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Euclidean and Hermitian Self-orthogonal Algebraic
Geometry Codes and Their Application to Quantum

Codes
Lingfei Jin and Chaoping Xing

Abstract—In the present paper, we show that if the dimension
of an arbitrary algebraic geometry code over a finite field of
even characters is slightly less than half of its length, then it
is equivalent to an Euclidean self-orthogonal code. However, in
the literatures, a strong contrition about existence of certain
differential is required to obtain such a result. We also show
a similar result on Hermitian self-orthogonal algebraic geometry
codes. As a consequence, we can apply our result to quantum
codes and obtain quantum codes with good asymptotic bounds.

Index Terms—Algebraic geometry codes, Euclidean self-
orthogonal, Hermitian self-orthogonal, Quantum codes

I. I NTRODUCTION

Classical Euclidean self-orthogonal codes have been exten-
sively studied due to their nice algebraic and combinatorial
nature [17], [18]. Various constructions of classical Euclidean
self-orthogonal codes have been studied through algebraicand
combinatorial tools [6], [7], [12]. In recent years, this topic has
become increasingly interesting due to application to quantum
codes [1], [2], [5], [10], [11], [13]. For application to quantum
codes, one is interested in not only classical Euclidean self-
orthogonal codes but also some other types of self-orthogonal
codes such as Hermitian and simplectic self-orthogonal codes.

One good candidate for self-orthogonal codes is algebraic
geometry codes. For instance, in [27], it is shown that algebraic
geometry codes from a certain optimal tower are equivalent to
Euclidean self-orthogonal codes. Unfortunate, this is nottrue
for an arbitrary algebraic geometry codes in general. In fact,
it requires a very strong condition in order that an algebraic
geometry code is Euclidean self-orthogonal.

In this paper, we construct both Euclidean and Hermitian
self-orthogonal codes through algebraic geometry codes. More
precisely, we show that an arbitrary algebraic geometry code
with dimension slightly less than half of its length over a
finite field of characteristic2 is Euclidean self-orthogonal.
Furthermore, it is shown that an arbitrary algebraic geometry
code with dimension slightly less than half of its length
over a finite field of arbitrary characteristic is Hermitian self-
orthogonal when its tensor product is considered (see the
details in ).

The paper is organized as follows.
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II. PRELIMINARY

To construct self-orthogonal algebraic geometry codes, we
need to recall some basic definition and results of algebraic
curves and algebraic geometry codes. The reader may refer to
[26], [28]

Let X be a smooth, projective, absolutely irreducible curve
of genusg defined overFq. We denote byFq(X ) the function
field of X . An element ofFq(X ) is called a function. The
normalized discrete valuation corresponding to a pointP of
Fq(X ) is written asν. A pointP is saidFq-rational ifP σ = P
for all σ in the Galois groupGal(Fq/Fq). Likewise, a divisor
G =

∑

P mpP is saidFq-rational if Gσ =
∑

P mPP
σ = G

for all σ in the Galois groupGal(Fq/Fq).
For an Fq-rational divisor G, the Riemann-Roch space

associated toG is

LFq
(G) = {f ∈ Fq(X ) : div(f) +G ≥ 0} ∪ {0}

Then LFq
(G) is a finite-dimensional vector space overFq

and we denote its dimension byℓ(G). By the Riemann-Roch
theorem we have

ℓ(G) ≥ deg(G) + 1− g

where the equality holds ifdeg(G) ≥ 2g − 1.
We can also consider the tensor product ofLFq

(G) with
Fq2 , denoted byLF

q2
(G), i.e.,

LF
q2
(G) = LFq (G)⊗FqFq2 = {f ∈ Fq2(X ) : div(f)+G ≥ 0}∪{0}.

ThenLF
q2
(G) is a vector space overFq2 of dimensionℓ(G).

