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Abstract

We consider a binary erasure version of the n-channel multiple descriptions problem with symmetric

descriptions, i.e., the rates of the n descriptions are the same and the distortion constraint depends only

on the number of messages received. We consider the case where there is no excess rate for every k out

of n descriptions, i.e., any subset of k messages has a total rate of R(Dk) = 1−Dk, where R(·) is the

Shannon rate-distortion function and Dk is the distortion constraint when k descriptions are received

at the decoder. Our goal is to characterize the achievable distortions D1, D2, . . . , Dn. We measure the

fidelity of reconstruction using two distortion criteria: an average-case distortion criterion, under which

distortion is measured by taking the average of the per-letter distortion over all source sequences, and a

worst-case distortion criterion, under which distortion is measured by taking the maximum of the per-

letter distortion over all source sequences. We present achievability schemes, based on random binning

for average-case distortion and systematic MDS (maximum distance separable) codes for worst-case

distortion, and prove optimality results for the corresponding achievable distortion regions. We then

use the binary erasure multiple descriptions setup to propose a layered coding framework for multiple

descriptions, which we then apply to vector Gaussian multiple descriptions and prove its optimality for

symmetric scalar Gaussian multiple descriptions with two levels of receivers and no excess rate for the

central receiver. We also prove a new outer bound for the general multi-terminal source coding problem

and use it to prove an optimality result for the robust binary erasure CEO problem. For the latter, we

provide a tight lower bound on the distortion for ` messages for any coding scheme that achieves the

minimum achievable distortion for k ≤ ` messages.

I. INTRODUCTION

While the information-theoretic study of network capacity has played a pivotal role in the

development of wireless communications [1], network rate-distortion theory has had a much
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smaller impact on the design of practical systems. The reason for this is arguably two-fold.

First, the mathematically challenging nature of network source coding has hindered progress

toward understanding the fundamental limits of lossy data compression. The rate regions of many

important network source coding problems have yet to be characterized and solutions for even

simple networks are analytically involved. Second, prominent network source coding problems

often are poor models that abstract away key properties of practical systems. In particular,

such models often fail to accurately capture the distortion resulting from source quantization in

practical systems.

This paper attempts to circumvent these two issues by focusing on the use of the erasure

distortion measure [2, p. 370] for a binary source. The erasure distortion measure is well-suited

for digital sources since it does not permit the decoder to make errors in its reconstruction of

the source, but allows it to declare an erasure for any source symbol about which it is uncertain.

Errors in digital data streams generally wreak havoc unless detailed knowledge of the digital

representation is used to minimize their impact. Erasures, however, are tolerable since they can

be detected by higher-level applications, which can either interpolate to fill in the missing data

or wait until enough data is received to correct all of the erasures. Erasure formulations should

also be useful as starting points for the design of practical codes for network rate-distortion. In

the theoretical development of modern channel codes like LDPC, many of the code designs and

performance characterizations were first established for the erasure channel [3].

This paper looks at the binary erasure version of an important network source coding prob-

lem, the multiple descriptions (MD) problem [4]-[13]. Multiple descriptions is a source coding

technique in which multiple encoded descriptions of a single source sequence are sent to the

decoder over separate channels. This is an effective way to deal with channel failure and packet

loss in packet networks, particularly in the case where retransmission of lost packets is not

feasible (e.g., audio/video streaming) and the decoder must reconstruct the source with only the

packets it has successfully received. The MD problem also constitutes a reasonable model for

transmission of digital data (images, video, and sound) over peer-to-peer networks.

An important regime within MD is that of no excess rate, i.e., the sum rate required to achieve

distortion D at the receiver equals R(D), where R(·) is the Shannon rate-distortion function.

This is a useful regime to study, since it allows us to not sacrifice end-to-end performance for

intermediate performance (i.e., when the number of received descriptions is less than the number
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required to achieve distortion D). For most sources, the no excess rate regime is characterized by

poor intermediate performance (e.g., [5]): if a coding scheme is near-optimal for k receptions,

it often yields high distortions for m < k receptions. For binary erasure MD, however, it is

possible to obtain good intermediate performance under no excess rate.

A. Results

We focus on binary erasure MD with no excess rate for every k out of n descriptions, i.e.,

any subset consisting of k messages must have a total rate of R(Dk), where Dk is the distortion

constraint the decoder must obey when k messages are received. We consider symmetric descrip-

tions, i.e., the rates of the n descriptions are the same and the distortion constraint depends only

on the number of messages received. In fact, no excess rate implies symmetric descriptions for

k < n: if every k out of n descriptions have sum rate R(Dk), then each rate must be R(Dk)/k.

We examine two distortion criteria; an average-case distortion criterion, which measures the

reconstruction fidelity by the average of the per-letter distortion over all source sequences, and

a worst-case distortion criterion, which measures the reconstruction fidelity by the maximum

of the per-letter distortion over all source sequences. The average-case criterion is the standard

criterion used in the literature. The worst-case criterion is less commonly used but arguably more

appropriate in this setting. It is a universal distortion measure and is insensitive to the source

model since it does not a require a source distribution. Our main contributions are:

1) applying the binary erasure model to multiple description coding and focusing on the

worst-case distortion criterion,

2) proposing, for all n and k, coding schemes for both average-case and worst-case distortion

criteria and characterizing their achievable distortion region when m ≤ k descriptions

are received at the decoder. The scheme for average-case distortion is based on random

binning and can be viewed as of a concatenation of (n, 1) and (n, k) source-channel erasure

codes [10]. The scheme for worst-case distortion is a practical zero-error coding scheme

based on MDS (maximum distance separable) codes.

3) providing, for both average-case and worst-case distortion criteria, a tight lower bound on

the distortion when a single message is received at the decoder. For worst-case distortion,

the outer bound holds for all n and k. Moreover, we show that the MDS coding scheme

is Pareto optimal in the achievable distortions D1, . . . , Dk for all n and k, and, for certain
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ranges of n and k, is also optimal when more than one message is received at the decoder.

For average-case distortion, our outer bound holds, modulo a closure operation, for all

n and k satisfying
(
1− 1

n

)k ≤ 1
2
. In addition, for n > 3 and k = 2, we provide an

outer bound on the optimal single-message distortion that differs by exactly 1/n from

the distortion achieved by the random binning scheme. Our results for the special case

in which there is no distortion for k messages (i.e., any k messages allow the decoder

to construct the original source sequence completely) have appeared in [14] (average-case

distortion) and [15] (worst-case distortion).

4) proposing a coding scheme, based on the binary erasure MD coding schemes, for vector

Gaussian MD and showing that it is optimal for scalar Gaussian MD with two levels

of receivers and no excess rate for the central receiver. The scheme involves quantizing

the vector Gaussian source according to a given quadratic distortion constraint and then

transmitting the quantized version over the n channels according to the aforementioned

binary erasure coding schemes. This shows that the binary erasure coding schemes can be

used as part of a more general, layered coding scheme for multiple descriptions with a

generic source distribution and arbitrary distortion metric.

5) proving a new outer bound for the general multi-terminal source coding problem that

improves upon the outer bound in [29], and

6) providing, for the robust binary erasure CEO problem with symmetric rates, a tight lower

bound on the distortion for ` messages for any coding scheme that achieves the minimum

achievable distortion for k ≤ ` messages. The robust binary erasure CEO problem is a

generalization of MD in that the encoders observe erased versions of the source instead of

the source itself. This problem constitutes a reasonable model for decentralized peer-to-

peer networks in which peers can generate new descriptions based on their partial copies

of the source file.

B. Relation to Prior Work

An achievable rate region for the 2-description MD problem was first provided by El Gamal

and Cover [4]. This region was shown to be tight for a scalar Gaussian source and quadratic

distortion measure by Ozarow [5], and for a discrete memoryless source (DMS) with no excess

rate for two descriptions by Ahlswede [6]. Zhang and Berger [7] obtained a rate region for
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the 2-description case that contained points strictly outside the El Gamal-Cover rate region.

Venkataramani, Kramer and Goyal provided a rate region for the n-description case [8], which

was improved upon by Pradhan, Puri, and Ramchandran [9], [10]. Tian and Chen proposed a

coding scheme for the n-description case, with symmetric rates and distortion constraints, that

combined a channel coding component with a source coding component to attain rate-distortion

points outside the region proposed in [9] in the Gaussian case [11]. Wang and Viswanath

derived the minimal achievable sum rate for vector Gaussian MD with individual and central

receivers [12]. More recently, Chen characterized the rate region of scalar Gaussian MD with

individual and central distortion constraints [13].

Multiple descriptions with no excess rate is a generalization of the problem of successive

refinement [16], [17], [18], in which descriptions received in addition to the minimum number

required to reconstruct the source with a given distortion are used to improve the quality of

reconstruction. The MD problem is also similar to the problem of lossy packet transmission

considered by Albanese et al. [19]. They propose a coding method to deal with packet loss in

erasure networks that involves assigning a priority level to messages. The messages are encoded

into packets, and the priority level determines the minimum number of packets required to

reconstruct the message. Other work on similar problems include symmetric multi-level diversity

(MLD) coding [20], in which K sources, each with a different level of importance, are encoded

by K encoders. The decoders have access to only a subset of the encoded descriptions, and

each decoder attempts to reconstruct the k most important sources, where k is the number

of descriptions that are accessible to it. More recently, Mohajer et al. [21] have considered a

variation on symmetric MLD coding in which 2K − 1 sources are encoded by K encoders, and

have characterized the rate region for K = 3.

Our binary erasure MD problem with no excess rate and no distortion for every k out of n

messages is particularly significant in the context of peer-to-peer networks, since it can be used to

study the tradeoff between the performance of two competing technologies: fountain codes [22],

[23] and BitTorrent [24]. For large n and small k, the MD problem mimics rateless fountain

codes, since out of a large number of descriptions, only a handful must be received (collected)

in order to construct the source with zero distortion. Fountain codes are known to work well in

erasure networks, but they usually have poor intermediate performance. Sanghavi [25] provides

an outer bound for rateless codes on the fraction of source symbols that can be decoded as a
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function of the number of encoded symbols received. For k = n, the MD problem resembles the

BitTorrent, where all of the relevant packets must be received to allow for complete reconstruction

of the source. The BitTorrent provides good intermediate performance but suffers from the

“coupon collector” problem; the initial pieces of the source can be acquired relatively rapidly,

but it takes much longer to collect the final pieces. By varying n and k in the binary erasure MD

model, therefore, the middle ground between fountain codes and the BitTorrent can be explored.

The rest of this paper is organized as follows. In Section II, we formulate the n-channel binary

erasure MD problem. Sections III and IV are devoted to our results for average-case distortion

and worst-case distortion, respectively. In Sections V and VI, we describe our results for vector

Gaussian MD and the robust binary erasure CEO problem, respectively.

II. THE n-CHANNEL BINARY ERASURE MULTIPLE DESCRIPTIONS PROBLEM

Let {Xt}∞t=1 be a memoryless uniform binary source, with the random variables Xt taking

values in the alphabet X = {+,−}. Let X̂ be the reconstruction space {+,−, 0}, where 0

denotes the erasure symbol, with an associated distortion measure d : X × X̂ → {0, 1,∞} such

that

d(x, x̂) =


0 if x̂ = x

1 if x̂ = 0

∞ otherwise.

The above per-letter measure is known as the erasure distortion measure [2, p. 370]. A encoder

is a function f (l)
i : X l → {1, . . . ,M (l)

i }. A decoder is a function g(l)
K :

∏
k∈K{1, . . . ,M

(l)
k } → X̂ l,

where K is the set of descriptions received.

Let N = {1, . . . , n}. The n-channel multiple descriptions problem, illustrated in Figure 1,

can be formulated as follows. There are n encoders. Encoder f (l)
i , i ∈ N , encodes and transmits

a description of a length-l source sequence xl over channel i. The receiver either receives this

description without errors or it does not receive it at all. Excluding the case where none of

the descriptions is received, the receiver may receive 2n − 1 different combinations of the n

descriptions. Thus it can be represented by the 2n − 1 decoding functions g(l)
K , K ⊆ N , K 6= ∅.

Based on the set of descriptions received, the receiver employs the corresponding decoding

function to output a reconstruction of the original source string subject to a distortion constraint.
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We consider symmetric descriptions, i.e., each description has the same rate and the distortion

constraint depends only on the number of descriptions received.

We measure the fidelity of the reconstruction using two distortion criteria: an average-case

distortion criterion, under which distortion is measured by taking the average of the per-letter

distortion over all source sequences, and a worst-case distortion criterion, under which distortion

is measured by taking the maximum of the per-letter distortion over all source sequences. We

define achievability for the two criteria as follows. Let X̂ l
K = g

(l)
K ({f (l)

k (X l) : k ∈ K}) be the

reconstruction sequence corresponding to the source sequence X l.

