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Abstract—In this paper the decoding capabilities of convolu-
tional codes over the erasure channel are studied. Of special
interest will be maximum distance profile (MDP) convolutional
codes. These are codes which have a maximum possible column
distance increase.

It is shown how this strong minimum distance condition
of MDP convolutional codes help us to solve error situations
that maximum distance separable (MDS) block codes fail to
solve. Towards this goal, two subclasses of MDP codes are
defined: reverse-MDP convolutional codes and complete-MDP
convolutional codes. Reverse-MDP codes have the capability to
recover a maximum number of erasures using an algorithm
which runs backward in time. Complete-MDP convolutional
codes are both MDP and reverse-MDP codes. They are capable
to recover the state of the decoder under the mildest condition.
It is shown that complete-MDP convolutional codes perform in
many cases better than comparable MDS block codes of the same
rate over the erasure channel.

Index Terms—Convolutional codes, maximum distance sepa-
rable (MDS) block codes, decoding, erasure channel, maximum
distance profile (MDP) convolutional codes, reverse-MDP convo-
lutional codes, complete-MDP convolutional codes.

1. INTRODUCTION

When transmitting over an erasure channel like the Internet,
one of the problems encountered is the delay experienced on
the received information due to the possible re-transmission
of lost packets. One way to eliminate these delays is by using
forward error correction. Until now mainly block codes have
been used for such a task, see, e.g., [3], [14] and the references
therein. The use of convolutional codes over the erasure
channel has been studied much less. We are aware of the work
of Epstein [2] and of the more recent work by Arai et al. [1].
In this paper, we define a class of convolutional codes with
strong distance properties, which we call complete maximum
distance profile (complete-MDP) convolutional codes, and we
demonstrate how they provide an attractive alternative.
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The advantage that convolutional codes have over block
codes, which will be exploited in our algorithms, is the flexi-
bility obtained through the “sliding window” characteristic of
convolutional codes. The received information can be grouped
in appropriate ways, depending on the erasure bursts, and
then be decoded by decoding the “easy” blocks first. This
flexibility in grouping information brings certain freedom in
the handling of sequences; we can split the blocks in smaller
windows, we can overlap windows and we can proceed to
decode in a less strict order. The blocks are not fixed as in the
block code case, i.e., they do not have a fixed grouping of a
fixed length. We can slide along the transmitted sequence and
decide the place where we want to start our decoding. In other
words, we can adapt the process to the pattern of erasures we
receive. With this “sliding window” property of convolutional
codes, together with the extra algebraic properties of maximum
distance profile (MDP) convolutional codes, we are able to
correct in a given block more erasures than a block code of
that same length could do.

An [N,K] block code used for transmission over an erasure
channel can correct up to N −K erasures in a given block,
with the optimal error capability of N −K being achieved by
an [N,K] maximum distance separable (MDS) code.

As an alternative, consider now a class of (n, k, δ) convo-
lutional codes, i.e., a class of rate k/n convolutional codes
having degree δ. We will demonstrate that for this class,
the maximum number of errors which can be corrected in
some sliding window of appropriate size is achieved by the
subclass of MDP convolutional codes. Moreover, we give
examples of situations where the MDP code can recover
patterns of erasures that cannot be decoded by an MDS block
code of the same rate. In addition, we can increase further
the recovering capability of MDP codes by imposing certain
extra algebraic conditions and thus defining a subclass of
MDP convolutional codes, called reverse maximum distance
profile (reverse-MDP) convolutional codes. These codes allow
an inversion of the direction of the decoding from right-to-
left. Due to this fact one can recover through a backward
process more erasures than with an MDP code. Following the
definition and explanation of their advantages, we will prove
the existence of the reverse-MDP codes and give a particular
construction as well as a procedure to compute the so called
reverse-superregular matrices necessary to build them.

As a final step we add stronger and more restrictive condi-
tions to our codes in order to achieve an optimum performance
of the recovering process. We obtain what we call complete-
MDP convolutional codes. These codes help reducing the
waiting time necessary when a large burst of erasures occurs

ar
X

iv
:1

00
6.

31
56

v3
  [

cs
.I

T
] 

 3
1 

A
ug

 2
01

1



2

and no correction is possible for a while. Simulations results
show that these codes can decode extremely efficiently when
compared to MDS block codes. Thus, they provide a very
attractive choice when transmitting over an erasure channel.

MDP convolutional codes were first introduced in [10]. The
usefulness of the MDP property when transmitting over the
erasure channel was first recognized by the authors in two
conference papers [31], [32]. The concept of complete MDP
convolutional codes was first introduced by the first author
in her dissertation [30]. The results we present here are an
extension of [30].

Because of the increasing importance of packet switched
networks the need to develop coding techniques for the erasure
channel has gained a lot of importance. On the side of block
codes and convolutional codes of a fixed rate there have
been important studies done using so called “rateless erasure
codes”. These codes were first introduced by Luby [17] and an
important refinement was done by Shokrollahi who introduced
so called Raptor codes [28]. In this paper we will not make a
performance comparison of MDP codes with rateless erasure
codes.

The paper is organized as follows. Section 2 provides
the necessary background for the development of the paper:
Subsection 2-A explains the assumptions on the channel
model, and Subsection 2-B provides all the necessary concepts
about convolutional codes, MDP convolutional codes and their
characterizations. Section 3 illustrates our proposed decoding
algorithm over the erasure channel. It also presents examples
and special concerns to be addressed when comparing them
with MDS block codes. In Section 4, we introduce the idea
of backwards decoding process and we define and prove the
existence of reverse-MDP convolutional codes as codes able
to do this. In Section 5, we give a method to construct these
codes and in Subsection 5-A, we explain how to construct a
special kind of matrices necessary in order to build reverse-
MDP convolutional codes. Section 6 introduces the concept
of complete-MDP convolutional codes and shows how these
codes can help to reduce the waiting time in the recovering
process. In Subsection 6-A we provide simulation result as-
suming a Gilbert-Elliot channel model. It is shown that for
equal rate and chosen degrees comparable to chosen block
length the performance of complete-MDP codes are a better
option than MDS block codes.

In Section 7 we provide theoretical results which compare
MDS block codes with MDP convolutional codes. The main
result shows that both a rate k/n MDS block code as well
as a k/n MDP convolutional code can decode erasures at
a rate of (n − k)/n in average. For the MDS block code
error free communication is possible if at most n−k erasures
happen in every block. For the MDP convolutional code error
free communication is possible if the number of erasures per
sliding window, whose size depends on the degree, is not larger
than a certain amount.

2. PRELIMINARIES

This section contains the necessary mathematical back-
ground and the channel assumptions needed for the develop-

ment of our results. Note that throughout the paper vectors of
length n over a field F will be viewed as n× 1 matrices, i.e.,
as column vectors.

A. Erasure channel

An erasure channel is a communication channel where
the symbols sent either arrive correctly or they are erased;
the receiver knows that a symbol has not been received or
was received incorrectly. An important example of an erasure
channel is the Internet, where packet sizes are upper bounded
by 12,000 bits - the maximum that the Ethernet protocol
allows (that everyone uses at the user end). In many cases,
this maximum is actually used [4]. Due to the nature of the
TCP part of the TCP/IP protocol stack, most sources need an
acknowledgment confirming that the packet has arrived at the
destination; these packets are only 320 bits long. So if every-
one were to use TCP/IP, the packet size distribution would
be as follows: 35% –320 bits, 35% – 12,000 bits and 30%
– uniform distribution in between the two. Real-time traffic
used, e.g., in video calling, does not need an acknowledgment
since that would take too much time; overall, the following is
a good assumption of the packet size distribution: 30% – 320
bits, 50% – 12,000 bits, 20% –uniform distribution in between,
see [29] and [15, Table II].

We can model each packet as an element or sequence of
elements from a large alphabet. Packets sent over the Internet
are protected by a cyclic redundancy check (CRC) code. If the
CRC check fails, the receiver knows that a packet is in error or
has not arrived [21]; it then declares an erasure. Undetected
errors are rare and are ignored. For illustration purpose we
employ as alphabet the finite field F := F21,000 . If a packet has
less than 1,000 bits, then one uses simply the corresponding
element of F. If the packet is larger, one uses several alphabet
symbols to describe the packet. With or without interleaving,
such an encoding scheme results in the property that errors
tend to occur in bursts, and this is a phenomenon observed
about many channels modeled via the erasure channel. This
point is important to keep in mind when designing codes which
are capable of correcting many errors over the erasure channel.

B. Convolutional codes

Let F be a finite field. We view a convolutional code C of
rate k/n as a submodule of F[z]n (see [7], [23], [24]) that can
be described as

C =
{
v(z) ∈ F[z]n | v(z) = G(z)u(z) with u(z) ∈ F[z]k

}
,

where G(z) is an n× k full-rank polynomial matrix called a
generator matrix for C, u(z) is an information vector, and
v(z) is the resulting code vector or the codeword.

The maximum degree of all polynomials in the j-th column
of G(z) is called the j-th column degree of G(z), and we
denote it by δj .

We define the degree δ of a convolutional code C as the
maximum of the degrees of the determinants of the k×k sub-
matrices of one and hence any generator matrix of C. We say
that C is an (n, k, δ) convolutional code [19].
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Assume the j-th column of G(z) has degree δj . The high
order coefficients matrix of G(z), G∞, is the matrix whose
j-th column is formed by the coefficients of zδj in the j-th
column of G(z). If G∞ has full rank, then G(z) is called
a minimal generator matrix and the degree δ of the code
agrees in this situation with the overall constraint length
(see [12, Section 2.5]) of the encoder G(z). Note that in
this case δ =

∑k
i=1 δi. Finally we define the memory of

an encoder G(z) as the maximum of the column degrees
{δ1, . . . , δk}. This is the parameter of an encoder. When we
choose however a minimal generator matrix then the memory
becomes the property of the convolutional code.

We say that a code C is observable (see, e.g., [23], [26]) if
the generator matrix G(z) has a polynomial left inverse. This
avoids the type of catastrophic situations in which a sequence
u(z) with an infinite number of nonzero coefficients can be
encoded into a sequence v(z) with a finite number of nonzero
coefficients; this case would decode finitely many errors on
the received code sequence into infinitely many errors when
recovering the original information sequence. Therefore, only
observable codes are regularly considered; therefore, these will
be the codes on which we will focus our attention.