Let P1, . . . , Pn be pairwise distinctFq-rational points of
X and D = P1 + · · · + Pn. Choose anFq-rational divisor
G in X such thatsupp(G)

⋂

supp(D) = ∅, and a vector
v = (v1, . . . , vn) such thatvi ∈ (Fq)

∗, (i = 1, . . . , n) . Then
νPi

(f) ≥ 0 for all 1 ≤ i ≤ n and anyf ∈ LFq
(G).

Consider the map

Ψ : L(G) → F
n
q , f 7→ (v1f(P1), . . . , vnf(Pn)).

Obviously the image of theΨ is a subspace ofFn
q . The image

of Ψ is denoted asCL(D,G) which is called an algebraic-
geometry code(or AG code for short). Ifdeg(G) < n, then
Ψ is an embedding and we havedim(CL(D,G)) = ℓ(G). By
Riemann-Roch theorem we can estimate the parameters of an
AG code (see [26]).

Proposition 2.1:CL(D,G,v) is an [n, k, d]− linear code
overFq with parameters

k = ℓ(G)− ℓ(G−D), d ≥ n− deg(G).
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(a) If G satisfiesg ≤ deg(G) < n, then

k = ℓ(G) ≥ deg(G)− g + 1, d ≥ n− deg(G).

(b) If additionally2g−2 < deg(G) < n, thenk = deg(G)−
g + 1.

Remark 2.2: (i) The proposition above implies thatk +
d ≥ n+ 1− g. Compared with the Singleton bound, we
can know all the AG codes in the above are MDS codes
while in rational function field.

(ii) Note thatCL(D,G,1) is the ordinal algebraic geometry
code defined by Goppa, where1 denotes the all-one
vector(1, . . . , 1).

Now we discuss the Euclidean dual of the algebraic code
CL(D,G;v).

For two vectorsa = (a1, . . . , an),b = (b1, . . . , bn) in Fn
q ,

Euclidean inner product is defined by< a,b >E=
∑n

i=1 aibi.
For a linear codeC overFq, theEuclidean dualof C is defined
by

C⊥E := {v ∈ F
n
q : < v, c >= 0 ∀ c ∈ C}.

Let Ω denote the differential space ofFq(X ). For anFq-
rational divisorG, we define

Ω(G) = {w ∈ Ω : div(w) ≥ G}
and denote the dimension ofΩ(G) by i(G). Then one has the
following relationship

i(G) = ℓ(K −G),

whereK is a canonical divisor.
We define the codeCΩ(D,G,v) as

CΩ(D,G,v) = {(v1resP1
(w), . . . , vnresPn

(w)) : w ∈ Ω(G−D)},
whereresPi

(w) stands for the residue ofw at Pi.
CΩ(D,G,v) is an [n, i(G −D) − i(G),≥ degG − (2g −

2)] linear code overFq. Furthermore,CΩ(D,G,v−1) is the
Euclidean dual ofCL(D,G,v), wherev−1 denotes the vector
(v−1

1 , . . . , v−1
n ).

III. SELF-ORTHOGONAL ALGEBRAIC GEOMETRY CODES

In this section, we first show existence of a ceratin vector
in the Euclidean dual codeCΩ(D,G,1) of CL(D,G,1).
Based on this result, we are able to show that any algebraic
geometry codes are equivalent to Euclidean and Hamming
self-orthogonal codes.

A. A result on algebraic geometry codes

Proposition 3.1:The codeCΩ(D, 2G,1) contains at least
a codeword of Hamming weightn if

deg(G) <
1

2

(

n− 1− n logq

(

1 +
2

q

))

.

Proof: Let m denote the degree ofG. The number of
codewords with Hamming weightn in CΩ(D, 2G,v) is the
size of

Ω(2G−
n
∑

j=1

Pj) \
n
⋃

i=1

Ω(2G−
n
∑

j=1

Pj + Pi).

