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Abstract— A central scheduling problem in wireless commu-
nications is that of allocating resources to one of many mobile
stations that have a common radio channel. Much attention has
been given to the design of efficient and fair scheduling schemes
that are centrally controlled by a base station (BS) whose
decisions depend on the channel conditions of each mobile.
The BS is the only entity taking decisions in this framework
based on truthful information from the mobiles on their radio
channel. In this paper, we study the scheduling problem from
a game-theoretic perspective in which some of the mobiles may
be noncooperative. We model this as a signaling game and
study its equilibria. We then propose various approaches to
enforce truthful signaling of the radio channel conditions: an
approach based on some knowledge of the mobiles’ policies,
and an approach that replaces this knowledge by a stochastic
approximations approach that combines estimation and control.
We further identify other equilibria that involve non-truthful
signaling.

I. INTRODUCTION

Short-term fading arises in a mobile wireless radio com-
munication system in the presence of scatterers, resulting
in time-varying channel gains. Various cellular networks
have downlink shared data channels that use scheduling
mechanisms to exploit the fluctuations of the radio conditions
(e.g. 3GPP HSDPA [2] and CDMA/HDR [5] or 1xEV-DO
[1]). The scheduler design and the obtained gain are pred-
icated on the mobiles sending information concerning the
downlink channel gains in a truthful fashion. In a frequency-
division duplex system, the base station (BS) has no direct
information on the channel gains, but transmits downlink
pilots, and relies on the mobiles’ reported values of gains
on these pilots for scheduling. A cooperative mobile will
truthfully report this information to the BS. A noncooperative
mobile will however send a signal that is likely to induce the
scheduler to behave in a manner beneficial to the mobile.

Our paper is concerned with game-theoretic analysis of
downlink scheduling in the presence of noncooperative mo-
biles. We consider the BS to be a player as well, and assume
that the identity of players that do not cooperate is common
knowledge. We model this game as a signaling game which
is somewhat uncommon in that there are several players that
send signals (the mobiles whose signals correspond to the
reported states of the channel) and one follower who reacts
to the signal - the BS who decides to whom to allocate
the channel. The utility of the BS is assumed to be the
social optimum, i.e., the sum of throughputs. The equilibria

of this game and the various ways to obtain a truth revealing
equilibrium are the focus of our research reported here.

Contribution of the paper: We begin with the case in
which BS does not use any extra intelligence to deal with
noncooperative mobiles (BS makes scheduling decisions
based only the signals from the mobiles). The only Perfect
Bayesian Equilibrium (PBE) of the resulting signaling game
are the babbling type : the noncooperative mobiles send
signals independent of their channel states, and the BS
simply ignores them to allocate channels based only on
prior channel statistics (Section IV). Fortunately, the BS can
use more intelligent strategies to achieve a truth revealing
equilibrium hence forth called as TRE. In Section V the BS
learns mobiles’ signaling statistics, correlates them with the
true channel statistics, and punishes the deceivers to obtain
a TRE. We next come up with a practical strategy to achieve
a TRE in the form of a variant of the proportional fair
sharing algorithm (PFA) which elicits truthful signals from
mobiles (Section VI). Further, in Section VII, we establish
the existence of other equilibria at which the BS improves
its utility in comparison to that obtained at a babbling
equilibrium; the noncooperative mobiles also improve their
utilities over their cooperative shares (utilities at TRE).

Prior work. (1) Proportional fair sharing and other re-
lated algorithms were intensely analyzed as applied to the
CDMA/HDR system. See [8], [5], [4], [21], [3], [7], [17].
These results are applicable to the 3GPP HSDPA system
as well. Kushner & Whiting [16] analyzed the PFA using
stochastic approximation techniques and showed that the
asymptotic averaged throughput can be driven to optimize a
certain system utility function (sum of logarithms of offset-
rates). All the above methods assume that the centralized
scheduler has complete information of all relevant quantities.

(2) Mobiles in our setting are more informed than the BS;
they have access to their individual channel realization which
is private information. If mobiles exploit the ignorance of the
BS to their advantage, and the BS is aware of this possibility,
we have a signaling game as discussed earlier with several
lead players or senders (mobiles) and one follower or receiver
(BS). See [15] for an illuminating survey on this topic.
Our interest will be in a game with “cheap talk”; this
is a signaling game where the sender incurs no cost for
his signals [15, Sec. 7]. It is well-known that such games
admit a babbling equilibrium. There are situations where
other equilibria exist. Interestingly, there are situations where



cheap talk helps (Farrell [9]), i.e., cheap talk induces a truth-
revealing equilibrium while the game with no communication
has no equilibrium.

