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Abstract

We consider the problem of subspace estimation in situsitidrere the number of available snapshots
and the observation dimension are comparable in magnilmdeis context, traditional subspace methods
tend to fail because the eigenvectors of the sample caoelatatrix are heavily biased with respect to the
true ones. It has recently been suggested that this situ@tioere the sample size is small compared to the
observation dimension) can be very accurately modeled hgidering the asymptotic regime where the
observation dimension/ and the number of snapshats converge tot-oo at the same rate. Using large
random matrix theory results, it can be shown that traditi@ubspace estimates are not consistent in this
asymptotic regime. Furthermore, new consistent subspstceae can be proposed, which outperform
the standard subspace methods for realistic valuéd @nd N. The work carried out so far in this area
has always been based on the assumption that the obsesvatmmnandom, independent and identically
distributed in the time domain. The goal of this paper is topmse new consistent subspace estimators
for the case where the source signals are modelled as unkdetenministic signals. In practice, this

allows to use the proposed approach regardless of thetisttiproperties of the source signals. In
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order to construct the proposed estimators, new techrésalltis concerning the almost sure location of
the eigenvalues of sample covariance matrices of Infoongilus Noise complex Gaussian models are

established. These results are believed to be of indepeiderest.
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Notation: Matrix (resp. vectors) quantities are denoted by boldfazaguital (resp. lower case) letters.
The N x N identity matrix is denoted aky. Trace and spectral norm will be denoté&d|-] and ||-||
respectively, an(ﬂ]T and[-]H represent the transpose and the conjugate transpose. &av avge denote
by Int(U/) and ol its interior and boundary respectively. Given a complex bham, Re (z) andIm (z)
denote its real and imaginary parts respectivély, stands for complex conjugation andlenotes the
imaginary unit. The upper complex half plane is denotedChy, i.e C; = {z € C : Im(z) > 0},
and equivalentlyC_ will denote the lower complex half plane. Similarlg, and R_ represent the set
of all positive real numbers and the set of all negative reahipers respectively. We will also write
R* = R\ {0} andC* = C\ {0}. For a given contou€ on the complex plandnd¢(¢) will denote the
index of the contour with respect to a pofne C. The support of a particular functionwill be denoted
assupp (¢), andC(R, R) will represent the set of compactly supported real-valumdath functions

defined onR.

. INTRODUCTION

Subspace estimation methods have been widely proposedliiplm@pplications of communications
and signal processing, such as direction of arrival (DoAjretion [1], beamforming[]2], channel
identification [3], waveform estimation[4], and many otlgemeral parametric estimation problems based
on multivariate observations|[5]. In general terms, thdgerdhms are applicable to the situation where a
number of parameters needs to be extracted from a set ofvaridtie observations, which are composed
of a noise part, with full-rank empirical correlation mairplus a signal contribution that has low-rank
empirical correlation matrix. By exploiting the inherenthlmgonality between the signal subspace (i.e.
the subspace spanned by the columns of the signal empidcalation matrix) and the noise subspace,
one can try to extract the original parameters from the setoidy observations. In general terms, the
resulting estimators are computationally much more afiblel and hence are generally preferred over
other estimators such as those based in the Maximum LikadililIL) principle, which generally perform
better but unfortunately involve an exhaustive search inudtirdimensional parametric space.

In order to formulate a generic subspace estimator, onefinstdnfer the eigenvectors of the correlation

matrix of the observation. This is generally difficult, basa the correlation matrix of the multivariate
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observation is generally unknown. In consequence, clalssitbspace estimation methods make use of
the empirical correlation matrix, and approximate the eigetors of the true correlation matrix as the
eigenvectors of the sample estimate. This procedure islgleptimal when the number of observations
(denoted byN) tends to infinity while the observation dimension (denobgd)) remains constant.
Indeed, under certain ergodicity assumptions, wién— oo for a fixed M, the sample correlation
matrix of the observation converges almost surely to the toe, and consequently whén >> M

the sample eigenvectors (i.e. the eigenvectors of the saogtelation matrix) tend to be very good
representations of the true ones. In practical applicafibowever, the number of available observations
(V) and the observation dimensioM{ are comparable in magnitude, which leads to strong disecreps
between the sample eigenvectors and the true ones. Thisaigg what is usually referred to as the
breakdown effect of subspace-based techniques [6].

The fact that sample eigenvectors are not the best estisnafothe true ones has been known for
decades, although the study of valid alternatives to thes@al estimators has been limited by the fact
that investigations basically concentrated on the regirher&/N >> M. However, it has been recently
suggested 7] that finite sample size situations (wher&bgnd M are comparable in magnitude) can
be better examined by investigating the asymptotic regimeshich A/ and N converge to+oco at the
same rate, i.eM, N — +oo, whereascy = % converges towards a strictly positive constant. Using
Large Random Matrix Theory (LRMT) results, it was shown[ifj {fat traditional subspace estimators
are asymptotically biased in this asymptotic regime. Farrtiore, consistent estimators for this regime
can be found, which outperform the traditional ones foristiahl values ofM and N. In this context,
LRMT can be very useful (1) to characterize how the samplereigctors differ from the true ones in
a scenario wherd/ and N are comparable in magnitude and (2) to derive alternatitienators of the
eigenvectors that converge, not only wh&n— +oo for a fixed M, but also whenM, N — +oo at
the same rate. This was more extensively demonstrated an@]9], which respectively considered the
characterization of the sample eigenvectors whenV — +oc at the same rate, and proposed alternative
consistent estimators for these quantities in the new astiopegime.

Unfortunately, the work in[[8] and_[9] cannot be applied t@ thignal plus noise model considered
here, unless the observations are random multivariate tigjeanthat are Gaussian, independent and
identically distributed in the time domain. In practice waver, there are multiple applications in which
the observation does not present this structure, and igrbetbdelled as a deterministic component
(corresponding to the signal part) plus some additive ndiss is generally Gaussian distributed. This

model is usually referred to as the “information plus noiselei” in the LRMT literature[[10], as opposed
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to the more classical “sample covariance matrix model [1fich was the one used inl[7].I[8].1[9].
The main objective of this paper is to propose improved sabtspestimators for the information plus
noise model, which will represent the case where the sougrsls are as non-observable deterministic
sequences. In order to obtain these estimators, new maticahrasults related to the almost sure location
of the eigenvalues of the empirical covariance matrix of aisS&n information plus noise model are
derived. These results are believed to be of independesresit

The rest of the paper is organized as follows. Sedfibn Ibohices the information plus noise model
associated with the specific application addressed hezeddétermination of multiple directions of arrival
(DoA) using an array of antennas. The main objectives of thpep in mathematical terms are also
formulated. Sectiofilll provides some general facts relatethe convergence of the eigenvalues of the
empirical correlation matrix for the information plus neisnodel. It is further explained in SectiénllV
that the eigenvalues of the sample correlation matrix tencbhcentrate around some clusters when both
M, N — +oco at the same rate. A very simple description of the positiothete asymptotic eigenvalue
clusters is also provided. It is in particular shown thatreeloster is associated with a set of consecutive
eigenvalues of true covariance matrix of the observati@ttiSn[V presents an intermediate result that
has its own interest. In brief, it is shown that, for suffidlgnarge M, N, with probability one no
eigenvalues of the sample correlation matrix will be lodateitside the asymptotic eigenvalue clusters.
Furthermore, the number of sample eigenvalues that aréelbd@meach of these clusters is directly related
to the dimensionality of the corresponding eigenspace eftthe covariance matrix. In order to focus
on the applicative context of the paper, this claim is prof@dthe cluster associated with the noise
subspace, but it can be extended easily to the other cludteis fact generalizes the results derived in
[12] and [13] in the context of source signals independeantidally distributed in the time domain.
In contrast with [[12] and[[13], the results presented in thégper, inspired by the approach developed
in [14], are only valid in the complex Gaussian case. The abmentioned results are then used in
Section[V] in order to derive an estimator of the localizationction of the subspace estimate that is
consistent not only whetv — +oco for fixed M, but also whem/, N — 4oc at the same rate. Section
VITprovides some numerical examples that illustrate tHeativeness of the proposed estimators. Finally

SectiorL V1Tl concludes the paper. Most of the technicalwdgidons have been relegated to the appendices.

The results of this paper have been partly presented in thet sbnference paper [115].
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[I. PROBLEM STATEMENT

In order to motivate and illustrate the signal model thatsediin this paper, we consider the following
DoA estimation problem. Assume th& narrow band deterministic source signals,),—; . x are
received by an antenna array df elements, K < M. The correspondind/ dimensional observation

signaly,, (at discrete timex) can be mathematically described as
Yn = Asn + v

whereA = [a(6,),...,a(fk)] is an M x K matrix that contains the steering vectors of thiesources,
s, is a K x 1 column vector containing the transmitted signals from iesources at time instant,
and wherev,, is an additive Gaussian white noise component with zero naahcovariance matrix

E [v,vE] = o). We assume thay, is available fromn = 1 to n = N, and thatM < N, or

n

equivalently thatey = % is strictly less tharl. It is possible to generalize our results to the situation

wherecy > 1, although the presentation of the corresponding resultsldvbowever complicate the

developments of the present paper.

We denote byY y = [y1,...,yn] the M x N observation matrix, which can be readily written as
Yy =ASNy+Vy 1)
whereSy = [s1,...,sy] andVy = [vy,...,vy]. From this matrix, we can define the empirical spatial

correlation matrix of the observation Rsy = %YNYH, whereas the empirical spatial correlation matrix
associated with the noiseless observation will take the f%rASNS]HVAH. It is worth pointing out here
that, since the number of signals is assumed to be lower tmumber of antennas<(< M), the
steering matrixA will always be a tall matrix and therefore the empirical sgatorrelation matrix of
the noiseless observation will never be full rank. In otherds, the minimum eigenvalue of the matrix
%ASNSEAH will always be zero and will have multiplicity equal ttf — K.

In order to simplify the notation in the subsequent expositwe define the matricesSy, By, Wy

as
Yy ASy Vi
Yy =—, =—— Wy=— 2
so that[(1) can be equivalently formulated as
Xn=By+ Wy (3)

whereX y is the (normalized) matrix of observatio8,; is a deterministic matrix containing the signals

contribution andW  is a complex Gaussian white noise matrix with i.i.d. enttiedt have zero mean and
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variances? /N. We denote by[Ty the orthogonal projection matrix on the “noise subspacdictvin our
context is defined as the orthogonal complement of the colspace of matrixA. In the following, we
assume that the empirical correlation matrixSof defined by%SNS]HV is full rank. Therefore, the noise
subspace coincides with the kernel of the empirical caiielamatrix of the noiseless signal, namely
ByBE.

Let {y,iN) }k denote the eigenvalues of the empirical correlation matrbe signal component,

=l1,...,

namelyB yB%, arranged in increasing order and {ﬁ,gN)}k o denote the corresponding unit norm
eigenvectors. We note in particular th@ﬁm =...= WJ(VJ[V_)K = 0 while the remaining eigenvalues are

strictly positive and thally = S2M 5 (V) (e,iN)>H. The subspace method for the determination of
the K directions of arrival (commonly referred to as MUSIC algfom) is based on the observation that
the angles{6},_, _j coincide with theK solutions of the equatioa(d)”TIya(f) = 0. In order to

be able to use this last observation, it is in practice necgs® estimate the functioa()”TIya(6)
(usually referred to as the “localization function”) forokef) € [—, 7], or more generically to estimate
the quantity

nn(b) = bAIIyb

for each deterministid/-dimensional vectob.
If N — +o0o while M is fixed, the empirical correlation matrix of the observai® y = ENE% of

Yy converges towards the matRy = BNB% + 021,/ in the sense that
”RN — (BNB% +02Iy)|| = 0 as. (4)

where a.s. represents the almost sure convergence. Weenditel by{&,gN)}k the eigenvalues of

=1,..

Ry arranged in increasing order and {)&,gN) }k y the corresponding eigenvectors. The convergence

geaey

result in [@) implies that for eadh, 7179 (a(6)) —nn(a(f)) — 0 a.s. wherened(a(0)) is the traditional

estimator of the localization function defined as
M—K

@) = 3 a’ @ ()" a). ©

k=1
In practice, predictions provided by the asymptotic regtneresponding to lettingv — +oo for fixed

M are reliable only ifN is much larger thard/. However, this assumption may be quite restrictive in a
number of important application contexts.Mf and N are comparable in magnitude, then the asymptotic
regime described by letting/, N — +oc in such a way thaty = % converges towards a non zero
constant appears to be more relevant. In this regime, thavilhof various classical estimates are

more complicated, and have to be studied carefully. In @alet, it can be shown thag;*?(b) — ny (b)
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does not converge t6 when M, N — +oo , which implies that the standard MUSIC estimates are
not consistent under this new asymptotic regime. The perpbshis paper is to introduce an improved

subspace estimatg" (b) of ny(b) for each deterministic vectds. The main feature ofj3(b) is

to be consistent ifV/, N — +oc in such a way thaty = % converges towards a non zero constant
value. In order to achieve this, we will heavily rely on resukelated to the asymptotic behavior of the
eigenvalue distribution of the empirical correlation mafR . It is however useful to mention that it is

not established that

sup |7y (a(f)) — nn(a(9))] — 0 (6)
oe[—m,m]

almost surely, a useful, but stronger property. We feel thatproof of [6) would need mathematical

technics different from those which are used in the presapep

[1l. PROPERTIES OF THE ASYMPTOTIC EIGENVALUE DISTRIBUTION OF MARIX f{N

In this section, we will review some of the important propstrelated to the asymptotic behavior of
the eigenvalue distribution of the empirical correlatioatrix Ry when M, N — +oo in such a way
thatey = % converges towards a non zero constant, which will be deragegl. This implies that the
observation dimensio/ in principle depends oV, and should be denotet (). We will however
drop this dependence aN in order to simplify the exposition. Whenever it is clearrfrdhe context,
we will also drop the dependence on the number of snaps¥idtsmatricesX v, By, Ry, eigenvalues

X§N>,. . ;\gé}/) and%N),. .. ,7](\]4\[), as well as eigenvectors.

Remark 1. From now on,N — oo will implicitly denote the limit as boti/, N — +oc such that%

converges towards a non zero constapntwhere it is assumed thét< c, < 1.

Remark 2. All results that are presented in this paper are equally dakgardless of the behavior of
the number of sourceK when N increases. In other worddS may scale up withV, or it may stay

constant regardless av.

From now on, we assume that the spectral norms of matflB&s x> remain bounded wheN — oo,
i.e. it existsb,,q.. > 0 such that

sup |IBy || < bmazr < 00 (7)
N>1
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The eigenvalue distribution dR y is characterized by the empirical distribution functionitsfeigen-
values, namely

Fx(\) = %card{x,(jv) AN <N k=1, M}

wherecard denotes the cardinality of a set. For eack R, the functionFN()\) gives the proportion of
the eigenvalues oR which are lower than or equal th. Its associated probability measure, denoted
in, is given bydiy(A) = ﬁzﬁilé(k — S\ECN)) and is carried byR,. In order to characterize the
asymptotic behavior ofiy, it is in practice quite common to characterize the asynipto¢havior of its
Stieltjes transform. Ifu is a positive finite measure (i.@(R) < oo), the Stieltjés transform of; is the

function ¥, of complex variable defined as

_ [ de(N)
¥, () = [ 5 ®
We recall the following well-known properties of the Stieédt transform, which will be useful in the

mathematical developments throughout the paper.

Lemma 1. Let ¥, be the Stieltjes transform of some positive finite meagufiee. 1(R) < oo), and let

us denote as5, its support. Then,
1) ¥, is holomorphic onC\S,,.
2) limy 400 —iy¥,(iy) = p(R)

3) Vz € C\R,
1(R)
U, (2) <
wherelm(z) denotes the imaginary part af Moreover,vz € C\S, it holds that
1(R)
< 7
u(2)] < dist(z,S,) ©)

4) v, e Cpif ze Cy, whereC, is the upper complex half plane.
5) If p is carried byR,, thenzV,(z) € C4 if z € C,.
6) Conversely, if’ is a function analytic inC satisfying
e U(2) and z¥(z) belong toC, if z € C4
o sup,.q [iy¥(iy)| < +oo
then, ¥ is the Stieljés transform of a positive finite measure carg R .

