Robust PCA via Outlier Pursuit

Huan Xu, Constantine Caramanidember and Sujay Sanghavilember

Abstract— Singular Value Decomposition (and Principal Com-
ponent Analysis) is one of the most widely used techniquesrfo
dimensionality reduction: successful and efficiently comptable,
it is nevertheless plagued by a well-known, well-documente
sensitivity to outliers. Recent work has considered the sghg
where each point has a few arbitrarily corrupted components
Yet, in applications of SVD or PCA such as robust collaboratie
filtering or bioinformatics, malicious agents, defective gnes, or
simply corrupted or contaminated experiments may effectiely
yield entire points that are completely corrupted.

We present an efficient convex optimization-based algoritim
we call Outlier Pursuit, that under some mild assumptions on
the uncorrupted points (satisfied, e.g., by the standard gearative
assumption in PCA problems) recovers theexact optimal low-
dimensional subspace, and identifies the corrupted pointsSuch
identification of corrupted points that do not conform to the low-
dimensional approximation, is of paramount interest in bidn-
formatics, financial applications, and beyond. Our techniges
involve matrix decomposition using nuclear norm minimizaion,
however, our results, setup, and approach, necessarily dr
considerably from the existing line of work in matrix completion
and matrix decomposition, since we develop an approach to
recover the correct column spaceof the uncorrupted matrix,
rather than the exact matrix itself. In any problem where one
seeks to recover astructurerather than the exact initial matrices
techniques developed thus far relying on certificates of ofrnality,
will fail. We present an important extension of these method,
that allows the treatment of such problems.

I. INTRODUCTION

PCA problem [2], seeks to find the best (in the least-square-
error sense) low-dimensional subspace approximationgio-hi
dimensional points. Using the Singular Value Decompositio
(SVD), PCA finds the lower-dimensional approximating sub-
space by forming a low-rank approximation to the data matrix
formed by considering each point as a column; the output of
PCA is the (low-dimensional) column space of this low-rank
approximation.

It is well known (e.g., [3]-[6]) that standard PCA is
extremely fragile to the presence ofitliers even a single
corrupted point can arbitrarily alter the quality of the epp
imation. Such non-probabilistic or persistent data caicup
may stem from sensor failures, malicious tampering, or the
simple fact that some of the available data may not conform to
the presumed low-dimensional source / model. In terms of the
data matrix, this means that most of the column vectors will
lie in a low-dimensional space — and hence the corresponding
matrix Ly will be low-rank — while the remaining columns
will be outliers — corresponding to the column-sparse matri
Cy. The natural question in this setting is to ask if we can
still (exactly or near-exactly) recover the column spac¢hef
uncorrupted points, and the identities of the outliers.sTiki
precisely our problem.

Our results: We consider a novel but natural convex opti-
mization approach to the recovery problem above. The main
result of this paper is to establish that, under certain rahtu

This paper is about the following problem: suppose weonditions, the optimum of this convex program will yieldeth

are given a largedata matrix M/, and we know it can be
decomposed as
M = Lo + Cy,

where L is a low-rank matrix, and’y is hon-zero in only a

fraction of the columns. Aside from these broad restrictjon
both components are arbitrary. In particular we do not knov\}

the rank (or the row/column space) bf), or the number and

positions of the non-zero columns 6f. Can we recover the

column-space of the low-rank matrix,, and the identities of
the non-zero columns afy, exactlyand efficiently?
We are primarily motivated by Principal Component Anal

sis (PCA), arguably the most widely used technique for dime

sionality reduction in statistical data analysis. The cacal
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column space ofLy and the identities of the outliers (i.e.,
the non-zero columns af’y). Our conditions depend on the
fraction of points that are outliers (which can otherwise be
completely arbitrary), and incoherence of thev space ofL.
The latter condition essentially requires that each divadn

e column space af( be represented in a sufficient number
of non-outlier points; we discuss in more detail below. We
note that our results doot require incoherence of the column
space, as is done, e.g., in the papers [5], [6]. This is due to
the different corruption model, our resulting alternatbagvex
formulation, and the fact that their objective is exact rexy.

e elaborate on this in Section I-A below. We note that
our analytical approach that focuses only on recovery of the
column space, instead of “exact recovery” of the enfixg
matrix. This also means our method’s performanceiation
invariant— in particular, applying the same rotation to all given
points (i.e., columns) will not change its performance afin
we extend our analysis to the noisy case when all points —
outliers or otherwise — are additionally corrupted by noise

A. Related Work

Robust PCA has a long history (e.g., [4], [7]-[13]). Each of
these algorithms either performs standard PCA on a robust



estimate of the covariance matrix, or finds directions thaannot recovel, itself exactly. We introduce the use of an
maximize a robust estimate of the variance of the projectedacle problem, defined by the structures we seek to recover
data. These algorithms seek #&pproximatelyrecover the (here, the true column space and the column support). This
column space, and moreover, no existing approach attememsbles us to show that our convex optimization-based algo-
to identify the set of outliers. This outlier identificatiowhile rithm recovers the correct (or nearly correct, in the preeasf
outside the scope of traditional PCA algorithms, is impatrtanoise) column space, as well as the identity of the corrupted
in a variety of applications such as finance, bio-informgticpoints, or outliers.
and more. We believe that this line of analysis will prove to be much
Many existing robust PCA algorithms suffer two pitfallsmore broadly applicable. Often times, exact recovery sympl
performance degradation with dimension increase, and codoes not make sense under strong corruption models (such as
putational intractability. To wit, [14] shows that severabust complete column corruption) and the best one can hope for is
PCA algorithms including M-estimator [15], Convex Peelingo capture exactly or approximately, some structural aspiec
[16], Ellipsoidal Peeling [17], Classical Outlier Rejemti[18], the problem. In such settings, it may be impossible to follow
Iterative Deletion [19] and Iterative Trimming [20] haveslak- the proof recipes laid out in works such as [5], [6], [24],
down points proportional to the inverse of dimensionahiyd [26], that essentially obtain exact recovery from theirea
hence are useless in the high dimensional regime we considg@timization formulations. Thus, in addition to our algbm
Algorithms with non-diminishing breakdown point, such aand our results, we consider the particular proof techngue
Projection-Pursuit [21] are non-convex or even combinakor contribution of potentially general interest.
and hence computationally difficult as the size of the pnoble
scales (e.g., [22]). Indeed, to the best of our !mowledg(_a, Il. PROBLEM SETUP
there is no algorithm that exactly solves Projection Pdrsui _ ) ) _ )
in polynomial time. In contrast to these, the performance of 1h€ Precise PCA with outlier problem that we consider is
Outlier Pursuit does not depend on the dimensjgrand its @S follows: we are givem points in p-dimensional space.
running time scales gracefully in problem size (in parggul A fraction 1 —~ of the points lie on ar-dimensionaltrue
it can be solved in polynomial time). subspa_lce _of the ambiei®”, while the remainingyn pomts_
Algorithms based on nuclear norm minimization to recovéearbitrarily located —we call these outliers/corrupted points.
low rank matrices are now standard, since the seminal wofe do not have any prior information about the true subspace
[23], [24]. Recent work [5], [6] has taken the nuclear norrf" its dimensionr. Given the set of _pomt.s., we would I|I§e to
minimization approach to the decomposition of a low-ran€arn(a) the true subspace aifi) the identities of the outliers.

matrix and an overall sparse matrix. At a high level, theseAS IS common practice, we collate the points intg & n
papers are close in spirit to ours, as all look to recoverdgta matrix, each of whose columns is one of the points,

low-rank matrix from corruptions. However, there amitical and each of whose rows is one of theoordinates. Itis then
differencesin (a) the corruption model: in our paper, a fewcl€ar that the data matrix can be decomposed as

columns are completely corrupted, while in [5], [6] every M = Lo+ Cp.

column is partially corruptedp) the objective: the model in

[5], [6] allows for exact recovery, as we still have enoughlere Cy is the column-sparse matriXl(— ~)n columns are
information about every row and column, while in our paperero) corresponding to the outliers, arg is the matrix

this is impossible for the corrupted columns, and we focus @orresponding to the non-outliers. Thusnk(Ly) = r, and
identifying which columns are corrupted, af@ the optimiza- we assume its columns corresponding to non-zero columns
tion problem: our corruption matrix is “block sparse” (eati of C; are identically zero (whatever those columns were
columns) and hence we use tlig, norm [25] to capture cannot possibly be recovered). Consider its Singular Value
our corruption structure, while [5], [6] have simply spars®ecomposition (SVD)

corruptions, and hence use tlieg norm. These differences T
allow us to impose weaker conditions — we do not need Lo =Uo%oVp - 1)
incoherence of the column space, making our resol&tion e columns ofl, form an orthonormal basis for the-
invariant: applying the same rotation to all points will notyimensional subspace we wish to recovy. is the matrix
affect the performance of our method, while it significantlg,rresponding to the outliers; we will denote the set of non-

affects that in [5], [6]. o _ . zero columns ofC, by Zp, with |Zy| = vn. These non-zero
Beyond this, our approach differs in key analysis techrsque.gjumns are completely arbitrary.