Definition 1 (Average-case distortion). The rate-distortion vector (R,D1, . . . , Dn) is achievable

if for some l there exist encoders f (l)
i , i ∈ N and decoders g(l)

K , K ⊆ N , K 6= ∅, such that1

R ≥ 1

l
logM

(l)
i for all i, and

Dk ≥ max
K:|K|=k

E

[
1

l

l∑
t=1

d(Xt, X̂K,t)

]
.

We use RDavg to denote the set of achievable rate-distortion vectors and RDavg to denote its

closure.

Definition 2 (Worst-case distortion). The rate-distortion vector (R,D1, . . . , Dn) is achievable

if for some l there exist encoders f (l)
i , i ∈ N and decoders g(l)

K , K ⊆ N , K 6= ∅, such that

R ≥ 1

l
logM

(l)
i for all i, and

Dk ≥ max
K:|K|=k

max
xl∈X l

[
1

l

l∑
t=1

d(Xt, X̂K,t)

]
.

We use RDworst to denote the set of achievable rate-distortion vectors. We describe our results

for average-case distortion in the next section and for worst-case distortion in Section IV. For

both distortion criteria, we consider the case where there is no excess rate for every k out of n

descriptions, i.e., kR = R(Dk) = 1 − Dk, where R(·) is the Shannon rate-distortion function.

Thus R = (1−Dk)/k. We will henceforth use R to denote (1−Dk)/k. Our goal is to characterize

the achievable distortions D1, . . . , Dn for both distortion criteria.

1All logarithms and exponentiations in this paper have base 2 unless explicitly stated.
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Fig. 1. The n-channel multiple descriptions problem

It should be pointed out that the k = n case is particularly simple. Let Di, i ∈ N be the

distortion constraint when the receiver receives i messages. No excess rate for n descriptions

dictates that the sum-rate of the n messages is exactly (1−Dn), which in turn implies that the

rate of each message is (1 − Dn)/n. The problem then reduces to characterizing the optimal

D1, . . . , Dn. Consider a coding scheme that takes a source string of length l and erases the

last lDn bits. The remaining l(1 − Dn) bits are divided into n disjoint parts, each consisting

of l(1 − Dn)/n bits. Encoder i transmits the l(1 − Dn)/n bits in the ith part to the decoder

over the ith channel, with erasures in places of the remaining l − l(1−Dn)/n bits. Thus upon

reception of any k descriptions, the decoder can reconstruct kl(1 − Dn)/n bits of the original

source string. Clearly, this scheme achieves Dk = 1 − k(1 − Dn)/n under both the average-

case and worst-case distortion criteria. Moreover, for any code that achieves the rate-distortion

vector (1−Dn/n,D1, . . . , Dn), every description has rate (1−Dn)/n and therefore any set of

k message can reveal no more than a fraction k(1 − Dn)/n bits of the original source string.

Thus

max
K:K=k

E

[
1

l

l∑
t=1

d(Xt, X̂K,t)

]
≥ 1− k(1−Dn)/n,

and

max
K:K=k

max
xl∈X l

[
1

l

l∑
t=1

d(Xt, X̂K,t)

]
≥ 1− k(1−Dn)/n.

Thus the aforementioned coding scheme achieves the optimal D1, . . . , Dn under both the average-

case and worst-case distortion criteria.
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We use the insight obtained from the k = n case to construct codes for the more complicated

case in which k < n. No excess rate for a particular set of k descriptions requires that information

transmitted over the corresponding channels be independent. Since we impose no excess rate

for every size-k subset of descriptions, information transmitted over any k channels must be

mutually independent. The coding scheme for k = n ensures that this condition is met by

dividing an erased version of the source string into n disjoint (and therefore independent) parts

and transmitting them uncoded over the n channels. This strategy of sending independent uncoded

bits works as long as the bits transmitted over each channel are disjoint. In particular, if R =

(1−Dk)/k ≤ 1/n (equivalently, Dk ≥ 1− k/n), the source string can always be divided into n

disjoint, equal parts, each containing a fraction R of the total number of bits. If Dk < 1− k/n,

however, then R > 1/n and it is not possible to divide the source string into n disjoint parts

each containing a fraction R of the total number of bits, since each part must then contain more

than 1/n of the total number of bits. Transmitting uncoded bits, therefore, will only be optimal

for a rate up to 1/n only; in order to achieve a rate larger than 1/n, additional information

about the source must be transmitted along with each description, and this information must be

mutually independent for every set of k descriptions.

The threshold Dk = 1−k/n therefore plays an important role in our coding schemes for both

average-case and worst-case distortions. If Dk ≥ 1 − k/n, our coding scheme is based solely

on the transmission of independent uncoded bits over the n channels as described above. If

Dk < 1−k/n, then in addition to sending uncoded bits, we employ random binning (for average-

case distortion) and MDS codes (for worst-case distortion) to communicate additional information

about the source sequence. The random binning component works by randomly binning an erased

version of all possible source sequences at each encoder. Each encoder transmits uncoded bits

from the observed source sequence along with the bin index of the corresponding erased version.

The decoder uses the uncoded bits and the bin indices to output a partial reconstruction of

the source sequence. Decoding the binned erased version in particular allows the decoder to

reconstruct source bits other than the ones it receives uncoded. The average-case distortion

scenario is conceptually simple, but provides weaker guarantees on optimality. The MDS coding

scheme for worst-case distortion is based on a similar idea (transmission of uncoded bits plus

encoded information about an erased version of the source string), but as we will see later, the

worst-case distortion scenario provides much stronger guarantees on optimality than average-
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case distortion. The coding schemes for average-case and worst-case are described in detail in

Sections III-A and IV-A, respectively.

III. THE AVERAGE-CASE DISTORTION CRITERION

A. An Achievability Result

Definition 3. Given n, k ≤ n, and Dk ∈ [0, 1], define

R̃ = (R, 1−R, 1− 2R, . . . , 1− (k − 1)R,Dk, Dk −R,Dk − 2R, . . . , Dk − (n− k)R) , and

R̂ =

(
R, 1− 1

n
, 1− 2

n
, . . . , 1− k − 1

n
,Dk,

(
n− k − 1

n− k

)
Dk,

(
n− k − 2

n− k

)
Dk, . . . ,

(
1

n− k

)
Dk, 0

)
.

The following theorem shows that it is possible to achieve good intermediate performance

when m < k descriptions are received at the decoder.

Theorem 1. Let Dk ∈ [0, 1]. For any n and k ≤ n, if Dk ≥ 1 − k
n

, then R̃ ∈ RDavg. If

Dk < 1− k
n

, then R̂ ∈ RDavg.

Proof: Case I: Dk ≥ 1− k
n

Assume without loss of generality that Dk is rational (if Dk is irrational, then we can prove

achievability for a sequence of rational distortions in [1 − k/n, 1] converging to Dk and take

limits). Then there exists a positive integer l′ such that l′R is a positive integer. Choose a

blocklength l = αnl′, where α is any positive integer. Observe a length-l source sequence X l,

and divide X l into n disjoint parts such that each part contains l/n = αl′ bits. (The division is

the same regardless of the source realization.) Label the parts Xi, i ∈ N . Choose lR bits from

each of the n parts (since Dk ≥ 1− k
n

, lR ≤ l
n

and therefore lR bits can be chosen from each

part). Denote by yi the set of lR bits chosen from Xi. Transmit yi uncoded over the ith channel.

The decoding is trivial. If m descriptions, say (y1, . . . , ym), are received, output X̂ l
m as the

reconstruction of X l, where X̂ l
m is such that the mlR bits corresponding to (y1, . . . , ym) are non-

erased and the other (l−mlR) bits are erasures. The distortion, therefore, is (l−mlR)/l = 1−mR.

When k descriptions are received, the distortion is 1− kR = Dk. Thus the rate-distortion vector

(R, 1−R, 1− 2R, . . . , 1− (k− 1)R,Dk, Dk −R,Dk − 2R, . . . , Dk − (n− k)R) ∈ RDavg, and

therefore also lies in RDavg.
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Case II: Dk < 1− k
n

The scheme for this case is an extension of the scheme for Case I. It has two components; random

binning and transmission of uncoded source bits. An erased version of every source sequence

is binned separately at each encoder. The observed source string is divided into n disjoint parts.

Each uncoded part is then sent on one of the n channels along with the corresponding bin index

of the erased version of the source. If less than k descriptions are received, the decoder outputs a

partial reconstruction based solely on the uncoded parts; if k or more descriptions are received,

the decoder outputs a reconstruction based on the uncoded parts and the bin indices.

Assume again that Dk is rational. Choose ε > 0, and define R′ = (1−Dk)/k−1/n+ ε. Since

Dk is rational, there exists a positive integer l′ such that l′Dk/(n − k) is an integer. Choose a

blocklength l = αnl′, where α is any positive integer.

Random binning: Construct n sets of bins such that every set contains 2lR
′ bins. For every

length-l source string xl ∈ X l, construct an erased version as follows. Divide xl into n disjoint

parts such that each part contains l/n = αl′ bits (the division is done identically for all source

sequences). For each part, replace the last lDk/(n − k) bits by erasures (since Dk < 1 − k
n

,

each part contains l/n > lDk/(n − k) bits). Assign the resulting erased version xle uniformly

at random, and independently from other strings, to one of the 2lR
′ bins in the ith set, for all

i ∈ N . The assignment is done only once for each erased version. This is important because

multiple source strings can have the same erased version. Denote the assignments by Γi.

Encoding: Let X l be the observed source sequence. Divide X l into n disjoint parts each

containing l/n bits as described above. Label the parts Xi, i ∈ N . Let bi = Γi(X
l) be the index

of the bin containing the erased version of X l in the ith bin set. Transmit (Xi, bi) over the ith

channel.

Decoding: If m descriptions, say {(X1, b1), . . . , (Xm, bm)}, are received, where m < k,

output X̂ l
m as the reconstruction of X l, where X̂ l

m is such that the ml/n bits corresponding to

(X1, . . . , Xm) are non-erased and the other (l−ml/n) bits are erasures. If m > k descriptions are

received, say {(X1, b1), . . . , (Xm, bm)}, choose any k descriptions, say {(X1, b1), . . . , (Xk, bk)},
and search the bins (b1, . . . , bk) for a sequence y such that Γi(y) = bi, i = 1, . . . , k, and y is con-

sistent with the partially revealed source string (X1, . . . , Xk). Output X̂ l
m = {(X1, . . . , Xm)} ∪

{y} as the reconstruction of X l. (Thus the non-erased bits in X̂ l
m are the bits revealed by

(X1, . . . , Xm) or by the erased version y, or both.) There is guaranteed to be at least one such
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sequence y in the bins indexed by b1, . . . , bk. If there is more than one such sequence, output the

all-erasure string as the reconstruction of X l. (This will suffice to meet our distortion constraint.)

Error analysis: We say an error ES has occurred at the decoder if, for a set S = {s1, . . . , sk}
of k descriptions, there exists an erased version y 6= X l

e such that Γsi(y) = Γsi(X
l
e) for all

si ∈ S and y is consistent with (Xs1 , . . . , Xsk). Let CS be the set of erased versions that are

consistent with (Xs1 , . . . , Xsk). Define E =
⋃
S,|S|=k ES . We bound Pr(E) as follows.

Pr(E) ≤
∑
S,|S|=k

Pr(ES)

=
∑
S,|S|=k

Pr(∃y 6= X l
e, y ∈ CS : Γsi(y) = Γsi(X

l
e) ∀si ∈ S)

=
∑
x

p(x)
∑
S,|S|=k

Pr(∃y 6= xle, y ∈ CS : Γsi(y) = Γsi(x
l
e))

≤
∑
x

p(x)
∑
S,|S|=k

∑
y 6=xle
y∈CS

Pr(Γsi(y) = Γsi(x
l
e) ∀si ∈ S)

≤
∑
x

p(x)
∑
S,|S|=k

2−klR
′|CS |

=
∑
x

p(x)
∑
S,|S|=k

2−kl(
1−Dk

k
− 1

n
+ε) · 2(n−k)( l

n
−l Dk

n−k
)

=
∑
x

p(x)
∑
S,|S|=k

2−lkε

≤
(
n

k

)
2−lkε.

We now show that for any ε > 0, the (n+ 1)-tuple (R+ ε, 1− 1
n

+ ε, 1− 2
n

+ ε, . . . , 1− k−1
n

+

ε,Dk+ε, (n−k−1
n−k )Dk+ε, (n−k−2

n−k )Dk+ε, . . . , ( 1
n−k )Dk+ε, ε) is achievable, and thus (R, 1− 1

n
, 1−

2
n
, . . . , 1− k−1

n
, Dk, (

n−k−1
n−k )Dk, (

n−k−2
n−k )Dk, . . . , (

1
n−k )Dk, 0) ∈ RDavg. Fix ε > 0 and define R′

as above. In our scheme, any description (Xi, bi) has rate R = 1/n+R′, where 1/n is the rate

due to Xi and R′ is the rate due to binning. Thus R = 1/n+(1−Dk

k
−1/n+ ε) = (1−Dk)/k+ ε.

