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Improved subspace estimation for multivariate

observations of high dimension: the

deterministic signals case.
Pascal Vallet1 Philippe Loubaton2 Xavier Mestre3

Abstract

We consider the problem of subspace estimation in situations where the number of available snapshots

and the observation dimension are comparable in magnitude.In this context, traditional subspace methods

tend to fail because the eigenvectors of the sample correlation matrix are heavily biased with respect to the

true ones. It has recently been suggested that this situation (where the sample size is small compared to the

observation dimension) can be very accurately modeled by considering the asymptotic regime where the

observation dimensionM and the number of snapshotsN converge to+∞ at the same rate. Using large

random matrix theory results, it can be shown that traditional subspace estimates are not consistent in this

asymptotic regime. Furthermore, new consistent subspace estimate can be proposed, which outperform

the standard subspace methods for realistic values ofM andN . The work carried out so far in this area

has always been based on the assumption that the observations are random, independent and identically

distributed in the time domain. The goal of this paper is to propose new consistent subspace estimators

for the case where the source signals are modelled as unknowndeterministic signals. In practice, this

allows to use the proposed approach regardless of the statistical properties of the source signals. In

order to construct the proposed estimators, new technical results concerning the almost sure location of

the eigenvalues of sample covariance matrices of Information plus Noise complex Gaussian models are

established. These results are believed to be of independent interest.
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Index Terms

Subspace-based estimation, random matrix theory, information plus noise model, limit eigenvalue

distribution.

Notation: Matrix (resp. vectors) quantities are denoted by boldfacedcapital (resp. lower case) letters.

TheN × N identity matrix is denoted asIN . Trace and spectral norm will be denotedTr [·] and ‖·‖
respectively, and[·]T and[·]H represent the transpose and the conjugate transpose. For a setU , we denote

by Int(U) and∂U its interior and boundary respectively. Given a complex number z, Re (z) andIm (z)

denote its real and imaginary parts respectively,(·)∗ stands for complex conjugation andi denotes the

imaginary unit. The upper complex half plane is denoted byC+, i.e C+ = {z ∈ C : Im(z) > 0},

and equivalentlyC− will denote the lower complex half plane. Similarly,R+ andR− represent the set

of all positive real numbers and the set of all negative real numbers respectively. We will also write

R

∗ ≡ R\ {0} andC∗ ≡ C\ {0}. For a given contourC on the complex plane,IndC(ξ) will denote the

index of the contour with respect to a pointξ ∈ C. The support of a particular functionφ will be denoted

as supp (φ), andC∞
c (R,R) will represent the set of compactly supported real-valued smooth functions

defined onR.

I. INTRODUCTION

Subspace estimation methods have been widely proposed in multiple applications of communications

and signal processing, such as direction of arrival (DoA) estimation [1], beamforming [2], channel

identification [3], waveform estimation [4], and many othergeneral parametric estimation problems based

on multivariate observations [5]. In general terms, these algorithms are applicable to the situation where a

number of parameters needs to be extracted from a set of multivariate observations, which are composed

of a noise part, with full-rank empirical correlation matrix, plus a signal contribution that has low-rank

empirical correlation matrix. By exploiting the inherent orthogonality between the signal subspace (i.e.

the subspace spanned by the columns of the signal empirical correlation matrix) and the noise subspace,

one can try to extract the original parameters from the set ofnoisy observations. In general terms, the

resulting estimators are computationally much more affordable and hence are generally preferred over

other estimators such as those based in the Maximum Likelihood (ML) principle, which generally perform

better but unfortunately involve an exhaustive search in a multi-dimensional parametric space.

In order to formulate a generic subspace estimator, one mustfirst infer the eigenvectors of the correlation

matrix of the observation. This is generally difficult, because the correlation matrix of the multivariate
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observation is generally unknown. In consequence, classical subspace estimation methods make use of

the empirical correlation matrix, and approximate the eigenvectors of the true correlation matrix as the

eigenvectors of the sample estimate. This procedure is clearly optimal when the number of observations

(denoted byN ) tends to infinity while the observation dimension (denotedby M ) remains constant.

Indeed, under certain ergodicity assumptions, whenN → ∞ for a fixedM , the sample correlation

matrix of the observation converges almost surely to the true one, and consequently whenN >> M

the sample eigenvectors (i.e. the eigenvectors of the sample correlation matrix) tend to be very good

representations of the true ones. In practical applications, however, the number of available observations

(N ) and the observation dimension (M ) are comparable in magnitude, which leads to strong discrepancies

between the sample eigenvectors and the true ones. This originates what is usually referred to as the

breakdown effect of subspace-based techniques [6].

The fact that sample eigenvectors are not the best estimators of the true ones has been known for

decades, although the study of valid alternatives to the classical estimators has been limited by the fact

that investigations basically concentrated on the regime whereN >> M . However, it has been recently

suggested [7] that finite sample size situations (wherebyN andM are comparable in magnitude) can

be better examined by investigating the asymptotic regime in whichM andN converge to+∞ at the

same rate, i.e.M,N → +∞, whereascN ≡ M
N converges towards a strictly positive constant. Using

Large Random Matrix Theory (LRMT) results, it was shown in [7] that traditional subspace estimators

are asymptotically biased in this asymptotic regime. Furthermore, consistent estimators for this regime

can be found, which outperform the traditional ones for realistical values ofM andN . In this context,

LRMT can be very useful (1) to characterize how the sample eigenvectors differ from the true ones in

a scenario whereM andN are comparable in magnitude and (2) to derive alternative estimators of the

eigenvectors that converge, not only whenN → +∞ for a fixedM , but also whenM,N → +∞ at

the same rate. This was more extensively demonstrated in [8]and [9], which respectively considered the

characterization of the sample eigenvectors whenM,N → +∞ at the same rate, and proposed alternative

consistent estimators for these quantities in the new asymptotic regime.

Unfortunately, the work in [8] and [9] cannot be applied to the signal plus noise model considered

here, unless the observations are random multivariate quantities that are Gaussian, independent and

identically distributed in the time domain. In practice, however, there are multiple applications in which

the observation does not present this structure, and is better modelled as a deterministic component

(corresponding to the signal part) plus some additive noise, that is generally Gaussian distributed. This

model is usually referred to as the “information plus noise model” in the LRMT literature [10], as opposed
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to the more classical “sample covariance matrix model” [11], which was the one used in [7], [8], [9].

The main objective of this paper is to propose improved subspace estimators for the information plus

noise model, which will represent the case where the source signals are as non-observable deterministic

sequences. In order to obtain these estimators, new mathematical results related to the almost sure location

of the eigenvalues of the empirical covariance matrix of a Gaussian information plus noise model are

derived. These results are believed to be of independent interest.

The rest of the paper is organized as follows. Section II introduces the information plus noise model

associated with the specific application addressed here: the determination of multiple directions of arrival

(DoA) using an array of antennas. The main objectives of the paper in mathematical terms are also

formulated. Section III provides some general facts related to the convergence of the eigenvalues of the

empirical correlation matrix for the information plus noise model. It is further explained in Section IV

that the eigenvalues of the sample correlation matrix tend to concentrate around some clusters when both

M,N → +∞ at the same rate. A very simple description of the position ofthese asymptotic eigenvalue

clusters is also provided. It is in particular shown that each cluster is associated with a set of consecutive

eigenvalues of true covariance matrix of the observation. Section V presents an intermediate result that

has its own interest. In brief, it is shown that, for sufficiently large M , N , with probability one no

eigenvalues of the sample correlation matrix will be located outside the asymptotic eigenvalue clusters.

Furthermore, the number of sample eigenvalues that are located in each of these clusters is directly related

to the dimensionality of the corresponding eigenspace of the true covariance matrix. In order to focus

on the applicative context of the paper, this claim is provedfor the cluster associated with the noise

subspace, but it can be extended easily to the other clusters. This fact generalizes the results derived in

[12] and [13] in the context of source signals independent identically distributed in the time domain.

In contrast with [12] and [13], the results presented in thispaper, inspired by the approach developed

in [14], are only valid in the complex Gaussian case. The above mentioned results are then used in

Section VI in order to derive an estimator of the localization function of the subspace estimate that is

consistent not only whenN → +∞ for fixedM , but also whenM,N → +∞ at the same rate. Section

VII provides some numerical examples that illustrate the effectiveness of the proposed estimators. Finally

Section VIII concludes the paper. Most of the technical derivations have been relegated to the appendices.

The results of this paper have been partly presented in the short conference paper [15].
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II. PROBLEM STATEMENT

In order to motivate and illustrate the signal model that is used in this paper, we consider the following

DoA estimation problem. Assume thatK narrow band deterministic source signals(sk)k=1,...,K are

received by an antenna array ofM elements,K < M . The correspondingM dimensional observation

signalyn (at discrete timen) can be mathematically described as

yn = Asn + vn

whereA = [a(θ1), . . . ,a(θK)] is anM ×K matrix that contains the steering vectors of theK sources,

sn is a K × 1 column vector containing the transmitted signals from theK sources at time instantn,

and wherevn is an additive Gaussian white noise component with zero meanand covariance matrix

E

[

vnv
H
n

]

= σ2IM . We assume thatyn is available fromn = 1 to n = N , and thatM < N , or

equivalently thatcN = M
N is strictly less than1. It is possible to generalize our results to the situation

where cN > 1, although the presentation of the corresponding results would however complicate the

developments of the present paper.

We denote byYN = [y1, . . . ,yN ] theM ×N observation matrix, which can be readily written as

YN = ASN +VN (1)

whereSN = [s1, . . . , sN ] andVN = [v1, . . . ,vN ]. From this matrix, we can define the empirical spatial

correlation matrix of the observation aŝRN ≡ 1
NYNY

H
N , whereas the empirical spatial correlation matrix

associated with the noiseless observation will take the form 1
NASNS

H
NA

H . It is worth pointing out here

that, since the number of signals is assumed to be lower than the number of antennas (K < M ), the

steering matrixA will always be a tall matrix and therefore the empirical spatial correlation matrix of

the noiseless observation will never be full rank. In other words, the minimum eigenvalue of the matrix

1
NASNS

H
NA

H will always be zero and will have multiplicity equal toM −K.

In order to simplify the notation in the subsequent exposition, we define the matricesΣN , BN , WN

as

ΣN =
YN√
N
, BN =

ASN√
N
, WN =

VN√
N

(2)

so that (1) can be equivalently formulated as

ΣN = BN +WN (3)

whereΣN is the (normalized) matrix of observations,BN is a deterministic matrix containing the signals

contribution andWN is a complex Gaussian white noise matrix with i.i.d. entriesthat have zero mean and
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varianceσ2/N . We denote byΠN the orthogonal projection matrix on the “noise subspace”, which in our

context is defined as the orthogonal complement of the columnspace of matrixA. In the following, we

assume that the empirical correlation matrix ofSN defined by 1
NSNS

H
N is full rank. Therefore, the noise

subspace coincides with the kernel of the empirical correlation matrix of the noiseless signal, namely

BNB
H
N .

Let
{

γ
(N)
k

}

k=1,...,M
denote the eigenvalues of the empirical correlation matrixof the signal component,

namelyBNB
H
N , arranged in increasing order and let

{

e
(N)
k

}

k=1,...,M
denote the corresponding unit norm

eigenvectors. We note in particular thatγ(N)
1 = . . . = γ

(N)
M−K = 0 while the remaining eigenvalues are

strictly positive and thatΠN =
∑M−K

k=1 e
(N)
k

(

e
(N)
k

)H
. The subspace method for the determination of

theK directions of arrival (commonly referred to as MUSIC algorithm) is based on the observation that

the angles{θk}k=1,...,K coincide with theK solutions of the equationa(θ)HΠNa(θ) = 0. In order to

be able to use this last observation, it is in practice necessary to estimate the functiona(θ)HΠNa(θ)

(usually referred to as the “localization function”) for each θ ∈ [−π, π], or more generically to estimate

the quantity

ηN (b) = bHΠNb

for each deterministicM -dimensional vectorb.

If N → +∞ while M is fixed, the empirical correlation matrix of the observations R̂N = ΣNΣ
H
N of

YN converges towards the matrixRN = BNB
H
N + σ2IM in the sense that

‖R̂N − (BNB
H
N + σ2IM)‖ → 0 a.s. (4)

where a.s. represents the almost sure convergence. We will denote by
{

λ̂
(N)
k

}

k=1,...,M
the eigenvalues of

R̂N arranged in increasing order and by
{

ê
(N)
k

}

k=1,...,M
the corresponding eigenvectors. The convergence

result in (4) implies that for eachθ, η̂tradN (a(θ))−ηN (a(θ)) → 0 a.s. whereη̂tradN (a(θ)) is the traditional

estimator of the localization function defined as

η̂tradN (a(θ)) =

M−K
∑

k=1

aH(θ)ê
(N)
k

(

ê
(N)
k

)H
a(θ). (5)

In practice, predictions provided by the asymptotic regimecorresponding to lettingN → +∞ for fixed

M are reliable only ifN is much larger thanM . However, this assumption may be quite restrictive in a

number of important application contexts. IfM andN are comparable in magnitude, then the asymptotic

regime described by lettingM,N → +∞ in such a way thatcN = M
N converges towards a non zero

constant appears to be more relevant. In this regime, the behavior of various classical estimates are

more complicated, and have to be studied carefully. In particular, it can be shown that̂ηtradN (b)− ηN (b)
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does not converge to0 whenM,N → +∞ , which implies that the standard MUSIC estimates are

not consistent under this new asymptotic regime. The purpose of this paper is to introduce an improved

subspace estimatêηnewN (b) of ηN (b) for each deterministic vectorb. The main feature of̂ηnewN (b) is

to be consistent ifM,N → +∞ in such a way thatcN = M
N converges towards a non zero constant

value. In order to achieve this, we will heavily rely on results related to the asymptotic behavior of the

eigenvalue distribution of the empirical correlation matrix R̂N . It is however useful to mention that it is

not established that

sup
θ∈[−π,π]

|η̂newN (a(θ))− ηN (a(θ))| → 0 (6)

almost surely, a useful, but stronger property. We feel thatthe proof of (6) would need mathematical

technics different from those which are used in the present paper.

III. PROPERTIES OF THE ASYMPTOTIC EIGENVALUE DISTRIBUTION OF MATRIX R̂N

In this section, we will review some of the important properties related to the asymptotic behavior of

the eigenvalue distribution of the empirical correlation matrix R̂N whenM,N → +∞ in such a way

that cN = M
N converges towards a non zero constant, which will be denotedasc∗. This implies that the

observation dimensionM in principle depends onN , and should be denotedM(N). We will however

drop this dependence onN in order to simplify the exposition. Whenever it is clear from the context,

we will also drop the dependence on the number of snapshotsN in matricesΣN , BN , R̂N , eigenvalues

λ̂
(N)
1 ,. . . , λ̂(N)

M andγ(N)
1 ,. . . ,γ(N)

M , as well as eigenvectors.

Remark 1. From now on,N → ∞ will implicitly denote the limit as bothM,N → +∞ such thatMN

converges towards a non zero constantc∗, where it is assumed that0 < c∗ < 1.

Remark 2. All results that are presented in this paper are equally valid regardless of the behavior of

the number of sourcesK whenN increases. In other words,K may scale up withN , or it may stay

constant regardless ofN .

From now on, we assume that the spectral norms of matrices(BN )N≥1 remain bounded whenN → ∞,

i.e. it existsbmax > 0 such that

sup
N≥1

‖BN‖ < bmax <∞ (7)
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The eigenvalue distribution of̂RN is characterized by the empirical distribution function ofits eigen-

values, namely

F̂N (λ) =
1

M
card{λ̂(N)

k : λ̂
(N)
k ≤ λ, k = 1, . . . ,M}

wherecard denotes the cardinality of a set. For eachλ ∈ R, the functionF̂N (λ) gives the proportion of

the eigenvalues of̂RN which are lower than or equal toλ. Its associated probability measure, denoted

µ̂N , is given bydµ̂N (λ) = 1
M

∑M
k=1 δ(λ − λ̂

(N)
k ) and is carried byR+. In order to characterize the

asymptotic behavior of̂µN , it is in practice quite common to characterize the asymptotic behavior of its

Stieltjès transform. Ifµ is a positive finite measure (i.e.µ(R) < ∞), the Stieltjès transform ofµ is the

functionΨµ of complex variable defined as

Ψµ(z) =

∫

R

dµ(λ)

λ− z
(8)

We recall the following well-known properties of the Stieltjès transform, which will be useful in the

mathematical developments throughout the paper.

Lemma 1. Let Ψµ be the Stieltjès transform of some positive finite measureµ (i.e. µ(R) <∞), and let

us denote asSµ its support. Then,

1) Ψµ is holomorphic onC\Sµ.

2) limy→+∞−iyΨµ(iy) = µ(R)

3) ∀z ∈ C\R,

|Ψµ(z)| ≤
µ(R)

|Im(z)|
whereIm(z) denotes the imaginary part ofz. Moreover,∀z ∈ C\Sµ it holds that

|Ψµ(z)| ≤
µ(R)

dist(z,Sµ)
(9)

4) Ψµ ∈ C+ if z ∈ C+, whereC+ is the upper complex half plane.

5) If µ is carried byR+, thenzΨµ(z) ∈ C+ if z ∈ C+.

6) Conversely, ifΨ is a function analytic inC+ satisfying

• Ψ(z) and zΨ(z) belong toC+ if z ∈ C+

• supy>1 |iyΨ(iy)| < +∞

then,Ψ is the Stieljès transform of a positive finite measure carried byR+.

7) ∀ϕ ∈ C∞
c (R,R), (the set of compactly supported real-valued smooth functions defined onR), we

have
∫

R

ϕ(λ)dµ(λ) =
1

π
lim
y↓0

Im

{∫

R

ϕ(x)Ψµ(x+ iy)dx

}

October 24, 2018 DRAFT
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Having recalled these basic properties of the Stieltjès transform of a positive finite measure, let us

now go back to the asymptotic characterization of the empirical measurêµN or, quite equivalently, its

Stieltjès transform, which is defined forz ∈ C− R+ as

m̂N (z) =

∫

R+

dµ̂N (λ)

λ− z
=

1

M

M
∑

m=1

1

λ̂m − z
. (10)

It is worth pointing out thatm̂N (z) can be expressed as the normalized trace of the resolvent matrix,

which is a matrix-valued function defined as

QN (z) =
(

R̂N − zIM

)−1
=
(

ΣNΣ
H
N − zIM

)−1
(11)

namely m̂N (z) = 1
MTr [QN (z)]. Except (16), the following results can be more or less immediately

derived from [10] (see also [16])

Theorem 1. There exists a deterministic probability distributionµN carried byR+ such thatµ̂N − µN

converges in distribution almost surely towards0 whenN → ∞. The measureµN , referred to in what

follows as the asymptotic eigenvalue distribution of matrix R̂N , is characterized by its Stieltjès transform

mN (z) as

mN (z) =

∫

R+

dµN (λ)

λ− z
(12)

which is a solution of the equation

mN (z) =
1

M
Tr

[

−z(1 + σ2cNmN (z))IM + σ2(1− cN )IM +
BNB

H
N

1 + σ2cNmN (z)

]−1

(13)

for eachz ∈ C− R+. Let TN (z) be theM ×M matrix valued function defined onC− R+ by

TN (z) =

[

−z(1 + σ2cNmN (z))IM + σ2(1− cN )IM +
BNB

H
N

1 + σ2cNmN (z)

]−1

. (14)

Then,TN (z) is holomorphic onC− R+. Moreover, almost surely,

lim
N→∞

(m̂N (z) −mN (z)) = 0 (15)

for eachz ∈ C−R+. Finally, for eachM–dimensional deterministic vectorsuN ,vN such thatsupN ‖uN‖ <
∞ and supN ‖vN‖ <∞, it holds that almost surely

lim
N→∞

uHN (QN (z)−TN (z))vN = 0 (16)

for eachz ∈ C− R+.

Proof: Convergence of̂µN − µN towards0 as well as the fact thatmN (z) is a solution to (13) is

due to [10]. As for the result in (15), it is a well known consequence of the convergence ofµ̂N − µN

towards0. (16) is proved in the Appendix F.
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Theorem 1 is pointing out that the entries of the resolventQN (z) are almost surely asymptotically

close to the entries of the deterministic matrix functionTN (z) (this statement follows from (16) by

selectinguN andvN as two columns ofIM ); and that its normalized trace,̂mN (z) as defined in (10),

is almost surely asymptotically close tomN (z), one of the solutions to the polynomial equation in (13).