7) Vo € C°(R,R), (the set of compactly supported real-valued smooth fanstdefined orR), we

have

/[R(P(A)d,u()\) = %lﬁg Im {/ue ()W, (z + iy)dx}
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Having recalled these basic properties of the Stieltjessfam of a positive finite measure, let us
now go back to the asymptotic characterization of the ewwgdinmeasuregiy or, quite equivalently, its
Stieltjés transform, which is defined fere C — R, as

M
) dav(\) 1 5 1
m Z) = = — — . 10

It is worth pointing out thati(z) can be expressed as the normalized trace of the resolvenkmat

which is a matrix-valued function defined as

Qn(z) = (RN . zIM)_l 0T > S (11)

namely iy (z) = & Tr [Qn(z)]. Except [IB), the following results can be more or less imatety

derived from [10] (see alsa_[16])

Theorem 1. There exists a deterministic probability distributipny carried by R, such thatiy — pun
converges in distribution almost surely towardlsvhen N — co. The measure:y, referred to in what

follows as the asymptotic eigenvalue distribution of maRiy, is characterized by its Stieltjés transform

mpy(z) as
dpn(A)
my(z) = —_— (12)
N( ) Ry /\ —Z
which is a solution of the equation
-1
_ i _ 2 201 _ BNB%
my(z) = MTr [ z(1+oeymy(2)Iy +0°(1 — en)Iy + T+ oZeymn (2) (13)
for eachz € C — Ry. Let Ty (z) be theM x M matrix valued function defined db — Ry by
ByBZ 17!
| 2 201 N
Ty(z) = [ z(1+o%eymy(2)Iy +0°(1 — en)Ip + i U2CNmN(Z):| . (24)
Then, T y(z) is holomorphic onC — Ry. Moreover, almost surely,
lim (mn(z) —my(2)) =0 (15)

N—oo

for eachz € C—R. Finally, for eachA/—dimensional deterministic vectans,, vy such thatupy ||[uy|| <

oo andsupy ||[vy| < oo, it holds that almost surely

lim ul (Qn(2) = Tn(2) vy =0 (16)

N—o0

for eachz € C — Ry.

Proof: Convergence ofiy — uy towards0 as well as the fact thatiy(z) is a solution to[(IB) is
due to [10]. As for the result if(15), it is a well known conseqce of the convergence ofy — un

towards0. (18) is proved in the AppendiX F. |
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Theorenll is pointing out that the entries of the resol@nt(z) are almost surely asymptotically
close to the entries of the deterministic matrix functiins (z) (this statement follows from_(16) by
selectinguy andvy as two columns ol ,); and that its normalized traceé;(z) as defined in[{10),
is almost surely asymptotically close oy (z), one of the solutions to the polynomial equation[in] (13).
Furthermore, the random meastirg is also almost surely equivalent (in distribution) to théedministic
measureuy in this asymptotic regime.

We denote bySy the support of this measurey, which will play a very important role in the
following. The characterization ofy has been first presented in [17], and is based on the study of
the properties of functiomn (z) which, since it is a Stieltjés transform, is holomorphic ©\Sy and
real-valued orR\Sy. In order to characteriz8y, we will also consider the functiomy(z), introduced

in [17], defined frommy(z) as follows
wy(z) =z (1+ c;’zc]\/mj\/(z))2 —*(1 —en)(1 + d?enmpy(2)). a7

It will be seen later on that the functiany (z) has very interesting properties that will be crucial for the
derivations in this paper. In particular, we will show in ttedlowing that the support ofiy, namelySy,
is in fact equal to the support of the imaginary partua§(z) when z approaches the real axis. Thanks
to this fact, we will be able to characterize the supp®it by studying the properties aby(z) for z
on the real axis.

The next proposition provides some preliminary propertésny(z) andwy(z) that will become
useful in the following sections. Most of these properties astablished in [17]. We will denote by

fn(w) the function onC — {v1,...,va} defined by

1 —1
fu(w) = —Tr [(BNB{% — wly) }
which coincides with the Stieltjes transform of the eigdaealistributionvy (d\) = % 224:1 (A=)

associated with the signal matByB%.

Proposition 1. The following properties hold:
1) The conditioncy < 1 implies that0 does not belong t& .
2) For eachz € R, lim.cc, .-, mn(2) exists, and will be denoted y (). The functionny(z) thus
defined is continuous o6+ UR, and continuously differentiable o, UR — 0Sy. Moreover, for
eachz € R, lim,c¢c_ ., mn(z) exists, and is equal tomy(x))*. The measurgy is absolutely

continuous, its density i$Im(my(z)), and the interiorInt(Sy) of Sy is given by
Int(Sy) = {z > 0: Im(my(x)) > 0} (18)
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3) Foreachx € R, lim_.cc, .-, wn(2) exists, and is still denoted byy (x). The functior: — wy(2)
is continuous orC; UR, and is continuously differentiable db, UR — dSy. Moreoverwy (x) =
z (1+ UZCNmN(l‘))Z —0%(1 —en)(1 + o?eymy (). Finally, lim,cc_ .z wy(2) = wy(z)*.

4) wy(z) does not belong to the s@ﬁm, . ,fy](\]f)} if z € R—Sy.

5) Im[wy(2)] > 0 if Imz > 0.

6) Re [1+ cyo®my(z)] > 0 for eachz € C.

7) For anyz € R — Sy, the functionmy (z) is solution of the equation if(13)

8) For anyz € R — 0Sy, the functionwy () is a solution of the equation
on(wn(z)) == (19)
where¢y (w) is defined by
on(w) =w (1 —eno®fy(w)® + (1 = en)o?(1 — eno® fn(w)) (20)

Proof: Property[l is not established in_[17], and is proved in Appe#d As for Property[2, the
existence of the limit ofny (z+1iy) is proved in[[17] forx # 0 becaus€ [17] did not assume that < 1.
However, Property]1 implies immediately that the limit égif = = 0 becauseny(z) is holomorphic
in a neighborhood of the origin. The continuity and the déf&iability of z — my(z) is established in
on R* andR*\dSy respectively, but it also holds dk andR\dSy by Property 1L and the fact that
mp(z) is holomorphicC\Sy. Sincemy(z) is the Stieltjes transform of a positive measure, it is clear
that my(2*) coincides withm’,(z). This implies immediately thalim, ¢ o my(z + iy) = mjy(x).
Finally, (18) is a direct consequence of the continuityzof> my(z). Property(8 follows directly from
Property[ 2. Propertids 4 andl 5 are established ih [17]. A$foperty(6, it was initially proven if [17]
for z € C*, but it can be shown easily that it holds fer= 0 using Property]1 as well as the proof of
Lemma 2-1 of [1V]. Finally,[[1]7] established thaty (x) is solution of [1B) ifz € int(Sy). This also
holds if z € C\Sy because by Propertie$ 4 did 6, the right hand side_of (13)lasrioophic onC\Sy .
Sincemy(z) is itself holomorphic orC\Sy, the equality in[(ZB) must hold not only db\R, but also
on C\Sy. Recalling thatSy is a closed set, all this implies thaty (x) is solution of equatior .(13) for
x € R\OSn.

Let us finally establish Properfy 8. Thanks to Propefties é#[Zmand to [(IB), we can write

my ()
1+ o2enmy(z)

= fy(wn(x)) (21)
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for eachz € R\OSy. This last equality can be rewritten as

1
" 1+ o2eympy(x)

1—o%ey fn(wn(x)) (22)

where the right hand side is well defined thanks to Progértyddv, plugging [(22) into[(1]7), we obtain

that, forz € R\0Sy, wy(z) is a solution of the equation
on(w) =z (23)

where function¢y (w) is defined in [(2D). In other words, the functieny (z) satisfies [(IB) for each

x € R\OSny. [ |
Propositior 1L is establishing the fact that bath; (z) andwy(z) are well defined when approaches

the real axis, and thatiy(z) andwy(z) can be determined as one of the solutionsfd (13) (19)

respectively for anyr € R\0Sy. In the next section we will establish some properties tinaracterize

wy (z) out of the set of all the solutions df {(19), and this will inrinelp us in the characterization of

the supportSy.

IV. AN ALTERNATIVE CHARACTERIZATION OF Sy

In this section we will provide a characterization of the o Sy as a simpler alternative to the
study provided in[[17]. It must be pointed out that[17] assdnthat the eigenvalue distribution of
matrix ByB4 converges to a limit distribution,(d)\), and showed thapy converges towards a
probability distribution ... Its Stielties transformm,, is solution of [IB), but in which the discrete
measure/y (d\) = Z;‘il I\ — 7,(€N)) is replaced by measute,(d)), i.e.

A _1
1+ o2eymy(z2))

Meo(2) = / [—z(l + o%enmn(2)) + 0?1 —ey) + Voo (dA).

In [17], a detailed analysis of the suppdif, of u., was presented. The corresponding results provide
of course a characterization &y by replacing the general probability distribution,(d\) by the
discrete measurey (d\) = ; Z;‘il SN — yliN)). However, we show in the following that it is possible
to reformulate the results of [17] in a more explicit manngrthking into account immediately that
% Z;‘il 5(/\—7,(€N)) is a discrete measure. We hope that the following analyasedbon quite elementary
technics, is easier to follow than the general approach @f [1

Our approach is based on the study of the functigp(z) that has been introduced in {17). We have
established in Propositidd 1 thaty(z) is well defined in the real axis, and that it can be expressed as
one of the roots of the polynomial equation [n](19). Let us rem& how this function can help us in the

characterization of the suppa$ty.
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Proposition 2. The functionwy (z) defined in(I7) satisfies the following properties:
1) Int (Sy) = {z € Ry : Im{wy(z)} > 0}
2) wi(xz) >0, for x € R\Sn.
3) 1-clenfn(wn(z)) >0 Ve R\Sy.

Proof: See AppendixB. [ |

Remark 3. By taking derivatives with respect to on both sides of the equatiapy (wy (z)) = z, we
see thatw/y (z)¢)y (wn(x)) = 1 holds forz € R — Sy. Property[2 of the above proposition is thus
equivalent to

O (wy(z)) > 0if x € R\Sy. (24)

Property[1 in Propositiohl 2 is basically stating the fact the interior of the suppor§y coincides
the region of values oR . for which the imaginary part ofvx () is strictly positive. Hence, it suffices
to study the behavior dfin [wy (z)] in order to characterize the interior of the supp®it. On the other
hand, we know from Properfy 8 in Propositian 1 that, for any R\0Sy, wy(x) is one of the solutions
to the polynomial equation in_(19). Propositibh 2 is helpigyto identify which one of the roots is in
fact wy(x). More specifically, we will later show that:

o If x € Int(Sy), thenwy(z) will be the unique root of[(19) with positive imaginary ;Earthanks

to Property[11.

o If x € R\Sy, thenwy(x) will be the unique root of[(19) such that Properfiés 2 Bhd 2lhol

In order to establish the fact that these properties comigleletermine the value aby (x) out of the
set of roots of the equation ib_(19), we need to study the fofhe functiong in (20) more closely.
The analysis of the roots of the corresponding equatiof @ ill allow us to determine the intervals

of R for which wy (x) is real-valued and the intervals in which it has a strictlgifiee imaginary part.

A. Characterization of the functiony (w)

In the following, we assume that ti€ non-zero eigenvalues of the matidq BZ, namely{fy](év_)KH, . ,fyj(vjlv)},
have multiplicity 1. Under this hypothesis, the equation [n](19) is in fact eagjent to a polynomial
equation of degre2(K + 1). This can be readily seen by using the expressiofixgfw) in (20), so that

The existence and unicity of such root will be establishesvirat follows.
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we can expressy(w) as sums of quotients of polynomials in i.e.

M 2
M—KCN CN 1
= 1 2 N 22N
on (w) “’(J”’ M w M > fym—w>
m=M-K+1
M-Ke c M 1
1— i+t 2 S . 25
+ q”“( TN W M SR— (25)
m=M-K+1

Hence, multiplying both sides of equati@ny (w) = = by 101_[7]5:]%_%rl (Ym — w)2 we end up with
a polynomial equation of degre¥K + 1). If certain eigenvalues aByB% are multiple,py(w) = =
will be a polynomial equation of degreé K + 1) where K represents the number of distinct non zero
eigenvalues oB yBXL. The following results can thus be immediately adapted pjagng K by K. The
assumptionk = K allows to avoid the introduction of new notations represgnthe distinct eigenvalues
of ByBY in the forthcoming analysis.

1) Zeros of ¢n(w): It is easily seen that the functiopy has exactly2K + 2 different real zeros,
which will be denoted asz(()N)_ < zéNH < ... < Z%\/)_ < zﬁ{NH. An elementary analysis of the
function ¢y determines the position of these zeros, as well as the bwhakithe functiong (w) in
their neighborhood:

o The lowest couple of zeros are located on the negative rés)| lan(merz(()N)_,zéN)Jr € ]—00,0[.

Furthermore, the functiody is increasing at((]N)_ and decreasing aéNH, namelyg’y (z((]N)_) >
0 and ¢’y (z((]N)+) < 0, where¢'y denotes the derivative afy.

« The next couple of zeros are located between zero and thepdisitive eigenvalue oByBY, i.e.
z§N)_,z§N)+ € }O,fyj(vjlv_)KJrl [ and it turns out that the functiony is decreasing aing)_ and
increasing a’rz§N)+, namely ¢’y (zyv)—) < 0 and¢y (z§N>+) > 0.

« Each one of the remaining couples of zeros is located bettweemositive eigenvalues d8 yB4
Lie 2N A ¢ ]WI(VJIV_)KM_l,y](VJIV_)KM[, V k = 2,...,K, and the functionpy is always
decreasing at the first zero and increasing at the seconebf]\j.éz,im_) < 0 and¢’y (z,gNH) > 0,
Vk=2.. K.

In order to obtain these results, one only needs to fagtarw) as the product of two terms, namely
(bN(w) = [1 — CNO'2fN(’LU)] [w (1 — cNasz(w)) + (1 — CN)O'Z] (26)

and thereforep (w) = 0 if and only if one of these two terms is zero. Out of th& + 2 zeros of the

function ¢y (w), a total of K + 1 are the zeros of the first term in_(26). More formally:

« The second zero, nameb)ng)Jr, is solution of the equatiol — o2cy fn(w) = 0.
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o The zerOSz,gN)_ for k=1,..., K are the solutions of the equatian- o%cy fx(w) = 0.

This allows us to differentiate between intervals of thel s wherel — o%cy fy(w) > 0 and
intervals wherel — o2cy fn(w) < 0, namely
« The functionl — o2cy fy(w) is positive on the intervals

J =00,z [, nyz(év‘)KJrk‘l’Z’(fN)_{}k:L...,K' }’Y](VJIV)’—FOO[' (27)

This last fact is important, because we know from PropEltyf Pmposition[2 that, when: does
not belong to the suppoiy, the solution of the equationy(w) = = corresponding tavy (z) will
be such thatl — o2cy fy(wn(z)) > 0, and therefore will be located inside of one of these intsrva
In Figure[1 we give a typical representation of functiof (w) in a situation wherek = 2 (we drop
the dependence oN in all quantities in the figure to simplify the representajioThe functiong (w)
presents horizontal asymptoteswat= 0 and also at the values of the positive eigenvalueBeB4,

namely{fyj(vjlv_)KH, o ,fy](\]f)}. The region of the horizontal axis whete- o2cy fy(w) > 0 is shaded

in grey.

R A

Figure 1. Typical representation gfy (w) as a function ofw for K = 2 and Q = 2 (we drop the dependence aw for
clarity). The shaded region in the horizontal axis represgre set of points for which — o%cy fa(w) > 0. The shaded region

in the vertical axis representSy .
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2) Local extrema and monotonicity intervals of ¢x(w): Next, we investigate the local extrema of
the function¢y. The following proposition summarizes the most interestimoperties of the positive

local extrema.

