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The Impact of Mobility on Gossip Algorithms
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Abstract

The influence of hode mobility on the convergence time of ayielg gossip algorithms in networks is studied. It
is shown that a small number of fully mobile nodes can yieligaiicant decrease in convergence time. A method is
developed for deriving lower bounds on the convergence bynenerging nodes according to their mobility pattern.
This method is used to show that if the agents have one-dipraiamobility in the same direction the convergence
time is improved by at most a constant. Upper bounds areraatadbn the convergence time using techniques from
the theory of Markov chains and show that simple models ofilitplzan dramatically accelerate gossip as long as
the mobility paths significantly overlap. Simulations shthat these bounds are still valid for more general mobility
models that seem analytically intractable, and furthaistilate that different mobility patterns can have signifita

different effects on the convergence of distributed athaons.

I. INTRODUCTION

Gossip algorithms are distributed message passing schibatesre used to disseminate and process information
in networks. Average consensus [1]-[3] and averaging gassiorithms|[4], [5] form an important special case of
schemes that can compute linear functions of the data in astand distributed way. Such schemes have found
numerous uses for distributed estimation, localizatiod aptimization [6]-[8] and also for compressive sensing
of sensor measurements and field estimatign [9]. In this pagestudy gossip algorithms that compute linear
functions and will not discuss related problems like infation dissemination (see e.¢. [10], [11] and references
therein).

Gossip algorithms are a natural fit for wireless ad-hoc and@enetwork applications because of their distributed
and robust nature. Recently the broadcast nature of wir@@smunication has been exploited to improve conver-
gence [12], [[1B]. Another key feature of some wireless netwads nodemobility; to the best of our knowledge,
the impact of mobility on gossip algorithms has not been ifigantly investigated. In this paper we attempt to
analyze how mobility can (or cannot) help the convergencgassip algorithms. For fixed nodes in a random
geometric graph or grid (both popular model topologies &gé wireless ad-hoc and sensor networks), standard

gossip is extremely wasteful in terms of communication hegments; even optimized standard gossip algorithms on
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a grid converge very slowly, requiring(n? log e ') messages [5]/ [14] to compute the average within accuracy
Observe that this is of the same order as requiring every tméleod its estimate to all other nodes. The obvious
solution of averaging numbers on a spanning tree and floobaul the average to all the nodes requires only
O(n) messages. Clearly, constructing and maintaining a spariree in dynamic and ad-hoc networks introduces
significant overhead and complexity, but a quadratic nunalb@nessages is a high price to pay for fault tolerance.
In this context, what kind of mobility patterns are beneficgiad how many mobile agents are needed to boost the
convergence speed? Our results suggest that certain kindshility can, in some cases, significantly accelerate
convergence. This work is a first step to understanding howiliho can impact the convergence of iterative
message-passing schemes, at least for the special caséwiSpaveraging where the convergence behavior is
better understood.

Main Results: Our first result is that ifm nodes have full mobility and the others are fixed in a grid, the
convergence time drops t©(n?/mloge~1). Therefore, even a vanishingly small fraction of mobile e®dan
change the order of messages required for convergence rtioytar, if any constant fraction of nodes have full
mobility, the convergence time drops &(nloge~!), the same order as a fully connected graph.

Our second result is that some mobility patterns might nobéeeficial. We show that even if all the nodes
of the network have one dimensional mobility in the samedtioa (e.g. horizontal), this yields no benefit in the
convergence time, up to constants. Intuitively, this isduse the information must still diffuse across the other
direction (e.g. vertical). Finally we show that one dimemsil mobility with a randomly selected direction is as
good as full mobility.

In order to obtain these results, we develop a novel methoddésiving lower boundson the convergence
time of gossip algorithms with mobile nodes by merging nodéth similar mobility regions. This method is
based on a characterization of the convergence time of Matkains in terms of a functional called the Dirichlet
form [15]. Our upper bounds are derived using the so-callethdaré inequality[[16] and the related canonical
path method([17]; a version of this technique has also beewiqusly used to study gossip algorithms|[18]. Our
techniques are fairly general; while we illustrate applmas to grid networks and random geometric graphs, the

methods can be applied to general graphs.

II. NETWORK MODEL AND PRELIMINARIES
A. Time model

We use the asynchronous time model [5],1[19], which is wedtched to the distributed nature of wireless
networks. In particular, we assume that each sensor hasdapéndent clock whose “ticks” are distributed as a
rate A Poisson process. Our analysis is based on measuring tineenis tof the number of ticks of an equivalent
single virtual global clock ticking according to a rate\ Poisson process. An exact analysis of the time model
can be found in[[5]. We will refer to the time between two cang#&e clock ticks as one timeslot. This modeling

assumption results in a discrete-time system in which onsaeis selected uniformly in each time slot.



Throughout this paper we will be analyzing the nhumber of nelimessages without worrying about delay.
We can therefore adjust the length of the timeslots relativéhe communication time so that only one packet
exists in the network at each timeslot with high probabhilitpte that this assumption is made only for analytical
convenience; in a practical implementation, several paakeght co-exist in the network, but the associated issues

are beyond the scope of this work.

B. Network and mobility model

Suppose we have a collection afagentsA. At the first timeslot, each agentstarts at some initial location
with a scalarz;(0). We will denote the vector of their initial values by0). The objective of our algorithm is for

every agent to estimate the average
i’ =

> 2i(0). €y
i=1

In order to accomplish this goal, the agents pass messagesdreeach other to communicate their estimates.

S|

We assume that this communication always succeeds. We sdsmna that the messages involve real numbers; the
effects of message quantization in gossip and consensosthigs is an active area of research![20]+28].