(3) Effect of noncooperative mobiles was recently con-
sidered in [14], where the special case of maximum rate
algorithm was simulated and shown to improve the non-
cooperative mobile’s throughput by 5% but decrease the
overall system throughput by 20%. Then, observing that
the presence of more mobiles in the system resulted in less
aggressive signaling, they proposed that the BS advertise the
presence of an inflated number of mobiles in the system; the
noncooperative mobiles take this advertisement to be true1.
Nuggehalli et al [18] considered noncooperation by low-
priority latency-tolerant mobiles in an 802.11e LAN setting
capable of providing differentiated quality of service. They
provide an incentive mechanism in the form of collision
free access (CFA) : a guaranteed fraction of allocation to
CFA induces truth revelation. Price & Javidi [20] consider
an uplink version of a problem where the mobiles are the
informed parties on the valuation of the uplinks (queue state
information is available only at the mobile). They provide
incentives in the form of allocation on the downlink to induce
truth revelation.

Paper outline: After providing a brief system and problem
description (Section II and III), we consider signaling game
in Section IV. The signaling game admits only babbling
equilibria. We then describe in Sections V and VI the two
approaches to obtain a truth revealing equilibrium. Other
equilibria are identified in Section VII.

II. PROBLEM FORMULATION

We consider a wireless network with one base station
(BS). There are M mobiles competing for the downlink data
channel. Time is divided into small intervals or slots. In each
slot one of the M mobiles is allocated the channel. Each
mobile m can be in one of the states hm ∈ Hm, whereHm is
finite valued. We assume fading characteristics to be indepen-
dent across the mobiles. Let h := [h1, h2, · · · , hM ]t be the
vector of channel gains in a particular slot. The channel gains
are distributed according to: pH(h) =

∏M
m=1 pHm(hm),

where {pHm ;m ≤M} represents the statistics of the mobile
channels. We assume that the mobiles estimate the channel
hm perfectly using the pilot signals sent by BS. The mobiles
send signals {sm} to BS; these are indications of the channel
gains. Some mobiles (with indices 1 ≤ m ≤ M1 where
1 ≤ M1 ≤ M ) are assumed to be noncooperative and
may signal a better channel condition to grab the channel
even when their channel is bad. We assume that signals are
chosen from the channel space itself, i.e., sm ∈ Hm for all
mobiles. BS makes a scheduling decision based on signals
s := [s1, s2, · · · , sM ]t.

Utilities: If the channel is allocated to mobile m, it gets
a utility f(hm) which only depends upon its own channel
state. An example utility is f(hm) = log(1 + hmSNR)
where SNR captures the nominal received signal-to-noise

1They do not address the possibility of this advertised number being just
another signal.

ratio under no channel variation. The utility of the BS is
taken to be sum of the utilities of all the mobiles. Optimizing
the sum utility at the BS results in an efficient solution.
It however may be unfair because far-off mobiles may be
ignored for they are not likely to contribute to efficiency. In
this paper, we mainly study efficient solutions. This is fair
only in symmetric mobiles case. Extensions to obtain fairness
for asymmetric mobiles are discussed in our next papers.

Common Knowledge : The channel statistics
{pHm

;m ≤M} and the information about which mobiles
are noncooperative is common knowledge (i.e., known to
all the mobiles and the BS). If the BS does not know
which mobiles are cooperative, it will treat every mobile
as noncooperative. In Sections V to VII wherein the BS
estimates either the signal statistics or the average utility of
the mobile, the BS can detect the noncooperative mobiles.

III. SYSTEM MODEL

We now formalize our notation and assumptions : For a
set C, let P(C) be the set of probability measures on C. A
policy of mobile m is a function {µm(.|hm)} that maps a
state hm to an element in P(Hm). A policy of the BS is a
function β = {β(.|s)} that maps each signal s to an element
in P({1, 2, · · · ,M}). In later sections this policy can also
be a function of other parameters.

The utility of the mobile m depends only upon the true
channel hm and the allocation A of the BS, where A ∈
{1, · · · ,M}, given by2: Um(sm, hm, A) = 1{A=m}f(hm),
while that of BS is UBS(s,h, A) =

∑N
m=1 Um(sm, hm, A).

Remarks on choice of utility: Even if a mobile signals
more than its true value and the BS attempts to transmit
at that higher transmitted rate, the actual rate at which
the transmission takes place will still be f(hm). This is
reasonable given the following observations. The reported
channel is usually subject to estimation errors and delays,
an aspect that we do not consider explicitly in this paper. To
address this issue, the BS employs a rateless code, i.e., starts
at an aggressive modulation and coding rate, gets feedback
from the mobile after each transmission, and stops as soon
as sufficient number of redundant bits are received to meet
the decoding requirements. This incremental redundancy
technique supported by hybrid ARQ is already implemented
in the aforementioned standards (3GPP HSDPA and 1xEV-
DO). Then a rate close to the true utility may be achieved.

