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On Bregman Distances and Divergences of
Probability Measures

Wolfgang Stummer and Igor Vajda,Fellow, IEEE

Abstract—The paper introduces scaled Bregman distances of
probability distributions which admit non-uniform contri butions
of observed events. They are introduced in a general form cover-
ing not only the distances of discrete and continuous stochastic
observations, but also the distances of random processes and
signals. It is shown that the scaled Bregman distances extend
not only the classical ones studied in the previous literature,
but also the information divergence and the related wider class
of convex divergences of probability measures. An information
processing theorem is established too, but only in the senseof
invariance w.r.t. statistically sufficient transformations and not in
the sense of universal monotonicity. Pathological situations where
coding can increase the classical Bregman distance are illustrated
by a concrete example. In addition to the classical areas of
application of the Bregman distances and convex divergences
such as recognition, classification, learning and evaluation of
proximity of various features and signals, the paper mentions
a new application in 3D-exploratory data analysis. Explicit
expressions for the scaled Bregman distances are obtained in
general exponential families, with concrete applicationsin the
binomial, Poisson and Rayleigh families, and in the families of
exponential processes such as the Poisson and diffusion processes
including the classical examples of the Wiener process and
geometric Brownian motion.

Index Terms — Bregman distances, classification, divergences,
exponential distributions, exponential processes, information re-
trieval, machine learning, statistical decision, sufficiency.

I. I NTRODUCTION

BREGMAN (1967) introduced for convex functionsφ :
R

d → R with gradient▽φ the φ-depending nonnegative
measure of dissimilarity

Bφ(p, q) = φ(p) − φ(q)− ▽φ(q)(p − q) (1)

of d-dimensional vectorsp, q ∈ R
d. His motivation was

the problem of convex programming, but in the subsequent
literature it became widely applied in many other problems
under the nameBregman distancein spite of that it is not in
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Prague, Czech Republic (e-mail: vajda@utia.cas.cz).

Manuscript received October 26, 2009; revised August 4, 2011. This
work was supported by the M̌SMT grant 1M0572 and the GǍCR grant
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general the usual metric distance (it is a pseudodistance which
is reflexive but neither symmetric nor satisfying the triangle
inequality). The most important feature is the specialseparable
form defined by

Bφ(p, q) =
d∑

i=1

[φ(pi)− φ(qi)− φ′(qi)(pi − qi)] (2)

for vectors p = (p1, ..., pd), q = (q1, ..., qd) and convex
differentiable functionsφ : R → R. For example, the function
φ(t) = (t − 1)2 leads to the classical squared Euclidean
distance

Bφ(p, q) =

d∑

i=1

(pi − qi)
2
. (3)

In the optimization-theoretic context the Bregman distances
are usually studied in the general form (1) – see, e.g.,
Csiszár and Matúš (2008, 2009), as well as Bauschke and
Borwein (1997) for adjecent random projection studies. In the
information-theoretic or statistical context they are typically
used in the separable form (2) for vectorsp, q with nonneg-
ative coordinates representing generalized distributions (finite
discretemeasures) and functionsφ : [0,∞) → R differentiable
on (0,∞) (the problem withqi = 0 is solved by resorting
to the right-hand derivativeφ′+(0)). The concrete example
φ(t) = t ln t leads to the well-known Kullback divergence

Bφ(p, q) =

d∑

i=1

pi ln
pi
qi
.

Of course, the most common context are discrete probability
distributionsp, q since vectors of hypothetical or observed fre-
quenciesp, q are easily transformed to the relative frequencies
normed to1. For example, Csiszár (1991, 1994, 1995) or
Pardo and Vajda (1997, 2003) used the Bregman distances of
probability distributions in the context of information theory
and asymptotic statistics.

Important alternatives to the Bregman distances (2) are the
φ- divergencesdefined by

Dφ(p, q) =
d∑

i=1

qiφ

(
pi
qi

)
(4)

for functionsφ which are convex on[0,∞), continuous on
(0,∞) and strictly convex at1 with φ(1) = 0. Originating in
the paper of Csiszár (1963), they share some properties with
the Bregman distances (2), e.g., they are pseudodistances too.
For example, the above considered functionsφ(t) = (t − 1)2
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and φ(t) = t ln t lead in this case to the classical Pearson
divergence

Dφ(p, q) =

d∑

i=1

(pi − qi)
2

qi
(5)

and the above mentioned Kullback divergenceDφ(p, q) ≡
Bφ(p, q) which are asymmetric inp, q and contradict the
triangle inequality. On the other hand,φ(t) = |t − 1| leads
to the L1-norm ||p − q|| which is a metric distance and
φ(t) = (t− 1)2/(t+ 1) defines the LeCam divergence

Dφ(p, q) =

d∑

i=1

(pi − qi)
2

pi + qi

which is a squared metric distance (for more about the
metricity of φ -divergences the reader is referred to Vajda
(2009)).

However, there exist also some sharp differences between
these two types of pseudodistances of distributions. One
distinguising property of Bregman distances is that their use as
loss criterion induces the conditional expectation as outcoming
unique optimal predictor from given data (cf. Banerjee at al.
(2005a)); this is for instance used in Banerjee et al. (2005b)
for designing generalizations of thek-means algorithmwhich
deals with the special case of squared Euclidean error (3)
(cf. the seminal work of Lloyd (1982) reprinting a Technical
Report of Bell Laboratories dated by 1957). These features
are generally not shared by those of theφ-divergences which
are not Bregman distances, e.g., by the Pearson divergence
(5). On the other hand, a distinguishing property ofφ-
divergences is theinformation processing property, i.e., the
impossibility to increase the valueDφ(p, q) by transforma-
tions of the observations distributed by p, q and preservation
of this value by the statistically sufficient transformations
(Csiszár (1967), see in this respect also Liese and Vajda
(2006)). This property is not shared by the Bregman distances
which are notφ-divergences. For example, the distributions
p = (1/2, 1/4, 1/4) andq = (1, 0, 0) are mutually closer (less
discernible) in the Euclidean sense (3) than their reductions
p̃ = (1/2, 1/2) andq̃ = (1, 0) obtained by merging the second
and third observation outcomes into one.

Depending on the need to exploit one or the other of these
distinguished properties, the Bregman distances or Csisz´ar di-
vergences are preferred, and both of them are widely appliedin
important areas of information theory, statistics and computer
science, for example in

(Ai) information retrieval(see, e.g., Do and Vetterli (2002),
Hertz at al. (2004)),

(Aii) optimal decision(for general decisionsee, e.g., Bo-
ratynska (1997), Freund et al. (1997), Bartlett et al. (2006),
Vajda and Zvárová (2007), forspeech processingsee, e.g.,
Carlson and Clements (1991), Veldhuis and Klabers (2002),
for image processingsee, e.g., Xu and Osher (2007), Marquina
and Osher (2008), Scherzer et al. (2008)), and

(Aiii) machine learning(see, e.g., Laferty (1999), Banerjee et
al. (2005), Amari (2007), Teboulle (2007), Nock and Nielsen
(2009)).