which we believe will prove much more broadly applicable \witn this notation, out intent is taexactly recover the
and thus of general interest. In particular, our work reesi& ,jumn space of, and the set of outliers,. All we are
significant extension of existing techniques for matrixa®e g en js the matrixl. Clearly, exact recovery is not always
position, precisely because the goal is to recoverdblemn g,ing to be possible (regardless of the algorithm used) and

spaceof Lo (the principal components, in PCA), as opposed i,s"we need to impose a few weak additional assumptions.
the exact matrices. Indeed, the above works investigedet o develop these in Section II-A below.

signal recovery — the intended outcome is known ahead OfWe are also interested in the noisy case, where
time, and one just needs to investigate the conditions meede ’
for success. In our setting, however, the convex optinopati M = Lo+ Cy+ N,



and N corresponds to any additional noise. In this case veenotes thé'” column vector. Letteré/, V, Z and their vari-

are interested in approximate identification of both thee trtants (complements, subscripts, etc.) are reserved fontolu

subspace and the outliers. space, row space and column support respectively. There are
four associated projection operators we use throughoiwg. Th

A. Incoherence: When can the column space be recoveredPfojection onto the column spack, is denoted byPy and

. o g - i
In general, our objective of recovering the “true” columng'Ven byPy(A4) = UU " A, and similarly for the row-space

— T i i i
space of a low-rank matrix that is corrupted with a cqumr?—JV(A) = AVV' . The matrixPz(4) is obtained fromA by

sparse matrix is not always well defined. As an extrerﬁsgttmg column4; to zero for alli ¢ Z. Finally, Pr is the

example, consider the case where the data matfixs non- projection to the space spanned byand V', and given by

zero in only one column. Such a matrix is both low-rank ang? () =Pu()+Pv () —PuPv(). Note thatPr depends on

column-sparse, thus the problem is unidentifiable. To ma& andV, and we suppress this notation wherever it is clear

the problem meaningful, we need to impose that the Iow—ra%%mh U andV” we are using. The complementary operators,

matrix Lo cannot itself be column-sparse as well. This is do v+, Py+, Pre andPr. are defined as usual. The notation

via the followingincoherence conditian is qseq to represent the mvangnt subspace (of majmces) of
Definition: A matrix L, € RP*™ with SVD L — Uy T & prOJegthn operator: e.g., we wrlrﬁee Sy for any matrix A

and (1 — v)n of whose columns are non-zero, is said to btgat satisfiesPy (4) = A. Five matrix norms are usequH*

column-incoherenwith parametep: if IS the nuclear norm||A|| is the spectral norm||Al|; 2 is the

sum of /; norm of the columnsd;, ||A||~,2 is the largests

max [V ei|> < —— norm of the columns, andA|| is the Frobenius norm. The
! (1 =7)n only vector norm used i§- |2, the/s norm. Depending on the
where{e;} are the coordinate unit vectors. context,/ is either the unit matrix, or the identity operater;

Thus if V has a column aligned with a coordinate axigs thei!" standard basis vector. The SVD 6f is UyXoVj.
thenu = (1 — v)n/r. Similarly, if V' is perfectly incoherent Through out this paper, SVD always refer to rank-reduced
(e.g., if r = 1 and every non-zero entry df has magnitude (this) SVD. We use to denote the rank af, andy £ |Z|/n
1/4/(1 —~)n) thenp = 1. the fraction of outliers.

In the standard PCA setup, if the points are generated
by some low-dimensional isometric (e.g., Gaussian) distri m
bution, then with high probability, one will havew =
O(max(1,log(n)/r)) [27]. Alternatively, if the points are While we do not recover the matrix,, we show that
generated by a uniform distribution overbaundedset, then the goal of PCA can be attained: even under our strong
pn=0(1). corruption model, with a constant fraction of points coted

A small incoherence parametgressentially enforces thatwe show that we can — under mild assumptiongxactly
the matrix Lo will have column support that is spread outrecover both the column space & (i.e., the low-dimensional
Note that this is quite natural from the application persipec space the uncorrupted points lie on) and the column support
Indeed, if the left hand side is as big as 1, it essentiallymaeaf Co (i.e. the identities of the outliers), from/. If there
that one of the directions of the column space which we wig$ additional noise corrupting the data matrix, i.e. if wevdia
to recover, is defined by only a single observation. GiveW = Lo + Co + N, a natural variant of our approach finds
the regime of a constant fraction afbitrarily chosenand @ good approximation. In the absence of noise, an easy post-
arbitrarily corrupted points, such a setting is not meaningfulProcessing step is in fact able to exactly recover the oaigin
Having a small incoherencg is an assumption made inmatrix Lo. We emphasize, however, that the inability to do
all methods based on nuclear norm minimization up-to-ddieis simply via the convex optimization step, poses sigaiftc
[5], [6], [27], [28]. Also unidentifiable is the setting wher technical challenges, as we detail below.

a corrupted point lies in the true subspace. Thus, in matrix
terms, we require that every column ©f does not lie in the A. Algorithm
column space of.

We note that this condition is slightly different from the Given the data matrix\/, our algorithm, calledOutlier
incoherence conditions required for matrix completion ig. e Pursuit generatega) a matrixtU*, with orthonormal rows, that
[27]. In particular, matrix completion requires row-in@sknce spans the low-dimensional true subspace we want to recover,
(a condition onU of the SVD) and joint-incoherence (a con-and(b) a set of column indice3* corresponding to the outlier
dition on the product/V’) in addition to the above condition. points.

We do not require these extra conditions because we have dVhile in the noiseless case there are simple algorithms
more relaxed objective from our convex program — nameNyith similar performanck the benefit of the algorithm, and
we only want to recover the column space. of the analysis, is extension to more realistic and intargst

The parameterg and~ are not required for the executionsituations where in addition to gross corruption of some
of the algorithm, andlo not need to be known a priofThey
only arise in the analysis of our algorithm’s performance. 1For example, one method is to find a maximal linear independenof

Other Notation and Preliminaries: Capital letters such the samples, and remove it from the sample set. Repeat biegs. Since

4 ) the number of outliers is relatively small, eventually they get removed,
as A are used to represent matrices, and accordingdly, and the column space of true samples is recovered.

. M AIN RESULTS AND CONSEQUENCES



Algorithm 1 Outlier Pursuit
Find (L*, C*), the optimum of the following convex optimization program

Minimize: [ LI« + AIC]1,2 (2)
Subject to: M=L+C

Compute SVDL* = U;%,V;' and output/* = U;.
Output the set of non-zero columns ©f, i.e. Z* = {j : ¢j; # 0 for somei}

samples, there is additional noise. Adapting the Outligs®iti with ¢ = 37, and [ N||r < e. Let the output of Noisy
algorithm, we have the following variant for the noisy case.Outlier Pursuit beL’, C’. Then there existd,, C' such that
M = L + C, L has the correct column space, aadthe

Noisy Outlier Pursuit: correct column support, and

Minimize: IZ]l« + A|Cl1 2 - o
Subject to: IM—(L+C)r<e @) IZ" = Lllp < 20Vne; [|C" = Cllp < 18Vne.
The conditions in this theorem are essentially tight in the
Outlier Pursuit (and its noisy variant) is a convex surregafollowing scaling sense (i.e., up to universal constaitshere
for the following natural (but combinatorial and intracib is no additional structure imposed beyond what we havedstate
first approach to the recovery problem: above, then up to scaling, in the noiseless case, OutliesuRur
Minimize: rank(L) + A[Clo.c can recover from as many oultliers (i.e., the.same fractisn) a
Subject t;)' M=L+C O, 4) any algorithm of pos_S|ny arbitrary complexﬂy. In partiay
' it is easy to see that if the rank of the matiiy is », and the
where|| - [lo.. stands for the number of non-zero columns dfaction of outliers satisfies > 1/(r+1), then the problem is
a matrix. not identifiable, i.e., no algorithm can separate autheantid
corrupted points. In the presence of stronger assumptegs (
isometric distribution) on the authentic points, betteroneery
guarantees are possible [29].
We show that under rather weak assumptions, Outlier
Pursuit exactly recovers the column space of the low-rank

matrix Lo, and the identities of the non-zero columns of NOVelty in Analysis

B. Performance

outlier matrix Cy. The formal statement appears below. The main new ingredient in our analysis of the algorithm,
is the introduction of an oracle problem. Past matrix recpve
Theorem 1 (Noiseless CaseJuppose we observd/ = papers, including [5], [6], [27], seek exact recovery of the

