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On Bregman Distances and Divergences of
Probablility Measures

Wolfgang Stummer and Igor Vajd&ellow, IEEE

Abstract—The paper introduces scaled Bregman distances of general the usual metric distance (it is a pseudodistangghwh
probability distributions which admit non-uniform contri butions s reflexive but neither symmetric nor satisfying the trikng

«— of observed events. They are introduced in a general form cev- litv). The m important f reis th esiarabl
ing not only the distances of discrete and continuous stock#c f equ(;’al ft.y)'d be ostimportantfeature is the sp arable
(@) observations, but also the distances of random processes can orm defined Dy
o~ signals. It is shown that the scaled Bregman distances extén d
not only the classical ones studied in the previous literate, B — N N — b a M — s 2
4= . but also the information divergence and the related wider chss s(p ) 2 [o(pi) — ¢(ai) — &' (i) (pi —ai)]  (2)
O . of convex divergences of probability measures. An informabn =
O processing theorem is established too, but only in the sens# for vectorsp = (p1,...,p4),¢ = (q1,...,q4) @nd convex
LO invariance w.r.t. statistically sufficient transformations and notin  dijfferentiable functions : R — R. For example, the function
e sense of universa monoloily. Patologiea SIS (1) — (1~ 1)° leads o the classcal squared Eucldean
. i distance
'|: by a concrete example. In addition to the classical areas of d
application of the Bregman distances and convex divergense _ 2
. .such as recognition, classification, learning and evaluain of By(p,q) = Z(pl )" - 3)
(/) - proximity of various features and signals, the paper mentias i=1
O 'a new _application in 3D-exploratory (_jata analysis. Ex_plici_
expressions for tthel ?Ca[‘fd Bre%r:nan d'SttanceS I'aret' Obt,a”lﬁd I In the optimization-theoretic context the Bregman diséanc
general exponential families, with concrete applicationsn the ; : _
N binomial, Poisson and Rayleigh families, and in the familis of are. u,sua"y SIUd!evd in the general forrl (1) See, €.g.,
=  exponential processes such as the Poisson and diffusion pesses CSiSZar and Matds (2008, 2009), as well as Bauschke and
<I 'including the classical examples of the Wiener process and Borwein (1997) for adjecent random projection studieshie t
0O . geometric Brownian motion. information-theoretic or statistical context they areitgtly
N~ _ - _ used in the separable forl (2) for vectors; with nonneg-
C\! Index Terms — Bregman distances, classification, divergences, aive coordinates representing generalized distribstiginite
— e>.<ponent|al clilstrlbutlo.ns, expgngntlal pr.O(.:esses, .|n'fumat|0n re- discretemeasures) and functiogs: [0, c0) — R differentiable
—] trieval, machine learning, statistical decision, sufficiacy. on (0,00) (the problem withg; = 0 is solved by resorting
(@) to the right-hand derivativey’, (0)). The concrete example
o [. INTRODUCTION ¢(t) = tlnt leads to the well-known Kullback divergence
> REGMAN (1967) introduced for convex functions : d
- d . . : . ,
>< R - R ywth gra¢entv¢ the ¢-depending nonnegative By(p,q) = Zpi <
« . measure of dissimilarity P i
©

By(p,q) = o(p) — d(q) — Vo(q)(p — q) (1) Qf course, the most common context are discrete probability
distributionsp, g since vectors of hypothetical or observed fre-
of d-dimensional vectorg,q € R?. His motivation was quenciew, ¢ are easily transformed to the relative frequencies
the problem of convex programming, but in the subsequefdrmed to1. For example, Csiszar (1991, 1994, 1995) or
literature it became widely applied in many other problensardo and Vajda (1997, 2003) used the Bregman distances of
under the nam&regman distancén spite of that it is not in probability distributions in the context of informationeibry

o . ~_and asymptotic statistics.
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and ¢(t) = tInt lead in this case to the classical Pearsoffiv) parallel optimization and computin¢see, e.g., Censor

divergence and Zenios (1997)).
d 2
(pi — @)
Dy(p.q) = v (5)  Inthis context it is obvious the importance of the functilsna
=1 ‘ of distributions which are simultaneously divergencesathb
and the above mentioned Kullback divergenbg(p,q) = the Csiszar and Bregman sense or, more broadly, of the

By(p,q) which are asymmetric irp, ¢ and contradict the research of relations between the Csiszar and Bregman dive
triangle inequality. On the other hand(t) = |t — 1| leads gences. This paper is devoted to this research. It genesahe

to the Li-norm |[p — ¢|| which is a metric distance andseparable Bregman distancEs (2) as well asftuévergences
o(t) = (t —1)%/(t + 1) defines the LeCam divergence (@) by introducing thescaled Bregman distanc&ghich for the
discrete setup reduce to

~ (i —a.)’
Dy(p.q) = oita d
i DT Bo(palm) = > |o(pi/mi) — olai/m:)
which is a squared metric distance (for more about the i=1
metricity of ¢ -divergences the reader is referred to Vajda — ¢ (qi/mq)(pi/m; — Qi/mi):| m; (6)

(2009)).

