
ar
X

iv
:1

00
8.

21
22

v1
  [

cs
.IT

]  
12

 A
ug

 2
01

0
1

Secret Key and Private Key Constructions for
Simple Multiterminal Source Models

Chunxuan Ye and Prakash Narayan

Abstract—We propose an approach for constructing secret and
private keys based on the long-known Slepian-Wolf code, dueto
Wyner, for correlated sources connected by a virtual additive
noise channel. Our work is motivated by results of Csisźar
and Narayan which highlight innate connections between secrecy
generation by multiple terminals that observe correlated source
signals and Slepian-Wolf near-lossless data compression.Explicit
procedures for such constructions and their substantiation are
provided. The performance of low density parity check channel
codes in devising a new class of secret keys is examined.

Index terms: Secret key construction, private key construction,
secret key capacity, private key capacity, Slepian-Wolf data
compression, binary symmetric channel, maximum likelihood
decoding, LDPC codes.

I. I NTRODUCTION

The problem of secrecy generation by multiple terminals,
based on their observations of separate but correlated signals
followed by public communication among themselves, has
been investigated by several authors ([23], [2], [7], among
others). It has been shown that these terminals can generate
secrecy, namely “common randomness” which is kept secret
from an eavesdropper that is privy to said public commu-
nication and perhaps also to additional “wiretapped” side
information.

Our work is motivated by [8] which studies secrecy genera-
tion for multiterminal “source models” with an arbitrary num-
ber of terminals, each of which observes a distinct component
of a discrete memoryless multiple source (DMMS). Specif-
ically, suppose thatd ≥ 2 terminals observe, respectively,
n independent and identically distributed (i.i.d.) repetitions
of finite-valued random variables (rvs)X1, . . . , Xd, denoted
by X1, . . . ,Xd, whereXi = (Xi1, . . . , Xin) , i = 1, . . . , d.
Thereupon, unrestricted and noiseless public communication
is allowed among the terminals. All such communication
is observed by all the terminals and by the eavesdropper.
The eavesdropper is assumed to be passive, i.e., unable to
tamper with the public communication of the terminals. In
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this framework, two models considered in [8] dealing with a
secret key(SK) and aprivate key(PK) are pertinent to our
work.
(i) Secret key: Suppose that all the terminals in{1, . . . , d}
wish to generate a SK, i.e., common randomness which is
concealed from the eavesdropper with access to their public
communication and which is nearly uniformly distributed1.
The largest (entropy) rate of such a SK, termed the SK capacity
and denoted byCS , is shown in [8] to equal

CS = H(X1, · · · , Xd)−Rmin, (1)

where

Rmin = min
(R1,··· ,Rd)∈R

d
∑

i=1

Ri, (2)

with2

R = {(R1, · · · , Rd) :
∑

i∈B

Ri ≥

H({Xj, j ∈ B}|{Xj, j ∈ Bc}), B ⊂ {1, · · · , d}},(3)

whereBc = {1, · · · , d}\B.

(ii) Private key: For a given subsetA ⊂ {1, · · · , d}, a PK
for the terminals inA, private from the terminals inAc, is a
SK generated by the terminals inA with the cooperation of
the terminals inAc, which is concealed from an eavesdropper
with access to the public interterminal communication and also
from the cooperating terminals inAc (and, hence, private)3.
The largest (entropy) rate of such a PK, termed the PK capacity
and denoted byCP (A), is shown in [8] to be

CP (A) = H(X1, · · · , Xd)−H({Xi, i ∈ Ac})−Rmin(A)

= H({Xi, i ∈ A}|{Xi, i ∈ Ac})−Rmin(A), (4)

where
Rmin(A) = min

{Ri, i∈A}∈R(A)

∑

i∈A

Ri, (5)

with

R(A) = {{Ri, i ∈ A} :
∑

i∈B

Ri ≥

H({Xj, j ∈ B}|{Xj, j ∈ Bc}), B ⊂ A}. (6)

The expressions in (1)–(3) and (4)–(6) afford the following
interpretation [8]. The joint entropyH (X1, . . . , Xd) in (1)

1In [8], a general situation is studied in which a subset of theterminals
generate a SK with the cooperation of the remaining terminals.

2Here,⊂ denotes a proper subset.
3A general model is considered in [8] for privacy from a subsetof Ac of

the cooperating terminals.
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corresponds to the maximum rate of shared common random-
ness – sans secrecy constraints – that can ever be achieved
by the terminals in{1, . . . , d} when each terminal becomes
omniscient, i.e., reconstructs all the components of the DMMS
with probability ∼= 1 as the observation lengthn becomes
large. Further,Rmin in (2), (3) corresponds to the smallest
aggregate rate of interterminal communication that enables
every terminal to achieve omniscience [8]. Thus, from (1), the
SK capacityCS , i.e., largest rate at which all the terminals in
{1, . . . , d} can generate a SK, is obtained by subtracting from
the maximum rate of shared common randomness achievable
by these terminals, viz.H(X1, · · · , Xd), the smallest overall
rateRmin of the (data-compressed) interterminal communica-
tion that enables all the terminals to become omniscient. A
similar interpretation holds for the PK capacityCP (A) in (4)
as well, with the difference that the terminals inAc, which
cooperate in secrecy generation and yet must not be privy
to the secrecy they help generate, can be assumed – without
loss of generality – to simply “reveal” their observations [8].
Hence, the entropy terms in (1), (3) are now replaced in (4),
(6) with additional conditioning on{Xi, i ∈ Ac}. It should
be noted thatRmin and Rmin(A) are obtained as solutions
to multiterminal Slepian-Wolf (SW) (near-lossless) data com-
pression problemsnot involving any secrecy constraints.

The form of characterization of the SK and PK capacities
in (1) and (4) also suggests successive steps for generating
the corresponding keys. For instance, and loosely speaking, in
order to generate a SK, the terminals in{1, . . . , d} first gen-
erate common randomness (without any secrecy restrictions)
using SW-compressed interterminal communication denoted
collectively by, say,F. Thus, the terminals generate rvs
Li = Li(Xi,F), i ∈ {1, . . . , d}, with 1

n
H(Li) > 0, which

agree with probability∼= 1 for n suitably large; suppressing
subscripts, letL denote the resulting “common” rv where
1
n
H(L) > 0. The second step entails an extraction fromL

of a SK K = g(L) of entropy rate1
n
H(L|F) by means of a

suitable operationg performedidenticallyat each terminal on
the acquired common randomnessL. In particular, when the
common randomness acquired by the terminals corresponds to
omniscience, i.e.,L ∼= (X1, . . . ,Xd), and is achieved using
interterminal communicationF of the most parsimonious rate
∼= Rmin in (2), then the corresponding SKK = g(L) has the
best rateCS given by (1). It is important to note, however,
that as mentioned in ([8], Section VI) and already known
from [23], [2], neither communication by every terminal nor
omniscience is essential for generating secrecy (SK or PK) at
the best rate; for instance, the rvL above need not correspond
to omniscience for the SKK = g(L) to have the best possible
rate in (1).

A similar approach as above can be used to generate a PK
of the largest rate in (4).

