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Base station cooperation on the downlink: Large
system analysis

Randa Zakhour and Stephen V. Hanly

Abstract—This paper considers maximizing the network-wide
minimum supported rate in the downlink of a two-cell system,
where each base station (BS) is endowed with multiple antennas.
This is done for different levels of cell cooperation. At one
extreme, we consider single cell processing where the BS is
oblivious to the interference it is creating at the other cell.
At the other extreme, we consider full cooperative macroscopic
beamforming. In between, we consider coordinated beamforming,
which takes account of inter-cell interference, but does not
require full cooperation between the BSs. We combine elements
of Lagrangian duality and large system analysis to obtain limiting
SINRs and bit-rates, allowing comparison between the considered
schemes. The main contributions of the paper are theorems
which provide concise formulas for optimal transmit power,
beamforming vectors, and achieved signal to interference and
noise ratio (SINR) for the considered schemes. The formulas
obtained are valid for the limit in which the number of users per
cell, K, and the number of antennas per base station, N , tend to
infinity, with fixed ratio β = K/N . These theorems also provide
expressions for the effective bandwidths occupied by users, and
the effective interference caused in the adjacent cell, which allow
direct comparisons between the considered schemes.

Index Terms—linear precoding, regularized zero forcing, inter-
cell interference, base station cooperation, multicell processing,
cellular systems, MIMO broadcast channel, interference channel

I. INTRODUCTION

A. Problem scope

Consider the downlink (DL) of a cellular system in which
a base station (BS) services many mobiles within the cell. If
the BS is equipped with multiple antennas we have the classic
MIMO broadcast channel (BC), which has been the focus of
much attention in the past few years, including the recent,
celebrated characterization of the capacity region using dirty
paper coding [1]. There has also been substantial interest in
devising suboptimal, but practical approaches based on linear
precoding techniques (i.e. beamforming).

The MIMO BC is the appropriate model for a single isolated
cell. What happens when we bring several cells together, so
that each is affected by the interference from the others?
This paper analyzes the performance of linear precoding in
a multicell setting.

Consideration of interference leads us to examine the system
level architectural issue of cooperation between nodes in the
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network. The traditional approach to interference is to partition
the cells in time or bandwidth to avoid a strong interference
coupling between adjacent cells. However, with multiple an-
tennas at each base station, this may be suboptimal. When
multiple antennas are incorporated at each BS, we can tradeoff
the maximization of the rates of the in-cell users (ignoring
interference), with the minimization of the interference spilled
over into the other cells. If enough cooperation is enabled,
these two objectives can go hand in hand.

A large body of research has recently dealt with coopera-
tion and coordination in multicell systems. Many papers are
concerned with developing new algorithms, to meet various
proposed performance objectives (e.g. transmit power mini-
mization under given SINR constraints for coordinated beam-
forming (CBf) [2], [3], or minimum SINR maximization for
network MIMO [4]). Others provide a performance analysis
of a given scheme under a particular channel model.

One can distinguish between scenarios where BSs each
serve a different group of users, and cases where all the
transmitters jointly transmit to all users in the system, the so-
called multicell processing (MCP), macrodiversity or network
MIMO. For MCP, a classical model for performance analysis
is Wyner’s model [5], [6]. This model was first used on the
DL in [7], where a linear pre-processing dirty paper coding
approach is proposed. In [6], the sum rate is characterized
for the case where single-antenna base stations pool their
antennas together to perform zero-forcing (ZF) to the users in
the system. More precisely, they consider a circular variant of
the infinite linear Wyner model for both non-fading and fading
scenarios, with scheduling based on local channel statistics.
Results are derived for the regime in which the number of
cooperating BSs tends to infinity, and scaling results are also
obtained by letting the number of users per cell do the same.

In this work, we focus on optimizing linear precoding under
different states of CSI and data sharing. We assume that each
BS can simultaneously serve more than one user, and we
formulate the problem of maximizing the minimum network-
wide achievable rate, i.e. rate balancing, under the following
three different architectures:

i) Single cell processing (SCP), in which each BS has
perfect CSI about mobiles in its cell, but no knowledge
about the channels to mobiles in other cells. Here, the
BS can control interference between the mobiles in its
own cell, but not the interference spill-over to other cells.

ii) CBf, in which the beamforming decisions at each BS
take into account the impact of interference on the other
cells. In this approach, each BS has CSI about the
channels to its own users, but it also knows the channels
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to the mobiles in the other cells. This allows the BS to
control the interference it causes to the mobiles in other
cells.

iii) MCP, in which the BSs cooperate to jointly precode
signals to all the mobiles in all cells. Through coop-
eration, the BSs know the channels from all BSs to all
the mobiles in the whole network, and hence they can
jointly beamform, using their combined resources.

In the first two approaches, user data is routed to a single BS
only, whereas in the MCP case, it is routed to all cooperating
BSs. We specialize our derivations to only two cells. Never-
theless, such an approach can be extended to larger networks,
if one wishes to perform system-wide optimization of a large
cellular network. This is the object of ongoing research [8].

Even the two cell model gets very complicated when we
have multiple antennas at the BSs and many mobiles in each
cell. With independent flat fading between each transmitter-
receiver pair, many parameters need to be specified. For this
reason, we assume that they are selected randomly, and we
take a large system approach in which the number of antennas
at the base station, N , and the number of mobiles in each cell,
K, both grow large together, while the ratio K

N , which we refer
to as cell loading, is held at a constant, denoted β.

B. Related work

Random matrix theory has received a lot of attention in
the communications literature recently [9], particularly large
system results where some of the system parameters, such
as number of users, the length of the signature sequence (in
CDMA scenarios), or the number of transmit and receive
antennas (in MIMO settings), are allowed to grow large at
the same rate. Such asymptotics often produce a compact
characterization of performance in the large system limit,
amenable to system optimization. An attractive feature of
these results is that the asymptotic expressions turn out to be
good estimates for even relatively low values of the scaling
parameters [10], [11], [12], [13], [14].

Most applications of large system analysis have been for
the uplink (UL). Surprisingly, there has been limited work
on the DL until quite recently, despite a well established UL-
DL duality theory. Recently, however, a large systems analysis
of regularized ZF (RZF) beamforming was carried out to
characterize its limiting performance in a single cell context,
allowing the optimization of the regularization parameter [15],
and [16] considers ZF and RZF for correlated channel models.
The present paper generalizes [15] to the multicell context, and
to a wider class of beamformers, exploiting an UL-DL duality
theory.

In the past year or so, there has been further work that
explores the interplay between UL-DL duality, Lagrangian
optimization and large systems analysis. In [17], duality be-
tween MAC and BC is used to characterize and optimize
asymptotic ergodic capacity for correlated channels. A similar
approach is taken in [18], [19], [20] to treat a large systems
analysis of ergodic, weighted sum-rate maximization. These
papers consider maximizing network utility to obtain fairness,
under user scheduling, and they consider various forms of

base station cooperation (clustering). The aim is to use large
system analysis to obtain numerical methods that are much
more efficient than Monte-Carlo simulations; in [20] they
obtain an “almost closed-form” numerical analysis tool. Linear
ZF beamforming and non-ideal CSIT are considered in [19].
In [21] random matrix theory is applied to a different CBf
setup than the one considered here: more particularly, they
consider the problem of weighted sum of the transmit powers
minimization CBf problem initially formulated in [2], and
propose a strategy which also requires instantaneous local CSI
and sharing channel statistics. Monte Carlo simulations are
resorted to in order to claim asymptotical optimality of the
results; these are however derived for a more general channel
model than we use in the present paper. In [22], we provided
preliminary results that we now present in more detail.

There has also been some very recent interest in using
large systems analysis to succinctly answer questions con-
cerning channel uncertainty, optimal amount of training, and
required rates of feedback of channel state information. These
questions are addressed for the downlink of a single cell in
[23], where deterministic equivalents of SINRs for ZF and
RZF are derived, under channel uncertainty, and the resulting
expressions are then optimized with respect to the number of
users and the number of symbols devoted to training. In [24],
large systems analysis is used to optimize the number of BSs
that should be cooperating on the UL, taking into account
unreliable backhaul links, and the channel estimation required
to measure the channels. Both papers consider much more
general channel models than we do in this work.

Many duality results have been established in the context of
MIMO communications. The first UL-DL duality result was
obtained for the point to point MIMO channel in [25]. Another
early work, [26], considered joint optimization of power and
beamforming vectors for the DL of a multiple antenna cel-
lular system employing a simple linear transmission strategy
followed by single user receivers, such that the SINR at each
mobile is above a target value; the proposed algorithm achieves
a feasible solution for the DL if there is one and minimizes the
total transmit power in the network. In [26], connections were
made between this problem, and the UL power control frame-
work of [27], and we exploit these connections in the present
paper (as have many other authors). In [28], the problem of
DL power minimization subject to target SINR constraints
is addressed using a Lagrangian duality framework, and the
transmit powers of the dual UL are found to correspond to the
Lagrange coefficients associated with SINR constraints.

In the context of the capacity region of the Gaussian BC,
duality results are provided in [29], [30], [31], [32]. When
linear beamforming is considered, as in the present paper,
several duality results have been obtained, and applied to
designing iterative algorithms for DL beamforming. It was
shown in [33] that, under a sum power constraint, UL and
DL achievable rate regions are the same. Effective bandwidth
results derived for the UL were also proven to hold in the DL.
A similar approach to duality for the BC is taken in [34].

Over the past decade, a large body of research has appeared
in which beamformers for the BC are derived via Lagrangian
optimization techniques. Optimization formulations include
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the minimization of the sum of mean-squared errors [35],
[36], [37], [38], the minimization of power subject to SINR
constraints [39], and the maximization of SINR’s subject
to power constraints [40], [39]. In [41], the problems of
maximizing the sum of effective bandwidths in both the UL
and DL (via duality) are considered. For the two-user case,
a closed form solution may be obtained, whereas the more
general problem can be formulated as a convex optimization
problem and solved via an interior point method. Related
problems such as SINR balancing are also considered. In [42],
the Lagrangian duality approach is extended to include per-
antenna power constraints. It is shown that the dual problem
corresponds to an UL with uncertain noise at the receiver, and
the focus is the derivation of various algorithms for solving
the power minimization problem.

Some of the above-mentioned formulations are not directly
convex problems; for example the DL beamforming problem
to minimize power subject to SINR constraints is not a convex
problem. However, it can be transformed into a convex prob-
lem, as shown in [39], which shows that strong duality holds
in the original non-convex problem [42]. Thus Lagrangian
methods can be applied to these non-convex problems, and
this fact is exploited in the present work.

The optimization approach to beamforming provides much
insight into questions of system capacity, but when it comes
to practical beamforming design other considerations also
come into play. For example, using an iterative algorithm to
find an optimal beamformer may not be viable if channels
change rapidly over time.1 For this reason, many authors have
focused on beamformers that can be found without iterative
methods, such as the classical ZF beamformer.2 Of course,
rather than adapt to the instantaneous channel realizations, an
alternative approach is to adapt to changing channel statistics.
Stochastic approximation methods have a long history, and
provide iterative algorithms for these scenarios. It is of interest
to extend the results of the present paper to smaller (non-
asymptotic) systems and such methods may prove useful.

ZF beamforming steers nulls at the other users so that they
each get an interference-free version of their desired signal.
However, the signal to noise penalty can be very high if the
matrix to invert is ill-conditioned. RZF beamforming adds a
regularization term to the ZF beamformer to provide numerical
stability and better performance [44]. As noted earlier, [15]
undertakes a large system analysis of RZF, exploiting how its
beamformer resembles the LMMSE receiver on the UL.

A number of works have recognized that the optimal beam-
former can have a RZF structure in some special cases [35],
[36], [37], [40], [38], [39]. Note that for the power minimiza-
tion subject to SINR constraints problem [39], the simple form
of the regularized beamformer only arises when there is a great
deal of symmetry in the channel model. The examples given
in Section VI of [39], where such a form emerges, consist

1The classical Foschini-Miljanic[43] power control algorithm attempts to
find the optimal power levels in a dynamic environment, but with beamforming
there are many more parameters to be determined.

2By “iterative” we mean schemes that require iterative updates of physical
parameters, such as transmit powers and beamforming vectors, not simply
numerical methods that can be implemented within a single network node,
e.g. in the computation of a matrix inverse.

of the diagonal case (i.e. no interference between channels)
and the symmetric case, when the channel matrix has equal
diagonal elements, and equal off-diagonal elements. In the
present paper, channel matrices are randomly selected, so this
particular symmetry condition is not satisfied. However, our
model is symmetric in the average statistics of the channel
matrices, which leads to the RZF beamformer resulting from
the large systems limit. Nevertheless, this form of symmetry
is more general than the very special one considered in [39].

In general, [39] uses iterative techniques to find numerical
solutions for the optimal beamformer using conic optimization
techniques. The latter are exploited in [42] to handle per-
antenna power constraints, and extended further in [2], [3]
to provide a duality theory for multicell systems in which
there are per-BS power constraints. In [2], [3], CBf, a novel
beamforming strategy in which the BS takes into account the
interference it creates in adjacent cells, is proposed. [3] focuses
on developing fast algorithms to find optimal beamformers,
and numerical evidence is provided to show the improved
performance due to coordination, relative to traditional SCP.

The RZF structure emerging from our symmetric two cell
model is reminiscent of beamformers designed to optimize
other criteria, such as minimum variance distortionless re-
sponse (MVDR) beamformers. In particular, there is a sim-
ilarity between the RZF structure and the so-called diagonal
loading structure that has been used to deal with uncertainty
in the noise correlation matrix [45]. In [46], a large systems
analysis of MVDR beamformers with diagonal loading is
undertaken where the number of antennas, and the number of
observations, grow large together. Deterministic equivalents
are obtained, allowing the diagonal loading factor to be
optimized.

In Section III we review the optimization problems asso-
ciated with the classical (non-coordinated) SCP, and the CBf
strategy of [3]. We also formulate the optimization problem
for MCP in which the BS antennas jointly coordinate their
transmissions, as in network MIMO [47].

The main contribution of the paper is a large systems
analysis of these three schemes, and optimizations based on
the limiting asymptotics. In particular, we provide a clean
characterization of each of the three schemes in the large
systems limit in terms of effective bandwidths. In the case
of SCP, we show that the RZF beamformer is asymptotically
optimal in the large systems limit.3 In the case of CBf, we
show that the asymptotic form of the optimal beamformer
provides an enhanced version of regularized ZF, one that
we call generalized regularized zero-forcing (GRZF).4 This
beamformer is a novel contribution of the present paper.
Notation: Lowercase letters, boldface lowercase letters and
boldface uppercase letters are used to represent scalars, vectors
and matrices, respectively. xT and xH are the transpose and
conjugate transpose of vector x, respectively. CN (µ,C) de-
notes a circularly symmetric complex Gaussian random vector
of mean µ and covariance matrix C. Finally S � 0 means S
is a positive semidefinite (PSD) matrix.

3the structure that emerges is more general than RZF, since it also applies
in regimes in which ZF is not defined.

4again, it also applies when ZF is not defined.
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II. SYSTEM MODEL

Our model, illustrated in Figure 1, has two cells, and each
BS is equipped with an array of N antennas. There are K
single-antenna mobiles in each cell. We assume flat fading and
adopt the following notation regarding channel coefficients:

i) the channel vector from BS j to user k in cell j′ is
denoted hk,j′,j , where hk,j′,j ∈ C1×N ;

ii) the channel vector from all BSs to user k in cell j′ is
denoted h̃k,j′ ; in other words, h̃k,j′ = [hk,j′,1 hk,j′,2].

