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The Impact of Mobility on Gossip Algorithms
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Abstract

The influence of node mobility on the convergence time of averaging gossip algorithms in networks is studied. It

is shown that a small number of fully mobile nodes can yield a significant decrease in convergence time. A method is

developed for deriving lower bounds on the convergence timeby merging nodes according to their mobility pattern.

This method is used to show that if the agents have one-dimensional mobility in the same direction the convergence

time is improved by at most a constant. Upper bounds are obtained on the convergence time using techniques from

the theory of Markov chains and show that simple models of mobility can dramatically accelerate gossip as long as

the mobility paths significantly overlap. Simulations showthat these bounds are still valid for more general mobility

models that seem analytically intractable, and further illustrate that different mobility patterns can have significantly

different effects on the convergence of distributed algorithms.

I. I NTRODUCTION

Gossip algorithms are distributed message passing schemesthat are used to disseminate and process information

in networks. Average consensus [1]–[3] and averaging gossip algorithms [4], [5] form an important special case of

schemes that can compute linear functions of the data in a robust and distributed way. Such schemes have found

numerous uses for distributed estimation, localization and optimization [6]–[8] and also for compressive sensing

of sensor measurements and field estimation [9]. In this paper we study gossip algorithms that compute linear

functions and will not discuss related problems like information dissemination (see e.g. [10], [11] and references

therein).

Gossip algorithms are a natural fit for wireless ad-hoc and sensor network applications because of their distributed

and robust nature. Recently the broadcast nature of wireless communication has been exploited to improve conver-

gence [12], [13]. Another key feature of some wireless networks is nodemobility; to the best of our knowledge,

the impact of mobility on gossip algorithms has not been significantly investigated. In this paper we attempt to

analyze how mobility can (or cannot) help the convergence ofgossip algorithms. For fixed nodes in a random

geometric graph or grid (both popular model topologies for large wireless ad-hoc and sensor networks), standard

gossip is extremely wasteful in terms of communication requirements; even optimized standard gossip algorithms on
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a grid converge very slowly, requiringΘ(n2 log ǫ−1) messages [5], [14] to compute the average within accuracyǫ.

Observe that this is of the same order as requiring every nodeto flood its estimate to all other nodes. The obvious

solution of averaging numbers on a spanning tree and floodingback the average to all the nodes requires only

Θ(n) messages. Clearly, constructing and maintaining a spanning tree in dynamic and ad-hoc networks introduces

significant overhead and complexity, but a quadratic numberof messages is a high price to pay for fault tolerance.

In this context, what kind of mobility patterns are beneficial and how many mobile agents are needed to boost the

convergence speed? Our results suggest that certain kinds of mobility can, in some cases, significantly accelerate

convergence. This work is a first step to understanding how mobility can impact the convergence of iterative

message-passing schemes, at least for the special case of pairwise averaging where the convergence behavior is

better understood.

Main Results: Our first result is that ifm nodes have full mobility and the others are fixed in a grid, the

convergence time drops toΘ(n2/m log ǫ−1). Therefore, even a vanishingly small fraction of mobile nodes can

change the order of messages required for convergence. In particular, if any constant fraction of nodes have full

mobility, the convergence time drops toΘ(n log ǫ−1), the same order as a fully connected graph.

Our second result is that some mobility patterns might not bebeneficial. We show that even if all the nodes

of the network have one dimensional mobility in the same direction (e.g. horizontal), this yields no benefit in the

convergence time, up to constants. Intuitively, this is because the information must still diffuse across the other

direction (e.g. vertical). Finally we show that one dimensional mobility with a randomly selected direction is as

good as full mobility.

In order to obtain these results, we develop a novel method for deriving lower boundson the convergence

time of gossip algorithms with mobile nodes by merging nodeswith similar mobility regions. This method is

based on a characterization of the convergence time of Markov chains in terms of a functional called the Dirichlet

form [15]. Our upper bounds are derived using the so-called Poincaré inequality [16] and the related canonical

path method [17]; a version of this technique has also been previously used to study gossip algorithms [18]. Our

techniques are fairly general; while we illustrate applications to grid networks and random geometric graphs, the

methods can be applied to general graphs.

II. N ETWORK MODEL AND PRELIMINARIES

A. Time model

We use the asynchronous time model [5], [19], which is well-matched to the distributed nature of wireless

networks. In particular, we assume that each sensor has an independent clock whose “ticks” are distributed as a

rateλ Poisson process. Our analysis is based on measuring time in terms of the number of ticks of an equivalent

single virtual global clock ticking according to a ratenλ Poisson process. An exact analysis of the time model

can be found in [5]. We will refer to the time between two consecutive clock ticks as one timeslot. This modeling

assumption results in a discrete-time system in which one sensor is selected uniformly in each time slot.
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Throughout this paper we will be analyzing the number of required messages without worrying about delay.

We can therefore adjust the length of the timeslots relativeto the communication time so that only one packet

exists in the network at each timeslot with high probability. Note that this assumption is made only for analytical

convenience; in a practical implementation, several packets might co-exist in the network, but the associated issues

are beyond the scope of this work.

B. Network and mobility model

Suppose we have a collection ofn agentsA. At the first timeslot, each agenti starts at some initial location

with a scalarxi(0). We will denote the vector of their initial values byx(0). The objective of our algorithm is for

every agent to estimate the average

x̄ =
1

n

n
∑

i=1

xi(0). (1)

In order to accomplish this goal, the agents pass messages between each other to communicate their estimates.

We assume that this communication always succeeds. We also assume that the messages involve real numbers; the

effects of message quantization in gossip and consensus algorithms is an active area of research [20]–[28].

Then agents can move in an areaG. For example, we may takeG to be a graph with vertex setV and edge set

E . Agents at locationsv andv′ can communicate if eitherv = v′ or (v, v′) ∈ E . Another example is takingG to

be the unit square and allowing agents atv andv′ to communicate if the distanced(v, v′) is less than some radius

r(n). For each locationl in G there is a set of locationsN (l) ⊆ G such that an agent atl can communication with

agents inN (l). If l′ ∈ N (l) then l ∈ N (l′).

In this paper we will use two networks to illustrate our results. However, the methods we describe can be used

for more general networks with bidirectional communication.

