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Abstract—The low-rank matrix completion problem can be
succinctly stated as follows: given a subset of the entries of a
matrix, find a low-rank matrix consistent with the observations.
While several low-complexity algorithms for matrix completion
have been proposed so far, it remains an open problem to devise
search procedures with provable performance guarantees for a
broad class of matrix models. The standard approach to the
problem, which involves the minimization of an objective function
defined using the Frobenius metric, has inherent difficulties: the
objective function is not continuous and the solution set isnot
closed. To address this problem, we consider an optimization
procedure that searches for a column (or row) space that
is geometrically consistent with the partial observations. The
geometric objective function is continuous everywhere andthe
solution set is the closure of the solution set of the Frobenius
metric. We also preclude the existence of local minimizers,
and hence establish strong performance guarantees, for special
completion scenarios, which do not require matrix incoherence
or large matrix size.

I. I NTRODUCTION

In many practical applications of data acquisition, the sig-
nals of interest have a sparse representation in some basis.
That is, they can be well approximated using only a few basis
elements. This allows for efficient sampling and reconstruction
of signals [1], [2], [3], [4], [5], [6]. More precisely, the number
of linear measurements required to capture a sparse signal
can be much smaller than the number of inherent dimensions
of the signal, and various polynomial time algorithms are
known for accurately reconstructing the sparse signal based
on these linear measurements. Due to the significant reduction
in sampling resources and modest requirements for compu-
tational resources, sparse signal processing has been studied
intensively [1], [2], [3], [4], [5], [6].

There are two categories of sparse signals which frequently
arise in applications. In the first category, the sparse signal can
be modeled a vector with only a small fraction of non-zero
entries. Compressive sensing is the framework of sampling and
recovering such signals. In the second category, the signals are
represented by matrices whose ranks are much smaller than
either of their dimensions. In the second setting, one of the
fundamental problems of sparse signal processing is the low-
rank matrix completion problem – to determine when and how
one can recover a low-rank matrix based on only a subset of
its entries [5], [6], [7].

Scores of methods and algorithms have been proposed for
low-rank matrix completion. Many of them are based on sim-

ilarities between compressive sensing reconstruction andlow-
rank matrix completion. In general, both reconstruction tasks
are ill-posed and computationally intractable. Nevertheless,
exact recovery in an efficient manner is possible for both signal
categories provided that the signal is sufficiently sparse or suf-
ficiently densely sampled. Casting the sparse signal recovery
problem as an optimization problem,ℓ1-minimization has been
proposed for compressive sensing signal reconstruction [1],
[2], [3]. Following the same idea, methods based on nuclear
norm minimization have been developed for low-rank matrix
completion [5], [6], [8], [9]. In terms of greedy algorithms,
many of the approaches for low-rank completion can be
viewed as generalizations of their counterparts for compressive
sensing reconstruction. In particular, the ADMiRA algorithm
[10] is a counterpart of the subspace pursuit (SP) [11] and
CoSaMP [12] algorithms, while the singular value projection
(SVP) method [13] extends the iterative hard thresholding
(IHT) [14] approach. There are also other approaches that
utilize some special structural properties of the low-rank
matrices. Examples include the power factorization algorithm
[15], the OptSpace algorithm [16], and the subspace evolution
and transfer algorithm [17].

Nevertheless, there is a fundamental problem in low-rank
matrix completion which has not been successfully addressed
yet: how to search for a low-rank matrix consistent with
partial observations. The fundamental difference betweencom-
pressive sensing and low-rank matrix completion lies in the
knowledge of the “sparse basis”. In compressive sensing, the
basis under which the signal is sparse is known a priori. In
principle, the support set of the nonzero entries can be found
by exhaustive search. However, in low-rank matrix completion,
the corresponding “sparse basis” is not known. Note that the
set of all possible bases forms a continuous space. In such a
space, “exhaustive” search is impossible. Moreover, we shall
show, in Example 1 of Section III, that a direct gradient-
descent search does not work either.

The understanding of the search for consistent matrices
is incomplete. There are two special cases where specially
designed algorithms can guarantee a consistent low-rank so-
lution. The first case is when the low-rank matrix is fully
sampled. The consistent low-rank solution is simply the obser-
vation matrix itself. The corresponding “sparse basis” (singular
vectors) can be easily obtained by a singular value decompo-
sition. The other case is when the rank equals to one. Given
an arbitrary sampling pattern, one simply looks at the ratios
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between the revealed entries in the same column and uses
these ratios to construct a column vector that represents the
column space. This method is guaranteed to find a consistent
solution for rank-one matrices. However, it remains an open
problem how to extend this method for general ranks. Hence,
such an approach is not universal. On the other hand, none of
existing general algorithms provides performance guarantee
even for the rank-one case. The performance guarantee of
nuclear norm minimization is built on incoherence conditions,
which only holds with high probability when the low-rank
matrix is drawn randomly from certain ensembles and when
the size of the matrix is sufficiently large. Our understanding
of low-rank matrix completion is far from complete.

Our approach to address these issues is summarized as
follows.

1) We provide a framework for searching for a low-rank
matrix that isconsistentwith the partial observations.
There is no requirement that such a matrix is unique: if
there is a unique low-rank solution, we should be able
to find this unique matrix; otherwise, it suffices to find
just one solution that agrees with the revealed entries. In
our approach, we assume that the rank of the underlying
low-rank matrix is known a priori. Finding a consistent
low-rank matrix is equivalent to finding a consistent
column/row space. This is different from the OptSpace
algorithm in [16], where the search is performed on both
column and row spaces simultaneously.

2) We propose a geometric performance metric to measure
the consistency between the estimated column space and
the partial observations. In the literature, the standard
approach is to minimize an objective function that is
defined via the Frobenius norm. As we shall illustrate
with explicit examples, this objective function may have
singularities, and therefore the corresponding solution
set may not be closed. Hence, we introduce a new for-
mulation where consistency is now defined in geometric
terms. This allows us to address the difficulties related
to the Frobenius metric. In particular, we show that
our geometric objective function is always continuous.
The set of the corresponding consistent solutions is the
closure of the set corresponding to the Frobenius norm.
This new metric allows for provably strong performance
guarantees, described below.

3) We provide strong performance guarantees for special
completion scenarios: rank-one matrices with arbitrary
sampling patterns, and fully sampled matrices1 of arbi-
trary rank. For these two scenarios, a gradient descent
search starting from a random point will converge to a
global minimum with probability one.More importantly,
if the partial observations admit a unique consistent
solution, this search procedure finds this unique solution
with probability one.The performance guarantees are
different from those previously established in litera-
ture. Roughly speaking, previous performance guaran-

1For full sampled matrices, even though using a simple singular value
decomposition produces a consistent column space, it is notclear that a
randomlly initialized search would converge to a consistent column space.
In what follows, we prove that this is the case.

tees require large matrix sizes and only hold with high
probability. Ours hold with probability one regardless
of matrix size. It is also worth noting that we do not
require incoherence conditions, which are essential for
the performance guarantees of nuclear norm minimiza-
tion. Unfortunately, we are presently unable to obtain
performance guarantees for more general cases.