Define h−m := [h1, · · · , hm−1, hm+1, · · · , hM ],
pH−m(h−m) := Πj 6=mpHj (hj) and µ−m(s−m|h−m) :=
Πj 6=m;j≤M1µj(sj | hj) Πj 6=m;j>M1δ(hj = sj) to exclude
mobile m. Define µ(s|h) = µ1(s1 | h1)µ−1(s−1|h−1).

Hence the instantaneous utility of mobile m, when its
channel condition is hm, when the mobiles use strategies

2This is the case if the BS allocates whatever the mobile has signaled for
and whenever it has signaled more than or equal to its true value. In the later
sections, while developing robust BS policies we will come across the cases,
wherein the BS allocates an utility (say ũ) which can be different from the
requested. In these cases, Um(sm, hm, A) = 1{A=m} min{ũ, f(hm)}.



µ := {µm;m ≤M1}, and when the BS uses strategy β, is

Um(µ, hm, β)

= Eh−m

[∑
s

Um(sm, hm,m)β(m | s)µ(s | h)

]

= f(hm)Eh−m

[∑
s

β(m | s) µ(s | h)

]
.

Throughout when arg maxS has more than one element,
we write i = arg maxS to mean i ∈ arg maxS. By j :=
arg maxS we mean that j is a chosen element of arg maxS.

IV. SIGNALING GAME AND BABBLING EQUILIBRIUM

The signaling game for downlink scheduling is described
as follows: M1 mobiles with the lowest indices are the
leaders or senders in the signaling game. The BS is the only
follower or receiver. The true channel hm represents the true
type of leader m with signal sm. The policies and utilities
of the game are defined in previous paragraphs.

A refinement of NE for such games is a Perfect Bayesian
Equilibrium (PBE). This is based on rationale of credible
posterior beliefs (Kreps & Sobel [15, Sec. 5], Sobel [22]).

Definition 4.1: [Posterior beliefs π := {πm;m ≤ M1}]
π(hm | sm) is the BS’s belief of the posterior probability
that the mobile’s true channel is hm given its signal is sm.

Definition 4.2: [Perfect Bayesian Equilibrium (PBE)] A
PBE is a strategy profile (µ∗1, · · · , µ∗M1

;β∗) and a posterior
belief profile π∗ such that : Given posterior belief profile
π∗m, for each signal vector s, the BS chooses β∗ such that

β∗(· | s) ∈ arg max
γ∈P((1,··· ,M))

∑
j>M1

γ(j)f(sj)

+
∑
j≤M1

γ(j)
∑
hj

π∗j (hj | sj)f(hj). (1)

Given β∗, each mobile m ≤M1 chooses µ∗m, such that,

µ∗m(· | hm) ∈ arg max
α∈P(Hm)

∑
sm∈Hm

α(sm)

∑
s−m

β∗(m | s)

∑
h−m

pH−m(h−m)µ∗−m(s−m|h−m)f(hm)

 for each hm ∈ Hm.(2)

For each m ≤M1, sm ∈ Hm, the BS updates,

π∗m(hm | sm) =
pHm

(hm)µ∗m(sm | hm)∑
h′∈Hm

pHm
(h′)µ∗m(sm | h′)

, (3)

if the denominator in (3) is nonzero, and π∗m(· | sm) is any
element in P(Hm) otherwise.

In the sequel, we will come across two types of PBE
([22]). The first is the babbling equilibrium where the
sender’s strategy is independent of its type, and the receiver’s
strategy is independent of signals. The second is the desirable
separating equilibrium where sender sends signals from
disjoint subsets of the set of available signals for each type.

We will now show that without any extra intelligence
to combat noncooperation, i.e., if the BS schedules based

only upon the signals from the mobiles, there exist only
babbling equilibria. The following theorem characterizes all
the possible PBE (proof given in [11], [12]).

Theorem 1: The above M1 + 1 player signaling
game has a PBE of the following type (for all m,
hm, sm): With m∗NC := arg maxm≤M1 E [f(hm)],
m∗C(s) := arg maxm>M1 f(sm) and m∗(s) :=
arg maxm∈m∗NC∪m∗C E [f (hm) | sm] for all s,

µ∗m(sm = s′m|hm) equals any fixed µm ∈ P(Hm),
π∗m(hm|sm) = pHm(hm) and

β∗(m|s) equals any fixed γs ∈ P(m∗(s)).

Further, these are the only type of PBE for this game. �
In the above equilibrium, the (noncooperative) mobile’s

strategy is to send a signal independent of the channel value,
and the BS’s strategy is to ignore the signals from the
noncooperative mobiles. Hence it is a babbling equilibrium.
Further, possibility of a ’separating’ PBE (TRE) is ruled out.