Moreover, if m < k descriptions are received, the decoder outputs ml/n bits as revealed by the

m descriptions and the other (l−ml/n) bits as erasures. Thus Dm = 1−m/n < 1−m/n+ ε. If

k descriptions are received, say S = {s1, . . . , sk}, the decoder either outputs an erased version

of the correct source sequence if Ec
S occurs, or outputs an all erasure string if ES occurs. If Ec

S

occurs, then the decoder receives kl/n bits uncoded from the k descriptions, and is able to figure

DRAFT



13

out a further (n − k)(l/n − lDk/(n − k)) = l(1 − k/n − Dk) bits by using the bin indices to

decode the erased version of the source sequence. Hence the maximum per-letter distortion over

sets of k descriptions is 1− (k/n+ 1− k/n−Dk) = Dk if Ec occurs, and 1 if E occurs. Let

dS,x be the per-letter distortion achieved using the set S of descriptions if the observed source

string is xl. Thus

Ef,g max
S,|S|=k

EX [dS,X ] ≤ Ef,gEX [ max
S,|S|=k

dS,X ]

= Ef,gEX [1E +Dk · 1Ec ]

= Pr(E) +Dk(1− Pr(E)) = (1−Dk) Pr(E) +Dk

≤ (1−Dk)

[(
n

k

)
2−klε

]
+Dk,

which can be made smaller than Dk + ε by letting α→∞. Thus Dk + ε is achievable for some

sufficiently large l. If m > k descriptions are received, then the decoder receives ml/n bits

uncoded, and is able to figure out a further (n −m)(l/n − lDk/(n − k)) bits by decoding the

binned erased version. Thus, if Ec occurs, the maximum per-letter distortion is 1−m/n− ((n−
m)/n − (n −m)Dk/(n − k)) = (n−m

n−k )Dk, and by the same analysis as above, a distortion of

(n−m
n−k )Dk + ε can be achieved for some sufficiently large l.

B. Optimality Results

In this section we present optimality results for the random binning coding scheme described

in the previous subsection. We first establish some preliminary results in Appendix A which

will be used in the proofs of the following theorems. Our optimality results for the average-case

deal deal primarily with single-message optimality, i.e., when only one message is received at

the decoder. In the next section, we shall see that stronger optimality results can be established

for the worst-case distortion criterion.

The following theorem shows that when only one message is received at the decoder, the

scheme is optimal, modulo a closure operation, for all n and k satisfying
(
1− 1

n

)k ≤ 1
2
. Recall

that, given Dk, we use R to denote (1−Dk)/k.

Definition 4. For any fixed Dk, define

D∗1 = inf{D1 : (R,D1, . . . , Dk, . . . , Dn) ∈ RDavg}.
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Theorem 2. For any n and k ≤ n, if Dk ≥ 1− k
n

, then for any (R,D1, . . . , Dk, . . . , Dn) ∈ RDavg,
Dm ≥ 1−mR for all m ∈ N . If Dk < 1− k

n
, Dk is rational2, and

(
1− 1

n

)k ≤ 1
2
, then D∗1 ≥ 1− 1

n
.

Proof: See Appendix B.

We note that
(
1− 1

n

)k ≤ 1
2

implies k ≥ 1
log(n/n−1)

:= λ(n). Since λ(n)/n → 1/ log e as

n → ∞, the second part of Theorem 2 provides a lower bound on D∗1 for a large range of k

when n is large.

The following theorem proves single-message optimality for the coding scheme when n = 4

and k = 2. This case is not included in Theorem 2.

Theorem 3. Let Dk < 1− k
n

and rational. If n = 4 and k = 2, then D∗1 ≥ 1− 1
n

.

Proof: See Appendix C.

Theorem 2 handles the regime in which k is large. We now study the other extreme, i.e.,

when k is small. In particular, we look at the k = 2 case. The following theorem provides a

lower bound on the optimal single-message distortion for n > 3 and k = 2. This lower bound

differs from the distortion achieved by our coding scheme by exactly 1/n, and thus becomes

progressively tighter as n increases.

Theorem 4. Let Dk < 1− k
n

and rational. If k = 2, then for n > 3, D∗1 ≥ 1− 2
n

.

Proof: See Appendix D.

We conjecture that the lower bound in Theorem 4 is not tight and that our scheme is in fact

optimal. Evidence of this is provided by Theorem 3.

IV. THE WORST-CASE DISTORTION CRITERION

We turn now to the worst-case distortion criterion. We begin by presenting a practical, zero-

error coding scheme based on systematic MDS codes that works for finite blocklengths. Like the

random binning coding scheme for average-case distortion, the MDS coding scheme consists of

two parts - uncoded bits and an MDS-code component. The uncoded component is similar to

the uncoded component of the average-case coding scheme. The difference lies in the encoded

2For this theorem and subsequent theorems in this subsection, we consider rational values for Dk since any code over a finite

blocklength can yield only rational distortions.
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component; instead of randomly binning an erased version of the source and then sending bin

indices to the decoder (as the average-case distortion encoder does), the worst-case distortion

encoder encodes the erased version using an (n, k) systematic MDS code. The decoder outputs

the uncoded bits and the bits revealed by the systematic part of the MDS code as the source

reconstruction if less than k descriptions are received. If k or more descriptions are received,

the decoder uses the uncoded bits and the bits revealed by the systematic part of the MDS code

to decode the encoded erased version by applying an MDS decoding algorithm. The following

subsection discusses the achievable distortion region of the MDS coding scheme.

A. An Achievability Result

Theorem 5. Let Dk be a rational number in the interval [0, 1]. For any n and k ≤ n, if

Dk ≥ 1− k
n

, then R̃ ∈ RDworst. If Dk < 1− k
n

, then R̂ ∈ RDworst.

Proof: Case I: Dk ≥ 1− k
n
, Dk rational

Since Dk is rational, there exists a positive integer l′ such that l′R is a positive integer. Choose

a blocklength l = αnl′, where α is any positive integer. Observe a length-l source sequence X l,

and divide X l into n disjoint parts such that each part contains l/n = αl′ bits. (The division is

the same regardless of the source realization.) Label the parts Xi, i ∈ N . Choose lR bits from

each of the n parts (since Dk ≥ 1− k
n

, lR ≤ l
n

and therefore lR bits can be chosen from each

part). Denote by yi the set of lR bits chosen from Xi. Transmit yi uncoded over the ith channel.

The decoding is trivial. If m descriptions, say (y1, . . . , ym), are received, output X̂ l
m as the

reconstruction of X l, where X̂ l
m is such that the mlR bits corresponding to (y1, . . . , ym) are non-

erased and the other (l−mlR) bits are erasures. Since the reconstruction sequence has l−mlR
erasures regardless of the source sequence, the worst-case distortion Dm is (l−mlR)/l = 1−mR.

When k descriptions are received, the worst-case distortion is 1 − kR = Dk. Thus the rate-

distortion vector (R, 1−R, 1−2R, . . . , 1−(k−1)R,Dk, Dk−R,Dk−2R, . . . , Dk−(n−k)R) ∈
RDworst.

Case II: Dk < 1− k
n
, Dk rational

For this case, we present an achievability scheme based on MDS (maximum distance separable)
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codes3. Just as the achievability scheme for the average-case, this scheme has two components;

uncoded bits and an MDS-code component. Let m be the smallest integer such that 2m ≥ n

and mnk(n−k)
n(1−Dk)−k is an integer (such an m exists because Dk is rational). Define q = 2m, and

construct a q-ary MDS code of length q − 1 and dimension k. By repeatedly puncturing this

(q−1, k) MDS code, we obtain a punctured MDS code of size (n, k) [27, p. 190]. The punctured

coordinates are revealed to the decoder. Let G1 be the generator matrix of the punctured (n, k)

MDS code, and assume without loss of generality that G1 is systematic, i.e., G1 is of the form

[Ik|A], where Ik is the k × k identity matrix and A is a k × n − k matrix over the finite field

GF(q). Construct matrices G2, . . . ,Gn by shifting the columns of G1 to the right, i.e., Gi is the

matrix formed by shifting the columns of G1 by i− 1 places, with the last i− 1 columns of G1

wrapping around. In particular, if G1 = [Ik|A1 . . . An], where A1, . . . , An are the columns of A,

then Gi = [An−i+2 . . . An|Ik|A1 . . . An−i+1].

Encoding: Let X l be the observed source string, of length l = mnk(n−k)
n(1−Dk)−k bits. Divide X l into

n disjoint parts, each of length mk(n−k)
n(1−Dk)−k bits. (The division is done the same way regardless of

the source realization.) Let Xi, i ∈ N denote the last lDk/(n−k) bits of the ith part. Construct

an erased version X l
e by replacing the last lDk/(n− k) bits in each of the n parts by erasures.

Thus X l
e has l(1− nDk

n−k ) = mnk bits. Each of the n parts of X l
e has mk bits and can therefore be

treated as a concatenation of k binary strings of length m, such that each of these binary strings

is the binary representation of an element in GF(q). Thus each of the n parts of X l
e can be

mapped to a vector of length k in GF(q). Label these vectors pj, j ∈ N . Let yj = pjGj, j ∈ N .

Thus the yj are length-n vectors in GF(q). Let yji = pjGji denote the ith element of yj (here

Gji is the ith column of Gj). Transmit (Xi, yji : j ∈ N ) over the ith channel.

Decoding: Suppose c < k descriptions are received at the decoder. Let M ⊂ N denote the

set of indices of the received descriptions. Assume without loss of generality that i ∈M. Thus

the decoder receives Xi and yji = pjGji : j ∈ N . Thus lDk/(n − k) bits are revealed to the

decoder via Xi. Now for a fixed i, exactly k of the Gj, j ∈ N , (in particular, Gi−k+1, . . . ,Gi)

will have their ith column in the systematic part. Thus one symbol from k of the pj, j ∈ N ,

can be decoded. By mapping these decoded symbols to their binary representations, the decoder

3An (n, k) MDS code is a linear code that satisfies the Singleton bound, i.e., the Hamming distance between any two

codewords is n− k + 1. Reed-Solomon codes, for instance, are MDS codes.
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can obtain a partial reconstruction of X . Let X̂i represent the reconstructed source bits due to

the ith description. Output (X̂i : i ∈M) as the reconstruction of X l. If m > k descriptions are

received, then any k descriptions reveal k symbols from each of the yj, j ∈ N . Also, since the

punctured coordinates are known to the decoder, it can construct a longer codeword from every

partially received codeword by adding erasures in place of the punctured coordinates. The longer

codewords can be treated as codewords from the original (q−1, k) MDS code. The original MDS

code can subsequently be decoded by applying an erasure decoding algorithm [27, Ch. 9] and all

the pj vectors can be recovered. Mapping the pj vectors to their binary representations reveals the

erased version X l
e of the original source string X l. Output {(X1, . . . , Xm)}∪{X l

e\(X1, . . . , Xm)}
as the reconstruction of X l.

Analysis: We now argue that the above scheme achieves the rate-distortion vector (R, 1− 1
n
, 1−

2
n
, . . . , 1 − k−1

n
, Dk, (

n−k−1
n−k )Dk, (

n−k−2
n−k )Dk, . . . , (

1
n−k )Dk, 0). For any source string X l, every

description (say the ith description) consists of (Xi, yji : j ∈ N ). Xi consists of lDk/(n − k)

bits. Now since yji is an element of GF(q), it can be represented by m bits. Thus (yji : j ∈ N ) is a

length-n vector in GF(q), and can be represented by mn bits. Every description therefore consists

of mn+ lDk/(n− k) bits. Since the source string consists of l = mnk(n− k)/(n(1−Dk)− k)

source symbols, every description has rate

mn+ lDk/(n− k)

l
=

1−Dk

k
= R.

Moreover, every description received at the decoder reveals lDk/(n−k) bits via Xi, and exactly

one symbol from k of the pj, j ∈ N . Each of these k symbols is an element of GF(q) and can

be represented by m bits. Thus every description reveals lDk/(n− k) +mk bits to the decoder.