The paper is organized as follows. In Section II we in-
troduce the low-rank matrix completion problem, and some
background material regarding Grassmann manifolds and their
geometry. In Section III we show that formulating the low-
rank matrix completion problem as an optimization problem
using the Frobenius norm may yield singularities which can
obstruct standard minimization algorithms. We then propose
a new geometric formulation of the problem as a remedy
to this difficulty. This new formulation allows for strong
performance guarantees that are presented in Section IV.
Section V summarizes the main contributions of the work.
Proofs of the main results are presented in the Appendices.

II. L OW-RANK MATRIX COMPLETION AND

PRELIMINARIES

Let X ∈ R
m×n be an unknown matrix with rankr ≤

min (m,n), and letΩ ⊂ [m] × [n] be the set of indices of
the observed entries, where[K] = {1, 2, · · · ,K}. Define the
projection operatorPΩ by

PΩ : R
m×n → R

m×n

PΩ(X) 7→ XΩ, where (XΩ)i,j =

{

Xi,j if (i, j) ∈ Ω

0 if (i, j) /∈ Ω
.

Theconsistent matrix completionproblem is to findonerank-r
matrix X ′ that is consistent with the observationsXΩ, i.e.,

(P0) : find aX ′ such that

rank(X ′) = r andPΩ (X ′) = PΩ (X) = XΩ. (1)

By definition, this problem is well defined sinceXΩ is
obtained from some rank-r matrix X which is therefore a
solution. As in other works, [10], [15], [16], we assume that
the rankr is given. In practice, one may try to sequentially
guess a rank bound until a satisfactory solution has been found.

We also introduce the (standard) projection operatorP ,

P : R
m × R

m×k → R
m

P (x,U) 7→ y = UU†x,

where1 ≤ k ≤ m, and where the superscript† denotes the
pseudoinverse of a matrix. Let span(U) denote the subspace
spanned by the columns of the matrixU , i.e.,

span(U) = {v ∈ R
m : v = Uw for somew ∈ R

m} .

One can describeP (x,U), in geometric terms, as the pro-
jection of the vectorx onto span(U). It should be observed
thatU†x is the global minimizer of the quadratic optimization
problemminw∈Rk ‖x−Uw‖22 .
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A. Search for a consistent column space

We now show that the problem(P0) is equivalent to finding
a column space consistent with the observed entries ofX.

Let Um,r be the set ofm× r matrices withr orthonormal
columns, i.e.,Um,r =

{
U ∈ R

m×r : UTU = Ir
}
. Define

the functionfF : Um,r → R by setting

fF (U) = min
W∈Rn×r

∥
∥XΩ − PΩ

(
UW T

)∥
∥
2

F
, (2)

where‖·‖F denotes the Frobenius norm. This function mea-
sures the consistency between the matrixU and the obser-
vationsXΩ. In particular, if fF (U) = 0, then there exists
a matrix W such that the rank-r matrix UW T satisfies
PΩ

(
UW T

)
= XΩ. Hence, the consistent matrix completion

problem is equivalent to

(P1) : find U ∈ Um,r such thatfF (U) = 0. (3)

In fact,fF (U) depends only on the subspace span(U) since
the columns of a matrix of the formUW T all lie in span(U).
Hence, to solve the consistent matrix completion problem, it
suffices to find acolumn spacethat is consistent with the
observed entries. Note that the same conclusion holds for the
row space as well. For simplicity, we restrict our attentionto
the column space only.

B. Grassmann Manifolds

The set of column spaces of elements inUm,r can be
identified with the Grassmann manifoldGm,r, the set ofr-
dimensional subspaces in them-dimensional Euclidean space
R

m. This is a smooth compact manifold of dimensionr(m−
r). Conversely, every element, sayU ∈ Gm,r can be presented
by a generator matrixU ∈ Um,r satisfyingspan (U) = U .
However, this presentation ofU by a generator matrix is
clearly not unique. Nevertheless, it follows from the discussion
in the previous section that the functionfF descends to a
function onGm,r. Thus, problem(P1) can be viewed as an
optimization problem on the compact manifoldGm,r.

In this section we recall some facts concerning the geometry
of Grassmann manifolds which will be useful in addressing
this and similar optimization problems. For the proofs of these
facts the reader is referred to [18]. We begin by recalling
the construction of the standard Riemannian metric,gm,r, on
Gm,r. Note that the groupUm,m of orthogonalm×m matrices
acts transitively onGm,r (by multiplication on generator
matrices). More precisely,Gm,r can be described as a quotient
of Um,m, i.e.,

Gm,r = Um,m/(Um−r,m−r × Ur,r)

Now, as a compact Lie group,Um,m has a standard (bi-
invariant) Riemannian metric (can be defined by using inner
product in the tangent space). This descends to the quotient
Gm,r as the metricgm,r. By construction,gm,r is invariant
under the action ofUm,m.

The metricgm,r determines a chordal distance function and
geodesic curves onGm,r which will play an important role in
what follows. To obtain the relevant formulas for these objects
we require the notion of theprincipal anglesbetween two

subspaces [19], [20]. Consider the subspaces span(U) and
span(V ) of R

m for someU ∈ Um,p and V ∈ Um,q. The
principal angles between these two subspaces can be defined in
the following constructive manner. Without loss of generality,
assume that1 ≤ p ≤ q ≤ m. Let u1 ∈ span(U) and v1 ∈
span(V ) be unit-length vectors such that

∣
∣uT

1 v1

∣
∣ is maximal.

Inductively, letuk ∈ span(U) and vk ∈ span(V ) be unit
vectors such thatuT

kuj = 0 andvT
k vj = 0 for all 1 ≤ j < k

and
∣
∣uT

k vk

∣
∣ is maximal. The principal angles are then defined

as
αk = arccosuT

k vk

for k = 1, 2, · · · , p.
Alternatively, the principal angles can be computed via

singular value decomposition. Consider the singular value
decompositionUUTV V T = ŪΛV̄ T , whereŪ ∈ Um,p and
V̄ ∈ Um,p contain the firstp left and right singular vectors,
respectively, andΛ ∈ R

p×p is a diagonal matrix comprised
of singular valuesλ1 ≥ · · · ≥ λp. Then thekth columns of
Ū and V̄ correspond to the vectorsuk and vk used in the
constructive definition, respectively. Thekth singular valueλk

defines thekth principal angleαk via

cosαk = λk.

Chordal distance on Gm,r. For U1 and U2 in Um,r, the
chordal distancebetween the two subspaces span(U1) and
span(U2) in Gm,r is given, in terms of thep principal angles
between them, via the formula

√
√
√
√

r∑

k=1

sin2 αk.

The chordal distance can also be expressed in terms of singular
values as √

√
√
√

r∑

k=1

(1− λ2
k).