The n agents can move in an arga For example, we may takg to be a graph with vertex s&t and edge set
£. Agents at locations andv’ can communicate if eithew = o' or (v,v') € £. Another example is taking to
be the unit square and allowing agents/a&ndv’ to communicate if the distane&v, v’) is less than some radius
r(n). For each locatior in G there is a set of location&/(/) C G such that an agent atcan communication with
agents inV(1). If I/ e N (1) thenl € N (V).

In this paper we will use two networks to illustrate our résuHowever, the methods we describe can be used

for more general networks with bidirectional communicatio

1) Our first example is the/n x /n discrete lattice on the torus. The set of locatiohss {0,2,...,/n —1}?
and there are edges betwegnj) and (', j') if i/ = (i +£1)( mod /n) andj’ = (j £1)( mod /n). There
aren agents, one for each location¥) and at time) they each occupy distinct locations¥h For a location
(¢,7) we call thei the row coordinate ang the column coordinate.

2) The second example is the random geometric graph (RGGglnoodthe unit torus. The unit torus is formed
from the unit square by “glueing” opposite edges togethbe @gent locations are i, 1]? and the initial

positions of the agents are chosen uniformlyiini 2. Agents can communicate with each other if the distance

logn
n

between them on the torus is less thgm) = /5¢ , Wherec > 10 ensures some useful regularity
properties[[1B8] discussed subsequently. Again for an ageft j), we call the: the row coordinate ang
the column coordinate.
Under agent-based mobility, at each time step agemoves to a new location iy chosen according to a
fixed probability distributiornu;. Therefore the sequence of agent locatifs), l>(¢), . . ., 1;(t) is independent and

identically distributed (iid) according to the distribomi 1;. We call the collection of distribution$u; : i € A}



an agent-based mobility pattern. Our theoretical resulthis paper are for agent-based mobility. In particular, we

study a few simple examples of mobility.

1) A simple example of agent-based mobilityfudl uniform mobility In this model; is the uniform distribution
on G for eachi € A. This corresponds to the case where each agent is equigyaiadny location in theg
at timet. This is similar to the model proposed by Grossglauser amd[2%]. We will also consider a static
network withm fully mobile agents added to the network.

2) In thehorizontal mobilitymodel, each agent selects a new horizontal location unifoatneach time. For the
torus, the agent selects a new column coordindate unifofraip {1,2,...,+/n}. For the RGG, it selects a
new horizontal coordinate uniformly frof, 1].

3) In the bidirectional model each agent selects equiprobably whether it will moweézbntally or vertically
for all time. At each time step, the horizontal agents sedeaew horizontal coordinate uniformly, and the
vertical agents select a new vertical coordinate uniformly

4) In alocal model for the torus, an agent that starts initially at lomatii, j) chooses a new location uniformly
in the square of sizé2m + 1)? centered ati, j). That is, the horizontal coordinate is uniformly distriedt
in {i —m,...,i4+m} mod /n and the vertical coordinate is chosen uniformly{in— m,...,j7 + m}
mod /n. Once the new coordinates are chosen, an agent can comneuwitia other agents in the same or

adjacent locations in the¢/n x /n torus.

The key assumption in all our mobility models is that in eaokgip timeslot, the positions of the mobile agents
are selectethdependentlyrom some distribution supported on a sub-region of the spsimilarly to Grossglauser
and Tse[[29]. Popular mobility models like the random walkdelo30], [31], random waypoint model [32], and
random direction model [33] have time dependencies. If Mawehe duration of one gossip timeslot is comparable
or larger than the mixing time of the mobility model, the pimgis of the agents will be approximately independent
(see also[[34]). If delay is not an issue, we can always seditination of the gossip timeslot to have that property,
and in simulations we show that if we do not allow the mobilitydel to mix, mobility is not as helpful. We
believe that our analytic results could be used to bouncethesre realistic mobility models, but we leave this for

future work.

[1l. ALGORITHM AND MAIN RESULTS
A. The algorithm
The gossip algorithm that we will consider is a simple exiem®f the standard nearest-neighbor gossip of Boyd
et al. [B] that includes the mobility model in a natural way.e&ach time step, the agents move independently to new
locations. One agent is selected at random, chooses one rdighbors according to the graph and performs a
pairwise average with that neighbor. More precisely, ahdanet = 1,2, ... the following events occur:

1) Each agent € A chooses a new locatidi(¢) according to the mobility distributiop;.

2) A agent; is selected at random and selects a neighboniformly from the set\'(/;(t)). For example, ifG



is a graph, then

N(i() ={keV: (L), k) € £} ()
3) The agents andj exchange values and update their estimates:

s(@i(t =1 +a;(t—1)) k=i
i(t) = ’ (3)
Since the algorithm is randomized, we are interested inigiay probabilistic bounds on its running time. Given
e > 0, thee-averaging timel[5] is the earliest time at which the vect@t) is e close to the normalized true average

with probability greater than — e:

Tove(n, €)
H _"ﬂH
> <
Sl(loli))t (ﬂfg T%(0) el <ep, 4)

where||-|| denotes the Euclidean norm. Note that this is essentiallysoméng a rate of convergence in probability.
The analysis of Denantes et &l. [35] shows that bounds onpetral gap yield an asymptotic deterministic rate
of vanishing error. Our bounds can be used to bound both tkeofaconvergence in probability and to show that

the averaging error decays exponentially asymptoticdityoat surely.

