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Ergodic Secret Alignment
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Abstract—In this paper, we introduce two new achiev-
able schemes for the fading multiple access wiretap channel
(MAC-WT). In the model that we consider, we assume that perfect
knowledge of the state of all channels is available at all the nodes
in a causal fashion. Our schemes use this knowledge together
with the time-varying nature of the channel model to align the
interference from different users at the eavesdropper perfectly in
a one-dimensional space while creating a higher dimensionality
space for the interfering signals at the legitimate receiver, hence
allowing for better chance of recovery. While we achieve this
alignment through signal scaling at the transmitters in our first
scheme (scaling-based alignment), we let nature provide this
alignment through the ergodicity of the channel coefficients in the
second scheme [ergodic secret alignment (ESA)] [1], [2]. For each
scheme, we obtain the resulting achievable secrecy rate region.
We show that the secrecy rates achieved by both schemes in the
two-user fading MAC-WT scale with signal-to-noise ratio (SNR)
as % log(SNR). Hence, we show the suboptimality of the inde-
pendent identically distributed (i.i.d.) Gaussian signaling-based
schemes with and without cooperative jamming by showing
that the secrecy rates achieved using i.i.d. Gaussian signaling
with cooperative jamming do not scale with SNR. In addition,
we introduce an improved version of our ESA scheme where
we incorporate cooperative jamming to achieve higher secrecy
rates. Moreover, we derive the necessary optimality conditions
for the power control policy that maximizes the secrecy sum
rate achievable by our ESA scheme when used solely and with
cooperative jamming. Finally, we discuss the extension of the
proposed schemes to the case where there are more than two
users and show that, for the K -user fading MAC-WT, each of the
two schemes achieves secrecy sum rate that scales with SNR as

E-1log(SNR).

Index Terms—Ergodic alignment, fading Gaussian multiple ac-
cess channel, information theoretic secrecy.

1. INTRODUCTION

HE notion of information theoretic secrecy was first in-
T troduced by Shannon in his seminal work [3]. Applying
the notion of information theoretic secrecy to channel models
with single transmitter, single receiver, and single eavesdropper
(wiretapper) was pioneered by Wyner [4], Csiszar and Korner
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[5], and Leung-Yan-Cheong and Hellman [6]. Wyner [4] intro-
duced the wiretap channel where it is assumed that the received
signal by the eavesdropper is a degraded version of the signal
received by the legitimate receiver. For his model, Wyner es-
tablished the secrecy capacity region, which is defined as the
region of all simultaneously achievable rates and equivocation
rates. In [5], the secrecy capacity region was established for
the general case where the eavesdropper’s channel is not nec-
essarily a degraded version of the main receiver’s channel. In
particular, it was shown that to achieve the secrecy capacity re-
gion of the single user wiretap channel, channel prefixing may
be necessary. In channel prefixing, an auxiliary random vari-
able serves as the input of an artificially created prefix channel,
whose output is used as the input to the original wiretap channel.
In [6], the authors showed that, through plain Gaussian signaling
alone, i.e., without channel prefixing, one can achieve the se-
crecy capacity of the Gaussian wiretap channel.

The multiple access wiretap channel (MAC-WT) was intro-
duced in [7]. In MAC-WT, multiple users wish to have secure
communication with a single receiver, in the presence of a
passive eavesdropper. Tekin and Yener [7], [8] focus on the
Gaussian MAC-WT and provide achievable schemes based on
Gaussian signaling. They go further than plain Gaussian sig-
naling and introduce a technique (on top of Gaussian signaling)
that uses the power of a non-transmitting node in jamming the
eavesdropper. This technique is called cooperative jamming
(CJ). CJ is indeed a channel prefixing technique where specific
choices are made for the auxiliary random variables [9]. In
addition, CJ is the first significant application of channel pre-
fixing in a multiuser Gaussian wiretap channel that improves
over plain Gaussian signaling. More recently, [10] showed
that for a certain class of Gaussian MAC-WT, one can achieve
through Gaussian signaling a secrecy rate region that is within
0.5 bits of the secrecy capacity region. Consequently, there has
been some expectation that secrecy capacity may be obtained
for Gaussian MAC-WT through independent identically dis-
tributed (i.i.d.) Gaussian signaling, potentially with Gaussian
channel prefixing.

However, a notable shortcoming of these Gaussian signaling
based achievable schemes is that rates obtained using them do
not scale with the signal-to-noise ratio (SNR). In other words,
the total number of degrees of freedom (DoF) for the MAC-WT
achieved using these schemes is zero. This observation led to the
belief that these schemes, and hence Gaussian signaling (with
or without channel prefixing), may be suboptimal. This belief is
made certain as a direct consequence of the results on the secure
DoF of Gaussian interference networks that were obtained in
several papers, e.g., in [11]-[15]. The schemes in each of [11]
and [12] mainly relied on the interference alignment technique
proposed by Cadambe and Jafar for the K -user interference
channel in their pioneering work [16]. In the original inter-
ference alignment technique, the input data stream from each
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user is mapped using a precoding matrix to a longer sequence
(almost twice the original length in the asymptotic sense) and
then sent over the channel. Hence, the observed signal space at
each receiver is of almost twice the size (i.e., dimensionality)
of the space of the original data. By carefully designing the pre-
coding matrices at the transmitters, the observed signal space
at each receiver could be partitioned into two almost equal
subspaces, one of which is meant for the desired signal and
the other acts as a waste basket for the interfering signals from
other users. Consequently, it was shown that one can achieve
% DoF per user in the K-user interference channel using this
technique. Inspired by this technique in the secrecy context,
it was shown in [11] and [12] that positive secure DoF is
achievable for a class of vector Gaussian interference channels.
In fact, this result is also valid for time-varying channels with
only causal knowledge of channel state information which,
in turn, implies that positive secure DoF is achievable for the
vector Gaussian MAC-WT in general. In [13] and [14], it was
shown that through structured coding (e.g., lattice coding), it
is possible to achieve positive DoF for a class of scalar (i.e.,
nontime-varying) Gaussian channels with interference that con-
tains the Gaussian MAC-WT. More recently, in [15], both the
Gaussian multiple-input multiple-output (MIMO) MAC-WT
and the Gaussian scalar MAC-WT have been considered. For
the K-user Gaussian MIMO MAC-WT model, [15] provides
an algorithm which is inspired by the original interference
alignment technique [16] to separate the received signals at
the legitimate receiver and at the same time align them in a
low-dimensional subspace in the signal space observed by
the eavesdropper. For the K-user Gaussian scalar MAC-WT,
[15] proposes an achievable secure coding scheme to achieve
positive secure DoF. Namely, the proposed scheme achieves
total secure DoF of % for almost all channel gains. This is
done by incorporating the new alignment technique known as
real interference alignment that was first proposed in [17] that
performs on a single real line and exploits the properties of real
numbers to align interference in time-invariant channels.
Fading Gaussian MAC-WT was first considered in [18]
where the Gaussian signaling and CJ schemes which were
originally proposed in [7] and [8] are extended to the fading
MAC-WT. Using these schemes, [18] gave achievable ergodic
sum secrecy rates for the fading MAC-WT. Similar to the
nonfading setting, these achievable ergodic secrecy rates do not
scale with the average SNRs. In this paper, we propose two new
achievable schemes for the fading Gaussian MAC-WT. Our first
achievable scheme, the scaling based alignment (SBA) scheme,
is based on code repetition with proper scaling of transmitted
signals. We first consider the two-user fading MAC-WT. The
generalization of this scheme to the case of more than two users
is presented subsequently. In particular, for the two-user fading
MAC-WT, transmitters repeat their symbols in two consecutive
symbol instants. Transmitters further scale their transmit signals
with the goal of creating a full-rank channel matrix at the main
receiver and a unit-rank channel matrix at the eavesdropper,
in every two consecutive time instants. These coordinated
actions create a two-dimensional space for the signal received
by the legitimate receiver, while sustaining the interference in a
single-dimensional space at the eavesdropper. In other words,
code repetition with proper scaling of the transmit signals at
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each transmitter aligns the received signals at the eavesdropper
perfectly making it difficult for the eavesdropper to decode both
messages. Consequently, we obtain a new achievable secrecy
rate region for the two-user fading MAC-WT. In fact, it might
be useful here to compare our SBA scheme with the technique
used in [15] for the Gaussian MIMO MAC-WT. In the model
considered here, we could create parallel MAC channels to
each of the legitimate receiver and the eavesdropper by symbol
repetition and exploiting the time-varying nature of fading
channels and hence by proper scaling (precoding), one can
almost surely create a full-dimensional space for the received
signal at the legitimate receiver and one-dimensional space for
the received signal at the eavesdropper. On the other hand, in
[15], the existence of multiple spatial dimensions are already
imposed by the model itself (Gaussian MIMO MAC-WT) and
hence the precoding technique used in [15] for this model
achieves secure DoF that eventually depends on the channel
gain matrices from the transmitters to the legitimate receiver
and the eavesdropper.

In another recent work [19], it was shown that in a fading in-
terference channel, by code repetition over properly chosen time
instants, one can perfectly cancel interference at each receiver so
that the resulting individual rates scale as % log(SNR). Thus, the
rate reduction by a factor of % comes with the benefit of perfect
interference cancellation. In this paper, we extend the ergodic
interference alignment concept to a secrecy context and propose
another achievable scheme which we call ergodic secret align-
ment (ESA). We first consider the two-user fading MAC-WT
and generalize this scheme to the case of more than two users
subsequently. In the SBA scheme, code repetition is done over
two consecutive time instants, while in the ESA scheme, we
carefully choose the time instants over which we do code rep-
etition such that the received signals are aligned favorably at
the legitimate receiver while they are aligned unfavorably at the
eavesdropper. In particular, given some time instant with the
vector of the main receiver channel coefficients and the vector
of the eavesdropper channel coefficients given by h = [h; ha]T
and g = [g1 go]7, respectively, if X and X, are the symbols
transmitted in this time instant by users 1 and 2, respectively, our
objective, roughly speaking, is to determine the channel gains
we should wait for to transmit X; and X, again. In this paper,
we show that, in order to maximize achievable secrecy rates, we
should wait for a time instant in which the main receiver channel
coefficients are [h1 — ho]T and the eavesdropper channel coeffi-
cients are [g; g2]. Consequently, we obtain another achievable
secrecy rate region for the two-user fading MAC-WT.