Geodesics onGm,r. We will use the gradient descent method
on Gm,r to search for consistent column spaces. This will
require some information concerning the geodesics of the
metric gm,r on Gm,r which we now recall.

Roughly speaking, a geodesic in a manifold is a general-
ization of the notion of a straight line in the Euclidean space:
given any two points inGm,r, among all curves that connect
these two points, the one of the shortest length is geodesic.
More precisely, fix a subspaceU in Gm,r and a tangent vector
H to Gm,r at U . Let U ∈ Um,r be a generator matrix
for U . The tangent space toGm,r at U can be identified
with the set ofhorizontal tangent vectors toU , i.e., the set
of tangent vectorsW at U which satisfyUTW = 0 [18].
Let H ∈ R

m×r be the horizontal tangent vector atU which
corresponds toH and set

U (t) = [UVH ,UH ]

[
cos (SHt)
sin (SHt)

]

V T
H , (4)

whereUHSHV T
H is the compact singular value decomposition

of H . Thenspan (U (t)) is the unique geodesic ofgm,r which
starts atU with “initial velocity” H .
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We now use this general solution for the geodesic flow
of gm,r to establish the following technical result concerning
geodesics between a given pair of subspaces.

Lemma 1:Fix two elementsU1 and U2 of Um,r. Let
V1ΛV T

2 be the singular value decomposition of the matrix
UT

1 U2, and denote theith singular value byλi = cosαi. Set
Ū1 = U1V1 andŪ2 = U2V2 and note thatŪT

1 Ū2 = Λ.

1) Consider the path

U (t) =
[
Ū1,G

]
[

diag([· · · , cosαit, · · · ])
diag([· · · , sinαit, · · · ])

]

V T
1 ,

(5)
where the columns ofG = [· · · , gi, · · · ] ∈ R

m×r are
defined as follows

gi =







Ū2,:i−λiŪ1,:i

‖Ū2,:i−λiŪ1,:i‖ if λi 6= 1,

0 if λi = 1.

Here, the subscript:i denotes theith column of the
corresponding matrix. Then the path span(U (t)) is a
geodesic ofgm,r such that span(U (0)) = span(U1)
and span(U (1)) = span(U2).

2) Let x̄ ∈ span(U2) be a unit-norm vector. It’s clear that
there exists a uniquēw ∈ Ur,1 such thatx̄ = Ū2w̄.
Suppose that̄x /∈ span

(
Ū1

)
. Let k the number of the

singular values of̄UT
1 Ū2 that equal to one. Thenk < r

and there exists an indexj ∈ [r] such thatk < j ≤ r
and w̄j 6= 0.

Proof: Clearly,U (0) = U1. SinceŪT
1 Ū2 = Λ, we have

∥
∥Ū2,:i − λiŪ1,:i

∥
∥
2

= 1− 2λi

〈
Ū2,:i, Ū1,:i

〉
+ λ2

i

= 1− λ2
i .

Thus, we have

U (1) =
[
· · · , Ū1,:i cosαi + gi sinαi, · · ·

]
V T
1

=

[

· · · , Ū1,:iλi + gi

√

1− λ2
i , · · ·

]

V T
1

=
[
· · · , Ū1,:iλi + gi

∥
∥Ū2,:i − λiŪ1,:i

∥
∥ , · · ·

]
V T
1

=
(
Ū1Λ+

(
Ū2 − Ū1Λ

))
V T
1

= U2V2V
T
1 .

Hence, span(U (1)) = span(U2). To prove the first part of the
lemma it just remains to show that span(U(t)) is geodesic.
SettingH = U̇ (0) we have

H = Gdiag([· · · , αi, · · · ])V T
1 . (6)

We first verify that the tangent vectorH is horizontal which
is equivalent to showing thatUT

1 H = 0. According to the
definition of the vectorsgi, whenλi 6= 1, one has

∥
∥Ū2,:i − λiŪ1,:i

∥
∥ 6= 0

and

ŪT
1 gi =

1
∥
∥Ū2,:i − λiŪ1,:i

∥
∥
ŪT

1

(
Ū2,:i − λiŪ1,:i

)

=
1

∥
∥Ū2,:i − λiŪ1,:i

∥
∥
λiei − λiei = 0.

Hence,
UT

1 G = V T
1 ŪT

1 G = 0.

By (6), this implies thatUT
1 H = 0, as desired. Note that

equation (6) can also be viewed as an expression for the
compact singular value decomposition ofH . It then follows
directly from (4) that span(U(t)) is indeed a geodesic.

To prove the second part of the lemma, letu1,1, · · · ,u1,r

and u2,1, · · · ,u2,r be the column vectors of the matrix̄U1

andŪ2, respectively. By assumption,λ1 = · · · = λk = 1 and
1 > λk+1 ≥ · · · ≥ λr. Hence,

u1,j = u2,j, for all j ≤ k, and

〈u1,j,u2,j〉 = λj < 1, for all k < j ≤ r.

Suppose thatk = r. Then

x̄ = Ū2w̄ = Ū2w̄ ∈ span
(
Ū1

)
,

which contradicts the assumption thatx̄ /∈ span
(
Ū1

)
. Hence,

we havek < r. Now suppose that̄wk+1 = · · · = w̄r = 0.
Then

x̄ =

k∑

j=1

u2,jw̄j =

k∑

j=1

u1,jw̄j ∈ span(U1) ,

which again contradicts the assumption thatx̄ /∈ span(U1).
Hence, there exists aj such thatk < j ≤ r andw̄j 6= 0. This
completes the proof.

An invariant measure on Gm,r. The spaceUm,m admits
a standard invariant measure (the Haar measure) [21]. This
descends to a measureµ on Gm,r which is also invariant in
the following sense: for any measurable setM ⊂ Gm,r and
any A ∈ Um,m, one hasµ (M) = µ (AM), whereAM =
{span(AU) : U ∈ Um,r, span(U) ∈ M} [21], [20]. This
invariant measure defines the uniform/isotropic distribution on
the Grassmann manifold. Furthermore, let span(U) ∈ Gm,r

be fixed and span(V ) ∈ Gm,r be drawn randomly from the
isotropic distribution. The joint probability density function
of the principal angles between the spans ofU and V is
explicitly given in [21], [22], [20], [23]. Two properties of this
density function will be relevant to our later analysis: first, it
is independent of the choice ofU ; second, there is no mass
point.

III. F ROM THE FROBENIUS NORM TO THE GEOMETRIC

METRIC

In the previous section, we showed that the matrix comple-
tion problem reduces to a search for a consistent column space.
In other words, one only needs to find a global minimum of
the objective functionfF (U) , where

fF (U) , min
W∈Rr×n

‖XΩ − PΩ (UW )‖2F . (7)

However, as we shall show in Section III-A, this approach
has a serious drawback: the objective function (7) is not
a continuous function of the variableU . The discontinuity
of the objective function is due to the composition of the
Frobenius norm with the projection operatorPΩ. It may
prevent gradient-descent-based algorithms from converging to
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a global optimum (see [17] for a detailed example). To address
this issue, we propose another objective functionfG (U) based
on the geometry of the problem, detailed in Section III-B. To
solve the matrix completion problem, one then needs to solve
the problem

(P2) : find aU ∈ Um,r such thatfG (U) = 0. (8)

where fG denotes the geometric metric, which is formally
defined in Section III-B.