The data symbols to be transmitted to each user are assumed
to be independent identically distributed (i.i.d.) CN (0, 1) ran-
dom variables (r.v.), and the data symbol for user k in cell j
is denoted skj . Let sj = [s1j . . . sKj ]

T and s = [sT1 sT2 ]T .
The received signal at user k in cell j is given by

yk,j =

2∑
j′=1

hk,j,j′xj′ + nk,j , (1)

where xj′ ∈ CN denotes BS j′’s transmit signal, which
consists of the linearly precoded symbols of the users it is
serving, and which is subject to the average power constraint
E
[
xHj′xj′

]
≤ P and nk,j ∼ CN (0, σ2) is the receiver noise.

Receivers perform single-user detection, i.e. treat interfering
signals as noise. The way the precoding vector xj′ is generated
depends on the considered scheme; See Section III.

We assume the channels between each BS and user are in-
dependent. Moreover, channels between a user and his serving
BS are i.i.d. CN (0, I) whereas channels between a user and
an interfering BS are i.i.d. CN (0, εI). Thus, ε controls the
interference level between neighbor cells. This is a simplified
model of a cellular network, yet provides useful insights [48].
It is the two cell DL version of Wyner’s model [49].

1 N
t

N
t1

1 K... k ...

h
k,1,1 h

k,1,2

H
1,1

H
1,2

Base station 1 Base station 2

1 K... k ...

Cell 1 users Cell 2 users

Fig. 1. System model

III. COOPERATION AND LINEAR BEAMFORMING
SCHEMES: PRIMAL PROBLEMS

We consider the problem of maximizing the network-wide
minimum achievable rate for three different degrees of cooper-
ation and coordination between the cells. The optimization to
be carried out in each case is presented. The first problem is the
now classic one treated in [26], the second is the cooperative
scheme proposed in [3], and the third is new, although similar
approaches have been proposed in several papers (e.g. [47]).
In the equations below, when we consider a particular BS j,
index j̄ = mod (j, 2) + 1 corresponds to the other BS.

A. Single cell processing

This is the conventional case where each BS serves its own
users without worrying about the other cell. Here, we assume
full re-use of time and spectrum across cells. xj is of the form:

xj =

K∑
k=1

wkjskj = Wjsj , (2)

where the symbol for user k in cell j, skj , is linearly precoded
by beamforming vector wkj . Wj is the concatenation of the
K precoding vectors in cell j into a N ×K matrix, the kth
column being wkj .

In cell j the problem to be solved is the following:

max.γ,wkj ,k=1,...,K γ

s.t. SINRk,j ≥ γ, k = 1, . . . ,K
K∑
k=1

‖wkj‖2 ≤ P. (3)

The SINR at user k in cell j is given by

SINRk,j =
|hk,j,jwkj |2

σ2
k,j +

∑K
k′=1,k′ 6=k |hk,j,jwk′j |2

, (4)

σ2
k,j is the noise plus other-cell interference power at that user:

σ2
k,j = σ2 +

K∑
k′=1

|hk,j,j̄wk′ j̄ |2, (5)

and needs to be fed back to BS j.
Solving (3) may require an iterative procedure, since beam-

forming at each BS influences the interference, and therefore
the transmission design, at the other. We focus on finding the
maximum SINR that can be met in both cells. This can be
obtained using a bisection method. Thus, for fixed γ we obtain
the beamforming vectors by minimizing total transmit power
subject to SINR constraints on the cell’s users. If the optimum
is ≤ P for both BSs, γ is attainable. We thus focus on solving:

min.wjk,j=1,...,K

K∑
k=1

‖wkj‖2

s.t. SINRk,j ≥ γ, k = 1, . . . ,K. (6)

For γ achievable with unlimited transmit power, its solution
will be a set of beamforming vectors that minimizes the
total cell transmit power, and achieves SINR γ. Further, in
Theorem 1, we will provide a condition that is both necessary
and sufficient for the target SINR to be achievable, given
unlimited power. The maximum γ is the target SINR for which
the transmit power constraint is met with equality.

B. Coordinated Beamforming

Here, each BS sends data to its own users only, as in SCP,
but CSI is shared between the BSs so that the interference
generated in other cells is taken into consideration. xj will be
similar to that in (2), although the precoding design differs.
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The problem formulation in (3) becomes

max.γ,wkj ,k=1,...,K,j=1,2 γ

s.t. SINRk,j ≥ γ, k = 1, . . . ,K, j = 1, 2
K∑
k=1

‖wkj‖2 ≤ P, j = 1, 2, (7)

which is a joint, two-cell optimization problem, requiring a
coordinated solution. The SINR at user k in cell j is similar
to (4) but can be expanded into

SINRk,j =
|hk,j,jwkj |2

σ2 +
∑2
j′=1

∑K
k′=1,(k′,j′) 6=(k,j) |hk,j,j′wk′j′ |2

,

(8)

since all the channels are centrally known.
Here too the problem may be solved by a bisection method.

To determine feasibility of a given γ, we solve (as in [3])5:

min.φ>0,wkj ,k=1,...,K,j=1,2 2Pφ

s.t. SINRk,j ≥ γ, k = 1, . . . ,K, j = 1, 2
K∑
k=1

wH
kjwkj ≤ φP, ∀j = 1, 2, (9)

where φP upper bounds the power expended at each BS,
and the aim is to use the minimum power level. Clearly, the
maximum network-wide achievable SINR is the γ for which
the optimal φ = 1.

C. Multicell processing

This is the case where the BSs cooperate fully: both CSI and
data is available at all transmitters, who pool their antennas
together to serve the users jointly. The transmitted signal x =
[x1; x2] will be of the form

x =

2∑
j=1

K∑
k=1

wkjskj = Ws, (10)

where W ∈ C2N×2K is the overall precoding matrix. The
MCP optimization problem is

max.γ,wkj ,k=1,...,K,j=1,2 γ

s.t. SINRk,j ≥ γ, k = 1, . . . ,K, j = 1, 2
2∑

j′=1

K∑
k′=1

‖Ejwk′,j′‖2 ≤ P, j = 1, 2, (11)

where matrix Ej , j = 1, 2 is diagonal and used to select the
elements of each beamforming vector corresponding to BS
j (i.e. its non-zero diagonal elements occupy locations (j −
1)N + 1 to jN ). The MCP SINR at user k in cell j is

SINRk,j =
|h̃k,jwkj |2

σ2 +
∑2,K
j′=1,k′=1,(k′,j′)6=(k,j) |h̃k,jwk′j′ |2

. (12)

5Note that the constant 2P factor in the objective function is included as
it leads to P being eliminated from the dual problem formulation.

Once again, the above problem may be solved by the
bisection method. To determine feasibility of a given γ, we
solve, as in the CBf case, the following optimization problem:

min. 2Pφ

s.t. SINRk,j ≥ γ, k = 1, . . . ,K, j = 1, 2
2∑

j′=1

K∑
k′=1

‖Ejwk′j′‖2 ≤ φP, j = 1, 2. (13)

IV. SOLUTION VIA DUALITY THEORY

The above optimization problems are non-convex, and ap-
parently nontrivial to solve. Similar problems of power control
and receiver optimization on the UL are easier to solve, since
each UL receive vector can be individually optimized. As
discussed in Section I-B, motivated by this observation, a
number of duality results have been established connecting
DL optimization problems, to corresponding dual UL ones.
Most relevant to us is the elegant duality theory developed
by Yu and Lan [42] to handle per-antenna power constraints,
exploiting earlier work on conic optimization [39].

Algorithms analogous to those proposed in [42] can be
applied to solve the above problems, but even after these
iterative algorithms have converged to the optimal solutions
there is a great deal of complexity in the form of the optimal
beamformers. Our goal is to use the duality theory to derive
suboptimal (but, in the context of our simplified model, asymp-
totically optimal) beamformers that have relatively simple
structures. In fact, generalized regularized beamformers will
emerge from our analysis. Our approach will be to apply a
large systems analysis to the dual, virtual UL optimization
problems. Following [42], we begin by writing down the dual
problems to (6), (9), and (13), respectively.

A. Dual UL SCP problem

Let λkj/N ≥ 0 denote the Lagrange multipliers correspond-
ing to the SINR constraints in (6). The dual problem is

max.λkj≥0,k=1,...,K
1

N

K∑
k=1

λkjσ
2
k,j

s.t. I− λkj
Nγ

hHk,j,jhk,j,j +
1

N

∑
k′ 6=k

λk′jh
H
k′,j,jhk′,j,j � 0,

k = 1, . . . ,K. (14)

As explained in [42], strong duality holds despite non-
convexity6, so the optimal value in the dual problem is equal
to that of the primal DL beamforming problem.

The dual variables λkj/N may be thought of as dual UL
transmit powers, in the following dual UL power control and

6because the non-convex problem can be transformed into a convex problem
using the techniques in [39]
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beamforming problem [42]:

min.ŵkj ,λkj ,k=1,...,K
1

N

∑
k

λkjσ
2
k,j

s.t. max
ŵkj

λkj |hk,j,jŵkj |2

NŵH
kjŵkj +

∑
k′ 6=k λk′j |hk′,j,jŵkj |2

≥ γ,

k = 1, . . . ,K. (15)

Indeed, (14) can be shown to have the same optimal values as
(15). The optimal ŵkj , up to a scalar, are given byI +

∑
k′ 6=k

λk′j
N

hHk′,j,jhk′,j,j

−1

hHk,j,j . (16)

which we recognize to be MMSE filters for the UL problem.
To see why these problems are equivalent, note that the

SINR constraints in the UL problem (15) become, after
substituting for the MMSE filters:

λkj
N

hk,j,j

I +
∑
k′ 6=k

λk′j
N

hHk′,j,jhk′,j,j

−1

hHk,j,j ≥ γ. (17)

The optimal λkjs are the unique solution to the fixed point
equation:

λkj =
γN

hk,j,j

(
I +

∑
k′ 6=k

λk′j
N hHk′,j,jhk′,j,j

)−1

hHk,j,j

. (18)

Since γ is achieved exactly, the SINR constraints in (15) are
achieved with equality. It follows that if the minimization in
(15) is changed to a maximization, and the SINR inequalities
are reversed, then the same solution will be found. It is shown
in [42] that in so doing, one obtains (14).

The right hand side of (18) is an interference function of
the dual UL powers, in the sense of Yates’ framework on
UL power control [27]. Thus, iterative approaches to power
control converge to the optimal dual variables. Indeed, this was
the original approach to the multicell beamforming problem
taken in [26], one of the first papers to exploit an UL-DL
duality. More recently, more efficient approaches to solving the
dual problem have been proposed [42], but these still require
several iterations before the algorithm converges, which could
be problematic. The large systems analysis in Section V allows
us to derive simple yet asymptotically optimal beamformers.

From the Karush-Kuhn-Tucker (KKT) conditions, one can
show that the optimal wkj for the primal are the same, up to
a scaling factor, as ŵkj . Thus, they can be written as

wkj =

√
pkj
N

ŵkj

‖ŵkj‖
, (19)

where pkj
N is the transmit power allocated to beamforming

vector wkj on the DL. From the DL SINR constraints, for
k = 1, . . . ,K,

pkj
Nγ

|hk,j,jŵkj |2

‖ŵkj‖2
−
∑
k′ 6=k

pk′j
N

|hk,j,jŵk′j |2

‖ŵk′j‖2
= σ2

k,j , (20)

and the (pkj)
K
k=1 can be determined from this set of equations.

We undertake a large system analysis of this scheme in
Section V, and present the results in Theorem 1.

As a final remark, we note that the UL-DL duality described
in this section is not the same as the celebrated UL-DL duality
used to characterize the capacity region of the MIMO BC. In
the present section (and indeed throughout this paper), we do
not allow so-called dirty paper coding (DPC), which is the
coding technique that achieves the capacity of the MIMO BC.
The original notion of UL-DL duality was a correspondence
between points in the capacity region of the MIMO BC with
points in a dual UL multiple access channel with suitably
chosen noise covariances. However, it has been shown that the
optimization approach developed in [42] to obtain the optimal
beamforming vectors for the DL power minimization problem
(as reviewed in the present section) can be extended to allow
DPC, and hence to obtain the MIMO BC capacity results,
including the setup with per antenna power constraints (see
[42]).

B. Dual UL CBf problem
Letting λkj/N ≥ 0 denote the Lagrange multipliers corre-

sponding to the SINR constraints and µj those corresponding
to the power constraints in (9), its Lagrangian dual problem is

max.λkj≥0,µj≥0

∑
j,k

λkj
N
σ2

s.t. µjI−
λkj
γN

hHk,j,jhk,j,j

+
∑

(k′,j′)6=(k,j)

λk′j′

N
hHk′,j′,jhk′,j′,j � 0,

k = 1, . . . ,K, j = 1, 2
2∑
j=1

(1− µj)P = 0. (21)

As for the SCP case, this problem can be shown to be
equivalent to a dual UL problem with uncertain noise (cf.
[42]), or equivalently

max.µj≥0min.λkj≥0,ŵkj

∑
k,j

λkj
N
σ2

s.t.
λkj |ŵkjhk,j,j |2

ŵH
kj

[
NµjI +

∑
(k′,j′)6=(k,j) λk′j′h

H
k′,j′,jhk′,j′,j

]
ŵkj

≥ γ,

k = 1, . . . ,K, j = 1, 2
2∑
j=1

(1− µj) = 0. (22)

The Lagrange multipliers µ1, µ2 can be interpreted as noise
levels at the two BSs, respectively, on the virtual UL [42].

For any choice of dual variables, (µ1, µ2),
(

1
N λkj

)K, 2

k=1,j=1
,

the SINR achieved on the virtual UL can be shown to be:

λkj
N

hk,j,j

µjI +
∑

(k′,j′) 6=(k,j)

λk′j′

N
hHk′,j′,jhk′,j′,j

−1

hHk,j,j .

(23)
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Using the optimal dual variables, all (23) equal γ, which
allows us to write down the optimal (λkj)

K, 2
k=1,j=1 as the

unique solution to a fixed point equation:

λkj =
γN

hk,j,j

[
µjI +

∑
(k′,j′) 6=(j,k)

λk′j′

N hHk′,j′,jhk′,j′,j

]−1

hHk,j,j

.

(24)

Once (µ1, µ2) are determined, this equation provides an im-
plicit solution to the dual problem, in that standard iterative
methods can be applied to obtain the dual UL powers. It
remains to find µ1 and µ2. This is addressed in Section V.

The optimal beamforming vectors on the dual UL, ŵkj ,
assuming feasibility, are (up to a scaling factor)µjI +

∑
(k′,j′)6=(k,j)

λk′j′

N
hHk′,j′,jhk′,j′,j

−1

hHk,j,j ; (25)

the optimal beamforming vectors on the DL are of the form
wkj =

√
pkj
N

ŵkj
‖ŵkj‖ , where

pkj
N

is the power allocated to the
beamforming vector wkj . From DL SINR constraints, for j =
1, 2, k = 1, . . . ,K,

pkj
Nγ

|hk,j,jŵkj |2

‖ŵkj‖2
−

∑
j′,k′,(k′,j′) 6=(k,j)

pk′j′

N

|hk,j,j′ŵk′j′ |2

‖ŵk′j′‖2
= σ2.

(26)

C. Dual UL MCP problem

With λkj
N ’s and µj’s defined as in (IV-B), the Lagrangian

dual to problem (13) is equivalent to

max.µj≥0min.λkj≥0,ŵkj

2∑
j=1

K∑
k=1

λkj
N
σ2 (27)

s.t.
λkj
N |h̃k,jŵkj |2

ŵH
kj

[∑
(k′,j′) 6=(k,j)

λk′j′

N h̃Hk′,j′ h̃k′,j′ + M
]
ŵkj

≥ γ

(28)
2∑
j=1

(1− µj) = 0. (29)

where, to simplify the equations, M =
∑2
j′=1 µj′Ej′ is used.

The optimal ŵkj is 1

N

∑
(k′,j′) 6=(k,j)

λk′j′ h̃
H
k′,j′ h̃k′,j′ + M

−1

h̃Hk,j . (30)

Plugging this into the inequality in (28), we obtain

λkj
N

h̃k,j

 ∑
(k′,j′)6=(k,j)

λk′j′

N
h̃Hk′,j′ h̃k′,j′ + M

−1

h̃Hk,j ≥ γ.