B. Main results

Our main results characterize the benefit (or lack therebfability in speeding up the convergence of gossip

tgrus,none) (TL, E)

algorithms. For the network on the grid or torus with no mibpilthe averaging time i
O(n?loge~1). For the network on the random geometric graph with the connty radius chosen as described

above, The averaging time B @) (n, ¢) = O (2

loge™1).

log n

« For horizontal mobility on the random geometric graph arglttirus, the averaging time improves by at best

a constant factor over the case where the agents are notaraikall:

Ta(\E(C)rUb ,horiz) (TL, 6) — Q(TL2 1oge_1) (5)
2 —1

T(RGG bhoriz) (1, o) — ) (n loge ) . ®)
logn

« For bidirectional mobility where each agent initially setke whether to move vertically or horizontally, the

convergence time is within a constant factor of full molilit
TP (n,e) = O (nloge™) @)
TREGP (€)= O (nloge™!). (8)
« Forn non-mobile agents on &n x /n torus withm < n agents having full mobility, the convergence time
is

2
Ta(\E(C)rUb plus m,2D) (TL, 6) -0 (TL_ log 6_1) ) (9)
m



« For the local mobility model with each agent moving in a sguaf size(2m + 1)?,

2]
Titein, g = 0 (TR o) (10)
m

IV. UPPER AND LOWER BOUNDS ON CONVERGENCE TIME
A. Convergence analysis

At each step of the algorithm, the agents update their et#snaf the average. Let x(¢) denote the average
estimates at time. For agents and;j define the matrixy (/)

W(i,j) =] — %(ei — ej)(ei — ej)T, (11)

wheree; is the vector withl in thei-th coordinate and’s elsewhere. If the paif:, j) average at time then new

vector of averages is given by
x(t) = WODx(t — 1). (12)

The randomness in the mobility and in the agent selectiomdes a probability distribution on the matrices

{wGd) .4, 5 € A}. Since the mobility and selection are iid across time, we wéte the update as

x(t) = (H W(s)) x(0), (13)

where{W (s)} are iid random matrices. Denote the expected value of tidam matrix by = E[W (s)]. It is
not hard to see thdl’ is a (symmetric) stochastic matrix and therefore corredpda a Markov chain. LeP;; be
the probability that agentis selected in step 2 of the algorithm and it selects agentits neighbor set. Then it
is clear thatP(W (s) = W(9)) = P,; + P;;, and that
1

Wiy =
2

(Pij + Pyi). (14)

The pioneering work of Boyd et al.|[5] showed that the coneerg time of a randomized gossip algorithm is
dictated by the mixing time of the Markov chain associatedito Mathematically, our problem is how to analyze
the mixing time of the new graph induced by the new featurehig case mobility) and then compare it to the old
graph without mobility. For a Markov chaimt with transition matrixi¥, the convergence rate to the stationary
distribution is given by\, (1), the second largest eigenvalueldf. Note that the largest eigenvalue(WW) is 1.
Define the relaxation timé,.;., to be the reciprocal of the spectral gap:

B 1
S l= (W)

The following theorem is implicit in[[5] (see alsd [36]).

Trclax(W) (15)

Theorem 1 (Convergence witf.1.x [B], [86]): If P = (P;;) is symmetric andn is sufficiently large, then

Tove(n, €) is bounded by

Tove(n,e) = © (TrclaX(W) log 671) (16)



B. Lower bounds

In this section we provide a general method for construdmger bounds on the convergence time for pairwise
gossip algorithms under agent-based mobility. The mainitiot is to partition the set of vertices in the graph and
merge all agents whose mobility is supported in the sameeziewf the partition. This induces a transformation
on the Markov chain associated to the gossip algorithm. Bgguan extremal characterization of the relaxation
time for Markov chains we can lower bound tffig,...() in the original gossip algorithm by that for the induced
Markov chain. The only remaining issue is to choose a partithat yields a tight lower bound. At the moment,
this must be done by inspection, but we can use this technimshow that horizontal mobility cannot improve
the convergence of gossip for the torus or the RGG.

Theorem 2:Let {4} be any partition of the set of locatios and letiV be the transition matrix of the chain

induced by merging all agents whose mobility is restriceé tsingle set in the partition. Then
Tave(11,€) = QTretax (W) log e ). (17)

Proof: We begin with the se§ on which the agents il can move. Le{i/,. : r = 1,2,..., M} be a partition
of G. Given an agent-based mobility pattefn;}, let

Cr:{’UEA:,uv(ur):l}’ (18)

be the set of agents whose mobility is restricted/to We can create a map on the state setl of the Markov

chain corresponding to the gossip algorithm:

r ifaeC,
F(a) = (19)
a otherwise
The mapF merges agents whose mobility is restricted4oand leaves the other agents invariant. Betlenote
the image off’. For a Markov chain o4 with transition probabilitie$?;; and stationary distribution(-), we can
define a new Markov chain of with transitionkul:
RS eI NP M @0
i:F(0)=k @ F(i)=k j:F(j5)=l
This is theinduced chainfrom the functionF' [15, Chapter 4, p.37]. The stationary distribution of thiwin is
w(k) = Zi:F(i):k ().

We can express the relaxation time of a Markov chain in terfrthe@ Dirichlet form [15]. Given a real-valued
function g on the state space of the Markov chain with transition mdftfixand stationary distributior(-), the
Dirichlet form is given by

1
D(g,9) = B Zﬂ—(k)Wkl (g(k) — g(1))*. (21)
k.l

The relaxation time is then given by

Tretax (W) = sup {M S wlg(h) = o} . 22)
k



The following contraction principle shows that.;., for an induced chain is at most that of the original chain.
The validity of this claim is mentioned in_[15, Chapter 4, {.&nd here we present a proof which easily follows
from similar arguments fron_[15].