For both proposed schemes, we show that the resulting se-
crecy rates scale with SNR. Specifically, the achievable secrecy
sum rate scales as 3 log(SNR). Moreover, we show that the se-
crecy rates achieved through i.i.d. Gaussian signaling with CJ
in fading MAC-WT do not scale with SNR. The significance
of these results is that, they show that indeed neither plain i.i.d.
Gaussian signaling nor i.i.d. Gaussian signaling with CJ is op-
timal for the fading MAC-WT, and that, for high SNRs, one can
achieve higher secrecy rates by aligning interference perfectly
in the eavesdropper MAC while reducing, or canceling, interfer-
ence at the main receiver MAC using some coordinated actions
at both transmitters that involve code repetition, i.e., a form of
time-correlated (non-i.i.d.) signaling.
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In fact, the achievable rate region using the second scheme,
the ESA scheme, involves two significant improvements over
the one achieved by the SBA scheme when the channel coef-
ficients are circularly symmetric complex Gaussian random
variables. First, the expressions for achievable rates by the
SBA scheme involve products of the squared magnitudes
of the channel coefficients. The squared magnitudes of the
channel coefficients are exponential random variables and
hence multiplying them together gives a random variable that
takes small values with higher probability than the original
exponential random variables would take these values. This in
effect reduces the achievable rates by the SBA scheme. On the
other hand, the achievable secrecy rates by the ESA scheme
do not have this drawback. In other words, by code repetition,
the SBA scheme creates two (not perfectly) correlated MAC
channels to the main receiver and two perfectly correlated MAC
channels to the eavesdropper, while the ESA scheme creates an
orthogonal MAC channel to the main receiver and two perfectly
correlated MAC channels to the eavesdropper. This fact leads
to higher achievable secrecy rates by the ESA scheme. The
second improvement of the ESA scheme with respect to the
SBA scheme is that the average power constraints associated
with the ESA scheme do not involve any channel coefficients,
whereas those associated with the SBA scheme involve the
gains of the eavesdropper channel which, in turn, result in
inefficient use of transmit powers. However, it is noteworthy
that SBA scheme holds one practical advantage over the ESA
scheme that actually does not appear in the achievable rates by
the two schemes. Namely, in the SBA scheme, we do not wait
for favorable channel conditions for alignment since repetition
is done over consecutive time slots. On the other hand, in the
ESA scheme, one should wait for the proper channel conditions
before repetition takes place. The waiting time required to
match up the channel states is an important performance factor
for the ESA scheme in practice.

In addition, we introduce an improved version of our second
scheme in which we use CJ on top of the ESA scheme to
achieve higher secrecy rates. Moreover, since the rate expres-
sions achieved by the ESA scheme (with and without CJ) and
their associated average power constraints are simpler than
their counterparts in the SBA scheme, we derive the necessary
conditions on the optimal power allocations that maximize the
sum secrecy rate achieved by the ESA scheme when used alone
and when used together with CJ. Since the achievable secrecy
sum rate, in general, is not a concave function in the power
allocation policy, the solution of such optimization problem
may not be unique. Hence, we obtain a power allocation policy
that satisfies the necessary (but not necessarily sufficient)
Karush—Kuhn-Tucker (KKT) conditions of optimality.

We provide numerical examples that illustrate the scaling of
the sum rates achieved by the proposed schemes with SNR and
the saturation of the secrecy sum rate achieved by the i.i.d.
Gaussian signaling scheme with CJ. We also give numerical ex-
amples for the secrecy sum rates achieved by the ESA scheme
with and without CJ when power control is used.

Finally, we discuss the extension of the SBA and the ESA
schemes to the case of K-user fading MAC-WT channel for
K > 2. We show that each of the two schemes achieves a total
of % secure DoF which is the same total secure DoF shown in
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[15] to be achievable for the K -user Gaussian scalar MAC-WT
for almost all channel gains using the real interference align-
ment technique.

II. SYSTEM MODEL

We consider the two-user fading multiple access channel with
an external eavesdropper. Transmitter k£ chooses a message Wy,
from a set of equally likely messages Wy = {1,...,22 "}
k = 1, 2. Every transmitter encodes its message into a code-
word of length 2n symbols. The channel output at the intended
receiver and the eavesdropper at the symbol interval ¢ are given
by

Yy =h1e X1t + hot Xoy + Ny
Zy = guXit + g2 Xor + N{

ey
@)

where, for £ = 1, 2, Xy, is the input signal at transmitter k at
channel use ¢, hy, gi: are the channel coefficients at channel
use ¢t between transmitter k£ and the intended receiver and the
eavesdropper, respectively. We assume a fast fading scenario
where the channel coefficients randomly vary from one symbol
to another in i.i.d. fashion. Also, we assume the independence
of all channel coefficients hy; and g, for all k, t. Each of the
channel coefficients is a circularly symmetric complex Gaussian
random variable with zero-mean. The variances of hy; and gg;
are o, and o, respectively, for all ¢. Hence, |hx|* and |gre |
are exponentially distributed random variables with mean o,%k
and of]k , respectively. Moreover, we assume that all the channel
coefficients are known to all the nodes in a causal fashion. In
()=(2), Ny and N/ are the independent Gaussian noises at the
intended receiver and the eavesdropper, respectively, and are
i.i.d. (in time) circularly symmetric complex Gaussian random
variables with zero-mean and unit-variance. For the rest of this
paper, we will drop the time index ¢ for notational convenience
unless it is clearly stated otherwise. We have the usual average
power constraints

B Xi] < P, k=1,2. 3)

A (227F1 22nR2 9n) code for this channel consists of two
encoders ¢y, k = 1, 2 which maps a message W € Wy to
a sequence of complex numbers X?", and a decoder 1) which
maps the received sequence at the main receiver Y2 and the
channel state sequences h2", h2", g?", g2" to an estimate of
the message pair (Wy,W,) € W; x W,. The probability
of error is P?" = Pr ((Wl,Wg) # (Wy, Wz)) A rate pair
(R1, Ry) is said to be achievable with perfect secrecy if there
is a (22781 22782 9n) code satisfying lim,, .., P2" = 0 and
limy, oo 51 (W1, Wa; Z2"[R3", h3", gi", g3") = 0.

III. PREVIOUSLY KNOWN RESULTS

Here, we summarize previously known results that are rele-
vant to our development. For the general discrete-time memo-
ryless MAC-WT, the best known achievable secrecy rate region
[7]-[9] is given by the convex hull of all rate pairs (R, R2) sat-
isfying

Ry <I(V;Y|\Vo)—I(Vy; Z)
RQ SI(VQ,Y“/I) — I(‘/g, Z)

“
&)
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Ri+ Ry <I(V1, Va3 Y) = I(V1, Va3 Z) (6)
where the distribution p(z1,22,v1,v92,y,2) factors as
p(v1)p(@1|v1)p(v2)p(22|v2)p(Y, 2|21, 2).

Known secrecy rate regions for the Gaussian MAC-WT can
be obtained from these expressions by appropriate selections
for the involved random variables. For instance, the Gaussian
signaling-based achievable rates proposed in [7] are obtained
by choosing X; = V; and X, = V%, i.e., no channel prefixing,
and by choosing X; and X5 to be Gaussian with full power. On
the other hand, CJ-based achievable rates proposed in [8] are
obtained by choosing X; = V; + 11 and Xy = Vo 4+ T, and
then by choosing Vi, Vs, Ty, T5 to be independent Gaussian
random variables [9]. Namely, for £ = 1, 2, V} and T}, are
Gaussian random variables with zero mean and variances Pj,
and @y, respectively. Here, V; and V5 carry messages, while
T, and T, are jamming signals. The powers of (V,T}) and
(Va,Ty) should be chosen to satisfy the power constraints of
users 1 and 2, respectively. These selections yield the following
achievable rate region for the Gaussian MAC-WT [8]:

|ha|* Py >
1 + |}L1|2Q1 + |}L2|2Q2
91> Py )
—log {1+ 7
g( L+ 9112Q1 + [g2* (P2 + Q2) @
|h2|2P2 >
14 |h1|2Q1 + |h2|?Q2
|g2|” P )
—log |1+ 8)
g( L+ g1]2(P + Q1) + [92/%Q2 ¢
|h1|2 Py + |ha|? Py )
1 + |}L1|2Q1 + |}L2|2Q2
l91]2P1 + |g2|* P2 )
—log |1+ 9
g( 51070 +I9oP@s )

where the powers of the signals must satisfy

R; < log <1+

R, < log <1+

R1+R2§10g<1—|—

Pe+Qr <Py k=12 (10)
where Pj, and @Qj, are the transmission and jamming powers,
respectively, of user k.

The ergodic secrecy rate region achieved by Gaussian
signaling and CJ for the fading MAC-WT can be expressed
similarly by simply including expectations over fading channel

states [18]

Ry < Ep ¢! log (1 + | Py )
- e 14 |h1|2Q1 + |h2)?Q2
lg1> Py )
—log |1+
. ( 14+ 9112Q1 + |g22(P2 + Q2)
(11)
|}L2|2P2 )
Ry < F; log [ 1+
2= hvg{ g< 14 |h1|2Q1 + |h2]?2Q2
|92|2P2 )
—log |1+
g( L+ 9 P(Py + Q1) + 1921 Qs
(12)
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|h1|? Py + |ho|? P, )

Ry + Ry < Fn g log 1+
1 2 < h,g{ Og( L+ [h1]2Q1 + |h2|?Q2

9112 Py + |22 P, >
1+ 19112Q1 + |92/?Q2
(13)

— log <1+

where h = [h; ha]T, g = [g1 ¢2]7, and the instantaneous
powers Py, and ), which are both functions of h and g, satisfy

E[P.+ Qi) < Py, k=1,2 (14)

IV. SCALING BASED ALIGNMENT (SBA)

In this section, we introduce a new achievable scheme for the
fading MAC-WT. Our achievable scheme is based on code rep-
etition with proper scaling of the signals transmitted by each
transmitter. This is done as follows. For the channel described
in (1) and (2), we use a repetition code such that each trans-
mitter repeats its channel input symbol twice over two consec-
utive time instants. Due to code repetition, we may regard each
of the MACs to the main receiver and to the eavesdropper as a
vector MAC composed of two parallel scalar MACs, one for the
odd time instants and the other for the even time instants. Con-
sequently, we may describe the main receiver MAC channel by
the following pair of equations:

Ya :hloXl + h20X2 + Na
Ye :hleXl + h2eX2 + Ne

15)
(16)

where, fork = 1, 2, h,, hie are the coefficients of the k£th main
receiver channel in odd and even time instants, Y,, Y, and IV,
N, are the received signal and the noise at the main receiver in
odd and even time instants. In the same way, we may describe
the eavesdropper MAC channel by the following pair of equa-
tions:

Zo =g10X1 + 920X2 + N,
Ze =91 X1+ g2e X2 + N,

a7
(13)

where for k = 1, 2, gro, gre are the coefficients of the kth
eavesdropper channel in odd and even time instants, Z,, Z. and
N,, N, are the received signal and the noise at the eavesdropper
in odd and even time instants.