1) Our first example is the
√
n×√

n discrete lattice on the torus. The set of locationsV is {0, 2, . . . ,√n− 1}2

and there are edges between(i, j) and(i′, j′) if i′ = (i± 1)( mod
√
n) andj′ = (j± 1)( mod

√
n). There

aren agents, one for each location inV , and at time0 they each occupy distinct locations inV . For a location

(i, j) we call thei the row coordinate andj the column coordinate.

2) The second example is the random geometric graph (RGG) model on the unit torus. The unit torus is formed

from the unit square by “glueing” opposite edges together. The agent locations are in[0, 1]2 and the initial

positions of the agents are chosen uniformly in[0, 1]2. Agents can communicate with each other if the distance

between them on the torus is less thanr(n) =
√

5c logn
n , where c ≥ 10 ensures some useful regularity

properties [18] discussed subsequently. Again for an agentat (i, j), we call thei the row coordinate andj

the column coordinate.

Under agent-based mobility, at each time step agenti moves to a new location inG chosen according to a

fixed probability distributionµi. Therefore the sequence of agent locationsli(1), l2(t), . . . , li(t) is independent and

identically distributed (iid) according to the distribution µi. We call the collection of distributions{µi : i ∈ A}
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an agent-based mobility pattern. Our theoretical results in this paper are for agent-based mobility. In particular, we

study a few simple examples of mobility.

1) A simple example of agent-based mobility isfull uniform mobility. In this model,µi is the uniform distribution

on G for eachi ∈ A. This corresponds to the case where each agent is equiprobably at any location in theG
at timet. This is similar to the model proposed by Grossglauser and Tse [29]. We will also consider a static

network withm fully mobile agents added to the network.

2) In thehorizontal mobilitymodel, each agent selects a new horizontal location uniformly at each time. For the

torus, the agent selects a new column coordindate uniformlyfrom {1, 2, . . . ,√n}. For the RGG, it selects a

new horizontal coordinate uniformly from[0, 1].

3) In the bidirectional model each agent selects equiprobably whether it will move horizontally or vertically

for all time. At each time step, the horizontal agents selecta new horizontal coordinate uniformly, and the

vertical agents select a new vertical coordinate uniformly.

4) In a local model for the torus, an agent that starts initially at location (i, j) chooses a new location uniformly

in the square of size(2m+ 1)2 centered at(i, j). That is, the horizontal coordinate is uniformly distributed

in {i − m, . . . , i + m} mod
√
n and the vertical coordinate is chosen uniformly in{j − m, . . . , j + m}

mod
√
n. Once the new coordinates are chosen, an agent can communicate with other agents in the same or

adjacent locations in the
√
n×√

n torus.

The key assumption in all our mobility models is that in each gossip timeslot, the positions of the mobile agents

are selectedindependentlyfrom some distribution supported on a sub-region of the space, similarly to Grossglauser

and Tse [29]. Popular mobility models like the random walk model [30], [31], random waypoint model [32], and

random direction model [33] have time dependencies. If however the duration of one gossip timeslot is comparable

or larger than the mixing time of the mobility model, the positions of the agents will be approximately independent

(see also [34]). If delay is not an issue, we can always set theduration of the gossip timeslot to have that property,

and in simulations we show that if we do not allow the mobilitymodel to mix, mobility is not as helpful. We

believe that our analytic results could be used to bound these more realistic mobility models, but we leave this for

future work.

III. A LGORITHM AND MAIN RESULTS

A. The algorithm

The gossip algorithm that we will consider is a simple extension of the standard nearest-neighbor gossip of Boyd

et al. [5] that includes the mobility model in a natural way. At each time step, the agents move independently to new

locations. One agent is selected at random, chooses one of its neighbors according to the graphG, and performs a

pairwise average with that neighbor. More precisely, at each time t = 1, 2, . . . the following events occur:

1) Each agenti ∈ A chooses a new locationli(t) according to the mobility distributionµi.

2) A agenti is selected at random and selects a neighborj uniformly from the setN (li(t)). For example, ifG
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is a graph, then

N (li(t)) = {k ∈ V : (li(t), lk(t)) ∈ E}. (2)

3) The agentsi andj exchange values and update their estimates:

xk(t) =







1
2 (xi(t− 1) + xj(t− 1)) k = i, j

xk(t− 1) k 6= i, j
(3)

Since the algorithm is randomized, we are interested in providing probabilistic bounds on its running time. Given

ǫ > 0, theǫ-averaging time [5] is the earliest time at which the vectorx(t) is ǫ close to the normalized true average

with probability greater than1− ǫ:

Tave(n, ǫ)

= sup
x(0)

inf
t=0,1,2...







P





∥

∥

∥x(t)− x̄~1
∥

∥

∥

‖x(0)‖ ≥ ǫ



 ≤ ǫ







, (4)

where‖·‖ denotes the Euclidean norm. Note that this is essentially measuring a rate of convergence in probability.

The analysis of Denantes et al. [35] shows that bounds on the spectral gap yield an asymptotic deterministic rate

of vanishing error. Our bounds can be used to bound both the rate of convergence in probability and to show that

the averaging error decays exponentially asymptotically almost surely.

B. Main results

Our main results characterize the benefit (or lack thereof) of mobility in speeding up the convergence of gossip

algorithms. For the network on the grid or torus with no mobility, the averaging time isT (torus,none)
ave (n, ǫ) =

Θ(n2 log ǫ−1). For the network on the random geometric graph with the connectivity radius chosen as described

above, The averaging time isT (RGG,none)
ave (n, ǫ) = Θ( n2

logn log ǫ−1).

• For horizontal mobility on the random geometric graph and the torus, the averaging time improves by at best

a constant factor over the case where the agents are not mobile at all:

T (torus,horiz)
ave (n, ǫ) = Ω(n2 log ǫ−1) (5)

T (RGG,horiz)
ave (n, ǫ) = Ω

(

n2 log ǫ−1

logn

)

. (6)

• For bidirectional mobility where each agent initially selects whether to move vertically or horizontally, the

convergence time is within a constant factor of full mobility:

T (torus,bi)
ave (n, ǫ) = O

(

n log ǫ−1
)

(7)

T (RGG,bi)
ave (n, ǫ) = O

(

n log ǫ−1
)

. (8)

• For n non-mobile agents on a
√
n×√

n torus withm ≤ n agents having full mobility, the convergence time

is

T (torus plus m,2D)
ave (n, ǫ) = Θ

(

n2

m
log ǫ−1

)

. (9)
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• For the local mobility model with each agent moving in a square of size(2m+ 1)2,

T (torus,local)
ave (n, ǫ) = O

(

n2 logm

m2
log ǫ−1

)