If C is an observable code, then it can be equivalently
described using an (n − k) × n full rank polynomial parity-
check matrix H(z), such that

C =
{
v(z) ∈ F[z]n | H(z)v(z) = 0 ∈ F[z]n−k

}
.

If we write v(z) = v0 + v1z + . . . + vlz
l, (with l ≥ 0), and

we represent H(z) as a matrix polynomial,

H(z) = H0 +H1z + · · ·+Hνz
ν ,

where Hi = O, for i > ν, we can expand the kernel
representation in the following way

H0

...
. . .

Hν · · · H0

. . . . . .
Hν · · · H0

. . .
...
Hν




v0

v1

...
vl

 = 0. (1)

An important distance measure for convolutional codes is
the free distance dfree defined as

dfree(C) := min {wt(v(z)) | v(z) ∈ C and v(z) 6= 0} .

The following lemma shows the importance of the free dis-
tance as a performance measure of a code used over the erasure
channel.

Lemma 2.1. Let C be a convolutional code with free distance
d

def
= dfree. If during the transmission at most d − 1 erasures

occur, then these erasures can be uniquely decoded. Moreover,
there exist patterns of d erasures which cannot be uniquely
decoded.

Proof: Let v(z) = v0+v1z+. . .+vlz
l be a received vec-

tor with d−1 erased symbols erased in positions i1, . . . , id−1.

The homogeneous system (1) of (ν + l+ 1)(n− k) equations
with (l + 1)n unknowns can be changed into an equivalent
non-homogeneous system

Ĥ


vi1
vi2
...

vid−1

 = b (2)

of (ν + l + 1)(n − k) equations with d − 1 unknowns
vi1 , . . . , vid−1

where Ĥ is a (d−1)(n−k)×(d−1)n sub-matrix
of

H =



H0

...
. . .

Hν · · · H0

. . . . . .
Hν · · · H0

. . .
...
Hν


.

This non-homogeneous system (2) has a solution, because
of the assumption that the channel allows only erasures.
In addition, the columns of the system matrix are linearly
independent, because d = dfree(C), so the matrix Ĥ has full
column rank. It follows from these two facts that the solution
must be unique.

If on the other hand more than d erasures happen, then the
associated linear system of equations does not have a unique
solution anymore.

Rosenthal and Smarandache [25] showed that the free
distance of an (n, k, δ) convolutional code must be upper
bounded by

dfree(C) ≤ (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1. (3)

This bound is known as the generalized Singleton bound
[25] since it generalizes in a natural way the Singleton bound
for block codes (the case δ = 0). Moreover, an (n, k, δ)
convolutional code is a maximum distance separable (MDS)
code [25] if its free distance achieves the generalized Singleton
bound.

Another important distance measure is the jth column
distance [12], dcj(C), given by the expression

dcj(C) = min
{

wt(v[0,j](z)) | v(z) ∈ C and v0 6= 0
}
,

where v[0,j](z) = v0 + v1z + . . . + vjz
j represents the j-th

truncation of the codeword v(z) ∈ C. It is related to the free
distance dfree(C) in the following way

dfree(C) = lim
j→∞

dcj(C). (4)

The j-th column distance is upper bounded [6], [10]

dcj(C) ≤ (n− k)(j + 1) + 1, (5)

and the maximality of any of the column distances implies the
maximality of all the previous ones, i.e., if dcj(C) = (n−k)(j+
1)+1 for some j, then dci (C) = (n−k)(i+1)+1 for all i ≤ j,
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see [6], [10]. The (m+ 1)-tuple (dc0(C), dc1(C), . . . , dcm(C)) is
called the column distance profile of the code [12].

Since no column distance can achieve a value greater than
the generalized Singleton bound, there must exist an integer
L for which the bound (5) could be attained for all j ≤ L and
it is a strict upper bound for j > L; this value is

L =

⌊
δ

k

⌋
+

⌊
δ

n− k

⌋
. (6)

An (n, k, δ) convolutional code C with dcL(C) = (n− k)(L+
1)+1 is called a maximum distance profile (MDP) code [6],
[10]. In this case, every dcj(C) for j ≤ L is maximal, so we
can say that the column distances of MDP codes increase as
rapidly as possible for as long as possible.

The following two theorems characterize algebraically all
convolutional codes of a given jth column distance d, and
hence also MDP convolutional codes. Assume that the parity-
check matrix is given as H(z) =

∑ν
i=0Hiz

i. For each j > ν,
let Hj = O and define:

Hj =


H0

H1 H0

...
...

. . .
Hj Hj−1 · · · H0

 ∈ F(j+1)(n−k)×(j+1)n,

(7)
for all j ≥ 0.

Theorem 2.2. ( [6, Proposition 2.1]) Let d ∈ N. The following
properties are equivalent.
(a) dcj = d;
(b) none of the first n columns of Hj is contained in the span

of any other d−2 columns and one of the first n columns
of Hj is in the span of some other d− 1 columns of that
matrix.

Let G(z) =
∑m
i=0Giz

i, Gj = O, for all j > ν, and

Gj =


G0 G1 · · · Gj

G0 · · · Gj−1
. . .

...
G0

 , for all j ≥ 0. (8)

Then, the MDP convolutional codes are characterized as
follows:

Theorem 2.3. ( [6, Theorem 2.4]) Let Gj and Hj be like in
(8) and (7). Then the following are equivalent:
(a) dcj = (n− k)(j + 1) + 1;
(b) every (j + 1)k × (j + 1)k full-size minor of Gj formed

from the columns with indices 1 ≤ t1 < · · · < t(j+1)k,
where tsk+1 > sn, for s = 1, 2, . . . , j, is nonzero;

(c) every (j+1)(n−k)×(j+1)(n−k) full-size minor of Hj
formed from the columns with indices 1 ≤ r1 < · · · <
r(j+1)(n−k), where rs(n−k) ≤ sn, for s = 1, 2, . . . , j, is
nonzero.

In particular, when j = L, C is an MDP convolutional code.

A code satisfying the conditions of Theorem 2.3 is said to
have the MDP property.

Note that MDP convolutional codes are similar to MDS
block codes within windows of size (L + 1)n. Indeed, the
nonsingular full-size minors property given in the previous
theorem ensures that if we truncate a codeword with its first
nonzero component at any j component, with j ≤ L, it will
have weight higher or equal than the bound given in Theorem
2.3 (a), which is the Singleton bound for that block code.

3. DECODING OVER AN ERASURE CHANNEL

Let us suppose that we use a convolutional code C to
transmit over an erasure channel. Then we can state the
following result.

Theorem 3.1. Let C be an (n, k, δ) convolutional code with
dcj0 the j0-th column distance. If in any sliding window of
length (j0 + 1)n at most dcj0 − 1 erasures occur, then we can
completely recover the transmitted sequence.

Proof: Assume that we have been able to correctly
decode up to an instant t − 1. Then we have the following
homogeneous system:


Hν Hν−1 · · · Hν−j0 · · · H0

Hν · · ·Hν−j0+1 · · · H1 H0

. . .
. . .

Hν · · ·Hj0 Hj0−1 · · ·H0





vt−ν
...

vt−1

?
?
...
?


= 0,

(9)

where ? takes the place of a vector that had some of the
components erased. Let the positions of the erased field
elements be i1, . . . , ie, e ≤ dcj0 − 1, where i1, . . . , is, s ≤ n,
are the erasures occurring in the first n-vector erased. We can
take the columns of the matrix in equation (9) that correspond
to the coefficients of the erased elements to be the coefficients
of a new system. The rest of the columns in (9) will help
us to compute the independent terms. In this way we get a
non-homogeneous system with (j0 + 1)(n− k) equations and
e ≤ dcj0 − 1, variables.

We claim that there is an extension {ṽt, . . . , ṽt+j0} such
that the vector

(vt−ν , . . . ,vt−1, ṽt, . . . , ṽt+j0)

is a codeword and such that ṽt is unique.
Indeed, we know that a solution of the system exists

since we assumed that only erasures occur. To prove the
uniqueness of ṽt, or equivalently, of the erased elements
ṽi1 , . . . , ṽis , let us suppose there exist two such good exten-
sions {ṽt, . . . , ṽt+j0} and {˜̃vt, . . . , ˜̃vt+j0}. Let hi1 , . . . ,hie ,
be the column vectors of the sliding parity-check matrix in (9)
which correspond to the erasure elements. We have:

ṽi1hi1 + · · ·+ ṽishis + · · ·+ ṽiehie = b̃

and
˜̃vi1hi1 + · · ·+ ˜̃vishis + · · ·+ ˜̃viehie =

˜̃
b,
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where the vectors b̃ and ˜̃
b correspond to the known part of the

system. Subtracting these equations and observing that b̃ =
˜̃
b,

we obtain:

(ṽi1 − ˜̃vi1)hi1 + · · · + (ṽis − ˜̃vis)his + · · · + (ṽie − ˜̃vie)hie = 0.

Using Theorem 2.2 part (b) we obtain that, necessarily,

ṽi1−˜̃vi1 = 0, . . . , ṽis − ˜̃vis = 0,

which proves the uniqueness of the solution.
In order to find the value of this unique vector, we solve

the full column rank system, find a solution and retain the part
which is unique. Then we slide n bits to the next n(j0 + 1)
window and proceed as above.

The best scenario of Theorem 3.1 happens when the convo-
lutional code is MDP. In this case, full error correction ‘from
left to right’ is possible as soon as the fraction of erasures is
not more than n−k

n in any sliding window of length (L+1)n.

Corollary 3.2. Let C be an (n, k, δ) MDP convolutional code.
If in any sliding window of length (L + 1)n at most (L +
1)(n− k) erasures occur in a transmitted sequence, then we
can completely recover the sequence in polynomial time in δ
by iteratively decoding the symbols ‘from left to right’.

Proof: Under the given assumptions it is possible to
compute one erasure after the other in a unique manner by
processing ‘from left to right’.