Claim 1: Let M be a Markov chain on a finite state spadawith transition matrixi¥ and letF’ : A — B be an
arbitrary mapping. Then the relaxation time of the chathon B with transition matrixii’ given by [20) induced

by F' lower bounds the relaxation time of the original chain:

Trclax(W) S Trclax(W)- (23)

We use the extremal property of the relaxation time_id (22X ¢.achieve the supremum i (22) for the induced
chain given byl¥. We can create a function from § to lower boundTiciax(M). LetUy, = {i : F(i) = k} for
eachk € B. Simply setg(i) = g(k) for i € Uy. Then

> _mli)g(i)* =) w(k)a(k)®. (24)

i€A keB
Note that{if : k € B} forms a disjoint partition ofd. For this functiong, using [(20) yields

Dig.g) =5 S w(Wis(9(i) — 9(3))?

i,jEA
93 (Z ) w<¢>wij> (9(k) — 9(1))°
kleB \icly jeu,

5 3w,

k,leB
and therefore the Dirichlet forr®(g, g) = D(g, §). Therefore the supremum df{22) for the original chain is at
least as large as that for the induced chain. ]

Note that while the mixing time of a Markov chain decreasesnvhtates are merged, as argued, the same is not
true for other quantities like the expected time to go frome state to another. The preceding lemma and Theorem
gives a lower bound on the benefit on the convergence spegdssip in a network of mobile nodes. In theory
we could optimize the lower bound over all partitiofig,. }, but for our examples there is an “obvious” partition
that yields a meaningful lower bound. We turn first to tf@ x /n torus.

Corollary 1 (Torus with horizontal mobility)Let G = (V, £) be the\/n x /n torus and suppose that the set of
agentsA = V. Let the mobility pattern for théi, 7)-th agent be uniformly distributed on the 86 (i, k) : k < \/n},

which corresponds to mobility only in the horizontal diieat Then

Tave(n, €) = Q (n2 log 671) . (25)

Proof: Let U; = {(i,j) : 7 = 1,2,...,+/n} be thei-th row of the torus, so{l/;} partitions). Consider
two agents, one starting &, j) and the other atk,!), wherek = i =1 mod /n. Then the probability in the

algorithm that(s, j) and (k,l) average with each other is the chance thaj) is selected times the probability



(over the mobility) that(s, j) and (k,l) are adjacent to each other times the chance (tha} selects(k, ) out of

its neighbors. We can upper bound this probability:

1 1
Wi,;=0—-x—]. 26
J <n x \/ﬁ) (26)
The chain induced from this partition is a cycle witfn states, where each state corresponds to a row in the

original Markov chain. The transitions from row to row areeyi by [20):

W= > Yor (27)

P ()= kT zF(z) k j:F(3)=l
_\/ﬁ\/ﬁ\/ﬁlo(lxi) (28)
n n o \/n

:o<%>. (29)

Therefore the self-transition for each statd isO(1/n). Let « = Wy, the transitions from row to row. The matrix
W is circulant and generated by the vectot 1 —2a, «, 0, . ..,0). The eigenvalues are given by the discrete Fourier

transform of the vector (c.fL[14]):

Me(W) =1 — 20+ 20 cos (%) . (30)

In particular, the second-largest eigenvalue can be balodimg the Taylor expansion of the cosine:

X 2
AQ(W)21_2OC+2OC(1_%4L):1_O<i).

n n?2

Therefore the relaxation time is
Trclax - Q(n2)7 (31)

and the averaging time is bounded by Theofém 1. ]

The preceding theorem shows that allowing nodes to movelinane direction gives the same order convergence
time as the the torus without any node mobility. Thatssmetimes mobility can yield no significant benefits in
terms of convergencén the case where we add a single agent moving in the vedioattion we still do not gain
anything. The proof follows from the same arguments as Candll.

Corollary 2 (A single vertical mover doesn't helplet G = (V, £) be the/n x v/n torus and suppose that the
set of agentsd = V U {e}. Let the mobility pattern for théi, j)-th agent in) be uniformly distributed on the set
{(¢, k) : k < y/n}, which corresponds to mobility only in the horizontal diiea. Let the mobility pattern foe
be uniform on{(i, 1) : i € /n}. Then for this gossip algorithm,

Tave(n,€) = Q (n*loge™"). (32)

We could prove in a similar way that adding a constant numbeagents in the vertical direction does not speed
up the convergence appreciably. Our final result in thisisechows that 1D unidirectional mobility cannot help
speed up the convergence time of gossip on random geomedpbg as well. Boyd et al. [5] have shown that the
averaging time for standard pairwise gossip on the RG8(isr—2loge '), which forr(n) = ©(y/n~1logn) is
O((n?/logn)loge™1).
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C. Upper bounds

For our upper bounds we use the canonical path methdd [1¢hwie summarize here for completeness. For
any ergodic and reversible Markov chain on a state spacir each pairi, j of states define theapacityof a

directed edge = (i, j) to be

For each pair of states we definedamandD(i,j) = w(i)7(j). A flow is any way of routingD(i, j) units of
“liquid” from 4 to j for all pairsi, j simultaneously. Formally, a flow : P — R* is a function on the seP of
all simple paths on the transition graph of the Markov chhit satisfies the demand:
> F(p) = DG, j), (34)
PEPi;
whereP;; denotes all the paths fromto j.
For a flow F' we can define théoad on an edge: to be total flow routed across that edge:
fley=>_ > Flp (35)
1,jEQ pEP;j:e€p

The costof a flow F' is the maximum overload of any edge:

p(F)=mgX%,

Finally, define thdengthof a flow /(f) to be longest flow-carrying path, i.e. the longgdr which F(p) # 0.