In the rest of this section, we shall show that the new
objective functionfG is a continuous function. Furthermore,
we shall show that the preimage offG (U) = 0 is the
closureof the preimage offF (U) = 0. Because of these nice
properties of the geometric objective function, one can derive
strong performance guarantees for gradient descent methods,
as described in Section IV.

A. Why the Frobenius Norm Fails

We use an example to show that the objective function (7)
based on the Frobenius norm is not continuous. LetxΩ,i be
the ith column of the matrixXΩ. Let Ωi ⊂ [m] be the set
of indices of known entries in theith column. We usePΩ,i

to denote the projection operator corresponding to the index
set of Ωi. By additivity of the squared Frobenius norm, the
objective function can be written as a sum of atomic functions,
i.e.,

fF (U) = min
W∈Rr×n

‖XΩ − PΩ (UW )‖2F

=

n∑

i=1

min
wi∈Rr

‖xΩ,i − PΩ,i (Uwi)‖2F
︸ ︷︷ ︸

fF,i(U)

.

Denote theith atomic functionby fF,i (U). It can be verified
that

fF,i (U) = min
w∈Rr

‖xΩ,i − PΩ,i (Uwi)‖2F
= ‖xΩ,i − P (xΩ,i,UΩi

)‖2.F ,

whereUΩi
= [PΩ,i (u1) , · · · ,PΩ,i (ur)] andu1, · · · ,ur are

column vectors of the matrixU . We show in the next example
that an atomic function, sayfF,1 (U), may not be continuous.

Example 1:Suppose thatxΩ,1 = [0, 1, 1]T andΩ1 = {2, 3}.

LetU be of the formU =
[√

1− 2ǫ2, ǫ, ǫ
]T ∈ U3,1 whereǫ ∈

[
−1/

√
2, 1/

√
2
]
. For a givenU , the atomic functionfF,1 (U)

is given by

fF,1 (U) = min
w∈R

∥
∥
∥[0, 1, 1]

T − PΩ,1 (Uw)
∥
∥
∥

2

F
.

This is a quadratic optimization problem and can be easily
solved. The optimalw∗ is given by

w∗ =

{
2
ǫ if ǫ 6= 0,

0 if ǫ = 0.

Hence, one has

fF,1 (U (ǫ)) =

{

0 if ǫ ∈
[

− 1√
2
, 0
)
⋃
(

0, 1√
2

]

,

2 if ǫ = 0.

Figure 1. Contours projected to the(u2, u3) plane. The left depicts the
contours of the squared Frobenius norm. The right corresponds to the chordal
distance.

which shows thatfF,1 (U (ǫ)) has a singular point atǫ = 0.

It is straightforward to verify that the overall objective
function (7) is also a discontinuous function ofU . As we
argued in [17], this discontinuity creates so called barriers,
which may prevent gradient-descent algorithms from converg-
ing to a global minimum. Hence, one seeks an optimization
criteria that will allow for a continuous objective function and
consequently, no search path barriers.

B. A Geometric Metric

To address the problem due to the singularities of the
objective functions, we propose to replace the Frobenius norm
by a geometric performance metric.

In this case, the objective function is defined as

fG (U) =

n∑

i=1

fG,i (U) ,

wherefG,i (U) denotes the geometric metric corresponding
to the ith column, defined as follows. IfxΩ,i = 0, we set
fG,i (U) = 0. Henceforth, we only consider the case when
xΩ,i 6= 0. For anyxΩ,i 6= 0, let x̄Ω,i = xΩ,i/ ‖xΩ,i‖F be
the normalized vectorxΩ,i. Let Ωc

i = {1, 2, · · · ,m} \Ωi be
the complement ofΩi. Let ek ∈ R

m be thekth natural basis
vector, i.e., thekth entry of ek equals to one and all other
entries are zero. Define

Bi = [x̄Ω,i, ek1 , · · · , ekℓ
] , (9)

where{k1, · · · , kℓ} = Ωc
i . Let λmax

(
BT

i U
)

be the largest
singular value of the matrixBT

i U . Then

fG,i (U) = 1− λ2
max

(
BT

i U
)
. (10)

This expression is closely related to the chordal distance
between two subspaces, as described in Section II-B. We
henceforth refer to the function (10) either as thegeometric
metric(10), or with slight abuse of terminology, as the chordal
distance.

One advantage of the chordal distance is its continuity. This
follows directly from the continuity of the singular values
of the underlying matrix. Recall Example 1. In Fig. 1, we
illustrate the differences betweenfF,1 andfG,1 by projecting
their contours of constant value onto theu2-u3 plane.
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More importantly, the following theorem shows that the
preimage offG,i (U) = 0 is actually the closure of the
preimage offF,i (U) = 0.

Theorem 1:Given xΩ,i ∈ R
m andΩi ⊂ [m]. Let UΩi

∈
R

m×r be such that(UΩi
)k,ℓ = Uk,ℓ if k ∈ Ωi and(UΩi

)k,ℓ =
0 if k /∈ Ωi. Define

UF,i =
{

U ∈ Um,r : fF,i (U) = ‖xΩ,i − P (xΩ,i,UΩi
)‖2 = 0

}

and

UG,i =
{
U ∈ Um,r : fG,i (U) = 1− λmax

(
BT

i U
)
= 0

}
.

ThenUG,i is the closure ofUF,i, i.e.,UG,i = UF,i.
The proof is given in Appendix A. Although this theorem

deals with only one column of the observed matrix, the result
can be easily extended to the whole matrixXΩ: let UF =
⋂n

i=1 UF,i and

UG =

n⋂

i=1

UG,i

=
{
U ∈ Um,r : λmax

(
UTBi

)
= 1 for all i

}
; (11)

thenUG = UF .
Example 1 (Continued):It can be seen that

B1 =

[
0 1√

2
1√
2

1 0 0

]T

.

Hence,

fG,1 (U) = 1− λ2
max

([ √
2ǫ√

1− 2ǫ2

])

= 0.

As a result,

UF,1 =

{[√

1− 2ǫ2, ǫ, ǫ
]T

: ǫ2 ≤ 1

2
andǫ 6= 0

}

⋃
{[

−
√

1− 2ǫ2, ǫ, ǫ
]T

: ǫ2 ≤ 1

2
andǫ 6= 0

}

,

and

UG,1 =

{[√

1− 2ǫ2, ǫ, ǫ
]T

: ǫ2 ≤ 1

2

}

⋃
{[

−
√

1− 2ǫ2, ǫ, ǫ
]T

: ǫ2 ≤ 1

2

}

.

Clearly,UG,1 = UF,1.