. (10)

IV. U PPER AND LOWER BOUNDS ON CONVERGENCE TIME

A. Convergence analysis

At each step of the algorithm, the agents update their estimates of the averagēx. Let x(t) denote the average

estimates at timet. For agentsi andj define the matrixW (i,j)

W (i,j) = I − 1

2
(ei − ej)(ei − ej)

T , (11)

whereei is the vector with1 in the i-th coordinate and0’s elsewhere. If the pair(i, j) average at timet then new

vector of averages is given by

x(t) = W (i,j)
x(t− 1). (12)

The randomness in the mobility and in the agent selection induces a probability distribution on the matrices

{W (i,j) : i, j ∈ A}. Since the mobility and selection are iid across time, we canwrite the update as

x(t) =

(

t
∏

s=1

W (s)

)

x(0), (13)

where{W (s)} are iid random matrices. Denote the expected value of this random matrix byW̄ = E[W (s)]. It is

not hard to see that̄W is a (symmetric) stochastic matrix and therefore corresponds to a Markov chain. LetPij be

the probability that agenti is selected in step 2 of the algorithm and it selects agentj in its neighbor set. Then it

is clear thatP(W (s) = W (i,j)) = Pij + Pji, and that

W̄ij =
1

2
(Pij + Pji). (14)

The pioneering work of Boyd et al. [5] showed that the convergence time of a randomized gossip algorithm is

dictated by the mixing time of the Markov chain associated toW̄ . Mathematically, our problem is how to analyze

the mixing time of the new graph induced by the new feature (inthis case mobility) and then compare it to the old

graph without mobility. For a Markov chainM with transition matrixW̄ , the convergence rate to the stationary

distribution is given byλ2(W̄ ), the second largest eigenvalue ofW̄ . Note that the largest eigenvalueλ1(W̄ ) is 1.

Define the relaxation timeTrelax to be the reciprocal of the spectral gap:

Trelax(W̄ ) =
1

1− λ2(W̄ )
. (15)

The following theorem is implicit in [5] (see also [36]).

Theorem 1 (Convergence withTrelax [5], [36]): If P = (Pij) is symmetric andn is sufficiently large, then

Tave(n, ǫ) is bounded by

Tave(n, ǫ) = Θ
(

Trelax(W̄ ) log ǫ−1
)

(16)
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B. Lower bounds

In this section we provide a general method for constructinglower bounds on the convergence time for pairwise

gossip algorithms under agent-based mobility. The main intuition is to partition the set of vertices in the graph and

merge all agents whose mobility is supported in the same element of the partition. This induces a transformation

on the Markov chain associated to the gossip algorithm. By using an extremal characterization of the relaxation

time for Markov chains we can lower bound theTrelax(W̄ ) in the original gossip algorithm by that for the induced

Markov chain. The only remaining issue is to choose a partition that yields a tight lower bound. At the moment,

this must be done by inspection, but we can use this techniqueto show that horizontal mobility cannot improve

the convergence of gossip for the torus or the RGG.

Theorem 2:Let {Ur} be any partition of the set of locationsG, and letŴ be the transition matrix of the chain

induced by merging all agents whose mobility is restricted to a single set in the partition. Then

Tave(n, ǫ) = Ω(Trelax(Ŵ ) log ǫ−1). (17)

Proof: We begin with the setG on which the agents inA can move. Let{Ur : r = 1, 2, . . . ,M} be a partition

of G. Given an agent-based mobility pattern{µi}, let

Cr = {v ∈ A : µv(Ur) = 1}, (18)

be the set of agents whose mobility is restricted toUr. We can create a mapF on the state setA of the Markov

chain corresponding to the gossip algorithm:

F (a) =







r if a ∈ Cr
a otherwise

(19)

The mapF merges agents whose mobility is restricted toUr and leaves the other agents invariant. LetB denote

the image ofF . For a Markov chain onA with transition probabilitiesWij and stationary distributionπ(·), we can

define a new Markov chain onB with transitionsŴkl:

Ŵkl =
1

∑

i:F (i)=k π(i)

∑

i:F (i)=k

∑

j:F (j)=l

π(i)Wij . (20)

This is theinduced chainfrom the functionF [15, Chapter 4, p.37]. The stationary distribution of this chain is

π̂(k) =
∑

i:F (i)=k π(i).

We can express the relaxation time of a Markov chain in terms of the Dirichlet form [15]. Given a real-valued

function g on the state space of the Markov chain with transition matrixW and stationary distributionπ(·), the

Dirichlet form is given by

D(g, g) =
1

2

∑

k,l

π(k)Wkl(g(k)− g(l))2. (21)

The relaxation time is then given by

Trelax(W ) = sup
g

{

∑

k π(k)g(k)
2

D(g, g)
:
∑

k

π(k)g(k) = 0

}

. (22)
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The following contraction principle shows thatTrelax for an induced chain is at most that of the original chain.

The validity of this claim is mentioned in [15, Chapter 4, p.37] and here we present a proof which easily follows

from similar arguments from [15].

Claim 1: Let M be a Markov chain on a finite state spaceA with transition matrixW and letF : A → B be an

arbitrary mapping. Then the relaxation time of the chainM̂ on B with transition matrixŴ given by (20) induced

by F lower bounds the relaxation time of the original chain:

Trelax(Ŵ ) ≤ Trelax(W ). (23)

We use the extremal property of the relaxation time in (22). Let ĝ achieve the supremum in (22) for the induced

chain given byŴ . We can create a functiong from ĝ to lower boundTrelax(M). Let Uk = {i : F (i) = k} for

eachk ∈ B. Simply setg(i) = ĝ(k) for i ∈ Uk. Then

∑

i∈A

π(i)g(i)2 =
∑

k∈B

π̂(k)ĝ(k)2. (24)

Note that{Uk : k ∈ B} forms a disjoint partition ofA. For this functiong, using (20) yields

D(g, g) =
1

2

∑

i,j∈A

π(i)Wi,j(g(i)− g(j))2

=
1

2

∑

k,l∈B





∑

i∈Uk

∑

j∈Ul

π(i)Wij



 (ĝ(k)− ĝ(l))2

=
1

2

∑

k,l∈B

π̂(k)Ŵkj ,

and therefore the Dirichlet formD(g, g) = D(ĝ, ĝ). Therefore the supremum of (22) for the original chain is at

least as large as that for the induced chain.