However, there exist also some sharp differences betwd@h arbitrary finite scale vectors: = (i, ..., ma), convex
these two types of pseudodistances of distributions. Ofictions ¢ and right-hand derivatives’,. Obviously, the
distinguising property of Bregman distances is that theas Uniform scalesn = (1,..., 1) lead to the Bregman distances
loss criterion induces the conditional expectation asamutng () and the probability distribution scales = g = (g1, --., 4a)
unique optimal predictor from given data (cf. Banerjee at 4f2d t0_theg-divergences[{4). We shall work out further
(2005a)): this is for instance used in Banerjee et al. (2poshteresting relations of the,(p, g/m) distances to thej-
for designing generalizations of themeans algorithnwhich  divergencesD (p, q) and Dy(p,m) and evaluate explicit -
deals with the special case of squared Euclidean effor {§jmulas for the stochastically scaled Bregman distanoes i
(cf. the seminal work of Lloyd (1982) reprinting a Technicafroitrary gxponenUaI families of distributions, incladi also
Report of Bell Laboratories dated by 1957). These featurdte non-discrete setup.
are generally not shared by those of thelivergences which  Section Il defines the-divergencesD (P, M) of general
are not Bregman distances, e.g., by the Pearson divergepasbability measure® and arbitrary finite measure® and
@B). On the other hand, a distinguishing property ®f briefly reviews their basic properties. Section Ill introeés
divergences is thénformation processing property.e., the scaled Bregman distancés, (P, Q|M) and investigates their
impossibility to increase the valu®,(p,q) by transforma- relations to the¢ -divergencesDy(P,Q) and Dy (P, M).
tions of the observations distributed by p, g and presematiSection IV studies in detail the situation where all three
of this value by the statistically sufficient transformaso measuresP, Q, M are from the family of general exponen-
(Csiszar (1967), see in this respect also Liese and Vajg@l distributions. Finally, Section V illustrates the wis by
(2006)). This property is not shared by the Bregman distnd@vestigating concrete examples &% Q, M from classical
which are notg¢-divergences. For example, the distributionstatistical families as well as from a family of important
p=(1/2,1/4,1/4) andq = (1,0, 0) are mutually closer (less random processes.
discernible) in the Euclidean sengé (3) than their redostio

5= (1/2,1/2) andg = (1,0) obtained by merging the second Notational convent!ops:Throughout the papeft de-
and third observation outcomes into one. notes the space of all finite measures on a measurable space

. . (X, A) and P C 2t the subspace of all probability mea-
_Depending on the need to exploit one or the other of thesgres. Unless otherwise explicitly stat®dQ, M are mutually
distinguished properties, the Bregman distances or @siiz" measure-theoretically equivalent measures(an.4) domi-

vergences are preferred, and both of them are widely apipliechated by as-finite measure\ on (X, .A). Then the densities
important areas of information theory, statistics and cotep

science, for example in p= ar q= dQ - aM (7)
(Ai) information retrieval(see, e.g., Do and Vetterli (2002), dA dA ) _ . _ _dA i
Hertz at al. (2004)), have a common support WhICh will be |dent|f|e(_j with (|._e_.,

i ) o o the densitied(7) are positive or). Unless otherwise explicitly
(Ai)  optimal decision(for general decisiorsee, e.g., BO- giated, it is assumed thdt Q € B, M € 9 and thate :
ratynska (1997), Freund et al. (1997), Bartlett et al. (300§ ) — R is a continuous and convex function. It is known
Vajda and Zvarova (2007), fospeech processingee, €.9., that then the possibly infinite extensiai0) = limyo ¢(t)

Carlson and Clements (1991), Veldhuis and Klabers (2002h the right-hand derivatives, (¢) for t € [0,00) exist, and
for image processingee, e.g., Xu and Osher (2007), Marquingy 4t the adjoint function

and Osher (2008), Scherzer et al. (2008)), and
¢*(t) = to(1/t) ®)

(Aiii) machine learningdsee, e.g., Laferty (1999), Banerjee et
al. (2005), Amari (2007), Teboulle (2007), Nock and Nielseis continuous and convex off), co) with possibly infinite
(2009)). extensiong*(0). We shall assume thap(1) = ¢*(1) =0

and



TO APPEAR IN IEEE TRANSACTIONS ON INFORMATION THEORY 3

II. DIVERGENCES Proof: By (@) and the definition[{8) of the convex
For P €33 and M € 9t we consider function ¢*
D¢(P,M):/ ¢><£)sz/ m¢(£)dA (cf- @) D¢(P,M)=/ & (g) ar
X m X m (9) v D

generated by the same convex functions as considered in tf@nce by Jensen’s inequality
formula [4) for discrete” and M. An important special case

is Dy(P, Q) with Q € . pyran = o ([ mar) =oouw) - as)
The existence (but possible infinity) of thedivergences i ) ) _ i

follows from the bounds which proves the desired inequalify {14). Since
¢ (Dp—m) < mo (L) < me(0)+po*(0) (10) %= M(x) Pas

on the integrand, leading to thedivergence bounds is the condition for equality in(16), the rest is clear fromet

P (1)(1—M(X)) < Dy(P,M) < M(X)$(0)+¢*(0). easily verifiable fact that*(t) is strictly convex att = s if

(11) and only if ¢(t) is strictly convex at = 1/s. O
The integrand bound§{1L0) follow by putting= 1 andt =
p/m in the inequality For some of the representation investigations below, it wil
B(s) + ¢, (5)(t — 5) < (t) < B(0) + td*(0), (12) also be useful to take into account that for probability nuees

P, Q we get directly from definition[{9) the “skew symmetry”

where the left-hand side is the well-known support line @) ¢-divergence formula

att = s. The right-hand inequality is obvious fa@f(0) = cc.

If »(0) < oo then it follows by takings — oo in the inequality Dy (P,Q) = Dy(Q, P) ,
o(t) < ¢(0) + ¢ $ls) = ¢(0) , as well as the sufficiency of the condition
S
obtained from the Jensen inequality foft) situated between o(t) — ¢*(t) = constant(t — 1) (17)

#(0) and ¢(s). Since the functionp(p, m) = ma¢(p/m) is .
homogeneous of order 1 in the seng@p,tm) = ty(p,m) for the ¢-divergence symmetry
for all t > 0, the divergence$19) do not depend on the choice o
of the dominating measurg. Dy(P,Q) = Dy(@, P) forall Q. (18)
Notice that D4 (P, M) might be negative. For probability Liese qnd Vajda (1987) proved thqt_under th_e z_issumed strict
measures”, Q the bounds[{1) take on the form convexity of ¢(¢) at¢ = 1 the condition [(IFF) is is not only
sufficientbut alsonecessanfor the symmetr .
0 < Dy(P,Q) < 6(0) +6°(0), 13) yorthe symmetry[(18)

and the equalities are achieved under well-known condition I1l. SCALED BREGMAN DISTANCES
(cf. Liese and Vajda (1987), (2006)): the left equality ld
if P = (@, and the right one hold§ P 1 @ (singularity).
Moreover, if ¢(t) is strictly convex att = 1, the firstif can
be replaced byff, and in the case&(0) + ¢*(0) < oo also
the secondf can be replaced biff.