Furthermore, the random measureµ̂N is also almost surely equivalent (in distribution) to the deterministic

measureµN in this asymptotic regime.

We denote bySN the support of this measureµN , which will play a very important role in the

following. The characterization ofSN has been first presented in [17], and is based on the study of

the properties of functionmN (z) which, since it is a Stieltjès transform, is holomorphic onC\SN and

real-valued onR\SN . In order to characterizeSN , we will also consider the functionwN (z), introduced

in [17], defined frommN (z) as follows

wN (z) = z
(

1 + σ2cNmN (z)
)2 − σ2(1− cN )(1 + σ2cNmN (z)). (17)

It will be seen later on that the functionwN (z) has very interesting properties that will be crucial for the

derivations in this paper. In particular, we will show in thefollowing that the support ofµN , namelySN ,

is in fact equal to the support of the imaginary part ofwN (z) whenz approaches the real axis. Thanks

to this fact, we will be able to characterize the supportSN by studying the properties ofwN (z) for z

on the real axis.

The next proposition provides some preliminary propertiesof mN (z) andwN (z) that will become

useful in the following sections. Most of these properties are established in [17]. We will denote by

fN (w) the function onC− {γ1, . . . , γM} defined by

fN(w) =
1

M
Tr
[

(

BNB
H
N − wIM

)−1
]

which coincides with the Stieltjès transform of the eigenvalue distributionνN (dλ) = 1
M

∑M
k=1 δ(λ− γk)

associated with the signal matrixBNB
H
N .

Proposition 1. The following properties hold:

1) The conditioncN < 1 implies that0 does not belong toSN .
2) For eachx ∈ R, limz∈C+,z→xmN (z) exists, and will be denotedmN (x). The functionmN (z) thus

defined is continuous onC+ ∪R, and continuously differentiable onC+ ∪ R− ∂SN . Moreover, for

eachx ∈ R, limz∈C−,z→xmN (z) exists, and is equal to(mN (x))
∗. The measureµN is absolutely

continuous, its density is1π Im(mN (x)), and the interiorInt(SN ) of SN is given by

Int(SN ) = {x > 0 : Im(mN (x)) > 0} (18)
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3) For eachx ∈ R, limz∈C+,z→xwN (z) exists, and is still denoted bywN (x). The functionz → wN (z)

is continuous onC+∪R, and is continuously differentiable onC+∪R−∂SN . Moreover,wN (x) =

x
(

1 + σ2cNmN (x)
)2 − σ2(1− cN )(1 + σ2cNmN (x)). Finally, limz∈C−,z→xwN (z) = wN (x)

∗.

4) wN (x) does not belong to the set{γ(N)
1 , . . . , γ

(N)
M } if x ∈ R− SN .

5) Im [wN (z)] > 0 if Imz > 0.

6) Re
[

1 + cNσ
2mN (z)

]

> 0 for eachz ∈ C.

7) For anyx ∈ R− ∂SN , the functionmN (x) is solution of the equation in (13)

8) For anyx ∈ R− ∂SN , the functionwN (x) is a solution of the equation

φN (wN (x)) = x (19)

whereφN (w) is defined by

φN (w) = w (1− cNσ
2fN (w))

2 + (1− cN )σ
2(1− cNσ

2fN(w)) (20)

Proof: Property 1 is not established in [17], and is proved in Appendix A. As for Property 2, the

existence of the limit ofmN (x+iy) is proved in [17] forx 6= 0 because [17] did not assume thatcN < 1.

However, Property 1 implies immediately that the limit exists if x = 0 becausemN (z) is holomorphic

in a neighborhood of the origin. The continuity and the differentiability of x→ mN (x) is established in

[17] on R∗ andR∗\∂SN respectively, but it also holds onR andR\∂SN by Property 1 and the fact that

mN (z) is holomorphicC\SN . SincemN (z) is the Stieltjès transform of a positive measure, it is clear

thatmN (z
∗) coincides withm∗

N (z). This implies immediately thatlimy<0,y→0mN (x + iy) = m∗
N (x).

Finally, (18) is a direct consequence of the continuity ofx→ mN (x). Property 3 follows directly from

Property 2. Properties 4 and 5 are established in [17]. As forProperty 6, it was initially proven in [17]

for z ∈ C

∗, but it can be shown easily that it holds forz = 0 using Property 1 as well as the proof of

Lemma 2-1 of [17]. Finally, [17] established thatmN (x) is solution of (13) ifx ∈ int(SN ). This also

holds if x ∈ C\SN because by Properties 4 and 6, the right hand side of (13) is holomorphic onC\SN .

SincemN (z) is itself holomorphic onC\SN , the equality in (13) must hold not only onC\R+ but also

on C\SN . Recalling thatSN is a closed set, all this implies thatmN (x) is solution of equation (13) for

x ∈ R\∂SN .

Let us finally establish Property 8. Thanks to Properties 6 and 7 and to (13), we can write

mN (x)

1 + σ2cNmN (x)
= fN(wN (x)) (21)
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for eachx ∈ R\∂SN . This last equality can be rewritten as

1− σ2cNfN (wN (x)) =
1

1 + σ2cNmN (x)
(22)

where the right hand side is well defined thanks to Property 6.Now, plugging (22) into (17), we obtain

that, forx ∈ R\∂SN , wN (x) is a solution of the equation

φN (w) = x (23)

where functionφN (w) is defined in (20). In other words, the functionwN (x) satisfies (19) for each

x ∈ R\∂SN .

Proposition 1 is establishing the fact that bothmN (z) andwN (z) are well defined whenz approaches

the real axis, and thatmN (x) andwN (x) can be determined as one of the solutions to (13) and (19)

respectively for anyx ∈ R\∂SN . In the next section we will establish some properties that characterize

wN (x) out of the set of all the solutions of (19), and this will in turn help us in the characterization of

the supportSN .

IV. A N ALTERNATIVE CHARACTERIZATION OF SN

In this section we will provide a characterization of the support SN as a simpler alternative to the

study provided in [17]. It must be pointed out that [17] assumed that the eigenvalue distribution of

matrix BNB
H
N converges to a limit distributionν∞(dλ), and showed thatµN converges towards a

probability distributionµ∞. Its Stieltjès transformm∞ is solution of (13), but in which the discrete

measureνN (dλ) = 1
M

∑M
j=1 δ(λ− γ

(N)
k ) is replaced by measureν∞(dλ), i.e.

m∞(z) =

∫ [

−z(1 + σ2cNmN (z)) + σ2(1− cN ) +
λ

1 + σ2cNmN (z))

]−1

ν∞(dλ).

In [17], a detailed analysis of the supportS∞ of µ∞ was presented. The corresponding results provide

of course a characterization ofSN by replacing the general probability distributionν∞(dλ) by the

discrete measureνN (dλ) = 1
M

∑M
j=1 δ(λ− γ

(N)
k ). However, we show in the following that it is possible

to reformulate the results of [17] in a more explicit manner by taking into account immediately that

1
M

∑M
j=1 δ(λ−γ

(N)
k ) is a discrete measure. We hope that the following analysis, based on quite elementary

technics, is easier to follow than the general approach of [17].

Our approach is based on the study of the functionwN (z) that has been introduced in (17). We have

established in Proposition 1 thatwN (x) is well defined in the real axis, and that it can be expressed as

one of the roots of the polynomial equation in (19). Let us nowsee how this function can help us in the

characterization of the supportSN .
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Proposition 2. The functionwN (z) defined in(17) satisfies the following properties:

1) Int (SN ) = {x ∈ R+ : Im{wN (x)} > 0}
2) w′

N (x) > 0, for x ∈ R\SN .

3) 1− σ2cNfN (wN (x)) > 0 ∀x ∈ R\SN .

Proof: See Appendix B.

Remark 3. By taking derivatives with respect tox on both sides of the equationφN (wN (x)) = x, we

see thatw′
N (x)φ

′
N (wN (x)) = 1 holds for x ∈ R − ∂SN . Property 2 of the above proposition is thus

equivalent to

φ′N (wN (x)) > 0 if x ∈ R\SN . (24)

Property 1 in Proposition 2 is basically stating the fact that the interior of the supportSN coincides

the region of values ofR+ for which the imaginary part ofwN (x) is strictly positive. Hence, it suffices

to study the behavior ofIm [wN (x)] in order to characterize the interior of the supportSN . On the other

hand, we know from Property 8 in Proposition 1 that, for anyx ∈ R\∂SN , wN (x) is one of the solutions

to the polynomial equation in (19). Proposition 2 is helpingus to identify which one of the roots is in

fact wN (x). More specifically, we will later show that:

• If x ∈ Int (SN ), thenwN (x) will be the unique root of (19) with positive imaginary part1, thanks

to Property 1.

• If x ∈ R\SN , thenwN (x) will be the unique root of (19) such that Properties 2 and 3 hold.

In order to establish the fact that these properties completely determine the value ofwN (x) out of the

set of roots of the equation in (19), we need to study the form of the functionφN in (20) more closely.

The analysis of the roots of the corresponding equation in (19) will allow us to determine the intervals

of R for which wN (x) is real-valued and the intervals in which it has a strictly positive imaginary part.

A. Characterization of the functionφN (w)

In the following, we assume that theK non-zero eigenvalues of the matrixBNB
H
N , namely

{

γ
(N)
M−K+1, . . . , γ

(N)
M

}

,

have multiplicity 1. Under this hypothesis, the equation in (19) is in fact equivalent to a polynomial

equation of degree2(K +1). This can be readily seen by using the expression offN (w) in (20), so that

1The existence and unicity of such root will be established inwhat follows.
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we can expressφN (w) as sums of quotients of polynomials inw, i.e.

φN (w) = w

(

1 + σ2
M −K

M

cN
w

− σ2
cN
M

M
∑

m=M−K+1

1

γm − w

)2

+ (1− cN )σ
2

(

1 + σ2
M −K

M

cN
w

− σ2
cN
M

M
∑

m=M−K+1

1

γm − w

)

. (25)

Hence, multiplying both sides of equationφN (w) = x by w
∏M

m=M−K+1
(γm − w)2 we end up with

a polynomial equation of degree2(K + 1). If certain eigenvalues ofBNB
H
N are multiple,φN (w) = x

will be a polynomial equation of degree2(K + 1) whereK represents the number of distinct non zero

eigenvalues ofBNB
H
N . The following results can thus be immediately adapted by replacingK byK. The

assumptionK = K allows to avoid the introduction of new notations representing the distinct eigenvalues

of BNB
H
N in the forthcoming analysis.

1) Zeros of φN (w): It is easily seen that the functionφN has exactly2K + 2 different real zeros,

which will be denoted asz(N)−
0 < z

(N)+
0 < . . . < z

(N)−
K < z

(N)+
K . An elementary analysis of the

function φN determines the position of these zeros, as well as the behavior of the functionφN (w) in

their neighborhood:

• The lowest couple of zeros are located on the negative real axis, namelyz(N)−
0 , z

(N)+
0 ∈ ]−∞, 0[.

Furthermore, the functionφN is increasing atz(N)−
0 and decreasing atz(N)+

0 , namelyφ′N

(

z
(N)−
0

)

>

0 andφ′N

(

z
(N)+
0

)

< 0, whereφ′N denotes the derivative ofφN .

• The next couple of zeros are located between zero and the firstpositive eigenvalue ofBNB
H
N , i.e.

z
(N)−
1 , z

(N)+
1 ∈

]

0, γ
(N)
M−K+1

[

, and it turns out that the functionφN is decreasing atz(N)−
1 and

increasing atz(N)+
1 , namelyφ′N

(

z
(N)−
1

)

< 0 andφ′N

(

z
(N)+
1

)

> 0.

• Each one of the remaining couples of zeros is located betweentwo positive eigenvalues ofBNB
H
N

, i.e. z(N)−
k , z

(N)+
k ∈

]

γ
(N)
M−K+k−1, γ

(N)
M−K+k

[

, ∀ k = 2, . . . ,K, and the functionφN is always

decreasing at the first zero and increasing at the second, i.e. φ′N

(

z
(N)−
k

)

< 0 andφ′N

(

z
(N)+
k

)

> 0,

∀ k = 2, . . . ,K.

In order to obtain these results, one only needs to factorφN (w) as the product of two terms, namely

φN (w) =
[

1− cNσ
2fN (w)

] [

w (1− cNσ
2fN (w)) + (1− cN )σ

2
]

(26)

and thereforeφN (w) = 0 if and only if one of these two terms is zero. Out of the2K + 2 zeros of the

functionφN (w), a total ofK + 1 are the zeros of the first term in (26). More formally:

• The second zero, namelyz(N)+
0 , is solution of the equation1− σ2cNfN (w) = 0.
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• The zerosz(N)−
k for k = 1, . . . ,K are the solutions of the equation1− σ2cNfN (w) = 0.

This allows us to differentiate between intervals of the real axis where1 − σ2cNfN (w) > 0 and

intervals where1− σ2cNfN (w) ≤ 0, namely

• The function1− σ2cNfN(w) is positive on the intervals

]

−∞, z+0
[

,
{]

γ
(N)
M−K+k−1, z

(N)−
k

[}

k=1,...,K
,
]

γ
(N)
M ,+∞

[

. (27)

This last fact is important, because we know from Property 3 of Proposition 2 that, whenx does

not belong to the supportSN , the solution of the equationφN (w) = x corresponding towN (x) will

be such that1 − σ2cNfN (wN (x)) > 0, and therefore will be located inside of one of these intervals.

In Figure 1 we give a typical representation of functionφN (w) in a situation whereK = 2 (we drop

the dependence onN in all quantities in the figure to simplify the representation). The functionφN (w)

presents horizontal asymptotes atw = 0 and also at the values of the positive eigenvalues ofBNB
H
N ,

namely
{

γ
(N)
M−K+1, . . . , γ

(N)
M

}

. The region of the horizontal axis where1 − σ2cNfN(w) > 0 is shaded

in grey.

Figure 1. Typical representation ofφN (w) as a function ofw for K = 2 andQ = 2 (we drop the dependence onN for

clarity). The shaded region in the horizontal axis represents the set of points for which1−σ2cNfN (w) > 0. The shaded region

in the vertical axis representsSN .
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2) Local extrema and monotonicity intervals of φN (w): Next, we investigate the local extrema of

the functionφN . The following proposition summarizes the most interesting properties of the positive

local extrema.

Proposition 3. 1) The functionφN admits 2Q positive local extrema counting multiplicities (with

1 ≤ Q ≤ K +1) whose preimages, denotedw(N)−
1 < 0 < w

(N)+
1 ≤ w

(N)−
2 . . . ≤ w

(N)−
Q < w

(N)+
Q ,

belong to the set{w ∈ R : 1− σ2cNfN (w) > 0}
2) If we denote byx(N)−

k = φN

(

w
(N)−
k

)

and x(N)+
k = φN

(

w
(N)+
k

)

these positive extrema, then

0 < x
(N)−
1 < x

(N)+
1 ≤ x

(N)−
2 . . . ≤ x

(N)−
Q < x

(N)+
Q (28)

3) Each eigenvalueγ(N)
l of BNB

H
N belongs to one and only one of the intervals

]

w
(N)−
q , w

(N)+
q

[

,

q = 1 . . . Q.

4) The functionφN is increasing on the intervals
]

−∞, w
(N)−
1

]

,
{[

w
(N)+
q , w

(N)−
q+1

]}

q=1,Q−1
, and

[

w
(N)+
Q ,+∞

]

. Moreover,

φN

(]

−∞, w
(N)−
1

])

=
]

−∞, x
(N)−
1

]

φN

([

w(N)+
q , w

(N)−
q+1

])

=
[

x(N)+
q , x

(N)−
q+1

]

for eachq = 1, . . . , Q− 1, and

φN

([

w
(N)+
Q ,+∞

[)

=
[

x
(N)+
Q ,+∞

[

.

Proof: Except for the inequalities in (28), which are proved in Appendix C, the statements of

Proposition 3 follow directly from an elementary analysis of the functionφN .

We see from Proposition 3 that the local extrema always appear in groups of two, and the actual

number of extremum couples (Q) will generally depend onσ2, cN and on the positive eigenvalues of

the matrixBNB
H
N . For example, in the situation represented in Figure 1, the number of positive local

extrema was equal to four, which implies thatQ = 2. In Figures 2 and 3 we depict other equivalent

examples ofφN , for which we hadQ = 1 andQ = 3 respectively.

B. Characterization ofwN (x) out of the roots ofφN (w) = x

We know from Proposition 1 thatwN (x) for real valuedx will be a solution of the equationφN (w) = x.

In this section, we will characterize which one of these roots is actuallywN (x). First of all, observe

that, since the equationφN (w) = x is equivalent to a polynomial equation of degree2(K + 1), the

number of solutions (counting multiplicities) will alwaysbe equal to2(K + 1). Out of these solutions,

we can graphically find the real-valued ones by exploring thecrossings between the graph ofφN (w)
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Figure 2. Typical representation ofφN (w) as a function ofw for K = 2 andQ = 1 (we drop the dependence onN for

clarity). The shaded region in the horizontal axis represents the set of points for which1−σ2cNfN (w) > 0. The shaded region

in the vertical axis representsSN .

and a horizontal line atx. This is further illustrated in Figure 4. By the properties of the function

φN (w)presented in Section IV-A, we can clearly differentiate between two different situations:

• If x /∈
⋃Q
k=1

[

x
(N)−
k , x

(N)+
k

]

, it is easily shown that the equationφN (w) = x presents exactly

2(K + 1) different real-valued solutions (cf. upper horizontal line in Figure 4). Since the original

equation has degree2(K + 1), there are no complex-valued solutions. In particular,wN (x) will be

real-valued.

• If x ∈
⋃Q
k=1

]

x
(N)−
k , x

(N)+
k

[

, in what follows, it will be shown that the equationφN (w) = x has

exactly2K different real-valued solutions (cf. lower horizontal line in Figure 4). This implies that

there is a couple of complex conjugated solutions to the equation φN (w) = x.

Let us now see how we can completely characterizewN (x) in these two different situations:

1) Case x ∈ R\
⋃Q
k=1

[

x
(N)−
k , x

(N)+
k

]

: From (24) and Property 3 of Proposition 2, we know that

wN (x) is a root of the equationφN (w) = x such thatφ′N (wN (x)) > 0 and that1−σ2cNfN (wN (x)) > 0.

We now prove that this completely characterizeswN (x) out of the set of all roots ofφN (w) = x, in

the sense that there is only one root ofφN (w) = x that has these two properties. We first consider
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Figure 3. Typical representation ofφN (w) as a function ofw for K = 2 andQ = 3 (we drop the dependence onN for

clarity). The shaded region in the horizontal axis represents the set of points for which1−σ2cNfN (w) > 0. The shaded region

in the vertical axis representsSN .

the casex < x
(N)−
1 . By Property 4 of Proposition 3,φN is an increasing one to one correspondence

from
]

−∞, w
(N)−
1

[

onto
]

−∞, x
(N)−
1

[

. Its inverseφ−1
N is thus a well defined increasing function from

]

−∞, x
(N)−
1

[

onto
]

−∞, w
(N)−
1

[

. We claim thatwN (x) coincides withφ−1
N (x). Indeed, observe that

sinceφ−1
N (x) < w

(N)−
1 , we automatically haveφ′N (φ

−1
N (x)) > 0 and that1− σ2cNfN (φ

−1
N (x)) > 0. On

the other hand, the behavior ofφN established in Propositions 2 and 3 implies that the other real-valued

solutions ofφN (w) = x do not satisfy either1 − σ2cNfN (w) > 0 or φ′N (w) > 0 (see further Figures

1 to 3). Therefore,wN (x) can be expressed asφ−1
N (x), and is the only root ofφN (w) = x such that

1− σ2cNfN (w) > 0 andφ
′

N (w) > 0.

