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Abstract

Interference between nodes is a critical impairment in mobile ad hoc networks (MANETs). This paper
studies the role of multiple antennas in mitigating such interference. Specifically, a network is studied in
which receivers apply zero-forcing beamforming to cancel the strongest interferers. Assuming a network
with Poisson distributed transmitters and independent Rayleigh fading channels, the transmission capacity
is derived, which gives the maximum number of successful transmissions per unit area. Mathematical
tools from stochastic geometry are applied to obtain the asymptotic transmission capacity scaling and
characterize the impact of inaccurate channel state information (CSI). It is shown that, if each node cancels
L interferers, the transmission capacity decreases as Θ(ε

1
L+1 ) as the outage probability ε vanishes. For

fixed ε, as L grows, the transmission capacity increases as Θ(L1− 2
α ) where α is the path-loss exponent.

Moreover, CSI inaccuracy is shown to have no effect on the transmission capacity scaling as ε vanishes,
provided that the CSI training sequence has an appropriate length, which we derived. Numerical results
suggest that canceling merely one interferer by each node increases the transmission capacity by an order
of magnitude or more, even when the CSI is imperfect.

I. INTRODUCTION

In a mobile ad hoc network (MANET), the mutual interference between nodes poses a fundamental limit
on the throughput of peer-to-peer communication. This paper studies mitigating the effect of interference
by provisioning nodes with multiple antennas. Specifically, each receiver uses zero-forcing beamforming
to cancel the interference from the strongest interferers, whereas each transmitter simply chooses a random
beam. This approach requires only limited local coordination and hence is suitable for a MANET.

This paper considers a simple network consisting of Poisson distributed transmitters and independent
Rayleigh fading channels. We quantify the gains in network performance in terms of the transmission
capacity (TC) as a function of the system parameters, including the amount and accuracy of channel
state information (CSI) at each receiver. The TC is defined in [1] as the maximum density of successful
transmissions so that a typical receiver satisfies an outage probability constraint for a target signal-to-
interference-and-noise ratio (SINR). In other words, TC gives the average throughput per unit area.
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The derived TC scaling suggests that multiple antennas can significantly improve the performance of
MANETs, even with inaccurate CSI.

A. Prior Work and Motivation

For Poisson distributed transmitters, TC was introduced in [1] for single-antenna MANETs assuming
fixed transmission power and an ALOHA-like medium access control (MAC) layer. TC has also been
used to study opportunistic transmissions [2], distributed scheduling [3], coverage [4], network irregularity
[5], bandwidth partitioning [6], successive interference cancellation [7], and multi-antenna transmission
[8] in MANETs [9]. This paper differs from [8] in that the antennas are employed for interference
cancellation instead of interference averaging through diversity techniques. After the publication of
preliminary results from the current investigation [10], [11], related work has been reported on the TC of
multi-antenna MANETs that use spatial multiplexing and space-time block coding [12], space division
multiple access [13], or optimally allocate the spatial degrees of freedom for interference cancellation
and link enhancement such as spatial multiplexing [14] and array gain [15].

As discussed in [2], the TC is related to the more widely known transport capacity introduced in [16].
Transport capacity is typically studied in terms of the scaling of a network’s total throughput-distance
product as a function of the network size, while TC gives the number of single-hop transmissions possible
in a specific area and in terms of the actual design parameters. Furthermore, most work on the transport
capacity assumes perfect scheduling and zero-outage, while we focus on a random access model with an
outage requirement.

Besides spatial interference cancellation, there are several alternative approaches for mitigating interfer-
ence in MANETs. For example, the interference alignment approach in [17] achieves the optimal number
of degrees of freedom in a high signal-to-noise ratio (SNR) setting. This approach appears daunting
in practice because it requires jointly designed precoders and perfect CSI of interference channels. In
contrast, the current approach only requires each receiver to obtain CSI from nearby interferers and no
coordination of transmit precoders. Another method for interference management, used in many practical
MAC protocols, is to create an interferer-free area – a guard zone – around each receiving node through
carrier sensing. As shown in [3], optimizing the guard-zone size leads to significant TC gain for a single-
antenna MANET with respect to pure random access. The use of interference cancellation can be viewed
as creating an effective guard zone without requiring that other nearby transmitters be suppressed.

Several papers have addressed other aspects of multi-antenna MANETs. For example, beamforming or
directional antennas have been integrated with the MAC protocols for MANETs to achieve higher network
spatial reuse or energy efficiency [18]–[27]. In addition, multi-antenna techniques have been applied
to enable efficient routing in MANETs [28]. Directional antennas have been studied for suppressing
interference in MANETs by spatial filtering [23]–[27]. Directional antennas, however, are only suitable
for environments with sparse scattering and low angular spread. In contrast, beamforming is applicable
for both sparse and rich scattering, and is hence adopted in this paper as well as in [19]–[21] for spatial
interference cancellation. Most prior work focuses on designing MAC protocols and rely on simulations
for throughput evaluation [18]–[27], [29]. In [30], [31], the use of directional antennas is shown to increase
the linear scaling factor of network transport capacity, which, however, is too coarse for quantifying the
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network throughput. In view of prior work, there still lacks theoretic characterization of the relationship
between the TC of MANETs and spatial interference cancellation.

B. Contributions and Organization

Our main contributions are summarized as follows.

1) Assuming Poisson distributed transmitters and spatially independently and identically distributed
(i.i.d.) Rayleigh fading channels, bounds on the probability of signal-to-interference ratio (SIR)
outage are derived with either perfect or imperfect CSI. These bounds are found to be reasonably
tight and lead to bounds on TC.