The discussion above suggests that techniques for SW data
compression could be used to devise constructive schemes
for obtaining SKs and PKs that achieve the corresponding
capacities. Further, in SW data compression, the existenceof
linear encoders of rates arbitrarily close to the SW bound has
been long known [5]. In the special situation when the i.i.d.
sequences observed at the terminals are related to each other in

probability law through virtual discrete memoryless channels
(DMCs) characterized by independent additive noises, such
linear SW encoders can be obtained in terms of cosets of
linear error correction codes for such virtual channels, a fact
first illustrated in [37] for the case ofd = 2 terminals
connected by a virtual binary symmetric channel (BSC), and
later exploited in most known linear constructions of SW
encoders (cf. e.g., [1], [4], [11], [12], [15]-[17], [19], [20],
[24], [29], [33]). When the i.i.d. sequences observed byd = 2
terminals are connected by an arbitrary virtual DMC, the
corresponding SW data compression can be viewed in terms
of coding for a “semisymmetric” channel, i.e., a channel with
independent additive noise that is defined over an enlarged
alphabet [14]; the case of stationary ergodic observationsat
the terminals is also considered therein. These developments
in SW data compression can translate into an emergence of
new constructive schemes for secrecy generation.

Motivated by these considerations, we seek to devise new
constructive schemes for secrecy generation in source models
in which SW data compression plays a central role. The main
technical contribution of this work is the following: Consider-
ing four simple models of secrecy generation, we show how
a new class of SKs and PKs can be devised for them at rates
arbitrarily close to the corresponding capacities, relying on the
SW data compression code in [37]. Additionally, we examine
the performance of low density parity check (LDPC) codes
in the SW data compression step of the procedure for secrecy
generation. Preliminary results of this work have been reported
in [38], [39]. In independent work [25] for the case ofd = 2
terminals which is akin to but different from ours, extraction
of a SK from previously acquired common randomness by
means of a linear transformation has been demonstrated.

In related work, SK generation for a source model with two
terminals that observe continuous-amplitude signals, hasbeen
studied in [40], [36], [26], [27], [41]. Furthermore, in recent
years, several secrecy generation schemes have been reported,
relying on capacity-achieving channel codes, for “wiretap”
secrecy models that differ from ours. For instance, it was
shown in [35] that such a channel code can attain the secrecy
capacity for any wiretap channel. See also [3], [18].

The paper is organized as follows. Preliminaries are con-
tained in Section II. In Section III, we consider four simple
source models for which we provide elementary constructive
schemes for SK or PK generation which rely on suitable SW
data compression codes; the keys thereby generated are shown
to satisfy the requisite secrecy and rate-optimality conditions
in Section IV. Implementations of these constructions using
LDPC codes are illustrated in Section V which also reports
simulation results. Section VI contains closing remarks.

II. PRELIMINARIES

A. Secret Key and Private Key Capacities

Consider a DMMS withd ≥ 2 components, with corre-
sponding generic rvsX1, · · · , Xd taking values in finite al-
phabetsX1, · · · ,Xd, respectively. LetXi = (Xi,1, · · · , Xi,n)
be n i.i.d. repetitions of rvXi, i ∈ D = {1, · · · , d}.
Terminals1, · · · , d, with respective observationsX1, · · · ,Xd,
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represent thed users that wish to generate a SK by means
of public communication. These terminals can communicate
with each other through broadcasts over a noiseless public
channel, possibly interactively in many rounds. In general, a
communication from a terminal is allowed to be any function
of its observations, and of all previous communication. LetF

denote collectively all the public communication.
Givenε > 0, the rvKS represents anε-secret key(ε-SK) for

the terminals inD, achieved with communicationF, if there
exist rvsKi = Ki(Xi,F), i ∈ D, with Ki andKS taking
values in the same finite setKS , such thatKS satisfies
• the common randomness condition

Pr{Ki = KS , i ∈ D} ≥ 1− ε;

• the secrecy condition

1

n
I(KS ∧ F) ≤ ε;

and
• the uniformity condition

1

n
H(KS) ≥

1

n
log |KS | − ε.

Let A ⊂ D be an arbitrary subset of the terminals. The rv
KP(A) represents anε-private key(ε-PK) for the terminals
in A, private from the terminals inAc = D\A, achieved with
communicationF, if there exist rvsKi = Ki(Xi,F), i ∈
A, with Ki andKP(A) taking values in the same finite set
KP(A), such thatKP(A) satisfies
• the common randomness condition

Pr{Ki = KP(A), i ∈ A} ≥ 1− ε;

• the secrecy condition

1

n
I (KP(A) ∧ {Xi, i ∈ Ac},F) ≤ ε;

and
• the uniformity condition

1

n
H(KP(A)) ≥

1

n
log |KP(A)| − ε.

Definition 1 [8]: A nonnegative numberR is called an
achievable SK rateif εn-SKsK(n)

S are achievable with suitable
communication (with the number of rounds possibly depend-
ing on n), such thatεn → 0 and 1

n
H

(

K
(n)
S

)

→ R. The
largest achievable SK rate is called theSK capacity, denoted
by CS . The PK capacity for the terminals inA, denoted by
CP (A), is similarly defined. An achievable SK rate (resp.
PK rate) will be calledstrongly achievableif εn above can
be taken to vanish exponentially inn. The corresponding
capacities are termedstrong capacities.

Single-letter characterizations have been obtained forCS

in the case ofd = 2 terminals in [2], [23] and ford ≥ 2
terminals in [8], given by (1); and forCP (A) in the case
of d = 3 terminals in [2] and ford ≥ 3 terminals in [8],
given by (4). The proofs of the achievability parts exploit
the close connection between secrecy generation and SW
data compression. Loosely speaking, common randomness

sans any secrecy restrictions is first generated through SW-
compressed interterminal communication, whereby all thed

terminals acquire a (common) rv with probability∼= 1. In the
next step, secrecy is then extracted by means of a suitable
identicaloperation performed at each terminal on the acquired
common randomness. When the common randomness initially
acquired by thed terminals is maximal, the corresponding SK
has the best rateCS given by (1).

In this work, we consider four simple models for which we
illustrate the constructions of appropriatestrongSKs or PKs.

B. Linear Codes for the Binary Symmetric Channel

The SW codes of interest will rely on the following classic
result concerning the existence of “good” linear channel codes
for a BSC. A BSC with crossover probabilityp, 0 < p < 1

2 ,
will be denoted by BSC(p). Let h(p) = −p log2 p − (1 −
p) log2(1− p) denote the binary entropy function.

Lemma 1 [9]: For everyε > 0, 0 < p < 1
2 , and for alln

sufficiently large, there exists a binary linear(n, n−m) code
for a BSC(p), with m < n[h(p) + ε], such that the average
error probability of maximum likelihood decoding is less than
2−nη, for someη > 0.

C. Types and Typical Sequences

The following standard facts regarding “types” and “typical
sequences” and their pertinent properties (cf. e.g., [6]) are
compiled here in brief for ready reference.

Given finite setsX , Y, the type of a sequencex =
(x1, · · · , xn) ∈ X

n, X a finite set, is the probability mass
function (pmf)Px on X given by

Px(a) =
1

n
|{i : xi = a}|, a ∈ X ,

and thejoint typeof a pair of sequences(x,y) ∈ Xn×Yn is
the joint pmfPxy on X × Y given by

Pxy(a, b) =
1

n
|{i : xi = a, yi = b}|, a ∈ X , b ∈ Y.