(36)

Using these definitions, we can use the following Poincaeguality [17] to yield an upper bound on the inverse

spectral gap (relaxation time) of the Markov chain:

m < p(F)UE). (37)

Intuitively, if there are no 'bottlenecks’ on the transitofor every pair of states, the relaxation time of the chain
will be very small. Any flowF gives an upper bound that depends on the p0BY) of its most congested edge.
Corollary 3 (Full mobility is optimal): Let the area in which the agents move be given by the géaph(V, &)
corresponding to the/n x /n discrete lattice on the torus. Let the set of age#its {1,2,...,/n}? with initial
locations equal t@’. Suppose the mobility pattern of every agentdnis the uniform distribution on the set of all

locationsV, which corresponds to full mobility. Then for this gossigadithm,
Tave(n, €) = Q (nlog e_l) . (38)

Proof: The stationary distribution is uniform, se(i) = 1/n for all i and the demand(i,j) = 1/n? for all
pairs (i, j). Furthermore, the probability afandj averaging i2(1/n?), so the state diagram of the Markov chain
is the complete graph with edge capacitie&l /n3). The simplest flow is to route directly the demangh? on
the edge from to j, which gives a cost 0O(n) with a flow of lengthl, so the relaxation time i©(n). [ ]

A slightly less simple example is a cycle with one fully mebéigent. The cycle has averaging tié: log e 1)

(see [14]). With one mobile agent the averaging time drop®(o? loge—1)
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Corollary 4 (Cycle with one fully mobile agent):et the area in which the agents move be given by the graph
G = (V,€&) corresponding to the the cycle of lengthand let there be:x + 1 agentsA = B U {v'}, where
B =V ={1,2,...n}. The initial locations of the agents i are the locations ob’ and the agents 8 cannot

move. The agent’ has mobility uniformly distributed oy with initial location 1. Then for this gossip algorithm,
Tave(n, €) = Q (n2 log e_l) ) (39)

Proof: The stationary distribution for this chain is uniform, 8G) = 1/(n+1) for all 7 in .A. The probability
thati andj average fori, j € V is 0 unless; andj are neighbors. Otherwise, with probabiliglthe mobile node

v’ is a neighbor ofi, so:

Fori € A andj = v we have

pL_Ll3 11
n 3 n?
Thus the capacities are
- s (1-2) jev
Clij)y=4 > o (40)
n2(n+1) J=v

The demand is jusD(i, j) = 1/(n + 1)? between each pair of nodes.

To construct a flowF', we just route all flow through the mobile agerit An edge(i,v") for i € B carriesn
flows to all agentg + i, each of sizel /(n + 1)? for a total of f(i,v") = n/(n + 1)2. Similarly, any edgg’, i)
carries the same total flow. All flows are of lengthso/(F') = 2. The overload is

_ n/(n+1)2  n?
P = ) - mr D)

And thus for largen we get an upper bound @b(n?) for the relaxation time of the chain. The averaging time

then follows from Theorernl1. ]

V. EXAMPLES REVISITED

We now turn to our examples of mobility and derive scalingitissfor gossip with mobility. For the torus we will
show that local mobility in a square of are& cuts the convergence time by? and addingn fully mobile agents
cuts the convergence time hy. For the random geometric graph we will prove the same rdsulbidirectional

mobility and a lower bound for unidirectional mobility.

A. The torus
1) Local mobility: An important step in bridging the mobility model here with rageasonable mobility models
is to consider local mobility, in which an agent moves unifity in a square of side lengtf2m + 1) centered at

its initial location.
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Fig. 1. Routing flow in the local mobility model. Nodes routewik along L-shapde paths through the squares.
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Fig. 2. Routing flow in the local mobility model. As illustet on top, for node to send to node, it evenly divides the flow and sends it
to all node in the adjacent square in the L-shaped path. Eadh im the adjacent square routes that flow uniformly to evenge in the next
square in the path. At the end of the route, as illustratedhenbbttom, the nodes in the square adjacent to the destinatttansmit their

received flows fromi directly to j.

Theorem 3:Consider gossip with. agents on the/n x /n torusg. Let the agent initially at a locatiohhave

mobility uniform in a square of side-lengthm + 1 centered at. Then the averaging time is given by

2)
Tve(n,€) = O <w log el) . (41)
m

Proof: Divide the grid into squares of side length Initially, each square contains? agents. Let; refer to

the agent whose initial location isand lets(a;) refer to the square containirig The mobility of agent; covers
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s(a;) and intersects the squares adjacent to it. For each pairesitagve must rout® (i, 7) = 1/n? units of flow.
We will do this by routing flows in L-shaped paths, as shown iguFe[1 and’R. Since;’s mobility intersects the
squares adjacent tg(a;), there is a nonzero probability that agentwill communicate with an agent;; whose
squares(a; ) is adjacent tos(a;).

Assign thel/(m?n?) units of flow to each agent; whose initial location is in the square adjacentsta;).
There arem? such agents. Each agent then routgém?n?) units of flow to each agent; in the next square
along the L-shaped path. The flow is routed only along edges) such thats(a;) ands(a’;) are different. Each
left-to-right edge carries flow from th€(,/n/m) squares to the left of it. These flows are routed todHe /m?)
squares to the right and above it for a total@fn?/? /m?) pairs (i, j) that are routed through each square. Each
square hasn? agents so there a@(n3/2/m) flows carryingl/(n?>m?) per flow, so the load on the edge is

i) =0 (=) (@2)
The same bound holds for down-to-up edges.

To find the capacity of these edges, we calculate the pratyatiiat agents andk in adjacent squares average
with each other. The probability is/n to select agent and the overlap in agemtandk’s mobility area isQ2(m?),
so the chance and £ are adjacent after moving &(1/m?). With high probability there will be no more than
O(log m) nodes fori to choose from, so the chance of selecting at worstQ(1/logm). Thus:

Cik) = (W) : (43)
The maximum length of any flow i©(y/n/m), so the Poincaré inequality gives

1 _0 n?logm
1—/\2(V_V) - m2 '

(44)

[ |

2) Adding mobile agentsThe question motivating this work is this : how much can ageobility improve
the convergence speed of gossip or consensus algorithmsth&ther way, how much mobility is needed to gain
a certain factor improvement in the convergence? A simpldehéor which we can answer this question is the
following: considern static agents in the/n x /n torus together withn mobile agents whose mobility; is
uniform on the torus. We use our techniques from earlierigestbelow to show that the averaging time of gossip
in this model is©(n?/mloge~1), which form = n® is ©(n?>~). For example, adding/n mobile nodes can
speed convergence by a factor.gh.