2) Let L denote the number of canceled interferers per receiver. Irrespective of whether the CSI is
perfect, as the outage probability ε vanishes, the asymptotic TC is shown to vanish as ε

1

L+1 , which
decays slower for larger L.

3) For fixed ε, as L→∞, the TC is shown to increase as L1− 2

α where α is the path-loss exponent.
Hence spatial interference cancellation is more effective for larger α. If instead of canceling
interference, the antennas are used to maximize the array gain, the TC scales as L

2

α as shown
in [8].1

4) The required training sequence length for CSI estimation is derived for constraining the increase
in outage probability and loss in data rate caused by imperfect interference cancellation. Finally,
the required training sequence length is obtained for the optimal TC scaling and shown to be
proportional to log 1

ε .

Simulation results show that canceling a few (two to four) interferers per node is sufficient for harvesting
most of the available TC gain. A capacity gain of more than an order of magnitude can be achieved by
canceling only one interferer at each node, even with imperfect CSI. Moreover, a moderate length of the
CSI training sequence is observed to be sufficient.

The remainder of this paper is organized as follows. Section II describes the network and wireless
channel models. The SIR outage probability and TC are analyzed for perfect and imperfect CSI in
Sections III and IV, respectively. Numerical results are presented in Section V.

II. MATHEMATICAL MODELS AND METRICS

A. Network Model

The locations of potential transmitting nodes in a MANET are modeled as a 2-D Poisson point process
with density λo following the common approach in the literature (see e.g., [32]). Time is slotted and in
each time-slot potential transmitting nodes follow a random access protocol, namely that they transmit
independently with a fixed probability Pt. Let T denote the coordinate of a transmitting node. Given
the random access protocol, the set Φ́ = {T} is also a homogeneous Poisson point process but with
smaller density λ = Ptλo [33]. Each transmitting node is associated with a receiving node located at a

1Since this work was submitted, recent results have demonstrated that linear TC scaling with the number of antennas per
node can be achieved by proportionally allocating the spatial degrees of freedom at each receiver to obtain array gain and to
cancel interferers, which can be interpreted as the product of above two sub-linear scalings [15].
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unit distance. Relaxing the assumption that a transmitter and a receiver are separated by a fixed distance
affects the TC scaling only by a multiplicative factor (see e.g, [2]).

Consider a typical receiving node located at the origin, denoted as R0, and let T0 be the corresponding
transmitter. This constraint on R0 and T0 does not compromise generality since the transmitting node
process is translation invariant. Furthermore, according to Slivnyak’s theorem [34, Section 4.4], the
remaining transmitting nodes, namely Φ = Φ́\{T0}, remain a homogeneous Poisson point process with
the same density λ.

The MANET is assumed to be interference limited and thus noise is neglected for simplicity.2 Conse-
quently, the reliability of data packets received by R0 is determined by the SIR. Moreover, we assume
that each data link has a single stream, and communications between nodes are perfectly synchronized
at symbol boundaries. All transmitting nodes are assumed to use unit transmission power.

B. Channel Model

Let every node be equipped with N antennas, so that the link between each transmitter and receiver
can be modeled as an N ×N multiple-input-multiple-output (MIMO) channel. We assume narrowband
channels with frequency-flat block fading. Moreover, each MIMO channel consists of path-loss and
small-scale fading components. Specifically, the channel from T ∈ Φ́ to R0 is r−α/2T GT , where α > 2

is the path-loss exponent, and GT is an N × N matrix of i.i.d. unit circularly symmetric complex
Gaussian elements (we subsequently denote the distribution as CN (0, 1)). Beamforming is applied at
each transmitter and receiver, where f0, fT and v0 denote the beamforming vectors at T0, T ∈ Φ and R0,
respectively. Then, measured at R0, the received power from T0 is W = |v†0G0f0|2, and the interference
power from transmitter T is IT = r−αT |v

†
0GT fT |2, where † represents the Hermitian transpose matrix

operation.

C. Transmission Capacity

Correct decoding of received data packets requires the SIR to exceed a threshold θ, which is identical
for all receivers. In other words, the information rate for each link is equal to log2(1 + θ) assuming
Gaussian signaling. Note that, with everything else the same, the outage probability increases with the
transmitter density λ. The TC under the outage constraint is thus given by

C(ε) = (1− ε) log2(1 + θ)λ (1)

where λ is such that the outage probability Pout is ε, i.e.,

Pout = Pr(SIR < θ) (2)

= ε. (3)

The metric C(ε) quantifies the spatial reuse efficiency of a single-hop MANET; the product C(ε)d is
related to the transport capacity of a multi-hop MANET [2].3

2Addressing the effect of noise requires straightforward but tedious modifications of the current analysis.
3A new metric called random access transport capacity has been proposed for multi-hop MANETs in a recent work [35],

which generalizes TC to an end-to-end scenario under several additional assumptions.
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D. Zero-Forcing Beamforming

From the perspective of R0, the interference channel from an interferer T is in effect a channel
vector hT = r

−α/2
T GT fT . For convenience, we refer to the channel norm JT = ‖hT ‖2 as the pre-

cancellation interference power for T . The receiver R0 equipped with N antennas cancels L interferers
where L ≤ N − 1. Let T ⊂ Φ comprise the L strongest interferers to be canceled by R0. Spatial
interference cancellation at R0 is realized by choosing the beamformer v0 to be orthogonal to the beams
of the L strongest interferers, i.e., v†0hT = 0 for every T ∈ T .

Conditioned on interference cancellation, R0 applies the remaining (N−L) spatial degrees of freedom
to enhance the received signal power by maximum ratio combining. To be specific, v0 solves the following
optimization problem

maximize: |v†0h0|2

subject to: ‖v†0hT ‖
2 = 0, ∀ T ∈ T

‖v0‖2 = 1.