(We note that the bits revealed by any two descriptions are disjoint. The uncoded bits Xa and

Xb are disjoint by definition for any two descriptions a and b. Now suppose descriptions a and

b revealed the same symbol from some pj . Then yja = pjGja = pjGjb = yjb, which implies

a = b.) Thus if c < k descriptions are received, the decoder can reconstruct c(lDk/(n−k)+mk)

bits of the original source sequence. Thus

Dc = 1−
c( lDk

n−k +mk)

l

= 1− cDk

n− k −
cn(1−Dk)− ck

n(n− k)

= 1− c

n
.
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If c ≥ k descriptions are received, say descriptions 1, . . . ,m, then (X1, . . . , Xm) reveal

clDk/(n−k) bits. Moreover, the erased version of the source sequence, X l
e, can be reconstructed

by applying the MDS erasure decoding algorithm. The bits revealed by (X1, . . . , Xm) are disjoint

from the bits revealed by X l
e. The total number of bits revealed, therefore, is clDk/(n−k)+mnk.

Thus

Dc = 1−
c lDk

n−k +mnk

l

= 1− cDk

n− k −
n(1−Dk)− k

n− k

=

(
n− c
n− k

)
Dk.

Thus (R, 1− 1
n
, 1− 2

n
, . . . , 1− k−1

n
, Dk, (

n−k−1
n−k )Dk, (

n−k−2
n−k )Dk, . . . , (

1
n−k )Dk, 0) ∈ RDworst.

Figure 2 depicts how the achievable distortion varies with the number of descriptions received

at the decoder when Dk = 0.In General

1 2 3 k − 1 k k + 1 n

1

Descriptions received

D
is

to
rt

io
n

Fig. 2. The achievable distortion region for Dk = 0. The achievable distortion decreases linearly with the number of descriptions

received up to k − 1 descriptions, and drops abruptly to zero upon reception of k or more descriptions.

B. Optimality Results

We now present optimality results for the MDS coding scheme described in the previous

subsection. These optimality results are stronger than those for average-case distortion and yield

a more complete characterization of the achievable distortion region. Since we are dealing with

worst-case distortion constraints, the following results hold for any source distribution.
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Theorem 6. For any n and k, if Dk ≥ 1− k
n

and rational4, then for any (R,D1, . . . , Dk, . . . , Dn) ∈
RDworst, Dm ≥ 1−mR for all m ∈ N .

Proof: Let Dk ≥ 1− k
n

. If a code achieves a certain distortion under worst-case distortion,

then it will achieve that distortion under average-case distortion as well. The result therefore

follows from the first part of Theorem 2.

The following lemma is integral to the proofs of our optimality results for worst-case distortion.

Definition 5. Let X l be a random vector taking values in X l. An erased version of X l is a

random vector X̃ l, taking values in X̂ l, such that @ t ∈ {1, . . . , l} such that X̃t = + and Xt = −
or X̃t = − and Xt = +.

Lemma 1. Let X l
1(X), X l

2(X), . . . , X l
n(X) be erased versions of the source string X l ∈ X l.

Suppose X l is i.i.d. uniform over X l. If for all t ∈ {1, . . . , l}, I(Xit(X);Xjt(X)) = 0 ∀ i, j ∈ N ,

i 6= j, then

max
xl∈X l

n∑
i=1

[
1

l

l∑
t=1

d(xt, Xit(x))

]
≥ n− 1.

Proof: See Appendix E.

The following theorem proves that the MDS coding scheme is optimal for all n and k when

a single-message is received at the decoder.

Theorem 7. For any n and k, if Dk < 1− k
n

and rational, then for any (R,D1, . . . , Dk, . . . , Dn) ∈
RDworst, D1 ≥ 1− 1

n
.

Proof: See Appendix F.

The following theorem shows that the MDS coding scheme is Pareto optimal in the distortions

D1, . . . , Dk−1.

Theorem 8. For any n and k, (R, 1− 1
n
, 1− 2

n
, . . . , 1−k−1

n
, Dk, (

n−k−1
n−k )Dk, (

n−k−2
n−k )Dk, . . . , (

1
n−k )Dk, 0)

is Pareto optimal in D1, . . . , Dk−1, i.e., there does not exist (R′, D′1, . . . , D
′
n) ∈ RDworst such

that either R′ < R, or R′ ≤ R, D′i ≤ 1− i
n

for all 1 ≤ i ≤ k − 1 and D′j < 1− j
n

for at least

one j, 1 ≤ j ≤ k − 1.

4For this theorem and subsequent theorems in this subsection, we consider rational values for Dk since any code over a finite

blocklength can yield only rational distortions.
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Proof: See Appendix G.

The following theorem shows that for certain values of m, n and k, the MDS coding scheme

is optimal when m messages are received.

Theorem 9. For any n and k, if m ≤ k
2

and m|n (m divides n), then for any (R,D1, . . . , Dk, . . . , Dn) ∈
RDworst, Dm ≥ 1− m

n
.

Proof: See Appendix H.

V. A GENERAL MULTIPLE DESCRIPTIONS ARCHITECTURE

The schemes described in this paper provide a substrate that can be used to construct no-excess-

rate multiple descriptions codes for a general source using only a point-to-point rate-distortion

code for that source. We illustrate this idea for a Gaussian source, where the resulting scheme

is optimal in a certain sense. The extension to arbitrary sources should be clear from the proof.

Suppose that (Xt)
∞
t=1 is a memoryless Gaussian process, where Xt is a vector of length N and

has a marginal distribution N (0,Kx). The distortion for a source-reconstruction pair (Xl, X̂
l
) is

measured as E
[

1
l

∑l
t=1(Xt − X̂t)(Xt − X̂t)

T
]
. We compare distortions in the positive definite

sense, i.e., DA < DB iff DA − DB < 0.

Definition 6. The rate-distortion vector (R,D1, . . . ,Dn) is achievable if for some l there exist

encoders f (l)
i : RN×l → {1, . . . ,M (l)

i }, i ∈ N and decoders g(l)
K :

∏
k∈K{1, . . . ,M

(l)
k } → RN×l,

K ⊆ N , K 6= ∅, such that

R ≥ 1

l
logM

(l)
i for all i, and

Dk < E

[
1

l

l∑
t=1

(Xt − X̂K,t)(Xt − X̂K,t)T
]

for all K ⊆ N , |K| = k,

where X̂
l

K = E[Xl|f (l)
i (Xl), i ∈ K].

We use RDgauss to denote the set of achievable rate-distortion vectors and RDgauss to denote

its closure. We consider symmetric descriptions, i.e., each description has the same rate Rg and

the distortion constraint depends only on the number of descriptions received. We consider the

case where there is no excess rate for every k out of n descriptions, i.e., kRg = R(Dk), where
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R(·) is the Shannon rate-distortion function and

R(Dk) = min
D̃

1

2
log
|Kx|
|D̃|

s.t. D̃ 4 Dk and

D̃ 4 Kx.

Thus Rg = 1
k
R(Dk) bits/symbol.

Theorem 10.
(
Rg,

Dk+(n−1)Kx

n
, 2Dk+(n−2)Kx

n
, . . . , (k−1)Dk+(n−k+1)Kx

n
,Dk, . . . ,Dk

)
∈ RDgauss.

Proof: Fix Dk and consider an integer l. We know from rate-distortion theory that there

exists an integer l′ ≥ lR(Dk) such that any source sequence Xl of l symbols can be compressed

to a sequence Y l′ consisting of l′ bits and then reproduced from Y l′ with distortion 4 Dk + εI

for l sufficiently large. Chose now a blocklength nl. The nl source symbols can be compressed

into a binary sequence Y nl′ taking values in X , which can then be transmitted to the decoder

over the n channels using the achievability scheme proposed in Section IV-A. Thus every de-

scription contains l′ uncoded bits of Y nl′ . In particular, the decoder should be able to completely

reconstruct Y nl′ upon reception of any k descriptions, i.e, there is no distortion for every k

out of n descriptions (this corresponds to a special case of Theorem 1 with Dk = 0). Thus

every set of k descriptions must reveal nl′ bits, and therefore the rate of a single description

is R̃ = nl′/knl = l′/kl bits per symbol of Xl. Moreover, since every description contains l′

uncoded bits, the decoder can reconstruct ml′ bits of Y l′ upon reception of m < k descriptions.

We now argue that
(
Rg,

Dk+(n−1)Kx

n
, . . . , (k−1)Dk+(n−k+1)Kx

n
,Dk, . . . ,Dk

)
∈ RDgauss. The rate

of every description is R̃ = l′/kl. Moreover, any m < k descriptions reveal ml′ bits of Y nl′ . It

follows from a time-sharing argument that upon receptions of m < k descriptions, the decoder

can reconstruct Xnl with distortion m(Dk+εI)+(n−m)Kx

n
. When k or more descriptions are received,

the decoder is able to reconstruct Y nl′ completely and can reconstruct Xnl with distortion less

than 4 Dk + εI. Now let l → ∞. Then we can let l′ → ∞ such that l′

l
→ R(Dk) and ε → 0.

Thus R̃ = l′

kl
→ 1

k
R(Dk) = Rg, and so

(
Rg,

Dk+(n−1)Kx

n
, . . . , (k−1)Dk+(n−k+1)Kx

n
,Dk, . . . ,Dk

)
∈

RDgauss.
Next, we show that, for the special case of symmetric scalar Gaussian multiple descriptions

with two levels of receivers (where one receiver reconstructs the source from any k out of

DRAFT



22

n descriptions with distortion Dk and the second receiver reconstruct the source from all n

description with distortion Dn), and no excess rate for the second receiver, the aforementioned

scheme achieves the optimal Dk. It has been shown by Wang and Viswanath [28, Theorem 1]

that given distortion constraints Dk and Dn, the symmetric multiple description rate for an i.i.d.

vector Gaussian source with mean 0 and convariance Kx is

R̂ = sup
Kz�0

1

2
log

(
|Kx|

1
n |Kx + Kz|

n−k
kn |Dn + Kz|

1
n

|Dn|
1
n |Dk + Kz|

1
k

)
.

Thus the sum rate of the n descriptions is

nR̂ = sup
Kz�0

1

2
log

(
|Kx||Kx + Kz|

n−k
k |Dn + Kz|

|Dn||Dk + Kz|
n
k

)
. (1)

Theorem 11. For scalar Gaussian multiple descriptions (i.i.d. N (0, σ2
x) Gaussian source) with

two levels of receivers (distortion constraints Dk and Dn, respectively) and no excess rate for

the second receiver, Dk ≥ k
n
Dn + n−k

n
σ2
x.

Proof: Assume WLOG that σ2
x = 1. Reducing (1) to the scalar case and using the no excess

rate condition gives

1

2
log

(
1

Dn

)
= sup

λ>0

1

2
log

(
1

Dn

· (1 + λ)
n−k
k (Dn + λ)

(Dk + λ)
n
k

)
,

which implies

0 = sup
λ>0

1

2
log

(
(1 + λ)

n−k
k (Dn + λ)

(Dk + λ)
n
k

)
.

Define f(λ) = (1+λ)
n
k
−1(Dn+λ)

(Dk+λ)
n
k

. Then

0 = sup
λ>0

loge f(λ)

= sup
λ>0

(n
k
− 1
)

loge(1 + λ) + loge(Dn + λ)− n

k
loge(Dk + λ)

= sup
λ>0

loge
Dn + λ

1 + λ
+
n

k
loge

1 + λ

Dk + λ

= sup
λ>0

loge

(
1 +

Dn − 1

1 + λ

)
+
n

k
loge

(
1 +

1−Dk

Dk + λ

)
.

Define

g(λ) =
(Dn−1

1+λ
)2

2(1− |Dn−1
1+λ
|)2

+
( 1−Dk

Dk+λ
)2

2(1− | 1−Dk

Dk+λ
|)2
.
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Using the fact that

loge(1 + x) ≥ x− x2

2(1− |x|)2
for |x| < 1

we obtain

0 ≥ sup
λ>0

(
Dn − 1

1 + λ
+
n

k

(
1−Dk

Dk + λ

)
− g(λ)

)
1−Dn

1 + λ
≥ n

k

(
1−Dk

Dk + λ

)
− g(λ)

Dk + λ

1 + λ
≥ n

k

(
1−Dk

1−Dn

)
− Dk + λ

1−Dn

g(λ).

Now let λ→∞. Then Dk+λ
1−Dn

g(λ)→ 0 and Dk+λ
1+λ

→ 1. We thus have

1 ≥ n

k

(
1−Dk

1−Dn

)
⇒ Dk ≥

k

n
Dn +

n− k
n

.

VI. DECENTRALIZED ENCODING

In this section we characterize the optimal distortion tradeoff for the robust binary erasure CEO

problem. The robust binary erasure CEO problem is a generalization of the multiple descriptions

problem studied earlier in that the encoders observe an erased version of the source instead of

the source itself. In particular, let Yi = Ni ·X, i ∈ N , where X ∈ X and N1, . . . , Nn are i.i.d.