Theorem 4:Let the set of locations be given by thén x /n discrete lattice on the torus = (V, £). Let there
ben + m agentsA = S UM where then static agentsS are positioned on the nodes of the torus and do not
move. and then mobile agentsM have mobility that is uniform oV, wherem < n. Then the averaging time is

given by

TLQ
Tave(n, 5) =0 <— 1Og€1> . (45)
m
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Proof: We first show that for € S andj € M, the probabilityP;; that agent contacts agent and averages
is ©(1/n(m + n)). Agenti is selected with probability /(m + n) and ageny is in the neighborhood of agent
with probability 5/n. Therefore:

m—1

5 1
P = P(L =1), 46
where L is the the number of agents it that land in the neighborhood @f The summation is just
m—1 1
= P(L=D=E[/G+ D), (47)
1=0
which is clearly upper bounded bl so
1
P, = — ). 48
1=0(mm) )

Sincel/(5+ L) is convex, Jensen’s inequality can be used to obtain a lowendh
E[1/(5+L)] > 1/E[5+ L] =1/(5+ 5m/n). (49)

ThereforeP;; = Q(1/n(m + n)). By symmetry, we have the same bound Bp.
To get the lower bound, consider the functiéin SU M — SU {M} that is the identity orS and mergesmt

into a single statél/. We can bound the transition probabilities of the new chaimgi [20):

oo 1 (i Pij + Pji
Wi 72]’6/\/1 ) jGZM (1)72
1
=9 (n(m + n)) (50)
11\{ z) 2/\:4 PZJ + sz
-0 () .

Fori,k € S we havel;, = Wiy.

The new chain is a torus plus an additional central néfleThe probability of transitioning from the torus to
the central node i®((m/n)/(m + n)) and for transitioning back it i®((1/n)/(m + n)). It can be seen (see
the Appendix) that the relaxation time for this chain(lén?/m) via the extremal characterization in{22). Thus
Toe(n,€) = @ (Z loge ).

We now turn to the upper bound. As before, we construct a flowwhenchain. The demand between any two

agents(i, j) is 1/(n +m)?2. Since P;; = ©(1/n(n + m)), the capacity
Cle) = O(1/n(n +m)?),

for e = (i, ). We must now construct a flow that will yield an upper bound lo@ telaxation time of,2/m. For

a pair of states € S andj € M we assignl/(n + m)? to the direct path(i, j). For a pairi € S andj € S we
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Fig. 3. Random geometric graph example with bidirectiorial riobility.

split 1/(n +m)? equally into them paths(i, k, j) for k € M. Finally, fori € M andj € M US we again route

1/(n+ m)? directly on (i, ). Then
(= i,j €M
1€8,jeSUM

n

1 1
(m+n)? + m (m+n)?
Thereforep(F) = ©(n?/m). Since all paths ar@(1), the Poincaré inequality implies th&t.i.. (W) = O (n?/m),
so Theorenill give%,c(n,¢) = O (%2 log e*l). [ ]

B. Random geometric graphs

1) Bidirectional mobility: We now turn to the case where some agents move horizontadlysame vertically.
We will prove our results for the random geometric graph nhogteeren nodes are initially placed uniformly in
the unit square;. In the bidirectional mobility model, before the gossip @ithm starts, each node flips a fair
coin, is assigned to move horizontally or vertically, andvemlike this throughout the process. Note that this is a
one-dimensional mobility model since each node is moving barizontally or vertically throughout the execution
of the gossip algorithm, never changing direction. Our lteisuthat this mobility model is as good as complete
node connectivity.

Theorem 5:Consider the gossip algorithm with agents under the random geometric graph model and bidirec-

tional mobility. We can choose a connectivity radit(s) = © (\/ 105”) such that the the gossip averaging time

is

Tuve(n,€) = O(nloge™). (52)
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lo

£ Let B; denote the number of

n

Proof: We start by partitioning the space into a grid of squares z¢ &ji
agents whose initial position was in square
It is well known [18], [37]-[40] that a combination of a Cheffiand a union bound, yields uniform bounds on
the maximum and minimum occupancy of all the squares:

2
P (c—llogn < B; <2c1logn Vz’) >1- pl-e/8 =2
2 c1logn

1
n?logn

By selectingc; > 10 we can show that all the squares h&8ogn) agents with probability at leadt—

SO0 square occupancies are balanced even if the experimegpéated:? times. We set the transmission radius

to r(n) = 1/5¢1 “’f;"" to guarantee that a agent in a square can always communidateny agent in the four
adjacent squares.

Recall that initially each agent is assigned to be a horabntmoving or vertically moving node by flipping a
coin and keeps this directionality throughout the proc&enote by H,; the set of nodes that move horizontally
and whose initial position was in thieth row of squares. These agents always stay inittrerow. Similarly, let
V; be the set of agents who move vertically in thth column of squares.

Each square contains in expectatigriog n nodes and there ar\?/% squares in each row and column. Since

each node flips a fair coin and is assigned in a vertically aizbatally moving class, the expected cardinalities

will be:

E|H;| = E|V;| = %Cl logn, | c LI O(y/nlogn). (53)

1 logn
Using standard Chernoff bounds we can show that the carti#sadf | H;|, |V;| are sharply concentrated near their
expectation.

