fig. 3. In solid, Ī(SNR) for nT = nR = 1 with nb = 4. Also in solid,
spectral efficiencies achieved by pilot-based communication, with and
without pilot power boosting. In dashed, the perfect-CSI capacity.
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very substantial. (At 0 dB, less than half the perfect-
CSI capacity can actually be achieved by IID complex
Gaussian inputs.) The spectral efficiency of pilot-based
schemes is similarly affected. Remarkably though, the
performance of these schemes relative to the mutual
information limit is essentially unaffected.

Let us now turn our attention to MIMO settings. A
well-known feature of the perfect-CSI capacity is that
it always increases with additional antennas, be it at
the transmitter or at the receiver. However, [5] and [17]
suggest that, without perfect CSI, activating too many
transmit antennas would be detrimental at sufficiently
high SNR. This is indeed the case, and the SNR above
which a specific nT becomes optimal depends on nb as
the following example illustrates.

Example 4 Let nR = 4. Shown in Fig. 4 is the optimum
number of transmit antennas as function of both SNR and nb.

Next, we see the impact of varying nb and/or SNR with
fixed nT and nR.

Example 5 Let nT = nR = 2. Shown in Fig. 5 is the mutual
information as function of SNR with nb = 10 and with nb = 4.
Also shown is the corresponding perfect-CSI capacity.

Comparing Example 5 with Examples 2 and 3, notice
how, at each fading rate, MIMO transmission suffers
a more drastic loss relative to the perfect-CSI capacity.
However, even with nb = 4, the mutual information for
nT = nR = 2 is larger than for nT = nR = 1 (Example
3). Thus, although additional transmit antennas should
be activated only for sufficiently long nb, additional
transmit-receive pairs should be activated even for short
nb.

As a final and very illuminating example, we examine
the scaling of the mutual information with the number
of antennas for nT = nR.
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Fig. 5. In solid, Ī(SNR) for nT = nR = 2, with nb = 10 and with
nb = 4. In dashed, the corresponding perfect-CSI capacity.

Example 6 Let nT = nR. Shown in Fig. 6 is the mutual
information for SNR = 3 dB as function of nT = nR with nb =
10 and nb = 100. Also shown is the perfect-CSI capacity.

The linear scaling of the perfect-CSI capacity with
nT = nR is what fueled the early interest in MIMO.
Without perfect CSI, the linear scaling is upheld approx-
imately as long as the number of antennas is sufficiently
small relative to nb, but not otherwise. This is not
just a limitation associated with the suboptimality of
Gaussian inputs in the absence of perfect CSI, but rather
a fundamental issue caused by channel uncertainty [9].

VI. THE LOW-SNR REGIME

In power-limited conditions, power efficiency becomes
relevant and the figure of merit that quantifies such
efficiency is the energy per bit normalized by the noise
spectral density. Measured at the receiver, this figure of
merit equals

Er
b

N0
=

SNR

R/B
nR (16)

where R/B is the spectral efficiency, i.e., C(SNR) with
perfect CSI or Ī(SNR) without it.

With perfect CSI, it is known that Er
b

N0
is minimized for

SNR→ 0 and that such minimum equals [25]

Er
b

N0 min

=
1

log2 e
(17)

which equals −1.59 dB. Without perfect CSI on the
side, Ī(SNR) with IID complex Gaussian inputs is convex
below some (low) SNR and concave above it [5]–[8].
It follows that Er

b

N0
is minimized at some finite SNR.

However, this minimizing SNR, and the corresponding
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Er
b

N0 min
, cannot be obtained using the low-SNR expansions

available in the literature because only the convex behav-
ior of Ī(SNR) is captured therein. Specifically, the most
refined low-SNR expansion available is [7]

Ī(SNR) =
nbnR

2nT

SNR2 + o(SNR2) (18)

based on which Er
b

N0 min
indeed cannot be obtained.2

Applying the method presented in Section III, the cor-
rect Er

b

N0 min
and the corresponding SNR can be calculated.

In pilot-based communication, the spectral efficiency
is also a convex function of SNR below some SNR and
concave above it [17]. Thus, Er

b

N0 min
is also achieved at

some finite SNR, which can be calculated numerically
by solving for the spectral efficiencies in (13) and (14)
and then using those results to minimize (16). Such
calculations are conducted in [26].