The numbers of different types of sequences inXn (resp.Xn×
Yn) do not exceed(n+ 1)|X | (resp.(n+ 1)|X ||Y|).

Given rvsX , Y (taking values inX , Y, respectively), with
joint pmf PXY on X × Y, the set of sequences inXn which
areX-typical with constantξ, denoted byT n

X,ξ, is defined as

T n
X,ξ

△
=

{

x ∈ Xn : 2−n[H(X)+ξ] ≤ Pn
X(x) ≤ 2−n[H(X)−ξ]

}

,

wherePn
X(x)

△
= Pr{X = x}, x ∈ Xn; and the set of pairs of

sequences inXn × Yn which areXY -typical with constant
ξ, denoted byT n

XY,ξ, is defined as

T n
XY,ξ

△
= {(x,y) ∈ Xn × Yn : x ∈ T n

X,ξ,y ∈ T n
Y,ξ,

2−n[H(X,Y )+ξ] ≤ Pn
XY (x,y) ≤ 2−n[H(X,Y )−ξ]},

wherePn
XY (x,y)

△
= Pr{X = x,Y = y}, x ∈ Xn, y ∈ Yn.

It readily follows that for every(x,y) ∈ T n
XY,ξ,

2−n[H(X|Y )+2ξ] ≤ Pn
X|Y (x|y) ≤ 2−n[H(X|Y )−2ξ],
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wherePn
X|Y (x|y)

△
= Pr{X = x|Y = y}, x ∈ Xn, y ∈ Yn.

For everyy ∈ Yn, the set of sequences inXn which are
X |Y -typical with respect toy with constantξ, denoted by
T n
X|Y,ξ(y), is defined as

T n
X|Y,ξ(y)

△
=

{

x ∈ Xn : (x,y) ∈ T n
XY,ξ

}

,

with T n
X|Y,ξ(y) = φ if y 6∈ T n

Y,ξ. The following is an
independent and explicit statement of the well-known fact that
the probability of a nontypical set decays to 0 exponentially
rapidly in n (cf. e.g., [42, Theorem 6.3]).

Proposition 1: Given a joint pmfPXY on X × Y with
PXY (x, y) > 0, x ∈ X , y ∈ Y, for everyξ > 0,

∑

x∈Tn
X,ξ

Pn
X(x) ≥ 1−(n+1)|X |·2

−n
ξ2

2 ln 2

[

∑

a∈X log 1
PX (a)

]2

, (7)

and
∑

(x,y)∈Tn
XY,ξ

Pn
XY (x,y)

≥ 1− (n+ 1)|X ||Y| · 2

−n ξ2

2 ln 2

[

∑

(a,b)∈X×Y log 1
PXY (a,b)

]2

, (8)

for all n ≥ 1.
Proof: See Appendix A.

III. M AIN RESULTS

We now present our main results on SK generation for three
specific models, and PK generation for a fourth model. The
proofs of the accompanying Theorems 1 - 4 are provided in
Section IV.

Model 1: Let the terminals1 and 2 observe, respectively,n
i.i.d. repetitions of the{0, 1}-valued rvsX1 andX2 with joint
pmf

PX1X2(x1, x2) =
1

2
(1− p)δx1x2 +

1

2
p (1 − δx1x2),

0 < p <
1

2
, (9)

with δ being the Kronecker delta function. These terminals
wish to generate a strong SK of maximum rate.

The (strong) SK capacity for this model [2], [8], [23], given
by (1), is

CS = I(X1 ∧X2) = 1− h(p).

We show a simple scheme for the terminals to generate a SK
with rate close to1 − h(p), which relies on Wyner’s well-
known method for SW data compression [37]. The SW prob-
lem of interest entails terminal2 reconstructing the observed
sequencex1 at terminal1 from the SW codeword forx1 and
its own observed sequencex2.

Observe that under the given joint pmf (9),X2 can be
considered as an input to a virtual BSC(p), with corresponding
outputX1, i.e., we can write

X1 = X2 ⊕V, (10)

whereV = (V1, · · · , Vn) is an i.i.d. sequence of{0, 1}-valued
rvs, independent ofX2, and withPr{Vi = 1} = p, 1 ≤ i ≤ n.

(i) SW data compression[37]: Let C be a linear(n, n−m) code
as in Lemma 1 with parity check matrixP. Both terminals
know C (and P). Terminal 1 communicates the syndrome
Pxt

1 to terminal2. The maximum likelihood estimate ofx1

at terminal 2 is:

x̂2(1) = x2 ⊕ fP(Pxt
1 ⊕Pxt

2),

wherefP(Pxt
1⊕Pxt

2) is the most likely sequencev ∈ {0, 1}n

(under the pmf ofV as above) with syndromePvt =
Pxt

1⊕Pxt
2, with⊕ denoting addition modulo 2 andt denoting

transposition. Note that in a standard array correspondingto
the codeC above,fP(Pxt

1 ⊕Pxt
2) is simply the coset leader

of the coset with syndromePxt
1 ⊕Pxt

2. Also, x1 and x̂2(1)
lie in the same coset.

The probability of decoding error at terminal2 is given by

Pr{X̂2(1) 6= X1} = Pr{X2 ⊕ fP(PXt
1 ⊕PXt

2) 6= X1},

and it readily follows from (10) that

Pr{X̂2(1) 6= X1} = Pr{fP(PVt) 6= V}.

By Lemma 1,Pr{fP(PVt) 6= V} < 2−nη for someη > 0
and for alln sufficiently large, so that

Pr{X̂2(1) = X1} ≥ 1− 2−nη.

(ii) SK construction: Consider a (common) standard array for
C known to both terminals. Denote byai,j the element of the
ith row and thejth column in the standard array,1 ≤ i ≤ 2m,
1 ≤ j ≤ 2n−m.

Terminal1 setsK1 = j1 if X1 equalsai,j1 in its coseti in
the standard array. Terminal2 setsK2 = j2 if X̂2(1) equals
ai,j2 in the coseti of the same standard array.

The following theorem asserts thatK1 constitutes a strong
SK with rate approaching SK capacity.

Theorem 1: Let ε > 0 be given. Then for someη > 0 and
for all n sufficiently large, the pair of rvs(K1,K2) generated
above, with (common) rangeK1 (say), satisfy

Pr{K1 = K2} ≥ 1− 2−nη, (11)

I(K1 ∧ F) = 0, (12)

H(K1) = log |K1|, (13)

and
1

n
H(K1) > 1− h(p)− ε. (14)

Remark: The probability ofK1 differing from K2 equals
exactly the average error probability of maximum likelihood
decoding whenC is used on a BSC(p). Furthermore, the gap
between the rate of the generated SK and SK capacity equals
the gap between the rate ofC and channel capacity.

Model 2: Let the terminals1 and 2 observe, respectively,n
i.i.d. repetitions of the{0, 1}-valued rvs with joint pmf

PX1X2(0, 0) = (1− p)(1 − q),

PX1X2(0, 1) = pq,

PX1X2(1, 0) = p(1− q),

PX1X2(1, 1) = q(1− p), (15)
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with 0 < p < 1
2 and 0 < q < 1. These terminals wish to

generate a strong SK of maximum rate.
Note that Model 1 is a special case of Model 2 forq = 1

2 .
We show below a scheme for the terminals to generate a SK
with rate close to the (strong) SK capacity for this model [2],
[8], [23], which is given by (1) as

CS = I(X1 ∧X2) = h(p+ q − 2pq)− h(p).