The scheduling policy of the babbling PBE of Theorem 1
results in the following utility for the BS :

U∗cop := Eh>M1

[
max

{
max
m>M1

f(hm), max
m≤M1

E[f(hm)]
}]

where h>M1 := [hM1+1, hM1+2, · · · , hM ]T . (4)

It is the best utility that the BS can get using only information
from cooperative mobiles and the statistics of noncooperative
mobiles. Note that the BS uses very little information here
to attain U∗cop (only the signals and prior information). To do
better, BS has to use extra intelligence. In coming sections
we obtain the desirable TRE via two different approaches.

V. A TRE: BY ’PREDICTING’ SIGNAL STATISTICS

In this section, we assume that the BS is able to ’predict’
the statistics of the signals generated by all the mobiles,
perhaps based on observations of past behavior, before the
game is executed. With pSm

(s) :=
∑
h µm(s|h)pHm

(h) for
all s ∈ Hm and for all m, let pS := (pS1 , pS2 , · · · , pSM

)
represent the tuple of the signal probabilities of all the
mobiles. The BS policy is now a probability measure over
the set of mobiles for each signal vector s and each pS and
hence is given by β(.|s, pS). This results in a completely
different game and we obtain a TRE using this new policies.

The new game is still an incomplete information game
but is no more a signaling game. We now consider a simple
M1 +1 player strategic form game. The rest of the details of
the game, i.e., all the utilities and the policies of the mobiles,
remain the same as that in the previous sections.

Consider the following ’predictive’ policy β∗p of the BS:
BS allocates the channel to the mobile with maximum
signaled rate if its signal statistics are same as its true
channel statistics. If not the BS allocates the channel to the
cooperative mobile with maximum signaled rate among the
cooperative mobiles.

Policy β∗p at BS and the truth revealing signals (i.e.,
µ∗m(s|h) = δ(s = h) at all the mobiles forms a NE, i.e.,
a TRE, because: If a mobile generates a noncooperative



signal such that the signal statistics remain the same as the
true channel statistics, he will have to lose the channel in
one of his good states for a gain of the channel in one of his
bad states. At a TRE, the BS obtains the following utility :

U∗max := Eh

[
max
m≤M

f(hm)
]
. (5)

It is the utility that the BS can get by using the truthful
information from all the mobiles. It is easy to see that this
is the maximum utility that the BS can get and hence is also
the maximum utility of the BS at equilibrium among all the
possible NE.

VI. STOCHASTIC APPROXIMATION

In the previous section a TRE is obtained by assuming
the availability of perfect ’signal statistics’ estimates at the
BS. Any estimation procedure will have errors and it is of
interest to study the impact of these errors on the desired NE.
In this section we directly estimate the average (signaled)
throughput of all the mobiles and use these estimates to
obtain more realistic (truth revealing) policies at the BS.

A policy based on stochastic approximation is proposed.
It operates over several time slots and estimates parameters
online. Such an approach is also well-suited to track changes
in model parameters. Our policy has a “corrective” feature
because the BS continually (i) estimates the average through-
put that each mobile gets; (ii) estimates the excess utility
that each mobile accumulates beyond its cooperative share
(its share in a cooperative setting); (iii) applies a “corrective”
term based on the excess utility. The resulting estimates are
then used to make scheduling decisions.

We define an appropriate M1 + 1-player strategic form
game and show that a “corrective” policy at the BS, along
with the truth-revealing strategies at mobiles, forms an ε-
Nash equilibrium, and the policy is thus near-TRE3.

We begin by first defining the policies and utilities of the
players involved in the game (some notations of this section
are different from the rest of the paper). The policy of a BS
is a time-varying function whose action at time k depends on
the signals sent by the mobiles up to and including time k.
Throughout this section, we model channel gains as bounded
random variables taking values on a continuum and satisfying
assumption A.3 given below. The policy of a mobile m for
m ≤ M1 is given by a measurable signal map sm : Hm 7→
Hm that satisfies assumption A.2 given below. For the sake
of uniformity we define sm(hm) = hm for m > M1, i.e.,
the cooperative mobiles report the true channel. Thus, the
signaled utility at time k is f(sm(hm,k));m ≤ M , while
the true utility is f(hm,k);m ≤M .

Next we define the utilities of mobiles, BS. Let φm,k be
the slot-level utility derived by mobile m in slot k. Note that
0 ≤ φm,k ≤ f(hm,k) and φm,k = 0 if the channel is not
assigned to mobile m in slot k. We then set for all m ≤M ,

Um = lim
k→∞

1
k

∑
l≤k

φm,l and UBS =
M∑
m=1

Um,

3This ε-Nash equilibrium is in fact slightly stronger equilibrium than NE.

if all the limits exist. In a TRE, the BS achieves the maximum
sum utility U∗max given in (5) while the mth mobile gets

U∗m = θ0
m := Eh

[
f(hm)1{f(hm)≥f(hj) for all j 6=m}

]
.