Example 7 Let nT = 1 = nR = 1 and let nb = 10. Shown
in Fig. 7 is the Eb

N0
as function of SNR.

At this fading rate (nb = 10), the most power-efficiency
operating point is SNR = −2.4 dB. The corresponding
Er

b

N0 min
equals 2.1 dB, almost 4 dB above what a perfect-

CSI analysis would indicate. With pilot-based transmis-
sion, an additional penalty of over 1 dB in Er

b

N0 min
is

suffered.
More generally, the method in Section III allows char-

acterizing the power-efficient operating point and the
corresponding Er

b

N0 min
as a function of the fading rate,

nb. This characterization is presented in Figs. 8 and 9
for nT = nR = 1, and similar results can be readily

2Eq. (18) would indicate that Er
b

N0 min
is achieved for SNR→∞, but

(18) does not apply beyond the low-SNR regime.

Pilot-Based nT = nR = 1
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Fig. 7. Er
b /N0 as function of SNR for nT = nR = 1 with nb = 10.

In solid, values obtained from Ī(SNR) and also values corresponding
to pilot-based communication, with and without pilot power boosting.
For each curve, (Er

b /N0)min is explicitly indicated. In dashed, Er
b /N0

with perfect CSI, i.e., obtained from C(SNR).
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for nT = nR = 1. Values obtained from Ī(SNR) and also values
corresponding to pilot-based communication, with and without pilot
power boosting.

obtained for MIMO. For typical vehicular scenarios, the
operating points that maximize the power efficiency
are substantially higher than what one might anticipate
from a perfect-CSI analysis, and the corresponding Eb

N0 min
levels are markedly above the −1.59-dB floor.

VII. THE HIGH-SNR REGIME

A. Case nb ≥ nR + min{nT, nR}
For such nb, it is shown in [5] that the high-SNR slope

of the true channel capacity (without side information at
the receiver) is

min{nT, nR}
(

1− min{nT, nR}
nb

)
(19)
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communication, with and without pilot power boosting.

in bits/s/Hz/(3 dB). By activating min{nT, nR} transmit
antennas and min{nT, nR} receive antennas, a straight-
forward computation shows that the lower bound in
Proposition 3 achieves the same high-SNR slope. Since
Ī(SNR) increases with the number of receive antennas
(by the chain rule, additional outputs are never harmful),
this implies that the optimal high-SNR slope is achieved if
IID Gaussian inputs are sent from min{nT, nR} transmit
antennas and all available receive antennas are used.
Based upon (13), it is also straightforward to confirm that
pilot-based communication achieves the optimal high-
SNR slope if min{nT, nR} transmit antennas are used with
one pilot per antenna.

Thus, the slope is not a defining feature at high SNR.
Rather, it is the power offset [27] that determines the
performance in this regime, and the method in Section
III can used to quantify it for IID Gaussian inputs.

Example 8 Let nT = nR = 2 and let nb = 10. Shown in
Fig. 10 is the high-SNR mutual information. Also shown are
the perfect-CSI capacity and the high-SNR expansion of the
true capacity, which for nT = nR is given in [5] as(

1− nT

nb

)(
C(SNR) + nT log2

nb

πe

)
+

1
nb

log2G(nb, nT)+o(1)

(20)
with

G(t, n) =

t∏
i=t−n+1

2πi

(i−1)!

n∏
i=1

2πi

(i−1)!

. (21)

Although for nb ≥ nR + min{nT, nR} the input X that
achieves the true capacity for SNR→∞ is an isotropically
random unitary matrix [9], [28], IID Gaussian inputs
seem to perform very well at high SNR, even in relatively
fast fading. Non-asymptotically in the SNR, the optimum
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X is no longer just a unitary matrix but rather the
product of a unitary matrix and a nonnegative real
diagonal matrix. No expressions are then available for
the true capacity.

B. Case nb < nR + min{nT, nR}
In this case, the optimum X is again the product

of a unitary matrix and a nonnegative real diagonal
matrix, even for SNR → ∞. The high-SNR slope of the
true capacity equals [5]

min {nT, nR, bnb/2c}
(

1− min{nT, nR, bnb/2c}
nb

)
(22)

but no further expressions are available for the true ca-
pacity. Our method to compute the mutual information
of IID Gaussian inputs continues to apply.