Ly + Cy, where Ly has rankr and incoherence parameteground truth in our case(Lg, Cy). As such, the generic (and
1. Suppose further that, is supported on at mostn successful) roadmap for the proof technique identifies tie fi
columns. Any output to Outlier Pursuit recovers the columorder necessary and sufficient conditions for the grounith tru
space exactly, and identifies exactly the indices of columtws be optimal, and then shows that a subgradient certifying
corresponding to outliers not lying in the recovered columoptimality of the desired solution exists under the given
space, as long as the fraction of corrupted pointssatisfies assumptions. In our setting this is not possible, as themypti
v c1 L* of (2) will be non-zero in every column of, that is
E < Ev (5) not orthogonalto Ly’s column space. Thus a dual certificate
certifying optimality of (Lo, Cy) cannot exist. In terms of
wherec; = 37. This can be achieved by setting the parametgscovering the paifLo, Co), this is irrelevant: all we require is
A in the Outlier Pursuit algorithm to b‘?fﬁ —infactit holds for C'* to have the correct column support; given this, recovery
for any \ in a specific range which we provide below. of (Lo, Cy) from (L*, C*) is immediate — we simply extract
Note that we only need to know an upper bound on thRe offending columns. Thus, all we need is a dual certificate
number of outliers. This is because the success of Outligf optimality for any feasible pair(]_A}’CA’) where C has the
Pursuit is monotonic: if it can recover the column space @fie correct column support. The challenge is that we do not
Ly with a certain set of outliers, it will also recover it wherknow, a priori, what that pair will be.
an arbitrary subset of these points are converted to ndie@it  We identify this pair using a so-callatacle problemchar-
(i.e., they are replaced by points in the column spacé®)f acterizing the pair as the solution to an optimization peabl
For the case where in addition to the corrupted points, wgith two additional side constraints: thdt have the same
have noisy observationg/ = M + N, we have the following column space ag,, andC have the same column support as

result. R Cy. The idea of using an oracle problem appeared previously
Theorem 2 (Noisy Casefsuppose we observk/ = M + in analyzing support-recovery property of Lasso and basis-
N = Lo+ Coy + N, where pursuit (see, e.g., [30]-[32]). There, the authors comsate
vy Co optimal solution directly requiring that it have the coirec

1—~ < ur’ ) signed support. There are some significant challenges in our



matrix setting that are not present in the support-recovergin write down the conditions that a dual certificgtemust
problem. Indeed, in the case of support recovery, analyfsisgatisfy:
the solution is straightforward, because of a special ptgpe

=T
of the structure being recovered (namely, the support):rwhe (a) Py (@) = UoV 5
the signed support is fixed, regardless of the exact value of (b) P (Q) = UV
_the solution, the sub-gradient (of tkie norm) is known. This _ (€) Pr(Q) = A
is not true for recovery of more general structures, and in
@) P (@I <15

particular, in our setting: the subgradients of both the|.
and || - ||, norms critically depend on the exact value of (&) 1Pz (Q)llco2 < A
the solution to the oracle problem. While the consequence i

that more delicate technical analysis is required, one agess =T - . .
of this paper is that oracle problems can be broadly usefypuld be to us&o = UV + AH. Indeed, this works in the

whenever exact recovery of the ground truth is impossibie Céz if\liu(t:r?esr?tizvgiree slic?aifso:?h%fﬁisZOIEmgc;ﬁcgﬂthnggenha; o
not sought for), and one is only interested in recoveringispe ' - =P Y

SStep 3:The third step is to construct suclta A first guess

structures, such as support, block support, spectral piepge that - .
and beyond. Puo(Qo)—UoV = APy, (H); Pz,(Qo)—\H = UyPz,(V ).
—T ~
IV, PROOE OETHEOREM 1 Recall thatUyPz,(V ) = APy, (H), we correctQ, by
N —T
In this section and the next section, we prove Theorem 1 Ay £ APy, (H) = UgPr, (V).
and Theorem 2. Notice that

A. Proof Outline Pr(Qo — A1) = PyPyy (AH).

The detailed proof, provided in subsequent sections, cdA€Nce we want to further corre@l, by A, such thatA, <
tains a number of cumbersome calculations. To facilitage thug» D2 € Sz5, andPy(Az) = PyPys (AH). SuchA, can
flow and highlight the intuition of the proof, we give an_be construc_ted using t_he Ie_ast—square dual-certificatmaphp
outline, emphasizing the novel aspects we introduce, aipd skitroduced in [27], which gives
over s_teps that are largely similar to techniques develaped A, 2 ,PISPV[PVPISPV]_WDVPU* ()\f{).
used in standard literature. 0

Step 1: Our first step is to construct an Oracle problenl:émma 7 and Lemma 8 show that this definition (i.e., the
Recall that we want the optimum of (2) to satishy, (L*) = inverse) indeed is meaningful.

L* (correct column space) ariy, (C*) = C* (correct column  Finally, we check tha®) £ Qo — Ay — A, satisfies (a) -
support, i.e., identification of the outliers). The oractelgem (&) Most computation involved is standard, with the exicept

arises byimposingthese as additional constraints in (2): ~ that we require an incoherence property WVtWhefeé_IS we
only assume an incoherence property w¥g. Interestingly,

Oracle Problem: Lemma 10 shows that the latter implies the former, and hence

Minimize: LI« + AllCll1,2 completes the proof.
Subjectto: M = L+ C; Py,(L) = L; Pr,(C) = C.

Let (L, C) be an optimal solution to the oracle problem. T&. Oracle Problem and Optimality Conditions

show Outlier Pursuit succeeds, it thus suffices to show thatwe now provide a detailed proof. The notations are heavy,

(L, C) is also an optimal solution to Outlier Pursuit. and hence we provide a summary list in Appendix Il for
Step 2: The second step is standard. We write down thtae convenience of the readers. We first list some technical

properties a dual certificate must satisfy to guarantee thmeliminaries that we use multiple times in the sequel. The

(L,C) is optimal to Outlier Pursuit. While the step itselffollowing lemma is well-known, and gives the subgradient of

is standard, there is a central challenge arising from tkiee norms we consider.

Oracle Problem. As with all results involving low-rank matr ~ Lemma 1:For any column spacé/, row spacelV and

recovery, the left and right singular vectors are a centrablumn support:

object of study, critically involved in optimality condihs, 1) Let the SVD of a matrixA be USV . Then the

etc. Evidently, the side constraints of the oracle problee a subgradient t|| - ||, at A is {UVT + W|[Pp(W) =

not enough to guarantee thag and L have the same singular 0, W] <1} [33].

vectors. This forces us to introduce quantities that caateel 2) Let the column support of a matrit be Z. Then the

the two, and understand how these interact with the various  sypgradient td-|12 atAis {H+Z|Pz(H) = H,H; =

projection operators required to describe the subdifteakmn Ai/||Aill2; Pz(Z) = 0,1 Z]|cc2 < 1}.

As an important example of this, Lemma 5 defifiésas the  3) For any4, B, we havePz(AB) = APz(B); for any

matrix satisfyingUVT = UV ', and Lemma 6 establishes A, PuPz(A) = PPy (A).

that UyPz, (V') = APy, (H), for  an element of the subd- Lemma 2:1f a matrix H satisfies||H|o. < 1 and is

ifferential of the/; » norm atC'. With these considerations, wesupported orZ, then|| H|| < VIZI.



Proof: Using the variational form of the operator normas L’ = U’XV’", and the column support @’ asZ’. Then

we have U'U'T = U0, andZ’ C T.
- Proof: The only thing we need to prove is that has a
H| = THy = H .
1] quﬁﬁﬁ’;\bq Y= ||Hﬁa}<(1 <" Hll2 rank no smaller thai/y. However, sincePz, (C') = C’, we

» must havePze(L') = Pze(M), and thus the rank oL’ is at
Z(XTHZ_)Q < /Zl = V[T least as large aBz¢ (M), hencel’ has a rank no smaller than
i=1 i€T Uo. .
~ Next we define two operators that are closely related to the
The inequality holds becauggd;|| = 1 wheni € Z, and subgradient of| L'||.. and ||C"||; 2.
equals zero otherwise. | Definition 1: Let (L', C') satisfy L' +C’ = M, Py, (L") =
Lemma 3:Given a matrixU € R"™™ with orthonor- L/, andPz,(C’) = C’. We define the following:

mal columns, and any matri¥’ € R"™*", we have that N AT
UV oo,z = max; |V ez L) UV

Proof: By definition we have B(C") & {H c Rm*n

¢ .
12"

Pre(H)=0; Vie T : H; =
UV loc,2 = max [UV;T |2

 max |V, 12 = max | V7 el2

Vi€ To N (T)°: || Hylls < 1}

where the SVD of./ is L' = U’YV’T, and the column support
Here (a) holds sinc& has orthonormal columns. m of C'is T'. Further define the operat@; . (-) : R™*" —

As discussed, in general Outlier Pursuit will not recover thR™*" as
true solution(Lo, Cy), and hence it is not possible to construct B
a subgradient certifying optimality ofZLo, Cy). Instead, our Prwn(X) = Pu(X) + Pyi(X) = PuPy(X).
goal is to recover any pal(rL C) so that], has the correct Now we present and prove the optimality condition (to
column space, and’ the correct column support. Thus we Outlier Pursuit) for solutiong L, C') that have the correct
need only construct a dual certificate for some such pair. \f\:lg_llf“'k:nn spac;eLandiupO}:l)ort fmfnLd,C é%spej\(z;lvely I
develop our candidate solutidiL, C') by imposing precisely eorem 3:Let ( ) satisfy L’ + Puy (L) =