Bernoulli with 0 < Pr(Ni = 0) = p < 1. Thus the Yi take values in X̂ = {+,−, 0}. A encoder is

a function fi : X̂ l →
{

1, . . . ,M l
i

}
, i ∈ N . A decoder is a function gK :

∏
k∈K

{
1, . . . ,M l

k

}
→

X̂ l, where K ⊆ N is the set of messages received. There are n encoders. Encoder fi, i ∈ N ,

observes Y l
i and transmits an encoded version of it over channel i. The receiver either receives

this description without errors or is not able to receive it at all. Excluding the case where none

of the messages is received, the receiver may receive 2n − 1 different combinations of the n

messages. Thus it can be represented by the 2n−1 decoding functions gK, K ⊆ N , K 6= ∅. Based

on the set of received messages K, the receiver employs the corresponding decoding function to

output a reconstruction X̂ l
K of the original source string X l subject to a distortion constraint. We

consider symmetric rates, i.e., each message has the same rate R and the distortion constraint

depends only on the number of messages received.
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We measure the fidelity of the reconstruction using a family of distortion measures, {dλ}λ>0,

where

dλ(x, x̂) =


0 if x̂ = x

1 if x̂ = 0

λ otherwise.

We are particularly interested in the large-λ limit. In this regime, dλ approximates the erasure

distortion measure. We use this family of finite distortion measures because an infinite distortion

measure is too harsh for this setup: it does not allow decoding errors at all, even those that have

negligible probability.

Definition 7. The rate-distortion vector (R,D1, D2, . . . , Dn) is achievable if there exists a block

length l for which there exist encoders fi, i ∈ N , and decoders gK, K ⊆ N , K 6= ∅ such that

R ≥ 1

l
logM

(l)
i for all i ∈ N , and

Dk ≥ E

[
1

l

l∑
t=1

dλ(Xt, X̂Kt,)

]
for all subsets of messages K, |K| = k.

(2)

Let RDCEO(λ) denote the set of achievable rate-distortion vectors. Define

RDCEO =
∞⋂
λ≥1

RDCEO(λ).

We use RDCEO to denote the closure of RDCEO. Our main result is the characterization

of the optimal distortion tradeoff for an arbitrary code with respect to the number of messages

received. We show that if a code comes arbitrarily close to achieving the minimum achievable

distortion Dk upon reception of k messages, then the distortion it can achieve upon reception of

` messages cannot be lower than D`/k
k . Achievability can be shown by using a random binning

scheme based on (n, k) source-channel erasure codes, proposed in [9]. The result therefore

proves that (n, k) source-channel erasure codes are optimal for this setup. Informally, the scheme

involves constructing a codebook Ci for Yi at encoder fi and then binning all the codewords

independently and uniformly. Encoder fi observes Y l
i and then sends the bin index of the

corresponding codeword to the decoder. Upon receiving the messages, the decoder searches

the corresponding bins and outputs a reconstruction of the source sequence based on the bits

revealed by the codewords. If none of the decoded codewords reveal a particular source bit, then
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the decoder just outputs an erasure in place of that bit. It can be verified that, for this scheme,

if the distortion upon reception of any k messages is Dk, then the distortion upon reception of

any ` messages is D`/k
k . The intuition is that if q is the probability that a particular bit is not

revealed by a particular message, then the chance that k messages will not reveal that bit is qk,

and the chance that ` messages will not reveal that bit is q` = (qk)`/k.

Before proving the converse for this problem, we will state and prove an outer bound on the

rate region of the multi-terminal source coding problem in the next subsection. We will then use

this bound to prove our result in Section VI-B.

A. Outer Bound on the Rate Region of the Multi-terminal Source Coding Problem

The term “multi-terminal source coding” typically refers to the problem of reconstructing two

correlated, separately encoded sources, each subject to a distortion constraint. In this paper we

use the term to refer to the more general model considered in [29]: we have an arbitrary number

of sources Y1, . . . , Yn, with Yi taking values in the set Yi, encoders fi, i ∈ N , a hidden source

Y0 which is not directly observed by any encoder or the decoder, and a side information source

Yn+1, taking values in the set Yn+1, which is observed by the decoder but not by any encoder.

In particular, {Y0,t, Y1,t, . . . , Yn,t, Yn+1,t}∞t=1 is a vector-valued, finite-alphabet and memoryless

source. Encoder fi observes a length-l sequence of Yi and transmits a message to the decoder

based on the mapping

f
(l)
i : Y li →

{
1, . . . ,M

(l)
i

}
.

We allow the decoder to reconstruct arbitrary functions of the sources V1, . . . , VJ (with Vj, j =

1, . . . , J taking values in the set Vj) instead of, or in addition to, the sources themselves. We

also allow the decoder to reconstruct V1, . . . , VJ from subsets of messages fK = {f (l)
k , k ∈ K},

where K ⊂ N ,K 6= ∅. The decoder thus uses the mappings(
gjK
)(l)

: Y ln+1 ×
∏
k∈K

{
1, . . . ,M

(l)
k

}
→ V lj, for K ⊂ N ,K 6= ∅, j = 1, . . . , J.

We thus have J distortion measures

dj :
n+1∏
i=0

Yi × Vj → R+.

For every j = 1, . . . , J , we impose a common distortion constraint for all size-k subset of

messages used to reconstruct Vj . More precisely, for every j = 1, . . . , J , all
(
n
k

)
subsets of
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messages of size k, when used to reconstruct Vj , must satisfy a single distortion constraint. Thus

there are nJ distortion constraints in total. We will use the following notation and definitions from

[29]. Let YK denote (Yk)k∈K, and Yic denote Y{i}c . Moreover, Yi,a:b denotes {Yi,a, Yi,a+1, . . . , Yi,b}.

Definition 8. The rate-distortion vector

(R,D) = (R1, R2, . . . , Rn, D1,1, D2,1, . . . , Dn,1, D1,2, . . . , Dn,2, . . . , D1,J , . . . , Dn,J)

is achievable if for some l there exist encoders f (l)
i , i ∈ N , and decoders (gjK)l, K ⊂ N ,K 6=

∅, j = 1, . . . , J , such that

Ri ≥
1

l
logM

(l)
i , i ∈ N , and

Dk,j ≥ max
K:|K|=k

E

[
1

l

l∑
t=1

dj(Y0,t,YK,t, Yn+1,t, Vj,t)

]
for j = 1, . . . , J.

(3)

As in [29], we use RD? to denote the set of achievable rate-distortion vectors and RD? to

denote its closure. We use the following definitions from [29].

Definition 9. Let Y0, Y1, . . . , Yn+1 be generic random variables with the distribution of the source

at a single time. Let Γo denote the set of finite-alphabet random variables γ = (U1, . . . , Un, V1, . . . , Vj,W, T )

satisfying

(i) (W,T ) is independent of (Y0,YN , Yn+1),

(ii) Ui ↔ (Yi,W, T )↔ (Y0,Yic , Yn+1,Uic), shorthand for “Ui, (Yi,W, T ) and (Y0,Yic , Yn+1,Uic)

form a Markov chain in this order”, for all i ∈ N , and

(iii) (Y0,YN ,W )↔ (UN , Yn+1, T )↔ (V1, . . . , Vj).

Definition 10. Let ψ denote the set of finite-alphabet random variables Z with the property that

Y1, . . . , Yn are conditionally independent given (Z, Yn+1).

There are many ways of coupling a given Z ∈ ψ and γ ∈ Γo to the source. In this paper, we

shall only consider the Markov coupling for which Z ↔ (Y0,YN , Yn+1)↔ γ. We now state our

outer bound.

Definition 11. Let

RDo(Z, γ) =

{
(R,D) :

∑
i∈K

Ri ≥ max
(
I(Z;UK|Yn+1, T ), I(Z;UK|UKc , Yn+1, T )

)
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+
∑
i∈K

I(Yi;Ui|Z, Yn+1,W, T ) for all K ⊆ N ,

and Dk,j ≥ max
K:|K|=k

E[dj(Y0,YK, Yn+1, Vj)] for j = 1, . . . , J

}
.

Then define

RDo =
⋂
Z∈ψ

⋃
γ∈Γo

RDo(Z, γ).

Theorem 12. RD? ⊆ RDo.

Proof: See Appendix I.

The proposed bound differs in two ways from the bound in [29] as follows. Whereas the bound

in [29] lower bounds the sum rate of a subset K of messages by I(Z;UK|UKc , Yn+1, T ), the

proposed bound potentially improves upon it by taking the maximum of I(Z;UK|UKc , Yn+1, T )

and I(Z;UK|Yn+1, T ). Moreover, the proposed bound imposes distortion constraints for source

reproductions based on subsets of messages, rather than only for reproductions based on all of

the messages. These improvements were needed in order to use the bound to prove our converse

result for the robust CEO problem: the robust CEO problem requires the decoder to be able to

reconstruct the source sequence from a subset K of the encoded messages, subject to a distortion

constraint, without having any knowledge about the messages in Kc. The outer bound in [29]

cannot be applied to this problem, since, as mentioned earlier, it lower bounds the sum rate of the

subset of messages K by I(Z;UK|UKc , Yn+1, T ) which involves conditioning on the messages

in Kc.
Although we apply our improved outer bound to the robust binary erasure CEO problem in

this paper, we believe that it could potentially be useful for other instances of the multi-terminal

source coding problem.

B. Optimal Distortion Tradeoffs for Robust CEO

As defined earlier, the robust binary erasure CEO problem is an instance of the general multi-

terminal source coding problem in which the hidden source Y0 takes values in X = {+,−}.
There is no side information Yn+1 and the decoder is interested in reproducing an estimate V1 of

the hidden source Y0 only. In order to be consistent with the notation used in the beginning of
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this section, we shall henceforth use X instead of Y0 and X̂ instead of V1. Here X̂ takes values

in {+,−, 0}. We begin with a few lemmas.

Let g(·) denote the function on [p,∞) defined by

g(x) =

h(x)− (1− p)h(x−p
1−p ) p ≤ x ≤ 1

0 x > 1.

The following corollary and lemma, which we state without proof, are from [29].

Corollary 1. [29, Corollary 1] The function g(y1/n) is non-increasing and convex in y on

[pn,∞).

Lemma 2. [29, Lemma 6] Suppose pn ≤ D and (U, X̂) is such that

(i) E[dλ(X, X̂)] ≤ D,

(ii) Ui ↔ Yi ↔ (X,Yic ,Uic) for all i ∈ N , and

(iii) (X,Y)↔ U↔ X̂ .

If
32n

p(1− p)

(
2D

λ

)1/n

≤ δ ≤ 1

2
,

then
1

n

n∑
i=1

I(Yi;Ui|X) ≥ g
(
(D + δ)1/n

)
+ 2δ log

δ

5
.

For the robust binary CEO problem, let X̂ l
K be the source reconstruction when the subset K

of messages is received at the receiver. We have the following lemma:

Lemma 3. Suppose p` ≤ D and that (U, X, X̂K,Y,W, T ) for all K, |K| = ` is such that

(i) (X,Y,UKc ,W )↔ (UK, T )↔ X̂K,

(ii) Ui ↔ (Yi,W, T )↔ (X,Yic ,Uic) for all i ∈ N , and

(iii) 1
`

∑
i∈K I(Yi;Ui|X,W, T ) ≤ g(D1/`).

Let D̃ = maxK:K=`E[dλ(X, X̂K)]. For δ ∈ (0, 1/2], if

λ ≥ max

4

(
32`

δp(1− p)

)2`

,

(
D̃

δ

)2
 ,

then

D̃ ≥ D − ξ(D̃, δ)
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for some continuous ξ ≥ 0 satisfying ξ(D̃, 0) = 0.

Proof: See Appendix J.

We now prove our main result. Define

Ro(D, λ) = inf
{
R : (R,D1, . . . , Dn) ∈ RDo(λ)

}
,

where RDo(λ) is the region given by Definition 11 when the distortion measure is dλ.

It was shown in [29, Section 3.2] that the sum rate of the binary erasure CEO problem with

n encoders, given a distortion constraint Dn, is5

n∑
i=1

Ri = (1−Dn) + n · g(D
1
n
n ).

It follows from this result, that for symmetric descriptions, if the distortion constraint for every

subset of k messages is Dk and every message has rate R, then the sum rate for any k descriptions

is given by

kR = (1−Dk) + k · g(D
1
k
k ),

which implies

R =
(1−Dk)

k
+ g(D

1
k
k ). (4)

Theorem 13. If (R,D1, . . . , Dn) ∈ RDCEO, and

Dk = inf
{
D : (R, 1, 1, . . . , 1, D, 1, . . . , 1) ∈ RDCEO

}
,

i.e.,

R =
(1−Dk)

k
+ g(D

1
k
k ),

then

D` ≥ (Dk)
`
k for all ` ≥ k.