Let us now introduce the basic concept of the current paper,
which is a measure-theoretic version of the Bregman distanc
(@). In this definition it is assumed that is a finite convex
function in the domairt > 0, continuously extended to= 0.

As before,¢’, (t) denotes the right-hand derivative which for

An alternative to the left-hand inequality ii{11), which-exsuch¢(t) exists andp, g, m are the densities defined il (7).
tends the left-hand inequality if_(13) including the coiulis
for the equality, is given by the following statement (for a  Definition 1: The Bregman distancef probability mea-
systematic theory of-divergences of finite measures we refesures P, Q scaled by an arbitrary measurd/ on (X,.A)

to the recent paper of Stummer and Vajda (2010)). measure-theoretically equivalent with @ is defined by the
formula
Lemma 1:For everyP € B3, M € 91 one gets the lower
divergence bound By (P,Q| M)
1
M(x —— ) < Dy(P,M) , 14 _ PN _ (L _w (4N (P_ 4
00 ) <2aran 00 = [ () -0 () (5w
where the equality holds if / D q q
om = [ ¢(—)fm¢>(—)*¢>’+(—)(pfq)}dk

If Dy(P, M) < oo andg(?) is strictly convex at = 1/M (X) The convex¢ under consideration can be interpreted as a
the equality in [[T#) holds if and only if{15 ) holds. generating function of the distance.
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Remarks 1:(1) By puttingt = p/m ands = g/m in I2) where the difference[[(21) is meaningful if and only if
we find the argument of the integral in_{19) to be nonnegative,, (Q, P) = Dy« (P, Q) is finite. The nonnegative divergence
Hence the Bregman distanég, (P, Q | M) is well-defined by measureB, (P,Q) = By (P,Q|P) is thus the difference

(I9) and is always nonnegative (possibly infinite). between the nonnegative dissimilarity measure

(2) Notice that the integrand in the first (respectively sec-
ond) integral of [AP) constitutes a function, sa&y(p, ¢, m) Dy (Q, P) :/ ¢, (2) (g—p)dX > D4(Q,P)
(respectively YT (p,q, m)) which is homogeneous of order X p
0 (respectively orderl), i.e., for all ¢ > 0 there holds gznd the nonnegative—divergenceD,,(Q, P). Furthermore, in
Y(tp,tq,tm) = Y(p,q,m) (respectivelyY(tp,tq,im) = the second special casé = Q the formula [ID) leads to the
t - T(p,q,m)). Analogously, as already partially indicatechqyality
above,_ the mtegrand_ln the first (respectlvely secondpnate B, (P.Q|Q) = Dy(P.Q) (22)
of @) is also a function, say)(p, m) (respectively)(p, m))
which is homogeneous of ordér(respectively ordet). without any restriction onP, Q € ‘B as realized already by

(3) In our measure-theoreticontext [19) we have incorpo- Stummer (2007).
rated the possible non-differentiability g¢fby using its right-

hand derivative, which will be essential at several placteva Conclusion 1:Equality [22) — together with the fact that
For_generaB_ana}ch spaceone typically.employs various di- By (P,Q| M) depends in general o/ (see, e.g., Subsec-
.rectlonal dgnvau-ves.—see, e.g., Butnariu anq Resm@ﬁ_ﬁ&) tion B below) — shows that the concept of scaled Bregman
in connection with different types of convexity properties distance[(ID) strictly generalizes the concepbofdivergence
D4(P, Q) of probability measure®, .
The special scaled Bregman distandgs (P, Q | M) for
probability scales)M < B were introduced by Stummer  gyample 1:As an illustration not considered earlier we

(2007). Let us mention some other important previously COpz, take the non-differentiable functian(t) = [t — 1| for
sidered special cases. which

(a) For X finite or countable and counting measuvé = A By (P,Q|Q)=V(P.Q)

some authors were already cited above in connection with the . ) .

formula [2) and the research are@s) - (Aiii) . In addition to I.e., this partlcullar.scaled Bregman distance reducestoviil
them, one can mention also Byrne (1999), Collins et al. (2,005”0\’\’n total variation.

Murata et al. (2004), Cesa-Bianchi and Lugosi (2006).
_ As demonstrated by an example in the Introduction, mea-
(b) For open Euclidean set’ and Lebesgue measufid = A gyrable transformations (statistics)

on it one can mention Jones and Byrne (1990), as well as
Resmerita and Anderssen (2007). T:(X,A) — (V,B) (23)

\évhich arenot sufficient for the paif P, @} can increase those

of the scaled Bregman distancBg (P, @ | M) which are not
-divergences. On the other hand, the transformatibnks (23)

ichare sufficient for the paif P, @} need not preserve these

tances either. Next we formulate conditions under which

the scaled Bregman distancBs (P, Q | M) are preserved by

transformations of observations.