Since all the channel gains are known to all nodes in a causal
fashion, the two transmitters use this knowledge as follows.
In every symbol instant, each transmitter scales its transmit
signal with the gain of the other transmitter’s channel to the
eavesdropper. That is, in every symbol duration, the first user
multiplies its channel input with g2, the channel gain of the
second user to the eavesdropper, and the second user multiplies
its channel input with g, the channel gain of the first user to the
eavesdropper. Hence the main receiver MAC can be described
as

)/0 = hlag2oX1 + h?ogloXQ + No (19)

Ye = hleQZﬁXl + h?egleXZ + NF, (20)
and the eavesdropper MAC can be described as

Zo = 910920 X1 + 910920 X2 + N, 2D
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Ze :glﬁ,QQQXl + !he!]?eXQ + Nle~ (22)

It is clear from (19) and (20) that the space of the received signal
(without noise, i.e., high SNR) of the main receiver over the two
consecutive time instants is 2-D almost surely. In other words,
the channel matrix of the main receiver vector MAC is full-rank
almost surely. This is due to the fact that the channel coefficients
are drawn from continuous bounded distributions. On the other
hand, it is clear from (21) and (22) that the channel matrix of the
eavesdropper vector MAC is unit-rank. That is, the two ingre-
dients of our scheme, i.e., code repetition and signal scaling, let
the interfering signals at the main receiver live in a 2-D space,
while they align the interfering signals at the eavesdropper in
a 1-D space. As we will show in the Section VI, these proper-
ties play a central role in achieving secrecy rates that scale with
SNR.

Let h, = (hio, h2,) and h. = (hy,, hae). We define g, and
ge in the same way. For & = 1, 2, we define the power alloca-
tion policy of transmitter & as a mapping P, : C* — R, which
maps (h,, g,) to a nonnegative real number Py, (h,, g,) which
is the power of transmitter & in the odd time slot for which the
values of channel gains are (h,, g,). Note that due to symbol
repetition, Py is a function of (h,,g,) only and does not de-
pend on (h,, g.). To simplify notation, we will use P, to denote
Py, (h,, g,) since this dependence on channel gains is implicitly
understood. We note that, due to signal scaling at the transmit-
ters, the average power constraints become

E [(|920|2 + |.(725|2) P1] <P
E [(|glo|2 + |gle|2) PZ] S p2~

(23)
(24)
Now, we evaluate the secrecy rate region achievable by our

SBA scheme. Given the vector channels (19), (20) and (21),
(22), the following secrecy rates are achievable [7]-[9]:

1
RBi<g [[(X1;Yo,Ye| X2, h,g) — [(X15Z,, Ze|h,g)]  (25)
1
Ry <35 [[(X2:Y,,Ye|X1,h,g) — I(X2;Z,, Ze|h,g)]  (26)
1
R1+R2§g[I(Xl,Xz;Yo,Ye|h,g)—l(X1,X2;Zo,Ze|h,g)]
27

where h = (h,,h.) and g = (g,, g.). These expressions for
achievable rates follow from (4)—(6) by treating channel states as
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outputs at the receivers, and noting the independence of channel
inputs and channel states. We note that the factor of % on the
right-hand sides of (25)—(27) is due to repetition coding. Now,
by computing (25)-(27) with Gaussian signals, we obtain the
secrecy rate region given in the following theorem.

Theorem 1: For the two-user fading MAC-WT, the rate
region given by all rate pairs (Ry, Ry) satisfying constraints
(28)—(30), shown at the bottom of the page, is achievable with
perfect secrecy where Py, P, are the power allocation policies
(as defined above) of users 1 and 2, respectively, that satisfy

E [(lg20 + lg2¢|?) P1] < Py
E[(lg10l* + 91c?) P2] < Py

€1y
(32)

where P; and P, are the average power constraints.

V. ERGODIC SECRET ALIGNMENT (ESA)

After we have devised the SBA scheme, the ergodic interfer-
ence alignment scheme of Nazer et al. [19] inspired us to pro-
pose an improved achievable scheme. In this section, we dis-
cuss this scheme which we call ESA. The new ingredient in this
scheme is to perform repetition coding at two carefully chosen
time instances as opposed to two consecutive time instances as
we have done in Section IV.

For the MAC-WT described by (1) and (2), we use a repeti-
tion code in a way similar to the one in [19]. The simple idea of
the scheme is that we repeat each code symbol in the time in-
stant that holds certain channel conditions relative to the those
conditions in the time instant where this code symbol is first
transmitted. Namely, given a time instant with the main receiver
channel state vector h = [hy hs]T and the eavesdropper channel
state vector g = [g1 g2]”, where the symbols X; and X, are
first transmitted by the two transmitters, we will solve for the
channel states h = [hy ho]T and g = [§1 go]”, where these
symbols should be repeated again, such that the resulting se-
crecy rates achieved by Gaussian signaling are maximized.

The aforementioned description is an intuitive description
that gives the idea of the scheme which is based on the con-
cept of ergodic interference alignment introduced in [19]. A
rigorous description and proof follow the arguments in [19].
In particular, the idea of the proof [19] is first to quantize the
channel coefficients and deal with the quantized coefficients
rather than dealing with the original coefficients defined over

1
R < §Eh,g {10g (14 (|h10920]> + |h1eg2e|?) P1) — log (1 +

2

1
Ry < -Fnpg {log (1+ (|h2og10l® + |h2egic]?) P2) — log <1 +

(|910920| + |91e92¢|?) P1

28)
1+ (|.(710920|2 + |gleg2€.|2)P2> } (

(|910920|2 + |gleg2e|2)P2 ) } (29)
L+ (I9109201 + [9192¢1?) P1

1
Ri+R,< §Eh,g{log (1-1- (|h10g20|* +|h1eg2e)?) Pi+ (|h2ogiol® +|hoegicl?) P2+|hlehzoglogze—h1ohze.qls.q2o|2P1P2>

- log (1 + (|g10.(720|2 + |.‘heg28|2) (Pl + PZ) ) }

(30)
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the whole complex plane. Then, one can show that those quan-
tized channel coefficients of the same type (distribution) could
be paired with another set of quantized channel coefficients of
a symmetric type. Consequently, one can derive the achievable
rate when such pairing between symmetric types is employed.
Finally, using the continuity of the achievable rate as a func-
tion in channel coefficients, one can argue that by decreasing
the quantization bin size, one can approach the desired rate for
the original channel (with complex coefficients) in the limit. The
detailed proof is found in [19].

Due to code repetition, we may regard each of the MACs
to the main receiver and to the eavesdropper as a vector MAC
composed of two parallel scalar MACs, one for each one of the
two time instants over which the same code symbols X; and
X, are transmitted. Consequently, we may describe the main
receiver MAC channel by the following pair of equations:

Yi=hXi+h X0+ M
Y2 = thl + h2X2 + N2

(33)
(34)

where Y7, Y and N1, N» are the received symbols and the noise
at the main receiver in the two time instants of code repetition. In
the same way, we may describe the eavesdropper MAC channel
by the following pair of equations:

Z1 =1 X1+ g2Xo + Ny
Zy =1 X1+ g2Xo 4+ N;

(35)
(36)

where Z1, Zs and N1, N} are the received symbols and the noise
at the eavesdropper in the two time instants of code repetition.
For k = 1, 2, we define the power allocation policy P, of trans-
mitter k£ in a way similar to the way it was defined in the SBA
scheme. Namely, it is defined as a mapping P, : C* — R,
which maps the values of the channel gains (h, g) to a nonneg-
ative real number Py, (h, g) which is the power of transmitter
when the channel gains take the values (h, g). Again, to simplify
notation, we will use Py, to denote Py (h, g) since this depen-
dence on channel gains is implicitly understood.

In the next theorem, we give another achievable secrecy rate
region for the two-user fading MAC-WT. The achievable region
is obtained using (25)—(27) and replacing (Y, Y.) and (Z,, Z.)
with (Y1,Ys) and (Z1, Z2), respectively, and evaluating these
expressions with Gaussian signals, and by choosing optimal
h = (h1,he) and § = (g1,g2) to maximize the achievable
rates. As we will show shortly as a result of Theorem 2, the op-
timal selection of h and g will yield an orthogonal MAC to the
main receiver and a scalar MAC to the eavesdropper. In writing
the achievable rate expressions, we will again account for code
repetition by multiplying achievable rates by a factor of %

Theorem 2: For the two-user fading MAC-WT, the rate re-
gion given by all rate pairs (R, R2) satisfying the following
constraints is achievable with perfect secrecy:

1 2|g1]* Py
Ri<-F log(1+2|he|?P;) =1 1+ —
=2 “’g{og( AN °g<+1+2|g2|2P2
(37)
1 2|ga|* P
<-F I 142 2p,) -1 1+—
R2_2 h,g{(’g( +2|ha|*Ps) 0g< +1+2|gl|2p1
(38)
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1
Ri+Ry< 5}z7h,g{1og (142|h1 [P Pr) +log (1+2[ho|* P2)

—log (L4 2(|g1/*P1 + |g2|*P»)) }
(39)

where P; and P; are the power allocation policies of users 1 and
2, respectively, and are both functions of h and g in general (as
defined previously). In addition, they satisfy the average power
constraints

ElP
ElP

Proof: First, consider the two vector MACs given by
(33)—(36). Observe that as in [19], h must be chosen such that
it has the same distribution as h and g must be chosen such
that it has the same distribution as g. The reason for this can be
understood from the idea of the proof in [19] discussed earlier
in this section. Indeed, in the quantized channel, in order for the
pairing between channel coefficients at two different instants to
be possible, the values of the channel coefficients at the two time
instants must occur with the same probability. That is why we
require that h and g to have the same distributions as h and g,
respectively. Now, since h ~ CN/(0, Bh) and g ~ CN(0,B,)
where B, = diag(o}, , U}ZLZ) and B, = diag(o ,02,), then
in order to achieve the requirement above it follows from the
symmetry property of the complex Gaussian distribution that
the channel realizations h and g must be paired with the channel
realizations h and g, respectively, that are related as h = Uh
and g = Vg for some unitary matrices U and V (rotations in
C?). Furthermore, for such rotations to preserve the variances
of the 1nd1V1dua1 components of h (i.e., crhl,ahz) and of g
(ie. 02, ,0¢,), we must have U = d1ag(exp(g€1) exp(jf2))

dlag(exp(le), exp(jwsz)) for some 61, O3, w1,

(40)
(41)

’ﬁ\ oo

1]
2]

VANVAN

and V =
wg € [0,27). Then, it follows that (33)—(36) can be written as

Y1 =Xy + hoXo + Ny (42)
Yy =hie’” X1 + hoe? X5 + N (43)
71 =91 X1+ g2 X2+ N (44)
Zy = g17' X1 + goe?*? X5 + NJ. 45)

Using (25)—(27) and replacing (Y,,Y.) and (Z,,Z.) with
(Y1,Y2) and (71, Z3), respectively, and computing these
achievable rates with Gaussian signals, we get (46)—(48),
shown at the bottom of the next page, where § = 0> — 6; and
W = Wy — Wq.