(Aiv) parallel optimization and computing(see, e.g., Censor
and Zenios (1997)).

In this context it is obvious the importance of the functionals
of distributions which are simultaneously divergences in both
the Csiszár and Bregman sense or, more broadly, of the
research of relations between the Csiszár and Bregman diver-
gences. This paper is devoted to this research. It generalizes the
separable Bregman distances (2) as well as theφ-divergences
(4) by introducing thescaled Bregman distanceswhich for the
discrete setup reduce to

Bφ(p, q|m) =

d∑

i=1

[
φ(pi/mi)− φ(qi/mi)

−φ′+(qi/mi)(pi/mi − qi/mi)
]
mi (6)

for arbitrary finite scale vectorsm = (m1, ...,md), convex
functions φ and right-hand derivativesφ′+. Obviously, the
uniform scalesm = (1, ..., 1) lead to the Bregman distances
(2) and the probability distribution scalesm = q = (q1, ..., qd)
lead to theφ-divergences (4). We shall work out further
interesting relations of theBφ(p, q|m) distances to theφ-
divergencesDφ(p, q) and Dφ(p,m) and evaluate explicit
formulas for the stochastically scaled Bregman distances in
arbitrary exponential families of distributions, including also
the non-discrete setup.

Section II defines theφ-divergencesDφ(P,M) of general
probability measuresP and arbitrary finite measuresM and
briefly reviews their basic properties. Section III introduces
scaled Bregman distancesBφ(P,Q|M) and investigates their
relations to theφ -divergencesDφ(P,Q) and Dφ(P,M).
Section IV studies in detail the situation where all three
measuresP,Q,M are from the family of general exponen-
tial distributions. Finally, Section V illustrates the results by
investigating concrete examples ofP,Q,M from classical
statistical families as well as from a family of important
random processes.

Notational conventions:Throughout the paper,M de-
notes the space of all finite measures on a measurable space
(X ,A) and P ⊂ M the subspace of all probability mea-
sures. Unless otherwise explicitly statedP,Q,M are mutually
measure-theoretically equivalent measures on(X ,A) domi-
nated by aσ-finite measureλ on (X ,A). Then the densities

p =
dP

dλ
, q =

dQ

dλ
and m =

dM

dλ
(7)

have a common support which will be identified withX (i.e.,
the densities (7) are positive onX ). Unless otherwise explicitly
stated, it is assumed thatP,Q ∈ P, M ∈ M and thatφ :
(0,∞) 7→ R is a continuous and convex function. It is known
that then the possibly infinite extensionφ(0) = limt↓0 φ(t)
and the right-hand derivativesφ′+(t) for t ∈ [0,∞) exist, and
that the adjoint function

φ∗(t) = tφ(1/t) (8)

is continuous and convex on(0,∞) with possibly infinite
extensionφ∗(0). We shall assume thatφ(1) ≡ φ∗(1) = 0.
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II. DIVERGENCES

For P ∈ P andM ∈ M we consider

Dφ(P,M) =

∫

X

φ
( p
m

)
dM =

∫

X

mφ
( p
m

)
dλ (cf. (7))

(9)
generated by the same convex functions as considered in the
formula (4) for discreteP andM . An important special case
is Dφ(P,Q) with Q ∈ P.

The existence (but possible infinity) of theφ-divergences
follows from the bounds

φ′+(1)(p−m) ≤ mφ
( p
m

)
≤ mφ(0) + p φ∗(0) (10)

on the integrand, leading to theφ-divergence bounds

φ′+(1)(1−M(X )) ≤ Dφ(P,M) ≤ M(X )φ(0) + φ∗(0).
(11)

The integrand bounds (10) follow by puttings = 1 and t =
p/m in the inequality

φ(s) + φ′+(s)(t− s) ≤ φ(t) ≤ φ(0) + tφ∗(0), (12)

where the left-hand side is the well-known support line ofφ(t)
at t = s. The right-hand inequality is obvious forφ(0) = ∞.
If φ(0) <∞ then it follows by takings→ ∞ in the inequality

φ(t) ≤ φ(0) + t
φ(s)− φ(0)

s
,

obtained from the Jensen inequality forφ(t) situated between
φ(0) and φ(s). Since the functionψ(p,m) = mφ(p/m) is
homogeneous of order 1 in the senseψ(tp, tm) = tψ(p,m)
for all t > 0, the divergences (9) do not depend on the choice
of the dominating measureλ.

Notice thatDφ(P,M) might be negative. For probability
measuresP,Q the bounds (11) take on the form

0 ≤ Dφ(P,Q) ≤ φ(0) + φ∗(0), (13)

and the equalities are achieved under well-known conditions
(cf. Liese and Vajda (1987), (2006)): the left equality holds
if P = Q, and the right one holdsif P ⊥ Q (singularity).
Moreover, if φ(t) is strictly convex att = 1, the first if can
be replaced byiff, and in the caseφ(0) + φ∗(0) < ∞ also
the secondif can be replaced byiff.

An alternative to the left-hand inequality in (11), which ex-
tends the left-hand inequality in (13) including the conditions
for the equality, is given by the following statement (for a
systematic theory ofφ-divergences of finite measures we refer
to the recent paper of Stummer and Vajda (2010)).

Lemma 1:For everyP ∈ P, M ∈ M one gets the lower
divergence bound

M(X )φ

(
1

M(X )

)
≤ Dφ(P,M) , (14)

where the equality holds if

p =
m

M(X )
P -a.s. (15)

If Dφ(P,M) <∞ andφ(t) is strictly convex att = 1/M(X ),
the equality in (14) holds if and only if (15 ) holds.

Proof: By (9) and the definition (8) of the convex
functionφ∗

Dφ(P,M) =

∫

X

φ∗
(
m

p

)
dP.

