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Secret Key and Private Key Constructions for
Simple Multiterminal Source Models

Chunxuan Ye and Prakash Narayan

Abstract—\We propose an approach for constructing secret and this framework, two models considered in [8] dealing with a
private keys based on the long-known Slepian-Wolf code, du  secret key(SK) and aprivate key(PK) are pertinent to our
Wyner, for correlated sources connected by a virtual additve work.

noise channel. Our work is motivated by results of Csisar . . .
and Narayan which highlight innate connections between seecy (i) Secret key Suppose that all the terminals ifl,.. ., d}

generation by multiple terminals that observe correlated surce Wish to generate a SK, i.e., common randomness which is
signals and Slepian-Wolf near-lossless data compressidBxplicit concealed from the eavesdropper with access to their public
procedures for such constructions and their substantiatio are  communication and which is nearly uniformly distribu@d
provided. The performance of low density parity check chanel The largest (entropy) rate of such a SK, termed the SK capacit
codes in devising a new class of secret keys is examined. - . '

and denoted by’s, is shown in[[8] to equal

Index terms Secret key construction, private key construction,

secret key capacity, private key capacity, Slepian-Wolf da Cs = H(X1, ,Xa) — Ruin, 1)
compression, binary symmetric channel, maximum likelihod h
decoding, LDPC codes. where d
Rpin = i R;, 2
min = ry D Rer ; ' @)

I. INTRODUCTION

The problem of secrecy generation by multiple terminalg‘{'tkE
based on their observations of separate but correlatedlsign i — {(Ry,--,Rq) : ZRi >
followed by public communication among themselves, has ieB
been investigated by several authois ([28], [2], [7], among H({X,, j € BY{X;, j € B}),Bc{1,---,d}},(3)
others). It has been shown that these terminals can generate
secrecy, namely “common randomness” which is kept seckdpere B¢ ={1,--- ,d}\B.
from an eavesdropper that is privy to said public commui) Private key For a given subsel c {1,---,d}, a PK
nication and perhaps also to additional “wiretapped” sider the terminals inA, private from the terminals inl¢, is a
information. SK generated by the terminals i with the cooperation of

Our work is motivated by [8] which studies secrecy generghe terminals inA¢, which is concealed from an eavesdropper
tion for multiterminal “source models” with an arbitrarymu  with access to the public interterminal communication aed a
ber of terminals, each of which observes a distinct compbnédrom the cooperating terminals iA¢ (and, hence, privatﬁ
of a discrete memoryless multiple source (DMMS). Speciffhe largest (entropy) rate of such a PK, termed the PK capacit
ically, suppose thatl > 2 terminals observe, respectivelyand denoted by’'r(A), is shown in [8] to be
n independent and identically distributed (i.i.d.) repetis _ .
of finite-valued random variables (rvsy,..., X4, denoted Cp(d) = H(X, -+, Xg) = H({Xi, @ € A%}) = Rimin(4)
by Xq,..., X4, whereX; = (Xﬂ,...,Xin), i=1,...,d. :H({X“ ieA}l{Xia ieAc})_Rmin(A)’ (4)
Thereupon, unrestricted and noiseless public commun’ru:atl,vhere
is allowed among the terminals. All such communication Roin(A) = min ZR_ ()
is observed by all the terminals and by the eavesdropper. e {Ri, i€A}eR(4) "
The eavesdropper is assumed to be passive, i.e., unable to
tamper with the public communication of the terminals. |ith
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corresponds to the maximum rate of shared common randgonebability law through virtual discrete memoryless chelan
ness — sans secrecy constraints — that can ever be achigildCs) characterized by independent additive noises, such
by the terminals in{1,...,d} when each terminal becomedinear SW encoders can be obtained in terms of cosets of
omniscienti.e., reconstructs all the components of the DMM8near error correction codes for such virtual channelsaa f
with probability = 1 as the observation length becomes first illustrated in [37] for the case offi = 2 terminals
large. Further,R,.;, in @), (@) corresponds to the smallestonnected by a virtual binary symmetric channel (BSC), and
aggregate rate of interterminal communication that ersablater exploited in most known linear constructions of SW
every terminal to achieve omnisciencé [8]. Thus, frain (g t encoders (cf. e.g./ [1][ 4]/ 121]/ T12][A5]-[17][[19]20],
SK capacityCyg, i.e., largest rate at which all the terminals if24], [29], [33]). When the i.i.d. sequences observediby 2
{1,...,d} can generate a SK, is obtained by subtracting froterminals are connected by an arbitrary virtual DMC, the
the maximum rate of shared common randomness achievatderesponding SW data compression can be viewed in terms
by these terminals, vizH (X1, --- , X4), the smallest overall of coding for a “semisymmetric” channel, i.e., a channehwit
rate R,,., Of the (data-compressed) interterminal communicénadependent additive noise that is defined over an enlarged
tion that enables all the terminals to become omniscient. dphabet([14]; the case of stationary ergodic observatains
similar interpretation holds for the PK capacifir(A) in (@) the terminals is also considered therein. These develofmen
as well, with the difference that the terminals itf, which in SW data compression can translate into an emergence of
cooperate in secrecy generation and yet must not be privgw constructive schemes for secrecy generation.
to the secrecy they help generate, can be assumed — withoWlotivated by these considerations, we seek to devise new
loss of generality — to simply “reveal” their observatiof@.[ constructive schemes for secrecy generation in source Isiode
Hence, the entropy terms ial(1)] (3) are now replacedln (4 which SW data compression plays a central role. The main
(6) with additional conditioning o{ X;, i € A¢}. It should technical contribution of this work is the following: Codsir-
be noted thatR,,;, and R,,;,(A) are obtained as solutionsing four simple models of secrecy generation, we show how
to multiterminal Slepian-Wolf (SW) (near-lossless) datene a new class of SKs and PKs can be devised for them at rates
pression problemsot involving any secrecy constraints arbitrarily close to the corresponding capacities, rejyom the