(4)

Note that v0 is uniquely determined by {hT | T ∈ T } and h0 with probability 1.
We let transmitter T0 apply a fixed transmit beamformer f0 in lieu of an adaptive one (such as to

perform maximum ratio transmission [36]) to prevent the transmitter and receiver from chasing each
other’s beam, so as to preserve network stability. Since the fading channels are isotropic, f0 is chosen to
be the all-one vector normalized by 1/

√
L. With such beamforming, multiple transmit antennas contribute

no additional array gain.

E. The Effective SIR Model: Perfect CSI

We first characterize the SIR at R0 assuming perfect CSI and hence perfect cancellation of the L

strongest interferers. Since G0 is isotropic, G0f0 is an i.i.d. CN (0, 1) vector. It follows from [15,
Lemma 1] that the random variable W has the following chi-square distribution with (N − L) complex
degrees of freedom,

fW (w) =
wN−L−1

Γ(N − L)
e−w, w ≥ 0 (5)

where Γ denotes the gamma function. The factor (N − L) specifies the array gain per link [37]. The
effective interference model resulting from perfect interference cancellation is illustrated in Fig. 1(a). The
SIR at R0 is given as

SIR =
W∑

T∈Φ\T IT
. (6)

F. The Effective SIR Model: Imperfect CSI

Without the assumption of perfect and readily available CSI, receivers estimate the signal strength of
their interferers and then identify the strongest ones by using the random training signature sequences
inserted into transmitted signals [38]. Subsequently, each receiver requests their strongest interferers to
transmit training sequences and uses them to estimate the corresponding interference channels. Let M
denote the length of each training sequence. The L training sequences form an L ×M matrix

√
MQ

where Q consists of orthonormal row vectors [39].
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C ance led  in te rfe re r

(a) Perfect CSI (b ) Im perfect CSI

In te rfe rence  
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Fig. 1. Effective interference model for a typical receiver canceling two strongest interferers with (a) perfect CSI or (b)
imperfect CSI. The distance in the figures decreases with increasing received power. The data and interference links are plotted
using solid and dashed lines, respectively.

Define V as an N×L matrix comprising the vectors {hT | T ∈ T } as columns. The signal Y received
by R0 during the training phase is expressed as an N ×M matrix:

Y =
√
MVQ +

∑
T∈Φ\T

hTxT (7)

where the factor
√
M normalizes the average power of each training sequence to be one, and the 1×M

row vector xT contains CN (0, 1) data symbols transmitted by node T . The summation term in (7)
represents interference to the CSI estimation at R0. The CSI is estimated using the least-squares method
to yield for every T ∈ T :

ĥT =
1√
M

Yq†T (8)

= hT +
1√
M

∑
T ′∈Φ\T

hT ′ x̃T ′,T (9)

where qT is the training sequence sent by node T and x̃T ′,T = xTq
†
T has the distribution CN (0, 1).4

The SIR is derived as follows. The estimated CSI is applied for computing the beamformer v0 used
at R0. Using (8) and under the zero-forcing constraint: v†0ĥT = 0, ∀ T ∈ T , the residual interference at
R0 after beamforming, denoted as IR, can be written as

IR =
∑
T∈T

v†0hTxT

= − 1√
M

∑
T∈T

∑
T ′∈Φ\T

v†0hT ′ x̃T ′,TxT . (10)

4The alternative minimum mean-square-error (MMSE) estimator requires knowledge of the covariance of the aggregate
interference from the weak transmitters, which is difficult to measure accurately due to the presence of the strong interferers.
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As illustrated in Fig. 1(b), CSI estimation errors result in additional interference with respect to the case
of perfect CSI. For the present case, the SIR in (6) is modified as

S̃IR =
W

σ2
R +

∑
T∈Φ\T IT

(11)

where σ2
R denotes the variance of IR in (10) conditioned on fixed Φ and channels.

III. TRANSMISSION CAPACITY WITH PERFECT CSI

This section focuses on the analysis of the outage probability and TC assuming prefect CSI. In
particular, we derive the TC scaling with respect to the number of canceled interferers per node and
the outage probability.

A. Point Processes and Auxiliary Results

Since the L strongest interferers are canceled, we refer to the (L+1)-st strongest interferer (in terms of
pre-cancellation power) as the primary interferer and denote it as TP , whose pre-cancellation interference
power is JP = ‖hTP ‖2. The interferers with smaller pre-cancellation interference power are referred to
as the secondary interferers. There are two reasons for separating the interferers. First, considering the
primary interferer alone yields a lower bound on the outage probability to be derived in the sequel.
Second, as we show shortly, the secondary interferers conditioned on JP form a Poisson point process.

Recall that Φ stands for the homogeneous Poisson point process of all transmitters but T0. Define a
marked point process [33] Ψ = {(T, JT } | T ∈ Φ} where the mark of node T is its pre-cancellation
interference power JT . Different interference channels are independent and hence JT depends on T but
not other points in Φ. Let µ and µ∗ denote the mean measures of Φ and Ψ, respectively. By applying
Marking Theorem, Ψ is shown to be a Poisson process on the product space R2×R+ with mean measure
µ∗ given as [33]

µ∗(B) =

∫∫
(t,u)∈B

µ(dt)p(t, du) (12)

where B is a measurable subset of R2×R+ and p(T, ·) represents the distribution of JT conditioned on
T . Let G = R2 × (g,∞). Note that Ψ ∩ G is the set of interferers whose pre-cancellation interference
power is larger than g. From (12), µ∗(G) can be obtained as

µ∗(G) = λ

∫
t∈R2

∫ ∞
g

p(t, du)dt (13)

= 2πλ

∫ ∞
0

∫ ∞
g

rp(r, du)dr (14)

= 2πλ

∫ ∞
0

rPr(JT > g | |T | = r)dr (15)

where (13) follows from the homogeneity of Φ, and (14) uses polar coordinates and the fact that JT
depends only on the distance rT = |T | from the origin.