Hence by Jensen’s inequality

Dφ(P,M) ≥ φ∗
(∫

X

m

p
dP

)
= φ∗(M(X )) (16)

which proves the desired inequality (14). Since

m

p
= M(X ) P -a. s.

is the condition for equality in (16), the rest is clear from the
easily verifiable fact thatφ∗(t) is strictly convex att = s if
and only ifφ(t) is strictly convex att = 1/s. �

For some of the representation investigations below, it will
also be useful to take into account that for probability measures
P,Q we get directly from definition (9) the “skew symmetry”
φ-divergence formula

Dφ∗(P,Q) = Dφ(Q,P ) ,

as well as the sufficiency of the condition

φ(t) − φ∗(t) ≡ constant· (t− 1) (17)

for theφ-divergence symmetry

Dφ(P,Q) = Dφ(Q,P ) for all P,Q . (18)

Liese and Vajda (1987) proved that under the assumed strict
convexity of φ(t) at t = 1 the condition (17) is is not only
sufficientbut alsonecessaryfor the symmetry (18).

III. SCALED BREGMAN DISTANCES

Let us now introduce the basic concept of the current paper,
which is a measure-theoretic version of the Bregman distance
(6). In this definition it is assumed thatφ is a finite convex
function in the domaint > 0, continuously extended tot = 0.
As before,φ′+(t) denotes the right-hand derivative which for
suchφ(t) exists andp, q,m are the densities defined in (7).

Definition 1: The Bregman distanceof probability mea-
suresP, Q scaled by an arbitrary measureM on (X ,A)
measure-theoretically equivalent withP, Q is defined by the
formula

Bφ (P,Q |M)

=

∫

X

[
φ
( p
m

)
− φ

( q
m

)
− φ′+

( q
m

)( p
m

− q

m

)]
dM

(19)

=

∫

X

[
mφ

( p
m

)
−mφ

( q
m

)
− φ′+

( q
m

)
(p− q)

]
dλ.

The convexφ under consideration can be interpreted as a
generating function of the distance.
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Remarks 1:(1) By puttingt = p/m ands = q/m in (12)
we find the argument of the integral in (19) to be nonnegative.
Hence the Bregman distanceBφ (P,Q |M) is well-defined by
(19) and is always nonnegative (possibly infinite).

(2) Notice that the integrand in the first (respectively sec-
ond) integral of (19) constitutes a function, say,Υ̃(p, q,m)
(respectivelyΥ(p, q,m)) which is homogeneous of order
0 (respectively order1), i.e., for all t > 0 there holds
Υ̃(tp, tq, tm) = Υ̃(p, q,m) (respectivelyΥ(tp, tq, tm) =
t · Υ(p, q,m)). Analogously, as already partially indicated
above, the integrand in the first (respectively second) integral
of (9) is also a function, say,̃ψ(p,m) (respectivelyψ(p,m))
which is homogeneous of order0 (respectively order1).

(3) In our measure-theoreticcontext (19) we have incorpo-
rated the possible non-differentiability ofφ by using its right-
hand derivative, which will be essential at several places below.
For generalBanach spaces, one typically employs various di-
rectional derivatives – see, e.g., Butnariu and Resmerita (2006)
in connection with different types of convexity properties.

The special scaled Bregman distancesBφ (P,Q |M) for
probability scalesM ∈ P were introduced by Stummer
(2007). Let us mention some other important previously con-
sidered special cases.

(a) For X finite or countable and counting measureM = λ
some authors were already cited above in connection with the
formula (2) and the research areas(Ai) - (Aiii) . In addition to
them, one can mention also Byrne (1999), Collins et al. (2002),
Murata et al. (2004), Cesa-Bianchi and Lugosi (2006).

(b) For open Euclidean setX and Lebesgue measureM = λ
on it one can mention Jones and Byrne (1990), as well as
Resmerita and Anderssen (2007).

In the rest of this paper, we restrict ourselves to the Bregman
distancesBφ (P,Q |M) scaled by finite measuresM ∈ M
and to the same class of convex functions as considered in the
φ-divergence formulas (4) and (9). By using the remark after
Definition 1 and applying (12) we get

Dφ(P,M) ≥ Dφ(Q,M) +

∫

X

φ′+

( q
m

)
(p− q)dλ

if at least one of the right-hand side expressions is finite.
Similarly,

Bφ (P,Q |M) = Dφ(P,M)−Dφ(Q,M)−
∫

X

φ′+

( q
m

)
dλ

(20)
if at least two of the right-hand side expressions are finite
(which can be checked, e.g., by using (11) or (14)).

The formula (19) simplifies in the important special cases
M = P andM = Q. In the first case, due toφ(1) = 0 it
reduces to

Bφ (P,Q |P ) =
∫

X

[
φ′+

(
q

p

)
(q − p)− pφ

(
q

p

)]
dλ

=

∫

X

φ′+

(
q

p

)
(q − p)dλ−Dφ(Q,P ) , (21)

where the difference (21) is meaningful if and only if
Dφ(Q,P ) ≡ Dφ∗(P,Q) is finite. The nonnegative divergence
measureBφ (P,Q) := Bφ (P,Q |P ) is thus the difference
between the nonnegative dissimilarity measure

Dφ (Q,P ) =

∫

X

φ′+

(
q

p

)
(q − p) dλ ≥ Dφ(Q,P )

and the nonnegativeφ−divergenceDφ(Q,P ). Furthermore, in
the second special caseM = Q the formula (19) leads to the
equality

Bφ (P,Q |Q) = Dφ(P,Q) (22)

without any restriction onP,Q ∈ P as realized already by
Stummer (2007).

Conclusion 1:Equality (22) – together with the fact that
Bφ (P,Q |M) depends in general onM (see, e.g., Subsec-
tion B below) – shows that the concept of scaled Bregman
distance (19) strictly generalizes the concept ofφ−divergence
Dφ(P,Q) of probability measuresP,Q.

Example 1:As an illustration not considered earlier we
can take the non-differentiable functionφ(t) = |t − 1| for
which

Bφ (P,Q |Q) = V (P,Q)

i.e., this particular scaled Bregman distance reduces to the well
known total variation.

As demonstrated by an example in the Introduction, mea-
surable transformations (statistics)

T : (X ,A) 7→ (Y,B) (23)

which arenot sufficient for the pair{P,Q} can increase those
of the scaled Bregman distancesBφ (P,Q |M) which are not
φ -divergences. On the other hand, the transformations (23)
whicharesufficient for the pair{P,Q} need not preserve these
distances either. Next we formulate conditions under which
the scaled Bregman distancesBφ (P,Q |M) are preserved by
transformations of observations.