(i) SW data compression: This step is identical to step(i) for
Model 1. Note that under the given joint pmf (15),X1 and
X2 can be written as in (10). It follows in the same manner
as for Model 1 that for someη > 0 and for alln sufficiently
large,

Pr{X̂2(1) = X1} ≥ 1− 2−nη.

(ii) SK construction: Both terminals know the linear(n, n−m)
codeC as in Lemma 1, and a (common) standard array forC.
Let {ei : 1 ≤ i ≤ 2m} denote the set of coset leaders for all
the cosets ofC.

Denote byAi the set of sequences fromT n
X1,ξ

in the coset of
C with coset leaderei, 1 ≤ i ≤ 2m. If the number of sequences
of the same type inAi is more than2n[I(X1∧X2)−ε′], where
ε′ > ξ+ε with ε satisfyingm < n[h(p)+ε] in Lemma 1, then
collect arbitrarily2n[I(X1∧X2)−ε′] such sequences to compose
a subset, which we term aregular subset(as it consists of
sequences of the same type). Continue this procedure until
the number of sequences of every type inAi is less than
2n[I(X1∧X2)−ε′]. Let Ni denote the number of distinct regular
subsets ofAi.

Enumerate (in any way) the sequences in each regular
subset. Letbi,j,k, where 1 ≤ i ≤ 2m, 1 ≤ j ≤ Ni,
1 ≤ k ≤ 2n[I(X1∧X2)−ε′], denote thekth sequence of the
jth regular subset in theith coset (with coset leaderei).

Terminal1 setsK1 = k1 if X1 equalsbi,j1,k1 ; else,K1 is

set to be uniformly distributed on
{

1, · · · , 2n[I(X1∧X2)−ε′]
}

,

independent of(X1,X2). Terminal2 setsK2 = k2 if X̂2(1)
equalsbi,j2,k2 ; else,K2 is set to be uniformly distributed on
{

1, · · · , 2n[I(X1∧X2)−ε′]
}

, independent of(X1,X2,K1).

The following theorem says thatK1 constitutes a strong SK
with rate approaching SK capacity.

Theorem 2: Let ε > 0 be given. Then for someη′ =
η′(η, ξ, ε, ε′) > 0 and for alln sufficiently large, the pair of
rvs (K1,K2) generated above, with rangeK1 (say), satisfy

Pr{K1 = K2} ≥ 1− 2−nη′

, (16)

I(K1 ∧ F) = 0, (17)

H(K1) = log |K1|, (18)

and
1

n
H(K1) = h(p+ q − 2pq)− h(p)− ε′. (19)

The next model is an instance of aMarkov chain on a tree
(cf. [13], [8]). Consider a treeT with vertex setV (T ) =
{1, · · · , d} and edge setE(T ). For (i, j) ∈ E(T ), let B(i←
j) denote the set of all vertices connected withj by a path

containing the edge(i, j). The rvsX1, · · · , Xd form aMarkov
chain on the treeT if for each(i, j) ∈ E(T ), the conditional
pmf ofXj given{Xl, l ∈ B(i← j)} depends only onXi (i.e.,
is conditionally independent of{Xl, l ∈ B(i ← j)}\{Xi},
conditioned onXi). Note that whenT is a chain, this concept
reduces to that of a standard Markov chain.

Model 3: Let the terminals1, · · · , d observe, respectively,n
i.i.d. repetitions of{0, 1}-valued rvsX1, · · · , Xd that form a
Markov chain on the treeT , with joint pmfPX1···Xd

specified
as: for (i, j) ∈ E(T ),

PXiXj
(xi, xj) =

1

2
(1− p(i,j))δxixj

+
1

2
p(i,j) (1− δxixj

),

0 < p(i,j) <
1

2
,

for xi, xj ∈ {0, 1}. Thesed terminals wish to generate a
strong SK of maximum rate.

Note that Model 1 is a special case of Model 3 ford = 2.
Without any loss of generality, let

pmax = p(i∗,j∗) = max
(i,j)∈E(T )

p(i,j).

Then, the (strong) SK capacity for this model [8] is given by
(1) as

CS = I(Xi∗ ∧Xj∗) = 1− h(pmax).

We show how to extract a SK with rate close to1− h(pmax)
by using an extension of the SW data compression scheme of
Model 1 for reconstructingxi∗ at all the terminals.

(i) SW data compression: Let C be the linear(n, n−m) code as
in Lemma 1 for a BSC(pmax), and with parity check matrixP.
Each terminali communicates the syndromePxt

i, 1 ≤ i ≤ d.
Let x̂i(j) denote the corresponding maximum likelihood

estimate ofxj at terminali, 1 ≤ i 6= j ≤ d. For a terminal
i 6= i∗, denote by(i0, i1, · · · , ir) the (only) path in the tree
T from i to i∗, where i0 = i and ir = i∗; this terminali,
with the knowledge of (xi, Pxt

i1
, · · · ,Pxt

ir−1
,Pxt

i∗ ), forms
its estimatex̂i(i

∗) of xi∗ through the following successive
maximum likelihood estimates ofxi1 , · · · ,xir−1 :

x̂i(i1) = xi ⊕ fP(Pxt
i ⊕Pxt

i1
),

x̂i(i2) = x̂i(i1)⊕ fP(Pxt
i1
⊕Pxt

i2
),

...
...

...

x̂i(ir−1) = x̂i(ir−2)⊕ fP(Pxt
ir−2
⊕Pxt

ir−1
),

and finally,

x̂i(i∗) = x̂i(ir−1)⊕ fP(Pxt
ir−1
⊕Pxt

i∗). (20)

Proposition 2: By the successive maximum likelihood esti-
mation above, the estimatêXi(i

∗) at terminali 6= i∗, satisfies

Pr{X̂i(i
∗) = Xi∗} ≥ 1− d · 2−nη, (21)

for someη > 0 and for alln sufficiently large.
Proof: See Appendix B.

It follows directly from (21) that for someη′ = η′(η,m) >
0 and for alln sufficiently large,

Pr{X̂i(i
∗) = Xi∗ , 1 ≤ i 6= i∗ ≤ d} ≥ 1− 2−nη′

.
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(ii) SK construction: Consider a (common) standard array for
C known to all the terminals. Denote byal,k the element of the
lth row and thekth column in the standard array,1 ≤ l ≤ 2m,
1 ≤ k ≤ 2n−m. Terminal i∗ setsKi∗ = ki∗ if Xi∗ equals
al,ki∗

in the standard array. Terminali, 1 ≤ i 6= i∗ ≤ d, sets
Ki = ki if X̂i(i

∗) equalsal,ki
in the same standard array.

The following theorem states thatKi∗ constitutes a strong
SK with rate approaching SK capacity.