(31)

Define H̆k,j as

H̆k,j =



h̆1,j,j

...
h̆k−1,j,j

h̆k+1,j,j

...
h̆K,j,j
h̆1,j̄,j

...
h̆K,j̄,j


, (32)

where h̆k,j = h̃k,jM
−1/2, and let Lk,j is the diagonal matrix

whose diagonal entries vector is given by[
λ1j ; . . . ;λ(k−1)j ;λ(k+1)j ; . . . ;λKj ;λ1j̄ ; . . . ;λKj̄

]
. (33)

Using this notation, for any choice of dual variables, (µ1, µ2),(
λkj
N

)K, 2

k=1,j=1
, the SINR achieved on the virtual UL (i.e. the

left-hand side of Eq. (31)) can be rewritten as

λkj
N

h̆k,j

[
1

N
H̆H
k,jLk,jH̆k,j + I

]−1

h̆Hk,j . (34)

With the optimal dual variables, all (34) equal γ, which
allows us to write down the optimal (λkj)

K 2
k=1,j=1 as the

solution of a fixed point equation:

λkj = γN

(
h̆k,j

[
1

N
H̆H
k,jLk,jH̆k,j + I

]−1

h̆Hk,j

)−1

. (35)

As for CBf, once µ1, µ2 are obtained, the optimal
(λkj)

K 2
k=1,j=1 are implicitly given as the unique solution of

(35). As the duality gap is zero for a feasible primal, at the
optimum,

2Pφ =
1

N

2∑
j=1

K∑
k=1

λkjσ
2. (36)

Moreover, the beamforming vectors in the original problem
and in the dual problem are related as follows:

wkj =

√
pkj
N

ŵkj

‖ŵkj‖
. (37)

Plugging these into the DL SINR constraints provides the
solution for the pkj :

pkj
Nγ

|h̃k,jŵkj |2

‖ŵkj‖2
−

∑
(k′,j′)6=(k,j)

pk′j′

N

|h̃k,jŵk′j′ |2

‖ŵk′j′‖2
= σ2. (38)

V. LARGE SYSTEM RESULTS

We proceed to a large system analysis of the solutions
to the above optimization problems, in the limit as N,K
grow large, keeping the cell loading ratio β = K

N fixed. The
basic idea is to apply large systems analysis techniques to
the dual UL problems, guided by the analysis of similar UL
problems in the literature [10], [50]. For example, the SINR
expression in (17) is typically analyzed by considering the
limit of the empirical distribution of the eigenvalues of the

matrix
(
I + 1

N

∑
k′ 6=k λk′jh

H
k′,j,jhk′,j,j

)−1

as N,K → ∞,
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with K/N held at β. Once this is characterized, a law of
large numbers for the trace of this matrix can be obtained,
and from that, the limit of the SINR expression in (17).

In the present paper, extra technical difficulties arise. To
directly apply the known theorems about large random ma-
trices, we need to assume that the dual UL powers λkj are
independent of the channel matrix parameters, and are chosen
independently of each other from some fixed distribution.
However, being solutions of the UL dual problem, they form
a collection of dependent random variables which, moreover,
depend on the channel matrix parameters. Our approach to this
problem is to provide lower and upper bounds to the SINR’s
using deterministic dual UL powers. We obtain these bounds
by exploiting the underlying monotonicity structure of the UL
power control problem [51], [27], [26]. With deterministically
chosen UL powers, we can perform a large system analysis,
and then provide a sandwich type argument to show that the
optimal dual UL powers must converge to deterministic values.
Since this part of the paper is somewhat technical, we relegate
it to the appendices, and focus on the results of the analysis.

A. Asymptotically Optimal Beamformers

Theorem 1 (Asymptotically optimal beamforming for SCP).
Assume β

(
γ

1+γ + εγ
)
< 1. Then, asymptotically, SINR γ is

achievable at each mobile terminal in the limit as N → ∞
with K

N → β > 0. In this case, the empirical distribution of the
(normalized) UL dual power levels (i.e. the λkjs) converges
weakly to the constant λ̄ given by

λ̄ =
γ

1− β γ
1+γ

, (39)

the empirical distribution of the (normalized) DL power per
users (i.e. the pkjs) converges weakly to the constant

p̄ =
σ2γ

1− β
(

γ
1+γ + εγ

) . (40)

The per BS power converges to P̄ = βp̄. The asymptotically
optimal form of the DL beamformer for user k in cell j is

wSCP
kj =

√
p̄

N

ŵSCP
kj

‖ŵSCP
kj ‖

, (41)

where ŵSCP
kj =

I +
λ̄

N

∑
k′ 6=k

hHk′,j,jhk′,j,j

−1

hHk,j,j .

Finally, the asymptotic SINR, γ, is related to the other vari-
ables via the fixed point equations

γ =
1

1
λ̄

+ β
1+γ

=
1

σ2

p̄ + εβ + β
1+γ

. (42)

Conversely, if β
(

γ
1+γ + εγ

)
> 1, then, asymptotically, the

SINR target γ is not achievable under the SCP strategy.

Proof: See Appendix D.

Corollary 1 (SCP). Subject to the per BS power constraint P ,
the maximum asymptotic network-wide achievable SINR for a

given cell loading factor β is the unique positive solution to
the following fixed point equation:

γ∗SCP =
1

β

1
σ2

P + ε+ 1
1+γ∗SCP

, (43)

which has the explicit solution γ∗SCP equal to

−
(
σ2

P + ε− 1
β + 1

)
+

√(
σ2

P + ε− 1
β + 1

)2

+ 4
σ2

P +ε

β

2
(
σ2

P + ε
) .

Theorem 1 is interesting in that it relates the solution to
the optimization problem (6) to a notion of regularized zero-
forcing proposed in [44] as a practical approach that is as
simple to implement as ZF, yet with better performance. It
was studied in the asymptotic regime in [15]. The beamformers
defined in (41) asymptotically lead to a precoding matrix

WSCP
j = cj

[
I +

λ̄

N
HH
j,jHj,j

]−1

HH
j,j , (44)

where cj ensures the power constraint at BSj is met with
equality, and Hj,j is the concatenation of channels between
cell j users and their serving BS. We should add that the opti-
mal beamformer always exists, even when the ZF beamformer
does not, so technically we should only refer to it as RZF in
those scenarios where the ZF beamformer exists.

Another interesting observation is that Theorem 1 provides
a condition that is both necessary and sufficient for the target
SINR, γ, to be achieveable. We can interpret

γ

1 + γ
as the

effective bandwidth of a user in cell j, and εγ as the effective
bandwidth of an interferer in cell j̄. Effective bandwidths
provide a simple metric by which different beamforming
schemes can be compared, as shown in the next two theorems.

Theorem 2 (Asymptotically optimal beamforming for CBf).
Assume β

(
γ

1+γ + εγ
1+εγ

)
< 1. Then, asymptotically, SINR γ

is achievable at each mobile terminal, in the limit as N →∞
with K

N → β > 0. In this case, the empirical distribution of the
(normalized) UL dual power levels (i.e. the λkjs) converges
weakly to the constant λ̄, given by

λ̄ =
γ

1− β
(

γ
1+γ + εγ

1+εγ

) , (45)

the empirical distribution of the (normalized) DL power per
users (i.e. the pkjs) converges weakly to the constant

p̄ = λ̄σ2 =
σ2γ

1− β
(

γ
1+γ + εγ

1+εγ

) . (46)

The per BS power converges to P̄ = βp̄. The asymptotically
optimal form of the DL beamformer for user k in cell j is

wCoord
kj =

√
p̄

N

ŵCoord
kj

‖ŵCoord
kj ‖

, (47)

where ŵCoord
kj =

I +
λ̄

N

∑
(k′,j̄)6=(k,j)

hHk′,j,jhk′,j,j

−1

hHk,j,j .



9

Finally, the asymptotic SINR, γ, is related to the other vari-
ables via

γ =
1

1
λ̄

+ εβ
1+εγ + β

1+γ

=
1

σ2

p̄ + εβ
1+εγ + β

1+γ

. (48)

Conversely, if β
(

γ
1+γ + εγ

1+εγ

)
> 1, then asymptotically

the SINR target γ is not achievable under the coordinated
beamforming strategy.

Proof: See Appendix E.

Corollary 2 (CBf). Subject to per BS power constraint P ,
the maximum asymptotic network-wide achievable SINR for a
given cell loading factor β is the unique positive solution to
the following fixed point equation:

γ∗CBf =
1

β

1
σ2

P + ε
1+εγ∗CBf

+ 1
1+γ∗CBf

. (49)

In other words, γ∗CBf is the root of a cubic equation.

Theorem 2 is interesting in that it provides a novel form
of RZF beamformer.7 This beamformer is not a direct reg-
ularization of the standard ZF beamformer in a single cell.
Rather, it is a regularization of a beamformer that zero forces
the interference it creates at users in the other cell as well
as its own; in other words, it transmits to a subset of the
users that it is zero forcing. We call this a generalized RZF
beamformer, and it is a novel contribution of the present paper.
It can be used in a finite system, where it is suboptimal,
but relatively straightfoward to implement. Theorem 2 shows
that it is asymptotically optimal in the class of coordinated
beamforming strategies. Note also the clean characterization
of effective bandwidth for this beamformer, and that it provides
a significant reduction in the effective bandwidth of the other-
cell users, compared to SCP, when ε is non-negligible.

Theorem 3 (Asymptotically optimal beamforming for MCP).
Assume β γ

1+γ < 1. Then, asymptotically, SINR γ is achievable
at each mobile terminal, in the limit as N → ∞ with
K
N → β > 0. In this case, the empirical distribution of the
(normalized) UL dual power levels (i.e. the λkjs) converges
weakly to the constant λ̄ given by

λ̄ =
1

1 + ε

γ

(1− β γ
1+γ )

, (50)

the empirical distribution of the (normalized) DL power per
user (i.e. the pkjs) converges weakly to the constant

p̄ = λ̄σ2 =
1

1 + ε

σ2γ

(1− β γ
1+γ )

. (51)

The per BS power converges to P = βp̄. The asymptotically
optimal form of the DL beamformer for user k in cell j is

wMCP
kj =

√
p̄

N

ŵMCP
kj

‖ŵMCP
kj ‖

, (52)

7in the scenarios where the ZF beamformer exists.

where ŵMCP
kj =

I +
λ̄

N

∑
(k′,j′)6=(k,j)

h̃Hk′,jh̃k′,j

−1

h̃Hk,j .

(53)

Finally, the asymptotic SINR, γ, is related to the other vari-
ables via

γ =
1

1
(1+ε)λ̄

+ β
1+γ

=
1

σ2

p̄(1+ε) + β
1+γ

. (54)

Conversely, if β γ
1+γ > 1, then asymptotically the SINR target

γ is not achievable under the MCP beamforming strategy.

Proof: See Appendix F.

Corollary 3 (MCP). Subject to per BS power constraint P ,
the maximum asymptotic network-wide achievable SINR for a
given cell loading factor β is the unique positive solution to
the following fixed point equation:

γ∗MCP =
1

β

1
σ2

(1+ε)P + 1
1+γ∗MCP

. (55)

In other words, γ∗MCP is equal to

−
(

σ2

(1+ε)P −
1
β + 1

)
+

√(
σ2

(1+ε)P −
1
β + 1

)2

+ 4
σ2

(1+ε)P

β

2
(

σ2

(1+ε)P

) .

Although MCP is a complex strategy, in that the cooperation
between BSs is much greater, the reward is better performance
than that attainable in a single isolated cell with no intercell
interference. Note that the power levels in (51) are less than
what they would be in a single isolated cell. The effective
bandwidth of each user is the same as for a single isolated
cell, under SCP, but the power consumption is reduced by the
factor (1+ε), which corresponds to a power gain from having
both BSs involved in the beamforming, instead of just one.

B. Effective interference

The optimal SINR expressions in (42), (48), (54) are striking
in how they capture the effect of interference for the three
different beamformers. Indeed, they supply a simple “effective
interference” characterization, which can be used to directly
check if a particular target SINR can be achieved.

It is natural to try and compare the schemes directly using
the limiting SINR expressions. This is accomplished in the
following theorem, where SNR denotes P

σ2 .

Theorem 4. Let γ∗SCP , γ
∗
CBf , γ

∗
MCP denote the SINRs under

SCP, CBf, and MCP, respectively. Then

γ∗SCP < γ∗CBf < γ∗MCP . (56)

At signal to noise ratio SNR and interference level ε, denote
the effective interference at target SINR γ by

Ieff (SNR, ε, γ) =


β
(

1 + SNR
1+γ + εSNR

)
SCP

β
(

1 + SNR
1+γ + εSNR

1+εγ

)
CBf

β
(

1 + SNR
1+γ + εSNR

1+γ

)
MCP
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Then the feasibility of γ in the case of SCP, or CBf, is equiva-

lent to satisfaction of the inequality
SNR

Ieff (SNR, ε, γ)
> γ, and

in the MCP case, it is equivalent to
(1 + ε)SNR

Ieff (SNR, ε, γ)
> γ.

Proof: Follows closely that of Proposition 3.2 in [10].
We note here the close parallel with the effective interfer-

ence arising in the large system analysis of linear UL multiuser
receivers [10]. This is due to the underlying UL-DL duality.

C. Asymptotically optimal cell loading

The above theorems characterize the optimal SINR for
fixed cell loading β under SCP, CBf, and MCP, respectively.
Our next step is to characterize this optimum loading: this
determines the optimal number of users to serve given a
number of antennas at the BS. This corresponds to finding the
β that maximizes the normalized (by the number of antennas)
rate per cell r, i.e. the optimizing β that solves the following
problem:

maximizeβ r = β log(1 + γ∗) (57)

with γ∗ characterized by the appropriate fixed point equation
(cf. Eqs (43), (49) and (55)).

Proposition 1 (Characterization of the optimum β for SCP).
If

ε+
σ2

P
≥ 1 (58)

then r(β) is an increasing function. Otherwise, the optimum
occurs at a finite β∗ which may be found by a line search.

Proof: Refer to Appendix G.

Proposition 2 (Optimal cell loading for CBf). If σ2

P + ε −
2ε2 − 1 ≥ 0 then r(β) is an increasing function. Otherwise,
there is a finite value of β at which r is maximized.

Proof: Refer to Appendix H.

Proposition 3 (Characterization of the optimum β for MCP).
If

σ2

P
≥ (1 + ε) (59)

then r(β) is an increasing function. Otherwise, the optimum
occurs at a finite β∗ which may be found by a line search.

Proof: Comparing (55) and (43), we see that the former
is the same as the latter with ε + σ2

P ←
σ2

P (1+ε) . Performing
this substitution in (58) yields the result.

The above results define for each scheme a noise-limited
region, in which cell loading can be increased indefinitely;
however, this leads to ever decreasing rates per user, not to
mention that more user channels would have to be learned.

VI. PERFORMANCE RESULTS

How do these schemes compare with each other and with
other approaches from the literature? Clearly, CBf requires
more CSI than SCP, and MCP involves much more BS

cooperation, so it is not surprising that the SINRs are ordered
as in (56). In this section, we obtain numerical results to
provide a quantitative comparison between these schemes in
different scenarios. Throughout this paper, we have assumed
full re-use of time and spectrum across cells; however, intercell
interference can be avoided altogether by applying the classic
principle of re-use partitioning: we thus also consider in our
simulations the time division (TD) scheme in which each
BS is given a separate time-slot, which we shall also call
“1/2-reuse”. We also consider two forms of pure ZF in
the context of single cell processing. SCP-ZF zero forces
the same-cell interference, with the BS oblivious to other-
cell interference. Generalized zero-forcing (GZF) is when the
BSs independently zero force the interference in the two-cell
system. Finally, in the MCP setting, the two BSs can jointly
zero-force all the interference in the two-cell system, and we
denote this case by “MCP-ZF”.