L', andPz,(C") = C'. Then(L/,C") is an optimal solution

these constraints on the original optimization problem {2 ¢ outl IOP it th . . RmXn 1h
solutionL should have the correct column space, &hshould of Outlier Pursuit if there exists a matrg) € that

have the correct column support. satisfies
Let the SVD of the trueLy be Ly = U()E()VOT, and (a) PT(L/)(Q) = fﬁ(L'),
recall that the projection of any matriX onto the space of ®) N Prne (@ < 1
all matrices with column space contained(fy is given by (©) Pr(Q)/\ e &(C): 8)
Py, (X) := UpU, X. Similarly for the column supporf, of Lo :
the trueCy, the projectionPz,(X) is the matrix that results (d)  [1Pzg(@)lloo,2 < A
when all the columns i are set to 0. If both inequalities are strict (dubbed strictly satisfies (8)

Note thatlU, andZ, above correspond to thteuth. Thus, ands; NSy = {0}, then any optimal solution will have the
to satisfyPy, (L*) = L*, as this is nothing but the fact that Proof: By standard convexity arguments [34], a feasible

has recovered the true subspace. Similarly, havifigsatisfy pajr (£ ") is an optimal solution of Outlier Pursuit, if there
Pz,(C*) = C* means that we have succeeded in identifyingyjsts aQ’ such that

the outliers. The oracle problem arises inyposingthese as

additional constraints in (2): Q €L l.; Q € X|C |1 2.
Oracle Problem: Note that (a) and (b) imply tha® € 9| L’|.. Furthermore,
Minimize: LI« + AC|1,2 letting Z' be the support of?’, then by Lemma 47’ C Z,.
Subject to: M =L+ C; Py,(L) =L; Pr,(C) =C. Therefore (c) and (d) imply that
(7)
The problem is of course bounded (by zero), and is feasible, Q: = A_C{ Vie T
as (Lo, Co) is a feasible solution. Thus, an optimal solution, 1C; 12
denoted ad., C exists. We now show that the solution, C') g4
to the oracle problem, is also an optimal solution to Outlier 1Qilla < X VigT

Pursuit. Unlikq thAe original paifLg, Cy), we can certify the
optimality of (L, ') by constructing the appropriate subgrawhich implies thatQ € \9||C’|12. Thus, (L',C") is an

dient witness. optimal solution.
The next lemma and definition, are key to the developmentThe rest of the proof establishes that when (b) and (d) are
of our optimality conditions. strict, then any optimal solutiofl.”, C"") satisfiesPy, (L") =

Lemma 4:Let the pair (L/,C") satsify L' + ¢ = M, L”, andPz,(C") = C". We show that for any fixed\ # 0,
Pu, (L") = L', and Pz, (C’) = C'. Denote the SVD ofL’ (L' + A,C’ — A) is strictly worse than(L’,C"), unlessA €



Py, NPr,. Let W be such thalW || = 1, (W, Prn (D)) =
| Pz Alls, andPpn W = 0. Let F' be such that
1A:ll2

-
0

Then Pry(Q) + W is a subgradient of|[L'|. and
P, (Q)/A+ F is a subgradient of C’||1 2. Then we have

L'+ Al + AIC" = Afl12

> L ||« + AN[C 1,24 < Prn(Q) + W, A >
— A< P, (Q)/A+ F,A>

=[| L[|« + M C 1,2 + [Prpys (D)l + M Pzg(A)l1,2
+ < Pr)(Q) — Pr,(Q), A >

=L« + MC 1,2 + 1 Pppns (D)l + Al[Pzg(A)]l1,2
+<Q—Pr)(Q) — (@ —Pr(Q)), A >

=[| L[|« + M C 1,2 + [Pppys (A)ls + A Pzg(A)l1,2
+ < =Pryt (@), A >+ < Pr(Q), A >

([ L [« + AC 1,2 + (L = [Prerny+ (@)D Prpn+ (D)«
+ (A = 1P5 (@)oo 2) I Pz (A) 1.2

>[I L[« + AC 1,2,

where the last inequality is strict unless
[Pryr (Bl = Prs(A)]l12 = 0. 9)

Note that (9) implies thaPr;1(A) = A and Pz, (A) = A.
Furthermore

Pz, (A)

if i Zy, andA; #0
otherwise.

A =Priy(D) =Py (A) + Py Py (D)
P1,Pur(A) + Py Py (A),

where the last equality holds because we can Write(A) =
A. This leads to

,PIOIPU/L (A) == ,PV”PU/L (A)

Lemma 4 impliesPy(-) = Py, (-), which meansP, . (A) €
Sz, N Sy, and hence equdl. Thus, A € Sy,. Recall that
Equation (9) impliesA € Sz,, we then have\ € Sz, N Sy,,
which completes the proof. |

Thus, the oracle problem determines a solution gair('),
and then using this, Theorem 3 above, gives the condition
dual certificate must satisfy. The rest of the proof seeks
build a dual certificate for the paitZ, ). To this end, The
following two results are quite helpful in what follows. Fire
remainder of the paper, we ugé, C') to denote the solution
pair that is the output of the oracle problem, and we assu
that the SVD ofL is given asL = USV T,

Lemma 5: There exists an orthonormal matrix € R™*"
such that

OV =u,V .
In addition,

Ps(-)

A

= Py()+Py() =PyPy()
= Pu,() +Py(-) = Pu, Py(:)-
Proof: Due to Lemma 4, we hav& Uy = UU ', hence
Uy = UUTUy. Letting V = VU Uy, we haveUVT =

UV ', andVV' =VV 7. Note thatlUyUy = UU leads to
Pu(-) = Py(-), andVV ' = VVT leads toPy(-) = Py (-),
so the second claim follows. ]

Since L, C' is an optimal solution to Oracle Problem (7),
there exists), 2, A’ and B’ such that

Q1+ Pyr(A') = Q2+ Prg(B),

where Q;, Q. are subgradients tdL|[. and to A||C| .2,
respectively. This means th&, = U,V + W for some
orthonormalV and W such thatP;(W) = 0, and Q2 =
A\H + Z) for someH € &(C'), andZ such thatPz,(Z) = 0.
Letting A=W + A’, B=\Z + B’, we have

UV ' + Py (A) = \H + P (B). (10)

Recall thatfl € &(C') meansPz,(H) = H and||H||oo 2 < 1.
Lemma 6:We have

UoPz, (V') = APy, (H).
Proof: We have

Pu,Pr,(UoV | + Py (4))
PuoPzo(UoV ') + Puy Pz, (P (4))
UoPz,(V') + Puy Py Pr, (4)
UoPz, (V).
Furthermore, we have

PuyPro(AH + Pre(B)) = APy, (H).

The lemma follows from (10).

C. Obtaining Dual Certificates for Outlier Pursuit

In this section, we complete the proof of Theorem 1 by
constructing a dual certificate ¢, C') — the solution to the
oracle problem — showing it is also the solution to Outlier
Pursuit. The conditions the dual certificate must satisy ar
spelled out in Theorem 3. It is helpful to first consider the
simpler case where the corrupted columns are assumed to
be orthogonal to the column space b§ which we seek to
recover. Indeed, in that setting, we havg = V =V, and
moreover, straightforward algebra shows that we autoiltic

‘c:’%é'j}isfy the conditiorSz, N Sy, = {0}. (In the general case,

h%wever, we require an additional condition to be satisfied,

order to recover the same property.) Since the columngof
are either zero, or defined as normalizations of the colurins o
matrix Cy (i.e., normalizations of outliers), we immediately

me

conclude thatPy,(H) = Py, (H) = Pr(H) = 0, and also
Pr, (UgV,") = 0. As a result, it is not hard to verify that the
dual certificate for the orthogonal case is:

Qo = UyV,' + \H,.

While not required for the proof of our main results, we
include the proof of the orthogonal case in Appendix I, as
there we get a strongerecessary and sufficienbndition for
recovery.

For the general, non-orthogonal case, however, this certifi
cate does not satisfy the conditions of Theorem 3. For icstan



Pv,(Hp) need no longer be zero, and hence the conditidhus for anyX € Py the following holds
Pr(Qo) = UyV,' may no longer hold. We correct for the
effect of the non-orthogonality by modifying, with matrices
A1 and A, which we define below.

Recalling the definition o’ from Lemma 5, define matrix

PyPrsPyll + i(PVPIo Py)'1(X)

i=1

GeR™as = Pyl = PyPr,Py)ll + Y _(PyPzPy))(X)
A —T =TT i=1
G =Pr(V )PV )) . (11) = PAX) =X,
Then we have which establishes the lemma. n
—T —T
G = YAV IV " Now we define the matriceA; and A, used to construct
i€Zo the dual certificate. As the proof reveals, they are designed
LT =T T =T precisely as “corrections” to guarantee that the dual fozate
= Z[(V (V)] =V V=1, satisfies the required constraints of Theorem 3.