The form of characterization of the SK and PK capacitieSW data compression code [n [37]. Additionally, we examine
in (@) and [4) also suggests successive steps for generatimg performance of low density parity check (LDPC) codes
the corresponding keys. For instance, and loosely speakingin the SW data compression step of the procedure for secrecy
order to generate a SK, the terminals{ih ..., d} first gen- generation. Preliminary results of this work have been rteglo
erate common randomness (without any secrecy restrigtions [38], [39]. In independent work [25] for the case &= 2
using SW-compressed interterminal communication denotestminals which is akin to but different from ours, extracti
collectively by, say,F. Thus, the terminals generate rveof a SK from previously acquired common randomness by
L; = Li(X;,F), i € {1,...,d}, with LH(L;) > 0, which means of a linear transformation has been demonstrated.
agree with probability= 1 for n suitably large; suppressing In related work, SK generation for a source model with two
subscripts, letL denote the resulting “common” rv whereterminals that observe continuous-amplitude signals bleas
LH(L) > 0. The second step entails an extraction frém studied in [40], [36], [26], [[277], [[41]. Furthermore, in rest
of a SKK = g(L) of entropy rateX H(L|F) by means of a years, several secrecy generation schemes have beeretgport
suitable operatiog performedidentically at each terminal on relying on capacity-achieving channel codes, for “wirétap
the acquired common randomnessin particular, when the secrecy models that differ from ours. For instance, it was
common randomness acquired by the terminals correspondstiown in [35] that such a channel code can attain the secrecy
omniscience, i.e.L = (X;,...,Xy), and is achieved using capacity for any wiretap channel. See alsb [3]./ [18].
interterminal communicatioR' of the most parsimonious rate The paper is organized as follows. Preliminaries are con-
= Roin in @), then the corresponding SK = ¢g(L) has the tained in Section Il. In Section Ill, we consider four simple
best rateCs given by [1). It is important to note, howeversource models for which we provide elementary constructive
that as mentioned in [([8], Section VI) and already knowschemes for SK or PK generation which rely on suitable SW
from [23], [2], neither communication by every terminal notdata compression codes; the keys thereby generated area show
omniscience is essential for generating secrecy (SK or PK)ta satisfy the requisite secrecy and rate-optimality ctois
the best rate; for instance, the Evabove need not correspondn Section 1V. Implementations of these constructions gisin
to omniscience for the SK = g(L) to have the best possibleLDPC codes are illustrated in Section V which also reports

rate in [1). simulation results. Section VI contains closing remarks.
A similar approach as above can be used to generate a PK
of the largest rate if{4). Il. PRELIMINARIES

The discussion above suggests that techniques for SW data . .
compression could be used to devise constructive scherfiesSeCret Key and Private Key Capacities
for obtaining SKs and PKs that achieve the correspondingConsider a DMMS withd > 2 components, with corre-

capacities. Further, in SW data compression, the existehcesponding generic rvs(y, --- , X4 taking values in finite al-
linear encoders of rates arbitrarily close to the SW boursd hghabets, - - - , Xy, respectively. LeX; = (X; 1, , Xin)
been long known([5]. In the special situation when the i.i.dhe n i.i.d. repetitions of rvX;, i« € D = {1,---,d}.

sequences observed at the terminals are related to eachiroth@erminalsi, - - - , d, with respective observatio&, - - - , X,



represent thel users that wish to generate a SK by mearsans any secrecy restrictions is first generated through SW-
of public communication. These terminals can communicatempressed interterminal communication, whereby all dhe
with each other through broadcasts over a noiseless pultéeminals acquire a (common) rv with probabiliy 1. In the
channel, possibly interactively in many rounds. In geneaal next step, secrecy is then extracted by means of a suitable
communication from a terminal is allowed to be any functioienticaloperation performed at each terminal on the acquired
of its observations, and of all previous communication. Eet common randomness. When the common randomness initially

denote collectively all the public communication. acquired by thel terminals is maximal, the corresponding SK
Givene > 0, the rvK s represents ap-secret keye-SK) for  has the best rat€'s given by [1).
the terminals inD, achieved with communicatioR, if there In this work, we consider four simple models for which we

exist rvs K; = K;(X;,F), i € D, with K; and Ks taking illustrate the constructions of appropriaigong SKs or PKs.
values in the same finite s&ls, such thatKs satisfies

¢ the common randomness condition B. Linear Codes for the Binary Symmetric Channel

Pr{K;=Ks, i€D}>1—¢; The SW codes of interest will rely on the following classic
result concerning the existence of “good” linear channéeleso
for a BSC. A BSC with crossover probability, 0 < p < %
will be denoted by BSG). Let h(p) = —plogyp — (1 —

p) log,(1 — p) denote the binary entropy function.

Lemma 1 [9]: For everye > 0,0 < p < % and for alln
sufficiently large, there exists a binary lingar,n — m) code
for a BSCp), with m < n[h(p) + €], such that the average

lH(KS) > 1 log |Ks| — e. error probability of maximum likelihood decoding is lessith
n n 2= for somen > 0. [ ]

Let A C D be an arbitrary subset of the terminals. The rv
_KP(A) _represents ara-privgte kgy(s-PK) for the_ termingls C. Types and Typical Sequences
in A, private from the terminals isl® = D\ A, achieved with
communicationF, if there exist rvsK; = K;(X;,F), i €
A, with K; and Kp(A) taking values in the same finite se

e the secrecy condition
1
—I(Ks ANF) <g¢;
n
and
e the uniformity condition

The following standard facts regarding “types” and “typica
sequences” and their pertinent properties (cf. eld., [68) a

Kp(A), such thatk»(A) satisfies com.piled hgre in brief for ready reference.
e the common randomness condition Given finite setsX’, y,_ the typelof a sequencex =
(x1,---,x,) € &A™, X a finite set, is the probability mass
Pr{K;=Kp(A), i€ A} >1—¢; function (pmf) Px on X given by
e the secrecy condition Py(a) = l|{2‘ cx;=a}|, acX,
n
1
ﬁl (Kp(A) N {X;, i€ A°},F) < ¢ and thejoint typeof a pair of sequences,y) € X™ x V" is
the joint pmf P, on X x Y given by
and )
e the uniformity condition Pyy(a,b) = ﬁHi cxi=a,y; =Db}, acX, be).
1 1
EH(KP(A)) > - log |Kp(A)| —e. The numbers of different types of sequenced’in(resp.X’"™ x

o . . V™) do not exceedn + 1)1*1 (resp.(n + 1)I¥117]),
Definition 1 [8]: A nonnega)'uve numberz is called an  Gjyen rvsX, Y (taking values inY, ), respectively), with
achievable SK raté sn-SKsKé” are achievable with suitable joint pmf Pyxy on X x ), the set of sequences " which

communication (with the number of rounds possibly depengire X -typical with constant, denoted byI'; ., is defined as
ing on n), such thats, — 0 and 11 K{) — R. The ’
largest achievable SK rate is called t8& capacity denoted T% = {x € xm 2 HXHT < pr(x) < 2*”[H(X)*5]} ,
by Cs. The PK capacity for the terminals iA, denoted by
Cp(A), is similarly defined. An achievable SK rate (respwhere P% (x) 2 Pr{X = x}, x € X"; and the set of pairs of
PK rate) will be calledstrongly achievabléf ¢, above can sequences it x )™ which are XY -typical with constant
be taken to vanish exponentially in. The corresponding ¢, denoted byI'%y, is defined as
capacities are termestrong capacities