Remark 3.3. The process of computing the erasures described
in the proof of Theorem 3.1 leads to a natural algorithm. The
computation of each erased symbol requires only simple linear
algebra. In the optimum case of an MDP convolutional code,
for every set of (L+1)(n−k) erasures, a matrix of size at most
(L+1)(n−k) has to be inverted over the base field F. This is
easily achieved even over fairly large fields. To be precise the
number of elementary field operations is O

(
L3(n− k)3

)
and

the most costly field operation in Fq , namely division, requires
O
(
log3 q

)
bit operations. �

Remark 3.4. Theorem 3.2 is optimal in the following sense.
One can show that for any (n, k, δ) code there exist patterns of
(L+2)(n−k) erasures in a sliding window of length (L+2)n
which cannot be uniquely decoded.

In Corollary 7.2 we will show that the maximal recovering
rate of any rate k/n convolutional code over the erasure
channel is at most R = n−k

n . �

Remark 3.5. Although in Theorem 3.1 we fix the value
j = j0, other window sizes can be taken during the decoding
process in order to optimize it. For any value of j, at most
dcj−1 erasures can be recovered in a window of size (j+1)n.
In the MDP case, the parameter L gives an upper bound on
the length of the window we can take to correct. For every
j ≤ L, in a window of size (j + 1)n we can recover at most
(j+ 1)(n− k) erasures. This means that we can conveniently
choose the size of the window we need at each step depending
on the distribution of the erasures in the sequence. This is an
advantage of these codes over block codes. If we receive a
part of sequence with a few errors we do not need to wait

until we receive the complete block, we can already proceed
with decoding within small windows relative to L.

This property allows us to recover the erasures in situations
where the MDS block codes cannot do it. The following
example illustrates this scenario. We compare an MDP convo-
lutional code with an MDS block code of the same length as
the maximum window size taken for the convolutional code.
�

Example 3.6. Consider a (2, 1, 50) MDP convolutional code
over an erasure channel. In this case, the decoding can be
completed if in any sliding window of length 202 not more
than 101 erasures occur; therefore, 50% of the erasured
components can be correctly recovered.

An MDS block code which can achieve a comparable
performance is a [202, 101] MDS block code. In a block of
202 symbols we can recover 101 erased symbols, which is
again 50% error capability.

Suppose now that we have been able to correctly decode
up to an instant t. After time t a new block of symbols starts
whose start is indicated by |. Assume now we receive the
following pattern of erasures

. . .vv|
(A)60︷ ︸︸ ︷

? ? . . . ? ?

(B)80︷ ︸︸ ︷
vv . . .v

(C)60︷ ︸︸ ︷
? ? . . . ? ?vv|vv . . . ,

where each ? stands for a component of the vector that
has been erased and v means that the component has been
correctly received. In this situation, 120 erasures happen in a
block of 202 symbols making the MDS block code unable to
recover them. In the block code situation one has to skip the
whole window and lose a whole block, and move to the next
block.

The MDP convolutional code proves to be a better choice
in this situation. If we frame a 120 symbols length window,
then in this window we can correct up to 60 erasures. Let us
frame a window containing the first 60 erasures from A and 60
more correct symbols from B. Note that following expression
(9), in order to solve the corresponding system and to help
us calculate the independent terms, we need to take the 100
correct symbols that we decoded before receiving the block
A. In this way we can solve the system and recover the first
block of 60 erasures.

100︷ ︸︸ ︷
vv . . .vv |

(A)60︷ ︸︸ ︷
? ? . . . ? ?

(B)60︷ ︸︸ ︷
vv . . .v

Then we slide through the received sequence until we frame
the rest of the erasures in a 120 symbols window. As before,
we make use of the 100 previously decoded symbols to
compute the independent terms of the system.

(A+B)100︷ ︸︸ ︷
vv . . .vv

(C)60︷ ︸︸ ︷
? ? . . . ? ?

60︷ ︸︸ ︷
vv|vv . . .

After recovering this block we have correctly decoded the
sequence. �

Remark 3.7. There are situations in which other patterns of
erasures than the ones covered by Theorem 3.1 or Corol-
lary 3.2 occur, and for which decoding within smaller window
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sizes than maximum allowed is not possible. This leads to an
inability of correcting that block; we say that we are lost in
the recovering process.

Looking at the following system of equations,


Hν Hν−1 · · · Hν−j · · ·H0

Hν · · ·Hν−j+1 · · ·H1 H0

. . . . . .
Hν · · ·Hj Hj−1 · · ·H0





vt−ν
...
vt

vt+1

...
vt+j


= 0,

we see that, in order to continue our recovering process, we
need to find a block of νn correct symbols vt−ν to vt−1
preceding a block of (j + 1)n symbols vt to vt+j where not
more than dcj − 1 = (j + 1)(n − k) erasures occur. In other
words, we need to have some guard space, an expression often
used in the literature. (See e.g. [5, p. 288] or [16, p. 430]). This
allows a restart of the decoding algorithm leading to recovery
of vt to vt+j .

In Section 6 we will derive Theorem 6.6 which provides
somehow the weakest conditions possible which will guarantee
the computation of a guard space once the decoder is lost in
the decoding process.

We define the recovering rate per window as Rω =
#erasures recovered

#symbols in a window . Note that above condition of having a
“guard space” and restarting the recovering process is a
sufficient condition for Rω to be maintained. For any generic
(n, k, δ) convolutional code, Rω =

dcj−1
(j+1)n . In the MDP

case where the number of possible recovered erasures is
maximized, we have Rω = (j+1)(n−k)

(j+1)n . �

4. THE BACKWARD PROCESS AND THE REVERSE-MDP
CONVOLUTIONAL CODES

In this section we define a subclass of MDP codes, called
reverse-MDP convolutional codes, which have the MDP prop-
erty not only forward but also backward, i.e., if we truncate
sequences [v0, . . . ,vM ], M ≥ L, with v0 6= 0 and vM 6= 0
either at the beginning, to obtain [v0, . . . ,vL], or at the end, to
obtain [vM , . . . ,vM−L], the minimum possible weight of the
segments obtained is as large as possible. We will see in the
following how this backward decoding ability of reverse-MDP
codes makes these codes better choices than regular MDP
convolutional codes for transmission over an erasure channel,
since they can recover certain situations in which the latter
would fail.

Example 4.1. As previously, assume we use a (2, 1, 50)
MDP convolutional code to transmit over an erasure channel.
Suppose that we are able to recover the sequence up to an
instant t, after which we receive a part of a sequence with the
following pattern

. . .vv

(A)22︷ ︸︸ ︷
? . . . ?

(B)180︷ ︸︸ ︷
vv ? ?vv ? ? . . .vv ? ? |

(C)202︷ ︸︸ ︷
vv . . .vv |

|
(D)80︷ ︸︸ ︷
? ? . . . ?

(E)62︷ ︸︸ ︷
vv . . .v

(F )60︷ ︸︸ ︷
? ? . . . ? |

(G)202︷ ︸︸ ︷
vv . . .v,

where, as before, ? means that the symbol has been erased,
and v denotes a symbol has been correctly received. This
is a situation in which we cannot recover the sequence by
simply decoding ‘from left to right’ through the algorithm
explained in remark 3.3. The simple ‘from left to right’
decoding algorithm for MDP convolutional codes needs to skip
over these erasures, leading to the loss of this information. A
[202, 101] MDS block code would not be a better choice either
since in a block of 202 symbols there would be more than 101
erasures making that block undecodable. �

This example shows that even with enough guard space
between bursts of erasures, we cannot always decode if the
bursts are too large relative to a given window. Let us imagine
the following scenario. In the places where a guard space
appears we change our decoding direction from left-to-right
to right-to-left. Suppose that we could split the sequence
into windows starting from the end, such that erasures are
less accumulated in those windows, i.e., such that reading
the patterns right-to-left would provide us with a distribution
of erasures having an appropriate density per window to be
recovered. Moreover, suppose that the code properties are such
that inversion in the decoding direction is possible. Then, we
would possibly increase the decoding capability leading to less
information loss.

In order that such a scenario can work we should be able to
compute a guard space (a sufficient large sequence of symbols
without erasures). We will explain in Section 6 how this can
be achieved.

We will refer to the left-to-right decoding process as forward
decoding and to the inverted (from right-to-left) recovering
process as backward decoding.

We will show how convolutional codes allow a “forward
and backward flexibility” which, together with extra algebraic
properties imposed on the codes, leads to the recovering of
erasure patterns that block codes cannot recover. We recall
the following results.

Proposition 4.2. ( [9, Proposition 2.9]) Let C be an (n, k, δ)
convolutional code with minimal generator matrix G(z). Let
G(z) be the matrix obtained by replacing each entry gij(z) of
G(z) by gij(z) := zδjgij(z

−1), where δj is the j-th column
degree of G(z). Then, G(z) is a minimal generator matrix of
an (n, k, δ) convolutional code C, having the characterization

v0 + v1z + · · ·+ vs−1z
s−1 + vsz

s ∈ C

if and only if

vs + vs−1z + · · ·+ v1z
s−1 + v0z

s ∈ C.
We call C the reverse code of C. Similarly, we denote by

H(z) =
∑ν
i=0Hiz

i the parity-check matrix of C.

Remark 4.3. Massey introduces in [18] the notion of re-
versible convolutional codes over the binary field. The def-
inition has a natural generalization to the nonbinary situation.
We would call a code reversible in the sense of Massey if
C = C and where C is the reverse code as defined above.

Next we will use C to explain the backward decoding.
Although C and C have the same free distance dfree, they
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may have different values for the column distances, since
the truncations of the code words v(z) =

∑s
i=0 viz

i and
v(z) =

∑s
i=0 vs−iz

i do not involve the same coefficients:

dcj(C) = min
{

wt(v[0,j](z)) | v(z) ∈ C and v0 6= 0
}

= min

{
j∑
i=0

wt(vi) | v(z) ∈ C and v0 6= 0

}
dcj(C) = min

{
wt(v[0,j](z)) | v(z) ∈ C and v0 6= 0

}
= min

{
j∑
i=0

wt(vs−i) | v(z) ∈ C and vs 6= 0

}
.