Note that BS can calculate Θ0 := (θ0
1, · · · , θ0

M ) with its
available knowledge. We now propose the following iterative
“corrective” scheduling algorithm at the BS:

θm,k+1 = θm,k + εk

(
f̃m,k+1Im,k+1 − θm,k

)
,

f̃m,k+1 = f(sm(hm,k+1))−
(
θm,k − θ0

m

)
∆, (6)

Im,k+1 = 1{f̃m,k+1≥f̃j,k+1 for all j 6=m}1{f̃m,k+1≥0},(7)

with initial conditions θm,0 = θ0
m for all m. The BS for

each mobile i) tracks average reported utility via θm,k, ii)
computes excess utility θm,k − θ0

m, relative to the mobiles
cooperative share in a TRE, iii) subtracts the excess from
the instantaneous signaled utility after magnification by ∆,
and uses the updated values to make a current scheduling
decision. The choice of ∆ depends on ε.

If BS schedules mobile m in slot k, the latter gets a utility

f̄m,k := min
{
f̃m,k, f(hm,k)

}
. (8)

Indeed, if f̃m,k < 0 for the selected mobile, no transmission
is made. If f̃m,k < f(hm,k), transmission is made at
lesser rate to get a slot-level utility of f̃m,k. If f̃m,k ≥
f(hm,k), our remarks on utilities in Section III provide a
slot-level utility of f(hm,k). Thus the achieved utility in
slot k is (8). Consequently, utility for mobile m is Um =
limk→∞

1
k

∑k
l=1 f̄m,lIm,l, which can be rewritten as limit of,

θ̄m,k+1 = θ̄m,k + εk
(
f̄m,k+1Im,k+1 − θ̄m,k

)
, (9)

Thus the mobile and the BS utilities are

Um = lim
k→∞

θ̄m,k for all m ≤M and Ubs =
∑
m

Um. (10)

Analysis of the policy: Let S = (s1, s2, · · · sM ) represent
a strategy profile. (last M −M1 maps are identity maps).
Assumptions : We assume the following :
A.1 The function f is bounded and invertible. Both the
functions f , f−1 are continuously differentiable;
A.2 The signal maps sm are such that the density of the
random variables sm(hm) are bounded;
A.3 The processes {hm,k}k≥1 are stationary Markov chains
for each mobile m, and independent across mobiles. The
random variable hm,1 is a bounded random variable with
bounded density for each m.

We use ODE approximation theory ([16], [6] etc.) to
analyze the utilities (10) and obtain optimality properties of
(6). Define Θk := (θ1,k, · · · , θm,k), Θ̄k := (θ̄1,k, · · · , θ̄m,k)
and Ψk :=

(
Θk, Θ̄k

)
. Define t(r) :=

∑r
k=0 εk, m(n, T ) :=

arg maxr≥n{t(r) − t(n) ≤ T}. Let Ψ(t, t0, (Θ0, Θ̄0)) rep-
resent the solution of the pair of ODEs,

�
Θ (t) = HS(Θ(t))−Θ(t); Θ(t0) = Θ0 (11)
�

Θ̄ (t) = H̄S(Θ(t))− Θ̄(t); Θ̄(t0) = Θ̄0 (12)



HS
m(Θ) := Eh

[
f̃Sm(hm, θm)ISm(h,Θ)

]
H̄S
m(Θ) := Eh

[
f̄Sm(hm, θm)ISm(h,Θ)

]
f̃Sm(hm, θm) := f(sm(hm))− (θm − θ0

m)∆
ISm(h,Θ) := 1{f̃S

m(hm,θm)≥f̃S
j (hj ,θj) for all j 6=m}

1{f̃S
m(hm,θm)>0}

f̄Sm(hm, θm) := min
{
f̃Sm(hm, θm), f(hm)

}
.

We have the approximation theorem (proof in [11], [12]).
Theorem 2: The ODEs have unique solution for any

finite time T . Assume A.1–A.3 and {εk = (k + 1)−1}. Fix
any T > 0, δ > 0, h, and let (hn,Ψn) be initialized to
(h,Ψ) = (h, (Θ, Θ̄)). Let Pn:h,Ψ denote the distribution of
{(hn+k,Ψn+k)}k≥0 with initializations hn = h,Ψn = Ψ.
Then as n→∞

Pn:h,Ψ

{
sup

{n≤r≤m(n,T )}
|Ψr −Ψ (t(r), t(n), Ψ)| ≥ δ

}
→ 0

uniformly for all Ψ ∈ Q1, where Q1 is any compact set. �
By the above theorem, trajectory {θ̄m,k;m ≤ M} is ap-

proximated by the solution of ODE (12). Hence we analyze
the utilities (10) using the limits (attractors) of the ODE.