Single-letter characterizations have been obtainedCfor — Ty, = {(x,y) € X" x V" :x €Ty, y € Ty,
itn th_e case ofd :_2 terminal§ in [2], [23] anq ford > 2 2 nHXY)He] < pr(x y) < 2 nHEY) =€y
erminals in [8], given by[{1); and foC'r(A) in the case
of d = 3 terminals in [2] and ford > 3 terminals in [8], where PZ,, (x,y) 2 Pr{X=x,Y =y}, xe€ X" ye)
given by [4). The proofs of the achievability parts exploif; readily follows that for everyx,y) € Ty,
the close connection between secrecy generation and SW "

data compression. Loosely speaking, common randomness 2 "HXPIH) < pr o (x]y) < 27 nIHX) =24



where Py, (xly) = Pr{X =x|Y =y}, x € X", y € V"
For everyy € )", the set of sequences iti"™ which are
X|Y -typical with respect toy with constant¢, denoted by

(i) SW data compressidB7]: LetC be a lineafn,n—m) code
as in Lemma 1 with parity check matri®. Both terminals
know C (and P). Terminal 1 communicates the syndrome

T%v . (¥), is defined as

N|vie Px! to terminal2. The maximum likelihood estimate of;

. A . . at terminal 2 is:
N[y (y) = {x €X": (x,y) € TxY,E} ) %2(1) = xo @ fp(Px} © Pxb),
with TRyey (y) = ¢ if y ¢ Ty.. The following is an
mdependent and explicit statement of the well-known faat t
the probability of a nontyp|cal set decays to 0 exponential
rapidly in n (cf. e.g., [42, Theorem 6.3]).
Proposition 1: Given a joint pmf Pxy on X x Y with
Pxy(z,y) >0,z € X,y €, for every{ > 0,

wherefp (Px! ®Px}) is the most likely sequenoec {0,1}"
under the pmf of V as above) with syndromé@v?
x} oPx}, with & denoting addition modulo 2 arnidienoting
transposition. Note that in a standard array correspontting
the codeC above,fp(Px! & Px}) is simply the coset leader

of the coset with syndromPx! ¢ Px}. Also, x; andxx(1)

-n T lie in the same coset.
> PR(x) = 1-(n+1)*]2 2m2[Saex 108 i , (7)  The probability of decoding error at terminzlis given by
€T Pr{Xy(1) # X1} = Pr{Xe @ fo(PX! © PX}) # Xy},
d . .
an and it readily follows from[(7I0) that
Py , 5
e, Y Pr{Xa(1) £ X1} = Pr{fp(PV') # V).
’ XY§
. ¢2 By Lemma 1,Pr{fp(PV") # V} < 27" for somen > 0
> 1= (n4 Do 212[ (0 e rxy 10gm]2 E) and for alln sufficiently large, so that
for all n > 1. Pr{Xs(1) =Xy} >1-27""
Proof: See Appendix A. B (i) SK construction Consider a (common) standard array for

C known to both terminals. Denote by ; the element of the
[1l. M AIN RESULTS i*" row and thej*” column in the standard array,< i < 2™,

We now present our main results on SK generation for thrée< 7 < 2" ™.
specific models, and PK generation for a fourth model. The Terminall setsk; = j, if X, equalsa; ;, in its coseti in
proofs of the accompanying Theorems 1 - 4 are provided e standard array. Terminalsets K, = j, if X(1) equals
Section V. a; j, in the coset of the same standard array.

Model 1 Let the terminalsl and 2 observe, respectively,
i.i.d. repetitions of the[0, 1}-valued rvsX; and X, with joint
pmf

The following theorem asserts that; constitutes a strong
SK with rate approaching SK capacity.
Theorem 1 Lete > 0 be given. Then for somg > 0 and

1 1 for all n sufficiently large, the pair of rvéK,, K») generated
Py, x, (1, 22) = 5(1 = P)ayay + 9P (1 = ba120), above, with (common) rang€; (say), satisfy

0<p<y @ Pr{K, = Ko} 21277, (1)

with 6 being the Kronecker delta function. These terminals (K1 NF) =0, (12)

wish to generate a strong SK of maximum rate. H(K,) = log |K4, (13)

The (strong) SK capacity for this model [2]/ [8]. [23], g|ven

by (@), is 1

Cs = I(X; A Xo) =1—h(p). ~H(K1) >1—h(p) —e. (14)

We show a simple scheme for the terminals to generate a SKRemark The probability of K; differing from K, equals
with rate close tol — h(p), which relies on Wyner's well- exactly the average error probability of maximum likelikloo
known method for SW data compressiénl[37]. The SW proldecoding wherC is used on a BS@{. Furthermore, the gap
lem of interest entails termin&@l reconstructing the observedbetween the rate of the generated SK and SK capacity equals
sequencex; at terminall from the SW codeword fox; and the gap between the rate 6fand channel capacity.
its own observed sequensg.