Hence, the largest achievable secrecy rate region (46)—(48) is
attained by choosing # = 7 and w = 0. This can be achieved
by choosing #; = 0 and f> = 7 and by choosing w; = ws = 0.
Consequently, we have h = [hy — h3]T and g = [g1 ¢2]7. By
substituting these values of # and w in (46)—(48), we obtain the
region given by (37)—(39). [ ]

Therefore, when using the ESA technique, the best choice for
hy and hy is such that h is orthogonal to h and that ||| = ||h]|,
and the best choice for g; and g» is such that g and g are linearly
dependent and that ||g|| = ||g]|, i.e., & = g. This choice makes
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the vector MAC between the two transmitters and the main re-
ceiver equivalent to an orthogonal MAC, i.e., two independent
single-user fading channels, one from each transmitter to the
main receiver. This equivalent main receiver MAC channel can
be expressed as

Yl =2 X + Nl
YQ = 2}L2X2 + NQ

(49)
(50)

where Yl = Yl + YQ, YZ = Yl — YQ, Nl = Nl + Ng, and
Ny = N7 — Ny. Note that N; and N are independent. On the
other hand, this choice makes the vector MAC between the two
transmitters and the eavesdropper equivalent to a single scalar
MAC. This equivalent eavesdropper MAC channel can be ex-
pressed as

Z1 =291 X1 + 292 X5 + N} (51)
Zy =N} (52)
where Z1 = Z1 + Z2, Z2 = Z1 Zg, Nl Nl + NZ’ and

N4 = N{ — N}. Note again that N1 and N, are independent.
Note that, here, the second component of the eavesdropper’s
vector MAC is useless for her (i.e., leaks no further informa-
tion than the first component) as it contains only noise. This
selection of the repetition channel state yields a most favorable
setting for the main receiver and a least favorable setting for the
eavesdropper.

VI. DEGREES OF FREEDOM (DOF)

In this section, we show that the secrecy sum rates achieved
by our schemes scale with SNR as £ log(SNR) and that the se-
crecy sum rate achieved by the CJ scheme given in [18] does
not scale with SNR. What we give here are rigorous proofs
for intuitive results. Since by looking at (30) and (39), one can
note that, if we assume that P, = P, = P, then if we take
P, = P, = P, as P becomes large, roughly speaking, in (30)
the first term inside the expectation grows as log(?) while the
second term grows as log(P) and hence the overall expression
grows as 5 11og(P); and similarly, in (39), all three terms inside
the expectation grow as log(P) and hence the overall expres-
sion grows as 3 log(P). In the same way, by considering the
secrecy sum rate achieved by the CJ scheme given in (13), then
by referring to the power allocation policies given in [18], one
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can also roughly say that for all channel states, as the available
average power goes to infinity, the overall expression converges
to a constant.

For simplicity, we assume symmetric average power con-
straints for all schemes, i.e., we set P, = P, = P in (31)—(32),
(40)—(41), and (14). We also assume that all channel gains
are drawn from continuous bounded distributions and that all
channel gains have finite variances. Let R be the achievable
secrecy sum rate, then the total number of achievable secure
DoF, 7, is defined as

77_ lim (53)

P—oo log(P)

We start by the DoF analysis of our proposed schemes, i.e., the
SBA scheme and the ESA scheme, where we show that the sum
secrecy rates obtained by these schemes achieve % secure DoF,
then we provide a rigorous proof for the fact that the scheme of
[18] which is based on i.i.d. Gaussian signaling with CJ achieves
a secrecy sum rate that does not scale with SNR, i.e., achieves
zero secure DoF.

A. Secure DoF With the SBA Scheme

We make the following choices for the power allocation poli-
cies P; and P, of the SBA scheme. We set P, = ﬁP,
P, = 5——P. It can be verified that these choices satlsfy the
power constralnts (31)—(32). Denoting the expression inside the
expectation in (30) by fp(h, g), the secrecy sum rate achieved
using the SBA scheme can be written as

1
R, = Eng{fr(h.g)}. (54)
Hence, the total achievable secure DoF is given by
1. fP(h7 g)
=— lim E . 55
=5 pii Phe [ log(P) (53)

Now, we show that, for the two-user fading MAC-WT, a total
number of secure DoF n = % is achievable with the SBA
scheme. Toward this end, it suffices to show that the order of the
limit and the expectation in (55) can be reversed. To do this, we
make use of Lebesgue dominated convergence theorem. Now,
we note that for large enough P, flg é?bg)) is upper bounded by
1(h, g) given by (56), shown at the bottom of the next page.

1o 4 g1 PP A 2(1 = cos(w))|gr*lga* P Py
1< = 1 2|k |*Py) =1 46
=3 {Og 2R °g< 1+ 2P (40)

1 4 2g2l Py 4 2(1 = cos(w))|g[*]gal* P21 Py
2 < = 2|hs|*P,) —1 47
< 2 { 1+ 2/ho|* P,) 0g< 1520 PPy 47)

Ly
Ri+ By < By {log( + 2|h1 PPy + 2[ho|* Py + 2(1 — cos(6))|h1|?|ha|* P Py)

—10g(1+ 2|91 Py + 2ol Pa + 2(1 = cos(w))la1 2|92 2P P2) } (48)
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Hence, using the fact that all channel gains have finite variances
together with Jensen’s inequality, we have

Eng[i(h,g)] < oo (57)
Thus, by the dominated convergence theorem, we have
. fP(hg) : fP(h,g)
lim £ —=| =F lim ——=%| =1. (58
Pl he [ log(P) he | pl0% TTog(P) 58)

1

Hence, from (55), we have n = 35

B. Secure DoF With the ESA Scheme

We show that the ESA scheme achieves = % secure DoF
in the two-user fading MAC-WT. Here, we also use a con-
stant power allocation policy for the ESA scheme where we set
Py = P, = P for all channel states. Clearly, this constant
policy satisfies the average power constraints (40)—(41). De-
noting the expression inside the expectation in (39) by fp(h, g),
the achievable secrecy sum rate, R, is given by

1 .
R, = Bug {fr(hg)}. (59)
Hence, the total achievable secure DoF is given by
1. fP (h7 g)
=— lim FE 60
=5 P he | og(P) (60)
We note that for large enough P, ]‘11; g(l(}g)) < LE(h, g) where

Y(h,g) =6+ log (14 2[h1|?) +log (1 4 2|ha?)

+1log (142 (|g1]* + |g2]%)) - (61)

Again, using the fact that all channel gains have finite variances
together with Jensen’s inequality, we have
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achievable rate does not scale with SNR. We start with the se-
crecy sum rate given by the right-hand side of (13). According to
the optimal power allocation policy described in [18], fork = 1,
2, we cannot have P, > 0 and Q@ > 0 simultaneously. More-
over, no transmission occurs when |h1| < |g1| and |hz2| < |ga|.
Consequently, according to the relative values of the channel
gains (|h1], |h2], |91], |g2|), there are three different cases left for
the instantaneous secrecy sum rate achieved using the optimum
power allocation where we omitted the case where |h1| < |g1]
and |hs2| < |g2| since no transmission is allowed.

Case 1: (h,g) € Dy where D; = {(h,g) : |h| >
lg1, [h2| > |g2|}. Consequently, @1 = Q2 = 0. Thus, the
instantaneous secrecy sum rate, R (h, g), can be written as

14 |hi|? P + |ha)? P
-}-|L1|2 1-|r|L2|2 2)_ (64)
1+ |g112P1 + [92]* P>

Ry(h, ) = log (

We can upper bound Rs(h, g) as

|ha[? |h2|2)
R,(h,g) <lo <1+
( ) & |91|2 |92|2
hil? ha|?
§10g<1+| 1|2> +10g<1+| 2|2>. (65)
|91 |g2]

Case 2: (h,g) € Dy where D, {(h,g) : [h1] >
l91],1h2| < |g2|}. Consequently, Qy P, = 0. Thus, the
instantaneous secrecy sum rate, Rs(h, g), can be written as

1+ |hy 2P1 + |ho 2Q2
o) = log ({0t e
L+ |g12P1 + 192/° Q2

1 2

L+ [h2]?Q2
We can upper bound R;(h,g) as
) + log <1 +

(66)

) . (67)

|ha|?
lg1/?

|92|2
|ha|?