A. When is half re-use SCP better than CBf?

Let βTD be the cell loading in the half reuse scheme in
which each BS transmits half the time. To compare with
coordinated beamforming (a full re-use scheme), let β :=
βCBf := βTD/2. Then the rate for the TD scheme is

rTD(β) = β log (1 + γ∗TD(β)) , (60)

with γ∗TD(β) =
1

2β

1
σ2

2P + 1
1+γ∗TD(β)

=
1

β

1
σ2

P + 2
1+γ∗TD(β)

.

(61)

The rate using coordinated beamforming is given by

rCBf (β) = β log
(
1 + γ∗CBf (β)

)
(62)

with γ∗CBf =
1

β

1
σ2

P + 1
1+γ∗CBf (β) + ε

1+εγ∗CBf (β)

. (63)

Thus, rCBf (β) > rTD(β) if ε < 1, and rCBf (β) < rTD(β) if
ε > 1. It follows that coordinated beamforming is only useful
when ε < 1; otherwise, it is better to partition the cells with a
reuse factor of 1/2. Of course, if BS association is performed
properly, ε should be less than 1.

B. Numerical results

Figures 2-4 compare the different schemes by varying the
cell loading β. We notice that when ε is small, CBf gains little
over SCP, but offers significant gains compared to pure ZF or
1/2-reuse. When ε is small, SCP-ZF is superior to GZF, as
expected. When ε is large, but < 1 (e.g. ε = 0.8), CBf gains
significantly over SCP, but does not gain much over 1/2-reuse,
or to GZF (when the loading is perfectly optimized). Note that
in this case, the relevant comparison is with GZF.

When ε < 1, CBf is always better, for appropriately selected
β, than SCP, SCP-ZF, and GZF. If one were to insist on
using pure ZF, and could choose the appropriate ZF scheme,
and the exact optimal loading for that scheme, then it can
get reasonably close to the performance of the optimized
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Fig. 2. Effect of cell loading β on rate achieved for SNR = 10dB, ε = .1

CBf. Similarly, if one could select between SCP or 1/2-
reuse, the performance can be quite close to that of CBf.
The advantage of the latter is that it is universally good, if
no joint transmission is allowed, across all levels of inter-cell
interference. Compared to the ZF schemes, it performs better
across a wider range of cell loadings. In large networks, it
avoids the intractable frequency planning problem associated
with fractional re-use schemes. When ε > 1, MCP offers very
significant gains over the 1/2-reuse scheme (not depicted).

In the two-cell model, MCP offers the most gain when ε
is large. Even when ε is small, as in Figure 2, the gains over
CBf, 1/2-reuse, and single cell ZF schemes, respectively, are
significant, and in Figure 4 they are higher still, because ε is
larger in that case. Unlike the other schemes, MCP improves
with increasing ε, but it requires significant cooperation be-
tween BSs, including full data sharing, whose cost in terms
of backhaul capacity is not accounted for here.

Finally, we investigate the applicability of the asymptotic
results to a finite system. In a first step, for K = 3, N = 4,
P
σ2 = 10 and ε taking values in [.01; .1; .5; .8; 1], we solve the
optimization problems described in Section III for different
independent samples of the channel and obtain the correspond-
ing average rates. Even for such a small number of antennas,
the large system analysis (LSA) results provide quite a good
approximation. The results are shown in Figure 5.

The optimizations in Section III are time-consuming, partic-
ularly for the SCP case, which requires iterations between the
optimization at the two transmitters until convergence. Thus,
we consider applying the asymptotically optimal beamforming
vectors from Section V (slightly modified so as not to break
the per transmitter power constraint for the MCP scheme) in
the finite system case. The results are shown in Figure 6.

VII. CONCLUSIONS

This paper has provided an asymptotic analysis of a two
cell interfering network in which the number of antennas at
the BSs, and that of users per cell, both grow large together.
Schemes that balance rates across users in the system were
compared for three levels of cooperation, namely single cell
processing, coordinated beamforming and multicell process-
ing. MCP offers significant rate gains, if we can accommodate
the additional coordination and communication between BSs,

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

β

Ce
ll r

at
e 

(b
its

/c
ha

nn
el

 u
se

/N
t)

 

 

SCP
SCP−ZF
CBf
GZF
MCP
MCP−ZF
TD

Fig. 3. Effect of cell loading on rate achieved for SNR = 10dB, ε = .5
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Fig. 4. Effect of cell loading on rate achieved for SNR = 10dB, ε = .8

not accounted for here. We characterized and compared the
limiting SINRs of the three schemes, in particular, using the
notion of effective interference, which can also be used to
establish if a given SINR target is feasible. The validity of the
obtained results was verified via Monte Carlo simulations.

Note that we have assumed the users’ channels are selected
randomly. It is important to emphasize that our conclusions do
not hold if users have been selected based on their channels,
as the conditional distributions change drastically. Indeed, it is
well known that for a large enough pool of users, with careful
scheduling, the performance of ZF can be almost optimal.

APPENDIX A
USEFUL THEOREMS

We start by reproducing a few lemmas, which play an
important role in our derivations.

Lemma 1 (Lemma 6.3.3 in [52]). Let ρ > 0, A and B N×N
matrices with B Hermitian, τ ∈ R, and q ∈ CN . Then∣∣∣tr(((B + ρI)

−1 −
(
B + qqH + ρI

)−1
)

A
)∣∣∣ ≤ ‖A‖

ρ
(64)

We will also be making use of results from [53] (some
themselves reproduced from [54]). [53] derives a central limit
theorem for the SINR at the receiver in a multiple-access
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K = 3, N = 4 and LSA rates for β = .75, both at SNR = 10 dB.

−5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

SNR (dB)

C
el

l r
at

e 
(b

its
/c

ha
nn

el
 u

se
/N

t)

 

 

SCP
SCP−LSA
CBf
CBf−LSA
MCP
MCP−LSA

Fig. 6. Average normalized cell rates from using the asymptotically optimal
beamformers to the finite system case for K = 3, N = 4 and LSA results
for β = .75, both with ε = 0.5.

MIMO system, where the dimensions of the system (number
of users and the size of the received random vector) grows
large: the considered asymptotic regime satisfies

K̃ →∞, lim inf
K̃

Ñ
> 0, lim sup

K̃

Ñ
<∞, (65)

and the quantity studied, i.e. the UL SINR, is equal to

ΓK̃ = yH
(
YYH + ρIÑ

)−1
y, (66)

where the sequence of matrices Σ(K̃) =
[
y(K̃)Y(K̃)

]
is

given by

Σ(K̃) =
(

Σnk(K̃)
)Ñ,K̃
n=1,k=0

=

(
σ̃nk(K̃)√

K̃
wnk

)Ñ,K̃
n=1,k=0

,

(67)

and is such that the following assumptions hold:
A1: the complex r.v.’s (wnk : n ≥ 1, k ≥ 0) are i.i.d., Ew10 =
0, Ew2

10 = 0, E|w10|2 = 1 and E|w10|8 <∞8

A2: the variance profile is such that there exists a real number
σ̃max <∞ such that

sup
K̃≥1

max
1≤n≤Ñ,0≤k≤K̃

|σ̃nk(K̃)| ≤ σ̃max, (68)

8For the channel model considered here, the entries are i.i.d. CN (0, 1), so
they clearly satisfy this condition.

The dual UL SINR expressions in the present paper for λkj’s
in each cell held at some constant value, will be of the
same form as (66), and the matrices considered will satisfy
assumptions A1 and A2. In fact, they constitute a special case
of the above model, since we consider the asymptotic regime
where K

N = c as K,N → ∞, and the variance profiles of
the random matrices considered (see (67)) are either scaled
all ones matrices, or obtained by the regular sampling of
a piece-wise continuous function. Note that the expressions
for asymptotic SINR on the dual UL’s may equivalently be
obtained from earlier results in the literature, [11] for example.

We thus reproduce below the most relevant results from
[53].

Theorem 5 (Parts 1 and 3 of Theorem 1 in [53]). The
following statements hold true.

• Let
(
σ̃2
nk(K̃) : 1 ≤ n ≤ Ñ , 1 ≤ k ≤ K̃

)
be a sequence

of arrays of real numbers and consider matrices Dk(K̃)

Dk(K̃) = diag
(
σ̃2

1k(K̃), . . . , σ̃2
Ñk

(K̃)
)
, 0 ≤ k ≤ K̃.

(69)

The system of Ñ functional equations

tn,K̃(z) =
1

−z + 1
K̃

∑K̃
k=1

σ̃2
nk(K̃)

1+ 1
K̃

trDk(K̃)TK̃(z)
,

(70)

for 1 ≤ n ≤ Ñ and where

TK̃(z) = diag
(
t1,K̃(z), . . . , tÑ,K̃(z)

)
(71)

admits a unique solution T among the diagonal matrices
for which the tn,K̃ belong to class S9. Moreover, the
functions admit analytical continuations over C− [0,∞)
which are real and positive for z ∈ (−∞, 0).

• Assume A1 and A2 hold true. Consider the sequence of
random matrices Y(K̃)Y(K̃)H , where Ynk = σ̃nk√

K̃
wnk.

For every sequence SK of Ñ×Ñ diagonal matrices with

sup
K̃

‖SK̃‖ <∞ (72)

the following limits hold true almost surely (a.s.):

lim
K̃→∞

1

K̃
trSK̃ (QK̃(z)−TK̃(z)) = 0,∀z ∈ C− R+,

(73)

where QK̃(z) denotes the resolvent of Y(K̃)Y(K̃)H , i.e.
the Ñ × Ñ matrix defined by

QK̃(z) =
(
Y(K̃)Y(K̃)H − zIÑ

)−1

. (74)

Corollary 4. Assume A1 and A2 hold true. Let ΞK̃ =
1
K̃

tr
(
SK̃Q2

K̃
(−ρ)

)
where ρ ∈ R+, SK̃ , Ξ̄K̃ =

− 1
K̃

trSK̃
d
dρ (TK̃(−ρ)), and TK̃ be as given by Theorem 5.

Then

ΞK̃ − Ξ̄K̃
K̃→∞−→ 0 a.s. (75)

9A complex function t(z) belongs to class S if t(z) is analytical in the
upper half plane C+ = {im(z) > 0}, if t(z) ∈ C+ for all z ∈ C+, and if
imz |t(z)| is bounded over the upper half plane C+.
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Proof: Differentiating (73) with respect to z, we get

lim
K̃→∞

1

K̃
tr
(
SK̃Q2

K̃
(z)
)
− 1

K̃
trSK̃

d

dz
(TK̃(z)) = 0,

∀z ∈ C− R+ (76)

d
dz (TK̃(z)) exists since tn,K̃(z) admit analytical continua-
tions over the range considered. This yields the result.

Theorem 6 (Theorem 2 in [53]). Let Γ̄K̃ =
1
K̃

tr
(
D0(K̃)TK̃(−ρ)

)
where ρ ∈ R+, and TK̃ is given by

Theorem 5. Assume A1 and A2 then

ΓK̃ − Γ̄K̃
K̃→∞−→ 0 a.s. (77)

Proposition 4 ([53]). Introduce the r.v.’s Ul = 1
K̃

trD0QDlQ,
for 0 ≤ l ≤ K̃. The Ul satisfy the following system of
equations:

Ul =
K∑
k=1

clkUk +
1

K̃
trD0DlT

2 + εl, 0 ≤ l ≤ K̃, (78)

where

clk =
1

K̃

1
K̃

trDlDkT (−ρ)
2(

1 + 1
K̃

trDkT (−ρ)
)2 , (79)

and the perturbations εl satisfy E |εl| ≤ CK̃−1/2, where C is
independent of l.

APPENDIX B
USEFUL ASYMPTOTIC EXPRESSIONS

In this appendix, we derive asymptotic expressions for
quantities of interest in the large asymptotic analysis of SCP,
CBf and MCP for the considered two cell symmetric channel
model. This relies on the application of the theorems in
Appendix A, noting that for our model the T diagonal matrix
in Theorem 5 collapses to one or two variables, as many of
its entries will be equal.

A. SCP

Clearly, our Rayleigh channel model satisfies the conditions
in Theorem 6, so that for λk,j’s fixed for all users in cell j at
bounded10 λj , the quantity of interest for any user is

λj
N

hk,j,j

λj
N

∑
k′ 6=k

hHk′,j,jhk′,j,j + I

−1

hHk,j,j . (80)

From Theorem 6, this quantity will converge a.s. as N,K →
∞ with K

N → β, to11

γSCP,UL (λj) = λjtSCP (−1, λj), (81)

10This is required for the results in Appendix A to be applicable. On the
other hand, if this was not the case, in the studied optimization problem, the
dual objective would be unbounded and the primal unfeasible.

11The TK̃ matrix in the theorem is simply a scaled identity with scaling
factor converging to tSCP (−1, λj), as given below.

where

tSCP (z, λj) =
1

−z +
βλj

1+λjtSCP (z,λj)

. (82)

Thus, γSCP,UL (λj) satisfies

γSCP,UL (λj) =
λj

1 +
βλj

1+γSCP,UL(λj)

. (83)

Applying (73), we can show that

1

N
tr

(λj
N

∑
k′

hHk′,j,jhk′,j,j + I

)−1
 a.s.−→ tSCP (−ρ, λj).

(84)

Furthermore, applying Corollary 4, we get that

1

N
tr

(λj
N

∑
k′

hHk′,j,jhk′,j,j + I

)−2
 (85)

converges a.s. as N,K →∞, KN → β, to

− d

dρ
tSCP (−ρ, λj)

∣∣∣
ρ=1

. (86)

From (82), tSCP (−ρ, λj) = 1

ρ+
βλj

1+λjtSCP (−ρ,λj)

, so that

d

dρ
tSCP (−ρ, λj) = − tSCP (−ρ, λj)[

ρ+
βλj

(1+λjtSCP (−ρ,λj))2

] . (87)

B. CBf

Here too, we may apply Theorem 6 when λk,j’s for all users
in cell j fixed at λj , and the values of µj also held constant in
both cells. For any user in cell j, we will need to characterize

λj
N

hk,j,j
(
Yk,jY

H
u,j + µjI

)−1
hHk,j,j , (88)

where

Yk,jY
H
k,j

=
λj
N

∑
k′ 6=k

hHk′,j,jhk′,j,j +
λj̄
N

∑
k′

hHk′,j̄,jhk′,j̄,j . (89)

From Theorem 6, this quantity will converge a.s. as N,K →
∞ with K

N → β, to12

γCBf,UL
(
µj , λj , λj̄

)
= λjtCBf (−µj , λj , λj̄), (90)

where

tCBf (z, λj , λj̄)

=
1

−z +
βλj

(1+λjtCBf (z,λj ,λj̄))
+

βελj̄

(1+ελj̄tCBf (z,λj ,λj̄))

. (91)

12This uses the fact that K−1
K
→ 1 and K

N
→ β as K →∞.
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Thus, γCBf,UL
(
µj , λj , λj̄

)
satisfies

γCBf,UL
(
µj , λj , λj̄

)
=

λj

µj +
βλj

1+γCBf,UL(µj ,λj ,λj̄)
+

βελj̄

1+ε
λj̄
λj
γCBf,UL(µj ,λj ,λj̄)

.

(92)

Applying (73), we can show that

1

N
tr

 2∑
j′=1

λj′

N

∑
k′

hHk′,j′,jhk′,j′,j + µjI

−1

a.s.−→ tCBf (−ρ, λj , λj̄). (93)

Moreover, by Corollary 4, we can also show that

1

N
tr

 2∑
j′=1

λj′

N

∑
k′

hHk′,j′,jhk′,j′,j + µjI

−2

(94)

converges a.s. as N,K →∞, KN → β, to

− d

dρ
tCBf (−ρ, λj , λj̄)

∣∣∣
ρ=µj

. (95)

From (91),

d

dρ
tCBf (−ρ, λj , λj̄)

=
−tCBf (−ρ, λj , λj̄)

ρ+
βλj

(1+λjtCBf (−ρ,λj ,λj̄))
2 +

βελj̄

(1+ελj̄tCBf (−ρ,λj ,λj̄))
2

.