C. Computations Related to the Chordal Distance

For a given performance metric, the computational complex-
ity of the supporting optimization procedure is an important
factor for assessing its practical value. In this subsection,
we show that besides its continuity, the chordal distance and
the related gradient can be computed efficiently. Hence, all
the algorithmic solutions using gradient descent methods can
be easily modified to accommodate the geometric distortion
measure.

The principal angleθi and the chordal distancesin2 θi can
be computed using the singular value decomposition. Given
theith column of the observed matrix, one can formBi easily.
Let λi be the largest singular value of the matrixBiB

T
i U ,

and letbi andvi be the corresponding left and right singular
vectors, respectively2. Following the definition of the chordal
distance, one hasfG,i (U) = sin2 θi = 1−λ2

i . LetGi ∈ R
m×r

be a matrix such that

(Gi)k,ℓ =
∂

∂Uk,ℓ
fG,i (U) = −2 cos θi

∂ cos θi
∂Uk,ℓ

.

It can be verified that

Gi = −2λbiv
T
i . (12)

Note that in the matrix completion problem, one only needs
to search for a column space span(U) consistent with the
observations. Taking this fact into consideration, we have[18]

∇UfG =

n∑

i=1

∇UfG,i =
(
I −UUT

)
n∑

i=1

Gi. (13)

Switching from the Frobenius norm to the chordal distance
does not introduce extra computational cost. Due to the
particular structure ofBi, the matrix multiplicationBiB

T
i U

can be executed inO (mr) steps. The resulting matrix has
dimensionsm × r, where typically r ≪ m. The major
computational burden is incurred by the singular value de-
composition. Computing the largest singular value and the
corresponding singular vectors of anm× r matrix essentially
reduces to computing the largest eigenvalue of anr × r
matrix and the corresponding eigenvector. Hence, the overall
complexity of computingfG,i is O

(
mr2 + r3

)
= O

(
mr2

)
,

where theO
(
mr2

)
and O

(
r3
)

terms come from matrix
multiplication and eigenvalue computation, respectively. In
comparison, to solve the least square problem in the definition
of fF,i has aO

(
mr2

)
cost as well.

IV. PERFORMANCEGUARANTEES

Consider the matrix completion problem described in (8).
The following theorem describes completion scenarios for
which a global optimum can be found with probability one.

Theorem 2:Consider the following cases:

1) (rank-one matrices with arbitrary sampling): Let XΩ =
PΩ (X) for some unknown matrixX with rank equal
to one. Here,Ω ⊂ [m]× [n] can be arbitrary.

2) (full sampling with arbitrary rank matrices): Let XΩ =
X, i.e.,Ω = [m]× [n].

Suppose thatr = rank(X) is given. LetUG ⊂ Um,r be the
preimage offG (U) = 0 (also defined in (11)). LetU0 be
randomly generated from the isotropic distribution onUm,r,
and used as the initial point of the search procedure. With
probability one, there exists a continuous pathU (t), t ∈ [0, 1],
such thatU (0) = U0, U (1) ∈ UG and d

dtfG ≤ 0 for all
t ∈ (0, 1), where the equality holds if and only ifU0 ∈ UG.

The proof of the theorem is outlined in Section IV-A. It
is worth to note that almost all starting points are good: it
is certainly good if the starting point is a consistent solution;

2For convenience, we use the following convention regardingthe singular
vectorsbi andvi: we let the first nonzero entry ofvi be positive; otherwise,
we let v′

i
= −vi and b

′

i
= −bi, and usev′

i
and b

′

i
for singular value

decomposition. The simultaneous changes in signs do not affect the singular
value decomposition nor the computation of the gradient.
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otherwise, there exists a continuous path from this starting
point to a global optimum such that the objective function
keeps decreasing. The performance guarantee provided in
Theorem 2 is strong in the sense that it does not require either
incoherence conditions or large matrix sizes.

A simple corollay of the Theorem 2 is the following result:
suppose that the partial observationsXΩ admit a unique
consistent solution in terms of the Frobenius norm; then a
gradient search procedure using the geometric norm finds this
unique solution with probability one. This conclusion follows
from the fact that the solution set under the Frobenius norm
contains only a single point and thereforeUG = UF = UF .

For the more general case wherer > 1 andΩ 6= [m]× [n],
we can not prove the same performance guarantees. Neverthe-
less, in Section IV-B, we present a collection of results that
may be helpful for future exploration.

A. Proof of Theorem 2

For our proof techniques, we need the following two as-
sumptions.

Assumption I: There exists a global optimumUX ∈ Um,r

such thatfG (UX) = 0 and all ther principal angles between
span(UX) and span(U0) are less thanπ/2. That is, all the
singular values ofUT

XU0 are strictly positive.
Assumption II: All of the θi’s (the smallest principal angle

between span(U0) and span(Bi)) are less thanπ/2.

Remark 1:Suppose that the matrixU0 is randomly drawn
from the uniform (isotropic) distribution onUm,r. ThenU0

satisfies both assumptions with probability one. This result
can be easily verified using the probability density function
of the principal angles [21], [22], [20], [23].

Assuming that these two assumptions are satisfied, we have
the following two theorems corresponding to the two cases in
Theorem 2, respectively.

Theorem 3: (Rank-One Case)Let XΩ be the partial obser-
vation matrix generated from a rank-one matrix. Letu0 ∈
Um,1 be an estimate of the column space that satisfies As-
sumptions I and II. Suppose that

∑n
i=1 sin

2 θi 6= 0. Then there
exists a continuous pathu (t) ∈ Um,r such thatu (0) = u0,
u (1) ∈ UG, and d

dt

∣
∣
t=0

sin2 θi ≤ 0 for all i ∈ [n], where
equality holds if and only ifθi (0) = 0.

Theorem 4: (Full-Sampling Case)Let X ∈ R
m×n be a

rank-r matrix. Let U0 ∈ Um,r satisfy Assumptions I and II.
Suppose that

∑n
i=1 sin

2 θi 6= 0. Then there exists aU (t) ∈
Um,r such thatU (0) = U0, U (1) ∈ UG and d

dt

∣
∣
t=0

sin2 θi ≤
0 for all i ∈ [n], where equality holds if and only ifθi (0) = 0.

The proofs of Theorem 3 and 4 are given in Appendix B and
C, respectively. Since the proof techniques differ significantly,
we present the two theorems/proofs separately.

Both theorems are stated for derivatives taken att = 0. Nev-
ertheless, the analysis can be extended for arbitraryt ∈ [0, 1],
that is, d

dt sin
2 θi ≤ 0 for all t ∈ [0, 1], where the equality holds

if and only if θi (t) = 0. To show that this is the case, note that
in proving both Theorem 3 and Theorem 4, we constructed a
continuous pathU (t) such thatU (0) = U0 andU (1) ∈ UG.
By fixing this continuous path, we observe that:

1) All the r principal angles between span(U0) and
span(U (1)) are monotonically decreasing ast increases
to one. This implies that Assumption I holds for all
t ∈ [0, 1].