Proposition 3. 1) The functiongy admits 2QQ positive local extrema counting multiplicities (with

1 < Q < K +1) whose preimages, denoteéN)_ <0< w&NH < wéN)_ . < wgv)_ < wgVH,
belong to the sefw € R : 1 — o?cy fv(w) > 0}

2) If we denote by:!™"™ = ¢ (w,iN)_) and 2" = ¢y (w,iNH) these positive extrema, then

0< ng)_ < ngH < ng)_ o< x(QN)_ < x(QN)+ (28)

3) Each eigenvalueyl(N) of ByBY belongs to one and only one of the interv%&s}lm_,w((ZN)Jr [

g=1...Q.
i i i i i _ (N)— M+, (N)—
4) The functiongy is increasing on the mterval% 00, Wy } {[wq Wi ”quQ—f and

[wgv”, —I—oo} . Moreover,

o (]-oouf™]) = ]-oo.a™]

N ([ng”,wéﬁ_D = [x((]NH,x((]]R_] for eachg=1,...,Q — 1, and

N ([wéNH,—i-oo D = [x(QNH,—Foo[.

Proof: Except for the inequalities i_(28), which are proved in Apgi [, the statements of
Propositior B follow directly from an elementary analysfstee functiongy . |
We see from Proposition] 3 that the local extrema always apipegroups of two, and the actual
number of extremum couple§)} will generally depend om?, ¢y and on the positive eigenvalues of
the matrix By BX. For example, in the situation represented in Figure 1, thaber of positive local
extrema was equal to four, which implies th@t= 2. In Figures 2 and]3 we depict other equivalent

examples ofpy, for which we had@ = 1 and @ = 3 respectively.

B. Characterization ofvy(x) out of the roots oty (w) = =

We know from Propositionl1 that v (x) for real valuedr will be a solution of the equatiofiy (w) = .
In this section, we will characterize which one of these sost actuallywy (z). First of all, observe
that, since the equationy(w) = x is equivalent to a polynomial equation of degrads + 1), the
number of solutions (counting multiplicities) will alwayse equal ta2(K + 1). Out of these solutions,

we can graphically find the real-valued ones by exploring dfessings between the graph of (w)
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Figure 2. Typical representation gfy (w) as a function ofw for K = 2 and@Q = 1 (we drop the dependence g% for
clarity). The shaded region in the horizontal axis represée set of points for which — o?cx fv (w) > 0. The shaded region

in the vertical axis representSy .

and a horizontal line at. This is further illustrated in Figurgl 4. By the propertiekthe function
on(w) presented in Sectidn IVAA, we can clearly differentiatewesn two different situations:

o If z ¢ ngl x,(fN)_,x,gNH , it is easily shown that the equatiafy(w) = x presents exactly
2(K + 1) different real-valued solutions (cf. upper horizontaklim Figure[4). Since the original
equation has degre¥ K + 1), there are no complex-valued solutions. In particulay,(x) will be
real-valued.

e lfzelUl, x,gN)_,m,iN)+ , in what follows, it will be shown that the equatiafiy(w) = = has
exactly 2K different real-valued solutions (cf. lower horizontaldim Figure[#). This implies that

there is a couple of complex conjugated solutions to the tamuay (w) = =.

Let us now see how we can completely charactetiz€x) in these two different situations:

1) Case = € R\ ngl [x,gm‘,m,@ﬂ: From (24) and Property] 3 of Propositidh 2, we know that
wy () is a root of the equationy (w) = = such thatyy (wy(x)) > 0 and thatl —o?ey fy (wn(z)) > 0.
We now prove that this completely characterizeg(x) out of the set of all roots oy (w) = =, in

the sense that there is only one root@f(w) = = that has these two properties. We first consider
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Y i
AWy

Figure 3. Typical representation gfy (w) as a function ofw for K = 2 and Q = 3 (we drop the dependence aw for
clarity). The shaded region in the horizontal axis represgre set of points for which — o%cy fa(w) > 0. The shaded region

in the vertical axis representSy .

the caser < ng)‘. By Property[# of Propositiohl 3y is an increasing one to one correspondence

from }—oo,w%N)_ { onto} —oo,acgN)_ [ Its inversequ‘\,1 is thus a well defined increasing function from
}—oo,ng)_[ Onto}—oo,ng)_ [ We claim thatwy (x) coincides with¢y'(z). Indeed, observe that
sincegy! (z) < wi™ ™, we automatically have)y (¢! (z)) > 0 and thatl — o2cy fy (¢5 () > 0. On
the other hand, the behavior ¢fy established in Proposition$ 2 and 3 implies that the othervalued
solutions of¢y(w) = = do not satisfy eitheil — o?cy fn(w) > 0 or ¢y (w) > 0 (see further Figures
[ to[3). Thereforewy (x) can be expressed as;'(z), and is the only root oy (w) = = such that

1 —o%enfn(w) >0 and gy (w) > 0.
N+ (N)-

The above analysis can be extendedribelongs to |z, ",z 1 | for k = 1,...,Q — 1 or if
z > 25", Indeed, observe first thaty is a bijection betwee w,(fN)Jr,w,(ﬁ)l_[ and]x,(CNH,:n,(fPl_

fork=1,...,Q — 1 and betweeri wé?N)+,+OO|: and]wé?N)+,+OO { Hence,¢j\,1 is well defined on
x,(CN)J“,m,(jPl_ fork=1,...,Q0—1and on] ac(QNH, 400 { Thanks to the form of the functiosy, we
see thatp, (=) is the only root that verifies — o%cy fx(w) > 0 and ¢y (w) > 0 (see further Figures

[ to [3), and this implies thaiy(z) = ¢5'(z). Sincewy () is continuous onR, we also get that

wN(x,gN)_) = w,(CN)_ as well aSwN(w]E:NH) = w,iNH fork=1,...,Q.
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_

on(w) =

Figure 4. One can find the real-valued solutionsgto (w) = x by examining the crossings of the graph; (w) with a
horizontal line atz. In this particular example, wher® = 2, we see thatn (w) = = present2(K + 1) = 6 real-valued

solutions, whereasy (w) = =’ has only4 real-valued solutions (plus a couple of complex conjugatees).

2) Casex € ngl}x,iN)_,xlgNH [: In this situation, we establish that the equation(w) = = has
exactly 2K real-valued solutions, plus a couple of complex conjugatees, and thatvy(z) is equal
to the complex-value root with strictly positive imagingsgrt. We can reason from the behaviorg§
that the polynomial equationy(w) = = has at leasRK real-valued solutions located in the intervals
71(\]4V_)K+1_17Zz_ { and}z;r,fy](\y_)KH forl =1,..., K. We however note that none of them can satisfy
both ¢ (w) > 0 and1—a2cy f(w) > 0. Thereforewy (z) cannot coincide with one of these solutions.
Assume that the two remaining solutions of the equation eat wy (x) of course coincides with one
of these two solutions. The properties of functipin as well as[(2B) imply the existence of two extrema
of ¢ , denoted byz, < z/, such thatr € |z, 2/ [. Moreover, by [(ZB), the two extra solutions must
belong to an interval Zz+>71(\]4V_)K+z for i = 1,...,Q — 1. Consequently, these two solutions satisfy
1 — o2cy fn(w) < 0, and cannot coincide withvy (), which leads us to contradiction. Therefore, the
two remaing solutions are complex conjugate, ang(z) coincides the solution with strictly imaginary

part.
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C. Characterization of the suppofy

As the interior ofSy coincides with{z € Ry, Im(wn(z)) > 0} (see Property]1l of Propositiéh 2), we

have shown the following Theorem.

Theorem 2. The supportSy is given by
Q
sy =J [ M (29)
k=1

(N)+

The above analysis shows thaf')~ < z! N+ (V) (N)

<M< < zoy <y < * coincide
with the set of all positive extrema @fy. Theorem P thus establishes a very simple method to determin
the supportSy. First, one needs to determine all the local extremaof(w), namely the solutions to
the polynomial equation’y, (w) = 0. The solutions will be{ng)_,wWH,...,wgv)_,wé?NH} with
possible repetitions if one of these roots has multiplititg, plus K additional ones (it is easily seen that
¢n has exactlyK negative local minima). By evaluating the functigr; at these points, and selecting
those for whichgy is positive, we are determining the vaIu%sgN)_,ngH, e ,wgv)_,giH} that
characterize the support ih_{29). Observe that the sugheris a disjoint reunion of compact intervals,
which will be referred to as clusters. Each of these clus e@’)_,xfl}v” will be associated to an
interval of the type|w!™) ™, w7 |, ¢ =1...Q, in the sense that{")™ = ¢ (ng)—) andz{V " =
ON (wéN)Jr). On the other hand, we can also clearly see that a specifin\ag@fy,im, k=1,..., M,
always belongs to one, and only one of the interv%léN)_,ngH}. This motivates the following

definition.

Definition 1. We say that the eigenvaluéN), k=1,...,M, of the matrixBNBﬁ is associated with
the cluster[ng)_,mleH} if v\ e [ng)_,ngH].

Observe that this is not a one-to-one correspondence, isetige that multiple consecutive eigenvalues
of ByBX may be associated with the same cluster. For instance, iné{@ the three eigenvalues, (
yj(vj}[_)l and 7](\]4\7)) are associated with the same eigenvalue cluster, whildgar&[3 each eigenvalue is
associated with its own different cluster.

The first clustet{ng )_, ng )+] plays a special role because it is always associated witkigenvalue
0 of matrix ByBZ. As seen below, the main results of this paper will be validarthe assumption that
the strictly positive eigenvalues @ yB4 are not associated to the clus{eﬁN)_,ngH]. Intuitively,
this means that the eigenvalues corresponding to the noksspace are separated from the eigenvalues

of the signal subspace. Both Figlie 1 and Fidure 3 satisfyptoperty, but not Figurel 2.
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More rigorously, we assume from now on that the following diyy@ses hold.

. i (N)
: >
(As 1) 3Ny € N such thatY N € N, N > Ny, the non zero elgenvalue[Sy,C }k::M—K-i-l,...,M of

ByB4 are not associated to the first clusthrgN)_,ngH].

(As 2). 3t; > 0,t],t; € R independent ofV such that
- : (N)— (N)+ + 4 : (N)— =
;< N?vao {azl } < ]\?121]}\)[0 {:L'l } <t] <ty < ngjfvo {:U2 } VN > Ny. (30)
These two assumptions imply that for eagh> Ny, the eigenvalué of B yBZ belongs to the interval
w%N)_,ngH[ and thus to]wy (t7), wn (t7)[ becausewy(t7) < wi™™ and wy(tf) > wi™™.

Similarly, the non zero eigenvalue{Sy](\jV_)KH} of ByBY SatiSfy’y](éV_)KH > wy(t3).

I=1,...K

V. CONVERGENCE AND LOCALIZATION OF THE SAMPLE EIGENVALUES

The previous results are related to the properties of thi deterministic distribution:. The almost
sure convergence @y — .y towards 0 does not mean by itself that the eigenvalud®pbelong almost
surely toSy, or to an interval containingy. As one may imagine, it is important to be able to locate
the eigenvaluesﬂ,(fN))k:L__,M of matrix Ry with respect taSy for N large enough. Bai and Silverstein
established in[[12],[[13] powerful related results in thentext of correlated zero-mean, possibly non
Gaussian, random matrices. In the following, we establistila results for the Information plus Noise
model. However, the mathematical approach we use in thesiprggmper has no connection with the
techniques used in_[12], [13] also valid in the non Gaussiasec SinceX is assumed Gaussian, we
rather adapt to the Information plus Noise model the ideagldped in [14] in the context of Gaussian
Wigner matrices. We prove in the following two theorems whare believed to be of independent

interest.

Theorem 3. Assume that there exists a positive quanity 0, two real values:, b € R, and an integer
Ny such that
la—eb+e[NSy =0 VN e N,N > Ny (31)

whereSy denotes the support afy. Then, with probability one, no eigenvalueRfy appears in[a, b]

for all N large enough.
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Theorem 4. If Assumption§l1l and 2 hold, then, for &l large enough, with probability one,

AV e T ] (32)
Nl >ty (33)

Although Assumption§]1 and 2 depend on the deterministitiloligions .y, Theoren# shows that
almost surely, the smallest/ — K eigenvalues oy are always separated from the others forll

large enough.

A. Proof of Theorerhl3

We first state the following proposition, the proof of whichdemanding, and is detailed in Appendix

[E. The result will play a fundamental role in the proof of Them[3.

Proposition 4. Vz € C\R,, we have forN large enough,

£ |27 T Qn ()| = 3T TN+ )
with x is analytic inC — R, and satisfies
v (2)] < (2] + C)*P(|Im(z)| ") (34)

for eachz € C, where(C' is a constantf is an integer independent @f and P is a polynomial with

positive coefficients independent /gt
We now follow [18] and[[14] and prove the Lemma:

Lemma 2. Let ¢ be a compactly supported real-valued smooth function dgfmeR, i.e. ¢ € C2°(R, R).

ThelH,

1

E[MTr [¢(2NENH)]} = [, oMdun () = O(55) (35)

Proof: We first note that, by Properfy 7 in Lemrh 1, we can write

™ yl0

£ o (=vm)]| = 2t i { [ 0@ |57 Qe+ )]

as well as

y40

[ [ o ia )| = 2t [ ote) TN+ )] ao)

2By applying the functions to a Hermitian matrix, we implicitly represent the actiongobn the corresponding eigenvalues.
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Therefore, using Propositidd 4, we can express the righd Isade of [3b) as

1 1 1., .
£ o Evm]| - [ o) = gz tm m{ [ ot riar) @0
Since the functiony y(z) satisfies the inequality (84), the Appendix bf [19] impliésit
lim sup /(,D(JE)XN(ZL' +iy)dx| < C < +o0
y40 R
whereC' is a constant independent &f. Hence, [(3B) readily implies (85). [ |

In order to establish Theorelm 3, we consider a functioa C°(R, R) satisfyingd < ¢ < 1 and

1 for X € [a,b]
P(A) =
0 for Ne R—]a—¢,b+ ¢
Condition [31) implies thanyN PY(AN)duny(A) =0 if N is large enough. Thereforé, (35) implies that
1 1
E [MTr [ (zNzﬁ)]] _0 (W) |
We now establish that
1 1
Var [MTr [¥ (zNzﬁ)]} =0 <W) (37)
In order to provel(37), we use the Nash-Poincaré inequdidy, [21], [22], [14] which implies that

2
+

vor [ [ (s8] < 5 {avf,ij o ]|+ e | e ()

2]
(38)

where W;; denotes thei(j)th entry of matrixW defined in [2). Now, applying e.g. [18, Lemma 4.6]

we can readily see that

0 1 1 ,
s | 0 (EvER)]| = o (5 (s, @)
0 1 1.,

W, [Mﬂ [v (ENE%)]] =37 (¢ (ENER) EN]M (40)
wherey’ denotes the derivative af. Consequently, the sum on the right hand sidé_of (38) can hewr
as

o [1 2 o [1 ?
> E {ij [MTr K (zNzﬁ)]] + | 5w [MTr (4 (ENE%)]} ] =
i, K ij
2 /
= E [ (=vEE)) =k
This yields
1 1 1 ,
Var | 3T [ (2vmH)]| < O |3 [ (st 2t (a1)
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for some constant’ independent ofV. Next, consider the functioh()), defined agi(\) = A [/ (\)]?,
which clearly belongs t@2° (R, R). Lemmal2 implies that

E [%Tr [ (=v=f)]) ZNE%H = /SN h(\)dun(A) + O <%> .

But it is clear from [(31) thay"SN h(N)dun(N) =0 if N is large enough. Thereforé, {41) givésl(37).
We are now in position to complete the proof of Theoidm 3 ad4j.[Applying the classical Markov
inequality together with the above results, we can write (folarge enough)

2

P <%Tr (v (ENZH)] > ) < NS/3E

2T [ ()

N4/3

2

— N®/3 (‘[E [%TY [ (ENEﬁ)]] N/3

Then, by Borel-Cantelli lemma, fal large enough, we have with probability one,

1 1
[V (CNER)] <

+ Var [%ﬁ [¥ (zNzﬁ)]D =0 <L> (42)

By the very definition ofi, the number of eigenvalues &y = SyEiin [a,b] is upper-bounded by
Tr [w(ENZE)] and is therefore & (NN ~%) with probability one. Since this number has to be an integer,
we deduce that folV large enough, there is no eigenvalugdnb|. This completes the proof of Theorem

3.