(96)

C. MCP

For λk,j’s in cell j equal to a constant λj and the µj’s
also fixed held fixed, for any user in cell j, we will need an
asymptotic expression for (cf. Eq. (34))

λj
N

h̆k,j

λj
N

∑
k′ 6=k

h̆Hk′,jh̆k′,j +
λj̄
N

∑
k′

h̆Hk′,j̄h̆k′,j̄ + I

−1

h̆Hk,j .

(97)

Introducing the short-hand η = (µj , µj̄ , λj , λj̄) , applying
Theorem 6, we can show that (97) converges a.s. as N,K →
∞ with K

N → β, to γMCP,UL
1

(
µj , µj̄ , λj

)
equal to

γMCP,UL
1 (η) = λj

(
t1,MCP (−1,η)

µj
+
εt2,MCP (−1,η)

µj̄

)
,

(98)

where t1,MCP (z,η) and t2,MCP (z,η) are given by (99).
For a user in cell j̄, one can verify that (97) (replace j by

j̄ and vice versa) converges to

γMCP,UL
2 (η) = λj̄

(
ε
t1,MCP (−1,η)

µj
+
t2,MCP (−1,η)

µj̄

)
.

(100)

Plugging in (98) and (100) in the expressions for
t1,MCP (−1,η) and t2,MCP (−1,η), (cf. (99)), we get

t1,MCP (−1,η) =
1

1 +
β
λj
µj

1+γMCP,UL1 (η)
+

εβ
λj̄
µj

1+γMCP,UL2 (η)

,

t2,MCP (−1,η) =
1

1 +
βε

λj
µj̄

1+γMCP,UL1 (η)
+

β
λj̄
µj̄

1+γMCP,UL2 (η)

.

(101)

Now using (101) in (98) and (100), γMCP,UL
1 (η) and

γMCP,UL
2 (η) will satisfy

γMCP,UL
1 (η)

= λj

 1

µj +
βλj

1+γMCP,UL1 (η)
+

εβλj̄

1+γMCP,UL2 (η)

+
ε

µj̄ +
βελj

1+γMCP,UL1 (η)
+

βλj̄

1+γMCP,UL2 (η)

 ,
γMCP,UL

2 (η)

= λj̄

 ε

µj +
βλj

1+γMCP,UL1 (η)
+

εβλj̄

1+γMCP,UL2 (η)

+
1

µj̄ +
βελj

1+γMCP,UL1 (η)
+

βλj̄

1+γMCP,UL2 (η)

 . (102)

Now define

Dk,1 =

[
λ1

µ1
IN 0N×N

0N×N ελ1

µ2

]
(103)

Dk,2 =

[
ελ2

µ1
IN 0N×N

0N×N
λ2

µ2

]
. (104)

Applying (73), we can show that

1

N
trDk,j

 2∑
j′=1

λj′

N

∑
k′

h̆Hk′,j′ h̆k′,j′ + I

−1

a.s.−→ γMCP,UL
j (η) . (105)

We also need to characterize

1

N
trDk,j

 2∑
j′=1

λj′

N

∑
k′

h̆Hk′,j′ h̆k′,j′ + I

−2

, (106)

for the special case where µj = µj̄ = µ and λj = λj̄ = λ,
i.e. η = ηsym = [µ, µ, λ, λ]. In this case,

t1,MCP (−ρ,ηsym) = t2,MCP (−ρ,ηsym) = tMCP (−ρ,ηsym)

=
1

ρ+ (1+ε)βλ
µ+(1+ε)λtMCP (−ρ,ηsym)

. (107)

Thus,

d

dρ
tMCP (−ρ,ηsym) = −

tMCP (−ρ,ηsym)

ρ+ (1+ε)βλµ

(µ+(1+ε)λtMCP (−ρ,ηsym))
2

,

(108)
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t1,MCP (z,η) =
1

−z +
β
λj
µj

1+
λj
µj
t1,MCP (z,η)+ ε

µj̄
λjt2,MCP (z,η)

+
εβ

λj̄
µj

1+ε
λj̄
µj
t1,MCP (z,η)+ 1

µj̄
λj̄t2,MCP (z,η)

,

t2,MCP (z,η) =
1

−z +
βε

λj
µj̄

1+ 1
µj
λjt1,MCP (z,η)+ε

λj
µj̄
t2,MCP (z,η)

+
β
λj̄
µj̄

1+ ε
µj
λj̄t1,MCP (z,η)+

λj̄
µj̄
t2,MCP (z,η)

. (99)

and, by Corollary 4, (106) converges a.s. as N,K →∞ with
K
N → β to

− (1 + ε)λ

µ

d

dρ
tMCP (−ρ,ηsym)

∣∣∣
ρ=1

. (109)

Finally, we will need to characterize
1

N
trDk,jADk′,j′A (110)

with A as defined in (194), where in λ1 and λ2 in Dk,1,
Dk′,2 are equal to λ̄ for all k ≤ K. For any sequence of
diagonal matrices S with bounded diagonal entries, and taking
into account the fact that the Dk,j’s are equal for all users in
the same cell, define Vj (S) = 1

N trSAD1,jA, for j = 1, 2.
Applying Proposition 4, we get that

V1 (S) = β
t2MCP λ̄

2
(
1 + ε2

)(
1 + (1 + ε)λ̄tMCP

)2V1 (S)

+ β
2εt2MCP λ̄

2(
1 + (1 + ε)λ̄tMCP

)2V2 (S)

+
t2MCP

N
trSD1,1 + η1, (111)

V2 (S) = β
2εt2MCP λ̄

2(
1 + (1 + ε)λ̄tMCP

)2V1 (S)

+ β
t2MCP λ̄

2
(
1 + ε2

)(
1 + (1 + ε)λ̄tMCP

)2V2 (S)

+
t2MCP

N
trSD1,2 + η2, (112)

where η1 and η2 satisfy E|ηj | ≤ CN−1/2, j = 1, 2, and
tMCP = tMCP (1, 1, λ̄, λ̄), for some constant C.

For S = D1,1, we obtain (113) and (114), where φ1 and φ2

denote deviation terms such that E|φj | ≤ CN−1/2.
Note that by definition, V1 (D1,2) = V2 (D1,1), and

V2 (D1,2) = V1 (D1,1).

APPENDIX C
A SIMPLE MONOTONICITY RESULT

Let I(λ) be a standard interference function for the UL, in
the sense of Yates [27], where we denote the transmit power
vector by λ. Suppose it is of the form

Ik(λ) = γkFk(λ) k = 1, 2, . . . ,K (115)

where γk is the SINR target for user k, and F (λ) is a standard
interference function. The vector λ is called feasible if

λk ≥ γkFk(λ) k = 1, 2, . . . ,K. (116)

It is shown in [27], Theorem 1, that if a feasible solution
exists, then function I has a unique, positive, fixed point. [27]
also shows that, starting at any power vector λ, the iterative
power control In(λ), n = 1, 2, . . . converges to it. Using the
fixed-point powers, all users achieve exactly their SINR target.

Now consider two different vectors of SINR targets γ(1)

and γ(2), and let λ(1) and λ(2) denote the corresponding fixed
points. Lemma 2 is a simple corollary of Lemma 1 in [27].

Lemma 2. If γ(1) ≤ γ(2) then λ(1) ≤ λ(2).

Proof: λ(2) is feasible for the power control problem with
SINR targets given by γ(1). By [27], Lemma 1, In

(
λ(2)

)
,

n = 1, 2, . . . is a monotone decreasing sequence of feasible
power vectors that converges to λ(1).

APPENDIX D
PROOF OF THEOREM 1

Throughout this section, let

Aj =

(
I +

λ̄

N

K∑
l=1

hHl,j,jhl,j,j

)−1

(117)

Ak,j =

I +
λ̄

N

∑
l 6=k

hHl,j,jhl,j,j

−1

(118)

Ak,k′,j =

I +
λ̄

N

∑
l 6=(k,k′)

hHl,j,jhl,j,j

−1

, (119)

where λ̄ > 0 will be defined later.

Asymptotic analysis of the dual problem
We start by considering the dual problem at each of the

BSs: this will yield the asymptotically optimal dual variables
and beamforming directions in both dual and primal problems.
Note that even though the value of the dual objective function
in one cell depends on the primal beamforming decisions
through the σk,js in (14), the optimal dual variables themselves
are fully determined by the constraints and will be the unique
strictly positive solutions to (18). Since the analysis is identical
in both cells, without loss of generality, assume the cell index

j is j = 1. Assume also that β
(

γ

1 + γ
+ εγ

)
< 1. As noted

in Section V, we cannot immediately apply standard large
system analysis to (17) as optimal dual variables λk,1’s are
not independent of the channel vectors (hk,1,1)

K
k=1.

Rather than directly analyze the asymptotic performance of
the SCP system using optimal λk,1’s, consider any constant
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V1 (D1,1) = t2MCP λ̄
2 (1 + ε)

2

1+ε2

(1+ε)2 − β (1−ε)2λ̄2t2MCP

(1+(1+ε)λ̄tMCP )
2[

1− β (1+ε)2λ̄2t2MCP

(1+(1+ε)λ̄tMCP )
2

] [
1− β (1−ε)2λ̄2t2MCP

(1+(1+ε)λ̄tMCP )
2

] + φ1 (113)

V2 (D1,1) = t2MCP λ̄
2 (1 + ε)

2
2ε

(1+ε)2[
1− β (1+ε)2λ̄2t2MCP

(1+(1+ε)λ̄tMCP )
2

] [
1− β (1−ε)2λ̄2t2MCP

(1+(1+ε)λ̄tMCP )
2

] + φ2. (114)

λ̄ > 0 (later, we will assign it a particular value, but for now
it is arbitrary) and consider the large system regime in which
all users have the same transmit UL power of λ̄/N , as N,K →
∞, with fixed ratio K/N = β. This is a virtual UL with noise
of unit power, so the SINR for user k is given by

λ̄

N
hk,1,1

I +
λ̄

N

∑
k′ 6=k

hHk′,1,1hk′,1,1

−1

hHk,1,1. (120)

Appendix B-A shows how this converges a.s. to a constant in
the considered asymptotic regime.

In particular, if δ is small enough so that β
γ + δ

1 + γ + δ
< 1,

and we assign the following particular value to λ̄:

λ̄(δ) :=
γ + δ

1− β γ+δ
1+γ+δ

, (121)

which we denote by λ̄(δ) to make explicit its dependence on
the parameter δ, then (120) will converge a.s. to γ+δ. Theorem
3 in [53] shows that for this (suboptimal) system, the value of
(120) is

γk(δ) = γ + δ +O

(√
1

N

)
, ∀k = 1, 2, . . . ,K, (122)

where γk(δ) denotes the dual UL SINR of user k under this
suboptimal power allocation, and the last term on the right
hand side is 1/

√
N times a r.v. that converges weakly to a zero-

mean Gaussian distributed r.v. This holds since K
N → β <∞,

for the considered channel model and in the notation of the
theorem, ΓK̃ and ΘK̃ will converge a.s. to bounded limits.

Denote by λ̄(δ) the vector of UL powers in this suboptimal
system, where all entries have the same value λ̄(δ). For δ > 0,
it follows from (122) that for any particular k, P(γk(−δ) >
γ or γk(δ) < γ) decays to 0 exponentially in N (it is a large
deviation event). Applying the union bound, we obtain that

γk(−δ) ≤ γ ≤ γk(δ) ∀k = 1, 2, . . .K (123)

will hold with probability tending to 1 as N ↑ ∞. Let γ(−δ)
and γ(δ) denote the vectors grouping the left and right-hand
sides of (123), respectively.

Denote by λ the vector of optimal UL powers for the dual
problem, which achieves SINR of γ for each user. On the
other hand, λ̄(−δ) and λ̄(δ) (defined above) are the vectors
of optimal UL powers for the virtual UL problem with target
SINR vectors γ(−δ) and γ(δ), respectively (instead of the

all-γ vector in the original dual problem). Thus, by Lemma 2
in Appendix C,

λ̄(−δ) ≤ λ ≤ λ̄(δ) (124)

will hold with probability tending to 1 as N ↑ ∞. Since
this holds for any sufficiently small δ > 0, the empirical
distribution of the components of the optimal λ will converge
weakly to the constant λ̄, given in (39). Let (39) provide the
particular value of λ̄ in the rest of this section. This establishes
the asymptotic optimality of having the λk,j’s in both cells all
equal to λ̄, and consequently that of the beamforming vectors

ŵk,j = Ak,jh
H
k,j,j . (125)

By UL-DL duality and from the KKT conditions, these are,
up to a scale factor, also the optimal DL beamforming vectors
[29]. Thus, this analysis shows that, asymptotically, the DL
beamforming directions in one cell do not depend on the
beamforming directions used in the other cell, although it
is clear that the optimal DL power levels (which modulate
the beamforming directions) will depend on the power levels
used in the other cell, even in the limit. Finally, also note
that the dual objective function value λ̄

N

∑K
k=1 σ

2
k,j is an

upper bound on the primal objective function, i.e. on the total
transmit power in the cell; denote the latter by P̄j for cell j.

Asymptotic analysis of the primal problems
We now turn to the DL primal problems, and fix the

beamforming directions in both cells to be those given by
(125). Thus, only the DL power levels pkj in (19) need to be
determined. These must satisfy, for all users in both cells,

pkj =
σ2
k,j +

∑
k′ 6=k

pk′j
N

|hk,j,jŵk′j|2
‖ŵk′j‖2

1
Nγ
|hk,j,jŵkj |2
‖ŵkj‖2

, (126)

σ2
k,j = σ2 +

K∑
k′=1

pk′ j̄
N

|hk,j,j̄ŵk′ j̄ |2

‖ŵk′ j̄‖2
. (127)

Assuming feasibility, one can verify using similar standard
interference function arguments as for the dual problem, that
the set of equations in both cells will have a unique power
minimizing solution [26].

As was the case with asymptotic analysis of the dual
problem, it is easier to first fix the DL powers to constants
and study the resulting limiting regime. Thus, assume pkj’s in
cell j are held fixed at a constant value p̄j j = 1, 2, and note
that this implies that P̄j = βp̄j . After analyzing this limiting
regime, we optimize the choice of the constants, p̄1 and p̄2
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and finally show that the optimal constants are asymptotically
optimal with respect to the primal optimization problem (6).

Under the regime in which pkj = p̄j for all k in cell j, the
following lemmas hold.