2) We haveθi (t) < π/2 for all i ∈ [n] and for allt ∈ [0, ǫ)
for some sufficiently smallǫ > 0. This claim can be
verified by invoking the facts thatθi (0) < π/2 for all
i ∈ [n] and thatθi is a continuous functions for all
i ∈ [n]. As a result, allU (t)’s, wheret ∈ [0, ǫ), satisfy
Assumptions I and II.

3) For everyt in the interval [0, ǫ), U (t) is the starting
point of the geodesic path fromU (t) to U (1), which
is a part of the geodesic path fromU (0) toU (1). Using
the same proof techniques as in Appendix B and C, it
is clear that ddt sin

2 θi (t) ≤ 0 for all t ∈ [0, ǫ). Hence,
θi (t) ≤ θi (0) <

π
2 for all i ∈ [n] and for all t ∈ [0, ǫ).

4) The arguments above can be extended. It can be verified
that θi (t) ≤ θi (0) < π/2 for all i ∈ [n] and for all
t ∈ [0, 1]. This implies thatU (t) satisfies Assumptions
I and II for all t ∈ [0, 1]. Hence, d

dt sin
2 θi (t) ≤ 0 for

all i ∈ [n] and all t ∈ [0, 1], where the equality holds if
and only if θi (t) = 0. Theorem 2 therefore holds.

A direct consequence of Theorem 2 is that for almost
all U0 ∈ Um,r, there exists a continuous path leading to
a global minimizer. However, one does not know this path
in the process of solving the matrix completion problem. A
practical approach is to use a gradient descent method. We
consider the following randomized gradient descent algorithm.
Let U (i) ∈ Um,r, i = 1, 2, · · · , be the starting point of theith

iteration. Clearly,U (i), i ≥ 2, is also the end point of the
(i− 1)

th iteration. We generate the sequence ofU (i)’s in the
following manner.

1) Let U (1) be randomly generated from the isotropic
distribution.

2) Seti = 1. Execute the following iterative process.

a) Compute the gradient∇U (i)fG.
b) Let U (i) (t) be the geodesic curve starting at

U (i) (0) = U (i) with directionH = −∇U (i)fG.
c) Let t(i)∗ be such that d

dtfG
(
t(i)∗

)
= 0 and

d
dtfG (t) < 0 for all t < t(i)∗.

d) Randomly generate at(i) from the uniform distri-
bution on

(
0, t(i)∗

)
.

e) LetU (i+1) = U (i)
(
t(i)

)
. Let i = i+1. Go to Step

(a).

Due to the randomness ofU (i), all U (i)’s satisfy Assumptions
I and II with probability one. The objective function decreases
after each iteration. This gradient descent procedure converges
to a global minimum as the number of iterations approachs
infinity.

Remark 2:Denote the obtained global minimum bŷU . It
may happen that̂U ∈ UG\UF . In this case, the solution is
inconsistent with respect to to the standard Frobenius norm.
One can use perturbation techniques to moveÛ from the
boundary ofUF to the interior region ofUF .
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B. The General Framework

For the cases that are not described in Theorem 2, we have
the following corollary.

Corollary 1: (General Cases)Let X ∈ R
m×n be a rank-

r matrix. Let UX ∈ UG be a global minimum. For each
i ∈ [n], the following statements are true. LetuX,i ∈
span(UX)

⋂
span(Bi) be a unit norm vector. LetU0 ∈ Um,r

and wi ∈ Ur,1 be randomly drawn from the corresponding
isotropic distributions respectively. Then with probability one,
the vectoru0,i , U0wi is not orthogonal touX,i. Suppose
that this is true. Defineθi = cos−1 ‖P (ui (t) ,Bi)‖2. There
exists a continuous pathui (t) ∈ Um,1 such thatui (0) = u0,i,
ui (1) ∈ span(UX,i)

⋂Um,1, and d
dt sin

2 θi ≤ 0, where the
equality holds if and only ifθi (t) = 0.

Proof: Without loss of generality, we assume that
〈u0,i,uX,i〉 > 0. The desired continuous path is given by

ui (t) =
(1− t)u0,i + tuX,i

‖(1− t)u0,i + tuX,i‖
, t ∈ [0, 1] .

The detailed arguments are the same as those in the proof of
Theorem 3, and therefore omitted.

Remark 3:This corollary is similar to Theorems 3 and 4
in the sense that there exist continuous paths along which the
atomic functions decreases.

At the same time, Corollary 1 differs from Theorems 3
and 4 in two aspects. First, the pathsui (t) in Corollary
1 may be different for differenti’s, while in Theorems 3
and 4, a single continuous pathU (t) is constructed. Second,
the angleθi in Corollay 1 is essentially the principal angle
between the 1-dimensional subspace span(ui (t)) and the
subspace span(Bi). In contrast, Theorem 3 and 4 involve the
minimum principal angle between ther-dimensional subspace
span(U (t)) and the subspace span(Bi).

V. CONCLUSION

We considered the problem of how to search for a consistent
completion of low-rank matrices. We showed that Frobenius
norm combined with a projection operator results in a dis-
continuous objective function and therefore makes gradient
descent approach fail. We proposed to replace the Frobenius
norm with the chordal distance. The chordal distance is the
“best” smooth version of the Frobenius norm in the sense that
the solution set of the former is the closure of the solution set
of the latter. Based on the chordal distance, we derived strong
performance guarantees for two completion scenarios. The
derived performance guarantees do not rely on incoherence
conditions or large matrix sizes, and they hold with probability
one.

APPENDIX

A. Proof of Theorem 1

We omit the subscripti to simplify notation. The proof
consists of two parts, showing that:

1) UF ⊂ UG;
2) for any given U0 ∈ UG, there exists a sequence

{
U (n)

}
⊂ UF such thatlimn→∞

∥
∥U0 −U (n)

∥
∥
F
= 0.

We start by proving thatUF ⊂ UG. For any givenU ∈ UF ,
there exists a nonzero vectorw ∈ R

r such thatUΩw = xΩ.
Let b = Uw/ ‖w‖. Clearly, ‖b‖F = 1. Recall the formula
for BxΩ . We can writeb as a linear combination of columns
of BxΩ :

b =
1

‖w‖xΩ +
∑

j∈Ωc

bjej =
‖xΩ‖
‖w‖ x̄Ω +

∑

j∈Ωc

bjej .

As a result,

∥
∥BT

xΩ
b
∥
∥
F
=

∥
∥
∥
∥
BT

xΩ
U

w

‖w‖F

∥
∥
∥
∥
F

= 1.

It follows that the largest singular value ofBT
xΩ

U is one.
Therefore,U ∈ UG, and we thus haveUF ⊂ UG.

To prove the second part, we make use of the following
notation. For any givenU0 ∈ UG, let u1, · · · ,ur be the left
singular vectors of the matrixU0U

T
0 BxΩ corresponding to the

ith largest singular value. Letk be the multiplicity of the sin-
gular value one, i.e., the number of singular values that equal to
one. LetU1:k = [u1, · · · ,uk] andUk+1:r = [uk+1, · · · ,ur].
Clearly,λmax

(
UT

k+1:rBxΩ

)
< 1.