The above analysis can be extended ifx belongs to
]

x
(N)+
k , x

(N)−
k+1

[

for k = 1, . . . , Q − 1 or if

x > x
(N)+
Q . Indeed, observe first thatφN is a bijection between

]

w
(N)+
k , w

(N)−
k+1

[

and
]

x
(N)+
k , x

(N)−
k+1

[

for k = 1, . . . , Q − 1 and between
]

w
(N)+
Q ,+∞

[

and
]

x
(N)+
Q ,+∞

[

. Hence,φ−1
N is well defined on

]

x
(N)+
k , x

(N)−
k+1

[

for k = 1, . . . , Q− 1 and on
]

x
(N)+
Q ,+∞

[

. Thanks to the form of the functionφN , we

see thatφ−1
N (x) is the only root that verifies1 − σ2cNfN(w) > 0 andφ′N (w) > 0 (see further Figures

1 to 3), and this implies thatwN (x) = φ−1
N (x). SincewN (x) is continuous onR, we also get that

wN (x
(N)−
k ) = w

(N)−
k as well aswN (x

(N)+
k ) = w

(N)+
k for k = 1, . . . , Q.
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Figure 4. One can find the real-valued solutions toφN (w) = x by examining the crossings of the graphφN (w) with a

horizontal line atx. In this particular example, whereK = 2, we see thatφN (w) = x presents2(K + 1) = 6 real-valued

solutions, whereasφN (w) = x′ has only4 real-valued solutions (plus a couple of complex conjugatedones).

2) Case x ∈ ⋃Q
k=1

]

x
(N)−
k , x

(N)+
k

[

: In this situation, we establish that the equationφN (w) = x has

exactly 2K real-valued solutions, plus a couple of complex conjugatedones, and thatwN (x) is equal

to the complex-value root with strictly positive imaginarypart. We can reason from the behavior ofφN

that the polynomial equationφN (w) = x has at least2K real-valued solutions located in the intervals
]

γ
(N)
M−K+l−1, z

−
l

[

and
]

z+l , γ
(N)
M−K+l

[

for l = 1, . . . ,K. We however note that none of them can satisfy

bothφ
′

N (w) ≥ 0 and1−σ2cNfN (w) > 0. Therefore,wN (x) cannot coincide with one of these solutions.

Assume that the two remaining solutions of the equation are real.wN (x) of course coincides with one

of these two solutions. The properties of functionφN as well as (28) imply the existence of two extrema

of φN , denoted byx∗ < x′∗ such thatx ∈ ]x∗, x
′
∗[. Moreover, by (28), the two extra solutions must

belong to an interval
]

z+l , γ
(N)
M−K+l

[

for l = 1, . . . , Q − 1. Consequently, these two solutions satisfy

1 − σ2cNfN(w) < 0, and cannot coincide withwN (x), which leads us to contradiction. Therefore, the

two remaing solutions are complex conjugate, andwN (x) coincides the solution with strictly imaginary

part.
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C. Characterization of the supportSN

As the interior ofSN coincides with{x ∈ R+, Im(wN (x)) > 0} (see Property 1 of Proposition 2), we

have shown the following Theorem.

Theorem 2. The supportSN is given by

SN =

Q
⋃

k=1

[

x
(N)−
k , x

(N)+
k

]

. (29)

The above analysis shows thatx(N)−
1 < x

(N)+
1 ≤ x

(N)−
2 < . . . < x

(N)+
Q−1 ≤ x

(N)−
Q < x

(N)+
Q coincide

with the set of all positive extrema ofφN . Theorem 2 thus establishes a very simple method to determine

the supportSN . First, one needs to determine all the local extrema ofφN (w), namely the solutions to

the polynomial equationφ′N (w) = 0. The solutions will be
{

w
(N)−
1 , w

(N)+
1 , . . . , w

(N)−
Q , w

(N)+
Q

}

with

possible repetitions if one of these roots has multiplicitytwo, plusK additional ones (it is easily seen that

φN has exactlyK negative local minima). By evaluating the functionφN at these points, and selecting

those for whichφN is positive, we are determining the values
{

x
(N)−
1 , x

(N)+
1 , . . . , x

(N)−
Q , x

(N)+
Q

}

that

characterize the support in (29). Observe that the supportSN is a disjoint reunion of compact intervals,

which will be referred to as clusters. Each of these clusters
[

x
(N)−
q , x

(N)+
q

]

will be associated to an

interval of the type
[

w
(N)−
q , w

(N)+
q

]

, q = 1 . . . Q, in the sense thatx(N)−
q = φN

(

w
(N)−
q

)

andx(N)+
q =

φN

(

w
(N)+
q

)

. On the other hand, we can also clearly see that a specific eigenvalueγ(N)
k , k = 1, . . . ,M ,

always belongs to one, and only one of the intervals
[

w
(N)−
q , w

(N)+
q

]

. This motivates the following

definition.

Definition 1. We say that the eigenvalueγ(N)
k , k = 1, . . . ,M , of the matrixBNB

H
N is associated with

the cluster
[

x
(N)−
q , x

(N)+
q

]

if γ(N)
k ∈

[

w
(N)−
q , w

(N)+
q

]

.

Observe that this is not a one-to-one correspondence, in thesense that multiple consecutive eigenvalues

of BNB
H
N may be associated with the same cluster. For instance, in Figure 2 the three eigenvalues (0,

γ
(N)
M−1 andγ(N)

M ) are associated with the same eigenvalue cluster, while in Figure 3 each eigenvalue is

associated with its own different cluster.

The first cluster[x(N)−
1 , x

(N)+
1 ] plays a special role because it is always associated with theeigenvalue

0 of matrixBNB
H
N . As seen below, the main results of this paper will be valid under the assumption that

the strictly positive eigenvalues ofBNB
H
N are not associated to the cluster[x

(N)−
1 , x

(N)+
1 ]. Intuitively,

this means that the eigenvalues corresponding to the noise subspace are separated from the eigenvalues

of the signal subspace. Both Figure 1 and Figure 3 satisfy this property, but not Figure 2.

October 24, 2018 DRAFT



21

More rigorously, we assume from now on that the following hypotheses hold.

(As 1): ∃N0 ∈ N such that∀N ∈ N, N ≥ N0, the non zero eigenvalues
{

γ
(N)
k

}

k=M−K+1,...,M
of

BNB
H
N are not associated to the first cluster[x(N)−

1 , x
(N)+
1 ].

(As 2): ∃t−1 > 0, t+1 , t
−
2 ∈ R independent ofN such that

t−1 < inf
N≥N0

{

x
(N)−
1

}

< sup
N≥N0

{

x
(N)+
1

}

< t+1 < t−2 < inf
N≥N0

{

x
(N)−
2

}

∀N ≥ N0. (30)

These two assumptions imply that for eachN ≥ N0, the eigenvalue0 of BNB
H
N belongs to the interval

]

w
(N)−
1 , w

(N)+
1

[

and thus to
]

wN (t
−
1 ), wN (t

+
1 )
[

becausewN (t
−
1 ) < w

(N)−
1 and wN (t

+
1 ) > w

(N)+
1 .

Similarly, the non zero eigenvalues
{

γ
(N)
M−K+l

}

l=1,...,K
of BNB

H
N satisfyγ(N)

M−K+l > wN (t
+
2 ).

V. CONVERGENCE AND LOCALIZATION OF THE SAMPLE EIGENVALUES

The previous results are related to the properties of the limit deterministic distributionµN . The almost

sure convergence of̂µN−µN towards 0 does not mean by itself that the eigenvalues ofR̂N belong almost

surely toSN , or to an interval containingSN . As one may imagine, it is important to be able to locate

the eigenvalues(λ̂(N)
k )k=1,...,M of matrix R̂N with respect toSN for N large enough. Bai and Silverstein

established in [12], [13] powerful related results in the context of correlated zero-mean, possibly non

Gaussian, random matrices. In the following, we establish similar results for the Information plus Noise

model. However, the mathematical approach we use in the present paper has no connection with the

techniques used in [12], [13] also valid in the non Gaussian case. SinceΣ is assumed Gaussian, we

rather adapt to the Information plus Noise model the ideas developed in [14] in the context of Gaussian

Wigner matrices. We prove in the following two theorems which are believed to be of independent

interest.

Theorem 3. Assume that there exists a positive quantityǫ > 0, two real valuesa, b ∈ R, and an integer

N0 such that

]a− ǫ, b+ ǫ[ ∩ SN = ∅ ∀N ∈ N, N ≥ N0 (31)

whereSN denotes the support ofµN . Then, with probability one, no eigenvalue ofR̂N appears in[a, b]

for all N large enough.
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Theorem 4. If Assumptions 1 and 2 hold, then, for allN large enough, with probability one,

λ̂
(N)
1 , . . . , λ̂

(N)
M−K ∈

]

t−1 , t
+
1

[

(32)

λ̂
(N)
M−K+1 > t−2 (33)

Although Assumptions 1 and 2 depend on the deterministic distributionsµN , Theorem 4 shows that

almost surely, the smallestM −K eigenvalues of̂RN are always separated from the others for allN

large enough.

A. Proof of Theorem 3

We first state the following proposition, the proof of which is demanding, and is detailed in Appendix

E. The result will play a fundamental role in the proof of Theorem 3.

Proposition 4. ∀z ∈ C\R+, we have forN large enough,

E

[

1

M
Tr [QN (z)]

]

=
1

M
Tr [TN (z)] +

1

N2
χN (z)

with χ is analytic inC− R+ and satisfies

|χN (z)| ≤ (|z|+ C)kP(|Im(z)|−1) (34)

for eachz ∈ C+ whereC is a constant,k is an integer independent ofN and P is a polynomial with

positive coefficients independent ofN .

We now follow [18] and [14] and prove the Lemma:

Lemma 2. Let φ be a compactly supported real-valued smooth function defined onR, i.e.φ ∈ C∞
c (R,R).

Then2,

E

[

1

M
Tr
[

φ
(

ΣNΣN
H
)]

]

−
∫

SN

φ(λ)dµN (λ) = O(
1

N2
) (35)

Proof: We first note that, by Property 7 in Lemma 1, we can write

E

[

1

M
Tr
[

φ
(

ΣNΣ
H
N

)]

]

=
1

π
lim
y↓0

Im

{∫

R+

φ(x)E

[

1

M
Tr [QN(x+ iy)]

]

dx

}

as well as
[∫

SN

φ(λ)dµN (λ)

]

=
1

π
lim
y↓0

Im

{∫

R+

φ(x)

[

1

M
Tr [TN (x+ iy)]

]

dx

}

2By applying the functionφ to a Hermitian matrix, we implicitly represent the action ofφ on the corresponding eigenvalues.
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Therefore, using Proposition 4, we can express the right hand side of (35) as

E

[

1

M
Tr
[

φ
(

ΣNΣN
H
)]

]

−
∫

SN

φ(λ)µN (dλ) =
1

N2

1

π
lim
y↓0

Im

{∫

R+

φ(x)χN (x+ iy) dx

}

(36)

Since the functionχN (z) satisfies the inequality (34), the Appendix of [19] implies that

lim sup
y↓0

∣

∣

∣

∣

∫

R

ϕ(x)χN (x+ iy)dx

∣

∣

∣

∣

≤ C < +∞

whereC is a constant independent ofN . Hence, (36) readily implies (35).

In order to establish Theorem 3, we consider a functionψ ∈ C∞
c (R,R) satisfying0 ≤ ψ ≤ 1 and

ψ(λ) =











1 for λ ∈ [a, b]

0 for λ ∈ R− ]a− ǫ, b+ ǫ[

Condition (31) implies that
∫

SN
ψ(λ)dµN (λ) = 0 if N is large enough. Therefore, (35) implies that

E

[

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

]

= O
(

1

N2

)

.

We now establish that

Var

[

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

]

= O
(

1

N4

)

(37)

In order to prove (37), we use the Nash-Poincaré inequality [20], [21], [22], [14] which implies that

Var

[

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

]

≤ σ2

N

∑

i,j

E





∣

∣

∣

∣

∂

∂Wij

[

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

]∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∂

∂W∗
ij

[

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

]

∣

∣

∣

∣

∣

2




(38)

whereWij denotes the (i, j)th entry of matrixW defined in (2). Now, applying e.g. [18, Lemma 4.6]

we can readily see that

∂

∂Wij

[

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

]

=
1

M

[

ΣH
N ψ′

(

ΣNΣ
H
N

)]

j,i
(39)

∂

∂W∗
ij

[

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

]

=
1

M

[

ψ′
(

ΣNΣ
H
N

)

ΣN

]

i,j
(40)

whereψ′ denotes the derivative ofψ. Consequently, the sum on the right hand side of (38) can be written

as

∑

i,j

E





∣

∣

∣

∣

∂

∂Wij

[

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

]∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∂

∂W∗
ij

[

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

]

∣

∣

∣

∣

∣

2


 =

=
2

M2
E

[

Tr
[

[

ψ′
(

ΣNΣ
H
N

)]2
ΣNΣ

H
N

]]

.

This yields

Var

[

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

]

≤ C
1

N2
E

[

1

M
Tr
[

[

ψ′
(

ΣNΣ
H
N

)]2
ΣNΣ

H
N

]

]

(41)

October 24, 2018 DRAFT



24

for some constantC independent ofN . Next, consider the functionh(λ), defined ash(λ) = λ [ψ′(λ)]2,

which clearly belongs toC∞
c (R,R). Lemma 2 implies that

E

[

1

M
Tr
[

[

ψ′
(

ΣNΣ
H
N

)]2
ΣNΣ

H
N

]

]

=

∫

SN

h(λ)dµN (λ) +O
(

1

N2

)

.

But it is clear from (31) that
∫

SN
h(λ)dµN (λ) = 0 if N is large enough. Therefore, (41) gives (37).

We are now in position to complete the proof of Theorem 3 as in [14]. Applying the classical Markov

inequality together with the above results, we can write (for N large enough)

P

(

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

>
1

N4/3

)

≤ N8/3
E

[

∣

∣

∣

∣

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

∣

∣

∣

∣

2
]

= N8/3

(

∣

∣

∣

∣

E

[

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

]∣

∣

∣

∣

2

+Var

[

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

]

)

= O
(

1

N4/3

)

(42)

Then, by Borel-Cantelli lemma, forN large enough, we have with probability one,

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

≤ 1

N4/3

By the very definition ofψ, the number of eigenvalues of̂RN = ΣNΣ
H
N in [a, b] is upper-bounded by

Tr
[

ψ(ΣNΣ
H
N )
]

and is therefore aO(N− 1

3 ) with probability one. Since this number has to be an integer,

we deduce that forN large enough, there is no eigenvalue in[a, b]. This completes the proof of Theorem

3.

B. Proof of Theorem 4

The approach we use to establish Theorem 4 differs from the method of [14] which is inspired by

[13]. The first part our proof is similar to the proof of Theorem 3, and thus we will omit certain details.

For the second part, we will need a certain result that we summarize in the following proposition:

Proposition 5. Consider the curveC defined by the complex valued functionwN (x) in (17) on the

complex plane asx moves fromt−1 to t+1 , concatenated with the functionw∗
N (x) as x moves back from

t+1 to t−1 , namely

C =
{

wN (x) : x ∈
[

t−1 , t
+
1

]}

∪
{

w∗
N (x) : x ∈

[

t−1 , t
+
1

]}

. (43)

This is a closed curve that encloses the points of
]

w−
1 , w

+
1

[

(see further Figure 5). Letψ(z) be a function

holomorphic in a neighborhood ofC. Then, the contour integral
∫

C−
ψ(λ) dλ is well defined by

∮

C−

ψ(λ) dλ = 2i Im

[

∫

[t−1 ,t
+

1 ]
ψ(wN (x))w

′
N (x) dx

]

. (44)
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wherew′
N (z) denotes the derivative ofwN (z) and where the symbolC− means thatC is oriented

clockwise.

Finally, let ξ ∈ R a point that does not belong to[wN (t
−
1 ), w

(N)−
1 ] ∪ [w

(N)+
1 , wN (t

+
1 )]. Then,

IndC(ξ) =
1

2iπ

∫

C−

dλ

ξ − λ
=







1 if ξ ∈
]

w
(N)−
1 , w

(N)+
1

[

0 if ξ < wN (t
−
1 ) or ξ > wN (t

+
1 ),

Proof: According to the discussion in Section IV-B, ifx ∈
[

t−1 , x
(N)−
1

]

, thenwN (x) is real-valued,

and increases fromwN (t
−
1 ) to wN

(

x
(N)−
1

)

= w
(N)−
1 . Forx ∈

]

x
(N)−
1 , x

(N)+
1

[

, the pointwN (x) belongs

to C+. Finally, if x ∈
[

x
(N)+
1 , t+1

]

, wN (x) is again real-valued, and increases fromwN
(

x
(N)+
1

)

= w
(N)+
1

to wN (t
+
1 ). The contourC is therefore well defined and encloses the points of

]

w
(N)−
1 , w

(N)+
1

[

.

Let us now prove (44). Observe that the functionx→ wN (x) is not exactly a piecewise continuously

differentiable function on
[

t−1 , t
+
1

]

because|w′
N (x)| increases without bound whenx → x

(N)−
1 , x

(N)+
1 .

To see thatwN (x) can indeed be used as a valid parametrization ofC, we need to see that the integral in

(44) is well defined. It is thus necessary to study the behavior of w′
N around the points

{

x
(N)−
1 , x

(N)+
1

}

.

The following lemma is an immediate consequence of the analysis of the behavior of the density of

measureµN near a point of∂SN provided in [17] (see Appendix D for a proof).

Lemma 3. There exists neighborhoodsV
(

x
(N)−
1

)

andV
(

x
(N)+
1

)

of x(N)−
1 and x(N)+

1 such that

∣

∣w′
N (x+ iy)

∣

∣ ≤ C
√

∣

∣

∣
x− x

(N)−
1

∣

∣

∣

for y ≥ 0, x+ iy ∈ V(x(N)−
1 ), andx 6= x

(N)−
1 (45)

and
∣

∣w′
N (x+ iy)

∣

∣ ≤ C
√

∣

∣

∣
x− x

(N)+
1

∣

∣

∣

for y ≥ 0, x+ iy ∈ V(x(N)+
1 ) and x 6= x

(N)+
1 (46)

In particular, Lemma 3 implies that
∫

[t−1 ,t
+

1 ] |ψ(wN (x))||w′
N (x)| dx < +∞ so that the right hand side of

(44) is well defined. The reader may check that it is possible to use the usual results related to integrals over

piecewise continuously differentiable contours. In particular, asIm(wN (x)) > 0 if x ∈
]

x
(N)−
1 , x

(N)+
1

[

,

the index of a pointξ ∈ R which does not belong to
[

wN (t
−
1 ), w

(N)−
1

]

∪
[

w
(N)+
1 , wN (t

+
1 )
]

is equal to

1 is ξ ∈
]

w
(N)−
1 , w

(N)+
1

[

and to0 if either ξ < wN (t
−
1 ) or w > wN (t

+
1 ).

Proposition 5 is basically pointing out that the functionwN (x) defines a valid parametrization of a

contour that will not intersect with any eigenvalue ofBNB
H
N . Furthermore, Assumptions 1 and 2 imply

that

IndC(0) = 1 (47)
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and

IndC(γM−K+l) = 0 (48)

for l = 1, . . . ,K. This means that the contour will only enclose the zero eigenvalue, and none of the

positive eigenvalues ofBNB
H
N , which will be of crucial importance in the following development. Figure

5 gives a schematic representation of the form of the contourC.

Figure 5. Representation of the contourC on the complex plane.

Having introduced the result in Proposition 5, we are now in the position of establishing the proof of

Theorem 4. Letψ ∈ C∞
c (R,R) such that0 ≤ ψ ≤ 1 and

ψ(λ) =











1 ∀λ ∈ [t−1 , t
+
1 ]

0 ∀λ ∈ R− [t−1 − ǫ, t+1 + ǫ]

with ǫ chosen in such a way thatt+1 + ǫ < t−2 . Sinceψ ∈ C∞
c (R,R), we can use Lemma 2 to get

E

[

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

]

=

∫

R+

ψ(λ)dµN (λ) +O
(

1

N2

)

.

Assumptions 1 and 2 imply that
∫

R+

ψ(λ)dµN (λ) = µN

([

x
(N)−
1 , x

(N)+
1

])

= µN ([t
−
1 , t

+
1 ])
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for N large enough. This leads to

E

[

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

]

= µN ([t
−
1 , t

+
1 ]) +O

(

1

N2

)

As established in (37), we also have

Var

[

1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

]

= O
(

1

N4

)

becausesupp(ψ′)∩SN = ∅ for N large enough. Therefore, using again the proof of theorem 3 (inequality

(42)), we get that
1

M
Tr
[

ψ
(

ΣNΣ
H
N

)]

− µN
([

t−1 , t
+
1

])

= O
(

1

N4/3

)

a.s. (49)

Let us now find a closed form expression forµN ([t
−
1 , t

+
1 ]). Noting thatµN is absolutely continuous with

density 1
π Im(mN (x)), we can write

µN
([

t−1 , t
+
1

])

=
1

π
Im

[

∫ t+1

t−1

mN (x)dx

]

.