Proof: It suffices to prove Theorem 13 for a single subset of messages of size ` ≥ k. Fix

δ ∈ (0, 1/2], and suppose λ satisfies

λ ≥ max

[
4

(
32`

δp(1− p)

)2`

,

(
Dk

δ

)2
]
.

5All logarithms and exponentiations in [29] have base e. Therefore the corresponding sum rate expression in [29] is
∑n

i=1 Ri =

(1−Dn) log 2 + n · g(D
1
n
n ).
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It follows from taking Z = X in the definition of RDo(Z, γ) (Definition 11) and from the

monotonicity of Ro(D, λ) with respect to λ that there exist R ∈ R+ and γ ∈ Γo such that, for

all subsets K of size k,

Dk + δ ≥ E[dλ(X, X̂K)], and

kR + δ ≥ kRo(D, λ) + δ ≥ I(X;UK|T ) +
∑
i∈K

I(Yi;Ui|X,W, T ).
(5)

From (4) and (5), it follows that

I(X;UK|T )

k
+

1

k

∑
i∈K

I(Yi;Ui|X,W, T ) ≤ (1−Dk)

k
+ g(D

1
k
k ) +

δ

k
. (6)

Now by the data processing inequality,

I(X;UK|T ) = I(X;UK, T )

≥ I(X; X̂K).

Let ε = 1(X · X̂K = −1). We then have

I(X;UK|T ) ≥ H(X)−H(X|X̂K)

= 1−H(X, ε|X̂K)

= 1−H(ε|X̂K)−H(X|ε, X̂K)

≥ 1− h(Dk/λ)− Pr(X̂K = 0)

≥ (1−Dk)− h(δ).

Using this and (6), we can upper bound 1
k

∑
i∈K I(Yi;Ui|X,W, T ) as follows:

1

k

∑
i∈K

I(Yi;Ui|X,W, T ) ≤ g(D
1
k
k ) +

h(δ)

k
+
δ

k
. (7)

We will show

1

`

∑̀
i=1

I(Yi;Ui|X,W, T ) ≤ g(D
1
k
k ) +

h(δ)

k
+
δ

k
, ` ≥ k. (8)

Suppose the Ui are ordered according to the mutual informations I(Yi;Ui|X,W, T ), i.e., we

have an ordered list of messages U1, . . . , U` in which, for all i, j ∈ {1, . . . , `}, Ui and Uj are
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such that I(Yi;Ui|X,W, T ) ≤ I(Yj;Uj|X,W, T ) when i ≤ j. The last k elements of this list,

U`−k+1, . . . , U`, must satisfy (7), i.e.,

1

k

∑̀
i=`−k+1

I(Yi;Ui|Y0,W, T ) ≤ g(D
1
k
k ) +

h(δ)

k
+
δ

k
. (9)

All other elements in the list yield equal or strictly smaller mutual informations. Therefore, if

we average over a larger subset of messages, the average will never increase. We thus have

1

`

∑̀
i=1

I(Yi;Ui|X,W, T ) ≤ 1

k

∑̀
i=`−k+1

I(Yi;Ui|X,W, T ).

Using this and (9), we obtain (8). Define

(Dk − ζ(Dk, δ))
1
k = g−1

(
g(D

1
k
k ) +

h(δ)

k
+
δ

k

)
for some continuous ζ ≥ 0 satisfying ζ(Dk, 0) = 0. We then have

1

`

∑̀
i=1

I(Yi;Ui|X,W, T ) ≤ g((Dk − ζ(Dk, δ))
1
k ). (10)

From (10), we obtain, by using Lemma 3,

D` ≥ (Dk − ζ(Dk, δ))
`
k − ξ(D`, δ)

for some continuous ξ ≥ 0 satisfying ξ(D`, 0) = 0. The proof is completed by letting λ → ∞
and then δ → 0.

APPENDIX A

PRELIMINARIES

We define a multi-letter mutual information as follows:

IK(X1;X2; . . . ;XK) = D

(
p(X1, . . . , XK)||

K∏
i=1

p(Xi)

)

=
K∑
i=1

H(Xi)−H(X1, . . . , XK).

In particular, I1(X) = 0. The multi-letter mutual information, as defined above, is a measure

of the mutual dependence among K random variables and is different from McGill’s multivariate

mutual information [26]. We note the following properties of IK(X1;X2; . . . ;XK).

1) IK(X l
1; . . . ;X l

K) =
∑K

i=1 H(X l
i)−H(X l

1, . . . , X
l
K) ≥ 0.
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2) IK(X1; . . . ;XK) ≥ Im(X1; . . . ;Xm) + I(K−m+1)(f(X1, . . . , Xm);Xm+1; . . . ;XK), where

f(X1, . . . , Xm) is a function of the random variables X1, . . . , Xm, m < K.

Remark: This property holds by symmetry for the general case when f(·) is a function of

any size-m subset of X1, . . . , XK .

Proof:

IK(X1; . . . ;XK)

=
m∑
i=1

H(Xi) +
K∑

i=m+1

H(Xi)−H(X1, . . . , Xm)−H(Xm+1, . . . , XK |X1, . . . , Xm)

= Im(X1; . . . ;Xm) +
K∑

i=m+1

H(Xi)−H(Xm+1, . . . , XK |X1, . . . , Xm)

= Im(X1; . . . ;Xm) +
K∑

i=m+1

H(Xi)−H(Xm+1, . . . , XK |X1, . . . , Xm, f(X1, . . . , Xm))

≥ Im(X1; . . . ;Xm) +
K∑

i=m+1

H(Xi)−H(Xm+1, . . . , XK |f(X1, . . . , Xm))

= Im(X1; . . . ;Xm) + I(K−m+1)(f(X1, . . . , Xm);Xm+1; . . . ;XK),

where the solitary inequality holds because conditioning never increases entropy.

3) IK(X1;X2; . . . ;Xi; . . . ;XK) ≥ IK(X1;X2; . . . ; f(Xi); . . . ;XK), where f(Xi) is a func-

tion of the random variable Xi. This is the data processing inequality for the multi-letter

mutual information and is a special case of Property 2.

APPENDIX B

PROOF OF THEOREM 2

The proof of the first part of Theorem 2 is simple. Let Dk ≥ 1− k
n

. No excess rate for every

k descriptions implies that every description has rate R. If the decoder receives m descriptions,

then it receives a sum-rate of mR bits per source symbol. Using the point-to-point rate-distortion

function for a binary source with erasure distortion, we get Dm ≥ 1−mR.

The proof of the second part of Theorem 2 is less trivial. We begin with a lemma.

Definition 12. Let X be a binary random variable taking values in X . An erased version of X

is a random variable X̃ , taking values in X̂ , such that Pr(X̃ = +, X = −) = Pr(X̃ = −, X =

+) = 0.
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Lemma 4. Let X1, . . . , Xn be erased versions of a uniform binary random variable X taking

values in {+,−}. If
(
1− 1

n

)k ≤ 1
2

and Ik(Xs1 ; . . . ;Xsk) = 0 ∀ S = {s1, . . . , sk}, S ⊂ N , |S| =
k, then

∑n
i=1 Pr(Xi = 0) ≥ n− 1.

Proof:
(
1− 1

n

)k ≤ 1
2
⇒
(

1
2

) 1
k ≥ 1− 1

n
. We have the following four cases:

Case I: There exists i ∈ N such that Pr(Xi = +) > 0 and Pr(Xi = −) > 0.

Assume i = 1 without loss of generality. Since X1, . . . , Xn are erased versions of the same

variable, they can never disagree in the source symbol they reveal (i.e., if Xi = + for some

i ∈ N , then the rest cannot be −, and if Xi = −, then the rest cannot be +). Thus Pr(X1 =

+, Xj = −) = 0, j ∈ {2, . . . , n}. Since Ik(Xs1 ; . . . ;Xsk) = 0 for any set of k variables

containing X1 and Xj , X1 and Xj must be independent. Thus

Pr(X1 = +) · Pr(Xj = −) = Pr(X1 = +, Xj = −) = 0

⇒ Pr(Xj = −) = 0. (11)

Likewise, Pr(X1 = −, Xj = +) = 0 ⇒ Pr(Xj = +) = 0. Thus Pr(Xj = 0) = 1 and so∑n
i=1 Pr(Xi = 0) ≥ n− 1.

Case II: There exists i ∈ N such that Pr(Xi = +) > 0 and Pr(Xi = −) = 0, and Case I does

not hold.

Let S = {s1, . . . , sk} be a size-k subset of N . For all T ⊂ S, denote by ET the event that

Xsj = − ∀ sj ∈ T , and Xsj = 0 ∀ sj /∈ T , sj ∈ S. Now since Pr(Xsj = −) = 0 from (11),

Pr(ET ) = 0 ∀ T 6= ∅. Thus

Pr(X = −) ≤
∑
T ⊂S

Pr(ET )

= Pr(Xs1 = Xs2 = . . . = Xsk = 0). (12)

Since Pr(X = −) = 1/2 and (Xs1 , . . . , Xsk) are independent, (12) yields
k∏
j=1

Pr(Xsj = 0) = Pr(Xs1 = Xs2 = . . . = Xsk = 0) ≥ 1

2
.

In order to lower bound
∑n

i=1 Pr(Xi = 0), we solve

min
∑n

j=1 Pr(Xj = 0)

s.t.
∏k

j=1 Pr(Xsj = 0) ≥ 1

2
∀ S = {s1, . . . , sk} ⊂ N .
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This is a convex optimization problem, as can be readily seen by substituting αj = log Pr(Xj =

0), and can therefore be solved by choosing Pr(Xj = 0) =
(

1
2

) 1
k for j = 1, . . . , n. Thus∑n

j=1 Pr(Xj = 0) ≥ n
(

1
2

) 1
k ≥ n(1− 1/n) = n− 1.

Case III: There exists i ∈ N such that Pr(Xi = −) > 0 and Pr(Xi = +) = 0, and Case I does

not hold.

This case is symmetric to Case II.

Case IV: For all i ∈ N , Pr(Xi = +) = Pr(Xi = −) = 0.

We have
∑n

j=1 Pr(Xj = 0) >
∑n

j=2 Pr(Xj = 0) = n− 1.

We are now in a position to prove the second part of Theorem 2. Let Dk < 1 − k
n

, Dk

rational, and
(
1− 1

n

)k ≤ 1
2
, and let fi, i ∈ N and gK, K ⊆ N , K 6= ∅ be a code that achieves

the rate-distortion vector (R,D1, . . . , Dk, . . . , Dn). Let fi, i ∈ N have rate R. We have

lR ≥ H(fi), i ∈ N .

Let X l
S be the reconstruction when the source is reconstructed from a set S of descriptions.

Then ∀ S = {s1, . . . , sk} ⊂ N , |S| = k, we have

H(fs1 . . . fsk) ≥ H(X l
S) = l(1−Dk).

Thus

Ik(fs1 ; . . . ; fsk) =
k∑
j=1

H(fsj)−H(fs1 . . . fsk)

≤ klR− l(1−Dk) = 0.

Let X l
si

be the reconstruction when the decoder receives the sthi description only. Then

Ik(X
l
s1

; . . . ;X l
sk

) ≤ Ik(fs1 ; . . . ; fsk) = 0 (Property 3) and so Ik(Xs1,t; . . . ;Xsk,t) = 0, t ∈
{1, . . . , l}. By Lemma 4,

∑n
i=1 Pr(Xit = 0) ≥ (n− 1) for t ∈ {1, . . . , l}. Thus

1

l

l∑
t=1

n∑
i=1

Pr(Xit = 0) ≥ n− 1

⇒ max
i

(
1

l

l∑
t=1

Pr(Xit = 0)

)
≥ 1− 1

n
.

This completes the proof.
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APPENDIX C

PROOF OF THEOREM 3

We establish two lemmas before proving Theorem 3.

Lemma 5. Let X1, X2, and X3 be Bernoulli random variables such that I(Xi;Xj) = 0, ∀ i, j ∈
{1, 2, 3}, i 6= j, and Pr(X1 = X2 = X3 = 0) ≥ 1

2
. Let p = max(Pr(X1 = 0),Pr(X2 = 0)). Then

Pr(X3 = 0) ≥ 1

2
+
p(1− p)
2p− 1

.