Let the point process consisting of all secondary interferers conditioned on JP be denoted by

Π(JP ) = {(T, JT ) |T ∈ Φ, 0 ≤ JT < JP }. (16)
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The distribution of Π(JP ) and JP are characterized by the following lemmas, which are proved in
Appendices A and B, respectively.

Lemma 1. Conditioned on JP = g, Π(JP ) is a Poisson point process on R2 × [0, g). Its mean measure
is given by

µ∗(B | JP = g) = λ

∫∫
(t,u)∈B

µ(dt)p(t, du) (17)

where B is a measurable subset of R2 × [0, g) and p(T, ·) is the distribution function of JT conditioned
on node T .

Lemma 2. The primary pre-cancellation interference power JP has the following cumulative distribution
function

Pr(JP ≤ g) =

L∑
k=0

(
νλg−

2

α

)k
Γ(k + 1)

e−νλg
− 2
α (18)

and the probability density function

fP (g) =
2(νλ)L+1

αΓ(L+ 1)
g−

2(L+1)

α
−1e−νλg

− 2
α (19)

where ν =
πΓ(N+ 2

α
)

Γ(N) .

After perfect interference cancellation, the interference power of a remaining interferer T ∈ Φ\T is
IT = |v†0hT |2. Define h̃T = hT /‖hT ‖ and δT = |v†0h̃T |2. Then IT and JT are related by IT = JT δT .
The distributions of the random variables {δT } are specified in the following lemma.

Lemma 3. The set of random variables {δT | T ∈ Φ\T } follow i.i.d. beta(1, N − 1) distributions as
specified by the following probability density function

fδ(x) = (N − 1)(1− x)N−2, x ∈ (0, 1). (20)

Furthermore, δT is independent with JT .

Proof: See Appendix C. �

It follows that the primary interference power IP is given as IP = JP δP where δP is a beta(1, N − 1)

random variable. Given that δP is random, node TP may not contribute the largest interference power
despite its dominance over other uncanceled interferers in terms of pre-cancellation interference power.
Next, the total secondary interference power can be written as IS =

∑
T∈Φ\(T ∪{TP }) JT δT . This summa-

tion is a type of shot noise [33] whose probability density function has no known closed-form expression
except for some simple cases [2], [32]. Nevertheless, the conditional first and second moments of IS can
be obtained as shown in the following lemma.
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Lemma 4. After perfect spatial interference cancellation, the secondary interference power Iß condi-
tioned on the primary pre-cancellation interference power JP = g has the following mean and variance

E[Iß | JP = g] =
2νλ

N(α− 2)
g1− 2

α (21)

var(Iß | JP = g) =
2νλ

N(N + 1)(α− 1)
g2− 2

α . (22)

Proof: See Appendix D. �

B. Bounds on Outage Probability

From (6), the outage probability Pout can be written as

Pout = Pr(Iß + IP > Wθ−1). (23)

It follows that Pout can be lower bounded as

Pout ≥ Pr(IP > Wθ−1) (24)

by considering only the primary interferer, which is tight if the primary interfererence is dominant. Using
IP = JP δP and (23), an upper bound on Pout is obtained as

Pout ≤ Pr(Iß + JP > Wθ−1) (25)

= Pr(JP > Wθ−1) + Pr(Iß > Wθ−1 − JP | JP ≤Wθ−1) Pr(JP ≤Wθ−1) (26)

where (25) holds since δP ≤ 1. The above upper bound can be further bounded by applying the following
Chebyshev’s inequality:

Pr(IS ≥ a | JP = g) ≤ min

{
var(IS | JP = g)

{a− E [IS | JP = g]}2
, 1

}
, ∀ a > E [IS | JP = g] . (27)

Based on (24), (26) and (27), bounds on the outage probability are derived as shown in the following
lemma.

Lemma 5. For perfect spatial interference cancellation, the outage probability satisfies P `out(λ) ≤ Pout ≤
P uout(λ) where:

1) The lower bound is

P `out(λ) = 1−
L∑
k=0

(
νλθ

2

α

)k
Γ(k + 1)

E

[(
W

δP

)− 2k

α

e
−νλθ 2

α

(
W

δP

)− 2
α

]
. (28)

2) Define the subsets D1 and D2 of the product space R+ ×R+ as

D1 =
{

(w, g) | wθ−1 − E[Iß | JP = g] ≤ g ≤ wθ−1
}

(29)

D2 =
{

(w, g) | g < wθ−1 − E[Iß | JP = g]
}
. (30)

The upper bound is

P uout(λ) = Λ1 + Λ2 + Λ3 (31)
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where

Λ1 = 1−
L∑
k=0

(
νλθ

2

α

)k
Γ(k + 1)

E
[
W−

2k

α e−νλθ
2
αW−

2
α

]
(32)

Λ2 =

∫∫
(w,g)∈D1

fW (w)fP (g)dwdg (33)

Λ3 =

∫∫
(w,g)∈D2

min

{
var(Iß | JP = g)

{wθ−1 − g − E [Iß | JP = g]}2
, 1

}
fW (w)fP (g)dwdg (34)

with E(IS | JP = g) and var(IS | JP = g) given in Lemma 4.