In the rest of this paper, we restrict ourselves to the Breagm
distancesBy (P, Q | M) scaled by finite measure®l € M
and to the same class of convex functions as considered in
¢-divergence formulag14) anfll(9). By using the remark afttalis
Definition 1 and applying[(12) we get

Dy(P, M) > Dy(Q, M) +/ & (L) (0 - g)ar

X m
if at least one of the right-hand side expressions is finite, Definiion 2: We say that the transformatiofl {23) is
Similarly, sufficient for the triplet{ P, Q, M} if there exist measurable

functionsgp, 9o, gm : Y — R andh : X — R such that

_ _ [y (L
B (P.QIM) = Dy(P, M) = Dy(@,20)— [ o1 (1) ax p(x) = gp(To)h(e), alz) = go(Tx)h(z)
_ _ _ . (o) and m(z) = gy (Tx)h(z). (24)
if at least two of the right-hand side expressions are finite
(which can be checked, e.g., by usifig](11)[od (14)). If M is probability measure then our definition reduces to
the classical statistical sufficiency of the statisficfor the
(:T‘amily {P, Q, M} (see pp. 18-19 in Lehman (2005)). All
transformations[{23) induce the probability measuR# !,

The formula [(IP) simplifies in the important special cas
M = P and M = Q. In the first case, due t¢(1) = 0 it

reduces to QT ! and the finite measur®/ 7~ on (Y, B). We prove that
_ (4 N q the scaled Bregman distances of induced probability measur
Bs (PQIP) = /X {d@ <p> (9=p)—pe (p)] dA PT-', QT scaled byMT~! are preserved by sufficient
transformations’".

= [ ¢ (Y)a-nnr-Dy@.r). (21)



TO APPEAR IN IEEE TRANSACTIONS ON INFORMATION THEORY 5

Theorem 1:The transformationd (23) sufficient for theKulllback-Leibler information divergence (relative eojry)
triplet {P,Q, M} preserve the scaled Bregman distances i;1,+(P, Q) (cf. Stummer (2007)). As a side effect, this
the sense that independence gives also rise to examples for the conclusion
that the validity of [2b) does generally not imply that is

-1 -1 -1\ _
By (PT™1, QT |MT™) = By (P.QIM). (25 gtiicient for the triplet{ P, Q, M}.
Proof.: By (I9) and [[2#), the right-hand side &f(25) is

equal to

B. Bregman reversed logarithmic distance
/ (P (Tx) — dpo.ar (Tx) — Apga (Tx)]dM  (26) Let now ¢(t) = —Int so that¢/(t) = —1/¢. Then [19)
X

implies
for
gr(y) 90(y) Bome (FQ| M)
o (y)¢<gM(y)>’ Pau (y)d)(gM(y)) &0 =/ [mln%—mln%Jr%(p—q)} dA (31)
and v mp
, gQ(y) :Dtlnt(M;P)*Dtlnt(M,Q)‘i’/ _d)\*M(-X) (32)
Araun ) = 04( 22905 gr(s) - o). (28 x4
=D_1ne(P,M) — D_1n:(Q, M —Ldx— M(Xx) (33
By Theorem D in Section 39 of Halmos (1964), the integral e ) (@ M) + /x q (¥) 33)
(28) is equal to where the equalitie$ (82) and {33) hold if at least two out of

_ the first three expressions on the right-hand side are filmte.
1
/y [pp.0 (y) — do.m (y) — Apgm ()] dMT (29)  particular, [3L) implies (consistent with{22))

and, moreover, B_wnt (P,Q|Q) = D_1m(P,Q) (34)
P(T7'B) = / gp(y) R(T™y)dNT and [32) implies forD; 1, (P, Q) < oo (consistent with[{21))
B
and similarly forQ instead ofP. Therefore Boit (P,Q| P) = x*(P,Q) — Dy +(P,Q) (35)
dPT—! dQT—1! where

D=t = 9r@ (T y) and = = go(y) (T 'y) 2(p,Q) / (r-9? 4,
X ) = T
which together with[{27)[{28) and{{19) implies that the grte x4

(29) is nothing but the left-hand side ¢f{25). This commetds the well-known Pearson information divergence. From

the proof. U0 (@4) and [(3b) one can also see that the Bregman distance

By (P,Q| M) does in general depend on the choice of the
Remark 2: Notice that by means of Remark 1(2) aftereference measur!.

Definition 1, the assertion of Theorem 1 can be principally re
lated to the preservation @f—divergences by transformations ,
which are sufficient for the paifP, Q} . C. Bregman power distances
In this subsection we restrict ourselves for simplicity to
In the rest of this section we discuss some important spegibbability measured/ € B, i.e., we supposé/(X) = 1.
classes of scaled Bregman distances obtained for spetialder this assumption we investigate the scaled Bregman
distance-generating function's distances

B, (P,Q|M)=DB,, (P,Q|M) , €R, 0, 1
A. Bregman logarithmic distance (P.QIM) 6 (P, QM) “ a7 a7é6)

Let us consider the special functiof(t) = tInt. Then for the family of power convex functions
¢'(t) =1Int + 1 so that [IP) implies N ol

-1
Bim: (P,Q| M) (b(t)z(ba(t):ia(a—l) with ¢a(t):a_1- (37)

= / [p ln% —qln % — (ln% + 1) (p— q)} dA For comparison and representation purposes, we usé’for
x (and analogously fof) instead ofP) the power divergences

p q
:/X[plng—plng} dA Do(P,M) = Dy (P,M)
_ 1 (e} 11—« _
= /plngcu = Dt (P.Q) - (30) ~ala—1) UXP me A 1}
X
Thus, foré(t) = tInt the Bregman distance, (P,Q | M) exp po (P, M) — 1

= with po (P, M) =1 “CmiTed
exceptionally does not depend on the choice of the scalidg an ala—1) pal ) n/Xp "

reference measure® and J; in fact, it always leads to the (38)
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of real powersx different from0 and 1, studied for arbitrary Theorem 2:1f Dy(P, M) + Do(Q, M) < oo then
probability measure$’, M in Liese and Vajda (1987). They )
are one-one related to the Rényi divergences Eﬁ} Ba(P,Q[ M)

— mp
Ra(RM):%, a€eR, a#0, a#l, *DO(P,M)*Do(Q,M)Jr/XTd,\f1 (41)

= B_m(P, Q[ M). (42)
introduced in Liese and Vajda (1987) as an extension of t

- ) pfeD P,M)+ D M
original narrower class of the divergences 1(P, M) + Di(Q, M) < oo and