By expressing the Stieltjès transform asmN (x) =
fN (wN (x))

1−σ2cNfN (wN (x)) (see further (22)),µN
([

t−1 , t
+
1

])

can

be written as

µN
([

t−1 , t
+
1

])

=
1

π
Im

[

∫ t+1

t−1

fN (wN (x))

1− σ2cNfN (wN (x))
dx

]

In order to expressµN
([

t−1 , t
+
1

])

in terms of an integral over the contourC, we can use the relation

w′
N (x)φ

′
N (wN (x)) = 1 for eachx ∈ R− ∂SN (see further (19)). Now, using Proposition 5, we see that

µN
([

t−1 , t
+
1

])

=
1

π
Im

[

∫

[t−1 ,t
+

1 ]

fN (wN (x))φ
′
N (wN (x))

1− σ2cNfN (wN (x))
w′
N (x)dx

]

=
1

2πi

∮

C−

fN (λ)φ
′
N (λ)

1− σ2cNfN(λ)
dλ

=
1

2πi

∮

C−

fN(λ)
(1− cNσ

2fN(λ))
2 − 2cNσ

2λf ′N(λ) (1− cNσ
2fN (λ)) − cNσ

4(1− cN )f
′
N (λ))

1− σ2cNfN (λ)
dλ

(50)

The integrand of the right hand side of (50) is a meromorphic function. The contour integral can be thus

evaluated using the residue theorem. The poles of the integrand are the eigenvalues ofBNB
H
N as well as

the solutions of the equation1−σ2cNfN(λ) = 0. This equation hasK+1 real-valued solutions that we

have denotedz(N)+
0 , and

{

z
(N)−
l

}

l=1,...,K
(see further Figures 1 to 3). Assumptions 1 and 2 imply that

only the poles{0} and
{

z
(N)+
0

}

of the integrand are in fact enclosed byC. Using the residue theorem,

and after some straightforward calculations, we obtain a closed form for the above integral, namely

µN
([

t−1 , t
+
1

])

=
M −K

M
α
(N)
1 +

1

M

M
∑

k=M−K+1

α
(N)
k
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with

α
(N)
1 =

N −K

M −K

(

1− σ2cN
M

M
∑

l=M−K+1

1

γ
(N)
l

)

+
σ2(1− cN )

z
(N)+
0

(51)

α
(N)
k =

(

1− K

N

)

σ2

γ
(N)
k

+
σ2(1− cN )

z
(N)+
0 − γ

(N)
k

(52)

Therefore, we can write

µN
([

t−1 , t
+
1

])

=
N −K

M
+ σ2

1− cN
M

(

M −K

M

1

z
(N)+
0

+

M
∑

k=M−K+1

1

z
(N)+
0 − γ

(N)
k

)

(53)

=
N −K

M
− σ2 (1− cN ) fN

(

z
(N)+
0

)

(54)

but, using the fact that1 − σ2cNfN (z
(N)+
0 ) = 0, we obtain thatµN

([

t−1 , t
+
1

])

= M−K
M . Inserting this

into (49), we get

Tr
[

ψ
(

ΣNΣ
H
N

)]

− (M −K) = O
(

1

N1/3

)

with probability 1. Moreover, thanks to theorem 3, no eigenvalue ofΣNΣ
H
N appears in[t−1 − ǫ, t−1 ] ∪

[t+1 , t
+
1 +ǫ] almost surely forN large enough. Therefore, almost surely forN large enough,Tr

[

ψ(ΣNΣ
H
N )
]

coincides with the number of eigenvalues ofΣNΣ
H
N contained in the interval

]

t−1 , t
+
1

[

. This number is

thus equal toM −K. These eigenvalues are moreover theM −K smallest ones: otherwise the smallest

eigenvalue ofΣNΣ
H
N would belong to

[

0, t−1
]

, a contradiction by Theorem 3. Finally, Theorem 3 again

implies thatλ̂(N)
M−K+1 > t−2 . This completes the proof of Theorem 4.

VI. CONSISTENT ESTIMATION OF THE LOCALIZATION FUNCTION

We now present a consistent estimatorηN = bHNΠNbN of the subspace method localization function.

Here,bN represents aM–dimensional deterministic vector, and we assume thatsupN ‖bN‖ < ∞. The

new consistent estimator presented in this section can be seen as an extension of the work in [7], which

implicitely assumes that the useful signals are Gaussian random i.i.d. sequences. In order to simplify the

notation, we drop the dependence onN from all the sample eigenvalues and sample eigenvectors.

Theorem 5. Under Assumptions 1 and 2, we have with probability one,

η̂newN − ηN −→ 0

whereη̂newN is defined by

η̂newN =

M
∑

k=1

ξ̂kb
H
N êkê

H
k bN (55)
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Here, the coefficients
{

ξ̂k

}

k=1,...,M−K
are given by

ξ̂k = 1 +
σ2cN
M

M
∑

l=M−K+1

λ̂k + λ̂l

(λ̂k − λ̂l)2
+ σ2(1− cN )

M
∑

l=M−K+1

(

1

λ̂k − λ̂l
− 1

λ̂k − ω̂l

)

(56)

and
{

ξ̂k

}

k=M−K+1,...,M
by

ξ̂k = −σ
2cN
M

M−K
∑

l=1

λ̂k + λ̂l

(λ̂k − λ̂l)2
− σ2(1− cN )

M−K
∑

l=1

(

1

λ̂k − λ̂l
− 1

λ̂k − ω̂l

)

(57)

and where{ω̂l}l=1,...,M represent the solutions (arranged in increasing order) of the equation

1 +
σ2cN
M

Tr
[

(

ΣNΣ
H
N − xIM

)−1
]

= 0. (58)

We remark that the consistent estimator is a linear combination of the terms
(

bHN êkê
H
k bN

)

k=1,...,M
.

In contrast to the traditional estimatorηtrad =
∑M−K

k=1 bHN êkê
H
k bN , it contains contributions of both the

noise subspace and the signal subspace. We also note that theassumptions 1 and 2 and Theorem 4 are

intuitively important because the various sums on the righthand side of (56) and (57) remain bounded:

in (56) and (57), the terms
∣

∣

∣
λ̂k − λ̂l

∣

∣

∣
are greater thant−2 − t+1 , and it will be shown that a similar property

holds for the terms
∣

∣

∣λ̂k − ω̂l

∣

∣

∣.

Remark 4. It is worth pointing out that whenever the number of samples is forced to be much larger

than the observation dimension (N >> M or equivalentlycN → 0), the proposed estimator converges

to the classical sample eigenvector estimate. This can be readily seen by taking the limit ascN → 0 in

the coefficients of (56) and (57) and noticing thatω̂l → λ̂l whencN → 0. Hence, ascN → 0 we have

ξ̂k → 1 for k = 1, . . . ,M−K, and ξ̂k → 0 for k =M−K+1, . . . ,M , implying thatη̂newN − η̂tradN → 0.

This shows that the proposed estimator is in fact a generalization of the classical sample eigenvector

estimate.

The remaining of this section is devoted to presenting the main points of the proof of Theorem 5. The

starting point consists in remarking that Assumptions 1 and2 imply that

ηN =
1

2πi

∮

C−

bHN
(

BNB
H
N − λIM

)−1
bNdλ
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whereC− is the closed path defined by (43). This leads to

ηN =
1

2πi

∫ t+1

t−1

bHN
(

BNB
H
N − wN (x)IM

)−1
bNw

′
N (x)dx+

− 1

2πi

∫ t+1

t−1

bHN
(

BNB
H
N − w∗

N (x)IM
)−1

bN
(

w′
N (x)

)∗
dx =

1

π
Im

(

∫ t+1

t−1

bHN
(

BNB
H
N − wN (x)IM

)−1
bNw

′
N (x)dx

)

. (59)

Let gN (x + iy) = bHN
(

BNB
H
N − wN (x+ iy)IM

)−1
bNw

′
N (x + iy). The functiony → gN (x + iy) is

continuous onR+ for eachx ∈ R\∂SN thanks to Proposition 1. Lemma 3 and the dominated convergence

theorem imply that

ηN = lim
y↓0

1

π
Im

(

∫ t+1

t−1

bHN
(

BNB
H
N − wN (x+ iy)IM

)−1
bNw

′
N (x+ iy)dx

)

(60)

= lim
y↓0

[

1

2πi

∮

∂R−

y

gN (z)dz −
1

2π

∫ y

−y
gN (t

−
1 + ih)dh +

1

2π

∫ y

−y
gN (t

+
1 − ih)dh

]

(61)

where∂R−
y is the boundary (clockwise oriented) of the rectangleRy defined fory > 0 by

Ry =
{

u+ iv : u ∈ [t−1 , t
+
1 ], v ∈ [−y, y]

}

. (62)

Notice that the last two integrands vanish asy ↓ 0 (since the functionv 7→ gN (t
−
1 + iv) is continuous on

[−y, y]), and thus

ηN = lim
y↓0

1

2πi

∮

∂R−

y

gN (z)dz.

Moreover, sincegN (z) is holomorphic inC\[x(N)−
1 , x

(N)+
1 ], the value of the contour integral does not

depend ony > 0, and therefore the limit can be dropped, namely

ηN =
1

2πi

∮

∂R−

y

gN (z)dz.

Using the equality(1 + σ2cmN (z))(BNBH
N − wN (z)IM )−1 = TN (z), which follows easily from the

definition in (14), we can write

gN (z) = bHNTN (z)bN
w′
N (z)

1 + σ2cmN (z)
.

Now, the key point of the proof is based on the observation that gN (z) can be estimated consistently

from the elements of matrix̂RN . We recall thatm̂N (z) is defined by

m̂N (z) =
1

M
Tr [QN (z)] =

1

M

M
∑

k=1

1

λ̂k − z
(63)
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and we definêwN (z) as the function obtained by replacing functionmN (z) with m̂N (z) in the definition

of wN (z), i.e.

ŵN (z) = z
(

1 + σ2cN m̂N (z)
)2 − σ2(1− cN )

(

1 + σ2cN m̂N (z)
)

(64)

We define the corresponding random asymptotic equivalent ofgN (z) by

ĝN (z) = bHNQN(z)bN
ŵ′
N (z)

1 + σ2cNm̂N (z)
.

Observe from the definition of̂mN and of QN that the functionĝN is meromorphic with poles at

λ̂1,. . . ,̂λM and at ω̂1,. . . ,̂ωM , the M real-valued solutions to the polynomial equation (of degree M )

1 + σ2cN m̂N (x) = 0. In the following, it is important to locate the(ω̂l)l=1,...,M .

Lemma 4. For N large enough, with probability one

λ̂1, . . . , λ̂M−K , ω̂1, . . . , ω̂M−K ∈]t−1 , t+1 [ (65)

λ̂M−K+1, . . . , λ̂M , ω̂M−K+1, . . . , ω̂M are greater thant−2 (66)

Theorem 1 implies that almost surely,gN (z) − ĝN (z) → 0 on ∂Ry\{t−1 , t+1 }. In order to be able to

use the dominated convergence theorem, we first state the following inequalities proven in Appendix H:

there existsN0 ∈ N such that

sup
N≥N0

sup
z∈∂Ry

|gN (z)| < +∞ (67)

and

sup
N≥N0

sup
z∈∂Ry

|ĝN (z)| < +∞ (68)

almost surely. The dominated convergence theorem thus implies that
∣

∣

∣

∣

1

2πi

∮

∂R−

y

gN (z)− ĝN (z)dz

∣

∣

∣

∣

−→ 0 a.s.

We now establish that the integral

ˆ̃ηnewN =
1

2πi

∮

∂R−

y

ĝN (z)dz

is equal toη̂newN defined by (55). This can be shown using residue Theorem.

Lemma 4 implies that forN large enough

ˆ̃ηnewN =

M−K
∑

k=1

[

Ind∂R−

y

(

λ̂k

)

Res
(

ĝN , λ̂k

)

+ Ind∂R−

y
(ω̂k)Res (ĝN , ω̂k)

]

whereRes(ĝN , λ) denotes the residue of function̂gN at pointλ.
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In order to evaluate these residues, we first remark that

bHNQN (z)bN =

M
∑

k=1

bHN êkê
H
k bN

λ̂k − z

ĝN (z) can thus be written as

ĝN (z) =

M
∑

k=1

bHN êkê
H
k bN

[

α̂k(z) + β̂k(z) + γ̂k(z)
]

where we have defined

α̂k(z) =
1 + σ2cNm̂N (z)

λ̂k − z
(69)

β̂k(z) =
2σ2cNzm̂

′
N (z)

λ̂k − z
(70)

γ̂k(z) = −σ4cN (1− cN )
m̂′
N (z)

(

λ̂k − z
)

(1 + σ2cNm̂N (z))
(71)

and consequently with probability one forN large enough

ˆ̃ηnewN = −
M
∑

k=1

bHN êkê
H
k bN

M−K
∑

m=1

[

Res
(

α̂k, λ̂m

)

+Res
(

β̂k, λ̂m

)

+Res
(

γ̂k, λ̂m

)

+Res (γ̂k, ω̂m)
]

.

Classical residue calculus gives

Res
(

α̂k, λ̂m

)

=











−σ2cN
M

1
λ̂k−λ̂m

k 6= m

−
(

1 + σ2cN
1
M

∑M
i=1
i 6=k

1
λ̂i−λ̂k

)

k = m
(72)

Res
(

β̂k, λ̂m

)

=











2σ2cN
M

λ̂k

(λ̂k−λ̂m)
2 k 6= m

−2σ2cN
M

∑M
i=1
i 6=k

λ̂k

(λ̂i−λ̂k)
2 k = m

(73)

Res
(

γ̂k, λ̂m

)

=











σ2 (1− cN )
1

λ̂k−λ̂m

k 6= m

−M 1−cN
cN

(

1 + σ2cN
M

∑M
i=1
i 6=k

1
λ̂i−λ̂k

)

k = m
(74)

Res (γ̂k, ω̂m) = −σ2 1− cN

λ̂k − ω̂m
. (75)

Next, we definêξk as

ξ̂k = −
M−K
∑

m=1

Res
(

α̂k, λ̂m

)

+Res
(

β̂k, λ̂m

)

+Res
(

γ̂k, λ̂m

)

+Res (γ̂k, ω̂m) .
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We obtain, fork = 1, . . . ,M −K

ξ̂k = 1− σ2cN
M

M
∑

i=M−K+1

1

λ̂k − λ̂i
+

2σ2cN
M

M
∑

i=M−K+1

λ̂k
(

λ̂k − λ̂i

)2 +M
1− cN
cN

(76)

+ σ2(1− cN )







M−K
∑

i=1
i 6=k

1

λ̂i − λ̂k
−
M−K
∑

i=1
i 6=k

1

ω̂i − λ̂k
+

M
∑

i=1
i 6=k

1

λ̂i − λ̂k






(77)

and fork =M −K + 1, . . . ,M

ξ̂k = −σ
2cN
M

M−K
∑

i=1

1

λ̂i − λ̂k
− 2σ2cN

M

M−K
∑

i=1

λ̂k
(

λ̂k − λ̂i

)2 (78)

+ σ2(1− cN )

M−K
∑

i=1

ω̂i − λ̂i
(

λ̂i − λ̂k

)(

ω̂i − λ̂k

) . (79)

To retrieve the final form of̂ξk given in the statement of the theorem, we notice that

1 + σ2cN
1

M

M
∑

i=1

1

λ̂i − ω̂k
= 0

and use the following lemma proved in Appendix I:

Lemma 5. The following identity holds for anyk = 1 . . .M

1

M

M
∑

i=1
i 6=k

1

λ̂i − ω̂k
=

2

M

M
∑

i=1
i 6=k

1

λ̂i − λ̂k
− 1

M

M
∑

i=1
i 6=k

1

ω̂i − λ̂k

This establishes that̃̂ηnew = η̂new and completes the proof of Theorem 5.

VII. N UMERICAL RESULTS

In this section, we compare the results provided by the traditional subspace estimate, the new estimate

(55) (referred to in the figure as the "conditional estimator"), and the improved estimate of [7] derived

under the assumption that the source signals are i.i.d. sequences (referred to as the "unconditional

estimator").

We consider a uniform linear array of antennas the elements of which are located at half the wavelenght.

The steering vectora(θ) is thus given by

a(θ) =
1√
M

[

1, eiπ sin(θ), . . . , ei(M−1)π sin(θ)
]T

(80)

In the following numerical experiments, source signals arerealizations of mutually independent unit

variance AR(1) sequences with correlation coefficient0.9. In order to evaluate the performance of the
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various estimators, we use Monte Carlo simulations. The additive noise varies from trials to trials, but,

for fixedM andN , matrix S remains unchanged. Finally, unless otherwise stated, the cluster associated

to the eigenvalue 0 of matrixAS is assumed to be separated from the clusters corresponding to its non

zero eigenvalues, i.e. for eachσ2, M andN , it holds that

0 < w
(N)+
1 < w

(N)−
2 < γ

(N)
M−K+1 (81)

We finally mention that the estimate of [7] is supposed to be unconsistent in the context of the following

experiments because the source signals are not i.i.d. sequences. However, we will see that the performance

of the conditional and the unconditional estimates are quite close, a property which will need further

work (see Remark 5).

Experiment 1: We first consider two closely spaced sources, i.e.θ1 = 16◦ andθ2 = 18◦. The number of

antennas isM = 20 and the number of snapshots isN = 40. The separation condition (81) is verified if

the SNR is larger than 10 dB. In order to evaluate the performance of the estimates of the localization

function, for each improved estimator (conditional and unconditional), we plot versusθ in figure 6 the

ratio of the MSE of the traditional estimator ofa(θ)HΠa(θ) over the MSE of the improved estimator. The

SNR is equal to16 dB. Figure 6 shows that the 2 improved estimates have nearly the same performance,

and that they outperform significantly the traditional approach around the 2 angles. We however notice

that the 3 estimates have nearly the same performance ifθ is far away fromθ1 = 16◦ and θ2 = 18◦.

In order to evaluate more precisely the improvements provided by the conditional and the unconditional

estimators aroundθ1 and θ2, we plot vs SNR in figure 7 the mean of the MSEs of the estimates of

a(θ1)
HΠa(θ1) anda(θ2)HΠa(θ2).

In figure 8, we plot for each method the mean of the MSE of the twoestimated angles versus the SNR.

The estimates ofθ1 andθ2 are defined as the arguments of the two deepest local minima ofthe estimated

localization function. The mean of the two Cramer-Rao bounds is also represented. The performance of

the 2 improved estimates are again quite similar, and they provide an improvement of4 dB w.r.t the

traditional estimator in the range 15dB-25dB.

We now plot the probability of outlier, i.e. the probabilitythat one of the two estimated angles is

separated from the true one by more than half of the separation between the two true sources. In figure

9, we compare the outlier probability of the three approaches versus the SNR of the three estimators. For

a target probability of error of0.5, the 2 improved estimators provide a gain of8 dB over the traditional
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Figure 6. Ratio (in dB) of the MSE of the traditional estimateof a(θ)HΠa(θ) over the improved estimates vs angles.
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Figure 7. Mean of the MSE of the estimates ofa(θ1)
H
Πa(θ1) anda(θ2)HΠa(θ2).
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Figure 8. Mean of the MSE of the angles estimates versus SNR
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Figure 9. Outlier Probability vs the SNR
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We finally evaluate the influence ofM andN on the performance.N varies from20 to 200 while the

ratio cN is kept constant to0.5, and SNR = 15 dB. In figure 10 we have plotted the mean of the MSEs

on the estimates ofa(θi)HΠa(θi) for i = 1, 2. The separation condition (81) occurs forN ≥ 32. Figure

10 illustrates clearly the unconsistency of that the traditional estimate.
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Figure 10. MSE for the estimators of the localization function vs N

Experiment 2: We now assume that the number of sourcesK is of the same order of magnitude that

M andN , i.e.K = 10, M = 20, N = 40. The ten angles(θi)i=1,...,10 are equal toθi = −40◦+(i−1)10◦

for i = 1, . . . , 10. The separation condition holds if SNR is greater than 15 dB.We again plot versusθ

in figure 11 the ratio of the MSE of the traditional estimator of the localization function over the MSE

of its conditional and unconditional estimators. SNR is equal to 16 dB. Figure 11 shows again that the

performance improvement of the conditional and unconditional estimates is optimum around the angles

(θi)i=1,...,10.