Ry(h,g) <1+log <1 +

Fng [l[}(hg)} < o0. (62) Case 3: (h,g) € D3 where D3 = {(h,g) : |h]| <
l91],1h2| > |g2|}. Consequently, P, = Q2 = 0. Thus, the
Then, by the dominated convergence theorem, we have instantaneous secrecy sum rate, 12, (h, g), can be written as
. . 2 2
. fr(h, )  fr(hg) Ru(h.g) =1 »(”"“' Q1+ |ha| PZ)
frthe) | frhg) | (h,g) = log
A Png | G0.p) | T B | A 0. (P 1+ g112Q1 + |g2|* P
1 2
) (63) +log (1 911" @1 68)
Hence, from (60), we have n = 5. 1+ |h1]2Q1
C. Secure DoF With i.i.d. Gaussian Signaling With CJ We can upper bound R;(h, g) as
We consider the secrecy sum rate achieved by Gaussian sig- |ha|? lg1|?
naling with CJ [18] in the fading MAC-WT and show that this ~ 10+(1:8) S L+1og { 1+ 7%5 ) +log ( 1+ 5y ). (69)
1 1 a5, +a3, - 2 - 2
p(h,g)=4+2(log(1+—- | +log(1+—- | | +log {1+ 25— ) + 3( Y log(1+|heol*)+ > log(1+|he )
Ugl 092 0!]1 092 k=1 k=1
2 2
+4 (Z log(1+ lgkol*) + D log(1 + lgke|2)) (56)

k=1 k=1
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Now, since the instantaneous sum rate is zero outside Dy U
D5 UDs, then from (65), (67), and (69), the ergodic secrecy sum
rate, 1?5, can be upper bounded as follows:

h 2
| 2|2)) dF
|g2]

h 2
ng/ <log<1+| 1|2)+10g<1+
Dy |91|
h 2 2
+/ <1+log <1+| 1|2>+log <1+ |g2|2>>dF
Jp, |91 |hal

o] |91
+ 1+log |1+ 5 | +log| 1+ 5 ) | dF
JDs lg2] |ha

(70)
where

2
dF = T F(pel®) F(19x*)dlbi*d] g (71)
k=1

where for k = 1,2, f(|hx|?) and f(|gx|?) are the density func-
tions of |y |? and |g|?, respectively. Now, since E[|hy|?] < oo,
Ellgr|?] < oo fork = 1,2, | fol log(z)dz| = log(e) < oo,
| J, log(1 + 2)dz| = 2 —log(e) < oo, and f(|hk[?), f(|gx[?)
are continuous and bounded for k£ = 1, 2, it follows that each
of the three integrals in the aforementioned expression is finite.
Hence, we have R, < oo, and that R, is bounded from above
by a constant. Thus, from definition (53) of the achievable se-
cure DoF, n, we have

S

=0.

n = lim

P—oo log(P) (72)

VII. ESA SCcHEME WITH CJ

The result given in Theorem 2 can be strengthened by adding
the technique of CJ to the ESA scheme of Section V. We refer to
the resulting scheme as ESA/C]J. This is done through Gaussian
channel prefixing as discussed in Section III. In particular, we
choose the channel inputs in (33)-(36) to be X1 = V3 + T}
and Xs = V5 + 15, and then choose V7, Vs, 1Y, 15 to be inde-
pendent Gaussian random variables. Namely, for k = 1, 2, V}
and 71}, are Gaussian random variables with zero mean and vari-
ances Py and Qy, respectively. Here, V7 and V5 carry messages,
while T} and T, are jamming signals. The powers of (V7,T7)
and (V3, Ty) should be chosen to satisfy the average power con-
straints of users 1 and 2, respectively. After these selections are
made, the transmitters repeat their channel inputs X; and X5
over two time instants in the same way described in the ESA
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scheme of Section V. In particular, when transmitters 1 and 2
repeat X; and Xo, they repeat their selections of (V;,7}) and
(Va,Ty), respectively. Accordingly, the ESA scheme yield the
achievable rate region given by (73)—(75), shown at the bottom
of the page, where, for k = 1, 2, P}, and ), are the transmission
and jamming power allocation policies, respectively, of user k,
and are both functions of h and g in general. In addition, they
satisfy the average power constraints

E[Pe+ Q] < P, k=1,2, (76)

This achievable rate region, through an appropriate power con-
trol strategy (see Section IX), can be made strictly larger than
the region given in Theorem 2.

VIII. MAXIMIZING SECRECY SUM RATE OF THE ESA SCHEME

In this section, we consider the problem of maximizing the
secrecy sum rate achieved by the ESA scheme as a function
of the power allocations P; and P» of users 1 and 2, respec-
tively. We define aké2|hk|2 and ﬂk§2|gk|2. Then, we define
aé[al a3]T and ﬂé [B1 B2]T. The achievable secrecy sum
rate is given by

1
R, = —Ea“@{ log (1 + a1 Py) + log (1 + as P2)

2
~log (1+ Py + BaP2) }. an
We can write the optimization problem as
max %Eaﬂg{ log (14 a1 Py) +1log (14 asPs)
—log(1+ (P +BP) ) (79
st. Eapg[Pe(a,B)] < Pp, k=12 (79)
Py(a,8) >0, k=1,2, Va,p. (80)
The necessary KKT optimality conditions are
1 +021P1 14 /3115114' B2 P ~(—m)=0 @D
o2 b2 (o i) =0 (82)

1+ asPy 14+61P+ oPs

for some Ak, g > 0, k = 1, 2. It should be noted here that (81)
and (82) are only necessary conditions for the optimal power al-
locations P; and P, since the objective function, i.e., the achiev-
able secrecy sum rate, is not concave in (Pi, P») in general.

2|h1|? Py

2|g1|> Py

1
Ry < iEh,g{ log (1 +

2|ho|? Py

AP N (1 )
1'|‘2|h1|2(91> g< 1+ 2[g112Q1 + 2|g2|* (P2 + Q2) }

(73)

2|g2|* P2

1
Ry < iEh,g{ log (1 +

1 2|hq1 2P
R1+R2§§Eh7g{10g<1+ |hy|* Py

_2haPP N )
1—|-2|h2|2Q2> g< 14 2|g1]2(P1 + Q1) + 2|g2/?°Q2 }

—_— 1 1+ ——F—— 1] -1 1
1+2|}L1|2Q1>+ Og< +1+2|}L2|2Q2) Og( +

(74)

2|hs|? Py 2(lg1>P1 + |g2)* P2)

E T oaria) } 7
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For each channel state, we distinguish between three nonzero
forms that the solution ( Py, P») of (81) and (82) may take. First,
if P, > 0and P, > 0, then p; = pp = 0. Hence, (Py, P») isthe
positive common root of the following two quadratic equations:

a1 (L+5oP) =1 =2 (1+a1P1) (1 + B1 Py + B2 Ps)
(83)

ar(1+ 1P1) — B2 =X (14 aaPo) (1 + 1 P1 + B2 Pa) .
(84)

Since it is hard to find a simple closed-form solution for the
above system of equations, we solve this system numerically
and obtain the positive common root (Py, P»). Secondly, if
Py > 0and P, = 0, then u; = 0. Hence, from (81), P; is
given by

bl ¢<L_L>2+i<i_i>_<i+i>
P R AVCTREY A VR Ve b1 a1
(85)

Third, if P4 = 0 and P> > 0, then us = 0. Hence, from (82),
P; is given by

Pl (L_L>2+i<i_i>_<i+i>
272 B2 az) A \B2 B2 s
(86)
From conditions (81) and (82), we can derive the following nec-

essary and sufficient conditions for the positivity of the optimal
power allocation policies:

p

Py >0, ifandonlyif o — —— > )\ (87

) if and only if oy 0% 55 1 (87)
: . B2

P, >0,  ifandonlyif as— — 2 5 A,.(88

) if and only if o A5 5P 2-(88)

Consequently, according to conditions (87) and (88), we can
divide the set of all possible channel states into 7 partitions such
that in each partition the solution (Py, P») will either have one
of the three forms stated above or will be zero. Hence, the power
allocation policy (P, P») that satisfies (81), (82) and (79), (80)
can be fully described in 7 different cases of the channel gains.
The details of such cases are given in Appendix A.

IX. MAXIMIZING SECRECY SUM RATE
OF THE ESA/CJ SCHEME

In this section, we consider the problem of maximizing the
achievable secrecy sum rate as a function in the power alloca-
tion policies P; and P, when CJ technique is used on top of
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the ESA scheme. Again, we define a, 22|/ |2 and 3,22|gy|2.

Then, we define aé[al )T and ﬂé[ﬂl (2]T. In this case,
the optimization problem is described by (89)—(91), shown at
the bottom of the page.

We first show that, at any fading state, splitting a user’s power
into transmission and jamming is suboptimal, i.e., an optimum
power allocation policy must not have P, > 0 and Q) > O si-
multaneously. We note that whether we split powers or not does
not affect the first three terms of the objective function since we
can always convert jamming power of user k into transmission
power of the same user and vice versa while keeping the sum
P + Q) fixed. Hence, we consider the last three terms of the
sum rate. For convenience, we define

S =log (14 $1Q1 + $2Q2) — log (1 + a1Q1)

— log (1 + QQQQ) . (92)
Consider, without loss of generality, the power allocation for
user 1. We assume that P}, Q)7 is the optimum power allocation
for user 1. We observe that the sign of

a8 _ 01 _ a1
0Q1  1+41Q1+ Q2 14+ a1Qs

does not depend on (). Consider a power allocation P; = Py —
g, Q1 = Q7 + . Hence, we have P, + Q1 = P 4+ Q7 and the
first three terms in the expression of the achievable sum rate do
not change. On the other hand, if (93) is positive, any positive
e results in an increase in the achievable sum rate and jamming
with the same sum power is better. While, if (93) is negative,
then any negative ¢ results in an increase in the achievable sum
rate and transmitting with the same sum power is better. If (93)
is zero, then the sum rate does not depend on (07 and we can set
it to zero, i.e., use the sum power in transmitting. Therefore, the
optimum power allocation will have either P, > 0 or Qj > 0,
but not both.

Suppose that Py, P, 1, and Q2 are the optimal power allo-
cations. Then, the necessary KKT conditions satisfy (94)—(97),
shown at the bottom of the next page, for some A, fig, v > 0,
k = 1, 2. As in Section VIII, we note that (94)—(97) are only
necessary conditions for the optimal power allocations P, P,
@1, and Q- since the objective function, i.e., the achievable
secrecy sum rate, is not concave in (Py, Py, Q1,Q2) in gen-
eral. Therefore, we give power control policies Py, P, 1, and
Q- that satisfy these necessary conditions. That is, we obtain
one fixed point (Py, Py, Q1,Q2) of the Lagrangian such that
(P1, P2, Q1,Q2) satisfies the constraints (90)—(91). The power

(93)

max %Ea.ﬂ{ log(1+ a1(Pr+ Q1)) +1og (14 as(Py+ Q2)) —log (1 + B1(P1L + Q1) + B2 P2 + Q2))

+10g (L+ B1Q1 + (hQ2) — log (1+ a1Q1) — log (1 + 22Q2) |

s.t. Ea,/i’ [Pk(a,ﬂ)+Qk(a,ﬂ)] SPk? k:172
Pk(a7ﬁ>7Qk(a7/8>207 k:172 VOQ/J-'

(89)

(90)
oD
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allocation policy (P1, P2, Q1,Q2) that satisfies (94)-(97) and
(90)—(91) is described in detail in Appendix B.