Observe that under the given joint pnifl (3. can be Model 2 Let the terminalsl and 2 observe, respectively,
considered as an input to a virtual B$(with corresponding i-i-d- repetitions of the{0, 1}-valued rvs with joint pmf

outputX,, i.e., we can write Px,x,(0,0) = (1—p)(1—gq),
X1 =XV, (10) Px, x, (07 1) = pg,
whereV = (V4,---,V,,) is an i.i.d. sequence db, 1}-valued Px,x,(1,0) = p(l—q),
rvs, independent aX5, and withPr{V; =1} =p, 1 <i < n. Px,x,(1,1) = q(1—p), (15)



with 0 < p < % and0 < ¢ < 1. These terminals wish to containing the edgg, j). The rvsX;, - -- , X, form aMarkov

generate a strong SK of maximum rate. chain on the treer if for each (s, j) € E(T), the conditional
Note that Model 1 is a special case of Model 2 for= 1. pmfof X; given{X,,l € B(i + j)} depends only otk; (i.e.,

We show below a scheme for the terminals to generate a &Kconditionally independent ofX;,1 € B(i < j)}\{Xi},

with rate close to the (strong) SK capacity for this modé| [2Eonditioned onX;). Note that whery is a chain, this concept

[8], [23], which is given by[(ll) as reduces to that of a standard Markov chain.
Cs =I(X1 A X2) = h(p+q—2pqg) — h(p). Model 3 Let the terminalsl, - - - , d observe, respectively,
i.i.d. repetitions of{0, 1}-valued rvsX;,--- , X, that form a

(i) SW data compressiofT his step is identical to stef) for . o o
: - Markov chain on the tre€, with joint pmf Py, ...x, specified
Model 1. Note that under the given joint pnif {15X; and as: for (i, j) € E(T),

X5 can be written as i (10). It follows in the same manner . )

;aasrg;‘gr Model 1 that for some > 0 and for alln sufficiently P, x, (zi,3;) = 5(1 — Plig))Oas, + 5Plid) (1= 8ria, ),
Pr{Xy(1) =X;} > 1-27"", 0< py) < %

(if) SK constructionBoth terminals know the linedrn, n—m) ¢, zi,2; € {0,1}. Thesed terminals wish to generate a

codeC as in Lemma 1, and a (common) standard arrayCfor trong SJK of maximum rate

Let {e; : 1 < i < 2™} denote the set of coset leaders for all o1 that Model 1 is a special case of Model 3 fbe 2.

the cosets o’ _ Without any loss of generality, let
Denote byA; the set of sequences fraffg, . in the coset of

C with coset leadee;, 1 < i < 2™. If the number of sequences Pmax = P(i* ) =
of the same type iM; is more than2"l/(X1AX2)=¢'1 where _ _ o
&' > £4¢ with ¢ satisfyingm < n[h(p)+¢] in Lemma 1, then Then, the (strong) SK capacity for this model [8] is given by
collect arbitrarily2”l! (X1AX2)=¢l such sequences to composél) as

a subset, which we term gegular subset(as it consists of Cs =I(Xi« A Xjo) =1 = h(pmaz)-

sequences of the same type). Continue this procedure Uil show how to extract a SK with rate closelte- h(Prmaz)

the number of sequences of every typedn is less than py ysing an extension of the SW data compression scheme of
2rlf(XaAX2) =<, Let N; denote the number of distinct regulatodel 1 for reconstructing;- at all the terminals.

max i.7)-
perer) D

subsets of4;.
Enumerate (in any way) the sequences in each regu(BrSW data compressiohetC be the lineafn, n—m) code as
subset. Letb, ;, wherel < i < 2™, 1 < j < N, in Lemma 1 for a BSGf,,,4.), and with parity check matri®.
1 < k < 2nllXinX2)=¢'] denote thek!” sequence of the Each terminal communicates the syndroniex!, 1 < i < d.
4t regular subset in thé” coset (with coset leader;). Let x;(j) denote the corresponding maximum likelihood
Terminal1 setsK; = k; if X; equalsb; j, 1,; else, K, is estimate ofx; at terminali, 1 < i # j < d. For a terminal

set to be uniformly distributed 0'{1, . 72n[I(X1/\X2)7s’]}, i # i*, denote by(ip,41,--- ,i,) the (only) path in the tree
T from ¢ to ¢*, whereiy = 7 andi, = *; this terminali,

independent of X, X,). Terminal2 setsKy = ks if Xg(l) with the knowledge of %;, Px’ ,--- ,Px! PxL.), forms
. . . . . 217 ) Up—1" 1* )
equalsb; j, k,; eIse,K/z is set to be uniformly distributed on g estimatex; (i*) of x;~ through the following successive
{17 Lo 2nll(KanXa)—e ]}, independent ofX;, Xy, K1). maximum likelihood estimates of;,,--- ,x;,_,:
_ _ %i(i) = x© fe(Px] ©Px}),
The following theorem says th&f; constitutes a strong SK . L Pyt 1P .
with rate approaching SK capacity. xi(i2) = %i(ia) @ fp(Px;, ©® Px;, ),
Theorem 2 Let ¢ > 0 be given. Then for some’ =
n'(n,&,e,¢") > 0 and for alln sufficiently large, the pair of o . .
rvs (K1, K») generated above, with rang@ (say), satisfy Xi(ir—1) = Xilir—2) @ fe(Px; _, ©Px; ),
Pr{K; = Ky} > 1 — 2_,”,/’ (16) and finally,
Cili™) — % (i ¢ t
I(Ky AF) =0, (17) Xi(0") = Xilin-1) © fo(Px;,_, @ Px.). - (20)
B Proposition 2: By the successive maximum likelihood esti-
H(K) = log |Kal, (18) ' mation above, the estimaté, (i*) at terminali i, satisfies
and , Pr{X,(i") = Xpo} > 1—d- 27, (21)
—H(K1) = h(p+q—2pg) — h(p) - <" (19)

for somen > 0 and for alln sufficiently large.
Proof: See Appendix B.

The next model is an instance of\arkov chain on a tree
(cf. [13], [8]). Consider a tree] with vertex setV(7) =
{1,---,d} and edge sek(T). For (i,5) € E(T), let B(i +
j) denote the set of all vertices connected wijtlby a path Pr{X;(i*) = X, 1 <i£i* <d} >1-27"""

It follows directly from [21) that for some’ = 7' (n, m) >
0 and for alln sufficiently large,



(ii) SK construction Consider a (common) standard array fofor somen > 0 and for alln sufficiently large.