We denote this set byA and denoteΩ(2G−∑n

j=1 Pj + Pi)
by Ai. Thus, it’s sufficient to proveA is not an empty set. By
the inclusion-exclusion principle, we have

|A| =

∣

∣

∣

∣

∣

∣

Ω(2G−
n
∑

j=1

Pj)

∣

∣

∣

∣

∣

∣

−
n
∑

i=1

|Ai|+
∑

h,k

|Ah ∩ Ak|

+ · · ·+ (−1)n−2m−2g+2
∑

∣

∣

∣

∣

∣

∣

n−2m+2g−2
⋂

j=1

Aij

∣

∣

∣

∣

∣

∣

= qn−2m+g−1 −
(

n

1

)

qn−2m+g−2 +

(

n

2

)

qn−2m+g−3

+ · · ·+ (−1)n−2m−1

(

n

n− 2m− 1

)

qg

+

n−2m+2g−2
∑

k=n−2m

(−1)k
∑

i1,...,ik

∣

∣

∣

∣

∣

∣

k
⋂

j=1

Aij

∣

∣

∣

∣

∣

∣

= qn−2m+g−1

(

1− 1

q

)n

+ c,

where

c =

n−2m+2g−2
∑

k=n−2m

(−1)k
∑

i1,...,ik

∣

∣

∣

∣

∣

∣

k
⋂

j=1

Aij

∣

∣

∣

∣

∣

∣

−
n
∑

k=n−2m

(−1)k
(

n

k

)

qn−2m+g−1−k

≥ −
∑

i1,...,in−2m−1

∣

∣

∣

∣

∣

∣

n−2m−1
⋂

j=1

Aij

∣

∣

∣

∣

∣

∣

−
n
∑

k=n−2m

(

n

k

)

qn−2m+g−1−k

= −qg
n
∑

k=n−2m−1

(

n

k

)

qn−2m−1−k

≥ −qg
(

1 +
1

q

)n

.

The desired result follows from the condition.

B. Euclidean Self-orthogonal AG Codes

In this subsection, we restrict ourselves to finite fieldsFq

of even characteristic. A linear codeC is called Euclidean
self-orthogonalif < u,v >E= 0 for all u,v ∈ C. It is clear
that the dimension of an Euclidean self-orthogonal code is at
most the half of its length.

Theorem 3.2:CL(D,G,1) is equivalent to an Euclidean
self-orthogonal code if

deg(G) <
1

2

(

n− 1− n logq

(

1 +
2

q

))

.

Proof: From Proposition 3.1, there exists a codewordu =
(u1, . . . , un) of Hamming weightn in CL(D, 2G,1)⊥E =
CΩ(D, 2G,1). Since vi are elements inF∗

q and q is a
power of 2, there existvi ∈ F

∗
q such thatv2i = ui for

i = 1, . . . , n. For any two codewords(v1f(P1), . . . , vnf(Pn))
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and(v1h(P1), . . . , vnh(Pn)) in CL(D,G,v) for somef, h ∈
LFq

(G), their Euclidean inner product is

n
∑

i=1

v2i f(Pi)h(Pi) =

n
∑

i=1

ui(fh)(Pi) = 0.

Therefore,CL(D,G,v) is Euclidean self-orthogonal and our
result follows.

Remark 3.3:In deg(G) > 2g − 2, then the dimension
of CL(D,G,1) is deg(G) − g + 1. Hence, from Theo-
rem 3.2, an algebraic geometry code is equivalent to an
Euclidean self-orthogonal code if its dimension is at most
1
2

(

n− 1− n logq

(

1 + 2
q

))

− g.
The following example shows that the condition thatFq has

even characteristic is necessary.
Example 3.4:We consider the algebraic codeCL(D,G,1)

overF5 from the rational function field

{(f(0), f(1), f(2), f(3)) : f ∈ F5[x], deg(f) ≤ 1},

where the divisorsD andG are clear from the above context.
It is in fact a generalized Reed-Solomon code (see Section
IV). It is easy to see that its equivalent codeC(D,G,v) is
Euclidean self-orthogonal if and only if(v21 , v

2
2 , v

2
3 , v

2
4) is a

nonzero solution of




1 1 1 1
0 1 2 3
0 1 4 4



x = 0.