Theorent]l shows that the averaging time of the gossip algoiii bounded by the inverse spectral gap (relaxation
time) of the average matrik/, where the expected matrit’ = EWW (s) is computed over mobility of the nodes
and random selection of which nodes are gossiping.

We now proceed to bound the spectral gap using a canonicaldftmmve need to select paths for every pair of
states for the Markov chain defined bly. The state space is the setiofagents andr(i) = 1/n for each agent
sinceW is doubly stochastic. Theapacitiesof the edges will be proportional to the entrieslof (see 1), where
W;; is the average of the probabilitigs; and P;;, measuring how often agent@nd j are pairwise averaged. For
each pair of agent§, j) we must specify how to satisfy the demamxi, j) = n=2 by assigning flows to some
(appropriately chosen) paths ;.

Our flow construction uses four different cases dependinwlogther: and j move horizontally or vertically:

a) Case 1:Supposei € H andj € H;. To satisfy the demand 2 nodei assignsO(n~2) units to each
path (i, v, j), wherev € V,. for somer. There are9(n) agents who move vertically, so the total flow that reaches
j can be made equal to—2. See Figurél4.

b) Case 2:Suppose € V;, andj € V;. This is the same as the previous case, except@ifat3) units are

assigned to each path, i, j) for h € H,.
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Fig. 4. Routing flow from a node i7; to a node in sef{3. The flow is routed from the node if; to all nodes in the set§V;} and then
back to the node 3.

c) Case 3:Suppose € H;, andj € V;. To satisfy the demand~2 assignn 2 to the direct path(i, 5).

d) Case 4:Suppose € V;, andj € H;. We again assign 2 to the direct path(i, 7).
Our construction therefore only uses the edges in the grapheenH sets and’ sets. In other wordg is only the
averaging between nodes that move vertically with nodesriuwe horizontallythat allows information to spread
fast in the network. The averaging between two node&ior V' could be omitted and still the bound would not
change in order. The total load on an edge: (h,v) between a horizontal moving agent and a vertical moving
agent is the sum of the direct flogk, v), the the sum of the flow&h, v, j) for all horizontal moving and (i, h, v)

for all vertical movingi.
1 1 1
fle)=—=+0(—) D Wl+e(—)> |H

_o <%> | (54)

The same bound holds fer= (v, h).

Finally, we calculate the capacity for the eddesh). It is sufficient to calculate a lower bound on the probapilit
that agents € Vi, andh € H, average. Agent is selected with probability /n. Based on our assumptions on the
communication radiug; can communicate witl®(logn) neighbors. The probability that lands in a row within
r(n) of row I is ©(y/n—1logn) and the probability that lands withinr(n) of row k is also©(y/n=1logn).
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Py = ( \/logn lognll )— (%) (55)
ogn n

The capacity of each edde, h) is thenC(e) = Q(n~*). By symmetry, the same formulae hold fgr, v).

Therefore we have

We can now calculate the overload for this flow on any edge (v, h):

fle) e
Cle) Q(n3)

Since this holds for all edges we hapéF') = O(n). The maximum length of any path used in the flon2jsso

=0(n). (56)

by the Poincaré inequality we have

- 1
TrcaxW T
It ( ) 1—/\2(W)

Theoren{lL gives the result. [ |

= p(F)I(F) = O(n). (57)

One intuition for this result is that bidirectional mobjlienables the construction of “short” routes between all
pairs of agents. We can derive the identical result for threstausing the same arguments. Under bidirectional
mobility the averaging time for the torus @3(n loge—1), which is the same as full mobility.

2) Unidirectional mobility: We now show that unidirectional mobility does not improve #taling performance
for random geometric graphs. This is proved in the same wahasnalogous result for the torus.

Corollary 5 (Random geometric graph with 1D mobilityronsider gossip on the random geometric graph with

n agents with the 1D unidirectional mobility model. Then faistgossip algorithm,

2 “1
Tove(n, €) = Q (%) _ (58)
logn

Proof: We first divide the unit square into sub-squares of side ferg “’ﬂ for some constant;. This
creates & ( I ) x © (1 /logn) torus on which the mobility can be defined. We must first charae the

logn
Markov chain corresponding to the gossip algorithm under 1B unidirectional mobility model. If we set the

communication radius te. “’% then an agent in théth row of sub-squares can communicate with agents in
rows {i —cs,...,i+ c3}, wherecs is again a constant. Moreover, each sub-square will [&leg n) agents with
high probability. Therefore we can upper bound the prolitghtihat an agent in row will average with an agent

in one of the rows{i —¢3,...,i —1,i+1,...,i+c3}:

By =0 <l » /logn 1 ) . (59)
n logn

Thus the chance a given agent averages with someone notiirrdheof sub-squares i©(1/+/n3 logn).

As in the torus, we apply the induced chain method using thitipa that merges each row of sub-squares.
This creates a new Markov chain witfin/logn states that is a kind of cycle where there are positive tti@nsi

probabilities from staté: (corresponding to thé-th row) to stated € {i — cs,...,i + c3}. From the analysis of
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the torus we can see that from rowto (:

= o o, 2 s o

i F(i)=k j:F(j)=I

n 1 1
nlogn-—- 0 —m 61
logn nloen <n3/2\/1ogn> (61)

_0 <%> . (62)

Let 5 denote this transition probability. The matrix of this nela is still circulant and generated by the vector

(B,...,8,1—=2¢c3B,8,...,5,0...0). (63)
The DFT and Taylor expansion again gives the bound on thenselemgest eigenvalue:
/\Q(VAV)_l—ﬂ-O(lo%> (64)
_ _o(l‘fz") (65)
ThereforeT}era (W) = Q(n2/logn). n

V1. EXPERIMENTS AND SIMULATIONS

We can gain some intuition about the benefits of mobility wrawations. All simulations are for a torus with
a linearly varying field. Our first main result was a lower bduhat shows horizontal mobility is as bad as no
mobility in terms of convergence. This is illustrated in &ig[8, where we can see that for a range of network sizes
the error under horizontal mobility is close to that of theuowith no mobility. Indeed, as the network size gets
larger, the gap vanishes, which suggests that our analysighit for this example. Our second major result was a
positive one; the bidirectional mobility model was nearl/good as full mobility. This is illustrated in Figuké 6.
Although there is a gap between the error decay under the talility models, for a fixed error the number of
iterations needed to achieve that error is at most a confstatutr more for the bidirectional mobility model.