Note that while the mixing time of a Markov chain decreases when states are merged, as argued, the same is not

true for other quantities like the expected time to go from one state to another. The preceding lemma and Theorem

1 gives a lower bound on the benefit on the convergence speed ofgossip in a network of mobile nodes. In theory

we could optimize the lower bound over all partitions{Ur}, but for our examples there is an “obvious” partition

that yields a meaningful lower bound. We turn first to the
√
n×√

n torus.

Corollary 1 (Torus with horizontal mobility):Let G = (V , E) be the
√
n×√

n torus and suppose that the set of

agentsA = V . Let the mobility pattern for the(i, j)-th agent be uniformly distributed on the setUi{(i, k) : k ≤ √
n},

which corresponds to mobility only in the horizontal direction. Then

Tave(n, ǫ) = Ω
(

n2 log ǫ−1
)

. (25)

Proof: Let Ui = {(i, j) : j = 1, 2, . . . ,
√
n} be thei-th row of the torus, so{Ui} partitionsV . Consider

two agents, one starting at(i, j) and the other at(k, l), wherek = i ± 1 mod
√
n. Then the probability in the

algorithm that(i, j) and (k, l) average with each other is the chance that(i, j) is selected times the probability
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(over the mobility) that(i, j) and (k, l) are adjacent to each other times the chance that(i, j) selects(k, l) out of

its neighbors. We can upper bound this probability:

Wij = O

(

1

n
× 1√

n

)

. (26)

The chain induced from this partition is a cycle with
√
n states, where each state corresponds to a row in the

original Markov chain. The transitions from row to row are given by (20):

Ŵkl =
1

∑

i:F (i)=k π(i)

∑

i:F (i)=k

∑

j:F (j)=l

π(i)Wij (27)

=
√
n · √n · √n · 1

n
· O
(

1

n
× 1√

n

)

(28)

= O

(

1

n

)

. (29)

Therefore the self-transition for each state is1−O(1/n). Let α = Ŵkl, the transitions from row to row. The matrix

Ŵ is circulant and generated by the vector(α, 1−2α, α, 0, . . . , 0). The eigenvalues are given by the discrete Fourier

transform of the vector (c.f. [14]):

λk(Ŵ ) = 1− 2α+ 2α cos

(

(k − 1)2π√
n

)

. (30)

In particular, the second-largest eigenvalue can be bounded using the Taylor expansion of the cosine:

λ2(Ŵ ) ≥ 1− 2α+ 2α

(

1− 1

2

4π2

n

)

= 1−O

(

1

n2

)

.

Therefore the relaxation time is

Trelax = Ω(n2), (31)

and the averaging time is bounded by Theorem 1.

The preceding theorem shows that allowing nodes to move in only one direction gives the same order convergence

time as the the torus without any node mobility. That is,sometimes mobility can yield no significant benefits in

terms of convergence. In the case where we add a single agent moving in the verticaldirection we still do not gain

anything. The proof follows from the same arguments as Corollary 1.

Corollary 2 (A single vertical mover doesn’t help):Let G = (V , E) be the
√
n×√

n torus and suppose that the

set of agentsA = V ∪ {e}. Let the mobility pattern for the(i, j)-th agent inV be uniformly distributed on the set

{(i, k) : k ≤ √
n}, which corresponds to mobility only in the horizontal direction. Let the mobility pattern fore

be uniform on{(i, 1) : i ∈ √
n}. Then for this gossip algorithm,

Tave(n, ǫ) = Ω
(

n2 log ǫ−1
)

. (32)

We could prove in a similar way that adding a constant number of agents in the vertical direction does not speed

up the convergence appreciably. Our final result in this section shows that 1D unidirectional mobility cannot help

speed up the convergence time of gossip on random geometric graphs as well. Boyd et al. [5] have shown that the

averaging time for standard pairwise gossip on the RGG isΘ(nr−2 log ǫ−1), which for r(n) = Θ(
√

n−1 logn) is

Θ((n2/ logn) log ǫ−1).
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C. Upper bounds

For our upper bounds we use the canonical path method [17], which we summarize here for completeness. For

any ergodic and reversible Markov chain on a state spaceΩ, for each pairi, j of states define thecapacityof a

directed edgee = (i, j) to be

C(e) = π(i)W̄ij . (33)

For each pair of states we define ademandD(i, j) = π(i)π(j). A flow is any way of routingD(i, j) units of

“liquid” from i to j for all pairs i, j simultaneously. Formally, a flowF : P → R
+ is a function on the setP of

all simple paths on the transition graph of the Markov chain that satisfies the demand:

∑

p∈Pij

F (p) = D(i, j), (34)

wherePij denotes all the paths fromi to j.

For a flowF we can define theload on an edgee to be total flow routed across that edge:

f(e) =
∑

i,j∈Ω

∑

p∈Pij :e∈p

F (p) (35)

The costof a flow F is the maximum overload of any edge:

ρ(F ) = max
e

f(e)

C(e)
, (36)

Finally, define thelengthof a flow l(f) to be longest flow-carrying path, i.e. the longestp for which F (p) 6= 0.

Using these definitions, we can use the following Poincaré inequality [17] to yield an upper bound on the inverse

spectral gap (relaxation time) of the Markov chain:

1

1− λ2(W̄ )
≤ ρ(F )l(F ). (37)

Intuitively, if there are no ’bottlenecks’ on the transitions for every pair of states, the relaxation time of the chain

will be very small. Any flowF gives an upper bound that depends on the costρ(F ) of its most congested edge.

Corollary 3 (Full mobility is optimal): Let the area in which the agents move be given by the graphG = (V , E)
corresponding to the

√
n×√

n discrete lattice on the torus. Let the set of agentsA = {1, 2, . . . ,√n}2 with initial

locations equal toV . Suppose the mobility pattern of every agent inA is the uniform distribution on the set of all

locationsV , which corresponds to full mobility. Then for this gossip algorithm,

Tave(n, ǫ) = Ω
(

n log ǫ−1
)

. (38)

Proof: The stationary distribution is uniform, soπ(i) = 1/n for all i and the demandD(i, j) = 1/n2 for all

pairs(i, j). Furthermore, the probability ofi andj averaging isΩ(1/n2), so the state diagram of the Markov chain

is the complete graph with edge capacitiesΩ(1/n3). The simplest flow is to route directly the demand1/n2 on

the edge fromi to j, which gives a cost ofO(n) with a flow of length1, so the relaxation time isO(n).