VIII. CONCLUSION

We have presented a method (part analytical, part
Monte Carlo) to compute the mutual information
achieved by IID complex Gaussian inputs on block
Rayleigh-faded channels, both scalar and MIMO. This
mutual information is highly relevant as it represents
the highest spectral efficiency attainable with Gaussian
codebooks.

The method presented may be of further interest to
other multivariate problems involving combinations of
multiplicative and additive Gaussian noise, either with
respect to the mutual information or to the constituting
differential entropies.

A software routine that implements the described
method in Matlab code is available for download at
http://www.dtic.upf.edu/∼alozano/software.
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APPENDIX

A. Preliminaries

For subsequent use, we present four relevant identi-
ties. The first one, easily verified, is∫ ∞

−∞
exp{−x2A+ xB} dx = exp

{
B2

4A

}√
π

A
. (23)

The second one is an integral due to Itzykson and
Zuber [29]. Given an M × M diagonal matrix B with
diagonal entries b, an arbitrary M ×M matrix D with
eigenvalues d, and an M ×M isotropically distributed
unitary random matrix U ,

∫
eTr{UDU†Z}p(U) dU =

M∏
m=1

(m− 1)! detE(d, b)
detV (d) detV (b)

(24)

where the (i, j)th entry of the M × M matrix E(d, b)
equals

Eij = exp{dibj} (25)

while V (·) denotes a Vandermonde matrix, i.e., such that

detV (d) =
∏

1≤i<j≤M

(dj − di). (26)

The third identity treats (24) when B is of reduced
rank. If bn = 0 for n > N ,

lim
bN+1,...,bM→0

detE(d, b)
detV (b)

=
detẼ(d, b)∏N

k=1 b
M−N
k (k−1)!

(−1)(M−N)(M−N−1)/2

detV (b[1...N ])
(27)

where the (i, j)th entry of Ẽ(d, z) equals exp{dizj} for
j ≤ N and dj−N−1

i for N + 1 ≤ j ≤M .
The final identity was proved in [30] by Chiani, Win

and Zanella. Given two arbitrary M ×M matrices Ψ(x)
and Φ(x) with (i, j)th entries Ψi(xj) and Φi(xj), respec-
tively, and an arbitrary function ξ(·),

∫
· · ·
∫
Dord

detΨ(x) detΦ(x)
M∏
m=1

ξ(xm)dx

= det

{∫ b

a

Ψi(x)Φj(x)ξ(x)dx

}
i,j=1...M

 (28)

where the multiple integral is over the domain Dord =
{b ≥ x1 ≥ x2 ≥ . . . ≥ xM ≥ a}.

B. Proof of Proposition 1

Conditioned on X , the output Y is complex Gaussian.
Furthermore, the rows of Y are IID conditioned on X .
Hence, to obtain h(Y |X) it suffices to evaluate its value
for an arbitrary row of Y and then scale it by the number
of rows, i.e., by nR.

Let y be an arbitrary row of Y . The conditional co-
variance of the nb-dimensional column vector y† equals

E
[
y†y|X] = I +

SNR

nT

X†X (29)

and thus

h(y|X) = h(y†|X) (30)

= E
[
log2

(
(πe)nb det

(
I +

SNR

nT

X†X

))]
(31)

with expectation over the distribution of X . Factoring
out the term nb log2(πe), what remains coincides with
the perfect-CSI capacity of a MIMO channel, only with
the role of the channel played by X . Since the entries of
X are IID complex Gaussian with zero mean and unit
variance, we may directly apply the closed form in [13]
with appropriate dimensioning. Scaling the end result
by nR, we convert h(y|X) into h(Y |X) as desired.