B. Proof of Theorerhl4

The approach we use to establish Theofém 4 differs from thtaodeof [14] which is inspired by
[13]. The first part our proof is similar to the proof of Theor&, and thus we will omit certain details.

For the second part, we will need a certain result that we samze in the following proposition:

Proposition 5. Consider the curve& defined by the complex valued functian;(z) in (I7) on the
complex plane as moves from; to ¢, concatenated with the functian},(z) as x> moves back from
tf to ¢;, namely

C={wn(x):ze [t7, ]} U{wy(x):ze [t7,6]}. (43)

This is a closed curve that encloses the point};w):[f,w{r [ (see further Figur¢ls). Lep(z) be a function

holomorphic in a neighborhood @f. Then, the contour integrq,fc, P(A)dA is well defined by

P(A)dA = 2i Im [/ Y(wy (2))wy (z)dz| . (44)
c- [tr.t]]
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where w/y (z) denotes the derivative aby(z) and where the symbal~ means thatC is oriented
clockwise.
Finally, let £ € R a point that does not belong ﬂm)N(tl‘),ng)_] U [ng)Jr,wN(tf)]. Then,

(N) (N)+

e { Lo g fu™ ™

2im Jo €A 0 if &<wy(ty) or &>wn(t)),

Proof: According to the discussion in Sectibn 1\V-B, if tl‘,ng)_ , thenwy () is real-valued,
and increases fromyy (t; ) to wy :ngN)_) = ng)_. Forz ¢ }mgN)_,ngH { the pointwy () belongs
to C. Finally, if z € [m&NH,tﬂ , wy(z) is again real-valued, and increases from (ngH = VT
to wx(t]). The contourC is therefore well defined and encloses the point%wxifjv)_,ng)Jr [

Let us now prove[(44). Observe that the functior+ wy (x) is not exactly a piecewise continuously
differentiable function ont;, ¢ | becausguw/,(z)| increases without bound when— ng)_,ngH.
To see thatvy () can indeed be used as a valid parametrizatioi, afe need to see that the integral in
(@4) is well defined. It is thus necessary to study the behafia’,, around the point{mgN)_,ngH}.
The following lemma is an immediate consequence of the aiglyf the behavior of the density of

measureuy near a point oSy provided in [17] (see AppendixID for a proof).

Lemma 3. There exists neighborhoodS(ng)_> andV (ngH) of ng)_ and ngH such that

|w§v($ + 1y)‘ < # fory>0,z+1iy € V(ng)_), andx # ;L'gN)_ (45)
‘3: - :L'(N)_‘
1
and
|w§v(x + iy)‘ < ¢ fory>0,z+1iy € V(acgN)Jr) and x # ngH (46)
o o]
1

In particular, Lemma&l3 implies th%;m [ (wn (z))]|w)y (z)] dz < 400 so that the right hand side of
(44) is well defined. The reader may check that it is possblese the usual results related to integrals over
piecewise continuously differentiable contours. In maitgr, aslm(wy(z)) > 0 if x € ]m§N>‘,x§N>+ [
the index of a point € R which does not belong t(%wN(tl‘),ng)_] U {w&NH,wN(tf)} is equal to
lis¢e ]ng)—’ngH [ and to0 if either & < wy(t7) or w > wy(t]). m

Proposition[b is basically pointing out that the functien, (x) defines a valid parametrization of a
contour that will not intersect with any eigenvalueBf B Furthermore, Assumptiofis 1 afiH 2 imply
that

Inde(0) = 1 (47)
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and
Inde(Yam—k+1) =0 (48)

for { = 1,..., K. This means that the contour will only enclose the zero eiglere, and none of the
positive eigenvalues dB yB%, which will be of crucial importance in the following dev@iment. Figure

gives a schematic representation of the form of the cordour

Vwy ()] I
b
(V)

77\/1' L~ 11
[ ST el SN

Figure 5. Representation of the contalion the complex plane.

Having introduced the result in Propositibh 5, we are nowhia position of establishing the proof of

TheorenT#. Let) € C2°(R,R) such that) < <1 and

1 VYA€E [ty t]]
P(A) =
0 VAER-[t] —et] +¢€

with e chosen in such a way that + € < t, . Sincey € C°(R,R), we can use Lemnid 2 to get

E [%Tr [ (2Nzg)]] = .. PN duy(\) + O <%>

Assumption$ 1 and] 2 imply that

vy () = g ([ 27 ]) = (i 1)
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for N large enough. This leads to
1 _ 1
e |31 (=] = (e 1) + 0 (5
As established in_(37), we also have
1 1
Var [Mﬁ [¥ (zNzﬁ)]} =0 <W>
becauseupp(y’')NSy = @ for N large enough. Therefore, using again the proof of theieimegjgality

(42)), we get that

1 I _ 1

7 ¥ (ENEN)] — v ([t 47]) = O (W) a.s. (49)
Let us now find a closed form expression fog ([t ,¢]). Noting thatu, is absolutely continuous with

density L Im(my(z)), we can write

ux ([t7,67]) = 21m [ 1 mN(:L")d:E] .

By expressing the Stieltjes transformas, (z) = %ﬂ)(x)) (see further[(22))uy ([t7,¢]) can

1—o?en fn(wn

LN ([tl_ﬂfi’_]) _ %Im [/t ! fN(wN(ZE)) (x))dx]

be written as

- 1—o?enfn(wy
In order to expresguy ([t7,t]]) in terms of an integral over the contodr we can use the relation

why(z)¢y (wn(x)) = 1 for eachz € R — 0Sn (see further[(19)). Now, using Propositibh 5, we see that

v ([7]) = L [ /[] In(wn@)éy(wn@) o d:CI_ Lo IN)HW

; 1 —o%en fn(wn(z)) 27 Joo 1—o2en (M)

1 (1 —ena®fn(N)? = 2ena®Afy(N) (1 = eno?fv (V) — ena? (1 — en) fy(N))

om f, N 1 —o2%enfn(N)

= dA
21 c-

(50)
The integrand of the right hand side 6f150) is a meromorphicfion. The contour integral can be thus
evaluated using the residue theorem. The poles of the amelgare the eigenvalues BiyB4 as well as
the solutions of the equation— ocx fx(A\) = 0. This equation ha# + 1 real-valued solutions that we
have denoted(()N)+, and {zl(N)_} (see further Figurelsl 1 fd 3). Assumptidds 1 &hd 2 imply that

=1,...,

only the poles{0} and {zéNH} of the integrand are in fact enclosed 8y Using the residue theorem,

and after some straightforward calculations, we obtainoged form for the above integral, namely

M
_ M- K 1
o ([ = Mg L5
k=M-K+1
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with

M 2
N _ N-K [ %N 1 o*(1 - cy)
N V7 <1 . 2 T )t o (51)
I=M—-K+17] 20
2 2
(N)_ K) g O’(l—CN)
oM =(1-= (52)
N ) L@ )

Therefore, we can write

M
_ N-K l—ey (M-K 1 1
+ _ 2
v ([ 4]) = =3+ ( TR Dl (N)) (®3)
0 k=M—K+1 %0 Vi

_ % —02(1—en) (ng>+) (54)

but, using the fact that — o2cx fa (2" ") = 0, we obtain thatuy ([t7,¢7]) = X=X, Inserting this
into (49), we get

Tr [ (EvEN)] - (M - K)=0 <ﬁ>

with probability 1. Moreover, thanks to theoref 3, no eigenvaluesh§ XX appears int; —et7]U
[t],t] +¢] almost surely forV large enough. Therefore, almost surely foitarge enoughlr [zﬁ(ZNE%)]
coincides with the number of eigenvalues®f, X% contained in the intervalt; , 7 [. This number is
thus equal taVl — K. These eigenvalues are moreover fie— K smallest ones: otherwise the smallest
eigenvalue ofs y X4 would belong to[o,tl‘], a contradiction by Theorefd 3. Finally, TheorEéin 3 again

implies thatXSVZ}QKH > t, . This completes the proof of Theordmh 4.

VI. CONSISTENT ESTIMATION OF THE LOCALIZATION FUNCTION

We now present a consistent estimagar = bAIIyby of the subspace method localization function.
Here,by represents d/—dimensional deterministic vector, and we assume ghgf; |[by|| < co. The
new consistent estimator presented in this section candie&e an extension of the work in [7], which
implicitely assumes that the useful signals are Gaussiadora i.i.d. sequences. In order to simplify the

notation, we drop the dependence dnfrom all the sample eigenvalues and sample eigenvectors.

Theorem 5. Under Assumptionisl 1 arid 2, we have with probability one,

ANEW

N —nv —0

wheren is defined by

M
e = &breref by (55)
k=1
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Here, the coefﬂuent{gk} are given by

1, M—K
. 2oy A At A < 1 1
&o=1+ MN Z AT AL +0(1—CN) Z < — — = A) (56)
I=M—-K+1 ()‘k o )‘l I=M—K+1 Ak — N Ak — @y

and {5k}k:JV[_K+1,...,Jv1 oy

A oZey e N+ A o 1
b= - Alz—a2(1—cN)Z<A — - = ) (57)
= (Ae—N) =\ =N A -y

and where{w; },_; ,, represent the solutions (arranged in increasing order)tw equation

O’CN

1+ 28T | (SyEf - o) | = 0. (58)

We remark that the consistent estimator is a linear comibinaif the terms(bXe;é1 bN)lc:l,...,M'
In contrast to the traditional estimatgy,..q = ,{CV:K b%ékékHbN, it contains contributions of both the
noise subspace and the signal subspace. We also note thegstiption§]1 arld 2 and Theorem 4 are
intuitively important because the various sums on the rigdrid side of[(56) and (57) remain bounded:
in (58) and[[5Y), the termpk — 5\1‘ are greater thar, — ¢, and it will be shown that a similar property

holds for the termsp\k - a}l‘.

Remark 4. It is worth pointing out that whenever the number of sampée®iced to be much larger
than the observation dimensiotV(>> M or equivalentlycy — 0), the proposed estimator converges
to the classical sample eigenvector estimate. This can &eilyeseen by taking the limit asy — 0 in
the coefficients of(56) an@ (57) and noticing thiat— \; whency — 0. Hence, as:y — 0 we have
& —1fork=1,...,M—K, and§, — 0fork =M —K+1,..., M, implying thatjie®” —ited — 0.
This shows that the proposed estimator is in fact a genextidia of the classical sample eigenvector

estimate.

The remaining of this section is devoted to presenting thim ipaints of the proof of Theorei 5. The
starting point consists in remarking that Assumptibhs 1 2nchply that

1 -1
=g by (BNBY — AIy) bydA
1 c-
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whereC~ is the closed path defined by {43). This leads to

1 [t

=5~ [ bx(ByBy - wy (@)Ty) " bywly (z)do+
t

tf
b by (ByBY — wiy(2)Iy) ™ by (wi(z)) dz =

2mi Ji-
1
—Im (
T

Let gy (2 + iy) = bY (ByBE —wy(z + iy)IM)_1 bywy(z + iy). The functiony — gy (x + iy) is

tf
/ bl (BNB%—wN(x)IM)‘lewa)dx>. (59)

ty

continuous orR . for eachr € R\dSy thanks to Propositionl 1. Lemrha 3 and the dominated conveegen

theorem imply that

1 2 _
NN = lﬁ% %Im </ bl (BNB% —wy(z + iy)Iy) ! bywly (z + iy)dm) (60)
t

y y
= lim [ij{ gn(z)dz — i/ gn(ty +ih)dh + i/ gn(tf — ih)dh} (61)
OR; 2 J_y 2 J_y

wheredR, is the boundary (clockwise oriented) of the rectarglg defined fory > 0 by
Ry ={u+iv:uelty,tf],ve[-yyl}. (62)

Notice that the last two integrands vanishyas 0 (since the function — gn (¢; +iv) is continuous on

[—v,y]), and thus

1
= lim — dz.
=l o2
Moreover, sinceyy(z) is holomorphic inC\[ng)_,ngH], the value of the contour integral does not

depend ory > 0, and therefore the limit can be dropped, namely

!
™ omi fone

gn(z)dz.
Using the equality(1 + o%cmn(2))(BNBE — wn(2)Ia) ™t = T (2), which follows easily from the
definition in [14), we can write

wi (2)

=bliT by——m—"——.
g (2) NTn(z) N1+U2cmN(z)

Now, the key point of the proof is based on the observatiomn §agz) can be estimated consistently

from the elements of matriRy. We recall thatiy(z) is defined by

S

my(z) = T Qn(2)] = (63)
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and we defineby (z) as the function obtained by replacing functieny (z) with mx(2) in the definition
of wn(z), i.e.

wn(z) =z (1 + achmN(z)f — 0'2(1 —cN) (1 + JZCNmN(z)) (64)
We define the corresponding random asymptotic equivalepif) by

() = b Qu ()b 1

Observe from the definition ofn and of Qu that the functiongy is meromorphic with poles at
A,... Ay and atdy,. .. @y, the M real-valued solutions to the polynomial equation (of deghé)

1+ o?cnmy(x) = 0. In the following, it is important to locate thed)i=1,. -

Lemma 4. For N large enough, with probability one
5\1,...,5\]\/1_]{,@1,...,@}]\/[_]{ E]tl_,tf[ (65)

AM_K41s- s MM @M K11, - - - W are greater thant; (66)

Theoren L implies that almost surely (z) — gn(z) — 0 on OR,\{t; ,t{ }. In order to be able to
use the dominated convergence theorem, we first state tlogviiog inequalities proven in Appendix]H:

there existsVy € N such that

sup sup |gn(z)| < 400 (67)
N>No z€0R,

and
sup sup [g (2)] < +oo0 (68)
N>N, z€0R,,

almost surely. The dominated convergence theorem thusestiiat

1

— — 0 a.s.
27

jg gn(z) — gn(2)dz
Ry
We now establish that the integral

2 1
~new — ~ d
W= 5 ), ()

is equal tofRe™ defined by[(5b). This can be shown using residue Theorem.

Lemmal4 implies that forV large enough
M-K

e =Y [IndaR; ()\k) Res (gN,Xk> + Indyr (@) Res (9, &)

whereRes(gn, A) denotes the residue of functign; at point .
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In order to evaluate these residues, we first remark that

M .
bile.edb
bRQu(2)by = Y k=T

1 A, — 2

gn (z) can thus be written as

M
gn (2) = Y bewel by [an(z) + A=) +5n(2)]

k=1
where we have defined
2 ~
Gi(z) = 1—|-O'A enmn(z) (69)
N — 2
A 202cn 2y (2
Bu(z) = 22 NZ () (70)
N — 2
A~
o 4 mN(z) (71)

2)=—0c"cy(l—c
Ak (2) N N) (;\k _ Z) (1+ o2cymn(2))

and consequently with probability one fof large enough
M M—-K . o .
e ==Y bieelby S [Res (@k, Am> + Res <ﬁk, )\m> + Res (fyk, )\m) + Res (4, @m)] .
k=1

Classical residue calculus gives

_ dg%en 1 k 7& m
. M
Res <dk,)\m) - A Am (72)
L <1+UCNMZZ1/\ /\k> E=m
202%¢ A
= Ailfg k # m
I M
Res (B, ) = (e =Am ) (73)
20 cN Z kE=m
Z 1 (): )\k)
X 02(1—61\[)5\15\ k#m
Res (fdm) =9 0 . . (74)
L M—CN 1+ Zl 1 " )\k k=m
1—
Res (45, ) = —a2ﬁ. (75)
kE— Wm

Next, we definet;, as

— i: Res (dk, ;\m> + Res (Bk, ;\m> + Res (%a ;\m> + Res (9, Wm) -
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We obtain, fork =1,..., M — K

2 M 9 .
£ 1 2 A 1—
gk_l_aj\;N Z _ 0"CN Z - kA 2—|—M CCN (76)
=M K41 M~ A i=M-K+1 <)\k - )\z‘) "
MoK M-K M 1
+0%(1—c _ _ 4 _ _ 77
( v ;Ai_kk ;@i—kk ;Ai—kk (77)
i#k i#k i#k
andfork=M—-K+1,...,.M
é a’en L 1 20%cn MoK j\k 78)
k= — — - —
MoF u-x M5 (/\k - /\2)
MK S — \s
+0%(1 — cy) Z N ) (79)

To retrieve the final form of, given in the statement of the theorem, we notice that

1
1+U2CN— — =0
7D v

and use the following lemma proved in Appendix I:

Lemma 5. The following identity holds for any =1... M

Mi:lj‘i_wk Mi:lj‘i_j‘k Mi:ld)i_j‘k
i#k i#k i#k

This establishes thal,e., = 7inewy and completes the proof of Theorémn 5.