Theorem 3: Let ε > 0 be given. Then for some
η′ = η′(η, d) > 0 and for all n sufficiently large, the rvs
K1, · · · ,Kd generated above, with rangeKi∗ (say), satisfy

Pr{K1 = · · · = Kd} > 1− 2−nη′

, (22)

I(Ki∗ ∧F) = 0, (23)

H(Ki∗) = log |Ki∗ |, (24)

and
1

n
H(Ki∗) > 1− h(pmax)− ε. (25)

Model 4: Let the terminals 1, 2 and 3 observe, respectively,
n i.i.d. repetitions of the{0, 1}-valued rvsX1, X2, X3, with
joint pmfPX1X2X3 given by:

PX1X2X3(0, 0, 0) = PX1X2X3(0, 1, 1) =
(1− p)(1 − q)

2
,

PX1X2X3(0, 0, 1) = PX1X2X3(0, 1, 0) =
pq

2
,

PX1X2X3(1, 0, 0) = PX1X2X3(1, 1, 1) =
p(1− q)

2
,

PX1X2X3(1, 0, 1) = PX1X2X3(1, 1, 0) =
q(1− p)

2
, (26)

with 0 < p < 1
2 and 0 < q < 1. Terminals 1 and 2 wish to

generate a strong PK of maximum rate, which is concealed
from the helper terminal 3.

Note that under the joint pmf ofX1, X2, X3 above, we can
write

X1 = X2 ⊕X3 ⊕V, (27)

whereV = (V1, · · · , Vn) is an i.i.d. sequence of{0, 1}-valued
rvs, independent of(X2,X3), with Pr{Vi = 1} = p, 1 ≤ i ≤
n. Further,(X2, X3) plays the role of(X1, X2) in Model 1
with q in lieu of p in the latter.

We show below a scheme for terminals 1 and 2 to generate
a PK with rate close to (strong) PK capacity for this model
[2], [7], [8], given by (4) as

CP ({1, 2}) = I(X1 ∧X2|X3) = h(p+ q − 2pq)− h(p).

The first step of this scheme entails terminal 3 simply revealing
its observationsx3 to both terminals 1 and 2. Then, Wyner’s
SW data compression scheme is used for reconstructingx1

at terminal 2 from the SW codeword forx1 and its own
knowledge ofx2 ⊕ x3.
(i) SW data compression: This step is identical to step(i) for
Model 1, as seen with the help of (27). Obviously,

Pr{X̂2(1) = X1} ≥ 1− 2−nη,

for someη > 0 and for alln sufficiently large.
(ii) PK construction: Suppose that terminals 1 and 2 know a
linear (n, n − m) codeC as in Lemma 1, and a (common)
standard array forC. Let {ei : 1 ≤ i ≤ 2m} denote the set of
coset leaders for all the cosets ofC.

For a sequencex3 ∈ {0, 1}
n, denote byAi(x3) the set

of sequences fromT n
X1|X3,ξ

(x3) in the coset ofC with coset
leaderei, 1 ≤ i ≤ 2m. If the number of sequences of the same
joint type withx3 in Ai(x3) is more than2n[I(X1∧X2|X3)−ε′],
whereε′ > 2ξ+ε andε satisfiesm < n[h(p)+ε] (as in Lemma
1), then collect arbitrarily2n[I(X1∧X2|X3)−ε′] such sequences
to compose a regular subset. Continue this procedure until the
number of sequences of every joint type withx3 in Ai(x3) is
less than2n[I(X1∧X2|X3)−ε′]. Let Ni(x3) denote the number
of distinct regular subsets ofAi(x3).

For a given sequencex3, enumerate (in any way) the
sequences in each regular subset. Letbi,j,k(x3), where1 ≤
i ≤ 2m, 1 ≤ j ≤ Ni(x3), 1 ≤ k ≤ 2n[I(X1∧X2|X3)−ε′], denote
the kth sequence of thejth regular subset in theith coset.

Terminal 1 sets K1 = k1 if X1 equals
bi,j1,k1(x3); else, K1 is set to be uniformly distributed

on
{

1, · · · , 2n[I(X1∧X2|X3)−ε′]
}

, independent of

(X1,X2,X3). Terminal 2 sets K2 = k2 if X̂2(1)
equals bi,j2,k2(x3); else, K2 is set to be uniformly

distributed on
{

1, · · · , 2n[I(X1∧X2|X3)−ε′]
}

, independent of

(X1,X2,X3,K1).

The following theorem establishes thatK1 constitutes a
strong PK with rate approaching PK capacity.

Theorem 4: Let ε > 0 be given. Then for someη′ =
η′(η, ξ, ε, ε′) > 0 and for alln sufficiently large, the pair of
rvs (K1,K2) generated above, with rangeK1 (say), satisfy

Pr{K1 6= K2} < 2−nη′

, (28)

I(K1 ∧X3,F) = 0, (29)

H(K1) = log |K1|, (30)

and
1

n
H(K1) = I(X1 ∧X2|X3)− ε′. (31)

Remark: The PK construction scheme above applies for any
joint pmf PX1X2X3 satisfying (27), and is not restricted to the
given joint pmf in (26).

IV. PROOFS OFTHEOREMS1–4

Proof of Theorem 1: It follows from the SK construction
scheme for Model 1 that

Pr{K1 6= K2} = Pr{X̂2(1) 6= X1} < 2−nη,

which is (11). SinceX1 is uniformly distributed on{0, 1}, we
have for1 ≤ i ≤ 2m, 1 ≤ j ≤ 2n−m, that

Pr{X1 = ai,j} = 2−n.



7

Hence,

Pr{K1 = j} =

2m
∑

i=1

Pr{X1 = ai,j}

= 2−(n−m), 1 ≤ j ≤ 2n−m,

i.e.,K1 is uniformly distributed onK1 = {1, · · · , 2n−m}, and
so

H(K1) = log 2n−m = n−m = log |K1|,

which is (13). Therefore, (14) holds sincem < n[h(p) + ε].
It remains to show thatK1 satisfies (12) withF = PXt

1.
Let {ei, 1 ≤ i ≤ 2m} be the set of coset leaders for the cosets
of C. For 1 ≤ i ≤ 2m, 1 ≤ j ≤ 2n−m,

Pr{K1 = j|PXt
1 = Peti} =

Pr{K1 = j,PXt
1 = Peti}

Pr{PXt
1 = Peti}

=
Pr{X1 = ai,j}

∑2n−m

j′=1 Pr{X1 = ai,j′}

= 2−(n−m)

= Pr{K1 = j},

i.e., K1 is independent ofF, and so I(K1 ∧ F) = 0,
establishing (12).

Proof of Theorem 2: Let F denote the union of all regular
subsets in

⋃2m

i=1 Ai. ClearlyF ⊆ T n
X1,ξ

, so that

Pr{X1 ∈ F}

= Pr{X1 ∈ T n
X1,ξ

,X1 ∈ F}

= Pr{X1 ∈ T n
X1,ξ
} − Pr{X1 ∈ T n

X1,ξ
\F}. (32)

By Proposition 1,Pr{X1 ∈ T n
X1,ξ
} goes to 1 exponentially

rapidly in n. We show below thatPr{X1 ∈ T n
X1,ξ
\F} decays

to 0 exponentially rapidly inn.
Since the number of different types of sequences in{0, 1}n

does not exceed(n+ 1)2, we have that
∣

∣{x1 : x1 ∈ T n
X1,ξ
\F}

∣

∣ ≤ 2m · (n+ 1)2 · 2n[I(X1∧X2)−ε′]

< (n+ 1)2 · 2n[H(X1)+ε−ε′],

where the previous inequality is fromm < n[h(p) + ε] =
n[H(X1|X2) + ε].
SincePn

X1
(x1) ≤ 2−n[H(X1)−ξ], x1 ∈ T n

X1,ξ
, we get

Pr{X1 ∈ T n
X1,ξ
\F} < (n+ 1)2 · 2−n(ε′−ξ−ε).