X. NUMERICAL RESULTS

In this section, we present some simple simulation results.
We also plot the sum secrecy rate achieved using our SBA and
ESA schemes, as well as the i.i.d. Gaussian signaling with co-
operative jamming (GS/CJ) scheme in [18]. First, the secrecy
sum rates achieved by the SBA and the ESA schemes scale with
SNR. Hence, these rates exceed the one achieved by the GS/CJ
scheme for high SNR. Second, the secrecy sum rate achieved
by the ESA scheme is larger than the one achieved by the SBA
scheme for all SNR.

In our first set of simulations, we use a rudimentary power
allocation policy for our SBA and ESA schemes. For the SBA
scheme, we first note, from (30), that the secrecy sum rate
achieved can be expressed as a nested expectation as in (98),
shown at the bottom of the page, where h, = [h1, ha,]7,
he = [hle h2e]T’ 8o = [glo gZO]T’ and 8e = [gle gZe]T~ For
those channel gains h,, g, for which the inner expectation with
respect to h,., g. is negative, we set P = P, = 0. Otherwise,
we set Py = 505 Py and P, = 515 P,. Note that turning off the
powers for some values of the channel gains h,, g, is possible
since P; and P are functions of h,, and g,. Second, note that, if
a power allocation satisfies the average power constraints, then
the modified power allocation where the powers are turned off
at some channel states, also satisfies the power constraints. For
the ESA scheme, we first note, from (39), that the achievable
secrecy sum rate is

1
Ry = 5 Bug{ 1og (1+ 21ha|2P1) +log (1 -+ 20hs[2P,)

—log (1+2(|g1 Py + |92 P»)) } 99)
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Otherwise, we set P, = P, and P, = P». Again, turning the
powers off does not violate power constraints for a power al-
location scheme which already satisfies the power constraints.
For the GS/CJ scheme, we use the power allocation scheme de-
scribed in [18].

In Fig. 1, the secrecy sum rate achieved by each of the three
schemes is plotted versus the average SNR that we define as
3(Py + P). In all simulations, we set 07 = oj = 1.0, we
also take chl = 032 = 0.75. Clearly, the secrecy sum rate
achieved by the GS/CJ scheme saturates as we increase the SNR
while the secrecy sum rate achieved by the SBA and the ESA
schemes grows unboundedly with the SNR. One can also notice,
as discussed earlier, that the secrecy sum rate achieved by the
ESA scheme is larger than the one achieved by the SBA scheme
which is due to the fact that the ESA scheme creates two totally
uncorrelated parallel MAC channels (i.e., orthogonal MAC) be-
tween the transmitters and the main receiver.

Next, in Fig. 2, we plot secrecy sum rates achievable with con-
stant power allocation together with secrecy sum rates achiev-
able with power control for the ESA scheme with and without
ClJ. It is clear here that the secrecy sum rate achieved by the
ESA/CJ scheme (with power control) is larger than the rate
achieved when the ESA scheme is used solely without CJ (with
or without power control). One may also note that, for low SNR,
the GS/CJ scheme still gives better rates than those achieved by
all the proposed schemes which is due to the factor of % in the
rates achieved by the proposed schemes due to code repetition.

XI. SBA AND ESA SCHEMES FOR THE K -USER
FADING MAC-WT CHANNEL

Let Ké{l, ..., K}. We consider the K -user MAC-WT for
which the channel outputs at the intended receiver and the eaves-
dropper are given by

In this case, we set P; = P> = 0 for those values of channel Y = Z hi X, + N (100)
gains for which the difference inside the expectation is negative. rek
a1 5
— — (A1 — =0 94
L+ai(Pr+Q1) 1+4B81(Pr+4 Q1)+ fa(Po+ Qo) (s =) O
a9 /[32
- — (A2 —p2)=0 95)
Lt ax(P+Q2) 14 1P+ Q1)+ Bo(P2+ Q2) Dz =)
a1 h je3 ai
— + - —(M—11)=0 (96)
IL+ai(Pr+Q1) 14+B81(Pr+Q1)+fa(Pe+Q2)  14+61Q1+ Q2 1+ a1y (A1 =)
a2 b2 b2 & (Ma—wm)=0 (97

T+ aaPrt Q2) 14 5Pt Qi)+ Ba(Pat Qo)

14+ 61Q1 + Q2 1+ asQo

1
Rs= 5 En, 8o {Ehe 18e

- IOg (1 + (|glog2o|2 + |gleg2e|2) (Pl + PZ))

log (1+ (|h10920|2+|h’16g26|2) P+ (|h20glo|2+|h2691e|2) P2+|hleh2091og2e_hloh28g16g2o|2P1P2)

(98)

}
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Fig. 1. Achievable secrecy sum rates of the SBA scheme of this paper, the ESA scheme of this paper, and the i.i.d. GS/CJ scheme of [18], as function of the SNR

for two different values of mean eavesdropper channel gain, o7.

7 = ngXk+N’ (101)

kek

where, for k € K, hy., gr, Xx, N, N’ are as defined in Section II.
The average power constraints are given by

E[| X1’ < Pr, keK. (102)

A. SBA Scheme

Here, we use a repetition code in which each transmitter re-
peats its channel input symbol over K consecutive time instants.
Moreover, in every time instant, Vk € X, transmitter £ multi-
plies its channel input by ;s\ (4 9i- Thus, over K consecu-
tive time instants, the channel outputs at the main receiver and
the eavesdropper are given by

Vi=Y hy [[ 9Xe+DN,, 1<j<K (103

kex i€\ {k}
Zj =119 Y Xu+ N, 1<j <K (104)
ek keKX

where Y and Z; denote the observations at the jth time instant
at each of the main receiver and the eavesdropper, respectively,
h;; and g;; denote the channel coefficients at the jth time in-
stant from the +th transmitter to the main receiver and the eaves-
dropper, respectively. Note that due to such scaling at the trans-
mitters, the average power constraints become

K
E Z H l9i;|*Pr| < Py, k€K.
J=liex\{k}

(105)

It is clear from (103) and (104) that the observed signal space
(without noise, i.e., at high SNR) of the main receiver over the
K consecutive time instants is K -dimensional almost surely
whereas that of the eavesdropper is 1-D. Indeed, one can ex-
press (103) and (104) as

Y =HX + N (106)

Z=GX+ N (107)
where X = [Xi,...,X«]". Y = [Yi,...,Yx]",
7 = [Zl,...,ZK]T, H is K x K full-rank matrix of ef-

fective channel gains from the transmitters to the main receiver,
and G is K x K unit-rank matrix of effective channel gains
from the transmitters to the eavesdropper, where the elements
at the jth row and the kth column of H and G are given,
respectively, by

Hjw=hi; ] 94 (108)
1€\ {k}
Gix = [[ 9is- (109)
i€X
Hence, the achievable secrecy sum rate is given by
1

R, = EEH,G{ log (det (I + HSH*))

— log (det (I+ GSG™)) } (110)

where SéCOV(X) = diag (P, ...,
conjugate transpose of the matrix A.

Py ) and A* denotes the
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Fig. 2. Achievable secrecy sum rates for the ESA scheme of this paper, with and without power control, the ESA with cooperative jamming scheme (ESA/CJ

2
O'gA

In fact, the system given in (106) is equivalent to K X K
MIMO channel with independent signaling across the antennas.
Since H is full-rank, such MIMO channel possesses exactly K
DoF. On the other hand, the system given in (107) is equivalent
to K x K MIMO channel with independent signaling across
the antennas and since G is unit-rank, such MIMO channel pos-
sesses exactly 1 DoF. Therefore, while deriving the total secure
DoF achieved by the SBA scheme, conditioned on H and G, the
first term inside the expectation above yields K DoF whereas
the second term inside the expectation yields 1 DoF. Thus, the

total achievable secure DoF is = %

B. ESA Scheme

In order to extend the ESA scheme to the case of more than
two users, i.e., K -user fading MAC-WT channel with K > 2,
we use a repetition code, where each code symbol is repeated K
times over K channel uses. However, unlike the SBA scheme,
repetition is done over channel uses that hold certain conditions
relative to those conditions in the channel use where this code
symbol is first transmitted. For 1 < ¢ < K, let

A
W= [hae, .. hied” (111)

JAN T
ge= [9165- -+, 9Kl (112)
where hre and gi, denote the channel coefficients at the /th
channel use from the kth transmitter to the main receiver and
the eavesdropper, respectively. Following the same steps given
in Section V, one can easily verify that the optimal repetition

scheme) of this paper with power control, and the i.i.d. GS/CJ scheme of [18], as function of the SNR for two different values of mean eavesdropper channel gain,

channel use /, 2 < / < K (relative to the channel use where the
first copy of the symbol is transmitted) must be chosen such that

he = Ushy (113)
g =81 (114)

where
U, Sdiag (1, GJEED eiQ%“—l)(K—l)) (115)

where j = \/—1. Note that, as explained in Section V, the
above argument is based on the proof of the ergodic interference
alignment technique given in [19]. The main idea is to quan-
tize the channel coefficients and then group the sets of coeffi-
cients of symmetric types together. That is indeed tantamount
to grouping {h,, g, : 1 < £ < K} together. Note that in-
deed this is possible due to the circular symmetry of the distri-
bution of the channel coefficients. Then, using the continuity of
the achievable rate as a function in channel coefficients, by de-
creasing the quantization bin size, one can approach the desired
rate in the limit.

According to the selection given by (113) and (114), one can
describe the main receiver and the eavesdropper MAC channels
over such K channel uses by

Yy =h{UX + N, (116)
Zy =gl X+ N, (117)
for / = 1,...,K, where Y, and Z, are the observations at

channel use / at the main receiver and the eavesdropper, re-
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spectively, Ny and NV, lf are the noise values at channel use ¢ at
the main receiver and the eavesdropper, respectively, and X =
[X1,...,X k] where X}, k € K is the channel input of trans-
mitter k.