VII. NUMERICAL RESULTS

In this section, we compare the results provided by the ticadil subspace estimate, the new estimate
(55) (referred to in the figure as the "conditional estimgtcand the improved estimate dfl [7] derived
under the assumption that the source signals are i.i.d.espegs (referred to as the "unconditional
estimator").

We consider a uniform linear array of antennas the elemdnthich are located at half the wavelenght.
The steering vectoa(6) is thus given by

. ) ) T
a(@) — LM [1’ el sm(@)7 o 76z(M—1)7r sin(0) (80)

In the following numerical experiments, source signals @alizations of mutually independent unit

variance AR(1) sequences with correlation coefficiedt In order to evaluate the performance of the
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various estimators, we use Monte Carlo simulations. Thétimdchoise varies from trials to trials, but,
for fixed M and N, matrix S remains unchanged. Finally, unless otherwise stated,|tistec associated
to the eigenvalue O of matriAS is assumed to be separated from the clusters corresporalitgyrion

zero eigenvalues, i.e. for eaefi, M/ and NV, it holds that

0 <™ <™ <V (81)

We finally mention that the estimate of [7] is supposed to beousistent in the context of the following
experiments because the source signals are not i.i.d. segslidHowever, we will see that the performance
of the conditional and the unconditional estimates areeqalibse, a property which will need further
work (see Remarkl5).

Experiment 1: We first consider two closely spaced sources,fye= 16° andf, = 18°. The number of
antennas is\/ = 20 and the number of snapshotsis= 40. The separation conditiof (B1) is verified if
the SNR is larger than 10 dB. In order to evaluate the perfoomaf the estimates of the localization
function, for each improved estimator (conditional and amditional), we plot versu$ in figure[8 the
ratio of the MSE of the traditional estimator af¢)"IIa(6) over the MSE of the improved estimator. The
SNR is equal ta 6 dB. Figurel6 shows that the 2 improved estimates have ndalgame performance,
and that they outperform significantly the traditional agwmh around the 2 angles. We however notice
that the 3 estimates have nearly the same performangasiffar away fromf; = 16° and 0, = 18°.

In order to evaluate more precisely the improvements pealioly the conditional and the unconditional
estimators around; and 6., we plot vs SNR in figuré€]7 the mean of the MSEs of the estimates o
a(6,)"TIa(0;) anda(f)TIa(6s).

In figure[8, we plot for each method the mean of the MSE of thedstamated angles versus the SNR.
The estimates of; andd, are defined as the arguments of the two deepest local minirtie astimated
localization function. The mean of the two Cramer-Rao bauisdalso represented. The performance of
the 2 improved estimates are again quite similar, and theyige an improvement of dB w.r.t the

traditional estimator in the range 15dB-25dB.

We now plot the probability of outlier, i.e. the probabilithat one of the two estimated angles is
separated from the true one by more than half of the separb&towveen the two true sources. In figure
[9, we compare the outlier probability of the three approaalesus the SNR of the three estimators. For

a target probability of error 0f.5, the 2 improved estimators provide a gain8ofiB over the traditional
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10
L Ratio Traditional/Conditional
F — — — Ratio Traditionallt i
10" —|
. L 1
K] L
o
10° | —
107 | | | |
5 10 15 20 25 30

Angles (degree)

Figure 6. Ratio (in dB) of the MSE of the traditional estimafea ()" I1a(6) over the improved estimates vs angles.

10° £ T
E ~— Traditional estimator
= —=&— Conditional estimator

—#— Unconditional estimator

10

10"

10

MSE

10”

10°

10"

100

10" \ \ \ \ \
0
SNR

Figure 7. Mean of the MSE of the estimatesadf; )" TIa(0;) anda(02)” TIa(02).
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MSE

10— Traditional Estimator i
—+&— Conditional estimator
—*— Unconditional estimator
CRB

10 15 20 25 30 35
SNR

Figure 8. Mean of the MSE of the angles estimates versus SNR

estimate.

——7— Traditional Estimator
0.1f| —=— conditional estimator
—— Unconditional estimator

0 I I
10 15 20

SNR

Figure 9. Outlier Probability vs the SNR
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We finally evaluate the influence @ff and N on the performanceV varies from20 to 200 while the
ratio cy is kept constant t6.5, and SNR = 15 dB. In figure_10 we have plotted the mean of the MSEs
on the estimates of(0;)” TIa(6;) for i = 1,2. The separation conditiof (81) occurs f§r > 32. Figure

[0 illustrates clearly the unconsistency of that the tradil estimate.

Figure 10. MSE for the estimators of the localization fuotivs N

Experiment 2: We now assume that the number of souréess of the same order of magnitude that
M andN, i.e. K =10, M = 20, N = 40. The ten angle$););—1, .10 are equal t@; = —40°+ (i —1)10°
for i = 1,...,10. The separation condition holds if SNR is greater than 15\WB.again plot versu8
in figure[11 the ratio of the MSE of the traditional estimatérttee localization function over the MSE
of its conditional and unconditional estimators. SNR isado 16 dB. Figure[1ll shows again that the
performance improvement of the conditional and unconaigicestimates is optimum around the angles
(0i)i=1,...,10-

Figure[I2 represents the mean of the MSEs of the various a&stinofa(0;) Ia(6;) fori = 1,...,10
w.r.t. the SNR, and confirms the superiority of the 2 improestimates when the separation condition

(81). We note that

Remark 5. All the previous plots clearly show that the conditionalirmsitor outperforms the traditional

one, while its difference with the unconditional one is fgghle. This is a quite surprising fact. To explain
this, we recall that the unconditional estimator has beenvael in [7] under the assumption that matrix
Sy is a Gaussian matrix with unit variance i.i.d. entries. Thecanditional estimator of [7] is based on

the observation that iy is an i.i.d. Gaussian matrix, then the entries(®y — zI)~' have the same
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Ratio Traditional/Conditional
— — — Ratio TraditionallUnconditionall

o
Angles (degree)

Figure 11. Ratio (in dB) of the MSE of the traditional estimaif the localization function over the MSE of its improved

estimates versué

Figure 12. Mean of the MSE of the estimatesagf);)” ITa(0;) for i = 1,...,10 versus SNR

behaviour than the entries of matriRy ;;4(z) defined by the following equation
1
my,iid(2) = MTF TN iia(2)
TN,iid(Z) = [(AAH + 0'21) (1 — CN — CszN,iid(Z)) — ZI] -1

One can verify that the entries @fy (z) defined by[(14), which depend 8nr;, have the same asymptotic
behaviour than the entries &y ;;4(2) whenSy is a realization of an i.i.d. matrix. In this case, the

conditional and unconditional estimators have of course same behaviour. If howev&ry is not an
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i.i.d. matrix, then the entries o(ff{N — 2I)~! do not behave like the entries @fy iiq(z) so that the
unconditional estimator should become unconsistent. Téaqus simulation results tend to indicate that

it is not the case. The explanation of this phenomenon is & fop further researchs.

VIIl. CONCLUSIONS

This paper has considered the use of subspace estimatimnitfaigs in situations where the number of
available samples and the observation dimension are cailgan magnitude. We have considered the
information plus noise signal model, according to which theeived signals are deterministic unknowns
whose empirical spatial correlation matrix is low-rank. Weve derived an estimator of the noise subspace
of the spatial correlation matrix that is consistent, ndiyamhen the number of samples tends to infinity
for a fixed observation dimension, but also when these twantifies increase to infinity at the same
rate. This guarantees that the estimator will present a geofbtrmance even when these two quantities
are comparable in magnitude. In order to establish the staraiy of the estimator, we have proven new
results concerning the almost sure location of the eigeegbf the sample covariance matrix of an

Information plus Noise Gaussian model.

APPENDIX A

PROOF OFPROPERTY[IlOF PROPOSITIONII

In order to establish thdt does not belong to the suppdi;, we show that it exists > 0 for which

un([0,z]) = 0 for eachz €]0, ¢]). In order to show this, we will make us of the functibfin, z) defined

as
1 ByBY 17!
h(m,z) = MTr [—z(l + o?eym)Iy + 0*(1 — en)In + 1;;720]]\\;7%} . (82)
Observe that the equation = h(m,0) is equivalent to
-1
1 ByBE
= —Tr|o*(1 —en)y + —52—| .
m= 5 [o— (1 —en)In + 1+026Nm]

h(m,0)

Now, the conditioncy < 1 implies that the functionn — == is decreasing ork . Therefore, the

equationm = h(m,0) has a unique strictly positive solution denoted. Next, we will check that

Oh

- > 0. (83)
om (m...,0)

Indeed, observe that

oh 0'26]\7 1

om (m..0) 14 o2cnme M 14 o2enyma 14 o2enyma

ByBH ByBZ 2
# <O’2(1 _ CN)I]\/[ + #) ]
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so that

oh 2 1 ByBZ 171 26N
TNy |o2(1 — en)lyy + ——N2N TN

om (m.o) Lt oZenymy M

1+o2eym.] 1+ aZenm.
as required. Hence, the implicit function theorem implibattthere exists an open disk centered at
zero with radiusy > 0, i.e. D(0,7n), and a unique functiomz(z), holomorphic onD(0,n), satisfying
m(0) = m, and such that

m(z) = h(m(z), 2) (84)

for |z| < n. Evaluating the successive derivatives of functior» h(m(z),z) at the origin, one can
check that for eachh > 0, m(l)(o) is real-valued. Sincen, > 0, there exists a positive quantity

0 < € < n such thatm(x) is real-valued andn(xz) > 0 if €] — ¢,¢[. On the other hand, it can be
readily checked that it: < 0, the equatiorm = h(m,x) has a unique strictly positive solution. Now, for
x < 0, my(x) is strictly positive, and satisfies this equation. Therefdr holds thatn (z) = m(z) for
—e < x < 0. Since the two functions:y andm are holomorphic orD(0, €)\ {[0, ¢[} and coincide on a
set of values with an accumulation point, they must coincideghe whole domain of analicity, namely

D(0,¢€)\ {[0, €[}. We recall that for0 < = < ¢, un([0,2]) can be expressed as

1 v .
p((0,2]) = — Tim ; Im(my (s + iy))ds

Therefore,
- v .
py((0,a]) = — T ; Im(m(s + iy))ds
As T is holomorphic onD(0, €), the dominated convergence theorem implies that
1 v YA B
= y_}gglw ; Im(m(s +iy))ds = %/0 Im(m(s))ds =0

becauseén(s) € R if s € [0,z]. This establishes thaty ([0, z]) = 0.

APPENDIX B

PROOF OFPROPOSITIONZ

In order to prove Propertly] 1, we establish that(wy(z)) > 0 if and only if Im(my(z)) > 0.
Assume thalm(my(z)) > 0, i.e. thatz € Int(Sy), which in particular implies that > 0, and consider
z =z + iy with y > 0. Equation [(IB) can be written in terms afy(z) as

my(2)
1+ ceyo?mpy(2)

= fn(wn(2)). (85)
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Taking the imaginary part from both sides yields the idgntit
Im(my(z))
|1+ 0261\/77”L]\/(Z)|2
or equivalently,

_ Im(wN(z))%Tr (ByBY — wy(2)Ty) " (ByBY — wiy(2)Ty) "]

Im(my(2)) = Im(wy(2)) |1 + U2CNmN(Z)‘2 %Tr [(BNB% —wy(2)) Y ByBI - w}kv(z))_l]

(86)
= Im(wN(z))%Tr [Tn(2)TH(2)] (87)
It is shown in [17] (see Eq. (2.6)) that
2
T TN < <
which implies
Im(mx(2)) < Im(wN(z))m. (88)
If ¥ — 0, we get that
0 <Im(my(z)) < Im(wN(x))m

which implies thattm(wy (z)) > 0. Conversely, assume thaih(wy(x)) > 0. Then,my(z) cannot be
real-valued, otherwisepy (z) = x(1 + o?cymy(z))? — 0%(1 — en)(1 + o?cymy(z)) would be also

real-valued.

Next, we prove Properfyl 2. Sinae— my(x) is differentiable orR—90Sy, © — wy (z) is differentiable
on the same subset. By Propdy 4 of Proposifibm #,z) does not belong to the spectrum of matrix
ByBX if x € R\Sy. Therefore, the function — fy(wx(z)) is differentiable forz € R\Sy. Since
(89) holds onx € R\Sy, we can differentiate it with respect toon z € R\Sy. This gives

miy (x)
(14 eyo?mpy(x))?
for z € R\Sn. Now, observe thatn/y () > 0 on R\Sy becauseny(z) is the Stieltjés transform of a

wiy (2) fy(wy (x)) =

probability measure carried h§y. On the other hand, the functioff, is of course strictly positive on

R. This in turn shows thaty (z) > 0 on z € R\Sy.

To establish the last property, we ugel(13) at pairt R\Sy, and get that
1

T 1+ eno’mpy(z)

The conclusion follows from the inequality+ cyo?my(x) > 0 if » € R\Sy (see Propositiof]1).

1-— cNasz(w(ac)) (89)
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APPENDIX C

PROOF OF(28) IN PROPOSITION3

We considerw, ws € { ()= ng) ,...,wgv) wé?N) } and denote by); and ¢, the quantities

oén(w1) and gy (ws) respectively. We defing,, = 1 — o2cy fn(w,,) So that we can writé,, = w, h? +
o?(1 — cn)hy, n € {1,2}. Our objective is to show that the quantify, — ¢1) / (we — wq) is always
positive. Note that, by definitiony; andws are inflexion points oty (w) such thath; > 0 andhy > 0.

Using direct substraction of the expressionspgfand ¢, we can write

- ho —w1h has —h
P2 — b1 _ (hn +h2)(w2 2 —wihy) Fo?(1—en) 22y,
w9 — Wy W9 — Wy w2 — w1
Consider now the following inequality
M (N) M (N) M (N)
2 e 1 Y 1 o
o) Yt e )
N N N N
M= (™ —w)( —w) - M S 6 — w2 MZ 0 - w2

which can be readily obtained by noting that

2
0 0

N
MM —w) (Y —w)

Using the definition ofh; andhy we can readily write

M N
wahg —wihy 1 oley 7/(.3 )

w2 — w1 M= (™ — ) (1Y) — wy)

and hence the inequality if_(90) is giving us

O'2CN

G2 — P1

w2 — Wy

> (h1 + ho) [1 - (fn(wr) + fn(w2) +wi fiy(wi) + w2f1’v(’w2))] +

ho — hy
w2 — W1

— hihg + 0%(1 — cy) (91)

where f};(w) denotes the derivative ofy(w). Using again the definition of; andhy, we can rewrite

the last term of the previous expression as

h2 — hl O'2CN

(wy — wy)?
== fN(w1)+wa2 ]
w2 [ Mk Lo w2 —wa)?