: (q/m)~F -1
o( Py M lim - dP
Ra(P,M):M, a>0, al 510 Jx B
o /1' (a/m " -1 p /1 Lap (43)
= m-— = — n—
of Rényi (1961). x B0 B xr m
then
Returning now to the Bregman power distances, observe . q
that if Do (P, M) + Do(Q, M) is finite then [2D), [[36) and lim Bo(P,Q|M) = Dy (P, M) — /X In—-dP (44)
(31) imply fora #0, a #1
=Di(P,Q) = Bim¢«(P,Q|M) . (45)

Ba(P, Q[ M)
= ~Da(@, M) = ail/X (m

|
N—
Q
L
=
|
<
N~—
o.
>

Proof: If 0 < a < 1 then Dy(P,M), Dy (Q, M)
are finite so that[{39) holds. Applying the first relation of

= Do(P,M) — Do(Q, M) (@0) in (39) we get[(d1) where the right hand side is well
1 g o1 g\ defined becausd®y(P, M) + Dy(Q, M) is by assumption
- (—) p— (—) m| dA finite. Similarly, by using the second relation §f{40) ané th
a—1Jy|\m m . . .
assumption [43) in((39) we end up &f¥44) where the right-
= Do (P, M) — (1-a) Da(Q, M) hand side is well defined becaus (P, M)+D;(Q, M) is
1 g o1 assumed to be finite. The identity {42) follows from1(41), (
T { /X (;) pdA — 1] : (39) [@33) and the identity[(45) froni{24)_(30). 0
In particular, we get from here (consistent with1(22)) Motivated by this theorem, we introduce for all probability
measuresP, ), M under consideration the simplified nota-
Bo(P,Q[Q) = Da(P,Q) tions
Bi(P,Q| M) = Bim(P,Q| M 46
and in case oD, (Q, P) = D1_.(P,Q) < co also 1P QIM) tne(P QM) (46)
and
Ba(P, Q| P) = (@ = 2) Da—1(Q, P) + (= 1) Da(Q, P) Bo(P,Q|M) = B_10:(P,Q| M), (47)

and thus,[(45) and(#2) become
Bl(PleM) :h?llBa(PaQ|M)

= (a—2) Dy_o(P,Q) + (a — 1) Dy_o(P, Q).

In the following theorem, and elsewhere in the sequel, we
use the simplified notation and
BO(PaQ|M) :HmBa(P7Q|M)'
D1(P, M) = Dy1,+(P,M) and Do(P,M) = D_ (P, M) a0

Furthermore, in these notations the relatigns (80), (3d)(8B)
for the probability measure®, M under consideration (andreformulate (under the corresponding assumptions) asvisll
also later on wheré/ is only a finite measure). This step is

motivated by the limit relations Bi(P,Q|M) = Di(P,Q) ,
lim Do (P,M) = D_p(P,M) and
all BO(P5Q|Q):D0(P5Q)
lim Do (P,M) = Dime(P,M) (40)
atl and
proved as Proposition 2.9 in Liese and Vajda (1987) for Bo(P,Q|P) = x*(P,Q)— Dy(P,Q)

arbitrary probability measureB, M. Applying these relations
to the Bregman distances, we obtain

2D2(P5Q)7D1(P7Q> (48)
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Remark 3: The power divergence®, (P, Q) are usu-  The formula
ally applied in the statistics as criteria of discriminatior o b(6)
goodness-of-fit between the distributioRsand . The scaled /Rd e dMz) = 77, 0e® (52)
Bregman distance®3,, (P, Q| M) as generalizations of the
power divergence®, (P, Q) = B, (P, Q| Q) allow to extend
the 2D-discrimination plot{[D. (P, @); o] :c < a <d} C
R? into more informative 3D-discrimination plots

{[Bo(P,Q |BP+(1—B)Q): o; Bl:c<a, B<d}cR® Both formulas[(BR) and($3) will be useful in the sequel.

) ) (49)  We are interested in the scaled Bregman power distances
reducing to the former ones fof = 0. The simpler 2D-
plots known under the namé&-Q-plots are famous tools Bo (Pyy, Py, | Po,) for o, 01,02 € ©, a € R.

fﬁr the explorat.c(;ry ddata anqu5||s;. It IIS eadsy to, co_nsg:at fthlqere Py, , Py,, Py, are measure-theoretically equivalent prob-
the computer-aided appropriately coloured projectionthe ability measures, so that we can turn attention to the foasul

3D-plots [49) allow much more intimate insight into thelBH) [30), [3B), and[(26) td28) L
: : L ' : ) , promising to reduce the
relation between data and their statistical models. Tloegef evaluation ofB..(Ps,, Ps, | Ps, ) to the evaluation of the power

this C(_)mputer-aided 3D-exploratory analysis deservesepgfe divergencesD.(Py,, Py, ). Therefore we first study these

a;tentlon a?]d rleseargh.-Thde fnext eéamp!elpres((jaer}ts P dm_]ecudivergences and in particular verify their finiteness, whias

g twg Su% bP ots_ol talune or a binomial modet an 'S 4 sufficient condition for the applicability of the formulé&d),
ata based binomial alternatig (30) and [3B). To begin with, let us mention the following

well-established representation:

follows from (50) and implies

/ ze”’ d\(z) = "OVb(0), 6€O. (53)
Rd

Example 2:Let P = Bin(n, p) be a binomial distribution

with parameters:, p (with a slight abuse of notation), and Theorem 3:If o € R differs from0 and1, then the power
@ = Bin(n,q). Figure 1 presents projections of the CorredivergenceDa(Pg Py,) is for all 6y, 6, € © finite and given
sponding 3D-discrimination plot§TH9) far2 < a <2 and |\ e expressio;{ ’ ’

0 < B < 1, where the Subfigure (a) used the paramete?l

constellationn = 10, 7 = 0.25, § = 0.20 whereas the exp {b(af + (1 —a)f) —ab(f1) — (1 —a)b(62)} — 1