Similar to the forward decoding process, in order to achieve
maximum recovering rate per window when recovering using
backward decoding, we need the column distances of C to be
maximal up to a point. This leads to the following definition.

Definition 4.4. Let C be an MDP (n, k, δ) convolutional code.
We say that C is a reverse-MDP convolutional code if the
reverse code C of C is an MDP code as well.

As previously explained, reverse-MDP convolutional codes
are better candidates than MDP convolutional codes for re-
covering over the erasure channel. In analogy to Corollary 3.2
we have the result:

Theorem 4.5. Let C be an (n, k, δ) reverse-MDP convolu-
tional code. If in any sliding window of length (L + 1)n at
most (L+1)(n−k) erasures occur in a transmitted sequence,
then we can completely recover the sequence in polynomial
time in δ by iteratively decoding the symbols ‘from right to
left’.

The proof is completely analogous to the one given in The-
orem 3.1 and Corollary 3.2.

The following theorem shows that the existence of this class
of codes is guaranteed over fields with enough number of
elements.

Theorem 4.6. Let k, n and δ be positive integers. An (n, k, δ)
reverse-MDP convolutional code exists over a sufficiently large
field.

The set of all convolutional codes forms a quasi-projective
variety [8] that can be also seen as a Zariski open subset of the
projective variety described in [22], [25]. In [10], it was shown
that MDP codes form a generic set when viewed as a subset
of the quasi-projective variety of all (n, k, δ) convolutional
codes. Following similar ideas to the ones in the proof of
the existence of MDP convolutional codes [10], we will show
that reverse-MDP codes form a nonempty Zariski open set of
the quasi-projective variety of generic convolutional codes and
moreover, that the components of the elements of this set are
contained in a finite field or a finite extension of it.

Remark 4.7. The proof given in [10] is based on a systems
theory representation of convolutional codes C(A,B,C,D).
Since this is closely related to the submodule point of view that
we consider and since a convolutional code can be represented
in either way we will use in our proof the same notions
as in [10]. See [23], [24], [26] for further references and

details on systems theory representations. In [10], the set of
MDP convolutional codes is described by sets of matrices
{F0, F1, . . . , FL} that form a matrix TL with the MDP prop-
erty. The matrices {F0, F1, . . . , FL} are directly related to the
representation (A,B,C,D) and have their elements in F̄, the
closure of a certain finite base field F. F̄ is therefore an infinite
field. Based on the minors that must be nonzero in TL for C
to be MDP, a set of finitely many polynomial equations is ob-
tained. This set describes the codes that do not satisfy the MDP
property. The zeros of each of these polynomials describe a
proper algebraic subset of F̄(L+1)(n−k)k. The complement of
these subsets are nonempty Zariski open sets in F̄(L+1)(n−k)k.
Their intersection is a nonempty Zariski open set since there
is a finite number of them. Thus, the set of MDP codes forms
a nonempty Zariski open subset of the quasi-projective variety
of convolutional codes. �

Now we are ready to proof Theorem 4.6.
Proof: Let F be a finite field and F̄ be its algebraic

closure. Following a similar reasoning to the one in [10],
we will show that the set of reverse-MDP convolutional
codes forms a generic set when viewed as a subset of the
quasi-projective variety of all (n, k, δ) convolutional codes,
by showing that it is the intersection of two nonempty Zariski
open sets: the one of MDP codes and the one of the codes
whose reverse is MDP.

As shown in [10], there exist sets of finitely many polyno-
mial equations whose zero sets describe those convolutional
codes that are not MDP. Each of these sets is a proper subset
of F̄(L+1)(n−k)k, and its complement is a nonempty Zariski
open set in F̄(L+1)(n−k)k. Let {Wj}θj=0, θ <∞, denote those
complements. With a similar set of finitely many polynomial
equations, one can describe those codes whose reverse ones
are not MDP. These zero sets are proper algebraic sets over
F̄(L+1)(n−k)k, and the complement of those, let us denote them
by {Uj}φj=0, φ < ∞, are also nonempty Zariski open sets in
F̄(L+1)(n−k)k. Let V be the intersection of all these sets

V =

 θ⋂
j=0

Wj

⋂ φ⋂
j=0

Uj

 .

Thus V is a nonempty Zariski open set since there are finitely
many sets in the intersection. V describes the set of reverse-
MDP codes. If we take one element in V , i.e., we select the
matrices {F0, F1, . . . FL} that represent a certain reverse-MDP
code C, then we have finitely many entries. Either all of them
belong to F or they all belong to a finite extension field of
F. Choosing this extension, implies that we can always find a
finite field where reverse-MDP codes exist.

Remark 4.8. The equations characterizing the set of reverse-
MDP convolutional codes can be made very explicit for codes
of degree δ where (n − k) | δ. Let H(z) = H0 + H1z +
· · ·+Hνz

ν be a parity-check matrix of the code. The reverse
code has parity-check matrix H(z) = Hν + Hν−1z + · · · +
H0z

ν . Then H(z) gives a reverse-MDP code if and only if
the algebraic conditions of an MDP code of Theorem 2.3 hold
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for H(z), and, in addition, every full size minor of the matrix
Hν Hν−1 · · · Hν−L

Hν · · · Hν−L−1
. . .

...
Hν


formed from the columns with indices j1, j2, . . . , j(L+1)(n−k)
having the property that js(n−k)+1 > sn, for s = 1, 2, . . . , L,
is nonzero.

Example 4.9. Let C be the (2, 1, 1) convolutional code over
F25 given by the parity-check matrix

H(z) =
[

1 + α25z + α5z2 α15 + α10z + α3z2
]

where α satisfies α5 + α2 + 1 = 0. C is an MDP code since
in the matrix HL

HL =

 1 α15 0 0 0 0
α25 α10 1 α15 0 0
α5 α3 α25 α10 1 α15

 ,
every 3×3 non-trivially zero minor is nonzero. Moreover, the
reverse code C is defined by the matrix

H(z) =
[
α5 + α25z + z2 α3 + α10z + α15z2

]
= H0 +H1z +H2z

2.

HL is of the form

HL =

 α3 α5 0 0 0 0
α10 α25 α3 α5 0 0
α15 1 α10 α25 α3 α5

 ,
for which again every 3×3 non-trivially zero minor is nonzero.
This shows that C is an MDP code and therefore C is a reverse-
MDP convolutional code. �

One can apply the backward process to the received se-
quence, taking into account that

Hν Hν−1 · · · Hν−j · · ·H0

Hν · · ·Hν−j+1 · · ·H1 H0

. . .
. . .

Hν · · · Hj Hj−1 · · ·H0




vt+j
vt+j−1

...
vt+1

vt

 = 0

(10)

if and only if
Fν Fν−1 · · · Fν−j · · ·F0

Fν · · ·Fν−j+1 · · ·F1 F0

. . . . . .
Fν · · ·Fj Fj−1 · · ·F0




vt+j
vt+j−1

...
vt+1

vt

 = 0,

(11)

where Fi = J(n−k)HiJn, for i = 0, 1, . . . , ν, vj = vjJn, for
j = 0, 1, 2, . . ., and Jr is an r × r matrix of the form

Jr =


0 0 · · · 0 1
0 0 · · · 1 0
...

...
0 1 · · · 0 0
1 0 · · · 0 0

 for r = 1, 2, . . . , n.

Since both matrices are related by permutations of rows and
columns, then the matrix in expression (10) satisfies the MDP
property if and only if the matrix in expression (11) does. So
one can work with the latter to recover the erasures without
the need of any transformation on the received sequence.

We revisit the situation of Example 4.1 and show how
reverse-MDP convolutional codes can recover the erasures that
were rendered undecodable by MDP convolutional codes.
Example 4.1(cont). Assume that the (2, 1, 50) code of Ex-
ample 4.1 is a reverse-MDP convolutional code. The reverse
code C has the same recovering rate per window as C.

Recall that we were not able to recover the received se-
quence using a left-to-right process. We will do this by using
a backward recovering.

Once we have received 100 symbols of C we can recover
part of the past erasures. If we take the following window

(B)180︷ ︸︸ ︷
vv ? ?vv ? ? . . .vv ? ? |

(C)100︷ ︸︸ ︷
vv . . .v

and use the reverse code C to solve the inverted system, then
we can recover the erasures in B. Moreover, taking 100 correct
symbols from G, the 60 erasures in F and 60 more correct
symbols from E

(E)60︷ ︸︸ ︷
vv . . .v

(F )60︷ ︸︸ ︷
? ? . . . ? |

(G)100︷ ︸︸ ︷
vv . . .v

we can in the same way recover block F . We thus recovered
150 erasures which is more than 59% of the erasures that
occurred in that part of the sequence. �

In the previous example we showed how reverse-MDP
convolutional codes and the backward process make it possible
to recover information that would already be considered as lost
by an MDS block code, or by an MDP convolutional code. We
use a portion of the guard space not only to possibly recover
the next burst of erasures, but additionally, to recover previous
ones. We can do this as soon as we receive enough correct
symbols; we do not need to wait until we receive a whole
new block.

If we would allow this backward process to be complete,
that is, to go from the end of the sequence up to the beginning,
we would recover a lot more information. We do not consider
this situation since it would imply that we need to wait until
the whole sequence was received in order to start recovering
right-to-left and that would not give better results than the
retransmission of lost packets.

The following Algorithm presents the recovering algorithm
for a sequence of length l. The value 0 represents a packet that
has not been received; 1 represents a correctly received packet;
1, a vector of ones, represents a guard space; findzeros(v) is a
function that returns a vector with the positions of the zeros in
v, and forward(C, j,v) and backward(C, j,v) are the forward
and backward recovering functions, respectively. They use the
parity check matrices of C and C to recover the erasures that
happen in v within a window of size (j + 1)n.
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RECOVERING ALGORITHM
Data: [v0,v1, . . . ,vl], the received sequence.
Result: [v0,v1, . . . ,vl], the corrected sequence.