Proof: See Appendix E. �

C. Asymptotic Transmission Capacity

Using the upper and lower bounds described in Lemma 5, the TC scaling is analyzed for a large
number of canceled interferers per node (L→∞) or varnishing outage probability (ε→ 0) as follows.

Increasing the number of antennas at each receiver allows more interferers to be canceled, leading to
higher TC. The TC scaling as L→∞ is given in the following theorem.

Theorem 1. With perfect CSI and fixed array gain (N − L), if the number of canceled interferers per
node L is sufficiently large, the transmission capacity is bounded as

1

π

[
ε (α− 2)

2θE[W−1]

] 2

α

≤ C(L)

(1− ε) log2(1 + θ)L1− 2

α

≤ 2

π

[
E[W ]

θ(1− ε)

] 2

α

. (35)

Proof: See Appendix F. �

The relationship in (35) shows that TC grows in the order of L1−2/α, where the growth is faster for
steeper path loss. Intuitively, if interference decays more quickly with distance, canceling the strongest
interferers reduces interference more significantly.

Small target outage probability results in a network of sparse transmitting nodes (i.e., λ → 0). For
such a sparse network, the relationship between the outage probability and node density is given in the
following lemma.

Lemma 6. With perfect CSI and λ→ 0, the outage probability is bounded as follows.

1) If L+ 1 ≤ α, for sufficiently small λ,

κ1 ≤
ε

λL+1
≤ κ2 (36)

where

κ1 =
E
[
δ

2

α
(L+1)

P

]
E
[
W−

2

α
(L+1)

] (
νθ

2

α

)L+1

Γ(L+ 2)
(37)

κ2 =
2

2

α
(L+1)+1E

[
W−

2

α
(L+1)

]
(νθ

2

α )L+1

Γ(L+ 2)
. (38)
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2) If L+ 1 > α, for sufficiently small λ,

κ1 ≤
ε

λL+1
and

ε

λα
≤ κ3 (39)

where

κ3 =
8θ2ναΓ(L− α+ 2)E[W−2]

N(N + 1)(α− 1)Γ(L+ 1)
. (40)

Proof: See Appendix G. �

Note that the ratio κ2

κ1
decreases as L becomes smaller. This suggests that the asymptotic bounds are

tighter for smaller values of L.
Using Lemma 6 and the TC definition in (1), we have the following TC scaling.

Theorem 2. With perfect CSI and small target outage probability ε→ 0, the TC is bounded as follows.

1) If L+ 1 ≤ α, for sufficiently small ε,

κ
− 1

L+1

2 ≤ C(ε)

log(1 + θ)ε
1

L+1

≤ κ
− 1

L+1

1 (41)

where κ1 and κ2 are given in Lemma 6.
2) If L+ 1 > α, for sufficiently small ε,

κ
− 1

α

3 ≤ C(ε)

log2(1 + θ)ε
1

α

and
C(ε)

log2(1 + θ)ε
1

L+1

≤ κ
− 1

L+1

1 (42)

where κ3 is given in Lemma 6.

The above theorem shows that as ε decreases, C(ε) follows a power law. For L+1 > α, only bounds on
the exponent are known. The derivation of the exact scaling for L+1 > α requires a tighter upper bound
on outage probability than that based on Chebyshev’s inequality in (27). This may require analyzing the
distribution function of the secondary interference power, which, however, has no known closed-form
expression for the present case.

For L + 1 ≤ α, the exponent of the TC power law is 1/(L + 1). This power law indicates that L
determines the sensitivity of TC to a change in the outage constraint. To facilitate our discussion, rewrite
the scaling in Theorem 2 as C(ε) ∼= αε

1

L+1 where “∼=” represents asymptotic equivalence for ε → 0.
The sensitivity of TC towards changes of the outage constraint decreases inversely with the number of
canceled interferers. Reducing the outage probability by two orders of magnitude decreases the TC by 10,
3.2, and 1.8-fold in the case of 1, 3 and 7 canceled interferers per node, respectively. Last, from simulation
results in Section V, the TC scaling in Theorem 2 is observed to also hold for outage probabilities of
practical interest (ε ≤ 0.1).

According to Theorem 2, the decay rate of the TC with varnishing outage probability can be slowed
down by employing more antennas for interference cancellation at the cost of increasing CSI estimation
overhead, which can be considered as overhead for local coordination among nearby nodes. However,
to guarantee nonzero network capacity for zero outage probability, perhaps the better choice is to
rely on centralized scheduling as in [16]. Nevertheless, such scheduling requires global coordination
and potentially incurs much higher overhead than combining the random access protocol and spatial
interference cancellation. Thus the current setup balances network performance and overhead.
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IV. TRANSMISSION CAPACITY WITH IMPERFECT CSI

This section addresses the effect of imperfect CSI. First, consider the scenario where the network
remains unchanged except that the CSI is imperfect and the users have to relax their quality-of-service
(QoS) requirements, namely to tolerate higher outage probability represented by P̃out and to lower the
date rate from log2(1 + θ) to log2(1 + θ̃), where θ̃ denote the corresponding SIR threshold. Thus P̃out =

Pr(S̃IR ≤ θ̃) where S̃IR is given in (11). The corresponding TC is

C̃ = (1− P̃out) log2(1 + θ̃)λ. (43)

It is interesting to investigate the required training sequence length under a constraint on the QoS
degradation. To this end, define

∆P = P̃out(θ̃)− P (θ) (44)

∆B = log2(1 + θ)− log2(1 + θ̃) (45)

∆C = C − C̃. (46)

We consider the following constraints on the QoS degradation: ∆P ≤ ϑp and ∆B ≤ ϑb with ϑp, ϑb ≥ 0.
The training sequence length that satisfies these constraints and the corresponding TC loss, specified by
the ratio ∆C

C , are shown in the following theorem.