Figure 12 represents the mean of the MSEs of the various estimates ofa(θi)HΠa(θi) for i = 1, . . . , 10

w.r.t. the SNR, and confirms the superiority of the 2 improvedestimates when the separation condition

(81). We note that

Remark 5. All the previous plots clearly show that the conditional estimator outperforms the traditional

one, while its difference with the unconditional one is negligible. This is a quite surprising fact. To explain

this, we recall that the unconditional estimator has been derived in [7] under the assumption that matrix

SN is a Gaussian matrix with unit variance i.i.d. entries. The unconditional estimator of [7] is based on

the observation that ifSN is an i.i.d. Gaussian matrix, then the entries of(R̂N − zI)−1 have the same
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Figure 11. Ratio (in dB) of the MSE of the traditional estimate of the localization function over the MSE of its improved

estimates versusθ
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Figure 12. Mean of the MSE of the estimates ofa(θi)
H
Πa(θi) for i = 1, . . . , 10 versus SNR

behaviour than the entries of matrixTN,iid(z) defined by the following equation

mN,iid(z) =
1

M
Tr TN,iid(z)

TN,iid(z) =
[(

AAH + σ2I
)

(1− cN − cNzmN,iid(z)) − zI
]−1

One can verify that the entries ofTN (z) defined by (14), which depend onSN , have the same asymptotic

behaviour than the entries ofTN,iid(z) whenSN is a realization of an i.i.d. matrix. In this case, the

conditional and unconditional estimators have of course the same behaviour. If howeverSN is not an
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i.i.d. matrix, then the entries of(R̂N − zI)−1 do not behave like the entries ofTN,iid(z) so that the

unconditional estimator should become unconsistent. The previous simulation results tend to indicate that

it is not the case. The explanation of this phenomenon is a topic for further researchs.

VIII. C ONCLUSIONS

This paper has considered the use of subspace estimation algorithms in situations where the number of

available samples and the observation dimension are comparable in magnitude. We have considered the

information plus noise signal model, according to which thereceived signals are deterministic unknowns

whose empirical spatial correlation matrix is low-rank. Wehave derived an estimator of the noise subspace

of the spatial correlation matrix that is consistent, not only when the number of samples tends to infinity

for a fixed observation dimension, but also when these two quantities increase to infinity at the same

rate. This guarantees that the estimator will present a goodperformance even when these two quantities

are comparable in magnitude. In order to establish the consistency of the estimator, we have proven new

results concerning the almost sure location of the eigenvalues of the sample covariance matrix of an

Information plus Noise Gaussian model.

APPENDIX A

PROOF OFPROPERTY1 OF PROPOSITION1

In order to establish that0 does not belong to the supportSN , we show that it existsǫ > 0 for which

µN ([0, x]) = 0 for eachx ∈]0, ǫ[). In order to show this, we will make us of the functionh(m, z) defined

as

h(m, z) =
1

M
Tr

[

−z(1 + σ2cNm)IM + σ2(1− cN )IM +
BNB

H
N

1 + σ2cNm

]−1

. (82)

Observe that the equationm = h(m, 0) is equivalent to

m =
1

M
Tr

[

σ2(1− cN )IM +
BNB

H
N

1 + σ2cNm

]−1

.

Now, the conditioncN < 1 implies that the functionm → h(m,0)
m is decreasing onR+. Therefore, the

equationm = h(m, 0) has a unique strictly positive solution denotedm∗. Next, we will check that

1− ∂h

∂m

∣

∣

∣

∣

(m∗,0)

> 0. (83)

Indeed, observe that

∂h

∂m

∣

∣

∣

∣

(m∗,0)

=
σ2cN

1 + σ2cNm∗

1

M
Tr

[

BNB
H
N

1 + σ2cNm∗

(

σ2(1− cN )IM +
BNB

H
N

1 + σ2cNm∗

)−2
]

October 24, 2018 DRAFT



40

so that

∂h

∂m

∣

∣

∣

∣

(m∗,0)

<
σ2cN

1 + σ2cNm∗

1

M
Tr

[

σ2(1− cN )IM +
BNB

H
N

1 + σ2cNm∗

]−1

=
σ2cNm∗

1 + σ2cNm∗
< 1

as required. Hence, the implicit function theorem implies that there exists an open disk centered at

zero with radiusη > 0, i.e. D(0, η), and a unique functionm(z), holomorphic onD(0, η), satisfying

m(0) = m∗ and such that

m(z) = h(m(z), z) (84)

for |z| < η. Evaluating the successive derivatives of functionz → h(m(z), z) at the origin, one can

check that for eachl ≥ 0, m(l)(0) is real-valued. Sincem∗ > 0, there exists a positive quantityǫ,

0 < ǫ ≤ η such thatm(x) is real-valued andm(x) > 0 if x ∈] − ǫ, ǫ[. On the other hand, it can be

readily checked that ifx < 0, the equationm = h(m,x) has a unique strictly positive solution. Now, for

x < 0, mN (x) is strictly positive, and satisfies this equation. Therefore, it holds thatmN (x) = m(x) for

−ǫ < x < 0. Since the two functionsmN andm are holomorphic onD(0, ǫ)\ {[0, ǫ[} and coincide on a

set of values with an accumulation point, they must coincideon the whole domain of analicity, namely

D(0, ǫ)\ {[0, ǫ[}. We recall that for0 ≤ x < ǫ, µN ([0, x]) can be expressed as

µN ([0, x]) =
1

π
lim

y→0,y>0

∫ x

0
Im(mN (s+ iy))ds

Therefore,

µN ([0, x]) =
1

π
lim

y→0,y>0

∫ x

0
Im(m(s + iy))ds

As m is holomorphic onD(0, ǫ), the dominated convergence theorem implies that

1

π
lim

y→0,y>0

∫ x

0
Im(m(s+ iy))ds =

1

π

∫ x

0
Im(m(s))ds = 0

becausem(s) ∈ R if s ∈ [0, x]. This establishes thatµN ([0, x]) = 0.

APPENDIX B

PROOF OFPROPOSITION2

In order to prove Property 1, we establish thatIm(wN (x)) > 0 if and only if Im(mN (x)) > 0.

Assume thatIm(mN (x)) > 0, i.e. thatx ∈ Int(SN ), which in particular implies thatx > 0, and consider

z = x+ iy with y > 0. Equation (13) can be written in terms ofwN (z) as

mN (z)

1 + cNσ2mN (z)
= fN (wN (z)). (85)
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Taking the imaginary part from both sides yields the identity

Im(mN (z))

|1 + σ2cNmN (z)|2
= Im(wN (z))

1

M
Tr
[

(BNB
H
N − wN (z)IM )−1(BNB

H
N − w∗

M (z)IM )−1
]

or equivalently,

Im(mN (z)) = Im(wN (z))
∣

∣1 + σ2cNmN (z)
∣

∣

2 1

M
Tr
[

(BNB
H
N − wN (z))

−1(BNB
H
N − w∗

N (z))
−1
]

(86)

= Im(wN (z))
1

M
Tr
[

TN (z)T
H
N (z)

]

(87)

It is shown in [17] (see Eq. (2.6)) that

σ2

N
Tr
[

TN (z)T
H
N (z)

]

≤ 1

|z| ≤
1

x

which implies

Im(mN (z)) ≤ Im(wN (z))
1

σ2cN |x|
. (88)

If y → 0, we get that

0 < Im(mN (x)) ≤ Im(wN (x))
1

σ2cN |x|
which implies thatIm(wN (x)) > 0. Conversely, assume thatIm(wN (x)) > 0. Then,mN (x) cannot be

real-valued, otherwise,wN (x) = x(1 + σ2cNmN (x))
2 − σ2(1 − cN )(1 + σ2cNmN (x)) would be also

real-valued.

Next, we prove Property 2. Sincex→ mN (x) is differentiable onR−∂SN , x→ wN (x) is differentiable

on the same subset. By Property 4 of Proposition 1,wN (x) does not belong to the spectrum of matrix

BNB
H
N if x ∈ R\SN . Therefore, the functionx → fN (wN (x)) is differentiable forx ∈ R\SN . Since

(85) holds onx ∈ R\SN , we can differentiate it with respect tox on x ∈ R\SN . This gives

w′
N (x)f

′
N (wN (x)) =

m′
N (x)

(1 + cNσ2mN (x))2

for x ∈ R\SN . Now, observe thatm′
N (x) > 0 on R\SN becausemN (z) is the Stieltjès transform of a

probability measure carried bySN . On the other hand, the functionf ′N is of course strictly positive on

R. This in turn shows thatw′
N (x) > 0 on x ∈ R\SN .

To establish the last property, we use (13) at pointx ∈ R\SN , and get that

1− cNσ
2fN(w(x)) =

1

1 + cNσ2mN (x)
. (89)

The conclusion follows from the inequality1 + cNσ
2mN (x) > 0 if x ∈ R\SN (see Proposition 1).
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APPENDIX C

PROOF OF(28) IN PROPOSITION3

We considerw1, w2 ∈
{

w
(N)−
1 , w

(N)+
1 , . . . , w

(N)−
Q , w

(N)+
Q

}

, and denote byφ1 andφ2 the quantities

φN (w1) andφN (w2) respectively. We definehn = 1− σ2cNfN (wn) so that we can writeφn = wnh
2
n+

σ2(1 − cN )hn, n ∈ {1, 2}. Our objective is to show that the quantity(φ2 − φ1) / (w2 − w1) is always

positive. Note that, by definition,w1 andw2 are inflexion points ofφN (w) such thath1 ≥ 0 andh2 ≥ 0.

Using direct substraction of the expressions ofφ1 andφ2 we can write

φ2 − φ1
w2 − w1

= (h1 + h2)
(w2h2 − w1h1)

w2 − w1
+ σ2(1− cN )

h2 − h1
w2 − w1

− h1h2

Consider now the following inequality

2

M

M
∑

k=1

γ
(N)
k

(γ
(N)
k − w1)(γ

(N)
k −w2)

≤ 1

M

M
∑

k=1

γ
(N)
k

(γ
(N)
k −w1)2

+
1

M

M
∑

k=1

γ
(N)
k

(γ
(N)
k − w2)2

(90)

which can be readily obtained by noting that

1

M

M
∑

k=1







(

γ
(N)
k

)1/2

(γ
(N)
k − w1)

−

(

γ
(N)
k

)1/2

(γ
(N)
k − w2)







2

≥ 0.

Using the definition ofh1 andh2 we can readily write

w2h2 − w1h1
w2 − w1

= 1− σ2cN
M

M
∑

k=1

γ
(N)
k

(γ
(N)
k − w1)(γ

(N)
k − w2)

,

and hence the inequality in (90) is giving us

φ2 − φ1
w2 − w1

≥ (h1 + h2)

[

1− σ2cN
2

(

fN (w1) + fN (w2) + w1f
′
N(w1) + w2f

′
N (w2)

)

]

+

− h1h2 + σ2(1− cN )
h2 − h1
w2 − w1

(91)

wheref ′N (w) denotes the derivative offN(w). Using again the definition ofh1 andh2, we can rewrite

the last term of the previous expression as

h2 − h1
w2 − w1

= −σ
2cN
2

[

f ′N (w1) + f ′N (w2)−
1

M

M
∑

k=1

(w2 − w1)
2

(γ
(N)
k − w1)2(γ

(N)
k − w2)2

]

.

By inserting this last equality into (91) and replacingfN (w1) with σ−2(1−h1), we obtain the expression

φ2 − φ1
w2 − w1

≥ σ4cN (1 − cN )

2

1

M

M
∑

k=1

(w2 − w1)
2

(γ
(N)
k − w1)2(γ

(N)
k − w2)2

+
h21 + h22

2
+

− σ4cN (1− cN )

2

[

f ′N (w1) + f ′N (w2)
]

− σ2

2

h1 + h2
(

w1f ′N (w1) + w2f ′N (w2)
) . (92)
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Now, bothw1 andw2 are preimages of local extrema ofφN , so that forn = 1, 2, we haveφ′N (wn) =

h2n − 2σ2wnf
′
N(wn)hn − σ4(1− cN )f

′
N (wn) = 0. Thus, we can write

h21 + h22
2

= σ2
[

w1h1f
′
N (w1) + w2h2f

′
N(w2)

]

+
σ4cN (1− cN )

2

[

f ′N (w1) + f ′N (w2)
]

and by inserting the last equality into (92), we obtain

φ2 − φ1
w2 − w1

≥ σ4cN (1− cN )

2

1

M

M
∑

k=1

(w2 − w1)
2

(γ
(N)
k − w1)2(γ

(N)
k − w2)2

+
σ2

2
(h1 − h2)(w1f

′
N(w1)− w2f

′
N (w2)).

(93)

Using again the fact thatφ′N (wn) = 0, we can writewnf ′N (wn) =
hn

2σ2 − σ2(1−cN )
2

f ′

N (wn)
hn

and thus (93)

becomes

φ2 − φ1
w2 − w1

≥ σ4cN (1 − cN )

2

1

M

M
∑

k=1

(w2 − w1)
2

(γ
(N)
k − w1)2(γ

(N)
k − w2)2

+
(h1 − h2)

2

4
+

− σ4(1− cN )

4

(

f ′N(w1)− f ′N (w2)
)

+
σ4(1− cN )

4
cN

[

h1
h2
f ′N (w2) +

h2
h1
f ′N(w1)

]

(94)

Clearly, we have

1

M

M
∑

k=1

(w2 − w1)
2

(γ
(N)
k − w1)2(γ

(N)
k − w2)2

−
[

f ′N(w1) + f ′N(w2)
]

= − 2

M

M
∑

k=1

1

(γ
(N)
k −w1)(γ

(N)
k − w2)

and thus by multiplying the previous equality withh1h2 and addingh22f
′
N (w1)+h

2
1f

′
N (w2), we can also

write

h22f
′
N (w1) + h21f

′
N(w2) +

1

M

M
∑

k=1

h1h2(w2 − w1)
2

(γ
(N)
k − w1)2(γ

(N)
k − w2)2

+

− h1h2
[

f ′N (w1) + f ′N (w2)
]

=
1

M

M
∑

k=1

(

h2

γ
(N)
k −w1

− h1

γ
(N)
k − w2

)2

.

The left hand side of the previous equality appears in (94) asa common factor on the last two terms of

the right hand side of that equation. Hence, plugging it into(94), we obtain

φ2 − φ1
w2 − w1

≥ σ4cN (1 − cN )

4

1

M

M
∑

k=1

(w2 − w1)
2

(γ
(N)
k − w1)2(γ

(N)
k − w2)2

+

+
(h1 − h2)

2

4
+
σ4cN (1− cN )

4h1h2

1

M

M
∑

k=1

(

h2

γ
(N)
k −w1

− h1

γ
(N)
k − w2

)2

.

Finally, noting that all the terms of the above equation are non-negative, we have established (28).

October 24, 2018 DRAFT



44

APPENDIX D

PROOF OFLEMMA 3

The proof of this Lemma is a direct consequence of [17, Section 4]. Next, we provide some details

on how to obtain (45); the same procedure can be applied in order to obtain (46). As in [17], we define

in this section functionbN (z) by bN (z) = 1 + σ2cNmN (z) for z ∈ C, and denote byb−1 the quantity

bN (x
−
1 ) (note that we drop the dependence onN in x−1 ). Sincex−1 belongs to∂SN , bothmN (x

−
1 ) and

b−1 are real-valued. Proposition 1 thus implies thatz → bN (z) is continuous at the pointx−1 . Similarly,

wN (x
−
1 ) = w−

1 is real-valued so that the functionz → wN (z) is also continuous atx−1 .

Sincef ′N (w
−
1 ) > 0, there exists a neighborhoodV(w−

1 ) of w−
1 on which fN is biholomorphic. For

z ∈ C+ ∪ R, it follows from (21) that we can write

fN(wN (z)) =
mN (z)

1 + σ2cNmN (z)
=

1

σ2cN

(

1− 1

bN (z)

)

. (95)

SincewN is continuous atx−1 and sincewN (z) ∈ C+ if z ∈ C+ (see Property 5 of Proposition 1), there

exists a neighborhoodV(x−1 ) of x−1 such that

wN
(

V(x−1 ) ∩ C+

)

⊂ V(w−
1 ) ∩ C+.

Therefore, applying the holomorphic inverse offN , denoted asf−1
N , to both sides of (95) we get, for

any z ∈ V(x−1 ) ∩ C+,

wN (z) = f−1
N

(

1

σ2cN

(

1− 1

bN (z)

))

.

Using the fact thatwN (z) = zb2N (z)− σ2(1− cN )bN (z) and solving with respect toz, we get that

z = ZN (bN (z)) z ∈ V(x−1 ) ∩ C+ (96)

whereZN is the function defined in an appropriate neighborhood ofb−1 by

ZN (b) =
1

b2
f−1
N

(

1

σ2cN

(

1− 1

b

))

+
σ2(1− cN )

b
.

Next, we recall the following result from [17].

Lemma 6. There exists a neighborhoodV(b−1 ) of b−1 and a functionΨN , biholomorphic fromV(b−1 )
onto a neighborhood of the originV(0) such that∀b ∈ V(b−1 )

ZN (b)− x−1 = Ψ2
N (b).
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Since the functionbN is continuous at the pointx−1 , and sincebN (z) ∈ C+ if z ∈ C+ (which follows

from the definition ofbN ), there exist two smaller neighborhoodsV ′(x−1 ) ⊂ V(x−1 ) andV ′(b−1 ) ⊂ V(b−1 )
of x−1 andb−1 respectively, such that

bN (z) ∈ V ′(b−1 ) ∩ C+ ∀z ∈ V ′
(

x−1
)

∩ C+

Therefore, using (96), we can write

(ΨN (bN (z)))
2 = z − x−1

∀z ∈ V ′(x−1 ) ∩ C+. Let us now choose,∀z ∈ V ′(x−1 ) ∩ C+,

ΨN (bN (z)) =
√

z − x−1

where
√

(·) represents any determination of the complex square root that is holomorphic3 on C+ and

such that
√
1 = 1 (the following reasoning applies verbatim to the square root determination for which

√
1 = −1). We denote byΨ−1

N the holomorphic inverse function ofΨN defined onV(0). We have

bN (z) = Ψ−1
N

(

√

z − x−1

)

∀z ∈ V ′(x−1 ) ∩ C+

Taking derivatives with respect toz at both sides of the previous equality, we obtain

b′N (z) =
1

2
√

z − x−1

[

Ψ−1
N

]′
(

√

z − x−1

)

.

Now, sinceΨ−1
N is holomorphic onV(0) by Lemma 6, the function

[

Ψ−1
N

]′
will be bounded on the same

neighborhood of0 and thus we will have

∣

∣b′N (z)
∣

∣ ≤ C
∣

∣

∣

∣

√

z − x−1

∣

∣

∣

∣

for some constantC independent ofz. Therefore, forz = x+ iy ∈ V ′(x−1 ) ∩ C+, we can write

∣

∣w′
N (x+ iy)

∣

∣ =
∣

∣bN (z)
2 + 2zb′N (z)− σ2(1 − cN )b

′
N (z)

∣

∣ ≤ C
√

∣

∣x− x−1 + iy
∣

∣

. (97)

The inequality
C

√

∣

∣x− x−1 + iy
∣

∣

≤ C
√

∣

∣x− x−1
∣

∣

for x 6= x−1 completes the proof of (45) fory > 0. (45) for y = 0 follows from the observation that

w′
N (x) = limy↓0 w

′
N (x+ iy).

3This property must hold for all possible choices ofΨN because, by definition,ΨN is holomorphic onV(b−1 ) andbN (z) ∈ C+

if z ∈ C+. SincebN(z) is holomorphic onV ′(x−

1 ) ∩ C+, ΨN (bN (z)) must be holomorphic on the same set.
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APPENDIX E

PROOF OFPROPOSITION4

In this section, we drop as much as possible the subscriptN for an easier reading. In the following,

P1(|z|) andP2(
1

|Im(z)|) represent generic positive coefficients polynomials of thevariables|z| and 1
|Im(z)|

whose mean feature is to be independent ofN . The values ofP1 andP2 can change from one line to

another.