Definition 2: We say that the transformation (23) is
sufficient for the triplet{P, Q, M} if there exist measurable
functionsgP , gQ, gM : Y 7→ R andh : X 7→ R such that

p(x) = gP (Tx)h(x), q(x) = gQ(Tx)h(x)

and m(x) = gM (Tx)h(x). (24)

If M is probability measure then our definition reduces to
the classical statistical sufficiency of the statisticT for the
family {P, Q, M} (see pp. 18-19 in Lehman (2005)). All
transformations (23) induce the probability measuresPT−1,
QT−1 and the finite measureMT−1 on (Y,B). We prove that
the scaled Bregman distances of induced probability measures
PT−1, QT−1 scaled byMT−1 are preserved by sufficient
transformationsT .
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Theorem 1: The transformations (23) sufficient for the
triplet {P,Q, M} preserve the scaled Bregman distances in
the sense that

Bφ

(
PT−1, QT−1 |MT−1

)
= Bφ (P,Q |M) . (25)

Proof.: By (19) and (24), the right-hand side of (25) is
equal to

∫

X

[φP,M (Tx)− φQ,M (Tx)−∆P,Q,M (Tx)] dM (26)

for

φP,M (y) = φ

(
gP (y)

gM (y)

)
, φQ,M (y) = φ

(
gQ(y)

gM (y)

)
(27)

and

∆P,Q,M (y) = φ
′

+

(
gQ(y)

gM (y)

)
(gP (y)− gQ(y)) . (28)

By Theorem D in Section 39 of Halmos (1964), the integral
(26) is equal to

∫

Y

[φP,M (y)− φQ,M (y)−∆P,Q,M (y)] dMT−1 (29)

and, moreover,

P (T−1B) =

∫

B

gP (y)h(T
−1y) dλT−1

and similarly forQ instead ofP . Therefore

dPT−1

dλT−1
= gP (y)h(T

−1y) and
dQT−1

dλT−1
= gQ(y)h(T

−1y)

which together with (27), (28) and (19) implies that the integral
(29) is nothing but the left-hand side of (25). This completes
the proof. �

Remark 2: Notice that by means of Remark 1(2) after
Definition 1, the assertion of Theorem 1 can be principally re-
lated to the preservation ofφ−divergences by transformations
which are sufficient for the pair{P,Q} .

In the rest of this section we discuss some important special
classes of scaled Bregman distances obtained for special
distance-generating functionsφ.

A. Bregman logarithmic distance

Let us consider the special functionφ(t) = t ln t. Then
φ′(t) = ln t+ 1 so that (19) implies

Bt ln t (P,Q |M)

=

∫

X

[
p ln

p

m
− q ln

q

m
−
(
ln

q

m
+ 1

)
(p− q)

]
dλ

=

∫

X

[
p ln

p

m
− p ln

q

m

]
dλ

=

∫

X

p ln
p

q
dλ = Dt ln t (P,Q) . (30)

Thus, forφ(t) = t ln t the Bregman distanceBφ (P,Q |M)
exceptionally does not depend on the choice of the scaling and
reference measuresM and λ; in fact, it always leads to the

Kulllback-Leibler information divergence (relative entropy)
Dt ln t(P,Q) (cf. Stummer (2007)). As a side effect, this
independence gives also rise to examples for the conclusion
that the validity of (25) does generally not imply thatT is
sufficient for the triplet{P, Q, M}.

B. Bregman reversed logarithmic distance

Let now φ(t) = − ln t so thatφ′(t) = −1/t. Then (19)
implies

B− ln t (P,Q |M)

=

∫

X

[
m ln

m

p
−m ln

m

q
+
m

q
(p− q)

]
dλ (31)

= Dt ln t(M,P )−Dt ln t(M,Q) +

∫

X

mp

q
dλ−M(X ) (32)

= D− ln t(P,M)−D− ln t(Q,M) +

∫

X

mp

q
dλ−M(X ) (33)

where the equalities (32) and (33) hold if at least two out of
the first three expressions on the right-hand side are finite.In
particular, (31) implies (consistent with (22))

B− ln t (P,Q |Q) = D− ln t(P,Q) (34)

and (32) implies forDt ln t(P,Q) <∞ (consistent with (21))

B− ln t (P,Q |P ) = χ2(P,Q)−Dt ln t(P,Q) (35)

where

χ2(P,Q) =

∫

X

(p− q)2

q
dλ

is the well-known Pearson information divergence. From
(34) and (35) one can also see that the Bregman distance
Bφ (P,Q |M) does in general depend on the choice of the
reference measureM .

C. Bregman power distances

In this subsection we restrict ourselves for simplicity to
probability measuresM ∈ P, i.e., we supposeM(X ) = 1.
Under this assumption we investigate the scaled Bregman
distances

Bα (P,Q |M) = Bφα
(P,Q |M) , α ∈ R, α 6= 0, α 6= 1

(36)
for the family of power convex functions

φ(t) ≡ φα(t) =
tα − 1

α(α − 1)
with φ′α(t) =

tα−1

α− 1
. (37)

For comparison and representation purposes, we use forP
(and analogously forQ instead ofP ) the power divergences

Dα(P,M) = Dφα
(P,M)

=
1

α(α− 1)

[∫

X

pαm1−α dλ− 1

]

=
exp ρα(P,M)− 1

α(α− 1)
with ρα(P,M) = ln

∫

X

pαm1−α dλ

(38)



TO APPEAR IN IEEE TRANSACTIONS ON INFORMATION THEORY 6

of real powersα different from0 and1, studied for arbitrary
probability measuresP,M in Liese and Vajda (1987). They
are one-one related to the Rényi divergences

Rα(P,M) =
ρα(P,M)

α(α − 1)
, α ∈ R, α 6= 0, α 6= 1,

introduced in Liese and Vajda (1987) as an extension of the
original narrower class of the divergences

Rα(P,M) =
ρα(P,M)

α− 1
, α > 0, α 6= 1

of Rényi (1961).

Returning now to the Bregman power distances, observe
that if Dα(P,M) + Dα(Q,M) is finite then (20), (36) and
(37) imply for α 6= 0, α 6= 1

Bα(P,Q |M)

= −Dα(Q,M)− 1

α− 1

∫

X

( q
m

)α−1

(p− q) dλ

= Dα(P,M)−Dα(Q,M)

− 1

α− 1

∫

X

[( q
m

)α−1

p−
( q
m

)α

m

]
dλ

= Dα(P,M)− (1−α)Dα(Q,M)

− 1

α−1

[∫

X

( q
m

)α−1

p dλ− 1

]
. (39)

In particular, we get from here (consistent with (22))

Bα(P,Q |Q) = Dα(P,Q)

and in case ofDα(Q,P ) ≡ D1−α(P,Q) <∞ also

Bα(P,Q |P ) = (α− 2)Dα−1(Q,P ) + (α− 1)Dα(Q,P )

≡ (α− 2)D2−α(P,Q) + (α− 1)D1−α(P,Q).