By inserting this last equality intd (91) and replacifig(w; ) with 0=2(1—hq), we obtain the expression

2 =1 olen(l—cn) (wy — wy)? h2 + h2
Wg — w1 - 2 M ; (’Yk B wl)z(v,iN) )? + 5 +
UcN(l_ CN) [ / o? hy1 + ha
Ty -5 . (92
5 [/ (wn) + fho(wa)] = 5 CYRTEYT) (92)
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Now, bothw; andw, are preimages of local extrema of;, so that forn = 1,2, we haveg)y (w,) =

h2 — 202wy, fi(wn)hy — 0*(1 — en) fo(wn) = 0. Thus, we can write
4 _
NG (71 ) + f )]

h? 4 h3
% = 02 [wihy fy (w1) + wahs fy (w2)] + 5
and by inserting the last equality into {92), we obtain
M
2 —¢1 _ oten(l—cn) 1 (wg — wy)? g’ / /
> — ~(hy —h — .
Wy —wy 5 M 2= 2 )2 + 5 (h = ho)(wi fy(w1) — wafy(w2))
(93)
Using again the fact that'y (w,) = 0, we can writew, f4 (w,) = 22 — o*(—ew) fx(n) gnd thus
N N 20 2 hp
becomes
¢ =1 _ oten(l—cy) 1 i (wg —w1)? (h — h2)2+
wy —wy 2 M &~ (’Y/(.CN) _ w1)2(’y,(€N) — wy)2 1

4 _ 4 -
_ TN o) — Flo(uw)) + Mw [Z—if&(m) + Z—ffk(wﬂ (94)

4
Clearly, we have
M M
! (w2 — w1)2 [ / / 2 1
P> )+ A ()] = 3
M k=1 (’YJ(QN) - w1)2(’Y;(gN) — wa)? M k=1 (’Y/(gN) - w1)(’Y/(gN) —wy)

and thus by multiplying the previous equality withh, and adding:3 f4, (w1) + h? fi (w2), we can also

write

M 2
h h -
1702 (w2 wl)

1
ha fi(w) + 13 fa(wa) + — >
M = (3 — w012 (1Y) — wn)?

1 Y h h i
— hihy [fy(w1) + fy(w2)] = MZ( ™ - ™) : ) '
k=1 \Vp ~— W1 7 w2

The left hand side of the previous equality appears in (94 asmmon factor on the last two terms of

the right hand side of that equation. Hence, plugging it (@), we obtain

b2 — 1 < U4CN(1_CN)L§: (wy — wy)? N
wy — Wi 4 M (N) 20~ _ 2
=1 (7 w1)2 (7, wa)
2 4 M 2
L (=) _'_JCN(l—cN)iZ( he )
1 dhihy M2 \GM

Finally, noting that all the terms of the above equation ase-negative, we have establishédl|(28).
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APPENDIXD

PROOF OFLEMMA [3

The proof of this Lemma is a direct consequence of [17, Sectlo Next, we provide some details
on how to obtain[(45); the same procedure can be applied ier dodobtain [(46). As in[[17], we define
in this section functiorby (z) by by(z) = 1+ o?cymp(z) for z € C, and denote by; the quantity
by (z7 ) (note that we drop the dependenceMnin z;). Sincez; belongs todSy, bothmy(z; ) and
b, are real-valued. Propositidn 1 thus implies that> by (z) is continuous at the point; . Similarly,
wyn(z]) = w; is real-valued so that the function— wy () is also continuous at; .

Since fy,(w; ) > 0, there exists a neighborhodd(w; ) of w; on which fy is biholomorphic. For

z € C4 UR, it follows from (21) that we can write

fwtun () = —mv@) ] (1 L) (95)

T 1+ o2eymn(z)  oZen U ba(2)

Sincewy is continuous at:;” and sincewy(z) € C; if z € C4 (see Property]5 of Propositigh 1), there

exists a neighborhooW(z;") of x;” such that
wy (V(z7)NC4) C V(wy)NCy.

Therefore, applying the holomorphic inverse 6§, denoted agfzgl, to both sides of[(35) we get, for

w5 (2 585)

Using the fact thatoy (z) = 203 (2) — o%(1 — cn)bn(2) and solving with respect te, we get that

anyz e V(z;)NCy,

z=Zn (by(2)) S V(:L'l_) NCy (96)
where Zy is the function defined in an appropriate neighborhood,oby
1,1 1 o%(1 —cn)
Zn®) = 3 fN (m (1 - 5)) e
Next, we recall the following result from_[17].

Lemma 6. There exists a neighborhood(b; ) of b, and a function¥ y, biholomorphic fromV (b )

onto a neighborhood of the origii(0) such thatvb € V(b;)

Zn(b) — a7 = W3 (b).
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Since the functiorby is continuous at the point;, and sinceéy(z) € C if z € C, (which follows
from the definition ofby), there exist two smaller neighborhoodqz;) C V(z7) andV'(b7) C V(b7 )

of z1 andb; respectively, such that
by(z) € V(b)) NCy Vz eV (27) NCy
Therefore, using (96), we can write
(Un (bv(2)* = 2 — oy

Vz € V'(z7) N Cy4. Let us now chooseyz € V'(z7) N Cy,

Uy (bn(2)) =/ 2 — @y

where /() represents any determination of the complex square roOtistHaoIomorphiH on C; and
such thaty/1 = 1 (the following reasoning applies verbatim to the square dmiermination for which

V1= —1). We denote byll;,1 the holomorphic inverse function of y defined on)(0). We have

by(z) = Uy <\/z - acf) VzeV(z7)NCy

Taking derivatives with respect to at both sides of the previous equality, we obtain
1 _ _
by(z) = ———= [‘I’Nl]/ <\/ c 951) :
2\/z—xy
Now, since\If;,1 is holomorphic on/(0) by Lemmd.®, the functio@f;,l]' will be bounded on the same

neighborhood of) and thus we will have

by (2)] < ‘7

for some constant’ independent of. Therefore, forz = z + iy € V/'(x7) N C4, we can write
C

C

|wiy(z +iy)| = !bN(z)2 + 226 (2) — o%(1 — en)by(2)|

IN

(97)
‘3: —x; + iy‘

The inequality

C - C
1/|3:—:E1_+iy‘ ; 1/‘1’—1’1_‘
for x # z; completes the proof of{45) foy > 0. (45) for y = 0 follows from the observation that

wiy(x) = limy o wly(z + iy).

3This property must hold for all possible choiceslof; because, by definition x is holomorphic orV(b; ) andby (z) € C

if z € C4. Sinceby(z) is holomorphic onV’(z7) N C4+, ¥ (bn(z)) must be holomorphic on the same set.
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APPENDIX E

PROOF OFPROPOSITIONZ]

In this section, we drop as much as possible the subsdrifiir an easier reading. In the following,
P1(|z]) andPg(m) represent generic positive coefficients polynomials ofvigables|z| andm
whose mean feature is to be independeniVofThe values of?; and P, can change from one line to

another.

We rely extensively on the results of the Appendix Il bf [[2&ated to the properties of matrix
(B+D'/2WD!/2)(B+DY?WD!/2)H# whereD andD are deterministic diagonal matrix. We thus use
[23] in the case wher® = o¢I,; andD = oI which corresponds to the context of the present paper.

In order to help the reader, we use the same notations as jral2&8long this section. More precisely,

we define
§(2) = aem(z) (98)
5(2) = 6(z) — o1 —C (99)
a(z) = E [%TrQ(z)] (100)

a(z) = a(z) —01 —¢

(101)

We remark that(z) is the Stieltjes transform of measurew wherew is the probability measure carried
by R, defined by

w(B) = E((B)) (102)
for each Borel seBB. We recall thai represents the empirical eigenvalue distributiorRof = SyEL

Finally, it is easily seen that is the Stieltjés transform of measurey. + o (1 — ¢)dy (5, represents the

Dirac distribution at 0), and that(z), which can be expressed by

(z) = E [U%TrQ(z)] (103)
whereQ(z) is defined by
Qz) = (=2 —21) " (104)

coincides with the Stieltjés transform of measutes + o (1 — ¢)dy.

Matrix T(z) defined by[(I¥) can be written as

BB 17!

T(2) = |—2(1 4 06(2))Iy + T1 0500
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andd(z) is equal to

5(z) = a%TrT(z) (105)
We also define matrid’(z) by
- BB |7
T(z) = |—2(1+00(2)Iny + ——— 106
(2) = [+ + oIy + = (106)
and remark, after simple calculations, that
6(z) = U%Tr’i‘(z) (107)
We finally denote byR(z) andR(z) the matrices defined by
i BBY 17!
R(z) = [—z(l +oa(2)Iy + m} (108)
: BYB 17!
R(Z) = |:—Z(1 + O'OZ(Z))IN + m} (109)

Using Property of Lemnd 1, it is easily checked that funetio-z(1 4 04(2))) ", (—z(l + aS(z)))
(—z(1 +oa(2)) "}, (—2(1 + oa(z))) " are Stieltjés transforms of probability measures carrigd® b.
Proposition 5.1 of [16] thus implies that matrix valued ftions T (z), T(z), R(z), R(z) are holomorphic
in C — R4, coincide with the Stieltjes transforms of positive matvedued measures carried By, the
mass of which are equal © and their spectral norms are boundedﬂ@y(zT on C, (see[[16] for more
details).

We finally recall that matrice€)(z) and Q(z) satisfy | Q| < (Im(z))~! and||Q|| < (Im(z))~" for

z € Cy (see e.g.[[11],[118],114],[116]).

In order to establish Propositidh 4, we have first to studyténm
E( Q) ) - v TIrR()
N z N r z

A. Study off (£Tr Q(z)) — +TrR(2)

Let 7(z) and A(z) defined by
—0 H z
T(2) = ——m— [1 — %Tr <—B E[Q( HB)} (110)
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and

A(2) = A1 (z) + Ag(2) + As(2) (111)

M) = e QEEET FTHQE) - ElQ() (112)
O'2 g

Ao(e) = e E Q) ~ EQE)) T 37Q()B| (113)
0'2 g g

83(2) = T IQEIE [T Q) ~EQE) g ="QEB| @14

As it will become apparent below, the entries of mataxz) converge towards 0.
It is proved in [23] that for each € R*, the following equality holds true
BBH
— (115)
1+oa(z)

As the lefthandside and the righthandside[of {115) are &naiy C — R, Eq. (115) holds not only on

T+ AG) = Q] (~2(1-+ 07Dk +

Ry, but onC — Ry. It is shown in [28] thata(z) — 7(z) converges towards O for eaeche C — Ry when
N — +oo. The general expression éfz) — 7(z) given in [23] is complicated. However, the simplicity
of the model considered in this paper (matri@sandD in [23] are reduced toT) allows to derive the

following Lemma.

Lemma 7. For eachz € C — Ry, it holds that
2 (alz) — #(2)) = — U%Tm(z) (116)

Proof: Multiplying ({15) from both sides by and taking the trace, we obtain

1 BAEQ(z)) B M 1 N
o NTr <W> =0 +o NTr A(z)+z(1+07(2)) az) (117)

From the definition off(z) (equation[(110)), we also have

H
%Tr <%) = 27(2)(1 4+ 0a(2)) + o (118)
The two above equalities imply that
alz) — 7(z) = "(12_ °) _ E%TrA(z) (119)
Using [101), we get that
a(z) — #(z) = —%%Tr A() (120)
and [116). [ |
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Writing the righthandside of (115) as

E(Q(2))R(2)™! + zo(a(2) - 7(2))E(Q(2))

and using[(116), we obtain immediately that

E(Q(2)) — R(2) = A(2)R(z) + 02% [Tr A(2)] E(Q(2))R(2) (121)
and that
E [%TrQ(z)} - %Tr R() = T (E[QGIR(:) TTrA() + %TrA(z)R(z) (122)

The above expression @& [+ Tr Q(z)] — +Tr R(z) allows to prove the following Proposition.

Proposition 6. Vz € C,, we have

< 5 P1(12)Pa(n2)| ) (123)

‘[ [%TrQ(z)} - %TrR(z) !

Proof: We first prove the following preliminary result.

Lemma 8. Consider M x M matrices Uy and M x N matrices U, satisfyingsupy |[Un| <

oo, supy ||[Un]|| < oco. Then, we have'z € C

Var | TrQEIU < CIUE s ()P ) (124)
1 / 1 / 1
Var [NTIEHQ(Z)U] < CWHU H2P1(’Z‘)P2(m) (125)

where the polynomial®, and P, and constant' are independent o/, N and U, U".

Proof: As the proofs of the two statements are similar, we just pritnee first statement of the

Lemma. We first remark that

e - —qu(2"a), 129
ij

e

7[8‘552”‘1 ~-Q,(Q3),, (127)
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The Nash-Poincaré inequality gives
2

0? L 0QE) s |, |1 = 91QE)
Var [ TrQ(2) ] P [[E ~ Z awijm Uyp| +E |5 %}: aw;qu U, (128)
<C'3§:[‘2HQ 2HUQ()] +E‘ 2)UQ(2)% ]2} (129)
< C—Z [ (21Q( UQ(Z)Q(Z)HUHQ(Z)HE)].]} + (130)
3§j [(57Q(2)"U"Q(x)"Q(x)UQ(:)T), (131)
gCREEﬂkKKQUQQKKQHUHQ@WSEHH+ (132)
OE [T (Q(2)"U7Q(2)"Q(2)UQ(:)5")] (133)
We use the resolvent identity
Q)2 = 23HQ(2) =1+ 2Q(2) (134)
Therefore,
Vﬁ[%TﬂM@U}ng%EHYKM@UQ@XN@HUHﬂ+wWM@H»|+ (135)
CJ;EHY( ()70 Q(2)Q(2)U (I + 2Q(2))))| (136)
] 1
<V ([ * s (130
1 1
< 01 2 1+ ([ * ) (139
which establishes the first statement of Leniha 8.
|
We now complete the proof of Propositibh 6. For this, we useitlequalities||Q(z)|| < and

\Im(Z)I

IR(2)| < for z € C —R. This leads to

\Im(Z)\

1%Aﬂ)+iﬂAx@+iﬂAﬁ@ (139)

ZTr (E[Q(2)] R(2)) N N

N
We establish that

%Tr A(z)‘ <C

bt
[Tm(2)[? | N

1

STHAR)] < aPr(l=DPa(im()] ™) (140)

for i = 1,2,3. In order to evaluatel-Tr(A;(z)) for i = 1,2,3, we first remark that

1 1
[2(1 +oa(z))] ~ [Im(z)|
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because-———— is the Stieltjés transform of a probability measure. Thanefwe have

[T Foa(?)
e ;a<z>| - |1n|f<|z>| (141)
The resolvent identity{ (134) implies that
LA =~ [0 ST QL) - Q)| (142)
= et Ly (MQE) ~EQR) §((QE) —EQR)|  (143)

(I41) and the first statement of Lemia 8 give immediafely)fd0: = 1. Similarly, 4 Tr(A(z)) can

be written as

0.2

%Tr(Ag(z)) - oF K%TrQ(z) - [E(%TrQ(z)) <%TrEHQ(z)B - [E(%TrEHQ(z)B))}

140
Using again[(141), the Schwartz inequality, Lenitha 8, anddéetity (zy)'/? < (ZH2) for z > 0,y > 0,
we get [14D) fori = 2. (I40) fori = 3 is obtained similarly. This and(IB9) imply that
o o 1 1
| Tr (E[QE)R(:)) 1T A)| < 15P1(I)Pa([Tm(z)] )

Using the same approach and the idenlfiB(z)|| < (|Im(z)|)~!, we obtain easily that

‘%T}A(z)R(z) < <7z Pa(lz)P(m(z) )

(I22) thus implies Propositidd 6.

[
Remark 6. It is also possible to establish that € C., we have
1 - 1. = 1 -1
|5 Q0)| - FTRE) < gaPalDPa(im () ) (144)

because it is shown in [23] that a relation similar {0 (115)ld®for E(Q(z)). Following the derivation of
(121), we obtain an expression Ef[%Tr Q(z)] —+Tr R(z) similar to (I22) which allows to establish

(I49).