Lemma 3. With ŵkj = Akjh
H
k,j,j , such that λ̄ = γ

1−β γ
1+γ

,

the following holds, as K,N →∞, KN = β:

max
j=1,2,k≤K

∣∣∣∣∣ |hk,j,jŵkj |2

N‖ŵkj‖2
−

[
1− βγ2

(1 + γ)
2

]∣∣∣∣∣ a.s.−→ 0 (128)

max
j=1,2,k,l≤K

∣∣∣∣∣
∣∣hk,j,j̄ŵlj̄

∣∣2
‖ŵlj̄‖2

− ε

∣∣∣∣∣ a.s.−→ 0 (129)

max
j=1,2,k,l≤K,l 6=k

∣∣∣∣∣ |hk,j,jŵlj |2

‖ŵlj‖2
− 1

(1 + γ)
2

∣∣∣∣∣ a.s.−→ 0. (130)

Proof: Applying Lemma 5.1 in [55],

max
j=1,2,k≤K

∣∣∣∣ λ̄N ‖ŵkj‖2 −
1

N
trDk,j,jA

2
k,j

∣∣∣∣ a.s.−→ 0 (131)

max
j=1,2,k≤K

∣∣∣∣ λ̄N hk,j,jŵkj −
1

N
trDk,j,jAk,j

∣∣∣∣ a.s.−→ 0, (132)

where13 Dk,j,j = λ̄I. Later on in this section, Dk,j,j̄ = ελ̄I.
Now applying Lemma 1 twice to (131) and once in (132), we
get

max
j=1,2,k≤K

∣∣∣∣ λ̄N ‖ŵkj‖2 −
1

N
trDk,j,jA

2
j

∣∣∣∣ a.s.−→ 0 (133)

max
j=1,2,k≤K

∣∣∣∣ λ̄N hk,j,jŵkj −
1

N
trDk,j,jAj

∣∣∣∣ a.s.−→ 0. (134)

Now consider the interference terms, with i = 1, 2, and
(i, l) 6= (k, j),

|hk,j,iŵli|2

‖ŵli‖2
=

1

λ̄

λ̄2

N hk,j,iAl,ih
H
l,i,ihl,i,iAl,ih

H
k,j,i

λ̄
N ‖ŵli‖2

. (135)

Two different cases arise, depending on whether i = j or
i = j̄. In the latter case, we may apply Lemma 5.1 in [55] to
the numerator of the right-hand side of (135),

max
k,l≤K

∣∣∣∣ λ̄2

N
hk,j,j̄Al,j̄h

H
l,j̄,j̄hl,j̄,j̄Al,j̄h

H
k,j,j̄

− λ̄

N
hl,j̄,j̄Al,j̄Dk,j,j̄Al,j̄h

H
l,j̄,j̄

∣∣∣∣ a.s.−→ 0. (136)

Applying Lemma 5.1 in [55] once again yields,

max
k,l≤K

∣∣∣∣ λ̄N hl,j̄,j̄Al,j̄Dk,j,j̄Al,j̄h
H
l,j̄,j̄

− 1

N
trDl,j̄,j̄Al,j̄Dk,j,j̄Al,j̄

∣∣∣∣ a.s.−→ 0. (137)

13We introduce the Dk,j,i matrices to allow for more general formulations.

Finally applying Lemma 1 twice, we get∣∣∣∣ 1

N
trDl,j̄,j̄Al,j̄Dk,j,j̄Al,j̄ −

1

N
trDl,j̄,j̄Al,j̄Dk,j,j̄Aj̄

∣∣∣∣
≤ 1

N

∥∥Dl,j̄,j̄Al,j̄Dk,j,j̄

∥∥ ≤ ∥∥Dl,j̄,j̄

∥∥∥∥Al,j̄

∥∥∥∥Dk,j,j̄

∥∥
N

≤ ελ̄2

N
, (138)∣∣∣∣ 1

N
trDl,j̄,j̄Al,j̄Dk,j,j̄Aj̄ −

1

N
trDk,j,j̄Aj̄Dl,j̄,j̄Aj̄

∣∣∣∣
≤ 1

N

∥∥Dl,j̄,j̄Aj̄Dk,j,j̄

∥∥ ≤ ελ̄2

N
. (139)

Thus,

max
k,l≤K

∣∣∣∣ λ̄2

N
hk,j,j̄Al,j̄h

H
l,j̄,j̄hl,j̄,j̄Al,j̄h

H
k,j,j̄

− 1

N
trDk,j,j̄Aj̄Dl,j̄,j̄Aj̄

∣∣∣∣ a.s.−→ 0. (140)

When i in (135) is the same as j, we cannot apply Lemma
5.1 in [55] directly, since Al,j and hk,j,j are not independent.
Thus, we apply the matrix inversion lemma first to get

λ̄2

N
hk,j,jAl,jh

H
l,j,jhl,j,jAl,jh

H
k,j,j

=
λ̄2

N hk,j,jAk,l,jh
H
l,j,jhl,j,jAk,l,jh

H
k,j,j(

1 + λ̄
N hk,j,jAk,l,jhHk,j,j

)2 . (141)

We can now consider the numerator in (141) and show that

max
k,l≤K,(k 6=l)

∣∣∣∣ λ̄2

N
hk,j,jAk,l,jh

H
l,j,jhl,j,jAl,jh

H
k,j,j

− 1

N
trDk,j,jAjDl,j,jAj

∣∣∣∣ a.s.−→ 0. (142)

We can also show that

max
k,l≤K,(k, 6=l)

∣∣∣∣ λ̄N hk,j,jAk,l,jh
H
k,j,j −

1

N
trDk,j,jAj

∣∣∣∣ a.s.−→ 0.

(143)

The proof of the lemma is concluded by using the limits
of the trace terms as derived in Appendix B-A, with λj = λ̄,
noting that for this specific case, all the Dk,j,j and Dk,j,j̄

matrices are equal, and are simply scaled identities, so that

1

N
trDk,j,jAj =

λ̄

N
trAj

a.s.−→ γ (144)

1

N
trDk,j,jA

2
j =

λ̄

N
trA2

j
a.s.−→ γ

1 + βλ̄
(1+γ)2

=
1

λ̄

γ2

1− βγ2

(1+γ)2

(145)
1

N
trDk,j,jAjDl,j,jAj =

λ̄2

N
trA2

j
a.s.−→ γ2

1− βγ2

(1+γ)2

(146)

1

N
trDk,j̄,jAjDl,j,jAj =

ελ̄2

N
trA2

j
a.s.−→ ε

γ2

1− βγ2

(1+γ)2

. (147)
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Lemma 4. With ŵkj = Akjh
H
k,j,j , such that λ̄ = γ

1−β γ
1+γ

,
and with pkj = p̄j for k = 1, . . . ,K, j = 1, 2, it follows that,
with probability 1,

σ2
k,j

a.s.−→ σ2 + εP̄j̄ , (148)

P̄j̄ denotes the total transmit power of BS j̄, i.e. Pj̄ = βp̄j̄ .

Proof:
Since DL pkjs are all fixed to the same value, p̄j , we have

σ2
k,j = σ2 +

p̄j̄
N

K∑
k̄=1

|hk,j,j̄ŵk̄j̄ |2

‖ŵk̄j̄‖2
. (149)

Applying (129) of Lemma 3, for k = 1, . . . ,K, j = 1, 2,

σ2
k,j = σ2 + εP̄j̄ + o(1). (150)

We conclude from Lemma 4 that σ2
k,j is asymptotically

independent of the user index k, in the regime considered
(pkj = p̄j) and therefore write the limiting value as σ2

j . This
deals with the asymptotics of the RHS of (127), and we now
provide two lemmas to deal with those of the RHS of (126).

Lemma 5. With ŵkj = Ak,jh
H
k,j,j , such that λ̄ = γ

1−β γ
1+γ

,
and with pkj = p̄j for k = 1, . . . ,K, j = 1, 2. The following
holds for any k′ in cell j:∑
k′ 6=k

pk′j
N

|hk,j,jŵk′j |2

‖ŵk′j‖2
a.s.−→ p̄j

β

(1 + γ)
2 =

P̄j

(1 + γ)
2 , (151)

as K,N →∞, KN = β; P̄j = βp̄j .

Proof:∑
k′ 6=k

pk′j
N

|hk,j,jŵk′j |2

‖ŵk′j‖2
=
p̄j
N

∑
k′ 6=k

|hk,j,jŵk′j |2

‖ŵk′j‖2

=
K − 1

N

p̄j
(1 + γ)2

+ o(1), (152)

where we used (130) in Lemma 3. Noting that as K,N →∞,
K−1
N → β completes the proof.
To find the minimal pair of constants (p̄1, p̄2) for the two

cells, we therefore solve the following set of equations,

p̄1 =
γ

1− βγ2

(1+γ)2

[
σ2 + εβp̄2 + p̄1

β

(1 + γ)
2

]
, (153)

p̄2 =
γ

1− βγ2

(1+γ)2

[
σ2 + εβp̄1 + p̄2

β

(1 + γ)
2

]
, (154)

to obtain

p̄1 = p̄2 = p̄ =
σ2γ

1− βγ
(1+γ) − εβγ

. (155)

This implies that

P̄1 = P̄2 = P̄ := βp̄. (156)

Note that such a choice of transmit powers is guaranteed to
meet the SINR constraints as K,N →∞, KN = β.

We confirm the asymptotic optimality of this deterministic
power allocation, together with the beamforming directions

found from analysis of the dual problem, by verifying that
the duality gap is tending to zero in both cells. Indeed, in
cell j, the primal objective value converges to P̄ , whereas the
dual objective value converges to βλ̄

(
σ2 + εP̄

)
. Recalling the

definition of λ̄, one can easily verify that these two quantities
are the same, thereby completing the proof.

Equation (155) shows that the coupled primal prob-
lems have a solution when effective bandwidth condition
β
(

γ
1+γ + εγ

)
< 1 is satisfied. Conversely, if this condition

does not hold, there is asymptotically no feasible solution to
the coupled primal problems, in the limit as N ↑ ∞. The latter
observation follows from monotonicity: The optimal powers
are increasing functions of γ, but as the denominator of (155)
decreases to zero, the optimal total power from either BS, P̄ ,
must diverge to infinity, and for higher values of γ there can
be no feasible solution.

APPENDIX E
PROOF OF THEOREM 2

Throughout this section, let

Aj =

(
I +

λ̄

N

2∑
i=1

K∑
l=1

hHl,i,jhl,i,j

)−1

(157)

Ak,j =

I +
λ̄

N

2∑
i=1

∑
(i,l)6=(j,k)

hHl,i,jhl,i,j

−1

(158)

Ak,j,k′,j′,j =

I +
λ̄

N

2∑
i=1

∑
(i,l)6=(j,k),(j′,k′)

hHl,i,jhl,i,j

−1

,

(159)

where λ̄ > 0 will be defined later.
Moreover, the following lemma will be useful in proving

the theorem.

Lemma 6. Let (µ1, µ2) satisfy 0 ≤ µi ≤ 2, i = 1, 2, and
define the function F (λ̄1, λ̄2) by

F (λ̄1, λ̄2) = (F1(λ̄1, λ̄2), F2(λ̄1, λ̄2)),

Fj(λ̄1, λ̄2) = γ

µj +
β

1 + γ
λ̄j +

βε

1 +
λ̄j̄
λ̄j
γε

λ̄j̄

 j = 1, 2.

(160)

Then
i) F is an interference function [27].

ii) If β
(

γ

1 + γ
+

εγ

1 + εγ

)
< 1 then there exists a unique

solution to the fixed point equation

(λ̄1, λ̄2) = F (λ̄1, λ̄2). (161)

Proof: (i) is easily verified. For (ii), let the value λ̃ be

λ̃ =
2γ

1− β
(

γ
1+γ + εγ

1+εγ

) . (162)

Since µ1, µ2 ≤ 2, it is easy to verify that

F (λ̃, λ̃) ≤ (λ̃, λ̃) componentwise (163)
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and hence the inequality (λ1, λ2) ≥ F (λ1, λ2) has a feasible
solution. It follows from Theorem 1 in [27] that (160) has a
unique fixed point (λ̄1, λ̄2). The latter depends on (µ1, µ2).

Asymptotic analysis of the dual problem

Assume that β
(

γ

1 + γ
+

εγ

1 + εγ

)
< 1, let (µ1, µ2) be

feasible for the dual (22) i.e. µ1, µ2 ≥ 0 and µ1 + µ2 = 2.
Consider the suboptimal dual power vector that assigns power
level λ̄j/N to all the users in cell j, j = 1, 2, respectively.
The dual UL SINR is equal to

λ̄j
N

hk,j,j

µjI +

2∑
j′=1

λ̄j′

N

∑
k′,(j′,k′) 6=(j,k)

hHk′,j′,jhk′,j′,j

−1

hHk,j,j .

(164)

We show in Appendix B-B that this quantity converges a.s. to
a constant equal to λ̄jtCBf (−µj , λ̄j , λ̄j̄) (cf. Eq. (91)).

Letting (λ̄1, λ̄2) be the unique solution to (161),
λ̄jtCBf (−µj , λ̄j , λ̄j̄) will be equal to γ for j = 1, 2. Thus,
with this set of suboptimal dual UL powers, all SINR’s
(cf. Eq. (164)) converge to γ. Note that the condition that
0 ≤ µi ≤ 2, i = 1, 2, is weaker than the condition that
(µ1, µ2) satisfy the dual feasibility condition that µ1 +µ2 = 2,
but it certainly includes this condition.

We now arrive at a particular choice of (µ1, µ2) by solving
the following optimization problem:

max.µ1,µ2≥0 βσ2
(
λ̄1 + λ̄2

)
(165)

s.t. µ1 + µ2 = 2 (166)
(λ̄1, λ̄2) is the unique fixed point of (161). (167)

Adding up the two equations in (161), and taking account of
(166), we obtain(

1− β

1 + γ

)
(λ̄1 + λ̄2)

= 2γ + βε

(
λ̄1λ̄2

λ̄1 + γελ̄2
+

λ̄1λ̄2

λ̄2 + γελ̄1

)
. (168)

Let t = λ̄1 + λ̄2 for (λ̄1, λ̄2) optimal. For fixed t, the
(λ̄1, λ̄2) that maximize the RHS of (168) can be verified to be
(t/2, t/2). The optimal λ̄1 and λ̄2 must thus be equal; we de-
note the common value by λ̄. (161) then implies µ1 = µ2 = 1.
As a result, λ̄ is as given in (45). We conclude that the optimal
choice (with respect to the optimization problem (165)-(167))
is to take (µ1, µ2) = (1, 1).

Note also that if we fix (µ1, µ2) = (1, 1) and use the
corresponding deterministic (λ̄1, λ̄2) = (λ̄, λ̄) (with λ̄ satis-
fying (45)) to generate dual UL powers in each cell, then the
dual objective function will converge to the solution of the
optimization problem (165)-(167).

Now consider the optimal dual variables (µ1, µ2), and the
vector λ̄ of (λkj)

K, 2
k=1,j=1, where optimality here refers to the

dual CBf optimization problem (22). Due to the dual feasibility
constraints, the sequence of (µ1, µ2) is contained in a compact
set and so the probability distribution function of µ1, F (N)

1 ,
forms a tight sequence [56]. Let F1 denote a limit point, so
that F (N)

1 ⇒ F1 along a convergent subsequence.

For the purpose of obtaining a contradiction, let µ̄1 be such
that F1(µ̄1−δ, µ̄1 +δ) > 0 for all δ > 0, and let µ̄2 = 2− µ̄1.
We will assume 0 < µ̄1 < 2.14 Roughly speaking, there is
non-negligible probability that µ1 will be close to µ̄1 when N
is large, along the subsequence. Indeed, for δ > 0, let us define
B1(δ) be the event that µ1 ∈ (µ̄1 − δ, µ̄1 + δ), then by the
second Borel-Cantelli lemma, event B1(δ) will occur infinitely
often. Due to the feasibility constraint that µ1 + µ2 = 2, we
can equivalently write

B1(δ)=

{
µ̄1−δ≤µ1≤ µ̄1+δ, µ̄2−δ≤µ2≤ µ̄2+δ δ>0
µ̄1+δ≤µ1≤ µ̄1−δ, µ̄2+δ≤µ2≤ µ̄2−δ δ<0.

(169)
To compare the performance of the optimal scheme with

a deterministic power scheme, we modify the SINR target in
(160) from γ to γ + δ for some small constant δ (positive or
negative), and we replace (µ̄1, µ̄2) by (µ̄1 + δ, µ̄2 + δ). The
latter change violates the constraint that the sum of the µs
should be 2, but it nonetheless provides a valid pair of noise
values for a virtual UL. Provided that |δ| is sufficiently small,
the condition 0 < µ̄i + δ < 2 i = 1, 2, will be met.