Proof: If p = 1, then the conclusion follows directly from the hypothesis, so suppose that

p < 1. Let pi denote Pr(Xi = 0), p(x1, x2, x3) denote Pr(X1 = x1, X2 = x2, X3 = x3), and

px3|x1,x2 denote Pr(X3 = x3|X1 = x1, X2 = x2). Let q0 = p0|0,0, q1 = p0|0,1, and q2 = p0|1,1. We

thus have p(0, 0, 0) = p1p2q0, p(0, 1, 0) = p1(1−p2)q1, and p(1, 1, 0) = (1−p1)(1−p2)q2. Then

Pr(X1 = 0, X3 = 0) = p(0, 0, 0) + p(0, 1, 0)

= p1(p2q0 + (1− p2)q1) (13)

Pr(X2 = 1, X3 = 0) = p(0, 1, 0) + p(1, 1, 0)

= (1− p2)(p1q1 + (1− p1)q2). (14)

Since (X1, X3) and (X2, X3) are pairwise independent, we have, from (13) and (14),

Pr(X1 = 0, X3 = 0) = p1p3 = p1(p2q0 + (1− p2)q1)

⇒ p3 = p2q0 + (1− p2)q1, (15)

Pr(X2 = 1, X3 = 0) = (1− p2)p3

= (1− p2)(p1q1 + (1− p1)q2)

⇒ p3 = p1q1 + (1− p1)q2. (16)

From (15) and (16),

p1q1 + (1− p1)q2 = p2q0 + (1− p2)q1

⇒ q2 =
p2q0 − (p1 + p2 − 1)q1

1− p1

. (17)
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Since p(0, 0, 0) ≥ 1/2 by hypothesis, we have p1p2 ≥ 1/2, and thus p1 + p2− 1 > 0. Now since

q2 ≤ 1, (17) gives

1 ≥ p2q0 − (p1 + p2 − 1)q1

1− p1

⇒ q1 ≥
p2q0 − (1− p1)

p1 + p2 − 1
. (18)

Now

p(0, 0, 0) = p1p2q0 ≥
1

2
⇒ p2q0 ≥

1

2p1

. (19)

Assume without loss of generality that p1 ≥ p2. Then p1 + p2 ≤ 2p1. Substituting this and (19)

into (18) yields

q1 ≥
1

2p1
− 1 + p1

2p1 − 1
=

p1

2p1 − 1
− 1

2p1

. (20)

Upon substituting (19) and (20) into (15), we get

p3 ≥
1

2p1

+ (1− p2)

(
p1

2p1 − 1
− 1

2p1

)
≥ 1

2p1

+ (1− p1)

(
p1

2p1 − 1
− 1

2p1

)
=

1

2
+
p1(1− p1)

2p1 − 1

where the last inequality follows because p2 ≤ p1 and p1
2p1−1

− 1
2p1

> 0.

Corollary 2. Let X1, X2, X3 and X4 be Bernoulli random variables such that I(Xi;Xj) = 0,

∀ i, j ∈ {1, 2, 3, 4}, i 6= j, and Pr(X1 = X2 = X3 = X4 = 0) ≥ 1
2
. Then

4∑
i=1

Pr(Xi = 0) ≥ 3.

Proof: Let pi = Pr(Xi = 0). Assume WLOG that p1 ≥ p2 ≥ p3 ≥ p4. Now p3p4 =

Pr(X3 = X4 = 0) ≥ 1/2 by hypothesis, which implies p3 ≥ 1/
√

2 and p4 ≥ 1/2p3. Applying

Lemma 5 to X2, X3, and X4 gives p2 ≥ 1
2

+ p3(1−p3)
2p3−1

. Thus

4∑
i=1

pi = p1 + p2 + p3 + p4

≥ 2p2 + p3 + p4

≥ 2 max

(
p3,

1

2
+
p3(1− p3)

2p3 − 1

)
+ p3 +

1

2p3
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≥ min
x∈[ 1√

2
,1]

2 max

(
x,

1

2
+
x(1− x)

2x− 1

)
+ x+

1

2x
.

Since 1
2

+ p3(1−p3)
2p3−1

is monotonically decreasing in p3 for p3 ∈ (1/2, 1], it is easy to verify that

max

(
x,

1

2
+
x(1− x)

2x− 1

)
=

 x if x ≥ 1
2

+ 1√
12

1
2

+ x(1−x)
2x−1

if x ≤ 1
2

+ 1√
12
,

where 1
2

+ 1√
12

is the admissible solution to the equation x = 1
2

+ x(1−x)
2x−1

. Thus

4∑
i=1

pi ≥ min

(
min

x∈[ 1√
2
, 1
2

+ 1√
12

]
2

(
1

2
+
x(1− x)

2x− 1

)
+ x+

1

2x
, min
x∈[ 1

2
+ 1√

12
,1]

2x+ x+
1

2x

)

= min

(
min

x∈[ 1√
2
, 1
2

+ 1√
12

]
1 +

1

2x
+

x

2x− 1
, min
x∈[ 1

2
+ 1√

12
,1]

3x+
1

2x

)
= min(3, 3) = 3,

where the penultimate inequality follows from the fact that 1 + 1
2x

+ x
2x−1

is a monotonically

decreasing in x for x ∈ [ 1√
2
, 1

2
+ 1√

12
] and takes a minimum value of 3 at x = 1

2
+ 1√

12
, and that

3x + 1
2x

is monotonically increasing in x for x ∈ [1
2

+ 1√
12
, 1] and takes a minimum value of 3

at x = 1
2

+ 1√
12

.

Lemma 6. Let X1, . . . , X4 be erased versions of a uniform binary random variable X taking

values in {+,−}. If I(Xi;Xj) = 0, i, j ∈ {1, . . . , 4}, i 6= j, then
4∑
i=1

Pr(Xi = 0) ≥ 3.

Proof: We have the four cases as in the proof of Lemma 4:

Case I: There exists i ∈ {1, 2, 3, 4} such that Pr(Xi = +) > 0 and Pr(Xi = −) > 0.

Just as in the proof of Lemma 4, we have
∑4

j=1 Pr(Xj = 0) ≥ 4− 1 = 3.

Case II: There exists i ∈ {1, 2, 3, 4} such that Pr(Xi = +) > 0 and Pr(Xi = −) = 0, and Case

I does not hold.

Assume i = 1 WLOG. Then from (11), Pr(Xj = −) = 0 for j ∈ {2, 3, 4}. Thus the Xj are

effectively binary random variables such that Pr(X1 = . . . = X4 = 0) ≥ 1/2. By Corollary 2,∑4
j=1 Pr(Xj = 0) ≥ 3.

Case III: There exists i ∈ {1, 2, 3, 4} such that Pr(Xi = −) > 0 and Pr(Xi = +) = 0, and

Case I does not hold.
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This case is analogous to Case II.

Case IV: For all i ∈ {1, 2, 3, 4}, Pr(Xi = +) = Pr(Xi = −) = 0.

We have
∑4

j=1 Pr(Xj = 0) >
∑4

j=2 Pr(Xj = 0) = 4− 1 = 3.

We are now in a position to prove Theorem 3. Let fi, i ∈ N and gK, K ⊆ N be a code that

achieves (1−D2

2
, D1, D2, D3, D4). Using the same argument as that in the proof of the second

part of Theorem 2, we have for i, j ∈ {1, 2, 3, 4}, i 6= j that I(X l
i ;X

l
j) ≤ I(fi; fj) = 0 and thus

I(Xit;Xjt) = 0 for all t ∈ {1, . . . , l}. By Lemma 8,
∑4

i=1 Pr(Xit = 0) ≥ 3 for t ∈ {1, . . . , l}.
It follows that

1

l

l∑
t=1

4∑
i=1

Pr(Xit = 0) ≥ 3

⇒ max
i

(
1

l

l∑
t=1

Pr(Xit = 0)

)
≥ 3

4
.

This completes the proof.

APPENDIX D

PROOF OF THEOREM 4

We establish two lemmas before proving Theorem 4.

Lemma 7. Let X1, . . . , Xn be Bernoulli random variables such that I(Xi;Xj) = 0 ∀ i, j ∈
N , i 6= j, and Pr(X1 = X2 = . . . = Xn = 0) ≥ 1

2
. Then

1

n

n∑
i=1

Pr(Xi = 0) ≥ 1− 2

n
.

Proof: Let pi denote Pr(Xi = 0) and let qi = Pr(Xi = 1) = 1 − pi. Since the Xi’s are

pairwise independent, we have

E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

qi

Var

[
1

n

n∑
i=1

Xi

]
=

1

n2

n∑
i=1

Var(Xi) =
1

n2

n∑
i=1

piqi.

Let α >
√

2
n2 (
∑n

i=1 piqi). Then, by Chebyshev’s inequality,

Pr

(∣∣∣∣∣ 1n
n∑
i=1

Xi −
1

n

n∑
i=1

qi

∣∣∣∣∣ > α

)
≤ Var

[
1
n

∑n
i=1Xi

]
α2
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=

∑n
i=1 piqi
n2α2

<
1

2
.

Let E1 and E2 be the events | 1
n

∑n
i=1Xi − 1

n

∑n
i=1 qi| ≤ α and X1 = X2 = . . . = Xn = 0,

respectively. Then Pr(E1) > 1
2
, and Pr(E2) ≥ 1

2
by hypothesis. Since Pr(E1) + Pr(E2) > 1,

Pr(E1 ∩ E2) > 0. This implies that

1

n

n∑
i=1

qi ≤ α⇒ 1

n

n∑
i=1

pi ≥ 1− α.

Since α was arbitrary, this implies

1

n

n∑
i=1

pi ≥ 1−

√√√√ 2

n2
(
n∑
i=1

piqi). (21)

Moreover,

1

n

n∑
i=1

piqi ≤
1

n

n∑
i=1

qi ≤

√√√√ 2

n2
(
n∑
i=1

piqi).

A little algebra gives

n∑
i=1

piqi ≤

√√√√2
n∑
i=1

piqi ⇒
n∑
i=1

piqi ≤ 2. (22)

Substituting (22) into (21) yields

1

n

n∑
i=1

pi ≥ 1−
√

2

n2
· 2 = 1− 2

n
.

Lemma 8. Let X1, . . . , Xn be erased versions of a uniform binary random variable X taking

values in {+,−}. If I(Xi;Xj) = 0, i, j ∈ N , i 6= j, then
n∑
i=1

Pr(Xi = 0) ≥ n− 2.

Proof: We have Cases I, II, III, and IV as in the proof of Lemma 4. Cases I and IV are

the same as those in Lemma 4, so we will just mention Cases II and III.

Case II: There exists i ∈ N such that Pr(Xi = +) > 0 and Pr(Xi = −) = 0 and Case I does

not hold.

Assume i = 1 WLOG. Then from (11), Pr(Xj = −) = 0 for j ∈ {2, . . . , n}. Thus the Xj’s

are always erased when the binary source X = −, and so Pr(X1 = . . . = Xn = 0) ≥ 1/2. By
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Lemma 7,
∑n

i=1 Pr(Xi = 0) ≥ n− 2. The proof of Case III is analogous to the proof of Case

II.

We are now in a position to prove Theorem 4. Let fi, i ∈ N and gK, K ⊆ N be a code that

achieves (1−D2

2
, D1, D2, . . . , Dn). Using the same argument as that in the proof of the second

part of Theorem 2, we have for i, j ∈ N , i 6= j that I(X l
i ;X

l
j) ≤ I(fi; fj) = 0 and thus

I(Xit;Xjt) = 0 for t ∈ {1, . . . , l}. By Lemma 8,
∑n

i=1 Pr(Xit = 0) ≥ n− 2 for t ∈ {1, . . . , l}.
It follows that

1

l

l∑
t=1

n∑
i=1

Pr(Xit = 0) ≥ n− 2.

⇒ max
i

(
1

l

l∑
t=1

Pr(Xit = 0)

)
≥ 1− 2

n
.

This completes the proof.

APPENDIX E

PROOF OF LEMMA 1

For any t ∈ {1, . . . , l}, we have exactly one of the following four cases:

Case I: ∃ i ∈ N s.t. Pr(Xit(X) = +) > 0 and Pr(Xit(X) = −) > 0.

Case II: ∃ i ∈ N s.t. Pr(Xit(X) = +) > 0 and Pr(Xit(X) = −) = 0, and Case I does not

hold.

Case III: ∃ i ∈ N s.t. Pr(Xit(X) = −) > 0 and Pr(Xit(X) = +) = 0, and Case I does not

hold.

Case IV: ∀ i ∈ N , Pr(Xit(X) = +) = Pr(Xit(X) = −) = 0.

Let B1, B2, B3 and B4 be the sets of t ∈ {1, . . . , l} satisfying Cases I, II, III and IV, respectively.

Moreover, let |B1| = b1, |B2| = b2, |B3| = b3 and |B4| = b4. Then b1 + b2 + b3 + b4 = l. Now

consider a source string (x∗)l such that x∗t = − if t ∈ B2 and x∗t = + if t ∈ B3. We have

max
xl∈X l

n∑
i=1

[
1

l

l∑
t=1

d(xt, Xit(x))

]

≥
n∑
i=1

1

l

l∑
t=1

d(x∗t , Xit(x
∗))

=
1

l

∑
t∈B1

n∑
i=1

d(x∗t , Xit(x
∗)) +

1

l

∑
t∈B2

n∑
i=1

d(x∗t , Xit(x
∗))
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+
1

l

∑
t∈B3

n∑
i=1

d(x∗t , Xit(x
∗)) +

1

l

∑
t∈B4

n∑
i=1

d(x∗t , Xit(x
∗)).