It suffices to focus onU instead ofU0. That is, to prove the
second part, it suffices to find a sequence inUF converging
to U . To verify this claim, letV = UTU0. ThenV ∈ Ur,r

andU0 = UV . Suppose that
{
U (n)

}
⊂ UF is a sequence

such thatU (n) → U . It is clear thatU (n)V → UV = U0.
Furthermore, since

xΩ = U
(n)
Ω w(n) = U

(n)
Ω V

(

V Tw(n)
)

=
(

U (n)V
)

Ω
w′(n),

one hasU (n)V ∈ UF . The sequence
{
U (n)V

}
⊂ UF is the

desired sequence that converges toU0. It is also important to
note thatU ∈ UG, since

λ
(
U0U

T
0 BxΩ

)
= λ

(
UV V TUTBxΩ

)
= λ

(
UUTBxΩ

)
.

We claim that

U ∈ UF if and only if U1:k,Ω 6= 0. (14)

To prove this claim, we shall show that

U1:k,Ω 6= 0 ⇒ U ∈ UF (15)

and
U1:k,Ω = 0 ⇒ U /∈ UF . (16)

To prove (15), suppose thatU1:k,Ω 6= 0. Without loss of
generality, letu1,Ω 6= 0. Sinceu1 is the left singular vector
corresponding to the singular value equal to one,u1 can be
written as a linear combination of the columns ofBxΩ : u1 =
a1x̄Ω +

∑

j∈Ωc ajej . Sinceu1,Ω = a1x̄Ω 6= 0, one hasa1 6=
0. As a result,xΩ = au1,Ω for some constanta 6= 0. Hence,
dF (xΩ,U) = 0 andU ∈ UF .

To prove (16), assume thatU1:k,Ω = 0. Since
P (xΩ,UΩ) = P (xΩ,Uk+1:r,Ω), proving thatU /∈ UF is
equivalent to proving thatxΩ − P (xΩ,Uk+1:r,Ω) 6= 0. This
inequality can be proved by contradiction. Suppose that we
have an equality. Then there exists a vectorw ∈ R

r−k

such thatUk+1:r,Ωw = xΩ. Let b = Uk+1:rw/ ‖w‖. It is
straightforward to show (using similar arguments as the ones
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used for provingUF ⊂ UG) that b ∈ span(BxΩ) and the
largest singular value ofUT

k+1:rBxΩ is one. This contradicts
the fact thatλmax

(
UT

k+1:rBxΩ

)
< 1.

Now we are ready to construct a sequence inUF converging
to U . If U1:k,Ω 6= 0, thenU ∈ UF and it is trivial to find a
sequence inUF converging toU . It remains to find a sequence
{
U (n)

}
⊂ UF that converges toU whenU1:k,Ω = 0. Define

xr = xΩ − P (xΩ,UΩ). SinceU1:k,Ω = 0, one hasU /∈ UF

andxr 6= 0. Note thatxr,Ωc = 0 and thatxr,Ω ⊥ ui,Ω for all
i ∈ [r]. It can be verified thatxr ⊥ u1, · · · , xr ⊥ ur. Let

Uǫ =

[
u1 + ǫxr√

1 + ǫ2
,u2, · · · ,ur

]

.

It can be verified thatUǫ ∈ Um,r. Furthermore,P (xΩ,UΩ) =
P (xΩ, [xr,Uk+1:r,Ω]) = xΩ and thereforeUǫ ∈ UF for all
ǫ 6= 0. Now choose a sequence

{
U (n)

}
=

{
U1/n

}
. It is a

sequence inUF and it converges toU . This completes the
proof.

B. Proof of Theorem 3

SinceXΩ is generated from a rank-one matrix, there exists a
uX ∈ Um,1 such thatuX ∈ span(Bi) for all i ∈ [n]. Without
loss of generality, we assume〈u,uX〉 > 0: by Assumption I,
〈u,uX〉 6= 0; if 〈u,uX〉 < 0, we replaceuX with −uX .

Now define

u (t) =
(1− t)u0 + tuX

‖(1− t)u0 + tuX‖ =
(1− t)u0 + tuX

L (t)
,

whereL (t) , ‖(1− t)u0 + tuX‖ . Clearly u (0) = u0 and
u (t) ∈ Um,1 in a neighborhood oft = 0.

For everyi ∈ [n], we shall show that

d

dt

∣
∣
∣
∣
t=0

sin2 θi = −2
d

dt

∣
∣
∣
∣
t=0

(
1

2
cos2 θi

)

≤ 0, (17)

where the equality holds if and only ifθi = 0. LetPiu denote
the vectorP (u,Bi) = BiB

T
i u. SinceuX ∈ span(Bi), one

has
Piu =

1

L (t)
((1− t)Piu0 + tuX) .

We then have

d

dt

∣
∣
∣
∣
t=0

(
1

2
cos2 θi

)

=
d

dt

∣
∣
∣
∣
t=0

1

2
‖Piu‖2

=
d

dt

∣
∣
∣
∣
t=0

[

1

2

(
1− t

L (t)

)2

‖Piu0‖2

+
1

2

(
t

L (t)

)2

+

(
t− t2

)

L2 (t)
〈Piu0,uX〉

]

= (−1− L′ (0)) ‖Piu0‖2 + 〈Piu0,uX〉 .

Note that

〈Piu0,uX〉 = uT
XBiB

T
i u0 = 〈u0,PiuX〉 = 〈u0,uX〉 .

Consequently,

d

dt

∣
∣
∣
∣
t=0

(
1

2
cos2 θi

)

= (−1− L′ (0)) ‖Piu0‖2 + 〈u0,uX〉 .
(18)

The termL′ (0) can be computed as follows. Note that

L2 (t) = (1− t)2 ‖u0‖2 + t2 ‖uX‖+ 2
(
t− t2

)
〈u0,uX〉

= 1− 2t+ 2t2 + 2
(
t− t2

)
〈u0,uX〉 .

Therefore,

d

dt

∣
∣
∣
∣
t=0

L2 (t) = −2 + 2 〈u0,uX〉 = 2L (0)L′ (0) .

As a result,
L′ (0) = −1 + 〈u0,uX〉 . (19)

Substituting (19) into (18) one can see that

d

dt

∣
∣
∣
∣
t=0

(
1

2
cos2 θi

)

= 〈u0,uX〉
(

1− ‖Piu0‖2
)

≥ 0,

where the equality holds if and only if‖Piu0‖ = 1, i.e.,
u0 ∈ span(Bi) andθi = 0. This completes the proof.