We rely extensively on the results of the Appendix II of [23] related to the properties of matrix

(B+D1/2WD̃1/2)(B+D1/2WD̃1/2)H whereD andD̃ are deterministic diagonal matrix. We thus use

[23] in the case whereD = σIM andD̃ = σIN which corresponds to the context of the present paper.

In order to help the reader, we use the same notations as in [23] all along this section. More precisely,

we define

δ(z) = σcm(z) (98)

δ̃(z) = δ(z) − σ
1− c

z
(99)

α(z) = E

[ σ

N
TrQ(z)

]

(100)

α̃(z) = α(z) − σ
1− c

z
(101)

We remark thatα(z) is the Stieltjès transform of measurecσω whereω is the probability measure carried

by R+ defined by

ω(B) = E(µ̂(B)) (102)

for each Borel setB. We recall that̂µ represents the empirical eigenvalue distribution ofR̂N = ΣNΣ
H
N .

Finally, it is easily seen that̃δ is the Stieltjès transform of measureσcµ+ σ(1− c)δ0 (δ0 represents the

Dirac distribution at 0), and that̃α(z), which can be expressed by

α̃(z) = E

[

σ
1

N
TrQ̃(z)

]

(103)

whereQ̃(z) is defined by

Q̃(z) =
(

ΣHΣ− zI
)−1

(104)

coincides with the Stieltjès transform of measureσcω + σ(1− c)δ0.

Matrix T(z) defined by (14) can be written as

T(z) =

[

−z(1 + σδ̃(z))IM +
BBH

1 + σδ(z)

]−1
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andδ(z) is equal to

δ(z) = σ
1

N
TrT(z) (105)

We also define matrix̃T(z) by

T̃(z) =

[

−z(1 + σδ(z))IN +
BHB

1 + σδ̃(z)

]−1

(106)

and remark, after simple calculations, that

δ̃(z) = σ
1

N
TrT̃(z) (107)

We finally denote byR(z) andR̃(z) the matrices defined by

R(z) =

[

−z(1 + σα̃(z))IM +
BBH

1 + σα(z)

]−1

(108)

R̃(z) =

[

−z(1 + σα(z))IN +
BHB

1 + σα̃(z)

]−1

(109)

Using Property 6 of Lemma 1, it is easily checked that functions(−z(1 + σδ(z)))−1,
(

−z(1 + σδ̃(z))
)−1

,

(−z(1 + σα(z)))−1, (−z(1 + σα̃(z)))−1 are Stieltjès transforms of probability measures carried by R+.

Proposition 5.1 of [16] thus implies that matrix valued functionsT(z), T̃(z),R(z), R̃(z) are holomorphic

in C− R+, coincide with the Stieltjès transforms of positive matrixvalued measures carried byR+, the

mass of which are equal toI, and their spectral norms are bounded by1|Im(z)| on C+ (see [16] for more

details).

We finally recall that matricesQ(z) and Q̃(z) satisfy ‖Q‖ ≤ (Im(z))−1 and ‖Q̃‖ ≤ (Im(z))−1 for

z ∈ C+ (see e.g. [11], [18], [14], [16]).

In order to establish Proposition 4, we have first to study theterm

E

(

1

N
TrQ(z)

)

− 1

N
TrR(z)

A. Study ofE
(

1
NTrQ(z)

)

− 1
NTrR(z)

Let τ̃(z) and∆(z) defined by

τ̃(z) =
−σ

z (1 + σα(z))

[

1− 1

N
Tr

(

BH
E[Q(z)]B

1 + σα(z)

)]

(110)
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and

∆(z) := ∆1(z) +∆2(z) +∆3(z) (111)

∆1(z) := − σ

1 + σα(z)
E

[

Q(z)ΣΣH σ

N
Tr (Q(z)− E[Q(z)])

]

(112)

∆2(z) := − σ2

1 + σα(z)
E

[

(Q(z)− E[Q(z)])
σ

N
TrΣHQ(z)B

]

(113)

∆3(z) :=
σ2

(1 + σα(z))2
E [Q(z)]E

[ σ

N
Tr (Q(z)− E[Q(z)])

σ

N
TrΣHQ(z)B

]

(114)

As it will become apparent below, the entries of matrix∆(z) converge towards 0.

It is proved in [23] that for eachz ∈ R∗
−, the following equality holds true

IM +∆(z) = E [Q(z)]

(

−z(1 + στ̃(z))IM +
BBH

1 + σα(z)

)

(115)

As the lefthandside and the righthandside of (115) are analytic on C− R+, Eq. (115) holds not only on

R

−
∗ , but onC−R+. It is shown in [23] that̃α(z)− τ̃(z) converges towards 0 for eachz ∈ C−R+ when

N → +∞. The general expression of̃α(z)− τ̃(z) given in [23] is complicated. However, the simplicity

of the model considered in this paper (matricesD andD̃ in [23] are reduced toσI) allows to derive the

following Lemma.

Lemma 7. For eachz ∈ C− R+, it holds that

z (α̃(z)− τ̃(z)) = −σ
1

N
Tr∆(z) (116)

Proof: Multiplying (115) from both sides byσ and taking the trace, we obtain

σ
1

N
Tr

(

BH
E[Q(z)]B

1 + σα(z)

)

= σ
M

N
+ σ

1

N
Tr∆(z) + z (1 + στ̃(z)) α(z) (117)

From the definition of̃τ(z) (equation (110)), we also have

σ
1

N
Tr

(

BH
E[Q(z)]B

1 + σα(z)

)

= zτ̃ (z)(1 + σα(z)) + σ (118)

The two above equalities imply that

α(z)− τ̃(z) =
σ(1 − c)

z
− σ

z

1

N
Tr∆(z) (119)

Using (101), we get that

α̃(z)− τ̃(z) = −σ
z

1

N
Tr∆(z) (120)

and (116).
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Writing the righthandside of (115) as

E(Q(z))R(z)−1 + zσ(α̃(z)− τ̃(z))E(Q(z))

and using (116), we obtain immediately that

E(Q(z))−R(z) = ∆(z)R(z) + σ2
1

N
[Tr∆(z)]E(Q(z))R(z) (121)

and that

E

[

1

N
TrQ(z)

]

− 1

N
TrR(z) =

σ

N
Tr (E [Q(z)]R(z))

σ

N
Tr∆(z) +

1

N
Tr∆(z)R(z) (122)

The above expression ofE
[

1
NTrQ(z)

]

− 1
NTrR(z) allows to prove the following Proposition.

Proposition 6. ∀z ∈ C+, we have
∣

∣

∣

∣

E

[

1

N
TrQ(z)

]

− 1

N
TrR(z)

∣

∣

∣

∣

≤ 1

N2
P1(|z))P2(|Im(z)|−1) (123)

Proof: We first prove the following preliminary result.

Lemma 8. ConsiderM × M matrices UN and M × N matrices U
′

N satisfying supN ‖UN‖ <

∞, supN ‖UN‖ <∞. Then, we have∀z ∈ C+

Var

[

1

N
TrQ(z)U

]

≤ C‖U‖2 1

N2
P1(|z|)P2(

1

|Im(z)
|) (124)

Var

[

1

N
TrΣHQ(z)U

′

]

≤ C
1

N2
‖U′‖2P1(|z|)P2(

1

|Im(z)| ) (125)

where the polynomialsP1 andP2 and constantC are independent ofM,N andU,U
′

.

Proof: As the proofs of the two statements are similar, we just provethe first statement of the

Lemma. We first remark that

∂[Q(z)]pq
∂Wij

= −Qpi

(

ΣHQ
)

jq
(126)

∂[Q(z)]pq
∂W∗

ij

= −Qiq (QΣ)pj (127)
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The Nash-Poincaré inequality gives

Var

[

1

N
TrQ(z)U

]

≤ σ2

N

∑

i,j





E

∣

∣

∣

∣

∣

1

N

∑

p,q

∂[Q(z)]pq
∂Wij

Uqp

∣

∣

∣

∣

∣

2

+ E

∣

∣

∣

∣

∣

1

N

∑

p,q

∂[Q(z)]pq
∂W∗

ij

Uqp

∣

∣

∣

∣

∣

2


 (128)

≤ C
1

N3

∑

i,j

[

E

∣

∣

∣

[

ΣHQ(z)UQ(z)
]

ji

∣

∣

∣

2
+ E

∣

∣

∣

[

Q(z)UQ(z)ΣH
]

ij

∣

∣

∣

2
]

(129)

≤ C
1

N3

∑

j

E

[

(

ΣHQ(z)UQ(z)Q(z)HUHQ(z)HΣ
)

jj

]

+ (130)

C
1

N3

∑

j

E

[

(

ΣHQ(z)HUHQ(z)HQ(z)UQ(z)Σ
)

jj

]

(131)

≤ C
1

N3
E

[

Tr
(

Q(z)UQ(z)Q(z)HUHQ(z)HΣΣH
)]

+ (132)

C
1

N3
E

[

Tr
(

Q(z)HUHQ(z)HQ(z)UQ(z)ΣΣH
)]

(133)

We use the resolvent identity

Q(z)ΣΣH = ΣΣHQ(z) = I+ zQ(z) (134)

Therefore,

Var

[

1

N
TrQ(z)U

]

≤ C
1

N3
E

∣

∣Tr
(

Q(z)UQ(z)Q(z)HUH
(

I+ z∗Q(z)H
))∣

∣+ (135)

C
1

N3
E

∣

∣Tr
(

Q(z)HUHQ(z)HQ(z)U (I+ zQ(z))
)∣

∣ (136)

≤ C‖U‖2 1

N2

( |z|
|Im(z)|4 +

1

|Im(z)|3
)

(137)

≤ C‖U‖2 1

N2
(|z|+ 1)

(

1

|Im(z)|4 +
1

|Im(z)|3
)

(138)

which establishes the first statement of Lemma 8.

We now complete the proof of Proposition 6. For this, we use the inequalities‖Q(z)‖ ≤ 1
|Im(z)| and

‖R(z)‖ ≤ 1
|Im(z)| for z ∈ C− R. This leads to

∣

∣

∣

σ

N
Tr (E [Q(z)]R(z))

σ

N
Tr∆(z)

∣

∣

∣ ≤ C
1

|Im(z)|2
∣

∣

∣

∣

1

N
Tr∆1(z) +

1

N
Tr∆2(z) +

1

N
Tr∆3(z)

∣

∣

∣

∣

(139)

We establish that
∣

∣

∣

∣

1

N
Tr(∆i(z))

∣

∣

∣

∣

≤ 1

N2
P1(|z|)P2(|Im(z)|−1) (140)

for i = 1, 2, 3. In order to evaluate1NTr(∆i(z)) for i = 1, 2, 3, we first remark that

1

|z(1 + σα(z))| <
1

|Im(z)|
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because− 1
z(1+σα(z)) is the Stieltjès transform of a probability measure. Therefore, we have

1

|1 + σα(z)| <
|z|

|Im(z)| (141)

The resolvent identity (134) implies that

1

N
Tr(∆1(z)) = − σ

1 + σα(z)
E

[

z
1

N
TrQ(z)

σ

N
Tr (Q(z)− EQ(z))

]

(142)

= − σ

1 + σα(z)
E

[ z

N
(Tr (Q(z)− EQ(z)))

σ

N
(Tr (Q(z)− EQ(z)))

]

(143)

(141) and the first statement of Lemma 8 give immediately (140) for i = 1. Similarly, 1
NTr(∆2(z)) can

be written as

1

N
Tr(∆2(z)) = − σ2

1 + σα(z)
E

[(

1

N
TrQ(z)− E(

1

N
TrQ(z)

)

( σ

N
TrΣHQ(z)B− E(

σ

N
TrΣHQ(z)B)

)

]

Using again (141), the Schwartz inequality, Lemma 8, and theidentity (xy)1/2 ≤ (x+y2 ) for x ≥ 0, y ≥ 0,

we get (140) fori = 2. (140) for i = 3 is obtained similarly. This and (139) imply that
∣

∣

∣

σ

N
Tr (E [Q(z)]R(z))

σ

N
Tr∆(z)

∣

∣

∣
≤ 1

N2
P1(|z|)P2(|Im(z)|−1)

Using the same approach and the identity‖R(z)‖ ≤ (|Im(z)|)−1, we obtain easily that
∣

∣

∣

∣

1

N
Tr∆(z)R(z)

∣

∣

∣

∣

≤ 1

N2
P1(|z|)P2(|Im(z)|−1)

(122) thus implies Proposition 6.

Remark 6. It is also possible to establish that∀z ∈ C+, we have
∣

∣

∣

∣

E

[

1

N
Tr Q̃(z)

]

− 1

N
Tr R̃(z)

∣

∣

∣

∣

≤ 1

N2
P1(|z|)P2(|Im(z)|−1) (144)

because it is shown in [23] that a relation similar to (115) holds forE(Q̃(z)). Following the derivation of

(121), we obtain an expression ofE
[

1
NTr Q̃(z)

]

− 1
NTr R̃(z) similar to (122) which allows to establish

(144).

B. Study ofE
(

1
NTrQ(z)

)

− 1
NTrT(z)

In order to complete the proof of Proposition 4, we show in this paragraph that

σ

∣

∣

∣

∣

E

(

1

N
TrQ(z)

)

− 1

N
TrT(z)

∣

∣

∣

∣

= |α(z) − δ(z)| ≤ 1

N2
P1(|z|)P2(|Im(z)|−1) (145)
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for eachz ∈ C+. For this, we denote byǫ(z) and ǫ̃(z) the terms defined by

ǫ(z) = α(z) − σ
1

N
Tr(R(z)) = σ

(

E

1

N
Tr(Q(z))− 1

N
Tr(R(z))

)

(146)

ǫ̃(z) = α̃(z)− σ
1

N
Tr(R̃(z)) = σ

(

E

1

N
Tr(Q̃(z))− 1

N
Tr(R̃(z))

)

(147)

Proposition 6 and Remark 6 imply that

|ǫ(z)| ≤ 1

N2
P1(|z|)P2(|Im(z)|−1) (148)

|ǫ̃(z)| ≤ 1

N2
P1(|z|)P2(|Im(z)|−1) (149)

for eachz ∈ C+. In order to studyα(z)−δ(z), we expressα(z) asα(z) = σ 1
NTr(R(z))+ǫ(z). Therefore,

α(z)−δ(z) = σ 1
NTr(R(z)−T(z))+ǫ(z). We have similarlỹα(z)− δ̃(z) = σ 1

NTr(R̃(z)−T̃(z))+ ǫ̃(z).

We remark thatR(z)−T(z) can be written asR(z)
(

T−1(z)−R−1(z)
)

T(z), and thatR̃(z)− T̃(z) is

equalR̃(z)
(

T̃−1(z) − R̃−1(z)
)

T̃(z). Using the expression ofR(z)−1,T(z)−1, R̃(z)−1 and T̃(z)−1,

we obtain that




α(z) − δ(z)

α̃(z)− δ̃(z)



 = D0(z)





α(z)− δ(z)

α̃(z)− δ̃(z)



+





ǫ(z)

ǫ̃(z)



 (150)

where

D0(z) =





u0(z) zv0(z)

zṽ0(z) ũ0(z)



 (151)

with u0, ũ0, v0, ṽ0 defined by

u0(z) =
1

N
Tr

σ2R(z)BBHT(z)

(1 + σα(z))(1 + σδ(z))
(152)

ũ0(z) =
1

N
Tr

σ2R̃(z)BHBT̃(z)

(1 + σα̃(z))(1 + σδ̃(z))
(153)

v0(z) =
1

N
Trσ2R(z)T(z) (154)

ṽ0(z) =
1

N
Trσ2R̃(z)T̃(z) (155)

Using the matrix inversion lemma and the observation that matricesR,T,BBH commute, the reader

can check easily thanu0(z) = ũ0(z).

In order to establish (145), we remark that (150) is equivalent to the linear system

(I−D0(z))





α(z)− δ(z)

α̃(z)− δ̃(z)



 =





ǫ(z)

ǫ̃(z)



 (156)
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In the following, we show matrix(I−D0(z)) is invertible forz ∈ C+, and that the entries of its inverse

can be bounded by terms such asP1(|z|)P2(|Im(z)|−1). Proposition 4 will follow immediately from

(148) and (149).

We first evaluate a lower bound ofdet (I−D0(z)) for z ∈ C+. For this, we introduce matrixD(z)

defined by

D(z) =





u(z) v(z)

|z|2ṽ(z) ũ(z)



 (157)

with u, ũ, v, ṽ defined by

u(z) =
1

N
Tr
σ2T(z)BBHT(z)H

|1 + σδ(z)|2 (158)

ũ(z) =
1

N
Tr
σ2T̃(z)BHBT̃(z)H

|1 + σδ̃(z)|2
(159)

v(z) =
1

N
Trσ2T(z)T(z)H (160)

ṽ(z) =
1

N
Trσ2T̃(z)T̃(z)H (161)

and define matrixD
′

(z) as the analogue ofD(z) but in which T, T̃, δ, δ̃ are replaced byR, R̃, α, α̃

respectively. The entries ofD
′

(z) are denoted byu
′

, v
′

, |z|2ṽ′

, ũ
′

. We note that the entries ofD(z) and

D
′

(z) are positive, and that, using the matrix inversion lemma, itis easily seen thatu = ũ and that

u
′

= ũ
′

. These matrices are useful because we have the following proposition.

Proposition 7. There exists a strictly positive constantη such that

det (I−D(z)) ≥ 1

(16)2
|Im(z)|8

(η2 + |z|2)4 (162)

for eachz ∈ C+ and for eachN . Moreover, there exist an integerN0 and 2 polynomialsQ1 and Q2,

independent ofN , with positive coefficients, such that for eachN > N0,

det
(

I−D
′

(z)
)

≥ 1

(64)2
|Im(z)|8

2(η2 + |z|2)4 (163)

for each elementz of the setEN defined by

EN = {z ∈ C+, 1−
1

N2
Q1(|z|)Q2(Im(z)−1) > 0} (164)

Finally, for eachN > N0,

|det (I−D0(z))| >
√

det(I−D(z))
√

det(I−D
′(z)) >

1

(32)2
|Im(z)|8√

2(η2 + |z|2)4
(165)

if z ∈ EN .
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Proof: We first establish (162). For this, we expressIm(δ(z)) and Im(zδ̃(z)) as

Im(δ(z)) =
1

N
Tr (σIm(T(z))) (166)

Im(zδ̃(z)) =
1

N
Tr
(

σIm(zT̃(z))
)

(167)

where for each matrixU, we defineIm(U) by Im(U) = U−UH

2i . Writing Im(T(z)) as 1
2iT(z)(T(z)−H−

T(z)−1)T(z)H andIm(zT̃(z)) as 1
2izT(z)((zT(z))−H−(zT(z))−1)(zT(z))H , we get immediately that





Im(δ(z))

Im(zδ̃(z))



 = D(z)





Im(δ(z))

Im(zδ̃(z))



+





w(z)

w̃(z)



 Im(z) (168)

wherew(z) and w̃(z) are defined by

w(z) = 1
NTr

(

σ2T(z)T(z)H
)

w̃(z) = 1
NTr

(

σT̃(z)BHBT̃(z)H

|1+σδ̃|2

)

(169)

This is equivalent to

(1− u) Imδ = v Im(zδ̃) + w Imz (170)

(1− ũ) Im(zδ̃) = |z|2 ṽ Imδ + w̃ Imz (171)

As δ and δ̃ are proportional to the Stieltjès transform of probabilitymeasures carried byR+, Im(δ) >

0, Im(zδ̃) > 0 for z ∈ C+ (see Property 5 of Lemma 1). Therefore, (170, 171) imply that1−u = 1− ũ is

strictly positive. After some algebra, we also obtain thatdet (I−D) = (1−u)(1− ũ)−|z|2vṽ coincides

with

det (I−D) = (vw̃ + (1− ũ)w)
Imz

Imδ
(172)

Therefore,

det (I−D) ≥ (1− ũ)w
Imz

Imδ

As δ(z) = σcm(z), Property 3 of Lemma 1 implies thatIm(δ(z)) ≤ σc
Im(z) or equivalently thatImzImδ ≥

(Im(z))2/σc. Hence,

det (I−D) ≥ (1− ũ)w(Im(z))2

σc

(170) implies that

1− u = 1− ũ > w
Imz

Imδ
≥ w(Im(z))2

σc

We finally get that

det (I−D) ≥ w2(Im(z))4

(σc)2
(173)

October 24, 2018 DRAFT



55

In order to obtain a lower bound ofw = 1
NTrσTTH , we first remark that1MTrTTH ≥

∣

∣

1
MTrT

∣

∣

2
= |m|2

by the Jensen inequality. Therefore,w ≥ σc|m|2 ≥ σc|Im(m)|2. Im(m(z)) can be written as

Im(m(z)) = Im(z)

∫

R+

dµN (λ)

|λ− z|2

We recall that it is shown in [16] that the sequence(µN )N≥0 is tight. This implies that it existsη > 0

for which µN (]η,+∞[) ≤ 1/2 for eachN ∈ N, or equivalently for which

µN ([0, η]) > 1/2 (174)

for each integerN . It is clear that
∫

R+

dµN (λ)

|λ− z|2 >
∫ η

0

dµN (λ)

|λ− z|2 >
1

2(η2 + |z|2) µN ([0, η]) >
1

4(η2 + |z|2)

Therefore,w > σc(Im(z))2

16(η2+|z|2)2 and Eq. (173) gives (162).