For any strategy profile S, any attractor Θ∗ of the ODE
(11) satisfies

θ∗m − θ0
m =

Eh

[
f(sm(hm))ISm(h,Θ∗)

]
− θ0

m

1 + ∆E [ISm(h,Θ∗)]

≤
(maxh f(h)) Eh

[
ISm(h,Θ∗)

]
1 + ∆E [ISm(h,Θ∗)]

≤ o(1/∆).

Any attractor of (12) satisfies θ̄∗m = H̄S
m(Θ∗) ≤ θ∗m. Thus,

Um ≈ θ̄∗m ≤ θ0
m + o(1/∆). (13)

Let S = I , the truth revealing profile (sm(hm) = hm for
all hm, m). Clearly Θ0 is a zero of RHS of ODEs (11),
(12). One can easily show that it will indeed be an attractor
by showing that the derivative of HS(Θ) − Θ is negative
definite near Θ0. Hence Um = θ0

m when S = I for all m.
From (13) none of the mobiles, no matter what strategy

they use or no matter what strategy the other mobiles use,
can gain more than θ0

m. This along with para above implies
that the ’corrective’ policy (with appropriately large ∆) of
BS together with the truth-revealing signals at all the mobiles
forms an ε-Nash equilibrium.
Some further Remarks : Note for large values of ∆,

(θ∗m − θ0
m)∆ =

∆(Eh

[
f(sm(hm))ISm(h,Θ∗)

]
− θ0

m)
1 + ∆E [ISm(h,Θ∗)]

≈
Eh

[
f(sm(hm))ISm(h,Θ∗)

]
− θ0

m

E [ISm(h, θ∗)]

which can be significant but is bounded (independently of ∆)
because of the boundedness of f . Now, if any mobile reports
much more than its true value, i.e., if f(hm)� f(sm(hm))
for significant values of hm, and if in fact it is large enough
such that f(hm)� f(sm(hm))− (θ∗m − θ0

m)∆ then,

Um � Eh[(f(sm(hm))− (θ∗m − θ0
m)∆)ISm(h,Θ∗)] = θ∗m.

Hence Um � θ0
m, i.e., that particular mobile’s output is much

lesser than θ0
m, its own cooperative share. Hence the mobile

which deviates the most from true values gets the least share.
Examples : In Figure 1 we consider an example with

two identical and cooperative mobiles, which reinforces
that the ODE attractors will be good approximations for
the time limits of almost all the trajectories of the true
utility adaptation (9). Let fZ(z;σ2) = ze−z

2/2σ2
, z ≥ 0

represent the density of the Rayleigh distributed random
variable Z(σ2). The channel gains of both the mobiles are
conditional Rayleigh distributed, i.e., for both m = 1, 2
hm ∼ fZ(z; 3)1{z≤2}dz/Prob(Z(3) ≤ 2). The utilities used
throughout this sub section are the achievable rates f(h) =
log(1 + h). We plot two independent trajectories/ sample
paths of both the mobiles, {θ̄m,k}m=1,2 k≥1 initialized away
from their cooperative shares θ0

1 = θ0
2 = 0.456. We set ∆ =

9000. All the trajectories converge close to the attractors of
the ODE thus corroborating theory.
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Fig. 1. Accuracy : ODE attractors
approximating time limits of (9).
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Fig. 2. Robust SA based BS Policy
in the presence of noncooperation

In Figure 2 we illustrate the robustness of our BS pol-
icy. We consider two symmetric mobiles now with hm ∼
fZ(z; 1)1{z≤2}dz/Prob(Z(1) ≤ 2). The first mobile, can be
noncooperative with s1(h) = h+(2−h)δ. We plot two sets of
trajectories, one (thicker curves) for all cooperative behavior
(δ = 0) while the corresponding set of thinner curves belong
to the case where the first mobile is noncooperative with
δ = 0.95 with ∆ = 9000. All the cooperative curves
converge towards the cooperative share (same one for both
the mobiles as it is a symmetric situation). While, the true
utility of the noncooperative mobile (mobile 1), converges to
a value less than the cooperative share, confirming the theory
of the previous sections.

The trajectories corresponding to the reported rate {θm,k}
(6) are not plotted as they converge in all cases close to the
cooperative shares θ0

m and they do it much more faster than
the true rate trajectories. Hence, they do not convey much
information, but just mess up the plots.

VII. EXISTENCE OF OTHER NASH EQUILIBRIA

We obtained two types of NE till now. Under the first
equilibrium (babbling equilibrium of Theorem 1) BS sched-
ules only using the signals from the cooperative mobiles and
the channel statistics of the noncooperative mobiles. The BS
utility is the minimum among all the possible equilibrium
utilities and equals U∗cop given in (4).