=t Define A; and A, as follows:

where= is the generalized inequality induced by the positive . -

semi-definite cone. Hencd/G|| < 1. The following lemma Ay & APy, (H) =UsP,(V ); (12)

bounds||G|| away from1. N 0 _ .
Lemma 7:Let v = ||G||. Theny < A?yn. In particular, Ay = PU(%PISPV[IJFZ(PVP%PV)I]PV(AH)

for A < 3/(7,/yn), we havey < 1/4. L
Proof: We have = PPyl + > (PyPr,Py) Py Py (AH)(13)
—T —T i=1
¢ = ||UoPr,(V )(Pr,(V ) Uy | " i holde Sincd. PP | diven by riah
_ =T —T\T e equality holds sinc®y-, Pz, Pz; are all given by rig
IToPz, (V- UoPr, (VLI matrix multiplication, while P, is given by left matrix
due to the fact that/, is orthonormal. By Lemma 6, this Multiplication.
implies Theorem 4:Assumey) < 1. Let
—T .
v = |[[\Py,(H )]W’Uo( )]TH Q=UoV +AH — Ay — Ay,
= )‘QH ; PUO PUO H If
K3 0 B 2
< AT < (3(1 JQ
- - r
= \yn. 7 a
. and
The inequality holds becausgPy,(H;)[: < 1 implies
| Puy (Hi)Puy (Hi) T || < 1. u (I=v),/{5 1— 4
< < —T
Lemma 8:If ¢p < 1, then the following operation Al =y — [ (2 —v)y/n7y
P#Pz: Py is an injection fromPy- to Py, and its inverse -
operation isl + »°.%, (PyPr, Py)". then ( satisfies Condition (8) (i.e., it is the dual certificate).

Proof: Fix matrix X € RP*" such that||X|| = 1, we |f al| inequalities hold strictly, ther) strictly satisfies (8).

have that Proof: Note thaty < 1 implies S;- NSz, = {0}. Hence

—T it suffices to show thaf) simultaneously satisfies
PoPLPAHX) = PoPr(XVV') a0 y

T

= Pv(XVPIO(_ )) 1) Py =0UVT,
= XVP,(V)VV' 2)  Pp(Q)=UVT;
= XV(P,(V V)V’ (3)  Pn(Q) =
= XVGV', 4) P (@l <1
(5)  Prg(@)lloc2 < A

which leads to||PyPz, Py-(X)|| < +. Sincey < 1, [I +
Yoo (PP, Pyr)'](X) is well defined, and has a spectralVe prove that each of these five conditions holds, in Steps
norm not larger thar /(1 — v). 1-5. Then in Step 6, we show that the condition oiis not
Note that we have vacuous, i.e., the lower bound is strictly less than theneupp
bound (and in fact, we then show that= 7\}‘% is in the
PyPre Py = Py(I — PPz, Py), specified range).




Step 1: We have Now we continue with Step 4. We have

P‘L(Q)

Fol@ = l@ . UV +AH — A — A

= Py, UV +MH — A — Ay) PT*;‘) (M% — A=A

= UV +\Py,(H) — Puy(Ay) — Puy(Ay) VU0 N

= UV — Py Pug (PrgPyll + Y (PyPr,Py) 1PyPyys (AH))

= Uv'. R =1
Step 2: We have > . .

— Pyt PyrPrsPyll + Y (PyPr, Py) 1Py (AH).
Py (Q) = Py(Q) | R

_ PV(UOVT FAH - Ay — Ay) Notice that||Py. Py (AH )| < [|[AH||. Furthermore, we have

. ) . the following:

= UV +Py(AH) - PV(M’UO( ) s

[Pyt Py PrsPyll + Y (PyPr,Py) 1Py (\H)||
1=1

~ PPz P 1+Z (PyP1,Py)'|PyPys (AH)}

i=1 ']

= UV +Py (Pys (AH)) < |[PrPyll + ) (PP, Py) |Py(AH))|
o] =1
— Py PPy (Py Pz, Py) | PyPys (AH > . .
PPl + 2 (PePRPo P Pos O yir S Py, Py P M)
(a) —T - =t
= UV + Py(Pys (AH)) — Py(Pys (AH)) < PyOH)|/(1 =)
— UV < E]/ (- w).
= UV Recall that we have showt\H || < A/|Zy|. Thus we have
that
Here, (a) holds since o, [I + Y .o, (PP, Py)’] is the ) < 2- QZ})\ T
inverse operation 0Py, Pz; Py. 1Pro(@ =< 7= (G ol
Step 3: We have From the assumptions of the theorem, we have
Pr,(Q) = Pr,(UsV | +AH — Ay — Ay) P e
Zo :T Io ? 1_T 2 — (Q_w)\/n—,y’
= UOpIO (V )+ )\H _070)1-0 (UOpIO (V )) and hence
~Pr,Prs Pl + 3 (PP, P | PPy (AH) IP7. (@l < 1.
R i=1 The inequality will be strict if
= J\H.
A < i
(2 —)yny

Step 4: We need a lemma first.

Lemma 9:Given X € RP*" such that|X|| = 1, we have Step 5: We first need a Iemmithat shows that the in-
| PreP(X)| < 1. coherence parameter for the matiiis no larger than the
UProof: By definition incoherence parameter of the original matvix
’ Lemma 10:Define the incoherence df as follows:

— —T
PrsPy(X) = XVP (7). oy (7 e

LEI(‘ r

For anyz € R™ such that||z||s = 1, we have Thenz < p.
Proof: Recall thatL, = UyX,V,', and
|XVPr(V alla = [ XVV ' Pry(2)]|2
< XNV Pz )2 < 1, it
Thus it suffices to show that for fixede Z;, the following
where we usePr:(z) to represent the vector whose coordihg|ds:
nates: € Z, are set to zero. The last inequality follows from ||7)IS(VT)ei|| < HPIS(VOT)%H-
the fact that/| X'|| = 1. Note that this holds for ang, hence -
by the definition of spectral norm (as tiig operator norm), Note thatPz¢(V ) and PIS(VOT) span the same row space.
the lemma follows. m Thus, due to the fact thaPz:(V,") is orthonormal, we

1z
0Py (V) e
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conclude thatPr (V T) is row-wise full rank. Since0 < Therefore, showing thafPz:(Q)[ .2 < A is equivalent to

Pre(V )Pz (V T) = 1-G, andG = 0, there exists a Showing

symmetric, mvertible matrix” € R"*", such that

— — —pr
Y] <1; and Y2 =Pr(V )Pr(V) . AWl )
¢ =

+
n — |Zo|

This in turn implies thatY*IPIS(VT) is orthonormal and -
—T T—~ KT
spans the same row space7as: (V' ), and hence spans the \ (1 VI ) < T

same row space afzc(V,'). Note thatPz:(V,") is also 11— n(l—7)
orthonormal, which implies there exists an orthonormalrixat
Z € R™*", such that (1-v)\ /15
ZYPr (V') = Pre(V)) = Az ’
s 7s(Vo ) Vil =9 — /=)
We have

as long asl — vy — ﬁur > 0 (which is proved in Step 6).

7l _ T Tye.
IPz(V Jeillz = [[YZ Prg(Vo )eill2 Step 6: We have shown that each of the 5 conditions holds.

< NYIIZ TPz (Vo eillz < [1Pze (Vo el Finally, we show that the theorem’s conditions arcan be
This concludes the proof of the lemma. - rs]:szf.led. But this amounts to a condition onIndeed, we

Now, recall from the proof of Lemma 8 that

T (1 - w) 1#,7;/ 1— ,lp
PoPr,Pr(X) = XVGV SEEES
. B D)
Hence, noting that  (PyPr,Py) _ V(L= — [y pr) V

i1 —T— . ,
517;3;310737)(7)77)107)7) andV V = I, by induction we — (2 / W <1—p— /1 i

(PoPr, o) (X) = XVGT

s

We use this to expand,: 1 - (3 11)) pr’
oo 4 R which can certainly be satisfied, since the right hand sidesdo
Ay =Py PrePy|I + Z(PVPIOPV)Z]PV(AH) not depend ony. Moreover, observe that under this condition,
i=1 1—1 — ﬁur > 0 holds. Note that if the last inequality
- (- U()Uo )()\H)VV 1+ Z ears ]VPIL( >. holds strictly, then so does the first. [ |

We have thus shown that as long @s< 1, then for A
within the given bounds, we can construct a dual certificate.
From here, the following corollary immediately establisioair
|Aseills < 11— UoUDIAE) VY| main result, Theorem 1.

Corollary 1: Let v < ~*. Then any solution to Outlier

x||1 + ZVGiVTﬂHVHHPIS(VT)eZ—HQ Pursuit with A = —2— identifies the correct column space

=1
Thus, we have

i=1 and support of outlier, as long as
1 ur * 9
< AH|l =y [ <
1=\ n—|Z 1—* 121ur
_ Proof: First note that\ = — andy < y* together
/ _ur : V
- A |I°|\/ P imply that
= 1 _ 'll} b )\ < 3 ,
. . . . - 7/n
where we have used Lemma 10 in the last inequality. This
now implies which by Lemma 7 leads to
- 1
)\\/|I()|,/n_u—|710‘ 1/1§)\2'yn<1.
[Az]foce € ————F—.
L= Thus, it suffices to check that and A satisfy the conditions
Notice that of Theorem 4, namely
—T S
[Pzs(Q)lloo,2 =[Pz (UoV + AH — A1 — Az)l|oo2 Y (1-9)?
—T _ _ 2 ’
=|UePz (V") = Aaloc,2 b=y @)

—T and
<NU0Pze(V ooz + [ A2]lo0,2

- (L—9) /£ _
Mol ) 1 _ 1=y
r n—|Zo] <A< .
7Y R ST Vil =y =\ [ ) @=v)ymy




Sincey < 1/4, we have

(1-1/4)° 1-v)°

i < v < 9
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Proof: Let V be as defined before. We establish the

following lemma first.