We now establish (163). For this, we express thatIm(α(z)) and Im(zα̃(z)) as

Im(α(z)) =
1

N
Tr (σIm(R(z))) + Im(ǫ(z)) (175)

Im(zα̃(z)) =
1

N
Tr
(

σIm(zR̃(z))
)

+ Im(zǫ̃(z)) (176)

After some algebra, we obtain that




Im(α(z))

Im(zα̃(z))



 = D
′

(z)





Im(α(z))

Im(zα̃(z))



+





w
′

(z)

w̃
′

(z)



 Im(z) +





Im(ǫ(z)

Im(zǫ̃(z))



 (177)

wherew
′

(z) andw̃
′

(z) are defined asw(z) andw̃(z) by replacingT(z), T̃(z), δ(z), δ̃(z) byR(z), R̃(z), α(z), α̃(z)

respectively. This is equivalent to

(1− u
′

) Imα = v Im(zα̃) + w
′

Imz + Im(ǫ(z)) (178)

(1− ũ
′

) Im(zα̃) = |z|2 ṽ′

Imα+ w̃
′

Imz + Im(zǫ̃(z)) (179)

These equations are of course similar to (170, 171) except that the righthandsides of (178, 179) are

corrupted by the two error termsIm(ǫ(z)) and Im(zǫ̃(z)). In order to prove (163), we follow the proof

of (162) but take into account the presence of the error termsin (178, 179). Asα andα̃ are proportional

to the Stieltjès transform of probability measures carriedby R+, Im(α) > 0, Im(zα̃) > 0 for z ∈ C+.

Therefore, (178) implies that

(1− u
′

) Imα > w
′

Im(z) − |ǫ(z)| (180)

In order to determine a subset ofC+ on which 1 − u
′

= 1 − ũ
′

is strictly positive, we evaluate a

lower bound ofw
′

(z) = 1
NTr(σR(z)R(z)H ). For this, we follow what preceds. We expressw

′

as
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w
′

= σc 1
MTr(R(z)R(z)H ) and note thatw

′ ≥ σc
∣

∣

1
MTrR

∣

∣

2
. As R(z) is the Stieltjès transform of a

matrix valued measure whose mass is the matrixIM , 1
MTrR(z)) is the Stieltjès transform of a probability

measureξN . It is shown in [23] that 1
MTrR(z) − mN (z) → 0 for eachz ∈ C − R+. Therefore, the

sequence(ξN − µN )N≥0 converges weakly torwards 0.η > 0 being defined by (174), it thus exists an

integerN1 for which

ξN ([0, η]) >
1

4
(181)

for eachN > N1. Using the same calculations as above, we obtain thatw
′

> σc(Im(z))2

64(η2+|z|2)2 . Hence, using

(180) and (148), we get

(1− u
′

)Im(α) >
σc(Im(z))3

64(η2 + |z|2)2 − 1

N2
P1(|z|)P1((Im(z))−1) (182)

If we denote byE1,N the subset ofC+ defined by

σc(Im(z))3

64(η2 + |z|2)2 − 1

N2
P1(|z|)P1((Im(z))−1) > 0 (183)

it is clear that1 − u
′

= 1 − ũ
′

> 0 for eachN > N1 and eachz ∈ E1,N . We note thatE1,N can be

written as
{

z ∈ C+, 1−
1

N2
S1(|z|)S2((Im(z))−1) > 0

}

(184)

for some polynomials with positive coefficients.

Using some algebra as well as the identityu
′

= ũ
′

, we get that

det
(

I−D
′

)

=
(

v
′

w̃
′

+ (1− u
′

)w
′

) Imz

Imα
+ v

′

Im(zǫ̃) + (1− u
′

)Im(ǫ) (185)

Therefore, for eachN > N1 and eachz ∈ E1,N , we have

det
(

I−D
′

)

> (1− u
′

)w
′ Imz

Imα
− v

′ |zǫ̃| − |ǫ|

Moreover, asIm(α)
Im(z) ≤ σc

(Im(z))2 , using (180), we get

(1− u
′

) >
w

′

(Im(z))2

σc
− |ǫ|

Im(α)

It is shown in [23] that 1
MTr(E(Q(z))) −mN (z) → 0 for eachz ∈ C − R+. Therefore, the sequence

(ωN−µN )N≥0 converges weakly torwards 0 where measureωN is defined by (102).η > 0 being defined

by (174), it thus exists an integerN0 ≥ N1 for which

ωN ([0, η]) >
1

4
(186)

for eachN > N0. This allows to show thatIm(α) > σcIm(z)
8(η2+|z|2) for N > N0, and that

(1− u
′

) >
w

′

(Im(z))2

σc
− 8(η2 + |z|2)

σcIm(z)
|ǫ(z)|
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As ‖R(z)‖ ≤ (Im(z))−1, v
′

= 1
NTrσ2RRH verifiesv

′ ≤ σ2c(Im(z))−2 while w
′

= 1
NTrσRRH is less

thanσc(Im(z))−2. Putting all the pieces together, we obtain that

(1− u
′

)w
′ Imz

Imα
>

Im(z)8

(64)2(η2 + |z|2)4 − 64(η2 + |z|2)2
σc(Im(z))4

|ǫ(z)| (187)

and

det
(

I−D
′

)

>
Im(z)8

(64)2(η2 + |z|2)4 −
(

1 +
64(η2 + |z|2)2
σc(Im(z))4

)

|ǫ(z)| − σ2c

(Im(z))2
|z||ǫ̃(z)| (188)

for N > N0 and forz ∈ E1,N . (188) can also be written as

det
(

I−D
′

)

>
Im(z)8

(64)2(η2 + |z|2)4
(

1− 1

N2
S

′

1(|z|)S
′

2((Im(z))−1)

)

for N > N0 and forz ∈ E1,N for some polynomials with positive coefficients independent of N S
′

1 and

S
′

2. We denote byE2,N the set

E2,N =

{

z ∈ C+,

(

1− 1

N2
S

′

1(|z|)S
′

2((Im(z))−1)

)

>
1

2

}

We remark that
{

z ∈ C+, 1−
1

N2
S1(|z|)S2((Im(z))−1)− 2

N2
S

′

1(|z|)S
′

2((Im(z))−1) > 0

}

⊂ E1,N ∩ E2,N

We consider polynomialsQ1 andQ2 defined byQi = Si +
√
2S

′

i for i = 1, 2 and define the setEN by

EN =

{

z ∈ C+, 1−
1

N2
Q1(|z|)Q2((Im(z))−1) > 0

}

which is included intoE1,N ∩ E2,N . It is clear that (163) holds.

In order to verify (165), we first remark that the following inequalities hold:

|det (I−D0(z))| =
∣

∣(1− u0)(1− ũ0)− z2v0ṽ0
∣

∣ (189)

≥ |1− u0||1− ũ0| − |z|2|v0||ṽ0| (190)

≥ (1− |u0|)(1 − |ũ0|)− |z|2|v0||ṽ0| (191)

Using the Schwartz inequality, we get that|u0| = |ũ0| ≤ |u|1/2|u′ |1/2 = |ũ|1/2|ũ′ |1/2, |v0| ≤ |v|1/2|v′ |1/2,
and |ṽ0| ≤ |ṽ|1/2|ṽ′ |1/2. ForN > N0 and for z ∈ EN , u = ũ < 1 andu

′

= ũ
′

< 1 hold. Therefore, we

obtain that

|det (I−D0(z))| ≥ (1− |u|1/2|u′ |1/2)(1− |ũ|1/2|ũ′ |1/2)− |z|2|v|1/2|v′ |1/2|ṽ|1/2|ṽ′ |1/2 (192)
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As det(I − D(z)) = (1 − u)(1 − ũ) − |z|2vṽ and det(I − D
′

(z)) = (1 − u
′

)(1 − ũ
′

) − |z|2v′

ṽ
′

are

positive forN > N0 and for z ∈ EN , it is easy to check that the righthandside of (192) is greater than
(

det (I−D(z))det (I −D
′

(z))
)1/2

for N > N2 and forz ∈ EN . This shows (165).

In order to complete the proof of (145), we expressα(z)− δ(z) as

α(z) − δ(z) =
1

det(I−D0(z))
[(1− ũ0(z))ǫ(z) + zv0(z)ǫ̃(z)]

If N > N2, and if z ∈ EN , (165), (148, 149),|v0(z)| ≤ σ2c
(Im(z))2 and |u0(z)| ≤ σ2b2max|z|

2

(Im(z))2 (recall that

bmax is defined by (7)) give immediately

|α(z) − δ(z)| ≤ 1

N2
P1(|z|)P2((Im(z))−1) (193)

for some polynomialsPi, i = 1, 2 with positive coefficients. Ifz ∈ C+ \EN , we follow the trick of [18]

and [14], and remark that

|α(z) − δ(z)| ≤ |α(z)| + |δ(z)| ≤ 2σc

Im(z)

If z ∈ C+ \EN , 2 ≤ 2
N2Q1(|z|)Q2((Im(z))−1) so that

|α(z) − δ(z)| ≤ 2σc

Im(z)

1

N2
Q1(|z|)Q2((Im(z))−1)

Therefore, forN > N0, and for eachz ∈ C+,

|α(z)−δ(z)| ≤ 1

N2

(

P1(|z|)P2((Im(z))−1) +
2σc

Im(z)
Q1(|z|)Q2((Im(z))−1)

)

≤ 1

N2
(|z|+C)kQ((Im(z))−1)

wherek is an integer,C is a positive constant andQ is a positive coefficients polynomial. Proposition

4 follows directly from the identityα(z) − δ(z) = σc
(

E( 1
MTrQ(z))− 1

MTrT(z)
)

.

APPENDIX F

PROOF OF(16).

We first show that for eachz ∈ C+, uHN (QN (z)−TN (z))vN converges towards 0 on a set of probability

1 which, in principle, depends onz. In order to obtain the almost sure convergence towards 0 foreach

z ∈ C− R+, we use a standard argument based on Montel’s theorem.

We first write

uHN (QN (z)−TN (z)) vN = uHN (QN (z)− E(QN (z)))vN + uHN (E(QN(z)) −TN (z))vN (194)

We study the second term of the righthandside of (194) and write

uHN (E(QN (z)) −TN (z))vN = uHN (E(QN (z)) −TN (z))vN + uHN (RN (z)) −TN(z)) vN
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where we recall that matrixRN (z) is defined by (108). (145) implies thatαN (z)− δN (z) and α̃N (z)−
δ̃N (z) converge towards0 (αN , δN , α̃N , δ̃N are defined by (100, 98, 101, 99) respectively) . Using the

identityRN (z)−TN (z) = RN (z)
(

T−1
N (z)−R−1

N (z)
)

TN (z) allows to expressuHN (RN (z)) −TN (z))vN

as a linear combination ofαN (z)− δN (z) andα̃N (z)− δ̃N (z). As ‖RN (z))‖ ≤ |Im(z)|−1, ‖TN (z))‖ ≤
|Im(z)|−1, the coefficients of this linear combination remain boundedwhenN → +∞. This shows that

uHN (RN (z)) −TN (z))vN converges towards 0.

In order to studyuHN (E(QN(z)) −RN (z)) vN , we use relation (121). Using the Nash-Poincaré in-

equality, it is easy to check thatuHNRN (z)∆N (z)vN → 0. (140) implies moreover that1NTr∆N (z) → 0.

(121) thus shows thatuHN (E(QN(z)) −RN (z))vN → 0.

It remains to prove thatxN (z) = uHN (QN (z)− E(QN (z))) vN converges towards 0 almost surely.

For this, it is sufficient to show that

E|xN (z)|4 ≤ C(z)

N2
(195)

whereC(z) does not depend onN . We expressE|xN (z)|4 as

E|xN (z)|4 =
∣

∣

E(xN (z)
2)
∣

∣

2
+Var (xN (z))

2

We remark that
∣

∣

E(xN (z)
2)
∣

∣

2 ≤
(

E|xN (z)|2
)2

. Moreover,E(xN (z)) = 0 implies thatE|xN (z)|2 =

Var(xN (z)). Therefore,

E|xN (z)|4 ≤ (Var(xN (z)))
2 +Var

[

(xN (z))
2
]

Using the Nash-Poincaré inequality, it is easy to show thatVar(xN (z)) ≤ C(z)
N and thatVar

(

xN (z)
2
)

≤
C(z)
N2 . This establishes (195) and thatuHN (QN (z)−TN (z)) vN converges towards 0 on a set of probability

1 depending onz.

In order to prove the almost sure convergence for eachz ∈ C − R+, we use the following standard

argument. We consider a countable subsetZc ⊂ C+ having an accumulation point. On a setΩ of

probability 1 ,uHN (QN (z)−TN (z)) vN → 0 for eachz ∈ Zc. We fix a realization of the setΩ. We

denote byyN(z) the functionyN (z) = uHN (QN (z)−TN (z))vN . Functionsz → uHNQN (z)vN and

z → uHNTN (z)vN are Stieltjès transforms of bounded measures carried byR+. Therefore, functionyN

is analytic onC− R+, and for each compact subsetK of C− R+, it holds that

|yN (z)| ≤
C

dist(K,R+)

for some constantC (this is a trivial generalization of (9) to the Stieltjès transform of a non necessarily

positive bounded measure carried byR+). Montel’s theorem ([24]) thus implies that it exists a subsequence

yψ(N) extracted fromyN which converges uniformly on each compact subset ofC−R+ towards a certain
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function y∗ which is analytic onC− R+. However,y∗(z) = 0 for eachz ∈ Zc, thus showing thaty∗ is

identically 0 onC−R+. The limit of each converging subsequence extracted fromyN is thus identically

0. We thus obtain that the whole sequenceyN converges uniformly towards 0 on each compact subset

of C− R+. Therefore, for each realization of the probability 1 setΩ, we have shown that

uHN (QN(z) −TN (z)) vN → 0

for eachz ∈ C− R+. This completes the proof of (16).

APPENDIX G

PROOF OFLEMMA 4

An elementary study of functionx→ m̂N (x) shows that̂ωk ∈
]

λ̂
(N)
k , λ̂

(N)
k+1

[

, ∀k = 1, . . . ,M − 1 and

that ω̂(N)
M > λ̂

(N)
M . Therefore, by Theorem 4, we only need to prove thatω̂

(N)
M−K < t+1 almost surely for

all sufficiently largeN .

Consider the contourC defined in Proposition 5. Noting thatC encloses{0} on the complex plane and

that IndC(0) = 1, we can write

1 =
1

2πi

∮

C+

λ−1dλ (196)

=
1

2πi

∫ t+1

t−1

(

w′
N (x)

wN (x)

)∗

dx− 1

2πi

∫ t+1

t−1

w′
N (x)

wN (x)
dx (197)

where the notationC+ means that the contourC is counterclockwise oriented. Since functionsh 7→
wN (x + ih) and h 7→ w′

N (x + ih) are continuous ath = 0 for all x ∈]t−1 , t+1 [ (except for the points

x ∈
{

x
(N)−
1 , x

(N)+
1

}

), Lemma 3 together with the Dominated Convergence Theorem imply that

1 = lim
y↓0

[

1

2πi

∫ t+1

t−1

(

w′
N (x+ iy)

wN (x+ iy)

)∗

dx− 1

2πi

∫ t+1

t−1

w′
N (x+ iy)

wN (x+ iy)
dx

]

(198)

= lim
y↓0

[

1

2πi

∮

∂R+
y

w′
N (z)

wN (z)
dλ+

1

2π

∫ y

−y

w′
N (t

−
1 − ih)

wN (t
−
1 − ih)

dh− 1

2π

∫ y

−y

w′
N (t

+
1 + ih)

wN (t
+
1 + ih)

dh

]

(199)

where∂R+
y denotes the contour of the rectangle defined in (62) counterclockwise oriented. The function

h 7→ w′(x+ih)
w(x+ih) is a continuous function on the compact set[−y, y] for x = t−1 or t+1 , and therefore the

two last integrals vanish asy ↓ 0, so that we can write

1 = lim
y↓0

1

2πi

∮

∂R+
y

w′
N (z)

wN (z)
dz.
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Since the functionw
′

N (λ)
wN (λ) is holomorphic onC\[x(N)−

1 , x
(N)+
1 ], the last integral does not depend on the

value ofy > 0, and thus we can drop the limit, i.e.

1 =
1

2πi

∮

∂R+
y

w′
N (z)

wN (z)
dz. (200)

This identity will be key in order to prove that̂ωM−K < t+1 almost surely for all sufficiently largeN .

Before going further into the proof of this result, let us first examine the function̂wN (z) defined by

(64) whenz ∈ R. The following result follows from elementary analysis:

Figure 13. Typical representation of̂wN (x) as a function ofx for M = 3 (we drop the dependence withN from all quantities

for clarity).

Lemma 9. The functionŵN defined onR by

ŵN (x) = x
(

1 + σ2cN m̂N (x)
)2 − σ2(1− cN )

(

1 + σ2cNm̂N (x)
)

satisfies (see further Figure 13)

lim
x↓λ̂k

ŵN (x) = +∞, lim
x↑λ̂k

ŵN (x) = +∞ (201)

lim
x→+∞

ŵN (x) = +∞, lim
x→−∞

ŵN (x) = −∞. (202)
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Moreover,ŵN (x) = 0 is a polynomial equation with degree2M + 1 with the following zeros:

• One zero in
]

0, λ̂
(N)
1

[

, denoted aŝz(N)
0 .

• Two zeros in each interval
]

λ̂
(N)
k , λ̂

(N)
k+1

[

, denoted aŝω(N)
k , ẑ(N)

k , k = 1 . . .M − 1.

• Two zeros in
]

λ̂
(N)
M ,+∞

[

, denoted aŝω(N)
M , ẑ(N)

M .

Furthermore, we have

0 < ẑ
(N)
0 < λ̂

(N)
1 < ω̂

(N)
1 < ẑ

(N)
1 < λ̂

(N)
2 < . . .

. . . < λ̂
(N)
k < ω̂

(N)
k < ẑ

(N)
k < λ̂

(N)
k+1 < . . . < λ̂

(N)
M < ω̂

(N)
M < ẑ

(N)
M .

Now, the functionz → ŵN (z), defined onC, is holomorphic everywhere except at poles (of order2)

λ̂
(N)
1 , . . . , λ̂(N)

M . Moreover, functionz → ŵ′

N (z)
ŵN (z) is holomorphic everywhere except at the zeros ofŵN

and at the sample eigenvaluesλ̂(N)
1 , . . . , λ̂(N)

M .

Figure 14 gives an schematic representation of the positions of the zeros and poles of̂wN (x) in terms

of the contour∂Ry. Observe that, for sufficiently highN , Theorem 4 ensures that
{

λ̂
(N)
1 , . . . , λ̂

(N)
M−K

}

will be inside∂Ry, whereas the rest of the sample eigenvalues will be outside.Given the position of the

zerosω̂(N)
k , ẑ(N)

k established in Lemma 9, we see that the position of the sampleeigenvalues determines

that the zeros
{

ω̂
(N)
k , ẑ

(N)
k , k = 1 . . .M −K − 1

}

will also be inside∂Ry for all N sufficiently high.

Furthermore, the remaining zeros will be outside∂Ry, except for the zeroŝz(N)
0 , ω̂(N)

M−K and ẑ(N)
M−K , for

which we can not state anything. In what follows, we will see that these three zeros are in fact located

inside∂Ry with probability one for all largeN , which will conclude the proof of Lemma 4. As a first

step, we introduce an intermediate result that establishesthat none of these zeros can converge to a the

boundary point of∂Ry whenN → +∞.