C known to all the terminals. Denote ly ;, the element of the (ii) PK construction Suppose that terminals 1 and 2 know a

I*" row and thek!™ column in the standard array,< [ < 2™, linear (n,n — m) codeC as in Lemma 1, and a (common)

1 <k <27 ™, Terminali* setsK;« = k;« if X;- equals standard array fo€. Let {e; : 1 < i < 2™} denote the set of

a;r,. in the standard array. Termingl1 < i # i* < d, sets coset leaders for all the cosets @f

K; = k; if X;(i*) equalsa,;, in the same standard array. For a sequenc&; € {0,1}", denote byA;(x3) the set

of sequences frorl'y | v .(x3) in the coset ofC with coset

The following theorem states thaf;- constitutes a strong leadere;, 1 < < 2. If the number of sequences of the same

SK with rate approaching SK capacity. joint type withxg in A;(x3) is more tharp" /(XA X21Xs) =<,
Theorem 3 Let ¢ > 0 be given. Then for some Wheres' > 2¢+e ande satisfiesn < n[h(p)+e] (asin Lemma

W = n'(n,d) > 0 and for all n sufficiently large, the rvs 1), then collect arbitrarily"/(X1/X21%3)=<] such sequences

Ki,---, K4 generated above, with randé- (say), satisfy ~ t0 compose a regular subset. Continue this procedure batil t
o, number of sequences of every joint type with in A;(x3) is
Pr{K;=-=Kq}t>1-2""", (22) less than2nl!(X1AX2X3)—<"] | et N;(x3) denote the number

of distinct regular subsets of;(x3).

For a given sequences, enumerate (in any way) the
(24) sequences in each regular subset. bgj ;. (x3), Wherel <
i <2m,1<j < Ni(x3), 1<k <2nI(XnXelXs)—< denote

I(Ki- AF) =0, (23)
H(K;+) = log|K;-

)

and 1 the k' sequence of the'" regular subset in thé" coset.
EH(Ki*) > 1~ h(pmaz) — € (25)  Terminal 1 sets K;, = k if X; equals
bi ..k (x3); else, K7 is set to be uniformly distributed
. . oL onlI(X1AX2]X3)—¢'] i
Model 4 Let the terminals 1, 2 and 3 observe, respectivel{" {1’ 2 R } mdependentA of
n i.i.d. repetitions of the(0, 1}-valued rvs X, X5, X3, with  (X;,X5,X3). Terminal 2 setsK, = ky if Xy(1)
joint pmf Px, x, x, given by: equals b, j, k,(x3); else, K, is set to be uniformly
1— (1 — distributed on<{1,--- ,2"[1(X1AX2‘X3>*5’]}, independent of
P (0,0,0) = P 01,1 d=pl-d
X1 X2X3\(Y, Y,y — XX X3 \Us by - 2 ) (X17X2’X3’K1)_
PX1X2X3(05071) :PX1X2X3(05170) = @7 . . )
21 The following theorem establishes théaf; constitutes a
Px,x,x,(1,0,0) = Py, v, x, (1,1,1) = p(1 ~ Q)7 strong PK with rate approaching PK capacity.
(12 Theorem 4 Let ¢ > 0 be given. Then for some’ =
q(1 —

Px,x,x,(1,0,1) = Px, x,x,(1,1,0) =

p)’ (26) 1'(n.& ¢,¢’) > 0 and for alln sufficiently large, the pair of
2 rvs (K1, K>) generated above, with rand@ (say), satisfy
with 0 < p < % and0 < ¢ < 1. Terminals 1 and 2 wish to

generate a strong PK of maximum rate, which is concealed Pr{K, # Ky} <277, (28)
from the helper terminal 3.

Note that under the joint pmf ok, X5, X3 above, we can I(K1 A X3,F) =0, (29)
write

Xl — ){2 @ X3 ® V, (27) H(Kl) = 10g |IC1|, (30)

whereV = (V4,---, V,) is an i.i.d. sequence gD, 1}-valued and 1
rvs, independent ofXz, X3), with Pr{V; =1} =p, 1 <i < —H(Ky) =I1(X1 AN Xo|X3) — €. (31)
n. Further, (X5, X3) plays the role of(X;, X5) in Model 1 "
with ¢ in lieu of p in the latter. Remark The PK construction scheme above applies for any

We show below a scheme for terminals 1 and 2 to genergwint pmf Py, x, x, satisfying [2¥), and is not restricted to the
a PK with rate close to (strong) PK capacity for this modeiven joint pmf in [Z26).

[2], [7], [8], given by (4) as
Cp({1,2}) = I(X1 A X2|X3) = h(p + q — 2pq) — h(p). IV. PROOFS OFTHEOREMS1-4

Thefirst step of this scheme enFaiIs terminal 3 simply remgal, Proof of Theorem 1 It follows from the SK construction
its observationss tq both termmgls 1 and 2. Then, Wyn.ers.scheme for Model 1 that

SW data compression scheme is used for reconstrusting

at terminal 2 from the SW codeword fot; and its own Pr{K; # K} = Pr{Xg(l) #X,} <27
knowledge ofxs @ x3. o _ _ _ o

(i) SW data compressiofThis step is identical to stefl) for which is [11). SinceX; is uniformly distributed or{0, 1}, we
Model 1, as seen with the help &f {27). Obviously, have forl <i <2m,1<j<2"™™, that

PI‘{Xg(l) = Xl} 2 1-— 2_7”7, PI‘{Xl = ai,j} =27



Hence, Since Pr{Xs(1) # X;} < 27", by the observation in the
previous paragraph, we have

Pr{K;=j} = Y Pr{X;=a,;} Pr{K, # Ky} <27

_ 2_7(n7m) 1<j<onm for somen’ = 7'(n,&,e,¢’) > 0 and for all n sufficiently
’ -0 ’ large, which is[(1B).
i.e., K; is uniformly distributed oriC; = {1,---,2"~™}, and Next, we shall show thak(; satisfies[(1B). Foil < k <

S0 onll(X1nX2)—¢'] it is clear by choice that
H(Kl) = log Q"M =n—m = log |IC1|, PI’{Kl — k|X1 Q/ ]:} — 2—71[1()(1AX2)—8']7 (33)
which is [13). Therefore[{14) holds sinee < n[h(p) + ¢].  and that
It remains to show thak; satisfies[(IR) withF = PXY. PK, = kX, cF
Let {e;,1 <i < 2} be the set of coset leaders for the cosets{ /K1 = kX1 € F} = kX e 7)
R . _ PI’{Xl S ]:}
of C.For1 <i<2m, 1<j5<27 ™, 2™ N,
Pr{K; = j, PX| = Pe!} = Zoim 2yt DT = i) (34)
. r =17 =re; - m i 9n —e’
Pr{K; = j|PX} = Pej} = P11~{PX§ - i.,et_} S N 2nll(XnXa) =l Pr{X; = by 1}
Pr{X; =a,;} = g nlIXunXa)=e], (35)

a Z?:lm Pr{X; =a;;} where [34) is due to every regular subset consisting of se-

— 9—(n-m) guences of the same type. Froml(33) dnd (35),

— Pr{K, =j}, Pr{K, = k} = 27" (XanXa) =<, (36)
ie., Ki is independent ofF, and soI(K; A F) = 0, €. Ki 'is uniformly distributed on K; =
establishing[{112). ] {1, oo 2l (XaAXs)—e }}, with

1
Proof of Theorem 2 Let F denote the union of all regular EH(KI) =1(X1 N Xa) —
subsets in J;_; A;. Clearly F C 1%, ¢ so that which is [T9).
Pr{X, € F} It remains to show thak; satisfies[(Tl7) withF = PXY.