In the following theorem, and elsewhere in the sequel, we
use the simplified notation

D1(P,M) = Dt ln t(P,M) and D0(P,M) = D− ln t(P,M)

for the probability measuresP,M under consideration (and
also later on whereM is only a finite measure). This step is
motivated by the limit relations

lim
α↓0

Dα(P,M) = D− ln t(P,M) and

lim
α↑1

Dα(P,M) = Dt ln t(P,M) (40)

proved as Proposition 2.9 in Liese and Vajda (1987) for
arbitrary probability measuresP,M . Applying these relations
to the Bregman distances, we obtain

Theorem 2:If D0(P,M) +D0(Q,M) <∞ then

lim
α↓0

Bα(P,Q |M)

= D0(P,M)−D0(Q,M) +

∫

X

mp

q
dλ− 1 (41)

= B− ln t(P,Q |M). (42)

If D1(P,M) +D1(Q,M) <∞ and

lim
β↓0

∫

X

(q/m)−β − 1

β
dP

=

∫

X

lim
β↓0

(q/m)−β − 1

β
dP = −

∫

X

ln
q

m
dP (43)

then

lim
α↑1

Bα(P,Q |M) = D1(P,M)−
∫

X

ln
q

m
dP (44)

= D1(P,Q) = Bt ln t(P,Q |M) . (45)

Proof: If 0 < α < 1 then Dα(P,M), Dα(Q,M)
are finite so that (39) holds. Applying the first relation of
(40) in (39) we get (41) where the right hand side is well
defined becauseD0(P,M) + D0(Q,M) is by assumption
finite. Similarly, by using the second relation of (40) and the
assumption ( 43) in (39) we end up at (44) where the right-
hand side is well defined becauseD1(P,M )+D1(Q,M ) is
assumed to be finite. The identity (42) follows from (41), (
33) and the identity (45) from (44), (30). �

Motivated by this theorem, we introduce for all probability
measuresP, Q, M under consideration the simplified nota-
tions

B1(P,Q |M) = Bt ln t(P,Q |M) (46)

and
B0(P,Q |M) = B− ln t(P,Q |M) , (47)

and thus, (45) and (42) become

B1(P,Q |M) = lim
α↑1

Bα(P,Q |M)

and
B0(P,Q |M) = lim

α↓0
Bα(P,Q |M).

Furthermore, in these notations the relations (30), (34) and (35)
reformulate (under the corresponding assumptions) as follows

B1(P,Q |M) = D1(P,Q) ,

B0(P,Q |Q) = D0(P,Q)

and

B0(P,Q |P ) = χ2(P,Q)−D1(P,Q)

= 2D2(P,Q) −D1(P,Q). (48)
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Remark 3: The power divergencesDα(P,Q) are usu-
ally applied in the statistics as criteria of discrimination or
goodness-of-fit between the distributionsP andQ. The scaled
Bregman distancesBα(P,Q |M) as generalizations of the
power divergencesDα(P,Q) ≡ Bα(P,Q |Q) allow to extend
the 2D-discrimination plots{[Dα(P,Q); α] : c ≤ α ≤ d} ⊂
R

2 into more informative 3D-discrimination plots

{[Bα(P,Q |βP + (1− β)Q); α; β] : c ≤ α, β ≤ d} ⊂ R
3

(49)
reducing to the former ones forβ = 0. The simpler 2D-
plots known under the nameQ–Q-plots are famous tools
for the exploratory data analysis. It is easy to consider that
the computer-aided appropriately coloured projections ofthe
3D-plots (49) allow much more intimate insight into the
relation between data and their statistical models. Therefore
this computer-aided 3D-exploratory analysis deserves a deeper
attention and research. The next example presents projections
of two such plots obtained for a binomial modelP and its
data based binomial alternativeQ.

Example 2:Let P = Bin(n, p̃) be a binomial distribution
with parametersn, p̃ (with a slight abuse of notation), and
Q = Bin(n, q̃). Figure 1 presents projections of the corre-
sponding 3D-discrimination plots (49) for0.2 ≤ α ≤ 2 and
0 ≤ β ≤ 1, where the Subfigure (a) used the parameter
constellationn = 10, p̃ = 0.25, q̃ = 0.20 whereas the
Subfigure (b) usedn = 10, p̃ = 0.25, q̃ = 0.30. In both
cases, the ranges ofBα(P,Q |βP +(1−β)Q) are subsets of
the interval[0.06, 0.088].

IV. EXPONENTIAL FAMILIES

In this section we show that the scaled Bregman power
distancesBα(P,Q |M) can beexplicitly evaluatedfor prob-
ability measuresP, Q, M from exponential families. Let
us restrict ourselves to the Euclidean observation spaces
(X ,A) ⊆ (Rd,Bd) and denote byx · θ the scalar product
of x, θ ∈ R

d. The convex extended real valued function

b(θ) = ln

∫

Rd

ex·θdλ(x), θ ∈ R
d , (50)

and the convex set

Θ = {θ ∈ R
d : b(θ) <∞}

define on(X ,A) anexponential family of probability measures
{Pθ : θ ∈ Θ} with the densities

pθ(x) ≡
dPθ

dλ
(x) = exp{x · θ − b(θ)}, x ∈ R

d, θ ∈ Θ.

(51)
The cumulant functionb(θ) is infinitely differentiable on the
interior Θ̊ with the gradient

▽b(θ) =
(

∂

∂θ1
, ...,

∂

∂θd

)
b(θ), θ ∈ Θ̊.

Note that (51) are exponential type densities in thenatural
form. All exponential type distributions such as Poisson,
normal etc. can be transformed to into this form (cf., e.g.,
Brown (1986)).

The formula∫

Rd

ex·θ dλ(x) = eb(θ), θ ∈ Θ (52)

follows from (50) and implies
∫

Rd

x ex·θ dλ(x) = eb(θ)∇b(θ), θ ∈ Θ̊. (53)

Both formulas (52) and (53) will be useful in the sequel.

We are interested in the scaled Bregman power distances

Bα (Pθ1 , Pθ2 |Pθ0) for θ0, θ1, θ2 ∈ Θ, α ∈ R.

HerePθ1 , Pθ2 , Pθ0 are measure-theoretically equivalent prob-
ability measures, so that we can turn attention to the formulas
(39), (30), (33), and (46) to (48), promising to reduce the
evaluation ofBα(Pθ1 , Pθ2 |Pθ0) to the evaluation of the power
divergencesDα(Pθ1 , Pθ2). Therefore we first study these
divergences and in particular verify their finiteness, which was
a sufficient condition for the applicability of the formulas(39),
(30) and (33). To begin with, let us mention the following
well-established representation:

Theorem 3:If α ∈ R differs from0 and1, then the power
divergenceDα(Pθ1 , Pθ2) is for all θ1, θ2 ∈ Θ finite and given
by the expression

exp
{
b(αθ1 + (1 − α) θ2)− αb(θ1)− (1 − α) b(θ2)

}
− 1

α(α − 1)
.