Lemma 10. For all N large enough,̂z(N)
0 6= t−1 , ω̂(N)

M−K 6= t+1 and ẑ(N)
M−K 6= t+1 .

Proof: We will just establish that̂ω(N)
M−K 6= t+1 and ẑ(N)

M−K 6= t+1 , since the proof that̂z(N)
0 6= t−1 is

quite similar. For this, we prove the following:

inf
N

inf
x∈[t+1 ,t

−

2 ]
|wN (x)| > 0 (203)

lim
N→+∞

sup
x∈[t+1 ,t

−

2 ]

|wN (x)− ŵN (x)| = 0 a.s (204)

If (203, 204) hold true, it is clear that almost surely, it existsN1 ∈ N for which

inf
N>N1

inf
x∈[t+1 ,t

−

2 ]
|ŵN (x)| > 0 a.s. (205)
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Figure 14. Schematic representation of the position of the zeros (circles) and poles (crosses) of the functionŵN (z) on the

region enclosed by∂Ry .

a property which implies that̂ω(N)
M−K 6= t+1 and ẑ(N)

M−K 6= t+1 for N > N1.

In order to prove (203), we note that Assumptions 1 and 2 implythe existence ofǫ > 0 such that

wN (x) > 0 if x ∈
[

t+1 − ǫ, t−2 + ǫ
]

andN > N0. Now, we writewN (z) as

wN (z) = z(1 + σδN (z))(1 + σδ̃N (z)) = z(1 + σ2cNmN (z))(1 + σ2cNmN (z)−
σ2(1− cN )

z
) (206)

where we recall thatδN and δ̃N are defined by (98) and (99) respectively. It has been mentioned in Ap-

pendix E that functionz → − 1
z(1+σδN (z)) = − 1

z(1+σ2cNmN (z)) coincides with the Stieltjès transform of a

probability measure carried byR+. We denote byγN this measure. AswN (x) > 0 if x ∈
[

t+1 − ǫ, t−2 + ǫ
]

,

function z → − 1
z(1+σδN (z)) is analytic onC+∪C−∪]t+1 − ǫ, t−2 + ǫ[ and is real-valued on[t+1 − ǫ, t−2 + ǫ].

The support of measureγN is thus included intoR+−]t+1 − ǫ, t−2 + ǫ[. Therefore, Property 9 of Lemma

1 implies that
∣

∣x(1 + σ2cNmN (x))
∣

∣

−1 ≤ 1

ǫ
(207)

for eachx ∈ [t+1 , t
−
2 ]. It can also be shown thatz → − 1

z(1+σδ̃N (z))
= − 1

z(1+σ2cNmN (z))−σ2(1−cN ) coincides

with the Stieltjès transform of a probability measure carried byR+. Using the same approach as above,

we obtain that
∣

∣x(1 + σ2cNmN (x)) − σ2(1− cN )
∣

∣

−1 ≤ 1

ǫ
(208)

for eachx ∈ [t+1 , t
−
2 ]. This, in turn, implies (203).
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In order to establish (204), we note that it is sufficient to establish that

lim
N→+∞

sup
x∈[t+1 ,t

−

2 ]

|mN (x)− m̂N (x)| = 0 a.s (209)

Theorem 4 implies the existence ofǫ > 0 for which, almost surely, functionz → m̂N (z) is analytic on

C+ ∪C−∪]t+1 − ǫ, t−2 + ǫ[ for N > N1 whereN1 > N0 is a certain integer. Eq. (9) implies that for each

compact subsetK of C+ ∪ C−∪]t+1 − ǫ, t−2 + ǫ[, there exists a constantC(K) for which almost surely

supN>N1
supz∈K |m̂N (z)| ≤ C(K). For the same reasons, it holds thatsupN>N1

supz∈K |mN (z)| ≤
C(K). Montel’s Theorem ([24]) thus implies that it exists a subsequencem̂ψ(N)−mψ(N) extracted from

(m̂N − mN )N>N1
which converges uniformly on each compact subset ofC+ ∪ C−∪]t+1 − ǫ, t−2 + ǫ[

torwards a functionp∗(z), analytic onC+∪C−∪]t+1 − ǫ, t−2 + ǫ[. Proposition 1 implies that almost surely,

m̂N (z)−mN (z) → 0 for eachz ∈ C\R+. This implies thatp∗(z) is identically zero. As the limit of each

convergent subsequence extracted fromm̂N −mN is 0, the whole sequence(m̂N −mN )N>N1
converges

uniformly torwards 0 on each compact subset ofC+∪C−∪]t+1 − ǫ, t−2 + ǫ[. This, of course, implies (209).

This completes the proof of Lemma 10.

Using the same arguments as above, it is easy to show that there existsN2 ∈ N such thatinfN>N2
infz∈∂Ry

|wN (z)| >
0 and such that, almost surely,infN>N2

infz∈∂Ry
|ŵN (z)| > 0. It also holds thatsupN>N2

supz∈∂Ry
|w′

N (z)| <
+∞ andsupN>N2

supz∈∂Ry
|ŵ′

N (z)| < +∞ almost surely. Since almost surely the functionŵ′

N (z)
ŵN (z)−

w′

N (z)
wN (z)

converges to0 for eachz ∈ ∂Ry, the Dominated Convergence Theorem ensures that, with probability

one,
∣

∣

∣

∣

1

2πi

∮

∂R+
y

[

w′
N (z)

wN (z)
− ŵ′

N (z)

ŵN (z)

]

dz

∣

∣

∣

∣

−−−−−→
N→+∞

0

Now, according to Lemma 10,̂z(N)
0 6= t−1 , ω̂

(N)
M−K 6= t+1 , ẑ

(N)
M−K 6= t+1 with probability one for all large

N . Hence, it is possible to use the argument principle to function ŵ′(z)
ŵ(z) on contour∂Ry. More precisely,

1

2πi

∮

∂R+
y

ŵ′
N (z)

ŵN (z)
dz = card {z ∈: ŵN (z) = 0} − 2(M −K)

and since the previous integral is an integer, using (200), we finally have with probability one forN

large enough

2(M −K) + 1 = card {z ∈ Ry : ŵN (z) = 0} .

We already know that̂z(N)
1 ,. . . ,̂z(N)

M−K−1 and ω̂(N)
1 ,. . . ,̂ω(N)

M−K−1, which are zeros of̂wN (z), belong to

Ry. Since the total number of zeros is2M+1, 3 other zeros of̂wN (z) belong toRy with probability one

for N large enough. However, all the zeros ofŵN (z) are real-valued, which implies that the3 additional

zeros necessarily includêω(N)
M−K . This concludes the proof Lemma 4.
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APPENDIX H

PROOF OF(67) AND (68).

We first establish (67). For this, we recall thatTN (z) is the Stieltjès transform of a positive matrix

valued measureΓN with massIN . Therefore, functionz → bHNTN (z)bN coincides with the Stieltjès

transform of the positive measurebHNΓNbN . This measure is clearly absolutely continuous w.r.t. measure

Tr(ΓN ), or equivalently w.r.t. measureµN = 1
MTr(ΓN ). The support ofbHNΓNbN is thus contained

into SN . Therefore, it holds that

|bHNTN (z)bN | ≤
‖bN‖2

dist(z,SN )

(see (9). We have already mentioned in Appendix E and in Appendix G that functionz →
(

−z(1 + σ2cNmN (z))
)−1

is the Stieltjès transform of a probability measure carriedby R+. This function is moreover analytic in

C − SN because1 + σ2cNmN (z) 6= 0 on C − SN (see Property 6 of Proposition 1), a property which

implies that the support of its associated measure is included intoSN . Therefore, we have

∣

∣−z(1 + σ2cNmN (z))
∣

∣

−1 ≤ 1

dist(z,SN )
or equivalently

∣

∣1 + σ2cNmN (z))
∣

∣

−1 ≤ |z|
dist(z,SN )

Assumptions (1) and (2) imply thatinfN>N0
dist(∂Ry,SN ) > 0. We thus obtain that

sup
N>N0

sup
z∈∂Ry

|bHNTN (z)bN |
|1 + σ2cNmN (z))|

< +∞

Using again thatinfN>N0
dist(∂Ry,SN ) > 0, it can be checked thatsupN>N0

supz∈∂Ry
|w′

N (z)| < +∞.

This in turn establishes (67).

In order to prove (68), we recall that̂mN (z) is the Stieltjès transform of the probability measureµ̂N =

1
M

∑M
k=1 δ(λ − λ̂

(N)
k ). Assumptions (1) and (2) imply it existsN0 ∈ N such that the distance between

∂Ry and the support of̂µN is lower bounded by a strictly positive term independent ofN ≥ N0. It is

easily seen thatz → bHNQN (z)bN is the Stieltjès transform of measure1M
∑M

k=1 |bHN ê
(N)
k |2δ(λ− λ̂(N)

k ).

The support of this measure is included into{λ̂(N)
1 , . . . , λ̂

(N)
M }. Using (9) as above, we deduce from this

that

sup
N≥N0

sup
z∈∂Ry

bHNQN(z)bN < +∞

The same arguments can be used to show thatsupN≥N0
supz∈∂Ry

|ŵ′

N (z)| < +∞.

Finally, using Property 6 of Lemma 1, it is easily seen that functionz →
(

−z(1 + σ2cN m̂N (z))
)−1

is

the Stieltjès transform of a probability measure. Its support is included into the set{λ̂(N)
1 , . . . , λ̂

(N)
M , ω̂

(N)
1 , . . . , ω̂

(N)
M }.

October 24, 2018 DRAFT



66

Moreover, in the statement of Lemma 4,t−1 and t+1 can be replaced byt−1 + ǫ1 and t+1 − ǫ1 whereǫ1

is chosen in such a way thatt−1 + ǫ1 < infN>N0
x
(N)−
1 < supN>N0

x
(N)+
1 < t+1 − ǫ1. Therefore, the

distance between∂Ry and{λ̂(N)
1 , . . . , λ̂

(N)
M , ω̂

(N)
1 , . . . , ω̂

(N)
M } is lower bounded by a strictly positive term

independent ofN ≥ N0. This implies that

sup
N≥N0

sup
z∈∂Ry

∣

∣1 + σ2cN m̂N (z)
∣

∣

−1
< +∞

This completes the proof of (68).

APPENDIX I

PROOF OFLEMMA 5

We first write the equation inω, 1 + σ2cm̂N (ω) = 0 as

σ2cN
M

M
∑

j=1

1

λ̂j − ω
+ 1 = 0 (210)

and by multiplying the left hand side by
∏M
i=1

(

λ̂j − ω
)

, we define a new polynomialQ(ω), by

Q(ω) =
σ2cN
M

M
∑

j=1

M
∏

l=1
l 6=j

(

λ̂l − ω
)

+

M
∏

l=1

(

λ̂l − ω
)

.

As the monic polynomial functionQ hasM roots atω̂1, . . . , ω̂M , we can write

Q(ω) =

M
∏

l=1

(ω̂l − ω)

Therefore,

Q(λ̂k) =

M
∏

l=1

(

ω̂l − λ̂k

)

=
σ2cN
M

M
∏

l=1
l 6=k

(

λ̂l − λ̂k

)

(211)

which will be useful later on. Let us now consider the derivative of Q given by

Q′(ω) = −
M
∑

j=1

M
∏

l=1
l 6=j

(ω̂l − ω) = −
M
∑

j=1

M
∏

l 6=j
l=1

(

λ̂l − ω
)

− σ2cN
M

M
∑

m=1

M
∑

l=1
l 6=m

M
∏

j=1
j 6=m,l

(

λ̂j − ω
)

(212)

Evaluating again this function at pointλ̂k, we obtain

Q′(λ̂k) = −
M
∑

j=1

M
∏

l=1
l 6=j

(

ω̂l − λ̂k

)

= −
M
∏

l=1
l 6=k

(

λ̂l − λ̂k

)

− 2σ2cN
M

M
∑

l=1
l 6=k

M
∏

j=1
j 6=k,l

(

λ̂j − λ̂k

)

(213)

or, dividing both sides by the first term on the right hand sideof the equation,
∑M

j=1

∏M
l=1
l 6=j

(

ω̂l − λ̂k

)

∏M
l=1
l 6=k

(

λ̂l − λ̂k

) = 1 +
2σ2cN
M

M
∑

l=1
l 6=k

1

λ̂l − λ̂k
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Going back to equation (211), one can also write
∑M

j=1

∏M
l=1
l 6=j

(

ω̂l − λ̂k

)

∏M
l=1
l 6=k

(

λ̂l − λ̂k

) =
σ2cN
M

∑M
j=1

∏M
l=1
l 6=j

(

ω̂l − λ̂k

)

∏M
l=1

(

ω̂l − λ̂k

) =
σ2cN
M

M
∑

l=1

1

ω̂l − λ̂k
. (214)

Consequently, we see that we can write

1 +
2σ2cN
M

M
∑

l=1
l 6=k

1

λ̂l − λ̂k
=
σ2cN
M

1

ω̂k − λ̂k
+
σ2cN
M

M
∑

l=1
l 6=k

1

ω̂l − λ̂k

or, reorganizing the terms of this expression in a convenient way,

1 +
σ2cN
M

1

λ̂k − ω̂k
+
σ2cN
M

M
∑

l=1
l 6=k

1

λ̂l − λ̂k
=
σ2cN
M

M
∑

l=1
l 6=k

1

ω̂l − λ̂k
− σ2cN

M

M
∑

l=1
l 6=k

1

λ̂l − λ̂k
. (215)

But from the equation inω (210), we obtain

1 +
σ2cN
M

1

λ̂k − ω̂k
+
σ2cN
M

M
∑

l=1
l 6=k

1

λ̂l − ω̂k
= 0

and by inserting this expression into (215), we finally get the expression in the lemma.

REFERENCES

[1] R.O. Schmidt, “Multiple emitter localization and signal parameter estimation,” inProceedings of the RADC, Spectral

Estimation Workshop,, Rome (NY), 1979, pp. 243–258, Reprinted in "Modern Spectral Analysis II", S.B. Kesler (ed.),

IEEE Press, New York, 1986.

[2] E.K. Hung and R.M. Turner, “A fast beamforming algorithmfor large arrays,” IEEE Transactions on Aerospace and

Electronic Systems, vol. 19, no. 4, pp. 598–607, Jul. 1983.

[3] K. Abed-Meraim, J.F. Cardoso, A.Y. Gorokhov, P. Loubaton, and E. Moulines, “On subspace methods for blind identification

of single-input multiple-output FIR systems,”IEEE Trans. on Signal Processing, vol. 45, pp. 42–55, Jan. 1997.

[4] H. Liu and G. Xu, “A subspace method for signature waveform estimation in synchronous CDMA systems,”IEEE

Transactions on Communications, vol. 44, no. 10, pp. 1346–1354, Oct. 1996.

[5] B. Ottersten, M. Viberg, and T. Kailath, “Analysis of subspace fitting and ML techniques for parameter estimation from

sensor array data,”IEEE Trans. on Signal Processing, vol. 40, no. 3, pp. 590–600, March 1992.

[6] D.W. Tufts, A.K. Kot, and R.J. Vaccaro,The Threshold Effect in Signal Processing Algorithms WhichUse an Estimated

Subspace, in SVD and Signal Processing, II: Algorithms, Analysis and Applications, Elsevier, New York, 1991.

[7] X. Mestre and M.A. Lagunas, “Modified subspace algorithms for DoA estimation with large arrays,”IEEE Transactions

on Signal Processing, vol. 56, no. 2, pp. 598, 2008.

[8] X. Mestre, “On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices,”

IEEE Transactions on Signal Processing, vol. 56, no. 11, pp. 5353–5368, Nov. 2008.

[9] X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates,”

IEEE Transactions on Information Theory, vol. 54, no. 11, pp. 5113–5129, 2008.

October 24, 2018 DRAFT



68

[10] R.B. Dozier and J.W. Silverstein, “On the empirical distribution of eigenvalues of large dimensional information-plus-

noise-type matrices,”Journal of Multivariate Analysis, vol. 98, no. 4, pp. 678–694, 2007.

[11] J.W. Silverstein, “Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices,”

Journal of Multivariate Analysis, vol. 5, pp. 331–339, 1995.

[12] Z.D. Bai and J.W. Silverstein, “No eigenvalues outsidethe support of the limiting spectral distribution of large-dimensional

sample covariance matrices,”Annals of Probability, vol. 26, no. 1, pp. 316–345, 1998.

[13] Z.D. Bai and J.W. Silverstein, “Exact separation of eigenvalues of large dimensional sample covariance matrices,” Annals

of Probability, vol. 27, no. 3, pp. 1536–1555, 1999.

[14] M. Capitaine, C. Donati-Martin, and D. Féral, “The largest eigenvalue of finite rank deformation of large Wigner matrices:

convergence and non-universality of the fluctuations,”Annals of Probability, vol. 37, no. 1, pp. 1–47, 2009.

[15] P. Vallet, P. Loubaton, and X. Mestre, “Improved subspace DoA estimation methods with large arrays: The deterministic

signals case,” inProceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

IEEE Signal Processing Society, 2009, pp. 2137–2140.

[16] W. Hachem, P. Loubaton, and J. Najim, “Deterministic equivalents for certain functionals of large random matrices,”

Annals of Applied Probability, vol. 17, no. 3, pp. 875–930, 2007.

[17] R.B. Dozier and J.W. Silverstein, “Analysis of the limiting spectral distribution of large dimensional information-plus-noise

type matrices,”Journal of Multivariate Analysis, vol. 98, no. 6, pp. 1099–1122, 2007.

[18] U. Haagerup and S. Thorbjornsen, “A new application of random matrices:Ext(C∗

red(F2)) is not a group,” Annals of

Mathematics, vol. 162, no. 2, pp. 711, 2005.

[19] M. Capitaine and C. Donati-Martin, “Strong asymptoticfreeness of Wigner and Wishart matrices,”Indiana Univ. Math.

Journal, vol. 56, pp. 295–309, 2007.

[20] W. Hachem, O. Khorunzhiy, P. Loubaton, J. Najim, and L. Pastur, “A new approach for mutual information analysis of

large dimensional multi-antenna channels,”IEEE Transactions on Information Theory, vol. 54, no. 9, pp. 3987–4004, Sep.

2008.

[21] L.A. Pastur, “A simple approach to the global regime of Gaussian ensembles of random matrices,”Ukranian Mathematical

Journal, vol. 57, no. 6, pp. 936–966, June 2005.

[22] S. Chatterjee and A. Bose, “A new method for bounding rates of convergence of empirical spectral distributions,”Journal

of Theoretical Probability, vol. 17, no. 4, pp. 1003–1019, 2004.

[23] J. Dumont, W. Hachem, S. Lasaulce, P. Loubaton, and J. Najim, “On the Capacity Achieving Covariance Matrix for Rician

MIMO Channels: An Asymptotic Approach,”IEEE Transactions on Information Theory, March 2010.

[24] J.F. Conway,Functions of one complex variable, Springer Verlag, 2rd edition, 1978.

October 24, 2018 DRAFT


	I Introduction
	II Problem statement
	III Properties of the asymptotic eigenvalue distribution of matrix N
	IV An alternative characterization of SN
	IV-A Characterization of the function N(w)
	IV-A1 Zeros of N(w)
	IV-A2 Local extrema and monotonicity intervals of N(w)

	IV-B Characterization of wN(x) out of the roots of N(w)=x
	IV-B1 Case xR"026E30F k=1Q[ xk(N)-,xk(N)+] 
	IV-B2 Case xk=1Q] xk(N)-,xk(N)+[ 

	IV-C Characterization of the support SN 

	V Convergence and localization of the sample eigenvalues
	V-A Proof of Theorem 3
	V-B Proof of Theorem 4

	VI Consistent estimation of the localization function
	VII Numerical results
	VIII Conclusions
	Appendix A: Proof of Property 1 of Proposition 1
	Appendix B: Proof of Proposition 2
	Appendix C: Proof of (28) in Proposition 3
	Appendix D: Proof of Lemma 3
	Appendix E: Proof of Proposition 4
	E-A Study of E ( 1N Tr Q(z) ) - 1N Tr R(z)
	E-B Study of E( 1N Tr Q(z) ) - 1N Tr T(z)

	Appendix F: Proof of (16).
	Appendix G: Proof of Lemma 4
	Appendix H: Proof of (67) and (68).
	Appendix I: Proof of Lemma 5
	References