B. Study ofE (£ TrQ(z)) — +TrT(2)
In order to complete the proof of Propositibh 4, we show irs tharagraph that

g

= Ja(z) = 8(2)] < 1z PrleDPa(m(a) ) (145)

E (%Tﬂg@)) - %TrT(z)
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for eachz € C.. For this, we denote by(z) andé(z) the terms defined by

((2) = az) oy THR(E) = 0 (ETHQUE) - THRE) ) (146)
f(2) = () — oy TR() = o (ETHQE) - THRE)) (147)
Propositiof 6 and RemafR 6 imply that
e(2)] < 373 Pa(l=)Ps([Tm(=)| ) (148)
)] < <3 Pr(leDPa(im()] ™) (149)

for eachz € C... In order to studyx(z)—d(z), we express(z) asa(z) =

a(z)—0(z) = o5 Tr(R(2) —T(2)) +€(z). We have similarlyé(z ) S(z)

We remark thaR(z) — T(z) can be written a®(z) (T~*(z) ~1(2))
) 1

Tr(R(z))+¢€(z). Therefore,
Tr(R(z) —T(2)) +&(2).

o
T(z), and thatR(z) — T(z) is
equalR(z2) (’i“l(z) —R‘l(z)) T(z). Using the expression dR(z)~', T(z)~',R(z)~! andT(z)"!
we obtain that
Cjé(z) - f(z) — Do() Cjé(z) - CE(Z) N i(z) (150)
a(z) —6(2) a(z) —6(2) é(2)
where
Do(2) = uo(z)  zvp(2) (151)
200(2)  Uo(z)
with U, Uy, Vg, Vg defined by
1 o’R(z)BBYT(z)
(@) = T 501+ 05(2) (152)
_ 1 o’R(2)BBT(2)
ug(z) ==Tr 153
o) =N N e ) + 03() (153)
vo(2) :%TrojR(z)T(z) (154)
70(2) :%Traﬁi(z)’i‘(z) (155)

Using the matrix inversion lemma and the observation thatioes R, T, BB commute, the reader
can check easily thany(z) = tg(z).

In order to establisH (145), we remark thlaf (1L50) is equiviale the linear system

(I—Dy(z)) ol2) - (E(Z) [ (156)
a(z) —o(z) é(2)
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In the following, we show matriXI — Dg(z)) is invertible forz € C., and that the entries of its inverse

can be bounded by terms such Bs(|z|)P2(|Im(z)|~!). Proposition[% will follow immediately from

(I48) and [(149).

We first evaluate a lower bound akt (I — Dy(z)) for z € C. For this, we introduce matrid(z)

defined by
D(z) = ( ulz)  vz) ) (157)

|2]%0(2) a(z)
with u, z, v, v defined by
1. o’T(z)BBAT(2)H

u() N |1+ 0d(2)? (158)
N o?T(z)BYBT(2)"

u(z) —NTr TR (159)
o(2) :%TrazT(z)T(z)H (160)
o(2) :%Traz’i‘(z)’i‘(z)H (161)

and define matrixD'(z) as the analogue db(z) but in which T, T,6,0 are replaced bR, R, a, &
respectively. The entries d'(z) are denoted by, v, |z|>0’, 4 . We note that the entries @(z) and
D/(z) are positive, and that, using the matrix inversion lemmas ieasily seen that = @ and that

v =@ . These matrices are useful because we have the followirgppition.

Proposition 7. There exists a strictly positive constapsuch that

1 |Im(2)]®
(16)% (n* + [2[*)*

for eachz € C, and for eachN. Moreover, there exist an intege¥, and 2 polynomialgy; and Qa,

det (I—D(z)) > (162)

independent ofV, with positive coefficients, such that for eath> N,

1 [Tm(2)[®

det (1-D'(2)) = G 30 1 o (163)
for each element of the sett  defined by
Ey = {2 € Cy, 1 - 15Qi(1e)Q(Im(2)7") > 0) (164)
Finally, for eachN > Ny,
det (T — Do (2))| > VAol ~ D)) /det@ D)) > - )P (165)

(32)2 V2(1? + |2[?)*
if z€ Ey.
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Proof: We first establish[{182). For this, we exprdsas(d(z)) andIm(z4(z)) as
1
Im(§(z)) = NTr (cIm(T(z))) (166)
- 1 -
Im(20(2)) = NTr UIm(zT(z))> (167)

where for each matrity, we definelm(U) by Im(U) = Y5U%. Writing Tm(T(2)) as4T(2)(T(2) " -
T(2)")T(2)" andlm(2T(z)) as4zT(2)((2T(2))" " — (2T (2))"")(2T(z))", we getimmediately that

(@) ) _ e,y (O Y e ) (168)
Im(20(z)) Im(26(z)) w(2)

wherew(z) andw(z) are defined by

w(z) = LT (62 T(2)T(2)7) 1(z) = &Tr (M) (169)

This is equivalent to
(1 —u)Imd = vIm(20) + wlmz (170)
(1 — @) Im(20) = |2|*> 9 Tmd + @ Tmz (171)

As § and ¢ are proportional to the Stieltjés transform of probabilitgasures carried by, Im(8) >
0,Im(z0) > 0 for z € C.. (see Propertyl5 of Lemnia 1). Therefofe, (170]171) imply that, = 1 —1 is

strictly positive. After some algebra, we also obtain thet(I — D) = (1 —u)(1—a) — |z|>v® coincides

with
. N Imz
Therefore,
Imz
_ > — )y —/—2
det I-D) > (1—1a)w iy

As §(z) = oem(z), Property(B of Lemmall implies thdin(6(z)) < 2% or equivalently that2z >

Im(z)
(Im(2))?/oc. Hence,
1 — @)w(Im(z))?

det (I-D) > (

(I70) implies that

— = — U >
l—u=1—-u>w Tms = .
We finally get that
w?(Im(z))*
~-D) >
det (I—-D) (00)? (173)
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In order to obtain a lower bound af = & TroTT#, we first remark that;, Tr'TTH > | L TrT|* = [m)2

by the Jensen inequality. Therefore,> oc|m|? > oc/lm(m)|?. Im(m(z)) can be written as

Tm(m(z)) = Im(z) /[R ﬁ;‘f(;';

We recall that it is shown in [16] that the sequerigg;) n>o is tight. This implies that it existg > 0

for which pn(]n, +oo[) < 1/2 for eachN € N, or equivalently for which
v ([0,7]) > 1/2 (174)

for each integetV. It is clear that

dpn () T dpun(N) 1 1
/uhrx—z\? o P ey YO > e

Therefore,w > 1oc(Im(z)) > and Eq. [(I7B) gived (162).

6(n°+2[?)
We now establishi{163). For this, we express thata(z)) andIm(za(z)) as
Im(a(z)) = %Tr (cIm(R(%))) + Im(e(2)) (175)
Im(za(z)) = %Tr (aIm(zfi(z))) + Im(z€(2)) (176)

After some algebra, we obtain that

(o) e (e ) (0@ (e )
Im(za(z)) Im(za(z)) w (z) Im(z€(2))

wherew' (z) andw’(z) are defined as)(z) andiw(z) by replacingl(z), T(z),8(z), 6 (z) by R(2), R(2), a(z), & (z)
respectively. This is equivalent to
(1 —u)Ima = vIm(za) + w Imz + Im(e(2)) (178)

(1 —4)Im(z&) = 2> 0 Ima + @ Imz + Im(2é(2)) (179)
These equations are of course similar [fo {170,] 171) excetthie righthandsides of (1I7B, 179) are
corrupted by the two error termisn(e(z)) andIm(z¢(z)). In order to prove[{183), we follow the proof
of (I62) but take into account the presence of the error témnE78,[179). Ase anda are proportional
to the Stieltjes transform of probability measures carbgdr ., Im(«) > 0,Im(z&) > 0 for z € C,.

Therefore, [(178) implies that
(1 —u)Ima > w Im(z) — |e(2)| (180)

In order to determine a subset 6f, on whichl —« = 1 — @ is strictly positive, we evaluate a

lower bound ofw'(z) = +Tr(cR(2)R(z)). For this, we follow what preceds. We express as
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w' = o Tr(R(2)R(2)") and note thats' > oc|LTrR|*. As R(z) is the Stieltjés transform of a
matrix valued measure whose mass is the matyix; TrR(z)) is the Stieltjés transform of a probability
measurely. It is shown in [23] that-L TrR(z) — my(z) — 0 for eachz € C — R;. Therefore, the

sequenceéy — un)n>o converges weakly torwards @.> 0 being defined by[(174), it thus exists an

integer N for which

1
en((0.m) > 5 (181)
for eachN > N;. Using the same calculations as above, we obtain«that %. Hence, using
(I80) and[(148), we get
, oc(Im(z))3 1 1
(1 —u)Im(a) > G2 + 222 mPl(]z\)Pl((Im(z)) ) (182)
If we denote by, x the subset ol defined by
oc(Im(z))3 1 _1
64(7]2 + ’2‘2)2 NQPl(‘ZDPl((Im(Z)) ) >0 (183)

it is clear thatl —« = 1— 4@ > 0 for eachN > N; and each: Ei,n. We note thatt; y can be

written as
{z eCy,1— %Sl(|z|)82((1m(z))_l) > 0} (184)

for some polynomials with positive coefficients.

Using some algebra as well as the identify= @', we get that
’ Y ’ ’ ImZ ’ . ’
det (I—D) - (vw +(1—u)w) 4 0'Tm(2€) + (1 —u)Im(e) (185)

Therefore, for eacliv > N; and eache € E; n, we have

! ’ /I ’
det(I—D)>(1—u)w %—v\zé!—]e[

Moreover, asllﬁ(a) < Tgaye using [I8D), we get

(2) = (Im(
w (Im(2))* ¢
oc Im(a)

’

—u) >

It is shown in [28] that{; Tr(E(Q(z))) — mn(z) — 0 for eachz € C — R,.. Therefore, the sequence

(1

(wn —pN)N>0 converges weakly torwards 0 where measugeis defined by[(102)y > 0 being defined

by (I73), it thus exists an integé¥, > N, for which

1
wn ([0,n]) > 7 (186)
for eachN > Ny. This allows to show thatm(a) > 8?1762‘13(;)2) for N > Ny, and that
o w (Im(2))*  8(n* + |2)
1— —
(1—u)> oc oclm(z) [€(2)l
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As |R(2)[| < (Im(2))71, v = £ Tro?RR verifiesv’ < o2¢(Im(z))~2 while w" = +TreRR is less
thanoc(Im(z))~2. Putting all the pieces together, we obtain that

. o Imz Im(2)® 64(n* + |2[*)?
(1—u)w Tma > (64)2(2 + |2]2)2 - oc(Im(z))*

le(2)] (187)

and

i (1-D' m(2)® (0 GAP A P?Y ot
e (1) > Gy iy~ (U o) 1491~ el s

for N > N, and forz € £, n. (I88) can also be written as

miz 8 ’ ’
det (T-D') > (64)21(772(42 EBE <1 - %Sl(IZ\)Sﬂ(Im(Z))‘l))

for N > Ny and forz € E; y for some polynomials with positive coefficients indepertdginN S; and

S,. We denote byf, v the set

oy = {2 € €4, (1= gSi(DSyam) ) ) > 3

We remark that

{1 - FSieDSalm() ) - 581Dy ((m(:) ) > 0f € By By

We consider polynomial§); and Q. defined byQ; = S; + \/582 for i = 1,2 and define the sdiy by

Eny = {z eCy,1— %Ql(]z\)Qg((Im(z))_l) > O}

which is included intoE; x N E2 . It is clear that[(163) holds.

In order to verify [16b), we first remark that the followingeualities hold:

|det (I — Do (2))] = (1 — uo)(1 — o) — 2*voTo| (189)
> |1 — |1 — @i — |2[*|vol|To (190)
> (1 — |uol)(1 — o) — |21 |vo|Tol (191)

Using the Schwartz inequality, we get thag| = |io| < |u|"/?[u'|"/2 = |a|*/?|@ |V/2, Jvo| < |v]Y/2|v' V2,
and |g| < |9|Y/2|9'|"/2. For N > Ny and forz € Ex, u =@ < 1 andv’ = @ < 1 hold. Therefore, we

obtain that

[det (T —Do(2))] > (1~ [ul /2| [2) (1 — [al' (@ [V2) — |2 P[o] 21020 20|72 (192)
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As det(I — D(2)) = (1 —u)(1 — @) — |z|*vd anddet(I —D'(2)) = (1 —u)(1 — @) — |2|>'0 are
positive for N > Ny and forz € Ey, it is easy to check that the righthandside [of (192) is gretit@n
(det (I — D(2))det (I—D’(z )))1/2 for N > N, and forz € Ey. This shows[(165). [
In order to complete the proof df (IU5), we express) — d(z) as
0(2) = 8(2) = gy (1~ (e)ez) + 20 (22(:)]
If N > Ny, and if z € Ey, (I68), [T48[149))vy(z)| < W and |up(2)] < (hg(“ ® (recall that
bmaz 1S defined by[(I7)) give immediately

|a(z) = 6(2)] < %Pl(lzl)Pz((Im(z))_l) (193)

for some polynomial®;, i = 1,2 with positive coefficients. It € C, \ Ey, we follow the trick of [18]

and [14], and remark that
20¢c

Im(z)

|a(2) = (2)] < fea(2)] +16(2)] <

If z€Cy \En, 2 < 2:Q1(]2))Qz((Im(2))~") so that

20¢

0(:) = 5] € 3 (=) Qe((Tm(2) ™)

Therefore, forN > Ny, and for each € C_,

20¢c

()-8 < 37z (PalaDP(m() ) + 5 QD Qa((Im(2) ™) ) < (l+C)*Qm(z) ™)

wherek is an integer(' is a positive constant an@ is a positive coefficients polynomial. Proposition

M follows directly from the identityx(z) — §(2) = oc (E(5TrQ(2)) — 4 TrT(z)).

APPENDIX F
ProOF OF(16).

We first show that for each € C., ull(Qn(2)—Tn(z))vn converges towards 0 on a set of probability
1 which, in principle, depends on In order to obtain the almost sure convergence towards @doh
z € C— R4, we use a standard argument based on Montel's theorem.

We first write

ui (Qn(2) = Tn(2)) vv = ui (Qn(2) — E(Qn(2))) v + uf (E(Qn(2)) — Tn(2)) vn  (194)

We study the second term of the righthandside[of (194) antkwri

uy (E(Qn(2)) = Tn(2)) viv = uy (E(Qn(2)) — Tn(2)) viv +uf (R (2)) — Tv(2)) viv
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where we recall that matriR y (z) is defined by[(108).[{145) implies thaty(z) — dn(2) anday(z) —
dn(z) converge toward$ (ay,dn, Gy, oy are defined by[(100, 98, _T0L.199) respectively) . Using the
identity Ry (2)—Tn(2) = Ry(z) (Ty'(2) — Ry'(2)) Tn(2) allows to expresall (Ry(z)) — Tn(2)) vy
as a linear combination afy(z) — oy (z) andan(z) —on(2). As |[Ry(2))|| < [Im(2)| 7L, | Ta(2))] <
IIm(z)|~!, the coefficients of this linear combination remain boundégn N — +oo. This shows that
ull (Ry(2)) — Tn(z)) vy converges towards O.

In order to studyul (E(Qn(z)) — Rn(2)) vy, we use relation[(121). Using the Nash-Poincaré in-
equality, it is easy to check that{ Ry () A n(z)vy — 0. (I40) implies moreover that Tr Ay (2) — 0.
(I21) thus shows that (E(Qn(z)) — Rn(z)) vy — 0.

It remains to prove thaty(z) = ufl (Qn(2) — E(Qn(2))) viv converges towards O almost surely.
For this, it is sufficient to show that

Elen(:)l* < S

whereC(z) does not depend ofV. We expres€|xy(2)|* as

(195)

Elzn(2)[* = [E(zn(2)?)|* + Var (zx(2))?

We remark that|[E(a:N(,z)2)|2 < ([E|3:N(z)|2)2. Moreover, E(xx(z)) = 0 implies thatE|zy(2)> =
Var(zy(z)). Therefore,
Elon ()" < (Var(an(2))* + Var |(ex(2))’]

Using the Nash-Poincaré inequality, it is easy to show Yhatz v (z)) < % and thatVar (zx(2)?) <

C]\(,i) . This establishe§ (I95) and tha{ (Qn(z) — Tn(z)) vy converges towards 0 on a set of probability

1 depending on.