(54)
In particluar, it is invariant with respect to the shifts of the
cumulant function linear inθ ∈ Θ in the sense that it coincides
with the power divergenceDα(P̃θ1 , P̃θ2) in the exponential
family with the cumulant functioñb(θ) = b(θ) + c + v · θ
wherec is a real number andv a d−vector.

This can be easily seen by slightly extending (38) to get for
arbitraryα ∈ R andθ1, θ2 ∈ Θ

1 + α · (α − 1) ·Dα(Pθ1 , Pθ2) =

∫

Rd

pαθ1 p
1−α
θ2

dλ

=

∫
Rd exp{x · [αθ1 + (1− α) θ2]} dλ(x)

exp{αb(θ1) + (1− α) b(θ2)}
which together with (52) gives the desired result.

The skew symmetry as well as the remaining power diver-
gencesD0(Pθ1 , Pθ2) andD1(Pθ1 , Pθ2) are given in the next,
straightforward theorem.

Theorem 4:For all θ1, θ2 ∈ Θ andα ∈ R different from
0 and 1 there holds

Dα (Pθ2 , Pθ1) = D1−α (Pθ1 , Pθ2)

and forθ2 ∈ Θ̊

D− ln t (Pθ1 , Pθ2) = D0 (Pθ1 , Pθ2) = lim
α↓0

Dα (Pθ1 , Pθ2)

= b(θ1)− b(θ2)−∇b(θ2) (θ1 − θ2) (55)

= lim
α↑1

Dα (Pθ2 , Pθ1) = D1 (Pθ2 , Pθ1) = Dt ln t (Pθ2 , Pθ1) .(56)
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(a) p̃ = 0.25, q̃ = 0.20 (b) p̃ = 0.25, q̃ = 0.30

Fig. 1. 3D-discrimination plots (49) forP = Bin(10, p̃), Q = Bin(10, q̃) with 0.2 ≤ α ≤ 2 and0 ≤ β ≤ 1.

The main result of this section is the following represen-
tation theorem for Bregman distances in exponential families.
We formulate this in terms of the functions

ρα(θ1, θ2) = b
(
αθ1 + (1− α) θ2

)
− αb(θ1)− (1− α) b(θ2)

(57)
(where the right hand side is finite if0 ≤ α ≤ 1), as well as
the functionsσα(θ0, θ1, θ2) (α ∈ R, θ0, θ1, θ2 ∈ Θ) defined as
the difference

σα(θ0, θ1, θ2) = σI
α(θ0, θ1, θ2)− σII

α (θ0, θ1, θ2) (58)

of the nonnegative (possibly infinite)

σI
α(θ0, θ1, θ2) = b

(
α θ1 + (1 − α) [θ1 − θ2 + θ0]

)
(59)

and the finite

σII
α (θ0, θ1, θ2) = α b(θ1) + (1− α)

[
b(θ1)− b(θ2) + b(θ0)

]
.

(60)
Alternatively,

σα(θ0, θ1, θ2) = ρα(θ1, θ0 + θ1 − θ2)

+(1− α) [b(θ0 + θ1 − θ2)− b(θ0)− b(θ1) + b(θ2)] . (61)

Theorem 5: Let θ0, θ1, θ2 ∈ Θ be arbitrary. Ifα(α −
1) 6= 0 then the Bregman distance of the exponential family
distributionsPθ1 andPθ2 scaled byPθ0 is given by the formula

Bα (Pθ1 , Pθ2 |Pθ0)

=
exp ρα(θ1, θ0)

α(α − 1)
+

exp ρα(θ2, θ0)

α
+

expσα(θ0, θ1, θ2)

1− α
.(62)

If θ0 respectivelyθ1 is from the interior̊Θ, then the limiting
Bregman power distances are

B0 (Pθ1 , Pθ2 |Pθ0)

= b(θ1)− b(θ2)−∇b(θ0) (θ1 − θ2)

+ expσ0(θ0, θ1, θ2)− 1 (63)

respectively

B1 (Pθ1 , Pθ2 |Pθ0) = b(θ2)−b(θ1)−∇b(θ1) (θ2−θ1) . (64)

In particluar, all scaled Bregman distances (62) - (64) are
invariant with respect to the shifts of the cumulant function
linear inθ ∈ Θ in the sense that they coincide with the scaled
Bregman distancesBα

(
P̃θ1 , P̃θ2 | P̃θ0

)
in the exponential

family with the cumulant functioñb(θ) = b(θ) + c + v · θ
wherec is a real number andv a d−vector.

Proof: (a) By (51) it holds for everyα ∈ R and
θ0, θ1, θ2 ∈ Θ

(
pθ2(x)

pθ0(x)

)α−1

pθ1(x)

= exp
{
(α− 1)

[
x · (θ2 − θ0)− (b(θ2)− b(θ0))

]

+x · θ1 − b(θ1)
}

= exp
{
x ·

(
α θ1 + (1− α) [θ1 − θ2 + θ0]

)

−σII
α (θ0, θ1, θ2)

}

with σII
α (θ0, θ1, θ2) from (60). Since (52) leads to
∫

Rd

exp
{
x ·

(
α θ1 + (1− α) [θ1 − θ2 + θ0]

)}
dλ

= expσI
α(θ0, θ1, θ2)

for σI
α(θ0, θ1, θ2) given by (59), it holds

∫

X

(
pθ2
pθ0

)α−1

pθ1 dλ = expσα(θ0, θ1, θ2) (65)

whereσα(θ0, θ1, θ2) was defined in (58). Now, by plugging

P = Pθ1 , Q = Pθ2 , M = Pθ0 (cf. (51))

in (39), we get forα(α − 1) 6= 0 the Bregman distances

Bα (Pθ1 , Pθ2 |Pθ0)

= Dα (Pθ1 , Pθ2)− (1− α)Dα (Pθ2 , Pθ0)

+
1

1− α

[∫

X

(
pθ2
pθ0

)α−1

pθ1 dλ− 1

]
. (66)
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By combining the power divergence formula (54) with (57),
one ends up withDα (Pθ1 , Pθ2) = exp{ρα(θ1,θ2)}−1

α(α−1) which
together with (65) and (66) leads to the desired representation
(62).

(b) By the definition ofB0(P,Q |M) in (47) and by (41)

B0 (Pθ1 , Pθ2 |Pθ0)

= D0 (Pθ1 , Pθ0)−D0 (Pθ2 , Pθ0) +

∫

X

pθ0 pθ1
pθ2

dλ− 1

where
∫

X

pθ0 pθ1
pθ2

dλ = expσ0(θ0, θ1, θ2) (cf. (65)).