On the other hand, all possible nonzero solutions of above
equation areλ(2, 4, 1, 3) for soem nonzeroλ. However, 2
and 3 are non-square elements inF5 , while 4, 1 are square
elements inF5. This implies that(v21 , v

2
2 , v

2
3 , v

2
4) can not be

a nonzero solution, i.e.,C(D,G,v) is not Euclidean self-
orthogonal.

C. Hermitian self-orthogonal AG codes

To study Hermitian self-orthogonal codes, we have to con-
sider codes overFq2 .

For two vectorsa = (a1, . . . , an),b = (b1, . . . , bn) in
Fq2 , we define Hermitian inner product by< a,b >H=
∑n

i=1 aib
q
i . For anFq linear codeC in Fq2 , the Hermitian

dual C⊥H of an Fq-linear codeC ⊆ Fn
q2

consists of vectors
in Fq2 that are orthogonal with all the codewords inC with
respect to Hermitian inner product defined above. It follows
immediately thatC⊥H = (Cq)⊥, whereCq = {(cq1, . . . , cqn) :
(c1, . . . , cn) ∈ C}. This implies that the Hermitian dualC⊥H

of C is (Cq)⊥E .
Let X be an algebraic curve inFq, let P1, . . . , Pn be

pairwise distinctFq-rational points and letG be anFq-rational
divisor such thatsupp(G)∩{P1, . . . , Pn} = ∅. Define a code
overFq2

CL(D,G,v;Fq2 ) := {(v1f(P1), . . . , vnf(Pn)) : f ∈ LF
q2
(G)}.

ThenCL(D,G,1;Fq2) is an[n, ℓ(G), d ≥ n−deg(G)]-linear
code overFq2 if deg(G) < n. In fact,CL(D,G,1;Fq2) is the
tensor productCL(D,G,1;Fq2)⊗Fq

Fq2 .

Theorem 3.5:CL(D,G,1;Fq2) is equivalent to an Hermi-
tian self-orthogonal code if

deg(G) <
1

2

(

n− 1− n logq

(

1 +
2

q

))

.

Proof: From Proposition 3.1, there exists a codewordu =
(u1, . . . , un) of Hamming weightn in CL(D, 2G,1)⊥E =
CΩ(D, 2G,1). Since vi are elements inF∗

q , there exist
vi ∈ F∗

q2 such thatvq+1
i = ui for i = 1, . . . , n. More-

over,u is also Euclidean orthogonal toCL(D, 2G,1;Fq2) as
CL(D,G,1;Fq2) has a basis fromCL(D, 2G,1)

Consider two codewords(v1f(P1), . . . , vnf(Pn)) and
(v1h(P1), . . . , vnh(Pn)) in CL(D,G,v) for some f, h ∈
Lq2(G). Thenfhσ is an element ofLq2(G), whereσ is the
Frobenius in the Galois groupGal(Fq/Fq). their Hermitian
inner product is
n∑

i=1

v
q+1

i f(Pi)(h(Pi))
q =

n∑

i=1

ui(fh
σ)(P σ

i ) =
n∑

i=1

ui(fh
σ)(Pi) = 0.

Therefore,CL(D,G,v;Fq2 ) is Hermitian self-orthogonal and
our result follows.

Remark 3.6:To show Euclidean self-orthogonality of
CL(D,G,1), we requires thatFq has even characteristics.
However, we do not need this condition for Hermitian elf-
orthogonality ofCL(D,G,1;Fq2).

IV. EXAMPLES

In this section, we illustrate our result by considering
algebraic codes from projective line and elliptic curves.

A. Self-orthogonal generalized Reed-Solomn codes

Let’s recall some basic results of generalized Reed-Solomon
codes (GRS codes for short) first. LetFq be a finite field ofq
elements, choosen distinct elementsα1, . . . , αn of Fq, andn
nonzero elementsv1, . . . , vn of Fq. Denotea = (α1, . . . , αn)
andv = (v1, . . . , vn).