Choosing ε′ > ξ + ε, Pr{X1 ∈ T n
X1,ξ
\F} goes to 0

exponentially rapidly. Therefore, it follows from (32) that
Pr{X1 ∈ F} goes to 1 exponentially rapidly inn, with
exponent depending on(ξ, ε, ε′).

By the SK construction scheme for Model 2,

Pr{K1 6= K2}

= Pr{K1 6= K2,X1 ∈ F}+ Pr{K1 6= K2,X1 6∈ F}

≤ Pr{X̂2(1) 6= X1,X1 ∈ F}+ Pr{X1 6∈ F}

≤ Pr{X̂2(1) 6= X1}+ Pr{X1 6∈ F}.

SincePr{X̂2(1) 6= X1} < 2−nη, by the observation in the
previous paragraph, we have

Pr{K1 6= K2} < 2−nη′

for someη′ = η′(η, ξ, ε, ε′) > 0 and for all n sufficiently
large, which is (16).

Next, we shall show thatK1 satisfies (18). For1 ≤ k ≤
2n[I(X1∧X2)−ε′], it is clear by choice that

Pr{K1 = k|X1 6∈ F} = 2−n[I(X1∧X2)−ε′], (33)

and that

Pr{K1 = k|X1 ∈ F} =
Pr{K1 = k,X1 ∈ F}

Pr{X1 ∈ F}

=

∑2m

i=1

∑Ni

j=1 Pr{X1 = bi,j,k}
∑2m

i=1

∑Ni

j=1 2
n[I(X1∧X2)−ε′] Pr{X1 = bi,j,k}

(34)

= 2−n[I(X1∧X2)−ε′], (35)

where (34) is due to every regular subset consisting of se-
quences of the same type. From (33) and (35),

Pr{K1 = k} = 2−n[I(X1∧X2)−ε′], (36)

i.e., K1 is uniformly distributed on K1 =
{

1, · · · , 2n[I(X1∧X2)−ε′]
}

, with

1

n
H(K1) = I(X1 ∧X2)− ε′,

which is (19).
It remains to show thatK1 satisfies (17) withF = PXt

1.
For 1 ≤ i ≤ 2m, 1 ≤ k ≤ 2n[I(X1∧X2)−ε′], we have

Pr{K1 = k|PXt
1 = Peti,X1 6∈ F} = 2−n[I(X1∧X2)−ε′]

by choice, and

Pr{K1 = k|PXt
1 = Peti,X1 ∈ F}

=
Pr{K1 = k,PXt

1 = Peti,X1 ∈ F}

Pr{PXt
1 = Peti,X1 ∈ F}

=

∑Ni

j=1 Pr{X1 = bi,j,k}
∑Ni

j=1 2
n[I(X1∧X2)−ε′] Pr{X1 = bi,j,k}

= 2−n[I(X1∧X2)−ε′].

Hence,

Pr{K1 = k|PXt
1 = Peti}

= Pr{K1 = k|PXt
1 = Peti,X1 ∈ F} ×

Pr{X1 ∈ F|PXt
1 = Peti}

+Pr{K1 = k|PXt
1 = Peti,X1 6∈ F} ×

Pr{X1 6∈ F|PXt
1 = Peti}

= 2−n[I(X1∧X2)−ε′]

= Pr{K1 = k},

where the previous equality follows from (36). Thus,K1 is
independent ofF, establishing (17).

Proof of Theorem 3: Applying the same arguments used in
Theorem 1, we see that the rvsK1, · · · ,Km satisfy (22), (24)
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and (25). It then remains to show thatKi∗ satisfies (23) with
F = (PXt

1, · · · ,PXt
d).

Under the given joint pmfPX1···Xd
, for eachi 6= i∗, we

can write
Xi = Xi∗ ⊕Vi,

whereVi = (Vi,1, · · · , Vi,n) is an i.i.d. sequence of{0, 1}-
valued rvs. Further,Vi, 1 ≤ i 6= i∗ ≤ d, andXi∗ are mutually
independent. Then,

I(Ki∗ ∧ F)

= I(Ki∗ ∧ {PXt
i, 1 ≤ i ≤ d})

≤ I(Ki∗ ∧PXt
i∗ , {PVt

i , 1 ≤ i 6= i∗ ≤ d})

≤ I(Ki∗ ∧PXt
i∗)

+I(Ki∗ ,PXt
i∗ ∧ {PVt

i, 1 ≤ i 6= i∗ ≤ d}). (37)

Clearly, the first term on the right hand side of (37) is zero.
Since for a fixedP, (Ki∗ ,PXt

i∗) is a function ofXi∗ ,

I(Ki∗ ,PXt
i∗ ∧ {PVt

i , 1 ≤ i 6= i∗ ≤ d})

≤ I(Xi∗ ∧ {Vi, 1 ≤ i 6= i∗ ≤ d}) = 0,

i.e., Ki∗ is independent ofF, establishing (23).

Proof of Theorem 4: For everyx3 ∈ {0, 1}
n, let F(x3)

denote the union of all regular subsets in
⋃2m

i=1 Ai(x3). Since
F(x3) ⊆ T n

X1|X3,ξ
(x3),

Pr{X1 ∈ F(X3)} = Pr{X1 ∈ T n
X1|X3,ξ

(X3)}

−Pr{X1 ∈ T n
X1|X3,ξ

(X3)\F(X3)}.(38)

It follows from Proposition 1 thatPr{X1 ∈ T n
X1|X3,ξ

(X3)}
goes to 1 exponentially rapidly inn. We show below that
Pr{X1 ∈ T n

X1|X3,ξ
(X3)\F(X3)} goes to 0 exponentially

rapidly in n.
Recall that the number of different joint types of pairs in
{0, 1}n × {0, 1}n does not exceed(n+ 1)4. Thus,
∣

∣

∣
{x1 : x1 ∈ T n

X1|X3,ξ
(x3)\F(x3)}

∣

∣

∣

≤ 2m · (n+ 1)4 · 2n[I(X1∧X2|X3)−ε′]

< (n+ 1)4 · 2n[H(X1|X3)+ε−ε′],

where the previous inequality is fromm < n[h(p) + ε] =
n[H(X1|X2, X3) + ε].

Since Pn
X1|X3

(x1|x3) ≤ 2−n[H(X1|X3)−2ξ], (x1,x3) ∈
T n
X1X3,ξ

, we get

Pr{X1 ∈ T n
X1|X3,ξ

(X3)\F(X3)} < (n+ 1)4 · 2−n(ε′−2ξ−ε).

Choosingε′ > 2ξ+ ε, Pr{X1 ∈ T n
X1|X3,ξ

(X3)\F(X3)} goes
to 0 exponentially rapidly. Therefore, it follows from (38)that
Pr{X1 ∈ F(X3)} goes to 1 exponentially rapidly inn, with
an exponent depending on(ξ, ε, ε′).

By the PK construction scheme for Model 4,

Pr{K1 6= K2}

= Pr{K1 6= K2,X1 ∈ F(x3)}+ Pr{K1 6= K2,X1 6∈ F(x3)}

≤ Pr{X̂2(1) 6= X1,X1 ∈ F(x3)} + Pr{X1 6∈ F(x3)}

≤ Pr{X̂2(1) 6= X1}+ Pr{X1 6∈ F(X3)}.