For θ0 ∈ Θ̊ the desired assertion (63) follows from here and
from the formulas

D0 (Pθi , Pθ0) = b(θi)−b(θ0)−∇b(θ0) (θi−θ0) for i = 1, 2

obtained from (55).

(c) The desired formula (64) follows immediately from the
definition (46) and from the formulas (44), (45), (55) and (56).
(d) The finally stated invariance is immediate. �

The Conclusion 1 of Section III about the relation between
scaled Bregman distances andφ-divergences can be completed
by the following relation between both of them and the
classical Bregman distances (1).

Conclusion 2: Let Bφ(x, y) be the classical Bregman
distance (1) ofx, y ∈ R

d and P =
{
Pθ : θ ∈ R

d
}

the ex-
ponential family with cumulant functionφ, i.e., with densities
pθ(s) = exp{s·θ−φ(θ)}, s ∈ R

d. Then for allPx, Py, Pz ∈ P

Bφ(x, y) = B1(Py , Px|Pz) = D1(Py , Px) ,

i.e., there is a one-to-one relation between the classical
Bregman distanceBφ(x, y) and the scaled Bregman dis-
tancesB1(Py , Px|Pz) and power divergencesD1(Py, Px)
of the exponential probability measures generated by
the cumulant functionφ. This means that the family{
Bα(Py, Px|Pz) : α ∈ R, z ∈ R

d
}

of scaled Bregman power
distances and the family{Dα(Py, Px) : α ∈ R} of power
divergences extend the classical Bregman distancesBφ(x, y)
to which they reduce atα = 1 and arbitraryPz ∈ P. In fact,
we meet here the extension of the classical Bregman distances
in three different directions: the first represented by various
power parametersα ∈ R, the second represented by various
possible exponential distributions parametrized byθ ∈ R

d, and
the third represented by the exponential distribution parameters
z ∈ R

d which are relevant whenα 6= 1.

Remark 4: We see from Theorems 4 and 5 that –
consistent with (30), (45) – for arbitrary interior parameters
θ0, θ1, θ2 ∈ Θ̊

B1 (Pθ1 , Pθ2 |Pθ0) = D1 (Pθ1 , Pθ2) ,

i. e. that the Bregman distance of orderα = 1 of exponential
family distributionsPθ1 , Pθ2 does not depend on the scaling

distribution Pθ0 . The distance of orderα = 0 satisfies the
relation

B0 (Pθ1 , Pθ2 |Pθ0) = D0 (Pθ1 , Pθ2) + expσ0(θ0, θ1, θ2)− 1

= B1 (Pθ2 , Pθ1 |Pθ0) + ∆(θ0, θ1, θ2) ,

where
∆(θ0, θ1, θ2) = expσ0(θ0, θ1, θ2)− 1

represents a deviation from the skew-symmetry of the Breg-
man distancesB0 (Pθ1 , Pθ2 |Pθ0) andB1 (Pθ2 , Pθ1 |Pθ0) of
Pθ1 andPθ2 . This deviation is zero if (for strictly convexb(θ)
if and only if ) θ0 = θ2.

Remark 5: We see from the formulas (54) – (64) that
for all α ∈ R the quantitiesDα (Pθ1 , Pθ2), ρα(θ1, θ2),
σα(θ0, θ1, θ2) and Bα (Pθ1 , Pθ2 |Pθ0) only depend on the
cumulant functionb(θ) defined in (50), andnot directly on
the reference measureλ used in the definition formulas (50),
(51).

V. EXPONENTIAL APPLICATIONS

In this section we illustrate the evaluation of scaled Bregman
divergencesBα (Pθ1 , Pθ2 |Pθ0) for some important discrete
and continuous exponential families, and also for exponen-
tially distributed random processes.

Binomial model: Consider for fixedn ≥ 2 on the
observation spaceX = {0, ..., n} the binomial distribution
Pθ determined by

Pθ[{x}] = λ[{x}] · exp{x · θ − b(θ)} =

(
n

x

)
px(1− p)n−x

for x ∈ {0, ..., n}, where

λ[{x}] =
(
n

x

)
, θ = ln

p

1− p
∈ Θ = R and b(θ) = n ln(1+eθ) .

After some calculations one obtains from (57) and (61)

ρα(θ1, θ2) = n ln
1 + eαθ1+(1−α)θ2

(1 + eθ1)α(1 + eθ2)1−α

and

σα(θ0, θ1, θ2) = n ln

(
1 + eθ1+(1−α)(θ0+θ1−θ2)

)
(1 + eθ2)1−α

(1 + eθ0)α(1 + eθ1)
.

Applying Theorem 5 one achieves an explicit formula for the
binomial Bregman distancesBα (Pθ1 , Pθ2 |Pθ0) from here.

Rayleigh model:An important role in communication
theory play the Rayleigh distributions defined by the prob-
ability densities

pθ(x) = θx exp

{
−θx

2

2

}
, θ ∈ Θ = (0,∞) (67)

with respect to the restrictionλ+ of the Lebesgue measureλ
on the observation spaceX = (0,∞). The mapping

T (x) = −
√
2x
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from the positive halfline(0,∞) to the negative halfline
(−∞, 0) transforms (67) into the family of Rayleigh densities

pθ(x) = θ exp {θx} = exp {θx− b(θ)}
for b(θ) = − ln θ, θ > 0

with respect to the restrictionλ− of the Lebesgue measure
λ on the observation spaceX = (−∞, 0). These are the
Rayleigh densities in the natural form assumed in (51). After
some calculations one derives from (57)

ρα(θ1, θ2) = ln
θα1 θ

1−α
2

αθ1 + (1− α)θ2
(68)

and

σα(θ0, θ1, θ2) = ln
θ1 θ

1−α
0

(αθ1 + (1 − α)(θ0 + θ1 − θ2)) θ
1−α
2

.

Applying Theorem 5 one obtains the Rayleigh-Bregman dis-
tancesBα (Pθ1 , Pθ2 |Pθ0) from here.

Theorem 1 about the preservation of the scaled Bregman
distances by statistically sufficient transformations is useful
for the evaluation of these distances in exponential families.
It implies for example that these distances in the normal and
lognormal families coincide. The next two examples dealing
with distances of stochastic processes make use of this theorem
too.