Let Pi be the only zero ofx − αi and let ∞ be the
only pole of x. Put D =

∑n

i=1 Pi and G = (k − 1)∞
for some k between1 and n. Then we denote our alge-
braic geometry codesCL(D,G,v) andCL(D,G,1;Fq2) by
GRSk(a,v) and GRSk(a,v,Fq2 ), respectively. First of all,
the Euclidean dual code ofCL(D, 2G,v) = GRS2k−1(a,v)
is GRSn−2k+1(a,v

′

), wherev
′

is a nonzero solution of the
following system





















v1 v2 . . . vn
v1α1 v2α2 . . . vnαn

v1α
2
1 v2α

2
2 · · · vnα

2
n

· · · · · ·
· · · · · ·
· · · · · ·

v1α
n−2
1 v2α

n−2
2 · · · vnα

n−2
n





















x
T = 0. (IV.1)

Note that the solution space of the above system has dimension
1 and every nonzero solution has all coordinates not equal
to zero. It is clear thatGRSn−2k+1(a,v

′

) has a codeword
f(P1), . . . , f(Pn)) of weightn for an irreducible polynomial
f of degree2 as long asn− 2k ≥ 2. Therefore, a generalized
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Reed-Solomon codeGRSk(a,1) is equivalent to an Euclidean
self-orthogonal code ifk ≤ n− 1.

With the same arguments, we can show that a generalized
Reed-Solomon codeGRSk(a,1,Fq2) is equivalent to a Her-
mitian self-orthogonal code ifk ≤ n− 1.

B. Codes over elliptic curves

The AG codes in the example ofGRS codes are associated
with the projective line whose genus is 0. In this subsection,
we consider another example of AG code basing on elliptic
curves.

Let X be an elliptic curve overFq and let P denote
the set ofFq-rational points onX . Choose anFq-rational
divisor G such thatsupp(G) ∩ P = ∅. For 2 deg(G) +
2 ≤ n < |P|, we choose a closed pointQ of degree
n − 2 deg(G) andn Fq-rational pointsP1, . . . , Pn such that
∑n

i=1 P1 − 2G + Q is equivalent to a canonical divisorK
(note that this can be always done). Letdiv(w) = K for
a differentialw and div(x) = K − (

∑n

i=1 P1 − 2G + Q).
Then the differentialxw belongs toΩ(2G−D =

∑n

i=1 Pi).
Moreover, (resP1

(xw), . . . , resPn
(xw)) is a codeword of

CΩ(D, 2G,1) with Hamming weightn. This implies that
CL(D,G,1) is equivalent to an Euclidean self-orthogonal
code andCL(D,G,1,Fq2) is equivalent to a Hermitian self-
orthogonal code.

V. A PPLICATION TO QUANTUM CODES

The main purpose of this section is to apply our self-
orthogonal codes to construction of quantum codes and derive
an asymptotic bound.

Let us first introduce some notations and results on quantum
codes. LetC be the field of complex numbers. For an positive
integer n, denoteVn = (Cqn)⊗n = Cqn . Any K ≥ 1
dimensional subspaceQ of Vn is called aq-ary quantum code
with lengthn, dimensionK ≥ 1. ThenQ is a ((n,K, d))q
code or[[n, k, d]]q code ifQ can detectd−1 errors and correct
⌊d−1

2 ⌋ wherek = logq K. Similar as the classical code, for
any [[n, k, d]]q quantum code, the quantum singleton bound
tells usn ≥ k + 2d− 2. Q is called a quantum MDS code if
it achieves the quantum singleton bound. In order to use our
results to construct quantum code, we need to introduce two
lemmas for connection.

Lemma 5.1:(see [13])There is anq-ary [[n, n − 2k, d⊥]]-
quantum code whenever there exists aq-ary classical Eu-
clidean self-orthogonal[n, k]−linear code with dual distance
d⊥.

Lemma 5.2:(see [2]) There is anq-ary [[n, n − 2k, d⊥]]-
quantum code whenever there exists aq-ary classical Hermi-
tian self-orthogonal[n, k]-linear code with dual distanced⊥.

Now, using the theorems in the previous sections, we can
derive several classes of quantum codes immediately.