Our final result was that addingr mobile agents to a static grid with agents gives a convergence time of
©(n?/mloge~1). Figure[T shows how adding only a few additional mobile agean dramatically improve the
speed of convergence. As we add more notless decreases linearly, which corresponds to an exponentiayde
in the average error. This suggests that even in large nkswovesting in a small number of mobile agents can
yield a major benefit in convergence time.

The examples that we consider in this paper are simplifioatiof real network topologies and real mobility
models. It is important to understand how unrealistic theselels are. We simulated the difference between the
lattice on the torus versus.gn x v/n grid. Figure[8 shows the error after a fixed number of iteretifor increasing
grid sizes. Although the algorithm converges faster ondhes, the gap decreases with larger network size. A second
guestion is how theandom walkmobility model [30], [31] relates to the mobility model inishpaper. In order
to analyze gossip under such a mobility model, we would neeprbve new convergence result for the iterated

random matrix products that characterize the evolutiorhefdgents’ estimates. It is clear that if each agent moves
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Error vs.rounds for horizontal and no mobility on the torus
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Fig. 5. Log average error versus number of iterations of thesip algorithm for the torus with no mobility and with hanizal mobility. As
the graph size increases, the gap between the two algoritanishes.

Error vs.rounds for bidirectional and full mobility on the torus
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Fig. 6. Log average error versus number of iterations of thesip algorithm for the torus with full mobility and with bidctional mobility.
As the graph size increases, the gap between the two algarigirinks.

according to a random walk and the number of steps taken bateach gossip iteration is longer than the mixing
time of the random walk, then random walk mobility is equéralto the mobility models considered here. However,
for a smaller number of steps, the simulations of the speecbnfergence of the algorithm are inconclusive, as
there appears to be a dependence on the initial configuratiagents’ values. We leave as an open question how

to bound the performance Markov random walk models.
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Error vs.additional mobile nodes for torus, n=400
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Fig. 7. Adding a few mobile nodes to a static grid can expdatiytdecrease the estimation error for a fixed number ofitens (20000).

Error vs. number of nodes for torus and grid, horizontal mobility
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Fig. 8. Gap between the torus and grid versus grid size af@0 pairwise iterations, averaged over 100 trials, usieguthiform horizontal

mobility model.

VII. DISCUSSION AND FUTURE DIRECTIONS

In this work we investigated how agent mobility impacts thewergence speed of distributed averaging algorithms
by developing new analytical tools derived from the theofyMarkov chains. Using these tools we could show
that different mobility patterns can have dramaticallyfetiént effects depending on the overlap of the mobility
paths. Perhaps surprisingly, even a sublinear number oflenobdes can change the order of gossip messages
required for convergence. We note that “mobility” in our nebds a variety of time-varying network topology
that in practical implementations need not come from thesfway mobility of the agents, but can be induced by

structured variations in the topology.
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The class of mobility models which are amenable to our amalgsgmkes a strong assumption on the speed
of the mobility or delay-tolerance of the gossip algorithBne interesting direction for future research involves
understanding the benefits of mobility for more realistichitity models. It is possible that general mobility models
with memory are tractable to analysis if the mobility is @mvby a Markov chain since this would integrate naturally
with the Markov structure of the averaging process. Protirag these systems reach a consensus could follow from
more general results about the corresponding stochastaegs([411]. We conjecture that random walk models with
slower mixing times will yield smaller benefits, and that aadependent (fast mixing) model is an upper bound.
For these models, modifying the pairwise gossip paradigf [8]) may yield a greater benefit then relying on
mobility alone. The impact of node mobility on distributegtimnization and general message-passing algorithms
on probabilistic graphical models would also be a very ggéng research direction.

Another interesting direction is understanding the imgdchobility for more general message-passing algorithms
such as distributed convex optimization. The analysis @f pbtains a convergence theorem similar to the spectral
gap and it would be interesting to investigate the scalinigab®r of the number of required iterations for the

min-sum algorithm to optimize a convex function under oud@anobility models.

APPENDIX

We will construct ag in (22) to show that the mixing time of a torus plus an addailocentral nodeM with
transition probabilitie® ((m/n)/(m+n)) to M andO((1/n)/(m+n)) away fromM along with transition®(1/n)
between neighbors in the torus has relaxation ti{@>/m), wherem < n. The stationary distribution for this
chain has probabilityr(i) = ©(1/(m + n)) on the nodeg = 1,2, ...,n of the torus andr(M) = ©(m/(m+n))
on M. Let g(M) = 0 and g be constant on each column of the torus with the values on ¢henns being
{-a,—a+1,...0,1,2 ..., q,a,a—1,...,—a+1,—a} for y/n even and —c, —a+1,...,a,0,a,a—1,..., —a}
for \/n odd, wherea = ©(y/n). Then clearly}_ 7(i)g(i) = 0. We can calculate the numerator and denominator

in 22):

-0 (m"j n) (66)

14 mn
s (7m+n) . (67)
Dividing gives the result.
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