A slightly less simple example is a cycle with one fully mobile agent. The cycle has averaging timeΘ(n3 log ǫ−1)

(see [14]). With one mobile agent the averaging time drops toO(n2 log ǫ−1)
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Corollary 4 (Cycle with one fully mobile agent):Let the area in which the agents move be given by the graph

G = (V , E) corresponding to the the cycle of lengthn and let there ben + 1 agentsA = B ∪ {v′}, where

B = V = {1, 2, . . . n}. The initial locations of the agents inB are the locations ofV and the agents inB cannot

move. The agentv′ has mobility uniformly distributed onV with initial location1. Then for this gossip algorithm,

Tave(n, ǫ) = Ω
(

n2 log ǫ−1
)

. (39)

Proof: The stationary distribution for this chain is uniform, soπ(i) = 1/(n+1) for all i in A. The probability

that i andj average fori, j ∈ V is 0 unlessi andj are neighbors. Otherwise, with probability3n the mobile node

v′ is a neighbor ofi, so:

Pij =
1

n

((

1− 3

n

)

· 1
2
+

3

n
· 1
3

)

=
1

2n

(

1− 1

n

)

.

For i ∈ A andj = v′ we have

Piv′ =
1

n
· 3
n
· 1
3
=

1

n2
.

Thus the capacities are

C(i, j) =







1
2n(n+1)

(

1− 1
n

)

j ∈ V
1

n2(n+1) j = v′
(40)

The demand is justD(i, j) = 1/(n+ 1)2 between each pair of nodes.

To construct a flowF , we just route all flow through the mobile agentv′. An edge(i, v′) for i ∈ B carriesn

flows to all agentsj 6= i, each of size1/(n+ 1)2 for a total off(i, v′) = n/(n+ 1)2. Similarly, any edge(v′, i)

carries the same total flow. All flows are of length2, so l(F ) = 2. The overload is

ρ(F ) =
n/(n+ 1)2

1/(n2(n+ 1))
=

n3

(n+ 1)
.

And thus for largen we get an upper bound ofO(n2) for the relaxation time of the chain. The averaging time

then follows from Theorem 1.

V. EXAMPLES REVISITED

We now turn to our examples of mobility and derive scaling results for gossip with mobility. For the torus we will

show that local mobility in a square of aream2 cuts the convergence time bym2 and addingm fully mobile agents

cuts the convergence time bym. For the random geometric graph we will prove the same resultfor bidirectional

mobility and a lower bound for unidirectional mobility.

A. The torus

1) Local mobility: An important step in bridging the mobility model here with more reasonable mobility models

is to consider local mobility, in which an agent moves uniformly in a square of side length(2m+ 1) centered at

its initial location.
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Fig. 1. Routing flow in the local mobility model. Nodes route flows along L-shapde paths through the squares.

Fig. 2. Routing flow in the local mobility model. As illustrated on top, for nodei to send to nodei, it evenly divides the flow and sends it

to all node in the adjacent square in the L-shaped path. Each node in the adjacent square routes that flow uniformly to everynode in the next

square in the path. At the end of the route, as illustrated on the bottom, the nodes in the square adjacent to the destination j transmit their

received flows fromi directly to j.

Theorem 3:Consider gossip withn agents on the
√
n×√

n torusG. Let the agent initially at a locationi have

mobility uniform in a square of side-length2m+ 1 centered ati. Then the averaging time is given by

Tave(n, ǫ) = O

(

n2 logm

m2
log ǫ−1

)

. (41)

Proof: Divide the grid into squares of side lengthm. Initially, each square containsm2 agents. Letai refer to

the agent whose initial location isi and lets(ai) refer to the square containingi. The mobility of agentai covers
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s(ai) and intersects the squares adjacent to it. For each pair of agents we must routeD(i, j) = 1/n2 units of flow.

We will do this by routing flows in L-shaped paths, as shown in Figure 1 and 2. Sinceai’s mobility intersects the

squares adjacent tos(ai), there is a nonzero probability that agentai will communicate with an agentai′ whose

squares(ai′) is adjacent tos(ai).

Assign the1/(m2n2) units of flow to each agentai′ whose initial location is in the square adjacent tos(ai).

There arem2 such agents. Each agent then routes1/(m4n2) units of flow to each agentai′′ in the next square

along the L-shaped path. The flow is routed only along edges(j, j′) such thats(aj) ands(a′j) are different. Each

left-to-right edge carries flow from theO(
√
n/m) squares to the left of it. These flows are routed to theO(n/m2)

squares to the right and above it for a total ofO(n3/2/m3) pairs (i, j) that are routed through each square. Each

square hasm2 agents so there areO(n3/2/m) flows carrying1/(n2m2) per flow, so the load on the edge is

f(i, j) = O

(

1√
nm3

)

. (42)

The same bound holds for down-to-up edges.

To find the capacity of these edges, we calculate the probability that agentsi andk in adjacent squares average

with each other. The probability is1/n to select agenti and the overlap in agenti andk’s mobility area isΩ(m2),

so the chancei and k are adjacent after moving isΩ(1/m2). With high probability there will be no more than

O(logm) nodes fori to choose from, so the chance of selectingk is at worstΩ(1/ logm). Thus:

C(i, k) = Ω

(

1

n2m2 logm

)

. (43)

The maximum length of any flow isO(
√
n/m), so the Poincaré inequality gives

1

1− λ2(W̄ )
= O

(

n2 logm

m2

)

. (44)

2) Adding mobile agents:The question motivating this work is this : how much can agentmobility improve

the convergence speed of gossip or consensus algorithms? Put another way, how much mobility is needed to gain

a certain factor improvement in the convergence? A simple model for which we can answer this question is the

following: considern static agents in the
√
n × √

n torus together withm mobile agents whose mobilityµi is

uniform on the torus. We use our techniques from earlier sections below to show that the averaging time of gossip

in this model isΘ(n2/m log ǫ−1), which for m = nα is Θ(n2−α). For example, adding
√
n mobile nodes can

speed convergence by a factor of
√
n.