Consider now t ∈ B1. Since X1t(X), . . . , Xnt(X) are erased versions of the same binary random

variable Xt, they can never disagree in the source symbol they reveal. We therefore have

Pr(Xit(X) = +, Xjt(X) = −) = 0, j ∈ N , j 6= i. Since Xit(X) and Xjt(X), i, j ∈ N ,

i 6= j, are pairwise independent, we have Pr(Xit(X) = +) · Pr(Xjt(X) = −)

= Pr(Xit(X) = +, Xjt(X) = −) = 0

⇒ Pr(Xjt(X) = −) = 0, (23)

since Pr(Xit(X) = +) > 0. Repeating the same analysis with Pr(Xit(X) = −, Xjt(X) = +)

yields Pr(Xjt(X) = +) = 0. Thus Pr(Xjt(X) = 0) = 1 for all j ∈ N , j 6= i, and therefore

Xjt(x
∗) = 0 for all j ∈ N , j 6= i. Similarly, it follows from (23) that Pr(Xjt(X) = −) = 0

for j ∈ N , j 6= i if t ∈ B2 and Pr(Xjt(X) = +) = 0 for j ∈ N , j 6= i if t ∈ B3. Thus by

construction, X l
i(x
∗), i ∈ N , must have Xit(x

∗) = 0 for t ∈ B2 ∪ B3 ∪ B4. It follows that

max
xl∈X l

n∑
i=1

[
1

l

l∑
t=1

d(xt, Xit(x))

]

≥ 1

l

∑
t∈B1

n∑
i=1

1(Xit(x∗)=0) +
1

l

∑
t∈B2

n∑
i=1

1(Xit(x∗)=0)

+
1

l

∑
t∈B3

n∑
i=1

1(Xit(x∗)=0) +
1

l

∑
t∈B4

n∑
i=1

1(Xit(x∗)=0)

≥ 1

l
b1(n− 1) +

1

l
b2n+

1

l
b3n+

1

l
b4n

=
1

l
(nl − b1)

= n− b1

l
≥ n− 1.

This completes the proof.

APPENDIX F

PROOF OF THEOREM 7

Let Dk < 1− k
n

and rational. Let fi, i ∈ N and gK, K ⊆ N ,K 6= ∅, be a code that achieves

(R,D1, . . . , Dk, . . . , Dn). Let R be the rate of fi, i ∈ N . Consider endowing the source with
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an i.i.d. uniform distribution over X l for analysis purposes. Then for all i ∈ N ,

lR ≥ H(fi). (24)

Let X̂ l
S be the reconstruction when the source is reconstructed from a set S of descriptions.

Then ∀ S = {s1, . . . , sk} ⊂ N , |S| = k, we have

H(fs1 . . . fsk) ≥ H(X̂ l
S) ≥ I(X l; X̂ l

S) ≥ l(1−Dk),

where the final inequality follows because the average distortion is no lower than the worst-case

distortion. Thus

Ik(fs1 ; . . . ; fsk) =
k∑
j=1

H(fsj)−H(fs1 . . . fsk)

≤ klR− l(1−Dk) = 0. (25)

Let X̂ l
si

be the reconstructed source string when the decoder has access to the sthi description

only. By Property 3 of the multi-letter mutual information, Ik(X̂ l
s1

; . . . ; X̂ l
sk

) ≤ Ik(fs1 ; . . . ; fsk) =

0 for all S ⊂ N , |S| = k. By Property 2 of the multi-letter mutual information, I(X̂ l
i ; X̂

l
j) = 0

for all i, j ∈ N , i 6= j, and thus I(X̂it; X̂jt) = 0 for all i, j ∈ N , i 6= j, and t = 1, . . . , l. Now

if any two of the X̂ l
si

disagree in a source symbol they reveal, then the resulting single-message

distortion is going to be∞ and the result follows trivially, so suppose that the X̂ l
si

are consistent.

Then by Lemma 1, we have
n∑
i=1

max
xl∈X l

[
1

l

l∑
t=1

d(xt, X̂it)

]
≥ n− 1,

which implies

D1 = max
i∈N

max
xl∈X l

[
1

l

l∑
t=1

d(xt, X̂it)

]
≥ n− 1

n
= 1− 1

n
.

This completes the proof.

APPENDIX G

PROOF OF THEOREM 8

Consider R first. If R < 1−Dk

k
, then the sum rate of any k descriptions is strictly less than

1−Dk, and the source string cannot be reconstructed with distortion Dk. Thus the rate of each

description must be at least 1−Dk

k
. Now, in light of the previous theorem, it suffices to show
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that for any (R,D1, . . . , Dk, . . . , Dn) ∈ RDworst, if D1 = 1− 1
n

, then Dm ≥ 1− m
n

for m < k.

Let S = {s1, . . . , sk} and M = {s1, . . . , sm}. Let X l
M be the source reconstruction when the

decoder has access to set of descriptions indexed by the elements in M. Then from (25) and

Properties 2 and 3 of the multi-letter mutual information, it follows that

I(X l
M;X l

sm+1
; . . . ;X l

sk
) ≤ I(X l

M; fsm+1 ; . . . ; fsk)

≤ Ik(fs1 ; . . . ; fsk) = 0,

and thus I(XM,t;Xsm+1,t; . . . , Xsk,t) = 0 for t = 1, . . . , l. This implies that for each t, the

(n−m+1) random variables {XM,t;Xsm+1,t; . . . ;Xsn,t} are pairwise independent, and therefore

by Lemma 1,

max
xl∈X l

[
1

l

l∑
t=1

d(xt, XM,t)

]
+

n∑
i=m+1

max
xl∈X l

[
1

l

l∑
t=1

d(xt, Xsi,t)

]
≥ n−m.

Since D1 = 1− 1
n

, we have

max
xl∈X l

[
1

l

l∑
t=1

d(xt, Xsi,t)

]
≤ 1− 1

n

for m+ 1 ≤ i ≤ n, and thus

max
xl∈X l

[
1

l

l∑
t=1

d(xt, XM,t)

]
≥ n−m−

n∑
i=m+1

max
xl∈X l

[
1

l

l∑
t=1

d(xt, Xsi,t)

]

≥ n−m− (n−m)

(
1− 1

n

)
=
n−m
n

= 1− m

n
,

which implies

Dm = max
M⊂N
|M|=m

max
xl∈X l

[
1

l

l∑
t=1

d(xt, XM,t)

]
≥ 1− m

n
.

This completes the proof.

APPENDIX H

PROOF OF THEOREM 9

Since m divides n, we can form n/m sets consisting of m messages each. Denote these sets by

M1, . . . ,Mn/m, whereMi ⊂ {f1, . . . , fn}, |Mi| = m, andMi∩Mj = ∅, i, j ∈ {1, . . . , n/m},
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i 6= j. Since m ≤ k/2, there exists a set S = {s1, . . . , sk} of k messages containingMi andMj

for some i, j ∈ {1, . . . , n/m}, i 6= j. Let X l
Mi

be the source reconstruction when the decoder

has access to the messages in Mi only. By Property 2 of the multi-letter mutual information, it

follows that for the set S containing Mi and Mj ,

I(X l
Mi

;X l
Mj

) ≤ I(k−2m+2)(X
l
Mi

;X l
Mj

; fr; . . . ; fr+k−2m−1)

≤ Ik(fs1 ; . . . ; fsk) = 0,

where fr, . . . , fr+k−2m−1 ∈ {fs1 , . . . , fsk} \ {Mi,Mj}. By Lemma 1, we have

n/m∑
i=1

max
xl∈X l

[
1

l

l∑
t=1

d(xt, XMi,t)

]
≥ n

m
− 1,

and thus

Dm = max
M⊂N
|M|=m

max
xl∈X l

[
1

l

l∑
t=1

d(xt, XM,t)

]

≥ max
i∈{1,...,n/m}

max
xl∈X l

[
1

l

l∑
t=1

d(xt, XMi,t)

]

≥
n
m
− 1
n
m

= 1− m

n
.

This completes the proof.

APPENDIX I

PROOF OF THEOREM 12

This bound differs only slightly from the outer bound proposed in [29] and much of the

proof is similar to that in [29]. Suppose (R,D) is achievable. Let f (l)
1 , . . . , f

(l)
n be encoders and

(gjK)l, K ⊆ N be decoders satisfying (3). Take any Z in ψ and augment the sample space

to include Z l so that (Zt, Y0,t,YN ,t, Yn+1,t) is independent over t ∈ {1, . . . , l}. Next let T be

uniformly distributed over {1, . . . , l} and independent of Z l, Y l
0 , Yl

N and Y l
n+1. Then define

Z = ZT

Y0 = Y0,T

Yi = Yi,T for i ∈ N

Yn+1 = Yn+1,T
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Ui =
(
f

(l)
i (Y l

i ), Z1:T−1, {Y l
n+1}\{Yn+1,T}

)
for i ∈ N

Vj = Vj,T for j = 1, . . . , J

W = ({Z l}\{ZT}, {Y l
n+1}\{Yn+1,T}).

It can be verified that γ = (UN , V1, . . . , Vj,W, T ) is in Γo and that, together with Y0, YN , Yn+1,

and Z, it satisfies the Markov coupling. It suffices to show that (R,D) is in RDo(Z, γ). Note

that (3) implies

Dk,j ≥ max
K:|K|=k

E[dj(Y0,T ,YK,T , Yn+1,T , Vj,T )] for j = 1, . . . , J,

i.e.,

Dk,j ≥ max
K:|K|=k

E[dj(Y0,YK, Yn+1, Vj)] for j = 1, . . . , J.

Second, by the cardinality bound on entropy and the fact that conditioning never increases

entropy,

l
∑
i∈K

Ri ≥ H
((
f

(l)
i (Y l

i )
)
i∈K

)
= I

(
Z l,Yl

K;
(
fi(Y

l
i )
)
i∈K

∣∣∣Y l
n+1

)
. (26)

By the chain rule for mutual information,

I
(
Z l,Yl

K;
(
fi(Y

l
i )
)
i∈K

∣∣∣Y l
n+1

)
= I

(
Z l;
(
fi(Y

l
i )
)
i∈K

∣∣∣Y l
n+1

)
+ I

(
Yl
K;
(
fi(Y

l
i )
)
i∈K

∣∣∣Z l, Y l
n+1

)
.

The rest of the proof is similar to that in [29]. The main difference between this proof and the

proof in [29] is that here we do not condition on
(
fi(Y

l
i )
)
i∈Kc in (26). Taking the maximum

over this bound and the bound in [29] yields the desired outer bound.

APPENDIX J

PROOF OF LEMMA 3

Assume WLOG that K = {1, . . . , `}. For each possible realization (w, t) of (W,T ), let

Dw,t = E[dλ(X, X̂K)|W = w, T = t].

Let S = {(w, t) : Dw,t ≤
√
λ}. Then by Markov’s inequality,

Pr((W,T ) /∈ S) ≤ D̃√
λ
≤ δ. (27)

DRAFT



46

In particular, Pr((W,T ) ∈ S) > 0. Also, for any (w, t) ∈ S,

32`

p(1− p)

(
2Dw,t

λ

)1/`

≤ δ.

Thus, by Lemma 2, if (w, t) ∈ S,

1

`

∑̀
i=1

I(Yi;Ui|X,W = w, T = t) ≥ g
(
(Dw,t + δ)1/`

)
+ 2δ log

δ

5
.

By averaging over (w, t) ∈ S and invoking Corollary 1, we obtain∑
(w,t)∈S

1

`

∑̀
i=1

I(Yi;Ui|X,W = w,T = t) · Pr(W = w, T = t)

Pr((W,T ) ∈ S)

≥ g((D̃ + δ)1/`) + 2δ log
δ

5
.

Therefore,

1

`

∑̀
i=1

I(Yi;Ui|X,W, T ) ≥
[
g((D̃ + δ)1/`) + 2δ log

δ

5

]
· Pr((W,T ) ∈ S)

≥
[
g((D̃ + δ)1/`) + 2δ log

δ

5

]
(1− δ)

= g((D̃ + ξ(D̃, δ))1/`)

for some continuous ξ ≥ 0 satisfying ξ(D̃, 0) = 0. It follows from this and constraint (iii) of

the lemma that g(D1/`) ≥ g((D̃ + ξ(D̃, δ))1/`), and from the monotonicity of g(D1/`) in D

(Corollary 1), we obtain

D̃ + ξ(D̃, δ) ≥ D,

and thus

D̃ ≥ D − ξ(D̃, δ).

This completes the proof.
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