Subfigure (b) usedr = 10, p = 0.25, ¢ = 0.30. In both ala—1)
cases, the ranges &, (P,Q | 3P+ (1 — 3)Q) are subsets of _ o _ _(54)
the interval[0.06, 0.088]. In particluar, it is invariant with respect to the shifts diet

cumulant function linear i € @jn thNe sense that it coincides
with the power divergencé,,(Fy, , Ps,) in the exponential

V. EXPONENTIAL FAMILIES family with the cumulant functiorb(d) = b(0) + c+ v - 0
In this section we show that the scaled Bregman powgiherec is a real number and a d—vector.

distancesB, (P, Q| M) can beexplicitly evaluatedor prob-

ability measuresP, @, M from exponential families. Let Thjs can be easily seen by slightly extendiig (38) to get for
us restrict ourselves to the Euclidean observation spaggpitrarya € R andé;, 6, € ©

(X, A) C (R, B and denote by - 6 the scalar product _
of z,0 € R%. The convex extended real valued function 1+a-(a—1)-Dy(Ps,, Ps,) = / g, pé;a d\
R4

b(0) = 1n/ e”%d\(x), O eR?, (50) _ Jraep{z [0 + (1 — ) 6]} dA(x)
R exp{ab(61) + (1 — ) b(0)}
which together with[(52) gives the desired result.

and the convex set

0 ={0cR?:b(0) < oo}
] ) ) - The skew symmetry as well as the remaining power diver-
define on(X,A)_ anexponen_t!al family of probability measureSyencesD, (Fy,, Py,) and Dy (Py,, Py,) are given in the next,
{Py : 0 € ©} with the densities straightforward theorem.

po(x) = @(z) =exp{z-0-b0)}, zcRY 0Oceo.

d\ Theorem 4:For all 6, 6, € © anda € R different from

. o . _ (1) 0 and 1 there holds
The cumulant functiorb() is infinitely differentiable on the

interior © with the gradient Da (Pyy, Po,) = Di-a (Poys Po,)

0 0 .

Note that [G]l) are exponential type densities in tiztural
form. All exponential type distributions such as Poissos; b(61) — b(02) — Vb(6s) (61 — 02) (55)

normal etc. can be transformed to into this form (cf., e.g.,..
Brown (1986)). = lim Do (P, Po,) = D1 (Poy, o) = D (Poy, Py,) (56)

and forf, € 6
D_n¢ (P, Py,) = Do (Py,, P,) = Bf% D, (Py,, Py,)
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Fig. 1. 3D-discrimination plot{(49) foP = Bin(10, p), @ = Bin(10,q) with 0.2 < a <2 and0 < 8 < 1.

The main result of this section is the following representn particluar, all scaled Bregman distancés] (62 -] (64) are
tation theorem for Bregman distances in exponential fasili invariant with respect to the shifts of the cumulant funetio
We formulate this in terms of the functions linear ind € © in the sense that they coincide with the scaled
pea(01,05) = b(a91 (- a) 92) —ab(6y) — (1 — @) b(6e) Bregman distances3, (Pgl,P92 |]f90) in the exponential

(57) family with the cumulant functiorb(6) = b(0) +c +v -0
(where the right hand side is finite if < o < 1), as well as Wherec is a real number and a d—vector.

the functionso, (0o, 01, 02) (« € R, 0,01, 02 € O) defined as ] .
the difference Proof: (a) By (51) it holds for everya € R and

90,91, 0y € ©

ga(o, 01, 02) = a4,(00, 01, 02) — 0, (6o, 61, 62)  (58) Poy(2)\
of the nonnegative (possibly infinite) <p90 (l’)) Po, ()

ol (6o, 01, 0s) = b(a 0, 4+ (1—a) [0, — 0 + o] ) (59) = exp {(a —1)[z- (05 — 00) — (b(62) — b(6o))]
and the finite +x -0 — b(91)}

L0y, 01, 02) = ab(y) + (1 —a) |b(61) — b(B) +b(6o)] -

0 (B0, 01, 02) = ab(b1) + (1 — ) |b(61) — b(02) (0()0) :eXp{x-(oz91+(1fOé)[91*92+90])
Alternatively, —all (8o, 61, 92)}
oa(bo, 01, 02) = pa (61,00 + 01 — 02) with o1 (8, 61, 62) from (60). Since[(5R) leads to

+(1—a) [b(fo + 61 — 02) — b(6o) — b(6:1) + b(62)] . (61)

Theorem 5:Let 6y, 61, 62 € © be arbitrary. Ifa(a —
1) # 0 then the Bregman distance of the exponential family
distributionsPy, and Py, scaled byPy, is given by the formula

Ba(Pgl,P92|P90)

/}Rdexp{x~(o¢91+(1—o¢) [91*92+90])}d)\

= expal(fo, 61, 02)
for ol (69, 61, 02) given by [59), it holds

a—1
_ exppa(f1,60) Lo pa(02,00) L &P oo (00,01, 02) (62) / (pﬁ) po, A\ = expoy(6y,01,02)  (65)
Oé(Oé — 1) « 11—« x \Po,
o h fi i . N | i
If 6y respectivelyd, is from the interioro, then the limiting whereoe (0, 61, 0>) was defined in[{38). Now, by plugging
Bregman power distances are P="F),, Q=P, M=PF, (cf &)
Bo (Py,, Pa, | Py,) in (39), we get fora(a — 1) # 0 the Bregman distances
= b(01) — b(02) — Vb(bo) (01 — 02) Ba (Poy, Po, | Po,)
+expoo(fo, 01,02) — 1 (63) = Dg (P, ,Ps,) — (1 —a) Dy (Ps,, Ps,)
respectively 1 a—1
+ / (pi) po,dN—1]. (66)
B, (PQI,PQZ |P90) :b(@Q)*b(91)7Vb(91)(92791) . (64) 1-« x \Poo
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By combining the power divergence formula]54) wilhl(57)distribution P,. The distance of ordexr = 0 satisfies the
one ends up withD,, (Ps,, Ps,) = % which relation

together with [[6b) and (66) leads to the desired representat

@) BO (P917P92 | P90) = DO (P915P92) + eXpO—O(GOa 917 92) -1

— By (Py,, Po, | Ps) + A6y, 61, 02) .
(b) By the definition ofBy(P,Q | M) in (@1) and by (L) 1 (Pos, Pou | o) + Alfo, 61, 62)

BO(P917P92|P90)

= DO(PHNPGO)*Do(Pez,Peo)Jr/ %d)\—l
X 2

where
A(by, 61, 62) = expog(bo, 61, 02) — 1

represents a deviation from the skew-symmetry of the Breg-

where man distances3, (Py,, Py, | Ps,) and By (Py,, Py, | Py,) of
Do, Do, Py, and Py, . This deviation is zero if (for strictly convelX0)
/X A = expon(fo, 01, 0) (cf. ). if and only if ) 6 — 6.