Theorem 5.3:For finite fieldFq and 1 ≤ n ≤ q + 1, k ≤
n− 1, there exists aq-ary [[n, n− 2k, k + 1]]-quantum MDS
code.

Theorem 5.4:For finite fieldFq, 2m + 2 ≤ n ≤ q + 1 +
⌊2√q⌋, there exists aq-ary [[n, n− 2m,m]]-quantum code.

Proof: Applying the result inGRS codes to Theorem 5.1
yields the desired results.

Theorem 5.5:For finite fieldFq, 2m + 2 ≤ n < q + 1 +
⌊2√q⌋, there exists aq-ary [[n, n− 2m,m]]-quantum code.

Proof: Applying the result of elliptic curves to Theorem
5.2 gives the desired results.

Now, we introduce some results on quantum codes and their
asymptotic bounds. For aq-ary quantum codeQ, we denote
by n(Q),K(Q), and d(Q) the length, the dimension , and
the minimum distance ofQ, respectively. LetUQ

q be the set
of ordered pairs(δ, R) ∈ R2 for which there exists a family
{Qi}∞i=1 of q-ary codes withn(Qi) → ∞ and

δ = lim
i→∞

d(Qi)

n(Qi)
, R = lim

i→∞

logq K(Qi)

n(Qi)
,

where logq denotes the logarithm to the baseq. One of the
central asymptotic problems for quantum codes is to determine
the domainUQ

q . As in classical coding, it is a hard problem to
determineUQ

q completely. Instead, we are satisfied with some
bounds onUQ

q .
A very good existence lower bound forp-ary quantum codes

was introduced by Ashikhmin and Knill [?]. It is called the
quantum Gilbert-Varshamov bound. As in classical coding
theory, the quantum Gilbert-Varshamov bound is a benchmark
for the functionαQ

q (δ).
For 0 < δ < 1, define theq-ary entropy function

Hq(δ) := δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ),

and put

RGV (q, δ) := 1− δ logq(q + 1)−Hq(δ).

Then the Gilbert-Varshamov bound says that

αQ
q (δ) ≥ RGV (q, δ) for all δ ∈ (0,

1

2
). (V.1)

Later on, a bound from algebraic geometry codes was
derived in [8], [9], [19] and this algebraic geometry bound
improves the Gilbert-Vrahsamov bound for largeq as in the
classical case. To introduce the asymptotic algebraic geometry
bound, we need some further notations.

For any prime powerq and any integerg ≥ 0, put

Nq(g) := maxN(X ),

where the maximum is extended over all curvesX/Fq with
g(X ) = g.

We also define the following asymptotic quantity

A(q) := lim sup
g→∞

Nq(g)

g
.

We know from [28] thatA(q) =
√
q − 1 if q is a square.

The algebraic geometry bound [9] says that for a prime
powerq, one has

αQ
q (δ) ≥ 1− 2δ − 2

A(q)
. (V.2)

In the following part, we prove the bound (V.2) forδ in
the range(0, 1/2 − 2/A(q) − logq(1 + 2/q) using our result
introduced in the previous sections.
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Proof of the bound (V.2)
Proof: Let {X/Fq} be a family of curves such that

g(X ) → ∞ andN(X )/g(X ) → A(q).
For 0 < δ < 1/2 − 2/A(q) − logq(1 + 2/q), define two

families of integers{n = N(X )}X and {m = ⌊δN(X )⌋ +
2g}X . Thenn/g(X ) → A(q) and (m− 2g)/n → δ.

For each curve, letP1, . . . , Pn be n Fq-rational points
and choose a divisorG of degreem such thatsupp(G) ∩
{P1, . . . , Pn} = ∅.

By Proposition 3.5, from each curveX with sufficiently
large genus in the family we have a Hermitian self-orthogonal
code overFq2 with parameters[n, n− 2(m− g+1)] and dual
distance at leastm− 2g + 2. By Lemma 5.1, we obtain aq-
ary quantum((n, qn−2(m−g+1),m−2g+2)) code. The desire
bound follows.
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