Denote the corresponding solution to (161) (with (µ1, µ2)
replaced by (µ̄1 + δ, µ̄2 + δ)) by (λ̄1(δ), λ̄2(δ)), and let λ̄(δ)
denote the vector of UL powers, where cell j users use power
level λ̄j(δ). Note that (λ̄1(δ), λ̄2(δ)) (and hence λ̄(δ)) depends
on (µ̄1, µ̄2), and δ. The analysis in Appendix B-B shows that
this power allocation will asymptotically achieve a SINR of
γ + δ for all users, under external noise levels of µ̄1 + δ,
and µ̄2 + δ, respectively, and for finite N , let it achieve SINR
γkj(δ) for user k in cell j.

As in the SCP case, Theorem 3 in [53] can be applied to
show that for this (suboptimal) system, the value of (164) is

γkj(δ) = γ + δ +O

(√
1

N

)
, ∀k = 1, 2, . . . ,K, j = 1, 2

(170)

where the last term on the right hand side is 1/
√
N times a

r.v. that tends weakly to a zero-mean Gaussian r.v. This holds
since K

N → β <∞, for the considered channel model and in
the notation of the theorem, ΓK̃ and ΘK̃ will converge a.s. to
bounded limits, though these will be different from the ones
in the SCP case. As in the proof of Theorem 1 in Appendix
D, a union bound may be applied to show that

γkj(−δ) ≤ γ ≤ γkj(δ) ∀k = 1, 2, . . . ,K, j = 1, 2 (171)

will hold whenever B1(δ) occurs, in the limit as N ↑ ∞.
Now compare the dual optimal power levels with this

suboptimal, deterministic power allocation, on the event that
B1(δ) occurs. Consider the case that δ > 0: Noting (169),
we see that, on this event, the dual UL powers required to
achieve γk,j(δ) will only decrease if we replace the enhanced
noise levels, (µ̄1 + δ, µ̄2 + δ), by (µ1, µ2). But by (170) and
the monotonicity result in Lemma 2 in Appendix C, it follows
that these decreased UL powers must upper bound λ since the
latter is the optimal vector of powers in each cell to achieve

14The cases µ̄1 = 0 or µ̄1 = 2 can be considered separately, in a similar
manner, which we mention at the conclusion of the proof.
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the all-γ SINR vector under noise levels (µ1, µ2). Similarly,
consider the case δ < 0: On the event B1(δ), the dual UL
powers required to achieve γk,j(δ), will only increase if we
replace the lower noise levels, (µ̄1 + δ, µ̄2 + δ), by (µ1, µ2),
but by (170) and the monotonicity result in Lemma 2 in
Appendix C, it follows that these increased UL powers lower
bound λ. We conclude that for N sufficiently large, and on
the event B1(δ), we have that

λ̄1(−δ) ≤ λ1 ≤ λ̄1(δ) (172)
λ̄2(−δ) ≤ λ2 ≤ λ̄2(δ) (173)

and hence that the optimal dual objective value lies in the
interval (βσ2(λ̄1(−δ) + λ̄2(−δ)), βσ2(λ̄1(δ) + λ̄2(δ))). But δ
can be taken arbitrarily small, so the left and right endpoints
of the interval can be made arbitrarily close to βσ2(λ̄1 + λ̄2),
where (λ̄1, λ̄2) are the corresponding deterministic UL powers
when we set δ = 0: These are the unique solution to (161)
for the given (µ̄1, µ̄2). Thus, when N is sufficiently large,
along the chosen subsequence, and on the event B1(δ) (which
occurs infinitely often) we have the dual objective value getting
as close as we like to the value βσ2(λ̄1 + λ̄2), which is a
feasible value to the optimization problem (165)-(167). Thus
if (µ̄1, µ̄2) 6= (1, 1) and 0 < µ̄1 < 2, then we get a
contradiction of the optimality of the optimal dual power
levels, whenever B1(δ) occurs, since we can beat the purported
optimal value using the deterministic UL power levels obtained
for (µ1, µ2) = (1, 1), i.e. (45): this is the case since as
discussed earlier the corresponding dual objective converges to
the solution of (165)-(167). A similar argument can be used to
show that (µ̄1, µ̄2) = (0, 2) or (µ̄1, µ̄2) = (2, 0) lead to similar
contradictions. Since these are contradictions, it follows that
(µ̄1, µ̄2) = (1, 1) and hence all the mass of the distribution
F1 must be concentrated at (1, 1).

We can conclude from the above analysis that for any
positive δ, the event B1(δ) will occur with probability tending
to 1 as N tends to infinity, and therefore that (172)-(173) hold
with probability also tending to 1. Taking δ to zero, we obtain
that the empirical distributions of both the λ1ks and the λ2ks
tend to the same constant, namely λ̄, as N tends to infinity,
where λ̄ given in (45).

We conclude that the asymptotically optimal dual variables
are µ1 = µ2 = 1 and all λkjs converge to λ̄ as given
in (45). Thus the optimal downlink beamforming vectors
asymptotically point in the directions of the vectors given in
(47). It remains to find the optimal power levels, pkj , to use
for each user.

Asymptotic analysis of the primal problem
As in Appendix D, we start by assuming that the pkj’s in

each cell are fixed at some common constant value p̄j , so that
the total transmit power of cell j is P̄j = βp̄j . Once this
regime is analyzed in the large system limit, we optimize the
constants p̄1 and p̄2 (to meet the DL SINR constraints) and
show that the optimal constants are asymptotically optimal
with respect to the primal optimization problem (13).

Under this regime in which pkj = p̄j for all k in cell j, the
following lemmas hold.

Lemma 7. With ŵkj = Ak,jh
H
k,j,j , λ̄ satisfying (45),

max
j=1,2,k≤K

∣∣∣∣∣ |hk,j,jŵkj |2

N‖ŵkj‖2
−
[
1− β

(
γ2

(1 + γ)2
+

ε2γ2

(1 + εγ)2

)]∣∣∣∣∣
a.s.−→ 0 (174)

max
j=1,2,k,l≤K

∣∣∣∣∣
∣∣hk,j,j̄ŵlj̄

∣∣2
‖ŵlj̄‖2

− ε

(1 + εγ)
2

∣∣∣∣∣ a.s.−→ 0 (175)

max
j=1,2,k,l≤K,l 6=k

∣∣∣∣∣ |hk,j,jŵlj |2

‖ŵlj‖2
− 1

(1 + γ)
2

∣∣∣∣∣ a.s.−→ 0. (176)

as K,N →∞, KN → β.

Proof: The proof is similar to that of Lemma 3, the
main difference lying in the fact that there is only one
case to consider when looking at the interference terms (cf.
(135)), since under coordinated beamforming, hk,j,j̄ is no
longer independent of ŵk′,j̄ . Thus, defining Dk,j,j = λ̄I and
Dk,j,j̄ = ελ̄I, exactly as in the proof of Lemma 3, we can
show that

max
j=1,2,k≤K

∣∣∣∣ λ̄N ‖ŵkj‖2 −
1

N
trDk,j,jA

2
j

∣∣∣∣ a.s.−→ 0 (177)

max
j=1,2,k≤K

∣∣∣∣ λ̄N hk,j,jŵkj −
1

N
trDk,j,jAj

∣∣∣∣ a.s.−→ 0. (178)

When studying the interference terms, the numerator in the
RHS of (135), becomes, for the CBf case,

λ̄2

N
hk,j,iAl,ih

H
l,i,ihl,i,iAl,ih

H
k,j,i

=
λ̄2

N hk,j,iAl,i,k,j,ih
H
l,i,ihl,i,iAi,l,k,j,ih

H
k,j,i(

1 + λ̄
N hk,j,iAl,i,k,j,ihHk,j,i

)2 . (179)

Considering the numerator in (179), we can show that

max
j,i=1,2,k,l≤K,(k,j)6=(l,i)

∣∣∣∣ λ̄2

N
hk,j,iAl,i,k,j,ih

H
l,i,ihl,i,iAl,i,k,j,ih

H
k,j,i

− 1

N
trDk,j,iAiDl,i,iAi

∣∣∣∣ a.s.−→ 0.

(180)

We can also show that

max
j,i=1,2,k,l≤K,(k,j)6=(l,i)

∣∣∣∣ λ̄N hk,j,iAi,l,k,j,ih
H
k,j,i

− 1

N
trDk,j,iAi

∣∣∣∣ a.s.−→ 0. (181)

The proof of the lemma is concluded by using the limits
of the trace terms as derived in Appendix B-B, with λj = λ̄,
noting that for this specific case, all the Dk,j,j and Dk,j,j̄
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matrices are equal, and are simply scaled identities, so that

1

N
trDk,j,jAj =

λ̄

N
trAj

a.s.−→ γ (182)

1

N
trDk,j̄,jAj =

ελ̄

N
trAj

a.s.−→ εγ (183)

1

N
trDk,j,jA

2
j =

λ̄

N
trA2

j

a.s.−→ 1

λ̄

γ
1
λ̄

+ β
(1+γ)2 + βε

(1+εγ)2

=
1

λ̄

γ2

1− β
(

γ2

(1+γ)2 + ε2γ2

(1+εγ)2

)
(184)

1

N
trDk,j,jAjDl,j,jAj =

λ̄2

N
trA2

j

a.s.−→ γ2

1− β
(

γ2

(1+γ)2 + ε2γ2

(1+εγ)2

) (185)

1

N
trDk,j̄,jAjDl,j,jAj =

ελ̄2

N
trA2

j

a.s.−→ εγ2

1− β
(

γ2

(1+γ)2 + ε2γ2

(1+εγ)2

) . (186)

Lemma 8. With ŵkj = Ak,jh
H
k,j,j , such that λ̄ satisfies (45),

and with pkj = p̄j for k = 1, . . . ,K, j = 1, 2, it follows that,
with probability 1,

∑
j′,k′,(k′,j′)6=(k,j)

pk′j′

N

|hk,j,j′ŵk′j′ |2

‖ŵk′j′‖2
a.s.−→ P̄j

(1 + γ)2
+

εP̄j̄
(1 + εγ)2

,

(187)

P̄j denotes the total transmit power of BS j, i.e. Pj = βp̄j ,
j = 1, 2.

Proof: Since DL pkjs are all fixed to the same value, p̄j ,
we have

∑
j′,k′,(k′,j′)6=(k,j)

pk′j′

N

|hk,j,j′ŵk′j′ |2

‖ŵk′j′‖2

=
p̄j
N

∑
k′ 6=k

|hk,j,jŵk′j |2

‖ŵk′j‖2
+
p̄j̄
N

∑
k′

∣∣hk,j,j̄ŵk′ j̄

∣∣2
‖ŵk′ j̄‖2

(188)

Applying (176) and (175) of Lemma 7, (188) becomes for
k = 1, . . . ,K, j = 1, 2,

K − 1

N

p̄j
(1 + γ)2

+ εβ
p̄j̄

(1 + εγ)2
+ o(1). (189)

Noting that as K,N → ∞, K−1
N → β completes the proof.

Referring to (26), and using results from Lemmas 7 and 8,
to find the minimal pair of constants (p̄1, p̄2) for the two cells,

we therefore solve the following set of equations,

p̄1

1− βγ2

(1+γ)2 + βε2γ2

(1+εγ)2

γ

= σ2 +
εβ

(1 + εγ)
2 p̄2 + p̄1

β

(1 + γ)
2 , (190)

p̄2

1− βγ2

(1+γ)2 + βε2γ2

(1+εγ)2

γ

= σ2 +
εβ

(1 + εγ)
2 p̄1 + p̄2

β

(1 + γ)
2 , (191)

to obtain

p̄1 = p̄2 = p̄ =
σ2γ

1− βγ
(1+γ) − ε

βγ
1+εγ

. (192)

This implies that

P̄1 = P̄2 = P̄ := βp̄. (193)

This choice of downlink transmit powers is guaranteed to meet
the SINR constraints as K,N →∞, KN = β.

We confirm the asymptotic optimality of this deterministic
power allocation, together with the beamforming directions
found from analysis of the dual problem, by verifying that the
duality gap is tending to zero. Indeed, the primal objective
value converges to 2P̄ (φ = 1, since the power consumption
in both cells is the same), whereas the dual objective value
converges to 2βλ̄σ2. Recalling the definition of λ̄, one can
easily verify that these two quantities are the same, thereby
completing the proof.

Equation (192) shows that the primal problem has a solution

when effective bandwidth condition β

(
γ

1 + γ
+

εγ

1 + εγ

)
<

1 is satisfied. Conversely, if this condition does not hold, there
is asymptotically no feasible solution to the primal problem,
in the limit as N ↑ ∞. The latter observation follows from
monotonicity: The optimal powers are increasing functions
of γ, but as the denominator of (192) decreases to zero, the
optimal total power from either BS, P̄ , must diverge to infinity,
and for higher values of γ there can be no feasible solution.

APPENDIX F
PROOF OF THEOREM 3

Throughout this section, let

A =

 λ̄
N

2∑
j′=1

K∑
k′=1

h̃Hk′,j′ h̃k′,j′ + I

−1

(194)

Ak,j =

 λ̄
N

∑
(k′,j′)6=(k,j)

h̃Hk′,j′ h̃k′,j′ + I

−1

(195)

Ak,j,l,i =

 λ̄
N

∑
(k′,j′) 6=(k,j),(l,i)

h̃Hk′,j′ h̃k′,j′ + I

−1

(196)

where λ̄ will be specified later.
The following lemmas will be useful in proving the theorem.
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Lemma 9. Let (µ1, µ2) satisfy 0 ≤ µi ≤ 2, i = 1, 2, and
define the function F (λ1, λ2) by

F (λ1, λ2) = (F1(λ1, λ2), F2(λ1, λ2))

Fj(λ1, λ2) = γ

[(
µj +

β

1 + γ
(λj + λj̄ε)

)−1

+ε

(
µj̄ +

β

1 + γ
(λj̄ + λjε)

)−1
]−1

j = 1, 2.

(197)

Then
i) F is an interference function [27].

ii) If β
γ

1 + γ
< 1 then there exists a unique solution

(λ̄1, λ̄2) to the fixed point equation

(λ1, λ2) = F (λ1, λ2). (198)

Proof: Similar to the proof of Lemma 6 with λ̃ in (162)
replaced by

λ̃ =
2γ

1 + ε

(
1− β γ

1 + γ

)−1

. (199)

Lemma 10. Given positive (µ1, µ2), and (λ1, λ2), define
function G(γ1, γ2) by

G(γ1, γ2) = (G1(γ1, γ2), G2(γ1, γ2))

Gj(γ1, γ2) = λj

((
µj +

βλj
1 + γj

+
εβλj̄

1 + γj̄

)−1

+ ε

(
µj̄ +

βλj̄
1 + γj̄

+
εβλj

1 + γj

)−1
)

j = 1, 2.

(200)

Then
i) G is an interference function [27].

ii) If the inequalities

γ1 ≥ G1(γ1, γ2), γ2 ≥ G2(γ1, γ2) (201)

have a solution, then G has a unique fixed point.

Proof: (i) is easily verified, and (ii) follows from [27],
Theorem 1.

Corollary 5. Let (µ1, µ2) satisfy 0 ≤ µi ≤ 2, i = 1, 2.
Assume that β

γ

1 + γ
< 1, and let (λ̄1, λ̄2) be the unique fixed

point in (197), as identified in Lemma 9. Then the function G
in Lemma 10 has a unique fixed point, namely (γ, γ).

Asymptotic analysis of the dual problem

Assume that β
γ

1 + γ
< 1, let (µ1, µ2) be feasible for the

dual (29) i.e. µ1, µ2 ≥ 0 and µ1 + µ2 = 2, and let (λ̄1, λ̄2)
be the unique solution to (198). Consider the suboptimal dual
power vector that assigns power level λ̄j/N to all the users
in cell j, j = 1, 2, respectively. The dual UL SINR for any
user k in cell j is given by Equation (34). The derivations
leading up to (102) in Appendix B-C show that with the given

suboptimal dual power vector assignment (34) will converge
a.s. to (γ1, γ2) that is a fixed point of G as defined in
Lemma 10. However, by Corollary 5, G has a unique fixed
point, namely (γ, γ). It follows that the SINRs of all users in
the system tend to the common value γ.