; m n[I(X1AX2)—¢€']
= Pr{X; €Ty X1 €F} Forl <i<2m, 1<k <2n(&A%)=<l we have

= Pr{X; €T% ) —Pr{Xs €T \F}.  (32)  Pr{Ki=kPX] =Pel X, ¢ F} =2 "[IiAx)=<]

By Proposition 1,Pr{X; € T% .} goes to 1 exponentially by choice, and
rapidly in n. We show below thaPr{X1 € T%, ¢\F} decays Pr{K, = k[PX! = Pe!, X, € F}
to 0 exponentially rapidly im. Pr{K, — k. PX! — Pe!. X, € F}
Since the number of different types of sequencefin }” = P {PX7t — ;) - X”e a3
does not excee¢h + 1)2, we have that r Nl =re;, A
Zj:ii PI‘{Xl = b@jﬁ}

i3 € TR, AFY < 27 (n 1) - 2n (i en) el T XN 2l X T Pr{X, =

2 H(X ' = i}
< (n 1) _ gl (inX) ),
where the previous inequality is from < n[h(p) + €] = Hence
TL[H(X1|X2) —|—€] . .
Sil’lCGP}}l (Xl) < 2—"[H(X1)—5], X1 € T)?hf’ we get Pr{Kl = k|PX1 = Pei}

= Pr{K, = k|PX! = Pe!, X, € F} x

Pr{X; € T, \F} < (n+1)*- 277479, Pr{X, € FIPX! — Pe'}

Choosinge’ > ¢ + ¢, Pr{X; € T% \F} goes to O +Pr{K; = k|PX! = Pel,X; ¢ F} x
exponentially rapidly. Therefore, it follows froni(32) tha Pr{X, ¢ FIPX! = Pe!}
Pr{X; € F} goes to 1 exponentially rapidly im, with _ gnlI(Xi1AXz)—¢]
exponent depending oft, ¢, &’). o
By the SK construction scheme for Model 2, = Pr{K; =k},
where the previous equality follows frorh_{36). Thus; is

Prif # K} independent oF, establishing[(17). [ ]

= PI‘{K1§£K2,X1 E‘/—"}—FPY{Kl#KQ,Xl Q‘/—"}

< Pr{Xe(l) # X0, Xy € F} + Pr{X, ¢ F} Proof of Theorem 3 Applying the same arguments used in

< Pr{Xu(1) # Xy} + Pr{X; € F}. Theorem 1, we see that the %, - - - , K,,, satisfy [22), [24)



and [25). It then remains to show that. satisfies[[ZB) with Since Pr{X,(1) # X;} < 277 by the observation in the

= (PX}, -, PX}). previous paragraph, we have
Under the given joint pmfPy,...x,, for eachi # i*, we ,
can write Pr{Ky # Ky} <277,
X; =X ®Vy,

for somen’ = n'(n,&,e,&’) > 0 and for all n sufficiently
whereV; = (V;1,---,V;,) is an i.i.d. sequence of0,1}- large, which is[(ZB).

valued rvs. FurtheV;, 1 < # i* < d, andX,;- are mutually ~ Next, we shall show thak; satisfies[(30). Fokxs € {0,1}"
independent. Then, and1 < k < 2n(X1nXe|Xs)—<'] 'it js clear by choice that

I(Ki- NF) Pr{K; = k|X; ¢ F(x3), X3 = x5} = 27"/ (X1 Xa1Xs) =]
= I(K; ANM{PX! 1<i<d))
I(K;» NPXL {PV], 1 <i#i* <d})
I(Ki* APX:*) PI‘{Kl :k|X1 EF(Xg),Xg :Xg}
+I(Kq, PXLA{PVE, 1 <i#i*<d}). 37)  Pr{Ki=kX; € F(x3)|Xs = x3}
Clearly, the first term on the right hand side bfl(37) is zero. Pr{X, Enf(x3)|§3 = Xa}
Since for a fixedP, (K;-, PXL.) is a function ofX;-, - POHED Sl "Pr{Xy = by jx(x3)| X5 = x5}
[(K:, PXLA{PVE, 1<i#i* <d)) DD Dk 2"U<X1AX2IX3>—E' Pr{X; = by j1(x3)[X5 = x5}
< I(XZ* /\{\/-,L7 1<i # i* < d}) _ O, 27"[1()(1/\)(2”(3)*5]7

and that

IAIA

i.e., K;~ is independent oF, establishing[(23). B where the second equality is due to every regular subset
consisting of sequences of the same joint type with

Proof of Theorem 4 For everyx; € {0, 1}" let F(x3) Therefore,

denote the union of all regular subset: Since
g UL, AiGxa). Pr{Ki=k} = 5 Pr{Ki=k Xs=xs)
-F( )CTX1|X3 5( ) x3€{0,1}"
Pr{Xl € ]:(X3)} = Pr{Xl € T§1|X375(X3)} = Z [Pr{Xl € .7:(X3),X3 = Xg} X
—Pr{Xy € T} |x, ¢(X3)\F(X3) }(38) x3€{0,1}"
It follows from Proposition 1 thaPr{X, € 7%, .(X3)} Priky = kX, € F(x3), X5 = x3}
goes to 1 exponentially rapidly in. We show below that +Pr{X; & F(x3), X3 = x3} x
Pr{X; € T}gl‘x E(X3)\}‘(X3)} goes to O exponentially Pr{K, = k|X; & F(x3),X5 = x3}]
rapidly in n. —  9—n[I(X1AX2|X5)—¢'] (39)
Recall that the number of different joint types of pairs in ’
{0,1}" x {0,1}" does not excee(h + 1)*. Thus, e, K, s uniformli distributed on K, =
n[I(Xl/\Xg‘X:;)*E ] H
{01 € T, |, ¢ (%) \Fxa)} 2 - with

m 4 on[I(X1AX2|X3)—¢'] 1
< 27 (n+1)7 - 2n AR SH(KY) = (X1 A Xa|X3) — €,
n

which is [31).