Theorem 3. To satisfy the constraints ∆P ≤ ϑp and ∆B ≤ ϑb, it is sufficient to choose the training-
sequence length as

M = max

(⌈
logL− log ϑp
ω(2ϑb − 1)

⌉
, L

)
(47)

with ω = [Γ(L+ 1)]−
1

L . Moreover, the resultant TC loss normalized by C is bounded as

∆C

C
≤ ϑp

1− ε
+

ϑb
log2(1 + θ)

. (48)

Proof: See Appendix H. �

Note that (47) takes into account that M ≥ L (see Section II-F) and M is an integer. For stringent
constraints ϑp → 0 and ϑb → 0, it can be observed from (47) that the training sequence length is
approximately proportional to log 1

ϑp
and 1

ϑb
. Also, the upper-bound in (48) suggests that the normalized

capacity loss is more sensitive to the variation of ϑp if ε is large and ϑb if log2(1 + θ) is small.
Next, for small outage probability, the required training sequence length is derived for achieving the

same TC scaling as for perfect CSI given identical QoS requirements. These results are shown in the
following theorem.

Theorem 4. For ε→ 0 and ∆B
ε→ 0, ∆P

ε→ 0,5, the following scaling of the training sequence length

lim
ε→0

M
1+%
ω ε−%

= 1 (49)

with an arbitrary % > 0 is sufficient for achieving the transmission-capacity scaling for perfect CSI as
given in Theorem 2.

5The notation A ε→ B represents the convergence A→ B as ε→ 0.
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Fig. 2. Outage probability for different transmitting node densities and perfect CSI.

Proof: See Appendix I. �

The above theorem shows that to achieve the optimal asymptotic TC, M increases slowly (sub-linearly
with an arbitrary positive exponent) with 1

ε , indicating small CSI estimation overhead. The reason is that
CSI inaccuracy rises mainly from weak interferers and thus its effect is moderate.

Suppose the CSI estimation process repeats for every channel coherence time tc (in symbols). The
overhead of CSI estimation can be regarded as the TC decrease by a factor of M/tc. Simulation results
in Fig. 6 reveal that the capacity gain from interference cancellation results mostly from canceling only
a few strongest interferers and thus L can be kept small; furthermore, short training sequences (small
M ) are sufficient for approaching the TC achieved with perfect CSI. Thus, the overhead is insignificant
if mobility is low (large tc).

V. SIMULATION AND DISCUSSION

In this section, the bounds on outage probability and TC are evaluated using Monte Carlo simulation.
The procedure for simulating a MANET follows that in [40]. The simulated ad hoc network lies on a
two-dimensional disk and contains a number of transmitter-receiver pairs, which is a Poisson random
variable with the mean equal to 200. The disk area is adjusted according to the node density. The typical
receiver is placed at the center of the disk. We set the required SIR as θ = 3 or 4.8 dB, the link array
gain (N − L) = 2, and the path-loss exponent as α = 4 unless specified otherwise.

A. Bounds on Outage Probability

For perfect CSI, the bounds on outage probability from Lemma 5 and simulated values are compared
in Fig. 2. It can be observed that the outage probability is approximately proportional to λL+1. The
bounds for L = 1 are tighter than those for L = 3. Moreover, the bounds on outage probability converge
to the exact values as the transmitting node density λ decreases. These two observations can be explained
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Fig. 3. Compare outage probability for perfect and imperfect CSI given different transmitting node densities. The training-
sequence length is M = {3, 5, 11} and the number of canceled interferers per node is L = 3.

by the dominance of the primary interference over the secondary one as L or λ decreases, where the
secondary interference causes the looseness of the bounds on outage probability.

In Fig. 3, given identical data rates (∆B = 0), the outage probability for imperfect CSI is observed to
rapidly converge to the perfect-CSI counterpart as M increases. In particular, for M = 11, CSI inaccuracy
increases outage probability by less than two-fold.

B. Scaling of Transmission Capacity

In Fig. 4, asymptotic bounds on TC in Theorem 2 are compared with the exact values obtained by
simulation for perfect CSI and the range of target outage probability ε ∈ [10−5, 10−1]. The corresponding
curves are identified using the legends “asymptotic upper bound”, “asymptotic lower bound”, and “simula-
tion”. Different combinations of (L,α) are separated according to the cases of L+1 ≤ α and L+1 > α,
corresponding to Fig. 4(a) and Fig. 4(b), respectively. As observed from Fig. 4(a), for L + 1 ≤ α,
the asymptotic upper bound on TC is tight even in the non-asymptotic range e.g., ε ∈ [0.01, 0.1]. The
tightness of this bound is due to the dominance of primary interference when L is small. Moreover,
Fig. 4(b) shows that for L + 1 > α the slopes of the “simulation” curves converge to those of the
corresponding “asymptotic upper bound” curves as the target outage probability decreases. The above
observations suggest that for both L + 1 ≤ α and L + 1 > α, the TC scaling for small target outage
probability follows the power law with the same exponent 1

L+1 .