For 6y € © the desired assertioh {63) follows from here and Remark 5:We see from the formula§{54) £164) that
from the formulas for all @ € R the quantitiesD, (Py,, Ps,), palbi, 02),
Do (Py,, Pp,) = b(0;)—b(00)—Vb(0o) (0;—0y) fori=1,2 albo, 01, 02) and By, (Fp,, P, | Fy,) only depend on the
_ cumulant functionb(d) defined in [(BD), anchot directly on
obtained from[(55). the reference measupeused in the definition formula§(50),

(c) The desired formuld{(64) follows immediately from théﬂ)'

definition [46) and from the formulals (44)), {49).155) ahd)(56
(d) The finally stated invariance is immediate. O V. EXPONENTIAL APPLICATIONS

. _ . In this section we illustrate the evaluation of scaled Bragm
The Conclusion 1 of Section Il about the relation betweegyergencess,, (Py,, Py, | Py,) for some important discrete
scaled Bregman distances apdlivergences can be completeding continuous exponential families, and also for exponen-
by the following relation between both of them and thgaly distributed random processes.
classical Bregman distancds (1). Binomial model: Consider for fixedn > 2 on the

_ . observation spac&’ = {0,...,n} the binomial distribution
Conclusion 2: Let By(x,y) be the classical Bregman p, determined by

distance [(1) ofz,y € RY andP = {P: 6 € R?} the ex-
ponential family with cumulant function, i.e., with densities  p rr, 11 — \[{2V] - exolz - 0 — b(0)) = (") T(] _ p)n—e
po(s) = expls-0—d(0)}, s € R%. Then for allP,, P,, P, € P olixd] = M}l - et O =1z )p" =7

By(z,y) = By(P,, P:|P.) = Dy (P,, P.) , for z € {0, ...,n}, where

i.e., there is a one-to-one relation between the classiogl;}] = (”), 0=n-L_ co—-R and b(0) = nin(1+¢e) .
Bregman distanceB,(z,y) and the scaled Bregman dis- z I-p

tances B, (P, P.|P.) and power divergence®)(P,, P:)  After some calculations one obtains from](57) ahd (61)

of the exponential probability measures generated by

the cumulant functiong. This means that the family
{Ba(P,, P,|P.) : a € R, z € R?} of scaled Bregman power
distances and the familfD, (P, P.): « € R} of power
divergences extend the classical Bregman distafitgs;, v) 62 (1) (0-461—02) P
to which they reduce at = 1 and arbitraryP. € P. In fact, . 5 9 0.y — pn (1+en 0+01762)) (1 + ef2)
we meet here the extension of the classical Bregman distancé ™~ (1 + ef)x(1 + )

in three different directions: the first represented by @i Apnlving Theorem 5 one achieves an explicit formula for the
power parametera € R, the second represented by variouginomial Bregman distanceB,, (Ps, , Py, | Py, ) from here.
possible exponential distributions parametrized ey R?, and e

the third represented by the exponential distribution ipeters
z € R? which are relevant when # 1.

1 +ea01+(17a)92
(It el )a(l+ef)a

pa(91, 92) =nln

and

Rayleigh model: An important role in communication
theory play the Rayleigh distributions defined by the prob-

ability densities
Remark 4: We see from Theorems 4 and 5 that — y

. . - : o 022
consistent with [(30),[{45) — for arbitrary interior paraest po(x) = Oz exp G~ heco=(0,00) (67)
bo, 01, 02 € © 2

By (Py,, Py, | Po,) = D1 (Po,, Po,), with respect to the restrictioh of the Lebesgue measupe

_ . _on the observation spaceé = (0, c0). The mapping
i. e. that the Bregman distance of order= 1 of exponential

family distributions P, , Py, does not depend on the scaling T(x) = -2z
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from the positive halfline(0,00) to the negative halfline The formula[[€D) implies that the familj, = {P, o : 0 € O}
(—o0, 0) transforms[(&l7) into the family of Rayleigh densitiess exponential or{X;, A;) for which the “extremally reduced”
pol) = O exp {02} = exp {0z — b(O)} observationT'(x;) = x; is statistically sufficient. Thus, by

Theorem 1,
for b(f) = —1In6, 0 >0

. . B(Pi6,, Pto,|Pr0) = B(Qt,6,,Qt,6,|Qt.0) (71)
with respect to the restriction_ of the Lebesgue measure . . o .
) on the observation spac& = (—oc,0). These are the where ); o is a probability distribution on the real line

Rayleigh densities in the natural form assumedTd (51). rAft@overning the marginal distribution of the last observelliea

some calculations one derives from(57) X; of the processX';.
pa(01,02) = In 0% 0, (68) Queueing processes and Brownian motiofsr illustra-
o aby + (1 —a)b, tion of the general result of the previous subsection we can
and take the family ofPoisson processesith initial value Xy = 0

—a and intensities) = ¢?, § € © =R for which§ = o = 0 and

01 bo . c(f) =€’ —1 so thatby(0) =t (e’ —1). ThenQy is the
(b + (1 —a)(0 + 61 —62)) 657" Poisson distribution P6f) with parameterr = ¢ = te? and
Applying Theorem 5 one obtains the Rayleigh-Bregman digrobabilities