1: i = 0
2: while i ≤ l do
3: forwardsucces = 0
4: backwardsucces = 0
5: if vi = 0 then
6: if [v(i−νn), . . . , vi−1] = 1 then
7: j = L
8: while forwardsucces = 0 and j ≥ 0 do
9: if length(findzeros([vi, . . . , vi+(j+1)n−1]))

≤ (j + 1)(n− k) then
10: [vi−νn, . . . , vi+(j+1)n−1]

= forward(C, j, [vi−νn, . . . , vi+(j+1)n−1])
11: forwardsucces = 1
12: i = i+ (j + 1)n− 1
13: end if
14: j = j − 1
15: end while
16: if forwardsucces 6= 1 then
17: aux = findzeros([vi, . . . , vi+(L+1)n−1])
18: k = i+ aux[length(aux)]− 1
19: while backwardsucces = 0 and k ≤ l do
20: if [vk, . . . , vk+νn−1] = 1 then
21: j = L
22: while backwardsucces = 0 and j ≥ 0 do
23: if length(findzeros([vk−(j+1)n, . . . , vk−1]))

≤ (j + 1)(n− k) then
24: [vk−(j+1)n, . . . , vk+νn−1] =

backward(C, j,
[vk−(j+1)n, . . . , vk+νn−1])

25: backwardsucces = 1
26: i = k + νn− 1
27: end if
28: j = j − 1
29: end while
30: end if
31: k = k + 1
32: end while
33: end if
34: end if
35: i = i+ 1
36: end if
37: end while

The algorithm works as follows: It starts moving forward
(left-to-right) along the received sequence. Once a first erasure
is found, it checks if there is enough guard space previous to
the erasure. If this occurs, it takes the next window of length
(j + 1)n and checks if the number of erasures is not greater
than (j+1)(n−k). If this condition holds, the recovery process
is successful, that is, our system has a unique solution, and we
can move on to the next window and start the process again.

On the other hand, if there are too many erasures, the
window size will be decreased until finding an erasure rate
that can be recovered. If no smaller window size is suitable

for a successful recovery, the backward process will start from
the end of this window. Since now we move right-to-left, the
algorithm tests if there exists a guard space after this window.
In case this is true, the next step is to check if the erasure rate
moving to the left along the sequence allows the recovery. As
in the forward process, when the system cannot be solved,
the window size will decrease to a size where the number of
erasures does not surpass (j + 1)(n − k). If a window with
these characteristics is found, this part of the sequence will be
recovered and the forward recovering process will be retaken
from this point on. In case such window does not exist, that
part of the sequence will be considered as not possible to be
recovered and the forward recovering process will restart at
this point.

Remark 4.10. Note that the first and the last blocks of length
(j + 1)n of the sequence (when using C and C, respectively)
do not need the use of previous guard space since we assume
that vi = 0, for i < 0 and i > l, which allows us to solve the
following systems

H0

H1 H0

...
...

. . .
Hj Hj−1 · · · H0




v0

v1

...
vj

 = 0, j = 0, 1, . . . , L,


HL · · · HL−j+1 HL−j

. . .
...

...
HL HL−1

HL




vl−j
vl−j−1

...
vl

 = 0, j = 0, 1, . . . , L.

�

5. CONSTRUCTION OF REVERSE-MDP CONVOLUTIONAL

CODES

As we showed previously, reverse-MDP convolutional codes
exist over sufficiently large fields giving a good performance
when decoding over the erasure channel. Unfortunately, we do
not have a general construction for this type of codes because,
for certain values of the parameters, we do not know what
is the relation between matrices Hi and matrices Hi, i =
0, 1, . . . , ν. In this section, we construct reverse-MDP codes
for the case when (n− k) | δ and k > δ —situation in which
we would need to give a parity-check matrix— or k | δ and
(n − k) > δ —situation in which we would need to give a
generator matrix.

Since reverse-MDP codes are codes satisfying both the
forward and the backward MDP property, we could try to
modify MDP convolutional codes such that the corresponding
reverse codes are also MDP. Recall from [11] that in the
construction of MDP convolutional codes the following types
of matrices play an essential role.

Definition 5.1. Let A be an r × r lower triangular Toeplitz
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matrix

A =


a0 0 · · · 0

a1 a0
. . .

...
...

. . . . . . 0
ar · · · a1 a0

 .

Let s ∈ {1, 2, . . . , r}. Suppose that I := {i1, . . . , is} is a set
of row indices of A, J := {j1, . . . , js} is a set of column
indices of A, and that the elements of each set are ordered
from smallest to largest. We denote by AIJ the sub-matrix of
A formed by intersecting the columns indexed by the members
of J and the rows indexed by the members of I . A sub-matrix
of A is said to be proper if, for each t ∈ {1, 2, . . . , s},
the inequality jt ≤ it holds. The matrix A is said to be
superregular if every proper sub-matrix of A has a nonzero
determinant.

Remark 5.2. In the case A is not a lower triangular matrix,
but a lower block triangular matrix of size γ(n − k) × γk,
where each block has size (n−k)×k, a proper sub-matrix of
A is a sub-matrix AIJ such that the inequality jt ≤

⌈
it
n−k

⌉
k

holds, for each t ∈ {1, 2, . . . ,min{γ(n− k), γk}}.

In [11], the parity-check matrix of an MDP convolutional
code was constructed using its systematic form, that is, ĤL =
[I(L+1)(n−k) | Ĥ], where I(L+1)(n−k) is the identity matrix of
size (L+1)(n−k) and Ĥ is a (L+1)(n−k)×(L+1)k lower
block triangular superregular matrix. After left multiplication
by an invertible matrix and a suitable column permutation
on the systematic expression ĤL we can obtain the parity-
check matrix HL given in (7). Note that the nonzero minors
of any size of the lower block triangular superregular matrix
Ĥ translate into nonzero full size minors of HL, property that
characterizes MDP convolutional codes.

Motivated by this idea we introduce the following matrices.

Definition 5.3. We say a superregular matrix A is reverse-
superregular if the matrix

Arev =


ar 0 · · · 0

ar−1 ar
. . .

...
...

. . . . . . 0
a0 · · · ar−1 ar


is superregular.

These matrices may be hard to find since not every super-
regular matrix is a reverse-superregular matrix.

Example 5.4. Let

A =


1 0 0 0
α 1 0 0
α3 α 1 0
α α3 α 1

 ,
where α3 + α + 1 = 0. We can easily check that A is

superregular over F8. However, its reverse matrix

Arev =


α 0 0 0
α3 α 0 0
α α3 α 0
1 α α3 α



is not superregular since

∣∣∣∣∣∣
α3 α 0
α α3 α
1 α α3

∣∣∣∣∣∣ = 0. �

One can think that only superregular matrices that are
symmetric with respect to the lower diagonal can be reverse-
superregular.

Example 5.5. Let

B =


1 0 0 0
α 1 0 0
α α 1 0
1 α α 1

 .
Then B is a reverse-superregular matrix over F8, where α3 +
α2 + 1 = 0, because B = Brev and the minor property holds.

The following example shows that, in fact, superregular
matrices that are not symmetric with respect to the lower
diagonal can be reverse-superregular as well.

Example 5.6. Let C be the matrix below and Crev its
corresponding reverse matrix

C =


1 0 0 0
α4 1 0 0
α6 α4 1 0
α3 α6 α4 1

 , Crev =


α3 0 0 0
α6 α3 0 0
α4 α6 α3 0
1 α4 α6 α3

 .
Both C and Crev are superregular matrices over F8 implying
that C is a reverse-superregular matrix. �

Due to the importance that these matrices have in our
construction, in the following subsection we present several
tools to generate them.

A. Construction of reverse-superregular matrices

Superregular matrices have been previously studied in re-
lation to MDP convolutional codes. Minimum required field
size necessary for constructing an MDP code and a study of
matrix or code transformations that preserve superregularity
can be found in the literature (see [9]–[11], [13]). In [6] a
concrete construction of MDP codes is given, although over a
field of size much larger than the minimum possible for those
parameters. In [6] it was conjectured that for every l ≥ 5 one
can find a superregular l × l-Toeplitz matrix over F2l−2 . This
remained an open question.

In this section we give a method of obtaining reverse-
superregular matrices over fields of characteristic p that re-
quires less time than an exhaustive computer search. We
also present matrix transformations that preserve the reverse-
superregular property. Although we cannot specify the mini-
mum field size required for given parameters, we can ensure
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that the matrices obtained with this method are reverse-
superregular. Since reverse-superregularity is a more restrictive
condition than superregularity, it is reasonable to expect that
the field size needed to generate an l× l-reverse-superregular
Toeplitz matrix over fields of characteristic 2 is larger than that
for general superregularity. In this construction, the size of the
field will be F2l−1 which is larger than the size conjectured in
[6] for general superregularity.

Theorem 5.7. Let p(x) be an irreducible polynomial of
degree n over Fpn and let α be a root, p(α) = 0. Let
a(z) =

∏l−1
i=0(1 + αiz) = a0 + a1z + . . .+ alz

l. If the matrix

A =


a0 0 . . . 0

a1 a0
. . . 0

...
. . .

. . .
...

al . . . a1 a0


is superregular, then the reversed matrix Arev is superregular.

Proof: By construction we have that

a0 = 1, a1 =

l−1∑
j=0

αj , a2 =
∑
j 6=k

αjαk,

a3 =
∑

j 6=k 6=h

αjαkαh, . . . al =

l−1∏
j=0

αj .

The minors of A and Arev can be described as polynomials in
α. The following connection between these minors holds. If
ρ(α) denotes a minors of Arev based on a set I and J of row
and column indices, then there exists an integer i such that

ρ(α) = αiρ(
1

α
),

where ρ(α) is the minor of A based on the same sets I and
J ; the power i depends on the size of the minor. The claim
follows now.

Although we cannot decide a priori which irreducible poly-
nomials will generate a reverse-superregular matrix, computer
search complexity is drastically reduced since the number of
irreducible polynomials generating a field is much smaller than
the field size. Search algorithms are efficient because only
superregularity needs to be tested since reverse-superregularity
is guaranteed by Theorem 5.7.

In the following we will present a few matrix transforma-
tions that preserve reverse-superregularity. Note that the first
two results are the same as in [11], where several actions
preserving superregularity are studied.

Theorem 5.8. Let A defined as in Definition 5.1 be a reverse-
superregular matrix over Fpe and let α ∈ F∗pe = Fpe \ {0}.
Then

α •A =



a0 0 0 . . . 0
αa1 a0 0 . . . 0

α2a2 αa1 a0
...