SincePr{X̂2(1) 6= X1} < 2−nη by the observation in the
previous paragraph, we have

Pr{K1 6= K2} < 2−nη′

,

for someη′ = η′(η, ξ, ε, ε′) > 0 and for all n sufficiently
large, which is (28).

Next, we shall show thatK1 satisfies (30). Forx3 ∈ {0, 1}
n

and1 ≤ k ≤ 2n[I(X1∧X2|X3)−ε′], it is clear by choice that

Pr{K1 = k|X1 6∈ F(x3),X3 = x3} = 2−n[I(X1∧X2|X3)−ε′],

and that

Pr{K1 = k|X1 ∈ F(x3),X3 = x3}

=
Pr{K1 = k,X1 ∈ F(x3)|X3 = x3}

Pr{X1 ∈ F(x3)|X3 = x3}

=

∑2m

i=1

∑Ni(x3)
j=1 Pr{X1 = bi,j,k(x3)|X3 = x3}

∑2m

i=1

∑Ni(x3)
j=1 2n[I(X1∧X2|X3)−ε′] Pr{X1 = bi,j,k(x3)|X3 = x3}

= 2−n[I(X1∧X2|X3)−ε′],

where the second equality is due to every regular subset
consisting of sequences of the same joint type withx3.
Therefore,

Pr{K1 = k} =
∑

x3∈{0,1}n

Pr{K1 = k,X3 = x3}

=
∑

x3∈{0,1}n

[Pr{X1 ∈ F(x3),X3 = x3} ×

Pr{K1 = k|X1 ∈ F(x3),X3 = x3}

+Pr{X1 6∈ F(x3),X3 = x3} ×

Pr{K1 = k|X1 6∈ F(x3),X3 = x3}]

= 2−n[I(X1∧X2|X3)−ε′], (39)

i.e., K1 is uniformly distributed on K1 =
{

1, · · · , 2n[I(X1∧X2|X3)−ε′]
}

, with

1

n
H(K1) = I(X1 ∧X2|X3)− ε′,

which is (31).
It remains to show thatK1 satisfies (29) with(X3,F) =

(X3,PXt
1). For x3 ∈ {0, 1}

n, 1 ≤ i ≤ 2m and 1 ≤ k ≤
2n[I(X1∧X2|X3)−ε′], we have

Pr{K1 = k|PXt
1 = Peti,X1 6∈ F(x3),X3 = x3}

= 2−n[I(X1∧X2|X3)−ε′]

by choice, and

Pr{K1 = k|PXt
1 = Peti,X1 ∈ F(x3),X3 = x3}

=
Pr{K1 = k,PXt

1 = Peti,X1 ∈ F(x3)|X3 = x3}

Pr{PXt
1 = Peti,X1 ∈ F(x3)|X3 = x3}

=

∑Ni(x3)
j=1 Pr{X1 = bi,j,k(x3)|X3 = x3}

∑Ni(x3)
j=1 2n[I(X1∧X2|X3)−ε′] Pr{X1 = bi,j,k(x3)|X3 = x3}

= 2−n[I(X1∧X2|X3)−ε′].
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Hence,

Pr{K1 = k|PXt
1 = Peti,X3 = x3}

= 2−n[I(X1∧X2|X3)−ε′]

= Pr{K1 = k},

where the previous equality follows from (39). Thus,K1 is
independent of(X3,F), establishing (29).

V. I MPLEMENTATION WITH LDPC CODES

We outline an implementation using LDPC codes (cf. e.g.,
[21], [30], [34], [31]) of the scheme for the construction of
a SK for Model 1 in Section III. As will be indicated below,
similar implementations can be applied to Models 2–4 as well.

A. SK construction

Without any loss of generality, we consider a systematic
(n, n − m) LDPC code C with generator matrixG =
[In−m A], where In−m is an (n − m) × (n − m)-identity
matrix andA is an(n−m)×m-matrix. Then, the parity check
matrix for C is P = [At Im], whereIm is anm×m-identity
matrix. The firstn−m bits of every codeword inC, namely the
information bits, are pairwise distinct. Further, since the coset
with coset leaderei, 1 ≤ i ≤ 2m, must contain the sequence
bi = [0n−m eiP

t], with 0n−m denoting a sequence ofn−m

zeros, the first (n −m)-bit-segments of the sequences in the
coset{bi ⊕ c, c ∈ C} are pairwise distinct.

Terminal 1 transmits the syndromePxt
1, whereupon ter-

minal 2, knowing (x2,Pxt
1), applies the belief-propagation

algorithm described in [19] to estimatêx2(1). Since the first
n−m bits of the sequences in each coset are pairwise distinct,
these bits can serve as the index of a sequence in its coset.
Then, terminal1 (resp. 2) setsK1 (resp.K2) as the firstn−m
bits of x1 (resp.x̂2(1)).

The same implementation of the SW data compression
scheme above holds for Models 2 and 4, too. It can be applied
repeatedly also for the successive estimates (20) in Model 3.
In Model 3,Ki∗ (resp.Ki, i 6= i∗) is set as the firstn −m

bits of xi∗ (resp.x̂i(i
∗)). It should be noted thatthe current

complexity of generating regular subsets in Models 2 and 4
poses a hurdle for explicit efficient constructions of a SK and
a PK, respectively, for these models.

B. Simulation Results

We provide simulation results for the tradeoff between the
relative secret key rate (i.e., the difference between the SK
capacity and the rate of the generated SK) and the rate of
generating unequal SKs at different terminals (corresponding
to the bit error rate in SK-matching), when LDPC codes are
used for SK construction in Model 1.

For the purpose of comparison, three different LDPC codes
were used: (i) a(3, 4)-regular LDPC code; (ii) a(3, 6)-regular
LDPC code; and (iii) an irregular LDPC code with degree
distribution pair (cf. [19])

λ(x) = 0.234029x+ 0.212425x2 + 0.146898x5

+0.102840x6 + 0.303808x19,

ρ(x) = 0.71875x7 + 0.28125x8,
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Fig. 1. Simulation results for the(3, 6)-regular and the irregular LDPC
codes.

with a common codeword length of103 bits, and upto 60
iterations of the belief-propagation algorithm were allowed.
Over 103 blocks were transmitted from terminal 1.

Simulation results are shown in Figures 1 and 2, where
conditional entropy (i.e.,H(X1|X2) = h(p)) is plotted against
key bit error rate (KBER). We note that in this simulation SKs
are generated at fixed rates that are equal to the rates of the
LDPC codes used. Since for Model 1, SK capacity equals
1 − h(p), the conditional entropyh(p) serves as an indicator
of the gap between SK capacity and the rate of the generated
SK.

Figure 1 shows the performance of the(3, 6)-regular and
the irregular LDPC codes; Figure 2 shows the performance of
the (3, 4)-regular LDPC code. It is seen in both figures that
KBER increases withh(p). Since SK capacity decreases with
increasingh(p), an increase ofh(p) narrows the gap between
SK capacity and the rate of the generated SK, but raises the
likelihood of generating unequal SKs at the two terminals.