Using similar argument to the one in Section V, it is easy
to see that the system in (116) is equivalent to an orthogonal
K -user MAC channel where each component of such orthog-
onal MAC channel has unit-variance noise and channel gain
VK hk1, k € K, whereas the system in (117) is equivalent to
1-D MAC channel with unit-variance noise and channel gains
VK gr1, k € K. Hence, the achievable secrecy sum rate is given
by

1
R, = }Ehhgl{ ’gclog (1 + K|hk1|2Pk)

—log <1 + K Z |gk1|2pk) }.(118)

kex

Therefore, by using the same approach of Section VI-B, one
can easily verify that the total secure DoF achievable by the
ESA scheme in the K -user fading MAC-WT channel is indeed

_ K-1
n="r -

XII. CONCLUSION

In this paper, we proposed two new achievable schemes for
the fading MAC-WT. Our first scheme, the SBA scheme, lets
the interfering signals at the main receiver live in a 2-D space,
while it aligns the interfering signals at the eavesdropper in a
1-D space. We obtained the secrecy rate region achieved by
this scheme. We showed that the secrecy rates achieved by this
scheme scale with SNR as 2 log(SNR), i.e., a total of 1 secure
DoF is achievable in the two-user fading MAC-WT. We also
showed that the secrecy sum rate achieved by the i.i.d. Gaussian
signaling with CJ scheme does not scale with SNR, i.e., the
achievable secure DoF is zero. As a direct consequence, we
showed the suboptimality of the i.i.d. Gaussian signaling based
schemes with or without CJ in the fading MAC-WT.

Our second scheme, the ESA scheme, is inspired by the
ergodic interference alignment technique. In this scheme, each
transmitter repeats its symbols over carefully chosen time in-
stants such that the interfering signals from the transmitters are
aligned favorably at the main receiver while they are aligned
unfavorably at the eavesdropper. We obtained the secrecy rate
region achieved by this scheme and showed that, as in the SBA
scheme, the secrecy sum rate achieved by the ESA scheme
scales with SNR as 3 log(SNR). In addition, we introduced an
improved version of our ESA scheme where CJ is used as an
additional ingredient to achieve higher secrecy rates. Moreover,
since the rate expressions achieved with the SBA scheme seem
complicated, while the rate expressions achieved with the two
versions of the ESA scheme (with and without CJ) are more
amenable for optimization of power allocations, we derived
the necessary conditions for the optimal power allocation that
maximizes the secrecy sum rate achieved by the ESA scheme
when used solely and when used with cooperative jamming.
Finally, we discussed the extension of our schemes to the case
of more than two users and showed that, for the K-user fading
MAC-WT, our schemes achieve secrecy rates that scale with
SNR as £=1]og (SNR).
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APPENDIX A
POWER CONTROL FOR THE ESA SCHEME

Here, we discuss the cases of the power allocation policy of
Section VIII.

1) aq S )\1, (6%) —,[32 S )\2 or oy —,[31 S )\1, (6%)) S )\2. In this
case, P; = P, = 0. To prove this, suppose without loss
of generality that a; < A1, as — B2 < Ay, We note that
a1 < Ap implies that oy — % < A1 which, using
(87), implies that P; = 0. Hence, from (88), we must also
have P, = 0. In the same way, we can show that when
ay — PB1 < A1, ag < Ao, we also must have P = P, = 0.

2) ay < A, as — P2 > Ao. Inthiscase, P, = 0and P, > 0
where P» is given by (86). As in the previous case, a; <
A1, using (87), implies that P, = 0. Hence, from (88), we
must have P, > 0.

3) a1 — (1 > A, as < Ao, Inthiscase, P, > 0and P, =0
where P; is given by (85). This case is the same as the
previous one with roles of users 1 and 2 interchanged.

H A < a; < )\1+,81,/\2 < g < )\2+ﬂ2.lnthis
case, the solution (P, P») may not be unique. Namely,
we either have P; > 0 and P, > 0, or we have P, =
P, = 0. This is due to the following facts. It is easy to

see that P, = P> = 0 satisfies ov; — % < A1 and
g — (Hgﬁ < Ao, i.e., satisfies conditions (87) and (88).

It is also easy to see that we can find positive P; and P»
such that a; — (H[# > A1 and o — ﬁin) > Ao,
i.e., there exist positive P; and P, that satisfy (87) and (88).
Hence, the solution ( Py, P») may not be unique. It remains
to show that we cannot have P; > 0, P, = 0or P, = 0,
P> > 0. Suppose without loss of generality that P; > 0,
P> = 0. Hence, we have a1 — (H_’gﬁ =a;— 1 <\
which implies that P, = 0 which is a contradiction. Thus,
we cannot have P; > 0, P, = 0. In the same way, it can
be shown that we cannot have P; = 0, P, > 0. Hence, we
obtain our power allocation policy for this case as follows.
We examine the solution of (83) and (84), if it yields a
real and nonnegative solution (Py, P2)!, then we take it
as our solution (P;, P») for this case. Otherwise, we set
Py =P, =0.

5) M < ay < A+ (1, ag — B2 > Ao. In this case, we must
have P, > 0. However, we either have P; > 0 or P; = 0.
This can be shown as follows. We note that as — B2 > Ao

implies that ay — uﬁ;ﬁ > Ao for any P; > 0. Hence,
by (88), we must have P, > 0. However, we either have
P; > 0 or P, = 0 depending on whether the value of P»
satisfies ar; — % > A1 or not. We obtain our power
allocation policies as follows. We first solve (83) and (84),
if this yields a real and nonnegative solution ( Py, P), then
we take it to be the power allocation values for this case.
Otherwise, we set P; = 0 and P; is obtained from (86).

6) a1 — 1 > A1, A2 < ag < Ay + (2. By the symmetry be-
tween this case and the previous case, we must have P; > 0
while we either have P, > 0 or P, = 0. We obtain our
power allocation policies in a fashion similar to that of case
4 and case 5. In particular, we first solve (83) and (84), if
this yields a real and nonnegative solution (Py, P), then

INote that there is at most one such common root for these two quadratic
equations.
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we take it to be the power allocation values for this case.

Otherwise, we set P, = 0 and P; is obtained from (85).
7) ay — B1 > A1, as — B2 > Ao. Here, we must have P; > 0

and P> > 0. This is due to the fact that a; — By > Ay

and as — B2 > Ao imply that oy — (Hgﬁ > A1 and
ay — (1_#?3#@1) > Ao, respectively. Hence, from (87) and
(88), we must have P; > 0 and P, > 0. The values of P;
and P, are given by the positive common root (P;, P») of
(83) and (84) which, in this case, have only one positive
common root.

APPENDIX B
POWER CONTROL FOR THE ESA/CJ SCHEME

Here, we discuss the power allocation policy of Section IX.
For each channel state, since splitting power between trans-
mission and jamming is suboptimal, we can distinguish be-
tween five nonzero forms that the solution (P, Py, Q1,Q2) of
(94)—(97) may take. First,if P > 0, P, > 0and Q; = Q2 =0,
then p1 = e = 0. Hence, from (94) and (95), we conclude that
(Py, Py) is the positive common root of (83) and (84) which
are found in Section VIII and are rewritten here:

a1 (14 p2P) = fr =M (1 +a1P1) (14 1P+ B2 Pr)
(119)

az (L+BiP1) — B2 =X (1 + o Po) (1 4+ B1P1 + B2 Pa).
(120)

This root can be obtained through numerical solution. Second, if
Py >0,Q2 > 0and P, = Q1 = 0, then 11 = vo = 0. Hence,
from (94) and (96), we conclude that (P, Q2) is the positive
common root of

ar (14 2Q2) = 1 =AM (1 4+ a1 Py) (1 + 1Py + 32Q2)
(121)

Bof1 Py = A2 (14 B2Q2) (14 B1P1 + f20Q2)
(122)

which can also be obtained through numerical solution. Third, if
P, >0,Q; >0and P, = Q2 = 0, then o = 11 = 0. Hence,
from (95) and (97), we conclude that (P», Q1) is the positive
common root of

as (14 61Q1) — B2 =X (1 + aoPs) (1 + 1Q1 + B2P)
(123)

B1BaPy = X1 (14 51Q1) (14 f1Q1 + [21%)
(124)

which again can be obtained through numerical solution. The
fourth nonzero form of (Py, P2, Q1,Q2) is when P; > 0 and
P, = Q1 = Q2 = 0,then u; = 0. Hence, from (94), P; is given

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012

by (85) which is found in Section VIII and will be repeated here
for convenience:

Pl (L_L)2+i(L_L> _ <L+L>
72 B o) A \b1 o B1 a1
(125)
The last nonzero form of (P, Py, Q1,Q2) is when P, > 0 and
P, = Q1 = Q2 = 0, then us = 0. Hence, from (95), P, is
given by (86) in Section VIII and is given here again:

P! (1 1>2+4 (1 1> <1+ 1)
272 Bo ) X \P2 B2 a2
(126)
We obtain the following sufficient conditions on zero jam-

ming powers Q1 and @-. By subtracting (96) from (94) and
subtracting (97) from (95), we get

a1 B
— 4+ —1v1 =0 (127
(40101 145011 B0, (=042

(65 ﬂz

— + s — v =0 (128
14+ a2Q2 14 51Q1+ B2Q2 fz =12 (128)

which, by using the fact that the two users cannot be jamming
together, give the following conditions:

Ql :07
QZ :07

if a; >0
if  ag > fs.

(129)
(130)

Moreover, we obtain necessary and sufficient conditions for the
positivity of power allocations in the possible transmission/jam-
ming scenarios in each channel state. First, when no user jams,
ie., Q1 = Q2 = 0, then from (94) and (95), we obtain the nec-
essary and sufficient conditions (87) of Section VIII which we
repeat here for convenience:

. . B
P >0, f and only if — > A
1 ) I and only 11 (1—|—ﬂ2P2) 1
(131)
. . B2
Py, >0, f and only if — > ).
2 ) I and only 11 @2 (1+51P1) 2
(132)

Second, when user 1 does not jam and user 2 does not transmit,
ie., @1 = P> = 0, then from (94) and (96), we can easily
derive the following necessary and sufficient conditions for the
positivity of the transmission power P, of user 1 and the jam-
ming power (J2 of user 2:

Sl

P, >0, if and only if a3 — ———= > A
1 T 0 R T
(133)
. . B2
>0, if and only if — > s
Q2 yif B2 Ut >
(134)

Third, when user 1 does not transmit and user 2 does not jam,
ie., P, = Q2 = 0, then from (95) and (97), we can similarly
derive the following necessary and sufficient conditions for the
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positivity of the transmission power P of user 2 and the jam-
ming power (); of user 1:

. . B2
Py >0, if and only if ag — ——— > A
’ N 1o R
(135)
. . ot
>0, if and only if - > )1
Q1 yif B 0t mp) > M
(136)

Using conditions (129)—(136) given previously, the power
allocation policy (P, Py, Q1, Q=) that satisfies (94)—(97) and
(90) and (91) can be fully described through the following cases
of the channel gains.