...
...

. . .
...

αlal αl−1al−1 αl−2al−2 . . . a0



is a reverse-superregular matrix.

Proof: Since the minors in matrix A are only transformed
by factors of the form αi in matrix α•A and the same occurs
for the minors of (α • A)rev, then reverse-superregularity is
preserved.

Theorem 5.9. Let A defined as in Definition 5.1 be a reverse-
superregular matrix over Fpe and let i ∈ Z/eZ. Then

i ◦A =



ap
i

0 0 0 . . . 0

ap
i

1 ap
i

0 0 . . . 0

ap
i

2 ap
i

1 ap
i

0

...
...

...
. . .

...
ap

i

l ap
i

l−1 ap
i

l−2 . . . ap
i

0


is a reverse-superregular matrix.

Proof: In this case, the a minor of i ◦ A is the corre-
sponding minor of A to the power of pi. The same occurs for
(i ◦ A)rev and Arev, so we still have reverse-superregularity.

The next theorem refers to the construction of Theorem 5.7.

Theorem 5.10. Let A and p(x) be as in the construction given
in Theorem 5.7. Then the matrix

S =


s0 0 . . . 0

s1 s0
. . . 0

...
. . .

. . .
...

sl . . . s1 s0


where s(z) =

∏l−1
i=0(1 + (α−1)iz) = s0 + s1z + . . .+ slz

l, is
a reverse-superregular matrix.

Proof: This is due to the fact that any minor of A, ρ(α),
and the corresponding minor of S, σ(α), satisfy ρ(α) = σ( 1

α ).
The same relation is given for the reversed matrices and
therefore reverse-superregularity holds.

Since the reciprocal polynomial q(x) = xlp(x−1) of an
irreducible polynomial p(x) is irreducible too and the roots
of q(x) are the inverse of the roots of p(x), Theorem 5.10
reduces by half the number of irreducible polynomials one
must check since we can assume the same behavior for p(x)
and q(x). In this way computer searches become again more
efficient.

Note that not all actions preserving superregularity preserve
reverse-superregularity, as we show next. It is known [11] that
the inverse of a superregular matrix is a superregular matrix.
The same does not occur for reverse-superregularity since the
reversed matrix of the inverse is not necessarily superregular.

Example 5.11. The following 5 × 5 matrix is reverse-
superregular over F16 with 1 + α+ α4 = 0,

Y =


1 0 0 0 0
α12 1 0 0 0
α4 α12 1 0 0
1 α4 α12 1 0
α6 1 α4 α12 1

 .
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However, its inverse is not a reverse-superregular matrix since
in

(Y −1)rev =


α14 0 0 0 0
α13 α14 0 0 0
α14 α13 α14 0 0
α12 α14 α13 α14 0
1 α12 α14 α13 α14

 ,
the following minor is zero∣∣∣∣∣∣∣∣

α13 α14 0 0
α14 α13 α14 0
α12 α14 α13 α14

1 α12 α14 α13

∣∣∣∣∣∣∣∣ = 0.

�

Once we have generated the necessary tools, we can proceed
to construct reverse-MDP codes.

Let (n − k) | δ and k > δ. We will extract appropriate
columns and rows from a reverse-superregular matrix to obtain
a parity-check matrix of a reverse-MDP code C.

Theorem 5.12. Let A be an r×r reverse-superregular matrix
with r = (L+ 1)(2n− k− 1). For j = 0, 1, . . . , L, let Ij and
Jj be the following sets:

Ij = {(j + 1)n+ j(n− k − 1),

(j + 1)n+ j(n− k − 1) + 1, . . . , (j + 1)(2n− k − 1)} ,
Jj = {jn+ j(n− k − 1) + 1,

jn+ j(n− k − 1) + 2, . . . , (j + 1)n+ j(n− k − 1)} ,

and I and J be the union of these sets

I =

L⋃
j=0

Ij , J =

L⋃
j=0

Jj .

Let Ã be the (L+1)(n−k)×(L+1)n lower block triangular
sub-matrix with rows indexed by I and columns indexed by J ,
i.e.,

Ã = AIJ .

Then every (L+ 1)(n−k)× (L+ 1)(n−k) full size minor of
Ã formed from the columns with indices 1 ≤ i1 < · · · <
i(L+1)(n−k), where is(n−k) ≤ sn, for s = 1, 2, . . . , L, is
nonzero.
Moreover, the same property holds for Ãrev.

We will use the above theorem to construct the lower block
triangular matrix HL. In HL only matrices Hi with i ≤ L
appear. However, we know that H(z) =

∑ν
i=0Hiz

i. The
condition (n− k) | δ and k > δ ensures that L = ν = δ

(n−k)
and therefore, Hν = HL. Then, all the matrices of the
expansion of H(z) appear in HL and we can describe H(z)
since the blocks of the matrix Ã obtained in Theorem 5.12
represent the matrices Hi.

Moreover, let µj be the maximum degree of all polynomials
in the j-th row of H(z) and let H∞ be the matrix whose j-
th row is formed by the coefficients of zµj in the j-th row
of H(z). In general H∞ 6= Hν , but since (n − k) | δ, Hν

has full rank and so the two matrices must coincide. We have
Hi = Hν−i, for i = 0, 1, . . . , ν, which yields that H(z) =
Hν +Hν−1z+ · · ·+H1z

ν−1 +H0z
ν is a parity-check matrix

of C. We can construct the lower block triangular matrix HL
using Ãrev, where the blocks of Ãrev represent the matrices
Hi. Then, we can describe H(z). One can obtainHL inverting
the positions of the blocks in the matrix HL constructed with
help of Theorem 5.12 as well.

We illustrate the process with some examples.

Example 5.13. In this example, we construct the parity-check
matrix of a (3, 2, 1) reverse-MDP convolutional code C over
F32 using a 6 × 6 reverse-superregular matrix. Let µ ∈ F32

such that µ5 +µ2 + 1 = 0 and let P be a reverse-superregular
matrix constructed from µ over F32 as in Theorem 5.7,

P =



1 0 0 0 0 0
µ15 1 0 0 0 0
µ21 µ15 1 0 0 0
µ23 µ21 µ15 1 0 0
µ21 µ23 µ21 µ15 1 0
µ10 µ21 µ23 µ21 µ15 1

 .

According to the choice of sets I and J in Theorem 5.12 we
obtain the matrix

HL =

[
H0 O
H1 H0

]
=

[
µ21 µ15 1 0 0 0
µ10 µ21 µ23 µ21 µ15 1

]
,

leading to the parity-check matrix of C

H(z) =
[
µ21 + µ10z µ15 + µ21z 1 + µ23z

]
.

The parity-check matrix H(z) for C, which is given by
H(z) =

∑1
i=0Hiz

i =
∑1
i=0H1−iz

i, is now

H(z) =
[
µ10 + µ21z µ21 + µ15z µ23 + z

]
.

The matrix

HL =

[
µ10 µ21 µ23 0 0 0
µ21 µ15 1 µ10 µ21 µ23

]
has equivalent properties to the ones of the matrix

FL =

[
µ23 µ21 µ10 0 0 0
1 µ15 µ21 µ23 µ21 µ10

]
,

which we would have obtained applying Theorem 5.12 to the
matrix Prev. �

Example 5.14. We can use a 8×8 reverse-superregular matrix
over F128 to construct a (4, 3, 1) reverse-MDP convolutional
code in the following way. Applying Theorem 5.12 to the
matrix

Q =



1 0 0 0 0 0 0 0
β12 1 0 0 0 0 0 0
β32 β12 1 0 0 0 0 0
β45 β32 β12 1 0 0 0 0
β48 β45 β32 β12 1 0 0 0
β41 β48 β45 β32 β12 1 0 0
β27 β41 β48 β45 β32 β12 1 0
β21 β27 β41 β48 β45 β32 β12 1


,
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where β7 + β6 + 1 = 0, we obtain the matrix

HL =

[
H0 O
H1 H0

]
=

[
β45 β32 β12 1 0 0 0 0
β21 β27 β41 β48 β45 β32 β12 1

]
.

Then the parity-check matrix of C is

H(z) =
[
β45 + β21z β32 + β27z β12 + β41z 1 + β48z

]
,

and the parity-check matrix of C is

H(z) =
[
β21 + β45z β27 + β32z β41 + β12z β48 + z

]
.

�

The same kind of construction can be applied in order to
obtain the generator matrix of a code. Transposing the reverse-
superregular matrix and adapting appropriately the sizes in the
row and column extraction, we obtain the following theorem
similar to Theorem 5.12.

Theorem 5.15. Let B be the transpose of an r × r reverse-
superregular matrix with r = (L + 1)(n + k − 1). For j =
0, 1, . . . , L, let Ij and Jj as following

Ij = {jn+ j(k − 1) + 1,

jn+ j(k − 1) + 2, . . . , (j + 1)n+ j(k − 1)} ,
Jj = {(j + 1)n+ j(k − 1),

(j + 1)n+ j(k − 1) + 1, . . . , (j + 1)(n+ k − 1)} ,

and let I and J be the union of these sets

I =

L⋃
j=0

Ij , J =

L⋃
j=0

Jj .

Let B̃ be the (L + 1)n × (L + 1)k upper block triangular
sub-matrix with rows indexed by I and columns indexed by J ,
i.e.,

B̃ = BIJ .

Then every (L+ 1)k × (L+ 1)k full size minor of B̃ formed
from the columns with indices 1 ≤ i1 < · · · < i(L+1)k, where
isk+1 > sn, for s = 1, 2, . . . , L, is nonzero.
Moreover, the same property holds for B̃rev.

In this case, the upper block triangular matrix B̃ will
represent the matrix GL. In GL, only the matrices Gi with
i ≤ L are involved. However, G(z) =

∑m
i=0Giz

i. When
constructing generator matrices, we need k | δ and (n−k) > δ,
so that L = m = δ

k and Gν = GL. Then all the matrices in the
expansion of matrix G(z) appear in GL and we can construct
G(z) using the blocks in B̃ to describe the matrices Gi.