C. Transmission Capacity vs. Size of Antenna Array

In Fig. 5, the transmission capacity is plotted for an increasing number of canceled interferers per node
assuming perfect CSI. Furthermore, different target outage probabilities, namely ε = {10−1, 10−2, 10−3},
are considered. As observed from Fig. 5, the cancellation of a few interferers by each node leads to a
TC gain of an order of magnitude or more with respect to the case of no cancellation. For example,
for ε = 10−2, canceling two interferers per node provides a 25-time TC gain. The cancellation of
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Fig. 4. Comparison between asymptotic bounds on TC and the exact values obtained by simulation for perfect CSI and the
cases of (a) L+ 1 ≤ α and (b) L+ 1 > α.

more interferers has a diminishing effect on the network capacity since it becomes limited by secondary
interference. It is also observed that the outage constraint affects TC more significantly for smaller L.

The effect of imperfect CSI on TC is shown in Fig. 6, where TC is plotted for increasing L. The TC
loss due to CSI estimation errors is observed to reduce as M increases. Such a loss is relatively small
even for a moderate value of M . For instance, the TC reduction is 25% for M = 11 and L = 7. Next,
even for small M (i.e., M = 3), a TC gain of more than an order of magnitude can be achieved by
interference cancellation. This confirms the practicality of interference cancellation.
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APPENDIX

A. Proof for Lemma 1

Consider two disjoint measurable subsets B and C of R2× [0, g). Let Ξ be the counting function such
that Ξ(B) gives the number of elements in B. We first show that Ξ(Π(g)∩B) conditioned on JP = g is a
Poisson random variable as follows. Define the sets Gτ := R2× (g− τ,∞) and Dτ = R2× [g− τ, g+ τ ]
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where τ > 0. Then

Pr(Ξ(Π(g) ∩ B) = n | JP = g) = lim
τ→0

Pr(Ξ(Φ ∩ B) = n | Ξ(Φ ∩ Dτ ) = 1,Ξ(Φ ∩ Gτ ) = L). (50)

By letting τ → 0, the probability measures of B ∩ Dτ and B ∩ Gτ can be made arbitrarily small. Since
Φ is Poisson distributed, Ξ(Φ∩ B) becomes independent with Ξ(Φ∩Dτ ) and Ξ(Φ∩ Gτ ) in the limit of
τ → 0. It follows that (50) can be rewritten as

Pr(Ξ(Π(g) ∩ B) = n | JP = g) = Pr(Ξ(Φ ∩ B) = n). (51)

In other words, Ξ(Π(g) ∩ B) conditioned on JP = g follows the Poisson distribution with the same
parameter as Ξ(Φ ∩ B).

Next, we prove the independence between Ξ(Π(g) ∩ B) and Ξ(Π(g) ∩ C) given JP = g. Their joint
distribution function is written as

Pr(Ξ(Π(g) ∩ B) = m,Ξ(Π(g) ∩ C) = n | JP = g)

= lim
τ→0

Pr(Ξ(Φ ∩ B) = m,Ξ(Φ ∩ C) = n | Ξ(Φ ∩ Dτ ) = 1,Ξ(Φ ∩ Gτ ) = L).
(52)

Following a similar argument as for getting (51), we can obtain from (52) that

Pr(Ξ(Π(g) ∩ B) = m,Ξ(Π(g) ∩ C) = n | JP = g) = Pr(Ξ(Φ ∩ B) = m,Ξ(Φ ∩ C) = n)

= Pr(Ξ(Φ ∩ B) = m) Pr(Ξ(Φ ∩ C) = n)(53)

where the last equality is due to a property of the Poisson process Φ given that B ∩ C = ∅. The
independence between Ξ(Π(g)∩B) and Ξ(Π(g)∩C) conditioned on JP = g follows from (51) and (53).

Combining above results proves that given JP = g, Π(g) is Poisson distributed on the space R2×[0, g);
furthermore, Π(g) has the mean measure as given in (12), which leads to (17). This completes the proof.

B. Proof for Lemma 2

The distribution of JT can be analyzed by writing JT = r−αT ρT where ρT = ‖GT fT ‖2. Since GT is
an i.i.d. CN (0, 1) matrix and fT fixed, GT fT is an i.i.d. CN (0, 1) vector. Hence ρT has the chi-square
distribution with N complex degrees of freedom. It follows that

Pr(JT > g | rT = r) =

∫ ∞
rαg

uN−1

Γ(N)
e−udu. (54)

Substituting (54) into (15) gives

µ∗(G) = 2πλ

∫ ∞
0

∫ ∞
rαg

ruN−1

Γ(N)
e−ududr

= 2πλ

∫ ∞
0

∫ (
u

g

) 1
α

0

ruN−1

Γ(N)
e−udrdu

=
πλg−

2

α

Γ(N)

∫ ∞
0

uN+ 2

α
−1e−udu

= νλg−
2

α (55)

where ν is defined in the lemma statement. Then the distribution function of JP can be written as

Pr(JP ≤ g) = Pr(Ξ(Ψ ∩ G) ≤ L). (56)
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Since Ξ(Ψ∩G) is a Poisson random variable with the mean µ∗(G) given in (55), the desired cumulative
distribution function in (18) follows from (56). Differentiating this function gives the probability density
function of JP as

fP (g) =
2

α

L∑
k=0

(νλ)k+1

k!
g−

2(k+1)

α
−1e−νλg

− 2
α − 2

α

L∑
k=1

(νλ)k

(k − 1)!
g−

2k

α
−1e−νλg

− 2
α

=
2

α
e−νλg

− 2
α

{
L∑
k=0

(νλ)k+1

k!
g−

2(k+1)

α
−1 − 2

α

L−1∑
k=0

(νλ)k+1

k!
g−

2(k+1)

α
−1

}
.

The desired result in (19) follows from the last equation.