C. Proof of Theorem 4

Let UX ∈ Um,r be such that every column ofX is
in the subspace span(UX). Consider the compact singular
decompositionU0U

T
0 UXUT

X
= U ′

0SU
′T
X

, whereS ∈ R
r×r

is the diagonal matrix containing the singular values and
U ′

0 and U ′
X

are the left and right singular vector matrices,
respectively. Clearly,U0 andU ′

0 generate the same subspace,
and so doUX and U ′

X
. For simplicity, we present our

proof for U ′
0 and U ′

X
and omit the superscripts. With this

simplification, one hasUTUX = S = diag([λ1, · · · , λr]).
For the ith column of X, we compute∇U0 cos θi. Since

we are considering the full sampling case, we haveBi = x̄i.
Becausex̄i ∈ span(UX), there existsw̄ ∈ Ur,1 such that
x̄i = UXw̄. To compute∇U0 cos θi, we need the first left
and the first right singular vectors of the matrixx̄ix̄

T
i U0. The

first left singular vector is clearlȳxi and the first right singular
vector equalsUT

0 x̄i = UT
0 UXw̄ = Sw̄. Hence,

∇U0 cos θi =
(
I −U0U

T
0

)
x̄iw̄

TST

=
(
I −U0U

T
0

)
UXw̄w̄TST .

According to Lemma 1,
(
I −U0U

T
0

)
UX can be written

as Gdiag([sinα1, · · · , sinαj ]), whereG = [g1, · · · , gr] ∈
Um,r, and αi = cos−1 λi’s, i = 1, · · · , r, are the principal
angles between span(U0) and span(UX).

We consider the geodesicU (t) from U0 to UX . In Lemma
1 (part 1), we show that this geodesic is given by theU (t)
satisfyingU (0) = U0 and U̇ (0) = Gdiag([α1, · · · , αr]).
Along this path, we have

d

dt

∣
∣
∣
∣
t=0

cos θi = 〈∇U0 cos θi,Gdiag([α1, · · · , αr])〉

= trace
(

(Gdiag([α1, · · · , αr]))
T

((
I −U0U

T
0

)
UX

)
w̄w̄TST

)

= trace
(
diag([· · · , αj sinαj , · · · ]) w̄w̄TS

)

= trace
((
I − S2

)
w̄w̄TS

)

=

r∑

j=1

w̄2
jαj sinαj cosαj ≥ 0. (20)
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We claim that under Assumption II, equality in (20) holds if
and only if θi = 0. If θi = 0, thenx̄i ∈ span(U0). According
to Lemma 1 (part 2),w̄j = 0 for all j such thatαj 6= 0.
The equality in (20) thus holds. Otherwise, ifθi 6= 0, then
x̄i /∈ span(U0). Again, according to Lemma 1 (part 2), there
exists anj ∈ [r] such thatαi > 0 and w̄j 6= 0. Hence, we
have a strict inequality in (20). Finally, note that

d

dt

∣
∣
∣
∣
t=0

sin2 θi = −2
d

dt

∣
∣
∣
∣
t=0

cos θi ≤ 0.

This proves the theorem.

REFERENCES

[1] D. Donoho, “Compressed sensing,”IEEE Trans. Inform. Theory, vol. 52,
no. 4, pp. 1289–1306, 2006.

[2] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489–509, 2006.

[3] E. Candès and T. Tao, “Decoding by linear programming,”Information
Theory, IEEE Transactions on, vol. 51, no. 12, pp. 4203–4215, 2005.

[4] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization,”
arXiv:0706.4138, 2007.

[5] E. Candes and B. Recht, “Exact matrix completion via convex optimiza-
tion,” arXiv:0805.4471, 2008.

[6] E. J. Candes and T. Tao, “The power of convex relaxation: Near-optimal
matrix completion,”arXiv:0903.1476, Mar. 2009.

[7] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky, “Rank-
sparsity incoherence for matrix decomposition,”arXiv:0906.2220.

[8] E. J. Candes and Y. Plan, “Matrix completion with noise,”
arXiv:0903.3131, Mar. 2009.

[9] J. Cai, E. J. Candes, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,”arXiv:0810.3286, 2008.

[10] K. Lee and Y. Bresler, “ADMiRA: atomic decomposition for minimum
rank approximation,”arXiv:0905.0044, Apr. 2009.

[11] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing
signal reconstruction,”IEEE Trans. Inform. Theory, vol. 55, pp. 2230 –
2249, May 2009.

[12] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,”Applied and Computational Har-
monic Analysis, vol. 26, pp. 301–321, May 2009.

[13] R. Meka, P. Jain, and I. S. Dhillon, “Guaranteed rank minimization via
singular value projection,”arXiv:0909.5457, 2009.

[14] T. Blumensath and M. E. Davies, “Iterative hard thresholding for
compressed sensing,”Applied and Computational Harmonic Analysis,
vol. 27, pp. 265–274, Nov. 2009.

[15] J. Haldar and D. Hernando, “Rank-constrained solutions to linear matrix
equations using powerfactorization,”IEEE Signal Processing Letters,
pp. 16:584–587, 2009.

[16] R. H. Keshavan, A. Montanari, and S. Oh, “Matrix completion from a
few entries,”arXiv:0901.3150, 2009.

[17] W. Dai and O. Milenkovic, “SET: an algorithm for consistent matrix
completion,” in IEEE International Conf. on Acoustics, Speech, and
Signal Processing (ICASSP), March 2010.

[18] A. Edelman, T. Arias, and S. T. Smith, “The geometry of algorithms
with orthogonality constraints,”SIAM Journal on Matrix Analysis and
Applications, vol. 20, pp. 303–353, April 1999.

[19] J. H. Conway, R. H. Hardin, and N. J. A. Sloane, “Packing lines, planes,
etc., packing in Grassmannian spaces,”Exper. Math., vol. 5, pp. 139–
159, 1996.

[20] W. Dai, Y. Liu, and B. Rider, “Quantization bounds on grassmann
manifolds and applications to mimo communications,”IEEE Trans. on
Inform. Theory, vol. 54, pp. 1108 –1123, march 2008.

[21] A. T. James, “Normal multivariate analysis and the orthogonal group,”
Ann. Math. Statist., vol. 25, no. 1, pp. 40 – 75, 1954.

[22] M. Adler and P. van Moerbeke, “Integrals over Grassmannians and
random permutations,”Advances in Mathematics, vol. 181, no. 1,
pp. 190–249, 2004.

[23] W. Dai, B. Rider, and Y. Liu, “Volume growth and general rate quan-
tization on grassmann manifolds,” inIEEE Global Telecommunications
Conference (Globecom), pp. 1441 –1445, Nov. 26-30 2007.


	I Introduction
	II Low-Rank Matrix Completion and Preliminaries
	II-A Search for a consistent column space
	II-B Grassmann Manifolds

	III From the Frobenius Norm to the Geometric Metric
	III-A Why the Frobenius Norm Fails
	III-B A Geometric Metric
	III-C Computations Related to the Chordal Distance

	IV Performance Guarantees
	IV-A Proof of Theorem ??
	IV-B The General Framework

	V Conclusion
	Appendix
	A Proof of Theorem ??
	B Proof of Theorem ??
	C Proof of Theorem ??

	References