Recall that G∞ is the matrix whose j-th column is formed
by the coefficients of zδj in the j-th column of G(z), where
δj is the j-th column degree of G(z). As in the parity-check
matrix case, in general G∞ 6= Gm, but with k | δ, Gm has full
rank and G∞ = Gm. Now Gi = Gm−i for i = 0, 1, . . . ,m
and the expression G(z) = Gm +Gm−1z + · · ·+G1z

m−1 +
G0z

m describes a generator matrix of C. The blocks in matrix
B̃rev represent now the matrices Gi and can be used to

construct G(z). Since Gi = Gm−i for i = 0, 1, . . . ,m, one
can use the same blocks in GL to construct G(z) as well.

Example 5.16. We construct a generator matrix of a (3, 1, 1)
code over F32. For this, we use the transpose of a 6×6 reverse-
superregular matrix. Let γ5 + γ4 + γ3 + γ2 + 1 = 0. We can
apply Theorem 5.15 to the matrix

S =



1 γ19 γ16 γ20 γ5 γ16

0 1 γ19 γ16 γ20 γ5

0 0 1 γ19 γ16 γ20

0 0 0 1 γ19 γ16

0 0 0 0 1 γ19

0 0 0 0 0 1

 ,

obtaining

GL =

[
G0 G1

O G0

]
=



γ16 γ16

γ19 γ5

1 γ20

0 γ16

0 γ19

0 1

 .

The generator matrices of C and C are

G(z) =

 γ16 + γ16z
γ19 + γ5z
1 + γ20z

 and G(z) =

 γ16 + γ16z
γ5 + γ19z
γ20 + z

 .
�

6. COMPLETE-MDP CONVOLUTIONAL CODES

We explained earlier how reverse-MDP codes can improve
the recovering process in comparison to MDP codes of the
same parameters. Even though we are able to move in any
direction with our decoding, there exist situations where the
decoder still gets lost in the middle of a sequence because of
too many erasures. In order to restart the decoding process
one has to have access to a sufficiently large guard space of
νn symbols.

In this section we provide a criterion (Theorem 6.6) which
will guarantee the computation of a guard space of sufficient
length. The special class of MDP convolutional codes which
will satisfy this assumption will be called complete MDP
convolutional codes.

Complete-MDP convolutional codes will turn out to be
both MDP convolutional codes and reverse MDP codes. If
the decoder gets lost in the decoding process because of
an accumulation of too many erasures a complete MDP
convolutional code will be able to re-start the decoding process
as soon as a sequence of symbols is found

These codes assume stronger conditions on the parity-
check matrix of the code which reduce the number of correct
symbols per window that one needs to observe to go back
to the recovering process. The recovering rate per window,
Rω = #erasures recovered

#symbols in a window , decreases at the instant when it is
required to compute a guard space. the recovery rate will be
computed in for this situation in Theorem 6.6. After a guard
space is obtained, the recovery rate is again Rω . The waiting
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time in order to continue with the recovering process becomes
shorter and we avoid the loss of big amounts of information.

From now on, we make the simplified assumption that (n−
k) divides the degree δ of the code, and that the code C has a
parity-check matrix H(z) = H0+H1z+· · ·+Hνz

ν . Therefore,
Hν has full rank and δ = ν(n− k), leading to L =

⌊
δ
k

⌋
+ ν.

The following matrix
Hν · · · H0

Hν H0

. . .
. . .

Hν · · · H0

 (12)

will play an important role in the following. For this reason,
we will call it the partial parity-check matrix of the code.
Then we have the following definition.

Definition 6.1. A rate k
n convolutional code C with parity-

check matrix H(z) as above is called a complete-MDP con-
volutional code if in the (L+ 1)(n−k)× (ν+L+ 1)n partial
parity-check matrix every full size minor which is not trivially
zero, is nonzero.

Remark 6.2. A full size minor formed from the columns
j1, j2, . . . , j(L+1)(n−k) is not trivially zero if and only if none
of these conditions is violated
• js(n−k)+1 > sn
• js(n−k) ≤ sn+ νn

for s = 1, 2, . . . , L.

Based on many small examples, like Example 6.3, we
conjecture the existence of complete-MDP convolutional codes
for every set of parameters.

Example 6.3. Let H(z) be a parity-check matrix of a (3, 1, 1)
convolutional code over F128

H(z) =

[
α76 + α77z α62 + α85z 1 + α76z
α73 + α37z α76 + α77z α62 + α85z

]
,

where α7+α6+α3+α+1 = 0. Note that in this case n−k = 2
does not divide δ = 1. The partial parity-check matrix satisfies
the condition that all its full size minors that are non trivially
zero, that is, the ones that do not include columns 1, 2 and 3
or 7, 8 and 9, are nonzero.

α77 α85 α76 α76 α62 1 0 0 0
α13 α77 α85 α73 α76 α82 0 0 0
0 0 0 α77 α85 α76 α76 α62 1
0 0 0 α13 α77 α85 α73 α76 α82

 .
Therefore this code is complete-MDP. �

Lemma 6.4. Every complete-MDP convolutional code is
reverse-MDP. In particular, every complete-MDP is an MDP
code.

Proof: The claim follows from the fact that the matrices

HL =


H0

H1 H0

...
. . .

HL HL−1 · · · H0

 ,

HL =


Hν Hν−1 · · · Hν−L

Hν Hν−L+1

. . .
...
Hν

 ,
are included in the partial parity-check matrix of the code.
The full size minors of HL and HL that are not trivially zero
are also not trivially zero full size minors of the partial parity-
check matrix and hence, by Definition 6.1, they are nonzero.
Therefore, the code is reverse-MDP.

Note that the opposite is not true in general, as we can see
in the following example.

Example 6.5. Let H(z) be the parity-check matrix of a
(3, 1, 1) reverse-MDP convolutional code over F128,

H(z) =

[
α93 + α49z α19 + α30z α75 + α35z
α61 + α19z α93 + α49z α19 + α30z

]
,

where α7 + α6 + α5 + α4 + α2 + α+ 1 = 0. The code does
not satisfy the complete-MDP condition because the columns
1, 5, 6 and 7 of the partial parity check matrix

α49 α30 α35 α93 α19 α75 0 0 0
α19 α49 α30 α61 α93 α19 0 0 0
0 0 0 α49 α30 α35 α93 α19 α75

0 0 0 α19 α49 α30 α61 α93 α19


form a zero minor which is not trivially zero. �

The use of this class of codes over the erasure channel
gives some significant improvement in the recovering process.
When we receive a pattern of erasures that we are not able
to recover, by using complete-MDP codes, we do not need to
wait until a large enough sequence of correct symbols (a new
guard space) is received. It suffices to have a window with a
certain percentage of correct symbols to continue the decoding
process. The specific requirements on the error pattern which
allows one to compute a new guard space is given in the
following theorem:

Theorem 6.6. Given a code sequence from some complete
MDP convolutional code. If in a window of size (ν+L+ 1)n
there are not more than (L+1)(n−k) erasures, and if they are
distributed in such a way that between position 1 and sn and
between positions (ν+L+ 1)n and (ν+L+ 1)n− s(n− k),
for s = 1, 2, . . . , L + 1, there are not more than s(n − k)
erasures, then full correction of all symbols in this interval will
be possible. In particular a new guard space can be computed.

Proof: Consider the matrix introduced in (12). By as-
sumption on the existing erasures and by the assumption that
every minor in (12) which is not trivially zero is nonzero, it
follows that that all erased symbols can be uniquely computed
by solving linear systems of equations over the base field F.

Complete-MDP convolutional codes have maximum recov-
ering rate per window at any instant of the process, forward
and backward, since these are both MDP and reverse-MDP
codes. When we find a pattern of erasures that we cannot
recover by forward or backward decoding, then a guard space
should be computed. The complete-MDP property guarantees
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that this can be done under the relatively mild conditions of
Theorem 6.6. The recovering rate per window at that instant
decreases from Rω = (L+1)(n−k)

(L+1)n to Rω = (L+1)(n−k)
(L+1+ν)n , since

we need to observe a bigger amount of correct information.
The following example points out the kind of situations that

make these codes more powerful than MDS block codes.

Example 6.7. Suppose that we use a [75, 50] MDS block code
to transmit a sequence over an erasure channel. This code has
Rω = 25

75 . Assume that we are not able to recover the previous
blocks of the sequence, and let the following be the pattern
received immediately after

. . . ? ? |
(A)14︷ ︸︸ ︷
? ? . . . ?

(B)21︷ ︸︸ ︷
vv . . .v

(C)12︷ ︸︸ ︷
? ? . . . ?

(D)28︷ ︸︸ ︷
vv . . .v |

|
(E)19︷ ︸︸ ︷

vv . . .v

(F )13︷ ︸︸ ︷
? ? . . . ?

(G)30︷ ︸︸ ︷
vv . . .v

(H)13︷ ︸︸ ︷
? ? . . . ? |

|
(I)30︷ ︸︸ ︷

vv . . .v

(J)6︷ ︸︸ ︷
? ? . . . ?

(K)17︷ ︸︸ ︷
vv . . .v

(L)22︷ ︸︸ ︷
? ? . . . ? | ? ? . . .

In this case the block code can not recover any of these
erasures, thus missing 80 information symbols.

Note that if we use an MDP or a reverse-MDP convolutional
code with parameters (3, 2, 16), we would not be able to
recover these erasures either, since one cannot find enough
guard space, of at least 48 correct symbols, in between the
bursts.

Assume now that we use a (3, 2, 16) complete-MDP con-
volutional code. The maximum recovering rate per window
of this code is Rω = 25

75 , and for smaller window sizes
is (j+1)(n−k)

(j+1)n , j = 0, 1, . . . , 23. Due to the complete-MDP
property, when lost in the decoding process, we can start
recovering again once we find a window of size (L+1+ν)n =
(24 + 1 + 16)3 = 123 where not more than 25 erasures occur.

For the above pattern, a possible such window is the
following

(B)21︷ ︸︸ ︷
vv . . .v

(C)12︷ ︸︸ ︷
? ? . . . ?