Ja(90,91,92) =In

tancesB,, (Py,, Py, | Ps,) from here. e~ T (7)¢
. Quol(r)) = S <) explad — )
Theorem 1 about the preservation of the scaled Bregman x
distances by statistically sufficient transformations seful for 9=In7=0+1Int, A{z}] = i' )
T

for the evaluation of these distances in exponential fasili :

It implies for example that these distances in the normal ad¢ie exponential structure is similar as above, so that by
lognormal families coincide. The next two examples dealirgpplying [57) to the cumulant functioh(v)) = ¢ = te’ we
with distances of stochastic processes make use of thisgimeoget for the Poisson processes with paramefgrand 0,

too. _ abfi+(1—a)b2 61 02
Exponentialy distributed signalsMost of the random pal01,62) =1 [e —ae’ —(1—a)e } :

processes modelling physical, social and economic phe"am@ombining this with[[BIL) and Theorem 5 we obtain an explicit

are exponentially distributed. Important among them aee thyrmuyla for the scaled Bregman distanEel(71) of these Poisso
real valued Lévy processeX,; = (X, : 0 < s < t) with processes.

trajectoriesz; = (zs : 0 < s < t) from the Skorokchod

observation spacest;, A;) and parameters from the set To give another illustration of the result of the previous
subsection, let us first introduce the standard Wiener jgsoce
©={0eR:c(f) < oo} X, which is the Lévy process with =0, § =0, o = 1 and

0 = 1. It defines thefamily of Wiener processes

X,=0X,, 0<s<t, 6€(0,00),

defined by means of the function

c(0) = / 2% /(1 4 22) dv(z)

R\{0} which are Lévy processes with=0, o = 1 and¢(f) =0 so
wherev is a Lévy measure which determines the probabilidpat (Z0) impliesb, (6) = 6%/2. They are well-known models
distribution of the size of jumps of the process and the isitgn Of the random fluctuations called Brownian motions. If the
with which jumps occur. It is assumed thabelongs to® and |n_|t|al value X is zero then@w is the normal dlstrlbut|pn
it is known (cf., e.g., Kiichler and Sorensen (1994)) that thvith mean zero and variance€ = 0. The corresponding
probability distributionsP; 4 induced by these processes okebesgue densities

(X, Ay) are mutually measure-theoretically equivalent with 2
i iti ! e . ﬁe {719 2} forﬁfL
the relative densities Norme XPY "oz ( T\ &P x =52
dP; g
dPtO(zt) = exp{0 z; — b, (0)} (69) are transformed by the mapping — —+/|z| of R on

] . the negative halfling—c0,0) into the natural exponential
for the_endxt o_f the trajectoryz,. The cumulant function densities exp {9z — b(1)} with respect to the dominating
appearing here is density 1//w|z| whereb(d) = —1Ind = —In3 + LIn2t.

Thus b
bi(9) =t <59 + %(7292 + v(a)) (70) y&D )
07 0,

0(f1,00) = —In——L1 72 . .
for two genuine parameterse R respectivelyc > 0 of the pa(01,62) " aby + (1 — «)bsy (cf. €8)

process which determine its intensity of drift respeciviés g together with[{81) and Theorem 5 leads to the explicit
volatility, and for the function formula for the scaled Bregman distanEel(71) of the Wiener

+(0) = / % — 1 — 02/(1 + 22)] dv(x). processes under consideration.
R\{0}
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Geometric Brownian motiong=rom the abovementioned
standard Wiener process one can also build upfaingly of
geometric Brownian motiongeometric Wiener processes)

Y, = exp{a)?S +0s}, 0<s<t, 0eR,
where the family-generating can be interpreted as drift
parameters, and the volatility parameter> 0 is assumed
to be constant all over the family. ThemX; + 6¢ is normally
distributed with meanm = 6t and variancev® = o?t,

11

REFERENCES

Amari S.-1. (2007), “Integration of stochastic models bynmiizing
a-divergence,"Neural Computatiorvol. 19, no. 10, pp. 2780-2796.
Banerjee, A., Guo, X., and Wang, H. (2005a), “On the optitgpadf
conditional expectation as a Bregman predictd-EE Transaction
on Information theoryvol. 51, no. 7, pp. 2664-2669.

Banerjee, A., Merugu, S., Dhillon, I.S. and Ghosh, J. (2005b
“Clustering with Bregman divergences]. Machine Learning Re-
searchvol. 6, pp. 1705-1749.

Bartlett, P.L., Jordan M.l. and McAuliffe, J.D. (2006), “@¢exity,

andY; is lognormally distributed with the same parametersclassification and risk boundsJASA vol. 101,pp. 138-156.

m and v2. By (Z1), the scaled Bregman distance of two
geometric Brownian motions with parametéks 0, reduces
to the scaled Bregman distance of two lognormal distrilmgio
LN(61t,0%t), LN(62t,0°t). As said above, it coincides with

Bauschke, H.H. and Borwein, J.M. (1997), “Legendre fundiand
the method of random Bregman projections]."Convex Analysis
vol. 4, No. 1, pp. 27-67.

Boratynska, A. (1997), “Stability of Bayesian inference érpo-

the scaled Bregman distance of two normal distributiongiential families,”Statist. & Probab. Lettersiol. 36, pp. 173-178.

N(01t, 0°t), N(02t,c%t). This is seen also from the fact that
the reparametrization

and transformation® — R? similar to that from the previ-
ous example lead in both distributions/N¢?) and LN, v?)
to the same natural exponential density

po.r(T1,T2) = exp {z19 + 27 — bV, T)}

with
2

1
-1 .
b(9, 1) 5 DT—|—47_

These two distributions differ just in the dominating meaasu
on the transformed observation space= R2. For (u;,v?) =
(01t,02%t) and (uz,v3) = (62t,0%t) we get

> and (¥2,12) = <
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