1)

2)

a1 > (1, as > [s.In this case, we must have Q1 = Q5 =
0. This follows directly from (129) and (130). Hence, this
case reduces to one of the 7 cases given in Section VIII de-
pending on the relative values of the channel gains and the
values of A; and A,. We can obtain the power allocations
P; and P; in the same way described in Section VIII.

ay > (1, as < 5. In this case, we must have P, =
@1 = 0. This can be shown as follows. From (129), we
must have Q1 = 0. Suppose P> > 0. Hence, ps = 0.
Since dividing power among transmission and jamming is
suboptimal, then we must have Qo = 0. Since )1 = 0,
then (128) implies ha — g2 > 0 which is a contradiction.
Therefore, P» = 0. The power allocations P, and ()2 are
obtained from one of the following subcases:

a) aq S )\1 or oy — /31 S /\1, /32 S )\Q.We have P1 =
Q> = 0. To see this, note that a; < A; implies that
ap — (1+8)Q ) < ;. Hence, using (133), we must
have P; = 0 and thus ()2 = 0 since we cannot have a
jamming user when the other user is not transmitting.
On the other hand, if B2 < Ag, then it follows from
(134) that Q> = 0. Hence, the fact that a; — 81 < A\q
together with (133) implies that P; = 0.

b) (11—51 > )\1,,[32 < )\Q.WehaveQz =0and P; >0
where P; is given by (125). This can be shown to be
true as follows. Since 2 < Ao, then, using (134), we
must have (o = 0. Hence, from (133) and the fact
that a; — 31 > A in this case, we must have P; > 0.

) A < ay <A+ B, B2 > As. In this case, the solu-
tion (P;,Q2) may not be unique. Namely, we either
have P; > 0 and Q)2 > 0, or we have P; = Q2 = 0.
This is due to the following facts. It is easy to see

that P, = Q2 = 0 satisfies oy — % < )\
and 3y — (Hfi—zlPl) <)o, i.e., conditions (133) and

(134). It is also easy to see that we can find posi-
tive P, and Q- that satisfy a; — (HZ—IQ) > A\ and
B2 — 1+ﬂ1P1) > Ag, i.e., conditions (133) and (134).
Hence, the solution (P;, Q2) may not be unique. It re-
mains to show that we cannot have P; > 0, Q2 = 0.
Suppose that P, > 0 and )2 = 0. Hence, we have
oy — m = a1 — (1 < A1 which, by (133),
implies that P; = 0 which is a contradiction. Thus,
we cannot have P; > 0 and Q2 = 0. We obtain our
power allocation policies for this case as follows. We
examine the solution of (121) and (122), if it yields a
real and nonnegative solution (Py, ()2), then we take

4) ay < 1, ag < (s In this case, we have P, =

1609

it as our solution (P;,Q2) for this case. Otherwise,
we set P = Q2 = 0.

d) ai;—B1 > A, B2 > Ao. Here, we must have P; > 0.
However, we either have Q5 > 0 or Q3 = 0, i.e., the
solution may not be unique. To see this, we note that
a1 — 1 > A1 implies that a; — (1+27) > Ao for

any (02 > 0. Hence, by (133), we must have P; > 0.

However, we either have Q)3 > 0 or Q2 = 0 de-

pendlng on whether the value of P; satisfies o —

m > \; or not. We obtain our power alloca-

tion policy as follows. We first solve (121) and (122),

if this yields a real and nonnegative solution ( Py, Q2),

then we take it to be the power allocation values for
this case. Otherwise, we set Qs = 0 and P; is ob-

tained from (125).

3) a1 < B, ag > (2. From the symmetry between this case

and the previous case, the power allocation roles can be
obtained in this case by interchanging the power allocation
roles of users 1 and 2 in the previous case. In particular, we
must have P, = Q2 = 0. The power allocations P, and
(21 are given by one of the following subcases:

a) (6%) S /\2 or ,81 S )\1, g — /82 S )\2. We have

=Q1 =0.

b) 81 < A, as—02 > Xs. Wehave Q1 = 0and P> > 0
where P, is given by (126).

c) B1 > A, A2 < as < Ay + [s. In this case, the so-
lution (P, Q1) may not be unique as we either have
Py, > 0and Q; > 0, or have P, = Q5 = 0. There-
fore, we obtain our power allocation policy for this
case by numerically solving (123) and (124), if we
have a real and nonnegative solution (P»,Q1), then
we take it as to be the power allocation values for this
case. Otherwise, we set P, = Q1 = 0.

d) B1 > A1, as — P2 > Xo. Here, we must have P> > 0.
However, we either have 1 > 0 or Q; = 0, i.e.,
the solution may not be unique. We obtain our power
allocation policy as follows. We first solve (123) and
(124), if this yields a real and nonnegative solution
(P2,Q1), then we take it to be the power allocation
values for this case. Otherwise, we set (1 = 0 and
P is obtained from (126).

Ql =0or
P; = Q2 = 0. In order to see this, suppose P, > 0 and
P> > 0. Hence, u1 = pe = 0. Since splitting a user’s
power into transmit and jamming powers is suboptimal,
then we must have Q1 = @2 = 0. Thus, from (127) and
(128), we have h1 > g1 and ho > g which is a contradic-
tion. Therefore, we must have either P; = 0 or P, = 0.
The power allocation policy (P1, P2, Q1,Q2) is given in
the following four sub-cases of channel states:

a) (a1 <ArorfBy < Ag)and (a2 < Axor B < Ap). In
this case, we have P, = P> = Q1 = Q2 = 0. To see
this, first, suppose that P, = (1 = 0. We note that
if a; < Ay then o — m < A1. Hence, using
(133), we must have P; = 0 and thus ()2 = 0 since
we cannot have a jamming user when the other user is
not transmitting. On the other hand, if B2 < Ao, then it
follows from (134) that () = 0. Hence, the fact that
a1 < (i together with (133) implies that P, = 0
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b)

)

d)

Next, suppose that P; = Q2 = 0. Using the fact that
ag < Ag or B < Ap together with conditions (135)
and (136), we can show that P, = Q1 = 0. Therefore,
in this case, we musthave Py = P> = Q1 = Q2 = 0.
(g < Agor B; < A1) and (Ozl > Ay, B > /\2).
We have P, = @1 = 0. The solution (P;, Q2) may
not be unique. In particular, we may have P; > 0,
Q)2 > 0 or have P; = Q5 = 0. To see this, consider
the following argument. Using the fact that ay < Ay
or 51 < Ay, then, as shown in case 4(a), we conclude
that we must have P, = Q1 = 0. Now, we consider
the power allocation policy (P;,Q2). We note that
Py = Q- = 0 satisfies conditions (133) and (134).
On the other hand, we can find positive P; and (0 that
satisfy (133) and (133). Hence, the solution (P, Q=)
may not be unique as we may have P, = @), = 0
or P, > 0, Q2 > 0. It remains to show that we
cannot have P; > 0, Q2 = 0. Suppose that P, >
0 and Q2 = 0. Hence, we have a; — Tl)
a1 — f1 < 0 < Ap which, by (133), implies that
P; = 0 which is a contradiction. Thus, we cannot
have P, > 0 and @2 = 0. Our power allocations
Py and Q5 are obtained for this case as follows. We
solve (121) and (122). If the solution gives a real and
nonnegative common root (P, 2), we take it as our
power allocation values for P; and (. Otherwise, we
set Pl = Qz = 0.
(a; < Apor B < Xg) and (OéQ > A9, 81 > /\1).
By the symmetry between this case and case 4(b),
we have P; = Q2 = 0. Again, in this case, the so-
lution (Ps, Q1) may not be unique. In particular, we
may have P, > 0, Q1 > 0 or have P, = @Q; = 0.
In fact, the power allocation policy in this case, can
be obtained from case 4(b) by interchanging the roles
of users 1 and 2. Our power allocations P> and @4
are obtained as follows in this case. We solve (123)
and (124). If the solution gives a real and nonnega-
tive common root (P, 1), we take it as our power
allocation values for P, and Q1. Otherwise, we set
P, =0, =0.
(a1 > )\1,,82 > A9) and (012 > )\2,,81 > /\1) Here,
again the solution (Py, P>, Q1,Q2) is not unique as
we may either have P; > 0, Q2 > 0, P, = Q1 =0,
OI‘P2>0,Q1>0,P1 QQZO,Ol‘Plz
Q1 Q> = 0. To see this, first, suppose
that P, = Q; = 0 and consider the power allocation
policy (P1,@2). As in case 4(b), we can show that
the solution (P;, Q)2) may not be unique as we may
have P; = Q2 = 0 or P; > 0, Q2 > 0. However, as
shown in case 4(b), we cannot have P; > 0, Q2 = 0.
Next, suppose that P} = Q)2 = 0 and consider the
power allocation policy (P>, Q1). As in case 4(c), we
can show that the solution ( P2, 1) may not be unique
as we may have P, = Q1 = 0or P, > 0,Q; > 0.
However, we cannot have P>, > 0, (); = 0. We obtain
our allocation policy (P1, Pz, Q1,Q2) as follows. Let
us denote the solution of (121) and (122) together by
solution A and denote the solution of (123) and (124)
together by solutionB.
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i) If solution A yields a real nonnegative ( Py, )2)
while solution B does not yield real nonnega-
tive (P2, Q1), then we take (P;, Q2) to be the
power allocation values for users 1 and 2, re-
spectively, and set P» = Q1 = 0.

If solution B yields a real nonnegative (P, Q1)
while solution A does not yield real nonnega-
tive (P1,@2), then we take (P3, Q1) to be the
power allocation values for users 2 and 1, re-
spectively, and set P; = Q2 = 0.

If neither solution A nor solution B gives real
nonnegative common root, then we set P; =
P,=Q1=Q2=0.

If both solutions A and B yield a real nonneg-
ative common root, then we either choose the
root given by solution A4, i.e., (P;, Q2), and set
P, = @1 = 0, or choose the root given by so-
lution B, i.e., (P2, Q1), and set P, = Q2 = 0.
‘We make the choice that maximizes the achiev-
able instantaneous secrecy sum rate.

ii)

iif)

iv)
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