< < = < ; Lemma 11:Recall that ¢y = |G| where G =
1-— 1 —* 121 3—1/4)? 3—1)? — _
7 v 12 _.( [4)?pr (3 —1p)?pr Py (7 1Po(V')7. We have
which proves the first condition.
Next, observe that —— V1= as a function of 1Pz, Py Pry (X)) 7 < ¢[| X p.
V(L= /25 ) Proof: Let T € R"*" be such that
¥, , (ur) is strictly increasing iy, (ur), and~y. Moreover,
(1—¥)*(1—) 1 ifi=j,iel;
/,L’I"< 2y and thus o LI Js v €L
B Ty = 0 otherwise.
1— pr _ (1—9)2
(1-9)y/315 - =9y s We then expandz, PPz, (X ), which equals
nl—p— ) V= — L) _ _
Vil =47 Y XTVV T =XTVV 17
_ * — = T
_ 3/ (=) 3+ ) — X(TV)TV)T = XPr,(V ) Pr,(V ).
7vn 7vn
- i e L _ The last equality follows fromTV)T = Pz, (V'). Since
Similarly, _liwn is strictly decreasing inv and~, which T T 0
implies that eV = |G| whereG = P, (V )Pz, (V )T, we have
T
( 11;)1” > 1 ‘/ 1)/4 —\ 1Pz, (V) P, (V) = 1P, (V )Pz, (V)| =
2 — ) /n 2 —1/4)\/n~vy* )
K K = Now coTnsider thezth row of X, denoted asx’. Since
1Pz, (V") P, (V)| = o, we have
V. PROOF OFTHEOREM2: THE CASE OFNOISE |x'Pz, (V )TPI WV )H2 < 2|x¢2
In practice, the observed matrix may be a noisy copy of
M. In this section, we investigate this noisy case and shof€ lemma holds from the following inequality.
that the proposed method, with minor modification, is robust T 5
to noise. Specifically, we observll’ = M + N for some HPIOPVP%( )”F - HXPIU( ) Pr,(V )”F

unknown N, and we want to approximately recovéf, and *Z %Pz, (V) Pz, (V1|12
TZy. This leads to the following formulation that replaces the
equality constraintl/ = L + C' with a norm inequality. <¢2 Z [[x]|2 = 2| X2
Minimize: ||L||. + A||C
imize: (L]l + ACl.2 1) A A .
Subject to: [|[M’ — L —Cl[[r <e. Let N, = L' — L, No = C' — C and E = No + N;. Then
In fact, we show in this section that under the essentially , , , , ,
equivalent conditions as that of the noiseless case, Noisy IBlp < IL"+C" = Ml[p < L'+ C" = (M" = N)|[F
Outlier Pursuit succeeds. Here, we say that the algorithm < [|[L'+C" — M'|[p + ||N||p < 2e.
“succeeds” if the optimal solution of (14) is “close” to a pai
P (14) P lther, defineN, = N — Pz, Pu,(N1), Nt = No —

that has the correct column space and column support. To t
end, we first establish the next theorem — a counterpart in JE@PUO (No), andE+ = E = Pr, Py, (E). Observe that for
noisy case of Theorem 3 — that states that Noisy Outlier Rurs"Y y A, (I =Pz, Py, )(Allr < [|Allp.

succeeds if there exists a dual certificate (with slightigrsger Choosing the sam®” and F* as in the proof of Theorem 3,
requirements than the noiseless case) for decomposing Wﬁeha\/e

[« +AIC |1,

<P( (Q) +W,Nr)

+)\<on( )/)\+F,Nc>

. iy (VD) s+ M Prs(Ne) .2

+<PIO(Q) >
L)

the dual certlflcate from the previous section, we have thgt
Noisy Outlier Pursuit succeeds under the essentially edgriv
conditions as that of the noiseless case.

Theorem 5:Let L',C’" be an optimal solution of (14).
Supposg|N|[r < ¢, )\ <1,andy < 1/4. Let M = L+C

wherePy (L) = L and Pz, (C) = C. If there exists & such * <PT(£Z(Q)’ Ni)

that iy (ND) e 4+ AllPzg(No) a2
Priy(@) =N(L);  Pry Q) < 1/2; (15) — Py (@), Nr) = (Pz5(Q), Ne) + (@, N + Ne)
P, (Q)/ A € &( ) [Pz (Q)loc,2 < A/2, ) (L = 1Py )= (@IDIPy )= (Nl

then there exists a pail, C) such that\/ = L+C, L € Py,, + (A = [Pz (@)l oo,2) IPzc (Ne) (Q,E)

C € Pz, and
IL" = L||» < 20/ne;

/2Py, (N

e’ + (\2)[Prs(Ne) 1.2 — 2€]1 Q| -

~C|lF < 18V/ne.
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Note that||Q||c,2 < A, hence||Ql|r < v/nA. Thus we have [ |
Remark: From the proof of Theorem 4, we have that
1Py (NDE < [ Pyppy s (N < 40/ne; P we hav

16) Condition (15) holds when
Pz (Ne)llp < Pz (Ne)lli2 < 4v/ne. (4o 2
’ ° ’ v _(1=9)

Furthermore, 1=~ ~ (9 —49)2uor
Pro(N&) and
=Pz, (NC) — Pz, PuyPr, (NC) Lor
D (E 2(1 =) /125 1=
=Pr,(E) — ,PIOIPT([:)L (Np) = PIOPT(ﬁ)(NL) <A< WA
— Pz, Pv,Pr,(Nc) Vil =4 — /25 por) (2—-v)yny
=P1o(E) = Pry Py (N1) = Pry Priy (E) For example, one can take
+ PIOPT(ﬁ) (NC) - PIOPUOPIO (NC) \— V9 4+ 1024 p0r
=Pz, (E) — ,PIOIPT(I:)L (Nz) — PIOPT@)(E) (17) B 14v/n )
+ PPy Prs(Ne) + Py Priy P, (Ne) and all conditions of Theorem 5 hold when
— Pz,Pu, Pz, (Nc) T o< ) .
(a) 1-— Y - 1024#07"

=Pz, (E) — Pr,P

()" (Np) = PIOPT(ﬁ) (E)

N This establishes Theorem 2.

+ P, Pr(iyPrg(Ne) + PryPriyPro (N ) Remark: Notice that the subspace of the singular vectors
(b) _ _ X corresponding to the largest singular values df’, denoted
=Pr(E) Pz Pr iy (N1) = Pro Py (E) Sy, can not deviate far away from the original column space
+ Pz Py Prs(Ne) + Pz, PPz, (NS). Su,- Indeed, applying a result from [35] (see for example
Theorem 4 of [36], also [37]), we have that the Canonical

Here (a) holds due to the following Angle matrix © (see for example [36], [37] for a definition)

ProPriyPro(NE) betweenS; andSy, satisfies
=ProPr(i)Pro(No) = ProPa i) Pro (ProPuo (No)) . V2L — Ll _ 20v2ne
:,PIOIPT(I:),PIO (Ne) — Pz, Pu, Pz, (Nc), Isin(®)ll < O-'r(INJ) = Ur(LO) ’

and (b) holds since by definition, each column/éf is or- where o,.(-) represents the-th largest singular value of a
thogonal toly, hencePy, Pz, (N/) = 0. Thus, Equation (17) matrix. Here the last inequality holds singe, (L) = Pz, (L)

leads to and Pz(ﬂo) = 0, hence the singular value for the former is
[Pz, (NS always larger than or equal to the latter.
<|Pzo(E) = Pro Priy (E)| F + Pz Py (N )| 7
n VI. | MPLEMENTATION ISSUES AND NUMERICAL
+ ||7)IOPT(i)PIS(NC)||F + H’PIO,PV,PIO(NC)HF EXPERIMENTS
+

<IEllr +1Ppy - (NL) e+ [[Prs(Ne)l e + ¢l[Pz,(NE)IF - while minimizing the nuclear norm is known to be a semi-
<(2+ 400+ 4y/n)e + 0| P, (NE)| p. definite program, and can be solved using a general purpose

SDP solver such as SDPT3 or SeDuMi, such a method does
not scale well to large data-sets. In fact, the computatitma

Pz, (NG| F < (2 4 4AVn + 4y/n)e/(1 — ). becomes prohibitive even for modest problem sizes as small
as hundreds of variables. Recently, a family of optimizatio
algorithms known agproximal gradient algorithm#iave been
IN& N F = [Prg(Ne) + Pro(N&) | # proposed to solve optimization problems of the form

This implies that

Now using the fact thah < 1, andvy < 1/4, we have

<[Prg(Ne)llr + [Pz, (NE e < 18/ne. minimize: g(x), subject to:A(x) = b,

Note that/Ng = (I =PrPy)(C" - C) = /Cl — [C'+ of which Outlier Pursuit is a special case. It is known that
Pr, Py, (C" — C)]. Letting € = C + P, Py, (C" — C), We  gych algorithms converge with a rate ©{k~2) wherek is

have C' € 7710/ and [|C" — Cllp < 18y/me. Letting L = the number of variables, and significantly outperform iiater