C. Proof of Proposition 2

Define γ = SNR/nT, s = min{nT, nR} and r =
max{nT, nR}. Then, denoting by xt the tth column of
X ,

p(Y )=EH

[∫
p(Y |H,X) p(X) dX

]
(32)

=
1

(πγ)nTnb

1
πnRnb

EH

[ nb∏
t=1

∫
exp

{−‖yt −Hxt‖2}
× exp

{−‖xt‖2/γ} dxt
]
. (33)

Using the singular-value decomposition H = UΣV †,
absorbing V into X through the variable substitution
x̃t = V †xt, and assembling the diagonal entries of ΣΣ†

into λ = [λ1, . . . , λs],

p(Y )=
exp

{−‖Y ‖2}
(πγ)nTnbπnRnb

EH

[∫ nb∏
t=1

exp
{
−x̃†tΛx̃t

}
× exp

{
2 Re{y†tUΣx̃t}

}
exp

{
−‖x̃t‖

2

γ

}
dx̃t

]
(34)

=
exp

{−‖Y ‖2}
(πγ)nTnbπnRnb

EH

[∫ nb∏
t=1

(
s∏

k=1

× exp
{

2 Re{y†tukΣkx̃t,k} − |x̃t,k|2
(
λk +

1
γ

)})
×
(

nT∏
k=nR+1

exp
{
−|x̃t,k|

2

γ

})
dx̃t,k

]
. (35)
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Applying (23) to each variable x̃t,k in (34) gives

p(Y )=
exp
{−‖Y ‖2}
πnRnb

EH

nb∏
t=1

s∏
k=1

exp


λk

(
Re{y†tuk}

)2

(
λk + 1

γ

)


× exp


λk

(
Im{y†tuk}

)2

(
λk + 1

γ

)

(

1
λkγ + 1

) (36)

=
exp

{−‖Y ‖2}
πnRnb

EH

[
s∏

k=1

exp

{
λkγu

†
kY Y

†uk
(λkγ + 1)

}

×
(

1
λkγ + 1

)nb
]
. (37)

Let A(λ) be a nR × nR diagonal matrix with kth
diagonal entry ak = λkγ/(λkγ + 1), 1 ≤ k ≤ s and
ak = 0, s < k ≤ nR. It is known that U , Σ, and V in
the singular-value decomposition of H are independent
random matrices and that bothU and V are isotropically
distributed. Thus, we can express (37) as

p(Y )=
exp

{−‖Y ‖2}
πnRnb

∫
p(λ)

nR∏
k=1

(
1

λkγ + 1

)nb

×
[∫

p(U) exp
{

Tr
{
A(λ)Ũ

†
Y Y †Ũ

}}
dU
]

dλ

(38)

where the density distribution of the (ordered) eigenval-
ues in λ equals

p(λ) = det2V (λ)
s∏

k=1

e−λkλr−sk

(nR − k)! (nT − k)!
, (39)

and scaling by 1/s! yields the corresponding density of
the unordered eigenvalues.

Henceforth, we separately consider the cases nT ≤ nR

and nT < nR.
1) Case nT ≥ nR: The r.h.s. of (38) is precisely the setup

in (24). Let a(λ) = [a1, . . . , anR ] contain the diagonal
elements of A(λ) and let d contain the eigenvalues of
Y Y †. Then,

p(Y )=
∏nR
k=1(k − 1)! e−‖Y ‖

2

detV (d)πnRnb

∫
p(λ)

detE(a(λ),d)
detV (a(λ))

×
nR∏
k=1

(
1

λkγ + 1

)nb

dλ (40)

with E(·, ·) and V (·) as per (25) and (26), respectively.
Moreover,

1
detV (a(λ))

=
∏
k>`

(
λkγ

λkγ + 1
− λ`γ

λ`γ + 1

)−1

=
∏
k>`

1
γ

(λkγ + 1)(λ`γ + 1)
λk − λ`

=
1

γ(n2
R−nR)/2

∏
k>`(λkγ + 1)(λ`γ + 1)

detV (λ)

=
1

γ(n2
R−nR)/2

∏nR
k=1(λkγ + 1)nR−1

detV (λ)
. (41)

Plugging (39) and (41) into (40) yields

p(Y )=
exp

{−‖Y ‖2}
detV (d) γ

n2
R−nR

2 πnRnb
∏nR
k=1(nT−k)!

∫
detV (λ)

×detE(a(λ),d)
nR∏
k=1

e−λkλnT−nR
k

(λkγ + 1)nb+1−nR
dλ

=
exp

{−‖Y ‖2}
detV (d)πnRnb

∏nR
k=1(nT−k)!