We can follow the same reasoning as that in Appendix E,
replacing the optimization problem (165) - (167) by:

max.µ1,µ2≥0 βσ2
(
λ̄1 + λ̄2

)
(202)

s.t. µ1 + µ2 = 2 (203)
(λ̄1, λ̄2) is the unique fixed point of (198). (204)

The solution15 to (202)-(204) can be shown to be (µ1, µ2) =
(1, 1), with corresponding (λ̄1, λ̄2) = (λ̄, λ̄), where λ̄ is given
in (50); The details of the proof are skipped due to space
constraints.

We thus conclude that the asymptotically optimal dual
variables are µ1 = µ2 = 1 and that all components of the
optimal λ corresponding to cell j users must converge to λ̄, as
given in (50). Thus the optimal downlink beamforming vectors
asymptotically point in the directions of the vectors given in
(53). Fixing the beamforming to lie in these directions, we
now find the optimal power levels, pkj , to use for each user.

Asymptotic analysis of the primal problem

With the beamforming directions fixed, only the DL power
levels pkj’s still need to be determined. As in the proofs of
Theorems 1 and 2, we first fix the DL powers to constants, and
study the resulting limiting regime. Thus, we assume pkj’s to
be fixed at a constant p̄j , j = 1, 2. Unlike the SCP and CBf
cases, this does not imply that the total transmit power of BS
j is equal to βp̄j , but rather that the total transmit power of
BS j is equal to

P̄j =

2∑
j′=1

p̄j′

N

K∑
k=1

‖Ejŵkj′‖2

‖ŵkj′‖2
. (205)

Now turning to the DL power levels, we focus on the
transmit strategy that allocates fixed power levels p̄j to all
users in cell j. The following lemmas can be used to show
that the left-hand side of (38) converges in probability to σ2

with all users being allocated equal power as given by (51).
This power allocation also results in zero duality gap.

Lemma 11. With ŵkj = Ak,jh̃
H
k,j , with λ̄ as given by (50):

max
j=1,2,k≤K

∣∣∣∣∣∣∣
∣∣∣h̃k,jŵkj

∣∣∣2
N‖ŵkj‖2

− (1 + ε)

[
1− βγ2

(1 + γ)
2

]∣∣∣∣∣∣∣→ 0 a.s.

(206)

max
j=1,2,k,k′≤K,k′ 6=k

∣∣∣∣∣∣∣
∣∣∣h̃k′,jŵkj

∣∣∣2
‖ŵkj‖2

− 1

1 + γ2

1 + ε−
2ε

1+ε

1− β (1−ε)2

(1+ε)2
γ2

(1+γ)2

∣∣∣∣∣∣→ 0, i.p. (207)

15Note that the function F in (197) actually depends on the choice of
(µ1, µ2).
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max
j=1,2,k,k′≤K,k′ 6=k

∣∣∣∣∣∣∣
∣∣∣h̃k′,j̄ŵkj

∣∣∣2
‖ŵkj‖2

− 1

1 + γ2

2ε

1 + ε

1

1− β (1−ε)2

(1+ε)2
γ2

(1+γ)2

∣∣∣∣∣∣→ 0, i.p. (208)

as K,N →∞, KN → β.

Proof: The proof is similar to that of Lemmas 3 and 7.
Thus, defining Dk,j and Dk,j , as in (103) and (104), µ1 =
µ2 = 1 and λ1 = λ2 = λ̄, we can show, by applying Lemma
5.1 in [55] and Lemma 1 that

max
j=1,2,k≤K

∣∣∣∣ λ̄N ‖ŵkj‖2 −
1

N
trDk,jA

2

∣∣∣∣ a.s.−→ 0 (209)

max
j=1,2,k≤K

∣∣∣∣ λ̄N h̃k,jŵkj −
1

N
trDk,jA

∣∣∣∣ a.s.−→ 0. (210)

Now consider the interference terms, |h̃k,jŵk′j′ |
2

‖ŵk′j′‖2
, with

(k′, j′) 6= (k, j). We have that∣∣∣h̃k,jŵk′j′

∣∣∣2
‖ŵk′j′‖2

=
1

λ̄

λ̄2

N h̃k,jAk′,j′,k,jh̃
H
k′,j′ h̃k′,j′Ak′,j′,k,jh̃

H
k,j(

1 + λ̄
N h̃k,jAk′,j′,k,jh̃Hk,j

)2

1
λ̄
N ‖ŵk′j′‖2

(211)

Similarly to (209) and (210), we can show that

max
j,i=1,2,k,l≤K,(k,j) 6=(l,i)

∣∣∣∣ λ̄2

N
h̃k,jAk′,j′,k,jh̃

H
k′,j′ h̃k′,j′Ak′,j′,k,jh̃

H
k,j

− 1

N
trDk,jADl,iA

∣∣∣∣ a.s.−→ 0. (212)

We can also show that

max
j,i=1,2,k,l≤K,(k,j)6=(l,i)

∣∣∣∣ λ̄N h̃k,jAl,i,k,jh̃
H
k,j

− 1

N
trDk,jA

∣∣∣∣ a.s.−→ 0. (213)

The proof of the lemma is concluded by using the limits
of the trace terms as derived in Appendix B-C, with λj = λ̄
given by (50),

1

N
trDk,jA

a.s.−→ γ (214)

1

N
trDk,jA

2 a.s.−→ 1

(1 + ε)λ̄

γ2

1− βγ2

(1+γ)2

(215)

1

N
trDk,jADl,jA

i.p.−→ γ2

1+ε2

(1+ε)2 − (1−ε)2

(1+ε)2
βγ2

(1+γ)2[
1− βγ2

(1+γ)2

] [
1− (1−ε)2

(1+ε)2
βγ2

(1+γ)2

]
(216)

1

N
trDk,j̄ADl,jA

i.p.−→ γ2

2ε
(1+ε)2[

1− βγ2

(1+γ)2

] [
1− (1−ε)2

(1+ε)2
βγ2

(1+γ)2

] .
(217)

Lemma 12. With ŵkj = Ak,jh̃
H
k,j , with λ̄ as given by (50), as

as K,N →∞, K
N → β, the following holds with probability

1, for j = 1, 2,

P̄j →
2∑

j′=1

βp̄j′

2
, (218)

where P̄j is the total transmit power under the considered DL
transmit power regime (see (205)).

Proof: Following similar steps to those in the proof of
Lemma 11, we can show that the λ̄

N ‖Ejŵkj‖2 and λ̄
N ‖ŵkj‖2

converge a.s., and uniformly in their indices, to constants such
that the following holds

max
j,i=1,2,k≤K

∣∣∣∣‖Ejŵkj‖2

‖ŵkj‖2
− 1

2

∣∣∣∣ a.s.−→ 0. (219)

As a result,

P̄j =

2∑
j′=1

βp̄j′

2
+ o(1). (220)

This completes the proof.
Thus, asymptotically, under this scheme, both BSs transmit

with equal power.

Lemma 13. With ŵkj = Ak,jh̃
H
k,j , such that λ̄ satisfies (50),

and with pkj = p̄j for k = 1, . . . ,K, j = 1, 2, it follows that,

∑
j′,k′,(k′,j′)6=(k,j)

pk′j′

N

∣∣∣h̃k,jŵk′j′

∣∣∣2
‖ŵk′j′‖2

i.p.−→ β

1 + γ2

p̄j
1 + ε−

2ε
1+ε

1− β (1−ε)2

(1+ε)2
γ2

(1+γ)2


+p̄j̄

2ε
1+ε

1− β (1−ε)2

(1+ε)2
γ2

(1+γ)2

 . (221)

Proof: Since DL pkjs are all fixed to the same value, p̄j ,
we have

∑
j′,k′,(k′,j′)6=(k,j)

pk′j′

N

∣∣∣h̃k,jŵk′j′

∣∣∣2
‖ŵk′j′‖2

=
p̄j
N

∑
k′ 6=k

∣∣∣h̃k,jŵk′j

∣∣∣2
‖ŵk′j‖2

+
p̄j̄
N

∑
k′

∣∣∣h̃k,j,j̄ŵk′ j̄

∣∣∣2
‖ŵk′ j̄‖2

(222)

Applying (207) and (208) of Lemma 7, (222) for k =
1, . . . ,K, j = 1, 2, will converge in probability to

1

1 + γ2

p̄jK − 1

N

1 + ε−
2ε

1+ε

1− β (1−ε)2

(1+ε)2
γ2

(1+γ)2


+p̄j̄

2ε
1+ε

1− β (1−ε)2

(1+ε)2
γ2

(1+γ)2

 . (223)

Noting that as K,N → ∞, K−1
N → β completes the proof.
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Referring to (38), and applying Lemmas 11 and 13, to find
the minimal pair of constants (p̄1, p̄2) for users in the two
cells, we therefore solve the following set of equations,

p̄1

(1 + ε)
[
1− βγ2

(1+γ)2

]
γ

= σ2 +
β

1 + γ2

p̄1

1 + ε−
2ε

1+ε

1− β (1−ε)2

(1+ε)2
γ2

(1+γ)2


+p̄2

2ε
1+ε

1− β (1−ε)2

(1+ε)2
γ2

(1+γ)2

 , (224)

p̄2

(1 + ε)
[
1− βγ2

(1+γ)2

]
γ

= σ2 +
β

1 + γ2

p̄2

1 + ε−
2ε

1+ε

1− β (1−ε)2

(1+ε)2
γ2

(1+γ)2


+p̄1

2ε
1+ε

1− β (1−ε)2

(1+ε)2
γ2

(1+γ)2

 , (225)

to obtain

p̄1 = p̄2 = p̄ =
σ2γ

(1 + ε)
[
1− βγ

1+γ

] . (226)

This implies that P̄1 and P̄2 (recall Lemma 12) both converge
a.s. to P̄ , where

P̄ := βp̄. (227)

This choice of DL transmit powers meets the SINR constraints
as K,N →∞, KN = β with a probability tending to 1.

We confirm the asymptotic optimality of this deterministic
power allocation, together with the beamforming directions
found from analysis of the dual problem, by verifying that the
duality gap is tending to zero. Indeed, the primal objective
value converges to 2P̄ (φ = 1, since the power consumption
in both cells is the same), whereas the dual objective value
converges to 2βλ̄σ2. Recalling the definition of λ̄, one can
easily verify that these two quantities are the same, thereby
completing the proof.

Equation (226) shows that the primal problem have a

solution when effective bandwidth condition β
(

γ

1 + γ

)
< 1

is satisfied. Conversely, if this condition does not hold, there
is asymptotically no feasible solution to the primal problem,
in the limit as N ↑ ∞.

APPENDIX G
PROOF OF THEOREM 1

Using (43), r simplifies to:

r(γ∗) =
1 + γ∗

γ∗
(
σ2

P + ε
)

(1 + γ∗) + γ∗
log (1 + γ∗) , (228)

which is positive at γ∗ = 0, and zero at γ∗ = ∞. Defining
η = σ2

P + ε and taking the derivative with respect to γ∗ we

obtain
dr

dγ∗
equals

− 1 + η (1 + γ∗)
2

(γ∗η (1 + γ∗) + γ∗)2
log (1 + γ∗) +

1

γ∗η (1 + γ∗) + γ∗
.

(229)

This has the same sign as

h(γ∗) = − log (1 + γ∗) +
γ∗η (1 + γ∗) + γ∗

1 + η (1 + γ∗)
2 , (230)

which is 0 at γ∗ = 0, and −∞ at γ∗ =∞. Differentiating the
expression in (230), we obtain

dh

dγ∗
= − 1

1 + γ∗
+
η + 1 + η (η + 1) (1 + γ∗)

2 − 2ηγ∗2(
1 + η (1 + γ∗)

2
)2 .

(231)

This has the same sign as

−
(

1 + η (1 + γ∗)
2
)2

+ (1 + γ∗)
(
η + 1 + (η + 1) η (1 + γ∗)

2 − 2ηγ∗2
)

= −γ∗4η2 − γ∗3η [1 + 3η]− γ∗2η [1 + 3η]− γ∗
[
η2 − 1

]
.

If η ≥ 1, then
dh

dγ∗
< 0 ∀γ∗ > 0, which implies h(γ∗) <

0 ∀γ∗ > 0 and hence r(γ∗) is a decreasing function. If η < 1
then h(γ∗) is positive for γ∗ small. This implies that r(γ∗) is
increasing and then decreasing.

APPENDIX H
PROOF OF THEOREM 2

The normalized achievable rate per cell is equal to

r(γ∗) = β log (1 + γ∗) =
1

γ∗
log (1 + γ∗)[

σ2

P + 1
1+γ∗ + ε

1+εγ∗

]
=

(1 + γ∗) (1 + εγ∗) log (1 + γ∗)[
γ∗
[
σ2

P (1 + γ∗) + 1
]

(1 + εγ∗) + εγ∗ (1 + γ∗)
] , (232)

which is positive at γ∗ = 0 and zero at γ∗ =∞. The sign of
dr

dγ∗
is the same as the sign of the function

h(γ∗)

=
(1 + εγ∗)

[
γ∗
[
σ2

P (1 + γ∗) + 1
]

(1 + εγ∗) + εγ∗ (1 + γ∗)
]

[
(εγ∗2 + 1) [1 + ε] + σ2

P (1 + γ∗)
2

(1 + εγ∗)
2

+ 4εγ∗
]

− log (1 + γ∗) (233)

which is 0 at γ∗ = 0, and −∞ at γ∗ =∞. The sign of
dh

dγ∗
can be shown to be opposite to the sign of a polynomial in
γ∗ of degree 7, i.e.

∑7
i=0 ciγ

∗i, such that

c7 = a2ε4, c6 = ε3
(
3a2ε+ 4a2 + 2aε

)
c5 = ε2

(
3a2ε2 + 12a2ε+ 6a2 + 4aε2 + 6aε

)
c4 = ε

(
a2
[
ε
(
ε2 + 12ε+ 18

)
+ 4
]

+ aε
(
3ε2 + 8ε+ 9

)
−2ε (ε+ 1))
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c3 = a2
[
2ε
(
2ε2 + 9ε+ 6

)
+ 1
]

+ aε
(
ε3 + 13ε+ 6

)
+ ε2

(
1− ε2 − 16ε

)
c2 = 3a2 [2ε (ε+ 2) + 1] + a

(
3ε2 + 10ε+ 1

)
+ ε

−
(
17ε3 + 8ε2 + 4aε3

)
c1 = a2 (4ε+ 3) + 6aε+ a− ε

(
2aε2 + 3aε+ 9ε2 + 4ε+ 3

)
c0 = a2 + 2aε− 2aε2 − 2ε3 − ε2 − 1, (234)

where a = σ2

P . One can factor the constant term (independent
of γ∗) into

(a+ ε+ 1)(a+ ε− 2ε2 − 1). (235)

We now consider two cases:

A. a+ ε− 2ε2 − 1 ≥ 0

Defining ε0,1 = 1−
√

8a−7
4 , ε0,2 = 1+

√
8a−7
4 , one can show

that (235) will be positive if (a ≥ 1, and 0 ≤ ε ≤ ε0,2), or
( 7

8 ≤ a ≤ 1, and ε0,1 ≤ ε ≤ ε0,2). One can further establish
that if this is the case, all of the other coefficients of the
polynomial (234) will be positive 16, and consequently h(γ∗)
will be a decreasing function, and hence h(γ∗) < 0 ∀γ∗ > 0.
In this case, r(γ∗) is a decreasing function and the optimum
will occur at γ∗ = 0, which corresponds to β∗ =∞.

B. a+ ε− 2ε2 − 1 < 0

In this case, h(γ∗) will be positive for γ∗ small. Thus, r(γ∗)
will be increasing initially, but it decreases eventually (to zero),
so it must attain its global maximum at a finite value of γ∗ > 0.
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