Theorem 4:Let the set of locations be given by the
√
n×√

n discrete lattice on the torusG = (V , E). Let there

be n+m agentsA = S ∪M where then static agentsS are positioned on then nodes of the torus and do not

move. and them mobile agentsM have mobility that is uniform onV , wherem < n. Then the averaging time is

given by

Tave(n, ǫ) = Θ

(

n2

m
log ǫ−1

)

. (45)
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Proof: We first show that fori ∈ S andj ∈ M, the probabilityPij that agenti contacts agentj and averages

is Θ(1/n(m+ n)). Agent i is selected with probability1/(m+ n) and agentj is in the neighborhood of agenti

with probability5/n. Therefore:

Pij =
5

n(m+ n)

m−1
∑

l=0

1

5 + l
P(L = l), (46)

whereL is the the number of agents inM that land in the neighborhood ofi. The summation is just

m−1
∑

l=0

1

5 + l
P(L = l) = E[1/(5 + L)], (47)

which is clearly upper bounded by1, so

Pij = O

(

1

n(m+ n)

)

. (48)

Since1/(5 + L) is convex, Jensen’s inequality can be used to obtain a lower bound:

E[1/(5 + L)] ≥ 1/E[5 + L] = 1/(5 + 5m/n). (49)

ThereforePij = Ω(1/n(m+ n)). By symmetry, we have the same bound onPji.

To get the lower bound, consider the functionG : S ∪M → S ∪ {M} that is the identity onS and mergesM
into a single stateM . We can bound the transition probabilities of the new chain using (20):

ŴMi =
1

∑

j∈M
π(j)

∑

j∈M

π(j)
Pij + Pji

2

= Θ

(

1

n(m+ n)

)

(50)

ŴiM =
1

π(i)

∑

j∈M

π(i)
Pij + Pji

2

= Θ

(

m

n(m+ n)

)

. (51)

For i, k ∈ S we haveŴik = W̄ik.

The new chain is a torus plus an additional central nodeM . The probability of transitioning from the torus to

the central node isΘ((m/n)/(m + n)) and for transitioning back it isΘ((1/n)/(m + n)). It can be seen (see

the Appendix) that the relaxation time for this chain isΩ(n2/m) via the extremal characterization in (22). Thus

Tave(n, ǫ) = Ω
(

n2

m log ǫ−1
)

.

We now turn to the upper bound. As before, we construct a flow onthe chain. The demand between any two

agents(i, j) is 1/(n+m)2. SincePij = Θ(1/n(n+m)), the capacity

C(e) = Θ(1/n(n+m)2),

for e = (i, j). We must now construct a flow that will yield an upper bound on the relaxation time ofn2/m. For

a pair of statesi ∈ S and j ∈ M we assign1/(n+m)2 to the direct path(i, j). For a pairi ∈ S and j ∈ S we
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√

c1 log n

n

}

Fig. 3. Random geometric graph example with bidirectional 1D mobility.

split 1/(n+m)2 equally into them paths(i, k, j) for k ∈ M. Finally, for i ∈ M andj ∈ M∪ S we again route

1/(n+m)2 directly on (i, j). Then

f((i, j)) =



















1
(m+n)2 i, j ∈ M
0 i, j ∈ S

1
(m+n)2 + n

m
1

(m+n)2 i ∈ S, j ∈ S ∪M

Thereforeρ(F ) = Θ(n2/m). Since all paths areΘ(1), the Poincaré inequality implies thatTrelax(W̄ ) = O
(

n2/m
)

,

so Theorem 1 givesTave(n, ǫ) = O
(

n2

m log ǫ−1
)

.

B. Random geometric graphs

1) Bidirectional mobility: We now turn to the case where some agents move horizontally and some vertically.

We will prove our results for the random geometric graph model, wheren nodes are initially placed uniformly in

the unit squareG. In the bidirectional mobility model, before the gossip algorithm starts, each node flips a fair

coin, is assigned to move horizontally or vertically, and moves like this throughout the process. Note that this is a

one-dimensional mobility model since each node is moving only horizontally or vertically throughout the execution

of the gossip algorithm, never changing direction. Our result is that this mobility model is as good as complete

node connectivity.

Theorem 5:Consider the gossip algorithm withn agents under the random geometric graph model and bidirec-

tional mobility. We can choose a connectivity radiusr(n) = Θ

(

√

logn
n

)

such that the the gossip averaging time

is

Tave(n, ǫ) = Θ(n log ǫ−1). (52)
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Proof: We start by partitioning the space into a grid of squares of size c1
logn
n . Let Bi denote the number of

agents whose initial position was in squarei.

It is well known [18], [37]–[40] that a combination of a Chernoff and a union bound, yields uniform bounds on

the maximum and minimum occupancy of all the squares:

P

(c1
2
logn ≤ Bi ≤ 2c1 logn ∀i

)

≥ 1− n1−c1/8
2

c1 logn
.

By selectingc1 ≥ 10 we can show that all the squares haveΘ(logn) agents with probability at least1 − 1
n2 logn

so square occupancies are balanced even if the experiment isrepeatedn2 times. We set the transmission radius

to r(n) =
√

5c1
logn
n to guarantee that a agent in a square can always communicate with any agent in the four

adjacent squares.

Recall that initially each agent is assigned to be a horizontally moving or vertically moving node by flipping a

coin and keeps this directionality throughout the process.Denote byHi the set of nodes that move horizontally

and whose initial position was in thei-th row of squares. These agents always stay in thei-th row. Similarly, let

Vi be the set of agents who move vertically in thei-th column of squares.

Each square contains in expectationc1 logn nodes and there are
√

n
c1 logn squares in each row and column. Since

each node flips a fair coin and is assigned in a vertically or horizontally moving class, the expected cardinalities

will be:

E|Hi| = E|Vi| =
1

2
c1 logn

√

n

c1 logn
= Θ(

√

n logn). (53)

Using standard Chernoff bounds we can show that the cardinalities of |Hi|, |Vi| are sharply concentrated near their

expectation.

Theorem 1 shows that the averaging time of the gossip algorithm is bounded by the inverse spectral gap (relaxation

time) of the average matrix̄W , where the expected matrix̄W = EW (s) is computed over mobility of the nodes

and random selection of which nodes are gossiping.

We now proceed to bound the spectral gap using a canonical flowand we need to select paths for every pair of

states for the Markov chain defined bȳW . The state space is the set ofn agents andπ(i) = 1/n for each agenti

sinceW̄ is doubly stochastic. Thecapacitiesof the edges will be proportional to the entries ofW̄ (see 14), where

W̄ij is the average of the probabilitiesPij andPji, measuring how often agentsi andj are pairwise averaged. For

each pair of agents(i, j) we must specify how to satisfy the demandD(i, j) = n−2 by assigning flows to some

(appropriately chosen) paths inPij .