L = Pz, Py, (C" — C), we have thatl,C is a successful point methods for solving SDPs in practice. Following this

decomposition, and paradigm, we solve Outlier Pursuit with the following algo-
I~ LIz < |IL'— I+ Pr,Pu, (C' — é)|\F rithm. The validity of the algorithm follows easily from [38

_ PR LA A [39]. See also [40].
= IE , LAJF ¢ , CUF N , Here, £.(5) is the diagonal soft-thresholding operator: if
(L' =L +C —~C) +C-Cr |Sii| < e, then it is set to zero, otherwise, we gt := S;; —

IE|F+ C" = Cllr < 20v/ne. €-sgn(S;;). Similarly, €.(C) is the column-wise thresholding

A
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Input: M € R™*™, \, §:= 1075, 5 := 0.9, po := 0.99|| M|| .
1) Loy, Lo :=0"""; C_q,Co :=0"™*", t_q1,to == 1; i = op;
2) while not convergedﬂo
3) Vil i= Ly + Bt (L — Li—1), Y, = Cy + tk}i_l(ck — Cr1);
4) Gg ._YL——(YL+YC M); G =Y - (VL +YC - M);
5) (U,S,V):=svd(GE); Lty = US;% (S)V;
6) Cii1 = (f% (G );

1+4/4t2 +1
7) toyr i= — 55— pg1 = max(nug.p); k+ -+

8) end while
Output: L := Ly, C = Cy.

operator: seilC; to zero if ||C;]l2 < ¢, otherwise selC; := correctly identifies the outliers.

C; — eCi/||Cill2. We further study the case of decomposigunder incom-
We explore the performance of Outlier Pursuit on sonete observation, which is motivated bybust collaborative
synthetic and real-world data, and find that its performan&éering: we generaté/ as before, but only observe each entry

is quite promising. Our first experiment investigates thewith a given probability (independently). Lettirig be the set
phase-transition property of Outlier Pursuit, using ranjjo of observed entries, we solve
generated synthetic data. Rix= p = 400. For differentr and L .
number of outliersyn, we generated matrice$ € RP*" and M|n.|m|ze. L+ AlCT2s
B e R(»=7)*" where each entry is an independg¥it0, 1) Subject to: Pa(L + C) = Po(M).
random variable, and then skt := Ax BT (the “clean” part The same success condition is used. Figure 2 shows a very
of M). Outliers,C* € R""*¥ are generated eithereutrally, promising result: the successful decomposition rate under
where each entry af™ is iid A/(0, 1), or adversarially where  jncomplete observation is close the the complete observati
every column is an identical copy of a random Gaussian vectgase even only30% of entries are observed. Given this
Outlier Pursuit succeeds ' € Pz, and L € Py with a empirical result, a natural direction of future researchads
tolerance of0.1%, i.e., if | Pzs(C)l|r < 0.001|Pz5(Lo)|lr. understand theoretical guarantee of (18) in the incomplete
and ther + 1-th singular value of. is small than0.001 times observation case.
the r-th singular value. The parameter valeis set using  Next we report some experimental results on the USPS digit
cross-validation with the information of the correct rantda data-set. The goal of this experiment is to show that Outlier
the number of outliers. We initialize as in Theorem 1 and pursuit can be used to identify anomalies within the dataset
perform a bisection. If the resulting has more ranks thanwe use the data from [42], and construct the observation
we expect, we decrease similarly, if the number of non- matrix A/ as containing the firse20 samples of digit “1”
zero columns of" is larger than we expect, we increaseAt and the lastll samples of “7”. The learning objective is
most 5 different A are selected, before the algorithm claimgo correctly identify all the “7's”. Note that throughouteh
failure. experiment, label information is unavailable to the altjori,
Figure 1 shows the phase transition property. We represgst, there is no training stage. Since the columns of digit
success in gray scale, with white denoting success, an#t blat” are not exactly low rank, an exact decomposition is not
failure. When outliers are random (easier case) Outliesiur possible. Hence, we use the norm of each column in
succeeds even when= 20 with 100 outliers. In the adver- the resultingC matrix to identify the outliers: a largef;
sarial case, Outlier Pursuit succeeds wher v < ¢, and norm means that the sample is more likely to be an outlier
fails otherwise, consistent with our theory’s predictiolde — essentially, we apply thresholding aftéf is obtained.
then fix» = yn = 5 and examine the outlier identificationFigure 3(a) shows th& norm of each column of the resulting
ability of Outlier Pursuit with noisy observations. We seal C' matrix. We see that all “7's” are indeed identified. However,
each outlier so that thé, distance of the outlier to the spantwo “1” samples (columng1 and137) are also identified as
of true samples equals a pre-determined valu&ach true outliers, due to the fact that these two samples are written i
sample is thus corrupted with a Gaussian random vector wighway that is different from the rest of the “1's” as shown
an/, magnitudes. We perform (noiseless) Outlier Pursuit orin Figure 4. Under the same setup, we also simulate the case
this noisy observation matrix, and claim that the algorithnwhere only80% of entries are observed. As Figure 3 (b) and
successfully identifies outliers if for the resultirg matrix, (c) show, similar results as that of the complete obsermatio
|Cilla < ||Cil2 for all j ¢ Z andi € Z, i.e., there exists a case are obtained, i.e., all true “7's” and also “1's” No 71 N
threshold value to separate out outliers. Figure 1 (c) show37 are identified.
the result: wheno/s < 0.3 for the identical outlier case,
ando/s < 0.7 for the random outlier case, Outlier Pursuit

(18)

VII. CONCLUSION AND FUTURE DIRECTION

2We have learned that [41] has also performed some numexpatiments . This paper considers robust PCA fror_n a mat”?( decompo-
minimizing || - ||« + Al| - ||1.2, and found promising results. sition approach, and develops the Outlier Pursuit algarith
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Under some mild conditions that are quite natural in mogt]
PCA settings, we show that Outlier Pursuit can exactly recov
the column support, and exactly identify outliers. Thisutes 55
is new, differing both from results in Robust PCA, ané
also from results using nuclear-norm approaches for matrix
completion and matrix reconstruction. One central inniovet
we introduce is the use of an oracle problem. Wheneven]
the recovery concept (in this case, column space) does not
uniquely correspond to a single matrix (we believe many, [i§5]
not most cases of interest, fit this description), the use of
such a tool will be quite useful. Immediate goals for futur([a26
work include considering specific applications, in patacu )
robust collaborative filtering (here, the goal is to decosgo

a partially observed column-corrupted matrix) and also 0B
taining tight bounds for outlier identification in the noisyg
case. Indeed, in a subsequent paper [43], we, together with
other co-authors, report some promising progress in thestob
collaborative filtering setup, which essentially showslieut
pursuit provably succeeds in the partial observation caseu
reasonable technical conditions.
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APPENDIX |
ORTHOGONAL CASE

This section investigates the special case where eacleoutli
is orthogonal to the span of true samples, as stated in the
following assumption.

Assumption 1:Fori € Zy, j & Zo, we haveM," M; = 0.

In the orthogonal case, we are able to derivaegessary
and sufficientcondition of Outlier Pursuit to succeed. Such
condition is of course a necessary condition for OutliersBitr
to succeed in the more general (non-orthogonal) case. Let

(Co)i T .
Moo 1 1€ Zo

Hy = .
0 otherwise.
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Theorem 6:Under Assumption 1, there exists a solution twwhere the last equality holds from Assumption 1 and the
Outlier Pursuit that correctly identifies the column spand a definition of C; (recall thatCy; is the i*” column of Cy).

outlier supportjf and only if Tzhus,|I|go||1,2A T Z,-H%/|||‘lelzﬁ Z,-EIZOHCOIZ- T] lAdiHQ hg
o1 1Coi + A2 = 1.2, with equality only holds when
| Holl <1/X;  1UoVy floo2 < A. (19) Ao,

Further note thaPz,(C’) = C’ implies thatPz, (A) = A,

If both inequalities hold strictly, theany solution to Outlier . o
d y y uwhlch by definition of L, leads to

Pursuit correctly identifies the column space and outligr- s
port.

Corollary 2: If the outliers are generated adversarial, and
Assumption 1 holds, then Outlier Pursuit succeeds (for so
A*) if and only if

Lo = Pre(L)).

"fius, Lemma 12 implie§Zo|. < ||Z/||.. The theorem thus

follows. ]

: Note that Theorem 7 essentially says that in the orthogonal

case, if Outlier Pursuit succeeds, i.e., it outputs a Q&irC")

Specifically, we can choosg* = %ﬂ such thatZL’ has the correct column space, a6d has the
correct column support, thei,, Cy) must be the output. This
makes it possible to restrict out attention to investigatem

A. Proof of Theorem 6 the solution to Outlier Pursuit i§Lg, Cy).

The proof consists of three steps. We first show that if 2) step 2:
Outlier Pursuit succeeds, thdil,, Cy) must be an optimal Theorem 8:Under Assumption 1(Lg, C,) is an optimal

solution to Outlier Pursuit. Then using subgradient caadit ¢ution to Outlier Pursuit if and only if there exist such
of optimal solutions to convex programming, we show that thg 4

necessary and sufficient condition fat,, Cyy) being optimal
solution is the existence of a dual certificade Finally, we

v

1
1—v 7 wr

a

Pr,(Q) = UoVy';

—~

)
show that the existence @) is equivalent to Condition (19) ®) |[Pre(Q)] < 1
holds. We devote a subsection for each step. 0 o (21)
1) Step 1:We need a technical lemma first. (€) Pz,(Q) = AHo;
Lemma 12:Given A € R™*", we have (@) Pzg(Q)lloc2 < A
Pz (Al < [ Al Here Pr, (-) 2 Pr(r,(-). In addition, if both inequalities are

Proof: Fix r > rank(A). It is known that||A[|. has the strict, then(L,, Cy) is the unique optimal solution.
following variational form (Lemma 5.1 of [24]): Proof: Standard convex analysis yields thd,, C) is

N 1 an optimal solution to Outlier Pursuit if and only if thereiss
||A||* = Mlnlmlze:XE]RmXT,YERnX" i(HX”%‘ + HYH%') a dual matrixQ such that
Subject to: XY T = A.
(20) Q € 9| Loll+; Q€ IN|Col1,2.
Note that for anyXY'" = A, we have Note that a matrixQ is a subgradient of - || evaluated af.