The other type of NE (equilibria of Sections V, VI), are the
truth revealing equilibria (TRE). BS achieved these equilibria



by using ITR (incentives for truth revealing) policies. When
in a TRE, the BS schedules using the true channel infor-
mation of all the mobiles. BS now achieves the maximum
possible equilibrium utility U∗max given in (5).

Clearly U∗cop ≤ U∗max. This raises a natural question about
the existence of other NE with BS’s equilibrium utility taking
any value in the interval [U∗cop, U

∗
max]. In this section we

continue with the ’predictive’ policies, β(.|s, pS), of Section
V and investigate the existence of other NE in Theorem 3.

Let Eµm [f(hm)|sm] represent the conditional expectation
of the mobile’s utility conditioned on the signal sm when
mobile m uses strategy µm, i.e., for every sm ∈ Hm define

Eµm [f(hm) | sm]

:=
∑

hm∈Hm

pHm(hm)µm(sm | hm)∑
h̃m∈Hm

pHm
(h̃m)µm(sm|h̃m)

f(hm).

With this, the payoff for mobile m is,

Um(µm, β) = Es [β(m|s, pS)Eµm [f(hm)|sm]] .(14)

In the above, Es represents the expectation w.r.t. pS.
Given pS, let µ∗ (or more appropriately µ∗(pS)) rep-

resent ’best’ mobile strategy that gives for every hi, hj ∈
Hm and for all m ≤M

f(hi) ≥ f(hj)
=⇒ Eµ

∗
m [f(hm)|sm = hi] ≥ Eµ

∗
m [f(hm)|sm = hj ].

Construction of µ∗ : Consider mobile 1 without loss
of generality. Let H1 = {h1, h2, · · · , hN1} and assume
f(h1) ≥ f(h2) ≥ · · · ≥ f(hN1). In the following few lines
we leave subscript 1 to improve readability i.e., the random
variables h1, s1 etc. are represented by h, s etc. Strategy µ∗1
is defined in a iterative way.

We will first define {µ∗1(s = h1|h);h ∈ H1}, i.e.,
the conditional probabilities of declaring to be in its best
state h1 by mobile 1 when it is actually in any arbi-
trary state h ∈ H1. Find the minimum index j∗1 such
that probability of the channel to be in one of the top
j∗1 states is greater than or equal to pS1(h1), i.e., let,
j∗1 := arg minj

{∑j
i=1 pH1(hi) ≥ pS1(h1)

}
. Declare state

h1 whenever the true channel is one among the top j∗1 − 1
states, i.e., for all h with f(h) > f(hj

∗
1 ), set µ∗1(s =

h1|h) := 1. When h = hj
∗
1 signal to be in best state h1,

for a fraction of time, where the fraction is chosen such that
the overall probability of signal s = h1 will be equal to

pS1(h1), i.e., µ∗1(s = h1|h = hj
∗
1 ) =

pS1 (h1)−
∑

l<j∗1
pH1 (hl)

pH1 (hj∗1 )
.

Set µ∗1(s = h1|hi) = 0 whenever i > j∗1 .
Now we define {µ∗1(s = h2|h);h ∈ H1}, i.e., the

conditional probabilities of declaring to be in the second best
state h2 by mobile 1, when in any arbitrary state h ∈ H1.
Let j∗2 := arg minj

{∑j
l=1 pH1(hl)− pS1(h1) ≥ pS1(h2)

}
.

Now define (the below definitions are for j∗2 > j∗1 . If not one

can appropriately modify the definitions.),

µ∗1(s = h2 | hj
∗
1 ) = 1− µ∗1(s = h1|hj

∗
1 ),

µ∗1(s = h2 | hi) = 1 whenever j∗1 < i < j∗2 ,

µ∗1(s = h2 | hj
∗
2 ) =
pS1(h1) + pS1(h2)−

∑
l<j∗2

pH1(hl)

pH1(hj∗2 )
µ∗1(s = h2 | h) = 0 for the remaining h.

Note that with the above definitions

Eµ
∗
1 [f(h1)|s = h1] ≥ f(hj

∗
1 ) ≥ Eµ

∗
1 [f(h1)|s = h2].

Continue in the same way to obtain

Eµ
∗
1 [f(h1)|s = h1] ≥ Eµ

∗
1 [f(h1)|s = h2] ≥

· · · ≥ Eµ
∗
1 [f(h1)|s = hN1 ]. (15)

By Result 1 given below, if mobile 1 uses any other
strategy µ1 resulting again in the same signal probability pS1

of pS while all other mobiles use their ’best’ strategy and the
BS uses policy β(m|s, pS) := 1{m=argmaxmE[f(hm)|sm]},
then U1(µ∗1, β) ≥ U1(µ1, β). These strategies are called
’best’ because with these, the mobile m gets the best payoff
for masquerading a signal probability pSm .