Our flow construction uses four different cases depending onwhetheri andj move horizontally or vertically:

a) Case 1: Supposei ∈ Hk and j ∈ Hl. To satisfy the demandn−2 nodei assignsΘ(n−3) units to each

path(i, v, j), wherev ∈ Vr for somer. There areΘ(n) agents who move vertically, so the total flow that reaches

j can be made equal ton−2. See Figure 4.

b) Case 2:Supposei ∈ Vk and j ∈ Vl. This is the same as the previous case, except thatΘ(n−3) units are

assigned to each path(i, h, j) for h ∈ Hr.
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H1

H2

H3

V1

V2

V3

Fig. 4. Routing flow from a node inH1 to a node in setH3. The flow is routed from the node inH1 to all nodes in the sets{Vi} and then

back to the node inH3.

c) Case 3:Supposei ∈ Hk andj ∈ Vl. To satisfy the demandn−2 assignn−2 to the direct path(i, j).

d) Case 4:Supposei ∈ Vk andj ∈ Hl. We again assignn−2 to the direct path(i, j).

Our construction therefore only uses the edges in the graph betweenH sets andV sets. In other wordsit is only the

averaging between nodes that move vertically with nodes that move horizontallythat allows information to spread

fast in the network. The averaging between two nodes inH or V could be omitted and still the bound would not

change in order. The total load on an edgee = (h, v) between a horizontal moving agent and a vertical moving

agent is the sum of the direct flow(h, v), the the sum of the flows(h, v, j) for all horizontal movingi and(i, h, v)

for all vertical movingi.

f(e) =
1

n2
+Θ

(

1

n3

)

∑

|Vr|+Θ

(

1

n3

)

∑

|Hr|

= Θ

(

1

n2

)

. (54)

The same bound holds fore = (v, h).

Finally, we calculate the capacity for the edges(v, h). It is sufficient to calculate a lower bound on the probability

that agentsv ∈ Vk andh ∈ Hl average. Agentv is selected with probability1/n. Based on our assumptions on the

communication radius,v can communicate withΘ(logn) neighbors. The probability thatv lands in a row within

r(n) of row l is Θ(
√

n−1 logn) and the probability thath lands withinr(n) of row k is alsoΘ(
√

n−1 logn).
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Therefore we have

Pvh = Ω

(

1

n

√

logn

n

√

logn

n

1

logn

)

= Ω

(

1

n2

)

. (55)

The capacity of each edge(v, h) is thenC(e) = Ω(n−3). By symmetry, the same formulae hold for(h, v).

We can now calculate the overload for this flow on any edgee = (v, h):

f(e)

C(e)
=

Θ(n−2)

Ω(n−3)
= O (n) . (56)

Since this holds for all edges we haveρ(F ) = O(n). The maximum length of any path used in the flow is2, so

by the Poincaré inequality we have

Trelax(W̄ ) =
1

1− λ2(W̄ )
= ρ(F )l(F ) = O(n). (57)

Theorem 1 gives the result.

One intuition for this result is that bidirectional mobility enables the construction of “short” routes between all

pairs of agents. We can derive the identical result for the torus using the same arguments. Under bidirectional

mobility the averaging time for the torus isO(n log ǫ−1), which is the same as full mobility.

2) Unidirectional mobility: We now show that unidirectional mobility does not improve the scaling performance

for random geometric graphs. This is proved in the same way asthe analogous result for the torus.

Corollary 5 (Random geometric graph with 1D mobility):Consider gossip on the random geometric graph with

n agents with the 1D unidirectional mobility model. Then for this gossip algorithm,

Tave(n, ǫ) = Ω

(

n2 log ǫ−1

logn

)

. (58)

Proof: We first divide the unit square into sub-squares of side length c1

√

logn
n for some constantc1. This

creates aΘ
(
√

n
logn

)

× Θ
(
√

n
logn

)

torus on which the mobility can be defined. We must first characterize the

Markov chain corresponding to the gossip algorithm under the 1D unidirectional mobility model. If we set the

communication radius toc2
√

logn
n then an agent in thei-th row of sub-squares can communicate with agents in

rows {i− c3, . . . , i+ c3}, wherec3 is again a constant. Moreover, each sub-square will haveΘ(logn) agents with

high probability. Therefore we can upper bound the probability that an agent in rowi will average with an agent

in one of the rows{i− c3, . . . , i− 1, i+ 1, . . . , i+ c3}:

βij = O

(

1

n
×
√

logn

n
× 1

logn

)

. (59)

Thus the chance a given agent averages with someone not in their row of sub-squares isO(1/
√

n3 logn).

As in the torus, we apply the induced chain method using the partition that merges each row of sub-squares.

This creates a new Markov chain with
√

n/ logn states that is a kind of cycle where there are positive transition

probabilities from statek (corresponding to thek-th row) to statesl ∈ {i− c3, . . . , i + c3}. From the analysis of
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the torus we can see that from rowk to l:

Ŵkl =
1

∑

i:F (i)=k π)(i)

∑

i:F (i)=k

∑

j:F (j)=l

π(i)Wij (60)

=

√

n

logn
· n logn · 1

n
· O
(

1

n3/2
√
logn

)

(61)

= O

(

1

n

)

. (62)

Let β denote this transition probability. The matrix of this new chain is still circulant and generated by the vector

(β, . . . , β, 1− 2c3β, β, . . . , β, 0 . . . 0). (63)

The DFT and Taylor expansion again gives the bound on the second-largest eigenvalue:

λ2(Ŵ ) = 1− β ·O
(

logn

n

)

(64)

= 1−O

(

logn

n2

)

. (65)

ThereforeTrelax(Ŵ ) = Ω(n2/ logn).

VI. EXPERIMENTS AND SIMULATIONS

We can gain some intuition about the benefits of mobility via simulations. All simulations are for a torus with

a linearly varying field. Our first main result was a lower bound that shows horizontal mobility is as bad as no

mobility in terms of convergence. This is illustrated in Figure 5, where we can see that for a range of network sizes

the error under horizontal mobility is close to that of the torus with no mobility. Indeed, as the network size gets

larger, the gap vanishes, which suggests that our analysis is tight for this example. Our second major result was a

positive one; the bidirectional mobility model was nearly as good as full mobility. This is illustrated in Figure 6.

Although there is a gap between the error decay under the two mobility models, for a fixed error the number of

iterations needed to achieve that error is at most a constantfactor more for the bidirectional mobility model.