(D)28︷ ︸︸ ︷
vv . . .v |

(E)19︷ ︸︸ ︷
vv . . .v

(F )13︷ ︸︸ ︷
? ? . . . ?

(G)30︷ ︸︸ ︷
vv . . .v .

Using Theorem 6.6 one sets up a linear system of equations
which will recover all erasures in this interval. Once we have
recovered this part we can go on with the next one

vv . . .v

(H)13︷ ︸︸ ︷
? ? . . . ? |

(I)30︷ ︸︸ ︷
vv . . .v

and finally recover

vv . . .v

(J)6︷ ︸︸ ︷
? ? . . . ? |

(K)17︷ ︸︸ ︷
vv . . .v .

Although we cannot recover block A with 14 erasures and
block L with 22 we were able to recover more than 50% of
the erasures in that part of the sequence, which is better than
what an MDS block code could recover. �

t t���� ����
-

�

-

�
v ?

1− Pc|e Pe|e

Pc|e

1− Pe|e

Fig. 1. Representation of the erasure channel as a Markov chain.

A. Simulations

In this subsection we show some simulation results. Because
of its practical importance we will work with a Gilbert-Elliot
channel model. (See e.g. [20]). In this model the erasure
probability of a symbol is not constant and it increases after
one erasure has already occurred, in other words, the chance
that another erasure occurs right after one symbol is erased
increases. We denote by Pc|e the probability that an erasure
occurs after a correctly received symbol, and by Pe|e the
probability that an erasure occurs after another erasure has
already happened. One way of modeling this situation is by
means of a first order Markov chain (Gilbert-Elliot model)
as shown in Figure 1, where 0 < Pc|e < Pe|e < 1, ?
represents an erasure and v represents a received symbol. In
fact, Markov models are commonly used to model losses over
the Internet [27].

For these experiments we worked over erasure channels
of the described type. As we mentioned in Section 2, the
probability that an erasure occurs after a first erasure has
occurred increases, therefore we use the following table in
the simulations.

Pc|e 0.16 0.22 0.34 0.4

Pe|e 0.29 0.4 0.48 0.49

The parameters of the codes used in the simulations are
listed in the table below, where [N,K] are the parameters
of an MDS block code and (n, k, δ) the parameters used for
reverse-MDP and complete-MDP convolutional codes.

Rate N K n k δ

2/5 100 40 5 2 24

1/2 100 50 2 1 25

3/5 100 60 5 3 24

2/3 75 50 3 2 16

7/10 100 70 10 7 21

Figure 2 reflects the behavior of MDS codes over the erasure
channel when choosing codes with different rates and over
channels with different erasure probabilities. The recovering
capability is expressed in terms of Φ = #erasures recovered

#erasures occurred .
In Figures 3 and 4 we can see the performance of reveres-

MDP and complete-MDP convolutional codes, respectively.
The codes were chosen to have equal transmission rate and
recovering rate per window to those of the MDS block codes
used in the simulations of Figure 2.

The new simulation for reverse-MDP convolutional codes
shows that reverse-MDP codes only outperform MDS codes
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Fig. 2. Recovering capability (Φ) of MDS block codes with different
rates in terms of the erasure probability of the channel (Pc|e).

Fig. 3. Recovering capability of reverse-MDP convolutional codes
with different rates in terms of the erasure probability of the channel
(Pc|e).

at low rates. If we compare Figures 2 and 3, one can see that
only for rates equal to R = 2/5 and R = 1/2 the results are
better using reverse-MDP convolutional codes.

However, observing the results in Figure 4, one can see
how complete-MDP convolutional codes give much better
performance than MDS block codes. Even though the rate de-
creases for convolutional codes when we increase the erasure
probability, the behavior is better than in the MDS case.

For this reason we propose this kind of codes as a very
good alternative to MDS block codes over this channel.
Moreover, we believe that our proposed way of generating
reverse-superregular matrices in Theorem 5.7, together with
the construction for reverse-MDP convolutional codes given
in Section 5, generates complete-MDP convolutional codes; so

Fig. 4. Recovering capability of complete-MDP convolutional codes
with different rates in terms of the erasure probability of the channel
(Pc|e).

far we did not find any evidence of the opposite. Unfortunately,
we were not able yet to prove this result; it remains an open
question.

7. COMPARISON BETWEEN MDS BLOCK CODES AND MDP
CONVOLUTIONAL CODES

As we have already pointed out through several examples
MDP convolutional codes often are capable of decoding more
erasures than comparable MDS block codes. In this section
we would like to give some theoretical results on the decod-
ing capabilities of (complete) MDP convolutional codes and
compare these codes with MDS block codes of the same rate.

As a first goal we will show that a rate k/n convolutional
code will not be able to decode erasures at a rate of more than
(n− k)/n. The following theorem serves this purpose.

Theorem 7.1. Let H(z) =
∑ν
i=0Hiz

i be the parity check
matrix of an (n, k, δ) convolutional code. Assume v(z) = v0+
v1z + . . . + vlz

l is a transmitted codeword and more than
(l+ν+ 1)(n−k) erasures happen during transmission. Then
unique decoding is not possible.

Proof: v(z) has to satisfy the linear system of equations
as given in Equation (1). The maximum number of erasures
which uniquely can be decoded is hence given by the rank
of the matrix appearing in Equation (1). This rank is at most
(l + ν + 1)(n− k).

Corollary 7.2. The maximum recovery rate of an (n, k, δ)
convolutional code is at most n−k

n .

Proof: Theorem 7.1 shows that in a window of length
(l+ 1)n at most (l+ ν + 1)(n− k) erasures can be decoded.
Taking the limit l −→∞ we see that not more than a ratio of
n−k
n erasures can be decoded.
As a result we see that for long messages a rate k/n con-

volutional code cannot decode at a rate larger than (n−k)/n.
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On the other hand we have seen in Corollary 3.2 that an MDP
convolutional code can decode all erasures as long as there
are at most (L + 1)(n − k) in any sliding window of length
(L+ 1)n.

Compare this now with an [N,K] linear block code C. The
maximum number of erasures which can be decoded in any
block of length N is N −K and this maximum is achieved
by an MDS block code of rate K/N . As a consequence the
recovery rate of a rate k/n MDP convolutional code and a
rate k/n block code are therefore the same ‘on average’. What
matters for block codes is the block length and what matters
for convolutional codes is the degree.

We conclude the section by comparing a (2, 1, δ) convolu-
tional code with an [N,K] = [2δ, δ] block code.

Both these codes have rate 1/2. The [2δ, δ] block code can
decode all erasures as long as there are at most δ erasures in
every slotted window (=block) of length 2δ.

The performance of a (2, 1, δ) (complete) MDP convolu-
tional code is as follows:

By Corollary 3.2 unique decoding from left to right is
possible as long as there are at most (δ + 1) erasures in any
sliding window of length 2δ + 2. If the (2, 1, δ) code is also
a complete MDP convolutional code then Theorem 6.6 states
that decoding a whole window of length 6δ+2 can be achieved
as long as there are not more than 2δ + 1 erasures, and these
erasures do not concentrate on the boundaries of the interval.
In this way guard spaces can be computed and full decoding
is possible via the forward, backward decoding process as we
described it at length before.

The comparison shows that in order that a block code of
rate 1/2 can compete with a (2, 1, δ) MDP convolutional code
a block length of at least 2δ is needed and even then there
are many situations where full decoding is possible with the
convolutional code and blocks of the linear block code cannot
be decoded.

We conclude the section by comparing the decoding com-
plexity.

An [N,K] MDS block is capable of decoding N − K
erasures in every block. Assume N − K erasures actually
happen. If one works with the parity check matrix then the
decoding task naturally translates into a linear system of the
form Ax = b, where A is an (N −K)× (N −K) consisting
of the columns of the parity check matrix where the erasures
actually did happen. Alternatively one can work with the
generator matrix of the code and again ends up with a linear
system of the form Ax = b, where A is a K × K matrix
consisting of the K columns of the generator matrix where
the transmission arrived correctly.

The number of field operations required to decode is hence
of the order O(r3), where r = min{K,N −K}.

For an (n, k, δ) convolutional code the iterative decoding
process as described in Theorem 3.1 requires again the solution
of a linear system of the form Ax = b, where A is in the worst
case of size (L + 1)(n − k) × (L + 1)(n − k), in case one
works with the parity check matrix H(z). If the number of
erasures is relatively mild (always less than (L + 1)(n − k)
erasures in any sliding window of length (L+ 1)n) then each

system of equations of the form Ax = b will decode one to
several erasures at the time. If more erasures accumulate then
Theorem 6.6 has to be invoked which requires the solution of
a linear system Ax = b of slightly larger size and this system
possibly recovers just one erasure.

If n(L + 1) is comparable to the block length N of the
MDS block code then one sees that the computational effort
is very comparable.

8. CONCLUSIONS

In this paper, we propose MDP convolutional codes as
an alternative to MDS block codes when decoding over an
erasure channel. MDP convolutional codes can be decoded
iteratively ‘from left to right’ as long as the number of erasures
in any sliding window does not surpass a certain amount
(Corollary 3.2).

Reverse MDP convolutional codes are MDP convolutional
codes having the extra property that erasures can also be
decoded ‘from right to left’ as long as the number of erasures
in any sliding window does not surpass a certain amount
(Theorem 4.5).

Complete MDP convolutional codes are reverse MDP con-
volutional codes having the additional property that a whole
interval can be decoded (independent of the past and the
future) as long as the number of erasures does not surpass
a certain amount (Theorem 6.6).

The maximum erasure recovery rate of a rate k/n MDP
convolutional code is n−k

n . This is the same recovery rate as
for a rate k/n MDS block code often used in practice. In
the case of an [N,K] MDS block code error free decoding
is possible if in every block at most N − K erasures do
happen. An (n, k, δ) MDP convolutional code can perform
error free communication if in every sliding window of length
n(L + 1) at most (n − k)(L + 1) errors do happen, where
L =

⌊
δ
k

⌋
+
⌊

δ
n−k

⌋
. When N = nL then an MDS [N,K]

block code is comparable to an MDP convolutional code of
the same rate. However simulation results show that even in
this situation MDP convolutional codes perform better in case
the convolutional code is a complete MDP convolutional code.
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