It remains to show thak; satisfies [[209) with(Xs, F)
(X5, PX%). Forxs € {0,1}",1 < i <2™andl < k
onlI(X1nX2|Xs)~<'] e have

< (n+1)4. onlH Xl Xa)+e—e]

where the previous inequality is from < n[h(p) + €] =
[ (X1|X2, Xg) + E].
Since PX X3 (X1|X3) < 27H[H(X1‘X3)72§], (Xl,X3) S
Ty, x, ¢ We get

IN I

n 4 o-n(e/—26—) Pr{K; =k|PX]| = Pel,X; ¢ F(x3),X3 = x3}
Pr{Xy € T, x, ¢(Xs)\F(X3)} < (n+1)" -2 : -l l(X1A Kol X))
Choosings’ > 26 +¢, Pr{X; € TR, |x5.6 (X3)\F(X3)} goes
to 0 exponentially rapidly. Therefore, |t follows from (38)at by choice, and

Pr{X; € F(X3)} goes to 1 exponentially rapidly in, with

an exponent depending d8,¢,¢’). Pr{K; = k|PX} = Pe!, X, € F(x3),X3 =x3}
By the PK construction scheme for Model 4, Pr{K;, = k,PX!| =Pe!, X, € F(x3)|X35 = x3}
Pr{K) # K>} T Pr(PX] = Pel,X; € F(xa)|Xs = x3)
= Pr{K, # K5, X1 € F(x3)} + Pr{K; # K5, X1 & F(x3)} _ Zjv;(f“) Pr{X; = b, jx(x3)|X3 = x3}
< Pr{Xy(1) # X1, X; € F(x3)} + Pr{X; & F(x3)} SoNix) gnlI(XinXelXa) =] Pr{X; = by j 1 (x3)| X5 = x5}

< Pr{Xs(1) # Xi} + Pr{X; ¢ F(X3)}. = 27l aNX:] Xs) =],



Hence, L

Pr K1 =k PXt = Pet,Xg = X3
1 (3
2777.[](X1/\X2|X3)76,] -2

= PI‘{Kl = /{},
where the previous equality follows frorh (39). Thus; is L
independent of X3, F), establishing[{29). [ ] Exd

V. IMPLEMENTATION WITH LDPC CoDES

We outline an implementation using LDPC codes (cf. e.g., ;
[21], [30Q], [34], [31]) of the scheme for the construction of : ~—regular
a SK for Model 1 in Section Ill. As will be indicated below, !

similar implementations can be applied to Models 2—4 as.well 0 052 054 036 0% 04 042 04F 046 048 05
H(X,[X,)=h(p) (bits)

A. SK construction
. . . Fig. 1.  Simulation results for thé3, 6)-regular and the irregular LDPC
Without any loss of generality, we consider a systematég%esl €. 6)-reg 9

(n,n — m) LDPC codeC with generator matrixG =

I,—m A], wherel,,_,, is an (n — m) x (n — m)-identity

matrix andA is an(n—m) x m-matrix. Then, the parity check with a common codeword length afo® bits, and upto 60

matrix for C is P = [A! 1,,,], wherel,,, is anm x m-identity iterations of the belief-propagation algorithm were akulv

matrix. The firsta —m bits of every codeword i, namely the Over 10° blocks were transmitted from terminal 1.

information bits are pairwise distinct. Further, since the coset Simulation results are shown in Figures 1 and 2, where

with coset leadee;, 1 < i < 2™, must contain the sequenceconditional entropy (i.e.lf (X1]|X2) = h(p)) is plotted against

b; = [0,,_,, e;P?], with 0,,_,,, denoting a sequence af—m key bit error rate (KBER). We note that in this simulation SKs

zeros, the firstif — m)-bit-segments of the sequences in thare generated at fixed rates that are equal to the rates of the

coset{b; ®c, c € C} are pairwise distinct. LDPC codes used. Since for Model 1, SK capacity equals
Terminal 1 transmits the syndrom®x!}, whereupon ter- 1 — h(p), the conditional entropy.(p) serves as an indicator

minal 2, knowing (x2, Px!), applies the belief-propagationof the gap between SK capacity and the rate of the generated

algorithm described in [19] to estimage(1). Since the first SK.

n—m bits of the sequences in each coset are pairwise distinctFigure 1 shows the performance of th& 6)-regular and

these bits can serve as the index of a sequence in its coie.irregular LDPC codes; Figure 2 shows the performance of

Then, terminall (resp. 2) setd(; (resp.K>) as the firsih—m the (3,4)-regular LDPC code. It is seen in both figures that

bits of x; (resp.x2(1)). KBER increases withh(p). Since SK capacity decreases with
The same implementation of the SW data compressigicreasing.(p), an increase ok(p) narrows the gap between

scheme above holds for Models 2 and 4, too. It can be appli€f capacity and the rate of the generated SK, but raises the

repeatedly also for the successive estimdies (20) in ModelliBelihood of generating unequal SKs at the two terminals.

In Model 3, K;- (resp.K;, i # i*) is set as the firsh — m It is seen from Figure 1 that the irregular LDPC code

bits of x;- (resp.%;(i*)). It should be noted thahe current outperforms the3, 6)-regular LDPC code. For instance, for a

complexity of generating regular subsets in Models 2 andfixed crossover probability = 0.068, say, andh(p) ~ 0.3584,

poses a hurdle for explicit efficient constructions of a SKd arthe KBER for the irregular LDPC code is as low &6,

a PK, respectively, for these models. while the KBER for the(3,6)-regular LDPC code is only

about4 x 1073,

B. Simulation Results

We provide simulation results for the tradeoff between the VI. DiscussioN
relative secret key rate (i.e., the difference between te S We have considered four simple secrecy generation models
capacity and the rate of the generated SK) and the rateimfolving multiple terminals, and propose a new approach fo
generating unequal SKs at different terminals (correspmnd constructing SKs and PKs. This approach is based on Wyner's
to the bit error rate in SK-matching), when LDPC codes amgell-known SW data compression code for sources connected
used for SK construction in Model 1. by virtual channels with additive independent noise.