In order to prove the almost sure convergence for eaehC — R,, we use the following standard
argument. We consider a countable sub8gtC C, having an accumulation point. On a s@t of
probability 1 ,ul (Qn(z) — Tn(z)) vy — 0 for eachz € Z.. We fix a realization of the se®. We
denote byyy(z) the functionyy(z) = ufl (Qn(2) — Tn(2)) vi. Functionsz — ulQny(z)vy and
z — ullTy(2)vy are Stielties transforms of bounded measures carrieB_byTherefore, functionyy
is analytic onC — R, and for each compact subgétof C — R, it holds that

C
< - -
lun (2)] < dist(iC, Ry )

for some constant’ (this is a trivial generalization of19) to the Stieltjesrisform of a non necessarily
positive bounded measure carriediy). Montel's theorem ([24]) thus implies that it exists a sedpsence

Yy extracted fromyx which converges uniformly on each compact subsé ofR ;. towards a certain
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function y,. which is analytic onC — R. However,y.(z) = 0 for eachz € Z., thus showing thay. is
identically 0 onC — R4.. The limit of each converging subsequence extracted fyanis thus identically
0. We thus obtain that the whole sequenge converges uniformly towards O on each compact subset

of C — R... Therefore, for each realization of the probability 1 &etwe have shown that
uiy (Qn(2) = Tw(2)) vy = 0

for eachz € C — Ry. This completes the proof of (IL6).

APPENDIX G

PROOF OFLEMMA [4]

An elementary study of functiom — 7y (2) shows thaty, € }X,&N), A [ Vk=1,...,M —1and

that wﬁvjjv) > 5\5\]}). Therefore, by Theorefd 4, we only need to prove tb%;QK < t; almost surely for

all sufficiently largeN.

Consider the contou? defined in Proposition]5. Noting th&tencloses0} on the complex plane and
thatInd¢(0) = 1, we can write

1

1=—¢ Xt (196)
271 c+
L fwy (@) L[ wh(@)
_ 1 - 197
2mi Jy- (wN(;U) > dx 2mi Ji- wn(z) dx (197)

where the notatio™ means that the contout is counterclockwise oriented. Since functiohs—
wy(z + ih) and h — wy(z + ih) are continuous ab = 0 for all = €]t ,¢][ (except for the points
T € {ng)_,ngH}), Lemmal3 together with the Dominated Convergence Theoneptyithat

tF / . * tr o, .
i [L / (M) L wdwl (198)

tr \wn(z +1iy) 27 t wn(z+iy)

. [if W) gy L [P e ) L (i)
ylo [ 271 Jors wn(2) 2m J_y wy(t] —ih) 21 J_y wn(t] +ih)

whereaR;Jr denotes the contour of the rectangle defined in (62) countkwise oriented. The function

w’ (x+ih)
w(xz+ih)

two last integrals vanish ag| 0, so that we can write

/
1 :hmij{ wi(2) g
or} WN(2)

dh} (199)

h —

is a continuous function on the compact §ey, y| for z = ¢, or tf, and therefore the
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Since the function% is holomorphic orﬂ:\[ng)_,mgNH], the last integral does not depend on the

value ofy > 0, and thus we can drop the limit, i.e.

/
1= b wn(2) g, (200)
2mi Jors wn(2)

This identity will be key in order to prove thaty,_x < t{ almost surely for all sufficiently largev.

Before going further into the proof of this result, let us tfiexamine the functionoy (z) defined by

(©4) whenz € R. The following result follows from elementary analysis:

z) w( A

Figure 13. Typical representation afy (x) as a function ofc for M = 3 (we drop the dependence wifti from all quantities

for clarity).

Lemma 9. The functiomby defined onR by
wy(x) =z (1 + UchmN(ac))2 - 0'2(1 —¢N) (1 + JQCNmN(a:))

satisfies (see further Figute 11.3)

lim wy(z) = 400, lim wy(z) = 400 (201)
xgrfm wn(x) = 400, xEIPoo wn(z) = —o0. (202)
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Moreover,wy (z) = 0 is a polynomial equation with degree\/ + 1 with the following zeros:

« One zero in}o,;\gN)[ denoted as".

» Two zeros in each mterva}l)\,(C ) )\,(ﬁ)l { denoted as&,gN), XN =1 M—1.

« Two zeros in} 5\5\]}7), +00 [ denoted assbj(vjlv), ](V][V)

Furthermore, we have

0< 2N < A < o™ < s A <

(V) A(N) _ ()

<A <o < A < A <) < 2.
Now, the functionz — @y (z), defined onC, is holomorphic everywhere except at poles (of orger

f\gN), 5\5\]}7). Moreover, functionz — Zﬁjg is holomorphic everywhere except at the zerogigf

and at the sample eigenvalugg’, ..., A,
Figure[14 gives an schematic representation of the positiéithe zeros and poles afy(x) in terms

of the contourdR,,. Observe that, for sufficiently highv, Theorenl# ensures th{t&ﬁm, .. ,;\%}QK}

will be inside9R,,, whereas the rest of the sample eigenvalues will be outStken the position of the

zeros@,iN ) A(N )

that the zeros{wk >zk Mk=1..M-K- 1} will also be insidedR, for all NV sufficiently high.

Furthermore, the remaining zeros will be outsitfe,, except for the zeroS(()N), wg\]flK andéj(vj}f_)K, for

established in Lemmid 9, we see that the position of the saeigémvalues determines

which we can not state anything. In what follows, we will skattthese three zeros are in fact located
inside OR,, with probability one for all largeV, which will conclude the proof of Lemmid 4. As a first
step, we introduce an intermediate result that establigtetsnone of these zeros can converge to a the

boundary point oOR, when N — +-oc.

Lemma 10. For all N large enoughz{™ # t7, &\ . # 7 and 2 . # ¢},

Proof: We will just establish thazlizg\]flK # tf and zgfj x # t7, since the proof tha:f0 #t; is

quite similar. For this, we prove the following:

inf inf J|wy(x) >0 203

Nxe[tmﬂ! N ()| (203)
lim  sup |wy(x)—wn(x)] =0a.s (204)
NZ+o0 aeft 13

If (203,[204) hold true, it is clear that almost surely, it=®iN, € N for which

inf inf |wn(z)] > 0a.s. 205
N>le€[tl+7t;]! N(z)| (205)
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A
OR,
A~(N) 2@ A (N)) (N ... ~(V s (V)
wg ) zg ) wé )'zéN' wgv[zK—l FM-K-1
- O—0 ’I—‘I ® 14 ’ \;,_4 >
—t— 5 S (N) N) g A
R TRt R
N) A
WN-K PM-K

Figure 14. Schematic representation of the position of #tes (circles) and poles (crosses) of the function(z) on the

region enclosed byR,.

a property which implies thabg\]le #t7 and z](\f[VZK #tf for N > Ny.

In order to prove[(203), we note that Assumptigfs 1 @hd 2 intpéy existence of > 0 such that
wy(z) >0if x € [t] —e,t; +¢] andN > Ny. Now, we writewy (z) as

wy(2) = 2(1 4+ 00n(2))(1 4+ 0dn(2)) = 2(1 + o2eymn(2))(1 + o2eympy(2) — M) (206)

where we recall thaiy anddy are defined by[{38) an@{P9) respectively. It has been megdidm Ap-

coincides with the Stieltjés transform of a

. . 1 _ 1
pendix[E that functiorr — — oo @) = T ToTen (D)

probability measure carried i, . We denote byyy this measure. Asiy (z) > 0if z € [t] —€,t5 +€],

functionz — — is analytic onC; UC_UJt! — e, t; + €[ and is real-valued oft] —e,t; +¢].

1
z2(14+0dn (2))
The support of measurgy is thus included intdR —Jt]” — ¢, t; + ¢[. Therefore, Property]9 of Lemma

[ implies that

|

lz(1 + achmN(x))‘_l < (207)

1 — 1 .
rein) = F0icPenmn(z))—o7(1-en) COINCIdES

with the Stieltjés transform of a probability measure @by R,. Using the same approach as above,

for eachx € [t], ¢, ]. It can also be shown that— —

we obtain that

(208)

|z(1+ o*eymy(z)) — 0*(1 — CN)|_1 < %

for eachz € [t],t;]. This, in turn, implies[(203).
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In order to establisH (204), we note that it is sufficient ttabbsh that

lim  sup |my(z)—my(z)]=0a.s (209)
N+ oeltt 7]

Theoren[# implies the existence of> 0 for which, almost surely, functiom — mx(z) is analytic on
C+UC_UJt] —¢,ty +¢[ for N > Ny whereN; > Nj is a certain integer. EqL](9) implies that for each
compact subset’ of C; UC_UJt] — ¢, t, + €], there exists a constant(K) for which almost surely
SUp sy, SUp.ex [ (2)] < C(K). For the same reasons, it holds thab . v, sup.cc |mn(2)| <
C(K). Montel's Theorem {[24]) thus implies that it exists a sudgencei, vy — myv) extracted from
(my — my)N>n, Which converges uniformly on each compact subse€Cofu C_UJt] — €,t5 + €]
torwards a function..(z), analytic onC, UC_U]t; — e, t, +¢[. Propositior 1L implies that almost surely,
my(z)—mn(z) — 0 for eachz € C\R4. This implies thap.(z) is identically zero. As the limit of each
convergent subsequence extracted fram —my is 0, the whole sequendé:y —my)n~n, CONverges
uniformly torwards 0 on each compact subse€qfuC_UJt{ —¢,t, +¢[. This, of course, implie$(209).
This completes the proof of Lemnia]10.

[

Using the same arguments as above, it is easy to show thatekistsN, € N such thainfy n, inf.cor, [wn(2)| >

0 and such that, almost sureiyf v~ n, inf.eor, [Wn (2)| > 0. Italso holds thatup y y, sup.cor, lwy(2)] <
+00 andsup s , SUP.cor, iy (2)] < +oo almost surely. Since almost surely the funct%—%
converges td) for eachz € OR,, the Dominated Convergence Theorem ensures that, withapiii

one,

51 o L)~ 0] | 7

Now, according to LemmCE(()N) #+ t;,wg]ﬁK # tf,éyﬁK # t{ with probability one for all large
N. Hence, it is possible to use the argument principle to ioncﬁﬁ% on contourdR,,. More precisely,

1 i)
2mi Jory wn(2)
and since the previous integral is an integer, usingl(20@) fimally have with probability one fov

dz = card {z €: wn(z) =0} —2(M — K)

large enough
2(M —K)+1=card{z € R, : wn(z) =0}.

We already know thaﬁgN),. i ,2](V]}’_)K_1 and aéN),. .. QEV]}QK_P which are zeros ofiy(z), belong to

R,. Since the total number of zeros23/ + 1, 3 other zeros ofiy(z) belong toR,, with probability one
for N large enough. However, all the zeroswf;(z) are real-valued, which implies that tBeadditional

zeros necessarily includég\];lK. This concludes the proof Lemria 4.
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APPENDIXH
PROOF OF(67) AND (68).

We first establish[(87). For this, we recall tHBfy(z2) is the Stieltjes transform of a positive matrix
valued measurd®'  with massIy. Therefore, functiorz — bﬁTN(z)bN coincides with the Stieltjés
transform of the positive measubd! T yb . This measure is clearly absolutely continuous w.r.t. aeas
Tr(Ty), or equivalently w.r.t. measurgy = %Tr(I‘N). The support o' yby is thus contained

into Sy. Therefore, it holds that

bNH2
biT byl < 7”
’ N N(Z) N‘ - diSt(Z,SN)

(seel®). We have already mentioned in Appeidix E and in Agpé8 that functionz — (—z(1 + O'2CNmN(Z)))_1
is the Stieltjes transform of a probability measure carbigdr . This function is moreover analytic in
C — Sy becausd + o%cympy(z) # 0 on C — Sy (see Propert{]6 of Propositién 1), a property which

implies that the support of its associated measure is iedudto Sy. Therefore, we have

- 1
—2(1 —
| +otenm(z | dlst (z,Sn)
or equivalently
- 2|
1 e
| +otenmn(z | dlst (z,Sn)
Assumptions[{ll) and{2) imply thahf - v, dist(9R,, Sy) > 0. We thus obtain that
b TN (2)b
sup sup | N n(2)bw| < +00

N>No z€0R, |1 +a%enmn(2)))|
Using again thainf v~ y, dist(OR,, Sy) > 0, it can be checked thatip vy, nv(2)] < oo
This in turn establishe$ (67).

In order to prove[{68), we recall thaty (z) is the Stieltjes transform of the probability measpre =

% Zﬁil (A — X,(CN)). Assumptions[{1) and{2) imply it exist¥, € N such that the distance between
OR, and the support ofiy is lower bounded by a strictly positive term independenf\o> Ny. It is
easily seen that — bZ2Qy(z)by is the Stieltjés transform of measufe "M | (b e(™ 1251 — AM).
The support of this measure is included ir{tbﬁN), e 5\5\]4\7)}. Using [9) as above, we deduce from this
that

sup sup b¥Qy(2)by < 400
N>N, 2€0R,,

The same arguments can be used to showsthay;~. v, sup.cor, [y (2)] < +o0.
Finally, using Propert/16 of Lemnid 1, it is easily seen thatction > — (—z(1 + UQCNmN(Z)))_l is

the Stieltjes transform of a probability measure. Its supigancluded into the se[tigN), cey ;\gé}/), af“, e ,a](fj)}.
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Moreover, in the statement of Lemrhfi#, andt]” can be replaced by, + ¢; andt] — ¢; wheree;
is chosen in such a way thaf + e < infysy, 21"~ < supyoy, 2" < tF — . Therefore, the
distance betweefiR, and{f\gN), ce S\E\Jj),wgm, . ,a]({j)} is lower bounded by a strictly positive term

independent ofV > Ny. This implies that

sup sup |1 + o2eymn(z |_1 < 400
N>Ny z€0R,
This completes the proof of (68).
APPENDIX |
PROOF OFLEMMA
We first write the equation i, 1 + o?crmy(w) = 0 as
020N M 1
_ +1=0 (210)
M ]Z:; Aj—w

and by multiplying the left hand side b]y[ﬁvil (5\3» — w), we define a new polynomia)(w), by

Qw) = M ZH(Al—w)—I—H(AI—w)

j=11=1
I#j
As the monic polynomial functiod) has M roots atw,...,wy, We can write
M
Q) =] @ —w)

=1

M M
Tl - = ST (-5 ex
=1

Therefore,

j=1l=1 j=11#£j5 m=1
I#] =1

Y@ ZH(Az—w) ST
m
Evaluating again this function at poif,, we obtain

ZH(wl Si) = H(Al ) - QUCNZHQ ) (e19)

17k =Ty
or, dividing both sides by the first term on the right hand sifl¢he equation,

ijvil Hi% (0?11 - 5\k>
=1+

Hz]\i1 (5\1 - 5\/f) M ] Al = Ak
1#k l
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Going back to equatiofi (2111), one can also write

Z;-Vil 12 (djl - 5\1@) 9 ijvil 14 (tf)l - 5\k) 0. M
I#j __0"CN 1#j __0°cN 1
M (5 3 M M 3 M Z N (214)
[Ti= (/\l - /\k) IT2 (0?11 - >\k> =1 W Ak
I#k
Consequently, we see that we can write
14 202¢cy f: 1 B oen 1 n olen M 1
M =X =\ M oy —Xe M Zo -
I£k I£k
or, reorganizing the terms of this expression in a conveniay,
2 2 M 2, M 2 M
ey 1 ey 1 ocn 1 oecn 1
1+ < — + —— = — — —. (215)
M N—op, M ;/\l—/\k M lz:;wl—/\k M lz:;/\l—/\k
I£k I#k I#k
But from the equation inv (210), we obtain
0'26]\7 1 O'2CN M 1

1+ = + < =0
M Ne—op M ;Az—@k
£k
and by inserting this expression infa (215), we finally ge&t éxpression in the lemma.
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