Exponentialy distributed signals:Most of the random
processes modelling physical, social and economic phenomena
are exponentially distributed. Important among them are the
real valued Lévy processesXXt = (Xs : 0 ≤ s ≤ t) with
trajectoriesxxt = (xs : 0 ≤ s ≤ t) from the Skorokchod
observation spaces(Xt,At) and parameters from the set

Θ = {θ ∈ R : c(θ) <∞}

defined by means of the function

c(θ) =

∫

R\{0}

x2eθx/(1 + x2) dν(x)

whereν is a Lévy measure which determines the probability
distribution of the size of jumps of the process and the intensity
with which jumps occur. It is assumed that0 belongs toΘ and
it is known (cf., e.g., Küchler and Sorensen (1994)) that the
probability distributionsPt,θ induced by these processes on
(Xt,At) are mutually measure-theoretically equivalent with
the relative densities

dPt,θ

dPt,0
(xxt) = exp{θ xt − bt(θ)} (69)

for the endxt of the trajectoryxxt. The cumulant function
appearing here is

bt(θ) = t

(
δθ +

1

2
σ2θ2 + γ(θ)

)
(70)

for two genuine parametersδ ∈ R respectivelyσ > 0 of the
process which determine its intensity of drift respectively its
volatility, and for the function

γ(θ) =

∫

R\{0}

[eθx − 1− θx/(1 + x2)] dν(x).

The formula (69) implies that the familyPt = {Pt,θ : θ ∈ Θ}
is exponential on(Xt,At) for which the “extremally reduced”
observationT (xxt) = xt is statistically sufficient. Thus, by
Theorem 1,

B(Pt,θ1 , Pt,θ2 |Pt,0) = B(Qt,θ1 , Qt,θ2 |Qt,0) (71)

where Qt,θ is a probability distribution on the real line
governing the marginal distribution of the last observed value
Xt of the processXXt.

Queueing processes and Brownian motions:For illustra-
tion of the general result of the previous subsection we can
take the family ofPoisson processeswith initial valueX0 = 0
and intensitiesη = eθ, θ ∈ Θ = R for which δ = σ = 0 and
c(θ) = eθ − 1 so thatbt(θ) = t

(
eθ − 1

)
. ThenQt,θ is the

Poisson distribution Poi(τ) with parameterτ = tη = teθ and
probabilities

Qt,θ[{x}] =
e−τ (τ)x

x!
= λ[{x}] · exp

{
xϑ− eϑ

}

for ϑ = ln τ = θ + ln t, λ[{x}] = 1

x!
.

The exponential structure is similar as above, so that by
applying (57) to the cumulant functionb(ϑ) = eϑ = teθ we
get for the Poisson processes with parametersθ1 andθ2

ρα(θ1, θ2) = t
[
eαθ1+(1−α)θ2 − αeθ1 − (1− α)eθ2

]
.

Combining this with (61) and Theorem 5 we obtain an explicit
formula for the scaled Bregman distance (71) of these Poisson
processes.

To give another illustration of the result of the previous
subsection, let us first introduce the standard Wiener process
X̃t which is the Lévy process withν ≡ 0, δ = 0, σ = 1 and
θ = 1. It defines thefamily of Wiener processes

Xs = θ X̃s, 0 ≤ s ≤ t, θ ∈ (0,∞),

which are Lévy processes withδ = 0, σ = 1 andc(θ) ≡ 0 so
that (70) impliesbt(θ) = θ2/2. They are well-known models
of the random fluctuations called Brownian motions. If the
initial value X0 is zero thenQt,θ is the normal distribution
with mean zero and variancev2 = tθ2. The corresponding
Lebesgue densities

1√
2πv2

exp

{
− x2

2v2

}
=

√
ϑ

π
exp

{
−ϑx2

}
for ϑ =

1

2v2

are transformed by the mappingx 7−→ −
√
|x| of R on

the negative halfline(−∞, 0) into the natural exponential
densities exp {ϑx− b(ϑ)} with respect to the dominating
density1/

√
π|x| whereb(ϑ) = − 1

2 lnϑ = − ln 1
θ
+ 1

2 ln 2t.
Thus by (57)

ρα(θ1, θ2) = − ln
θα1 θ

1−α
2

αθ1 + (1− α)θ2
(cf. (68)).

This together with (61) and Theorem 5 leads to the explicit
formula for the scaled Bregman distance (71) of the Wiener
processes under consideration.
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Geometric Brownian motions:From the abovementioned
standard Wiener process one can also build up thefamily of
geometric Brownian motions(geometric Wiener processes)

Ys = exp{σX̃s + θs}, 0 ≤ s ≤ t, θ ∈ R,

where the family-generatingθ can be interpreted as drift
parameters, and the volatility parameterσ > 0 is assumed
to be constant all over the family. Then,σX̃t+ θt is normally
distributed with meanm = θt and variancev2 = σ2t,
and Yt is lognormally distributed with the same parameters
m and v2. By (71), the scaled Bregman distance of two
geometric Brownian motions with parametersθ1, θ2 reduces
to the scaled Bregman distance of two lognormal distributions
LN(θ1t, σ2t), LN(θ2t, σ2t). As said above, it coincides with
the scaled Bregman distance of two normal distributions
N(θ1t, σ2t), N(θ2t, σ2t). This is seen also from the fact that
the reparametrization

ϑ =
µ

v2
, τ =

1

2v2

and transformationsR 7−→ R
2 similar to that from the previ-

ous example lead in both distributions N(µ, v2) and LN(µ, v2)
to the same natural exponential density

pϑ,τ (x1, x2) = exp {x1ϑ+ x2τ − b(ϑ, τ)}

with

b(ϑ, τ) =
1

2
ln τ +

ϑ2

4τ
.

These two distributions differ just in the dominating measures
on the transformed observation spaceX = R

2. For (µ1, v
2
1) =

(θ1t, σ
2t) and (µ2, v

2
2) = (θ2t, σ

2t) we get

(ϑ1, τ1) =

(
θ1
σ2

,
1

2σ2t

)
and (ϑ2, τ2) =

(
θ2
σ2

,
1

2σ2t

)

and thus

b(α(ϑ1, τ1) + (1− α)(ϑ2, τ2))− αb(ϑ1, τ1)− (1− α)b(ϑ2, τ2)

=
(αθ1 + (1− α)θ2)

2 − αθ21 + (1− α)θ22
2σ2

t .

Hence, for distributionsPt,θ1 , Pt,θ2 of the geometric Brownian
motions considered above we get from (57)

ρα(θ1, θ2) =

[
(αθ1 + (1 − α)θ2)

2 − αθ21 + (1− α)θ22

]

2σ2
t .

The expression (61) can be automatically evaluated using
this. Applying both these results in Theorem 5 one obtains
explicit formula for the scaled Bregman distance (71) of these
geometric Brownian motions.
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