For the purpose of comparison, three different LDPC codesIn all the models considered in this paper, the i.i.d. se-
were used: (i) 43, 4)-regular LDPC code; (ii) 3, 6)-regular quences observed at the different terminals possesseslthe f
LDPC code; and (iii) an irregular LDPC code with degre®wing structure: They can be described in terms of sequence
distribution pair (cf.[[19]) at pairs of terminalsvhere each terminal in a pair is connected

Mz) = 02340297 +0.21242527 + 0.1468982° to thg other terminal by a virtual communication channehwit
additive independent noise.
+0.1028402° + 0303808z, There are two steps in the SK construction schemes. The
plx) = 0.71875z" +0.281252°, first step constitutes SW data compression for the purpose
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0 . Since T[’}DS is the union of the sets of those typds of

sequences itk that satisfy
max |P(a) — Px(a)| <0, (A.1)
ac
102 we have
é 107k Z P)fé (X)
B x€(Tipy5)
0 m . = Z Py ({x t Py = P})
1051 k k ] P:max,cx |P(a)—Px (a)|>8
< (n 4 DI 27 Pming 12— (o155 PPIPX) -7 oy
054 056 058 0.6 ?46(2><1|(>)<z‘)1=h(2§)6(b?f§§ 07 072 074 using the fact thaP}g({x . Px _ P}) < 2—nD(I5HP) (Cf, [6,
Lemma 2.6]).
Fig. 2. Simulation results for th€3, 4)-regular LDPC code. Next, by Pinsker's inequality (cf. e.gL![6, p. 58]),
2
- 1 o
| | DIPIP) = g (mig P - Px(a))
of common randomness generation at the terminals. Although 52
the existence of linear data compression codes with rate > I’ (A.3)

arbitrarily close to the SW bound has been long known for _ _ _ _ _
arbitrarily correlated sources([5], constructions of such lineakvith the previous inequality holding for every in (A.D). It
data compression codes are understood in terms of the coéeigws from (A.2) and [(A.3) that

of linear error-correction codes for the virtual channely s n 2] o—nat
Px,|x,, only when this virtual channel is characterized by 2 Px(x) 2 1= (n+ 1)1 27 (A-4)
(independent) additive noisé [37]. For instance, when two *€Tip,

terminals are connected by a virtual B, |x,, a linear for all n > 1.

data compression code, which attains the SW Fat& | X>) Finally, observe that

for terminal 2 to reconstruct the signal at terminal 1, isnthe )

provided by a linear channel code which achieves the capacit n  —n : _

of the BSCPy, x,- R L;( log Px(a)
V_Vhef‘ the i.i.d. sequences ob_served _at terminals 1 :_;1nd_2 fich is readily seen from the fact that for eaxke X™,

arbitrarily correlated the associated virtual communication

channelPyx,|x, connecting them is no longer symmetric and_1 log P (x) — H(Px)

corresponds to a virtual channel with input-dependentenocis 7

In this case, while linear codes are no longer rate-optimal f — 1 log (gfn[H(Px)JrD(lelPx)J) — H(Px)

the given channel [10], linear code constructions for aaglyt n

enlarged “semisymmetric” channel that are used for SW data —

, (A9)

H(Py) + D(Px||Px) — H(Px)

compression [14] could pave the way for devising schemes for —  H(P,) — H(Py) + Z Py(a)log 1 H(Px)
SK construction. = Px (a)

The second step in the SK construction schemes involves 1
SK extraction from the previously acquired CR. It has been Z[Px(a) — Px(a)]log Px(a)’

shown [25] that for the special case of a two-terminal source acX

model, this extraction can be accomplished by means ofcéearly, [A.4) and[(A.b) imply[(l7).
linear transformation. However, it is unknown yet whethgs t
holds also for a general source model with more than two APPENDIX B: PROOF OFPROPOSITIONZ
terminals. The proof of Proposition 2 relies on the following lemma
concerning the average error probability of maximum likeli
hood decoding.
APPENDIXA: PROOF OFPROPOSITION1 A sequenca € {0, 1}" is called adescenderdf a sequence
v € {0,1}"if u; = 1 implies thatv; = 1, 1 <4 < n. A subset
We shall provel[([7) here. The proof fi (8), which is similary  {0,1}" is called quasiadmissibléf the conditions that
is omitted. Fix > 0 and consider the sét’, , of sequences u € Q andu is a descendent of together imply that € Q.
in ™ which are Px-typical with constant &cf. [6, p. 33]), Lemma 2[22]: If Q is a quasiadmissible subset &f, 117,
ie., then for0 < p <1,
dpp(§2)

Tipy), = x € X% s max|Pe(a) = Px(a)] < 0} a0



where [9]

- w g (x) _ n—wg (x)
() = > p" (1 - p) , 0

xEN

with wy (x) denoting the Hamming weight of. [ ]

[11]
For a binary linear code, Idt denote the set of coset lead{12]

ers. It is known (cf.[[2B, Theorem 3.11]) th@t = {0,1}"\E

is a quasiadmissible subset {f, 1}". If a binary linear code [13]

is used on BSG{), the average error probability of maximum

likelihood decoding is given by (cfl_[32, Theorem 5.3.3]) (14]

pp(Q) =Y prr (1 — pynmen ),
xeQ
Lemma 2 implies that if the same binary linear code is us
on two binary symmetric channels with different crossover
probabilities, sayp) < p1 < p2 < % then the average error
probability of maximum likelihood decoding for a BS&] is
strictly less than that for a BS@{); note that a BSGf,) is a
degraded version of a BSf(), being a cascade of the latter

and a BSCf21). (18]

Returning to the proof of Proposition 2, it follows from
Lemma 1 that for some > 0 and for alln sufficiently large,

Pr{X;.(i*) # X;- } < 27",

[15]

[17]

[19]

[20]

Reca” that p(l*,]*) = maX(i,j)eE(T)p(i,j) and (’L =
i0,41, - i = 4*) is the path from: to i*. It follows by

Lemma 2 that

[21]

[22]
Pr{X,(i1) # Xi,} < Pr{X;-(i*) # X} <27, (23]
Consequently, [24]

Pr{X;(is) # X;,} < Pr{Xz‘Eh) # Xizvxigil) # Xi }
+PI‘{XZ(’LQ) }é XmaXz('Ll) = le}
<2-27™,

[25]

- : . [26]
Continuing this procedure, we have finally that

Pr{X;(i*) # X} <7-27" < d-27"™. [27]
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