_ if and only if it satisfies
XY = X(Pr(Y 7)) = Pre(A), y

whereY is the matrix resulted by setting attws of Y in Z to Pr,(Q) =UoVy's and [[Pr.(Q)]l < 1.

zero. Thus, by variational form dfPz:(A)||., and note that

rank(Pz:(A)) < r, we have Similarly, @ is a subgradient od|| - ||1,2 evaluated at’y if
’ - and only if

1 — 1
Pre(A)l. < =[I1X||% + IY]1%] < =[I X% + ||[Y]|%].
1Pzs (Al 2[II 17+ 1Y %] 2[II 17+ 1Y %] Pro(@) = AHo: and [Pr(Q)lls < A

Note this holds for anyX, Y such thatXY " = A, the lemma
follows from (20). m Thus, we conclude the proof of the first part of the theorem,
Theorem 7:Under Assumption 1, for any/, ¢’ such that i-€., the necessary and sufficient condition(af, Co) being
L' +C' =M, Pr,(C') = C', and Py, (L) = L', we have ~ an optimal solution.
Next we show that if both inequalities are strict, then
[Zoll« + AllColl1,2 < [IL[|« + AIC"[|1,2, (Lo, Co) is the unique optimal solution. FiA # 0, we show
that (Lo + A, Cy — A) is strictly worse than(Lg, Cy). Let
W be such thatlW|| = 1, (W, Pr.(A)) = |[PrAll., and
Pr,W = 0. Let F' be such that such that

' 0 otherwise.

with the equality holds only whed’ = Ly andC’ = Cj.

Proof: Write L' = Lo + A andC’ = Cy — A. Since
Pu, (L") = L', we have that fori € Zy, Py, (A;) = A,
which implies that fori € Z,

CoiAi = (CHU) U Ay = 0 x Uy A,



ThenU,V," + W is a subgradient of - || at Lo and Hy + F
is a subgradient of - |12 at Cy. Then we have

Lo + Allx + AllCo — A1,

>||Loll« + A|Coll1o+ < UoVy +W,A >
— A< Hy+F,A>

=|Loll« + AlColl1,2 + [P (D)« + Al[Pzg(A)l1,2
+ < UV, — AHp, A >

=|Loll« + AlColl1,2 + [P (A)[l« + Al[Pzs(A)]l1,2
+<Q—-Ppra(Q) — (Q —Prg(Q)),A>

=|Loll« + AllColl1,2 + [P (D)« + Al[Pzg(A)]l1,2
+ < =Pre(@Q),A >+ < Prg(Q), A >

2| Lollx + Al Coll1,2 + (1 = [[Pr (@)D Prs (A)]]«
+ (A = [[Pz5(Q)llc0,2) | P25 (A) |12

>||Loll« + AM|Coll1,2,

where the last inequality is strict unless
[Pry (D)« = [Pzg(A)]l12 = 0.

We next show that Condition (22) also implies a strict insgea

(22)

of the objective function to complete the proof. Note that

Equation (22) is equivalent td = Pr,(A) = Pz, (A), and
note that
PUO (A) = PTO (A) - PVO (A) + PUOPVO (A)
=A—-({I—-"Py,)Pv,A
SincePz, (V") = 0, Pz, (A) = A implies thatPy, (A) = 0,
which means
A =Py, (A) = Pr, (D).
ThUS,,PU0 (L()+A) = Lo+A4, andPIO (C()*A) = Cy—A. By

Theorem 7| Lo+ All« + A||Co —
which completes the proof.
3) Step 3:
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Now consider any matrix) that also satisfies the two
equalities. LetQ = UyV," + AHp + A, note thatQ) satisfies
Pr,(Q) = AHo and Pr, (Q) = UV, , which leads to

Pr,(A) =0; andPr(A) =0.
Thus,
Prs(Q) = UoVy' +4; and Pr.(Q) = AHy + A.
Note that
100VY" + Al 2 = max [Up(V" )i + A2
> max[[Up (Vo' ill2 = 106V [lsc 2

Here, the inequality holds becau®e, (A) = 0 implies that
A; are orthogonal to the span 6f. Note that the inequality
is strict whenA # 0.

On the other hand

[AHol| = x " (AHp)y

max
Ix[<Lllyll<1
(@)

MH,
||x||<1uy||<17>zc<yv> o x" (\Ho)y

®

max
<11yl <1,Pzg(y T)=0

XT(AH() + A)y = ||)\H() + AH

X ()\H() —+ A)y

< max
llx[|<Lllyll<1
Here, (a) holds because;, Hy = Hy, thus for anyy, set all
y; = 0 for i ¢ Z, does not change " (\H,)y; while (b) holds
sincePISA = A.
Thus, if @ satisfies the two inequalities, then so ddgs
which completes the proof. |
Note that by Equation (23) we have

Pry(Ho) = Ho;  Prg(UoVy') = UoVy' .

Thus, Theorem 7, Theorem 8 and Theorem 9 together establish

Theorem 6.

Theorem 9:Under Assumption 1, if there exists any matrix

Q that satisfies Condition (21), theti,V,' + AH, satis-
fies (21).

Proof: DenoteQq = UyV," + AHy. We first show that
the two equalities of Condition (21) hold. Note that

Pr,(Qo) = Pr, (UoVy" ) + AP, (Ho)
=UoVy' + A[Pu, (Ho) + Py, (Ho) — Pu, Py, (Ho)].
Further note thatPy,(Hy) = Uy(Uy Hy) = 0 due to

Assumption 1, andPy,(Hy) = 0 becausePr,(Hy) = Hp

and Pz, (V,") = 0 lead to HyV;, = 0. Hence
Pr,(Qo) = UgVy'-
Furthermore,
P1,(Qo) = Pz, (UoVy' ) + APz, (Ho)

= UyPz,(Vy' ) + AHy = \H,.

Here, the last equality holds becauBg, (V,' ) = 0. Note that
this also implies that

Py (Ho) = Ho; PIS(U()VOT) = UV, . (23)

B. Proof of Corollary 2

Corollary 2 holds due to the following lemma that tightly
bounds|| Ho|| and [|UoVp' || s 2-

Lemma 13:We have ()| Hy|| < /m, and the inequality

is tlght (”) HUO‘/()—FHOO,Q = max; HVE)TBZ”Q = (T%

Proof: Following the variational form of the operator
norm, we have

| Hol| = max x" Hyy = max ||x Hp|2

lIxl2<L[lyll2<1 lIx[l2<1

HXH2<“ (xTH;)? / =V |To| = /7.
i€Zp

The inequality holds becaug¢Hy);||» = 1 wheni € Z,, and
equals zero otherwise. Note that if we Igly); all be the
same, such as taking identical outliers, the inequalitygistt
By definiton we have [[UgV; |lco.2
max; [|Uo(Vo" )ill2 max; [|(Vo' )il = max; [V, ei2.
Here (a) holds sincé/, is orthonormal. The second claim
hence follows from definition of:. ]

(a)
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APPENDIXII Sujay Sanghavi (M'06)is on the faculty of Electri-
LiST oF NOTATIONS cal Engineering at the University of Texas, Austin.
He obtained his PhD in 2006 from the University

M The observed matrix. of llinois, and a postdoc from the Massachusetts
P The number of rows of\/. Institute of Technology. His research interests are in
n The number of columns of/ the use of probability, optimization and algorithms
’ for applications in large-scale networks and high-
Lo, Cy The ground truth. dimensional machine learning. Sujay received the
To The index of outliers (non-zero columns NSF CAREER award in 2010.
of C()).
~y Fraction of outliers, which equalgy|/n.
Uy, Vo The left and right singular vectors df,.
I Incoherence parameter of
L.C The optimal solution of the Oracle Prob-
lem.

U,V | The left and right singular vectors df.
v An auxiliary matrix, introduced in

Lemma 5, which satisfie§ VT = U,V ' .

I Incoherence parameter of.

H An auxiliary matrix, introduced in

Lemma 5, which satisfied/ € &(C).

N(-) &(-) | Operators defined in Definition 1.

G Auxiliary matrix defined in Equation (11)),
asG 2 Pr, (V. )(Pr,(V ).
P Defined in Lemma 7 ag = ||G||.
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