∫
detV (λ/γ)

×detE(a(λ),d)
nR∏
k=1

e−λkλnT−nR
k

(λkγ + 1)nb+1−nR
dλ. (42)

The multiple integral in (42) is an instance of (28).
Simply identify

Φ(λ) = detV (λ/γ) (43)
Ψ(λ) = detE(a(λ),d) (44)

ξ(x) =
e−x xnT−nR

(xγ + 1)nb+1−nR
(45)

to obtain

p(Y ) =
exp

{
−‖Y ‖2

}
πnRnb

detZ
detV (d)

∏nR
k=1(nT − k)!

(46)

where

Zij =
∫ ∞

0

(x/γ)i−1 exp
{
dj

xγ

xγ+1
−x
}

xnT−nR

(xγ+1)nb+1−nR
dx.

(47)
Remark: The proposition can be generalized to also
encompass non-Gaussian inputs. If X has rotational
invariance and the corresponding p(λ) if of the form

p(λ) = det2V (λ)
nR∏
k=1

gk(λk)
(nR − k)!(nT − k)!

,

(42) equals

p(Y )=
exp

{−‖Y ‖2}
detV (d)πnRnb

∏nR
k=1(nT−k)!

∫
detV (λ/γ)

×detE(a(λ),d)
nR∏
k=1

gk(λk)
(λkγ + 1)nb+1−nR

dλ. (48)

In the case that the functions gk(x) = g(x) for all k, (48)
is still an instance of (28), but with

ξ(x) =
g(x)

(xγ + 1)nb+1−nR
.

Hence, Proposition 2 applies, but with a different matrix
Z. If the functions gk(x) are distinct, (28) needs to be
replaced with [30, Theorem 2]. This gives a similar, but
not identical, result to Proposition 2 (the term detZ is
replaced by a general tensor-operator). These observa-
tions for non-Gaussian inputs hold for the case nT < nR

as well.
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2) Case nT < nR: Let a(λ) = [a1, . . . , anT ] contain
the diagonal elements of A(λ) and let d contain the
eigenvalues of Y Y †. The r.h.s. of (38) is precisly the
setup in (24), but in this case the limit in (27) must be
taken. Taking that limit and plugging in the density (39)
yields, after a few manipulations,

p(Y )=
γnR−nT exp

{−‖Y ‖2}
detV (d)πnRnb

∏nT
k=1 k!

∫
detV (λ/γ)

×detẼ(a(λ),d)
nT∏
k=1

e−λk

(λkγ + 1)nb+1−nR
dλ (49)

where the density of unordered eigenvalues has been
used and thus the integration limits are 0 to ∞ for all
variables.

Eq. (49) is not an instance of (28) due to the structure
of the matrix Ẽ(a(λ),d). However, the same result as in
(28) still applies,∫

detV (λ/γ)detẼ(a(λ),d)
nT∏
n=1

e−λn

(λnγ + 1)nb+1−nR
dλ

=
∑

σ∈PnT

∑
σ′∈PnR

(−1)σ+σ′
nT∏
n=1

∫
λn
γ

σn−1

exp
{
dσ′n

λnγ

λnγ + 1

}

× e−λn

(λnγ + 1)nb+1−nR
dλn

nR∏
n=nT+1

dn−nT−1
σ′n

=
∑

σ∈PnT

∑
σ′∈PnR

(−1)σ+σ′
nT∏
n=1

fσn
(dσ′n)

nR∏
n=nT+1

dn−nT−1
σ′n

=nT!
∑

σ′∈PnR

(−1)σ
′
nT∏
n=1

fn(dσ′n)
nR∏

n=nT+1

dn−nT−1
σ′n

=nT! detZ, (50)

where

fn(x) =
∫ ∞

0

(z/γ)n−1 exp
{
x

zγ

zγ+1
−z
}

1
(zγ+1)nb+1−nR

dz,

(−1)σ denotes the sign of the permutation σ, PN denotes
the set of all permutations of the integers 1, . . . , N , and
the (i, j)th entry of Z equals Zij = fj(di) if j ≤ nT and
Zij = dj−nT−1

i if j > nT.
By combining both cases, the complete statement in

the proposition is obtained.
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