For m > M1, we set µ∗(hm | sm) = 1{hm=sm}. With the
help of ’best’ strategies we obtain the existence of other NE:

Theorem 3: For every signal probability tuple p̄S with
the ’best’ strategies µ̄∗ such that,

U∗cop ≤ Eh,s [f (hm∗)] with

m∗ := arg max
1≤m≤M

Eµ̄
∗
m [f(hm)|sm],

the ordered pair
(
µ̄∗, β̄∗

)
is a Nash equilibrium where the

feedback policy β̄∗ of the BS is given by following:
Let µ = (µ1, µ2, · · ·µM1) be any arbitrary signaling policy

of the mobiles and let pS = {pSm
;m ≤ M1} be the

signaling probabilities resulting from these actions of the
noncooperative mobiles. Define,

qm(pS, sm) := min
{

1,
p̄Sm(sm)
pSm(sm)

}
for all sm ∈ Hm,

and for all m ≤ M1. For m > M1 define qm(·, ·) =
1. For any given signal vector s define, m∗1(s) :=
arg maxm≤M Eµ̄

∗
m [f(hm)|sm] (the best among all the

mobiles) and m∗2(s) := arg maxm>M1 f(sm) (best among
cooperative mobiles). Then define,

β̄∗(m|s, pS) = 0 for all m 6= m∗1,m
∗
2,

β̄∗(m∗1|s, pS) = qm∗1
(
pS, sm∗1

)
,

β̄∗(m∗2|s, pS) =
(
1− qm∗1

(
pS, sm∗1

))
. (16)

Proof : If all the noncooperative mobiles are fixed with
signaling policy µ̄∗ then the signaling probabilities will be
given by p̄S and we have, qm(p̄S, sm) = 1 for all sm ∈ Hm
and for all m ≤M. Hence β̄∗(m|s, p̄S) = 1{m=m∗1(s)}.

From (14), the total payoff of the BS with signal prob-
abilities fixed at p̄S, when it uses some arbitrary channel



allocation say β(.|s), is given by,

UBS = Es

[
M∑
m=1

β(m|s)Eµ̄
∗
m [f(hm)|sm]

]
.

Clearly, the BS achieves the maximum with β̄∗.
Say BS uses the policy β̄∗. Without loss of generality

assume mobile 1 unilaterally deviates from strategy µ̄∗1 and
signals instead using µ1 such that the signal probabilities
remain the same. Then by the Result 1 mobile 1 gets
lesser than before. If now µ1 is such that even the signal
probabilities are different from p̄S1 then the payoff of the
mobile 1 is further reduced as is seen from (16), as now it
is possible that q1(µ1, s1) < 1 for some values (note that
(1− q1(µ1, s1)) fraction of the time channel is allocated to
a cooperative mobile) and the rest steps are as in the proof
of Result 1 stated next. �

We would like to emphasize here that the BS calculates
m∗1,m

∗
2 of the above theorem using µ̄∗ irrespective of the

strategies actually used at the mobiles.
Result 1: Say all mobiles other than 1 use their ’best’

strategies, i.e., mobiles m with m > 1 use strategy µ̄∗m.
Also assume that BS uses the policy in(16). The payoff of
mobile 1 is maximized with its ’best’ strategy µ̄∗1, when its
signal probabilities are restricted to p̄S1 .

The proof of this Result uses similar constructions as
before and is available in [11], [12]. �

CONCLUDING REMARKS

We studied centralized downlink transmissions in a cel-
lular network in the presence of noncooperative mobiles.
We modeled this as a signaling game with several players
controlling signals and where the BS serves as follower.
In absence of extra intelligence, only babbling equilibrium
is obtained, at which both the BS and the noncooperative
players make no use of the signaling opportunities. We then
proposed two approaches to obtain an efficient equilibrium
(TRE), both of which required extra intelligence from the
BS but resulted in the mobiles signaling truthfully. We
further showed the existence of other non efficient equilibria
at which a noncooperative mobile achieves a better utility
while the BS achieves better utility than that at a babbling
equilibrium but a lower one than that at a TRE.

We see several avenues open for further research on
scheduling under noncooperation. We recall that we assumed
that a player is either cooperative or not. What if the player
can choose? Preliminary research show that there is no clear
answer: it depends on the channel statistics of the player as
well as that of others. Another related question: what if the
BS does not know whether a mobile cooperates or not?

Finally, it should be clear that our approach is applicable
not just to wireless networks, but is equally applicable to
other resource allocation situations as for example in wireline
networks.
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