It is seen from Figure 1 that the irregular LDPC code
outperforms the(3, 6)-regular LDPC code. For instance, for a
fixed crossover probabilityp = 0.068, say, andh(p) ≈ 0.3584,
the KBER for the irregular LDPC code is as low as10−5,
while the KBER for the(3, 6)-regular LDPC code is only
about4× 10−3.

VI. D ISCUSSION

We have considered four simple secrecy generation models
involving multiple terminals, and propose a new approach for
constructing SKs and PKs. This approach is based on Wyner’s
well-known SW data compression code for sources connected
by virtual channels with additive independent noise.

In all the models considered in this paper, the i.i.d. se-
quences observed at the different terminals possesses the fol-
lowing structure: They can be described in terms of sequences
at pairs of terminalswhere each terminal in a pair is connected
to the other terminal by a virtual communication channel with
additive independent noise.

There are two steps in the SK construction schemes. The
first step constitutes SW data compression for the purpose
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Fig. 2. Simulation results for the(3, 4)-regular LDPC code.

of common randomness generation at the terminals. Although
the existence of linear data compression codes with rate
arbitrarily close to the SW bound has been long known for
arbitrarily correlatedsources [5], constructions of such linear
data compression codes are understood in terms of the cosets
of linear error-correction codes for the virtual channel, say
PX1|X2

, only when this virtual channel is characterized by
(independent) additive noise [37]. For instance, when two
terminals are connected by a virtual BSCPX1|X2

, a linear
data compression code, which attains the SW rateH(X1|X2)
for terminal 2 to reconstruct the signal at terminal 1, is then
provided by a linear channel code which achieves the capacity
of the BSCPX1|X2

.
When the i.i.d. sequences observed at terminals 1 and 2 are

arbitrarily correlated, the associated virtual communication
channelPX1|X2

connecting them is no longer symmetric and
corresponds to a virtual channel with input-dependent noise.
In this case, while linear codes are no longer rate-optimal for
the given channel [10], linear code constructions for a suitably
enlarged “semisymmetric” channel that are used for SW data
compression [14] could pave the way for devising schemes for
SK construction.

The second step in the SK construction schemes involves
SK extraction from the previously acquired CR. It has been
shown [25] that for the special case of a two-terminal source
model, this extraction can be accomplished by means of a
linear transformation. However, it is unknown yet whether this
holds also for a general source model with more than two
terminals.

APPENDIX A: PROOF OFPROPOSITION1

We shall prove (7) here. The proof of (8), which is similar,
is omitted. Fixδ > 0 and consider the setT n

[PX ]δ
of sequences

in Xn which arePX -typical with constantδ (cf. [6, p. 33]),
i.e.,

T n
[PX ]δ

= {x ∈ Xn : max
a∈X
|Px(a)− PX(a)| ≤ δ}.

Since T n
[P ]δ

is the union of the sets of those types̃P of
sequences inXn that satisfy

max
a∈X
|P̃ (a)− PX(a)| ≤ δ, (A.1)

we have
∑

x∈
(

Tn
[PX ]δ

)c

Pn
X(x)

=
∑

P̃ :maxa∈X |P̃(a)−PX (a)|>δ

Pn
X

(

{x : Px = P̃}
)

≤ (n+ 1)|X | · 2
−nminP̃ :mina∈X |P̃ (a)−PX (a)|>δ D(P̃ ||PX)

, (A.2)

using the fact thatPn
X({x : Px = P̃}) ≤ 2−nD(P̃ ||P ) (cf. [6,

Lemma 2.6]).
Next, by Pinsker’s inequality (cf. e.g., [6, p. 58]),

D(P̃ ||P ) ≥
1

2ln2

(

min
a∈X
|P̃ (a)− PX(a)|

)2

≥
δ2

2ln2
, (A.3)

with the previous inequality holding for everỹP in (A.1). It
follows from (A.2) and (A.3) that

∑

x∈Tn
[P ]δ

Pn
X(x) ≥ 1− (n+ 1)|X | · 2−n δ2

2ln2 (A.4)

for all n ≥ 1.
Finally, observe that

T n
[PX ]δ

⊆ T n
X,ξ, if ξ = δ

[

∑

a∈X

log
1

PX(a)

]

, (A.5)

which is readily seen from the fact that for eachx ∈ Xn,

−
1

n
logPn

X(x)−H(PX)

= −
1

n
log

(

2−n[H(Px)+D(Px||PX)]
)

−H(PX)

= H(Px) +D(Px||PX)−H(PX)

= H(Px)−H(Px) +
∑

a∈X

Px(a) log
1

PX(a)
−H(PX)

=
∑

a∈X

[Px(a)− PX(a)] log
1

PX(a)
.

Clearly, (A.4) and (A.5) imply (7).

APPENDIX B: PROOF OFPROPOSITION2

The proof of Proposition 2 relies on the following lemma
concerning the average error probability of maximum likeli-
hood decoding.

A sequenceu ∈ {0, 1}n is called adescendentof a sequence
v ∈ {0, 1}n if ui = 1 implies thatvi = 1, 1 ≤ i ≤ n. A subset
Ω ⊂ {0, 1}n is calledquasiadmissibleif the conditions that
u ∈ Ω andu is a descendent ofv together imply thatv ∈ Ω.

Lemma 2 [22]: If Ω is a quasiadmissible subset of{0, 1}n,
then for0 ≤ p ≤ 1,

dµp(Ω)

dp
> 0,
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where
µp(Ω) =

∑

x∈Ω

pwH(x)(1− p)n−wH (x),

with wH(x) denoting the Hamming weight ofx.

For a binary linear code, letE denote the set of coset lead-
ers. It is known (cf. [28, Theorem 3.11]) thatΩ′ = {0, 1}n\E
is a quasiadmissible subset of{0, 1}n. If a binary linear code
is used on BSC(p), the average error probability of maximum
likelihood decoding is given by (cf. [32, Theorem 5.3.3])

µp(Ω
′) =

∑

x∈Ω′

pwH(x)(1− p)n−wH(x).

Lemma 2 implies that if the same binary linear code is used
on two binary symmetric channels with different crossover
probabilities, say,0 < p1 < p2 < 1

2 , then the average error
probability of maximum likelihood decoding for a BSC(p1) is
strictly less than that for a BSC(p2); note that a BSC(p2) is a
degraded version of a BSC(p1), being a cascade of the latter
and a BSC(p2−p1

1−2p1
).

Returning to the proof of Proposition 2, it follows from
Lemma 1 that for someη > 0 and for alln sufficiently large,

Pr{X̂j∗(i
∗) 6= Xi∗} < 2−nη.

Recall that p(i∗,j∗) = max(i,j)∈E(T ) p(i,j) and (i =
i0, i1, · · · , ir = i∗) is the path fromi to i∗. It follows by
Lemma 2 that

Pr{X̂i(i1) 6= Xi1} < Pr{X̂j∗(i
∗) 6= Xi∗} < 2−nη.

Consequently,

Pr{X̂i(i2) 6= Xi2} ≤ Pr{X̂i(i2) 6= Xi2 , X̂i(i1) 6= Xi1}

+Pr{X̂i(i2) 6= Xi2 , X̂i(i1) = Xi1}

< 2 · 2−nη.

Continuing this procedure, we have finally that

Pr{X̂i(i
∗) 6= Xi∗} < r · 2−nη < d · 2−nη.
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