Our final result was that addingm mobile agents to a static grid withn agents gives a convergence time of

Θ(n2/m log ǫ−1). Figure 7 shows how adding only a few additional mobile agents can dramatically improve the

speed of convergence. As we add more nodes,log ǫ decreases linearly, which corresponds to an exponential decay

in the average error. This suggests that even in large networks, investing in a small number of mobile agents can

yield a major benefit in convergence time.

The examples that we consider in this paper are simplifications of real network topologies and real mobility

models. It is important to understand how unrealistic thesemodels are. We simulated the difference between the

lattice on the torus versus a
√
n×√

n grid. Figure 8 shows the error after a fixed number of iterations for increasing

grid sizes. Although the algorithm converges faster on the torus, the gap decreases with larger network size. A second

question is how therandom walkmobility model [30], [31] relates to the mobility model in this paper. In order

to analyze gossip under such a mobility model, we would need to prove new convergence result for the iterated

random matrix products that characterize the evolution of the agents’ estimates. It is clear that if each agent moves
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Fig. 5. Log average error versus number of iterations of the gossip algorithm for the torus with no mobility and with horizontal mobility. As

the graph size increases, the gap between the two algorithmsvanishes.
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Fig. 6. Log average error versus number of iterations of the gossip algorithm for the torus with full mobility and with bidirectional mobility.

As the graph size increases, the gap between the two algorithms shrinks.

according to a random walk and the number of steps taken between each gossip iteration is longer than the mixing

time of the random walk, then random walk mobility is equivalent to the mobility models considered here. However,

for a smaller number of steps, the simulations of the speed ofconvergence of the algorithm are inconclusive, as

there appears to be a dependence on the initial configurationof agents’ values. We leave as an open question how

to bound the performance Markov random walk models.
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Fig. 7. Adding a few mobile nodes to a static grid can exponentially decrease the estimation error for a fixed number of iterations (20000).
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Fig. 8. Gap between the torus and grid versus grid size after 5000 pairwise iterations, averaged over 100 trials, using the uniform horizontal

mobility model.

VII. D ISCUSSION AND FUTURE DIRECTIONS

In this work we investigated how agent mobility impacts the convergence speed of distributed averaging algorithms

by developing new analytical tools derived from the theory of Markov chains. Using these tools we could show

that different mobility patterns can have dramatically different effects depending on the overlap of the mobility

paths. Perhaps surprisingly, even a sublinear number of mobile nodes can change the order of gossip messages

required for convergence. We note that “mobility” in our model is a variety of time-varying network topology

that in practical implementations need not come from the physical mobility of the agents, but can be induced by

structured variations in the topology.
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The class of mobility models which are amenable to our analysis makes a strong assumption on the speed

of the mobility or delay-tolerance of the gossip algorithm.One interesting direction for future research involves

understanding the benefits of mobility for more realistic mobility models. It is possible that general mobility models

with memory are tractable to analysis if the mobility is driven by a Markov chain since this would integrate naturally

with the Markov structure of the averaging process. Provingthat these systems reach a consensus could follow from

more general results about the corresponding stochastic process [41]. We conjecture that random walk models with

slower mixing times will yield smaller benefits, and that ourindependent (fast mixing) model is an upper bound.

For these models, modifying the pairwise gossip paradigm (c.f. [18]) may yield a greater benefit then relying on

mobility alone. The impact of node mobility on distributed optimization and general message-passing algorithms

on probabilistic graphical models would also be a very interesting research direction.

Another interesting direction is understanding the impactof mobility for more general message-passing algorithms

such as distributed convex optimization. The analysis of [42] obtains a convergence theorem similar to the spectral

gap and it would be interesting to investigate the scaling behavior of the number of required iterations for the

min-sum algorithm to optimize a convex function under out node mobility models.

APPENDIX

We will construct ag in (22) to show that the mixing time of a torus plus an additional central nodeM with

transition probabilitiesΘ((m/n)/(m+n)) toM andΘ((1/n)/(m+n)) away fromM along with transitionsΘ(1/n)

between neighbors in the torus has relaxation timeΩ(n2/m), wherem < n. The stationary distribution for this

chain has probabilityπ(i) = Θ(1/(m+ n)) on the nodesi = 1, 2, . . . , n of the torus andπ(M) = Θ(m/(m+ n))

on M . Let g(M) = 0 and g be constant on each column of the torus with the values on the columns being

{−α,−α+1, . . .0, 1, 2, . . . , α, α, α−1, . . . ,−α+1,−α} for
√
n even and{−α,−α+1, . . . , α, 0, α, α−1, . . . ,−α}

for
√
n odd, whereα = Θ(

√
n). Then clearly

∑

π(i)g(i) = 0. We can calculate the numerator and denominator

in (22):

∑

k

π(k)g(k)2 =
1

m+ n

√
n4

α
∑

i=0

i2

= Θ

(

n2

m+ n

)

(66)

D(g, g) =
m/n

(m+ n)2
√
n4

α
∑

i=1

i2

+
1/n

m+ n

√
n4

α
∑

i=1

1

= Θ

(

1 + mn
m+n

m+ n

)

. (67)

Dividing gives the result.
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[13] D. Üstebay, B. Oreshkin, M. Coates, and M. Rabbat, “Greedy gossip with eavesdropping,”Signal Processing, IEEE Transactions on,

vol. 58, no. 7, pp. 3765 –3776, july 2010.

[14] A. Dimakis, A. Sarwate, and M. Wainwright, “Geographicgossip: Efficient averaging for sensor networks,”IEEE Transactions on Signal

Processing, vol. 56, no. 3, pp. 1205–1216, 2008.

[15] D. Aldous and W. Fill, “Reversible Markov chains and random walks on graphs,” 2002, http://www.stat.berkeley.edu/ al-

dous/RWG/book.html.

[16] P. Diaconis and D. Stroock, “Geometric bounds for eigenvalues of Markov chains,” inAnnals of Applied Probability, vol. 1, 1991.

[17] A. Sinclair, “Improved bounds for mixing rates of Markov chains and multicommodity flow,” inCombinatorics, Probability and Computing,

vol. 1, 1992.

[18] F. Benezit, A. G. Dimakis, P. Thiran, and M. Vetterli, “Order-optimal consensus through randomized path averaging,” in Proc. of the

Allerton Conference on Communication, Control, and Computing, 2007.

[19] D. Bertsekas and J. Tsitsiklis,Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont, MA, 1997.
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