C. Proof for Lemma 3

Consider an arbitrary interferer T ∈ Φ before interference cancellation. We can write the effective
channel vector as hT = JT h̃T . The isotropicity of hT has two consequences: JT and h̃T are independent
and h̃T is also isotropic. Recall that JT is the criterion for selecting interferers to cancel. Thus, the
independence between JT and h̃T implies that the isotropicity of hT is unaffected by interference
cancellation if node T is uncanceled.

Next, it can be observed from (4) that v0 is a linear function of the vectors h0 and {hT | T ∈ T },
which are i.i.d. and isotropic. As a result, v0 is also isotropic as well as independent with other normalized
channel vectors {h̃T | T ∈ Φ\T }. Hence for an uncanceled interferer T ∈ Φ\T , δT = |v†0h̃T |2 represents
the product of two independent isotropic unit-norm random vectors v0 and h̃T , which is shown in [41] to
have the beta(1, N −1) distribution in (20). Moreover, the independence between δT and δT ′ for T 6= T ′

follows from the independence between h̃T and h̃T ′ . This proves the first claim in the lemma statement.
Last, given T ∈ Φ\T , since both v0 and h̃T are independent with JT as mentioned above, the

independence of δT with JT is immediate. This completes the proof.

D. Proof of Lemma 4

Define the sum pre-cancellation secondary interference power as Jß :=
∑

T∈Φ\(T ∪{TP }) JT . Using
Lemma 1, the application of Campbell’s Theorem gives that [34]

E[Jß | JP = g] = λ

∫
R2

∫ g

0
up(|x|, du)dudx

= 2πλ

∫ ∞
0

∫ g

0
rup(r, du)dudr

= 2πλ

∫ ∞
0

∫ rαg

0
r1−α ρN

Γ(N)
e−ρdρdr

= 2πλ

∫ ∞
0

∫ ∞(
ρ

g

) 1
α
r1−α ρN

Γ(N)
e−ρdrdρ

=
2πλ

α− 2
g1− 2

α

∫ ∞
0

ρN+ 2

α
−1

Γ(N)
e−ρdρ

=
2νλ

α− 2
g1− 2

α . (57)
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Next, the expectation of Iß conditioned on JP = g is given as

E[Iß | JP = g] = E

 ∑
T∈Φ\(T ∪{TP })

JT δT | JP = g


= E

 ∑
T∈Φ\(T ∪{TP })

JTE(δT ) | JP = g

 (58)

=
1

N
E[Jß | JP = g] (59)

where (58) holds since δT is independent with JP according to Lemma 3, and (59) uses E[δT ] = 1
N

derived using the distribution function in (20). Substituting (57) into (59) gives the desired result in (21).
Like (57), the conditional variance of Jß is obtained by applying Campbell’s Theorem as follows

var(Jß | JP = g) = 2πλ

∫ ∞
0

∫ ∞(
ρ

g

) 1
α
r
(
r−αρ

)2 ρN−1

Γ(N)
e−ρdρdr

=
πλ

α− 1
g2− 2

α

∫ ∞
0

ρN+ 2

α
−1e−ρdρ

=
νλ

α− 1
g2− 2

α . (60)

Since δT is independent with JP , the conditional variance of Iß is obtained by applying modified
Campbell’s Theorem [33, p77]

var(Iß | JP = g) = E[δ2
T ]var(Jß | JP = g). (61)

The second moment E[δ2
T ] can be obtained using the distribution function in (20) as

E[δ2
T ] = (N − 1)B(3, N − 1)

=
2

N(N + 1)
(62)

where B denotes the beta function, and (62) applies the formula B(x, y) = Γ(x)Γ(y)
Γ(x+y) from [42, 8.384].

Combining (60), (61) and (62) gives the desired result in (22). This completes the proof.

E. Proof for Lemma 5

We can rewrite (24) as

Pout ≥ 1− Pr

(
JP ≤

Wθ−1

δP

)
.

Substituting (18) into the above equation gives the lower bound on Pout as shown in (28). Similarly, we
can obtain the first term of the Pout upper bound in (26) as

Pr(JP > Wθ−1) = Λ1 (63)

where Λ1 is defined (32). Given D1 ∪ D2 = {(w, g) | g < wθ−1}, the second term of the Pout upper
bound in (26) can be expanded and then upper bounded as

Pr(Iß > Wθ−1−JP | JP ≤Wθ−1) Pr(JP ≤Wθ−1)

≤Pr((W,JP ) ∈ D1) + Pr(Iß > Wθ−1 − JP | (W,JP ) ∈ D2) Pr((W,JP ) ∈ D2)

≤Λ2 + Λ3 (64)
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where Λ2 and Λ3 are defined in the lemma statement, and (64) applies Chebyshev’s inequality in (27).
Combining (26), (63) and (64) gives the desired Pout upper bound in (31). This completes the proof.

F. Proof of Theorem 1

Given the distribution of JP in (19), and applying Campbell’s Theorem, we obtain that

E[IP ] = E[JP ]E[δP ]

=
2(νλ)L+1

NαΓ(L+ 1)

∫ ∞
0

g−
2(L+1)

α e−νλg
− 2
α dg

=
Γ
(
L+ 1− α

2

)
(νλ)

α

2

NΓ(L+ 1)
. (65)

Moreover, from (19) and (21),

E[IS ] = E[E[IS | JP ]]

=
4(νλ)L+2

Nα(α− 2)Γ(L+ 1)

∫ ∞
0

g−
2(L+2)

α e−νλg
− 2
α dg (66)

=
2(νλ)

α

2 Γ
(
L− α

2 + 2
)

N(α− 2)Γ(L+ 1)
(67)

where (66) uses (22). Using (65) and (67), the total interference power IΣ has the following expectation:

E[IΣ] =
2(νλ)

α

2

α− 2
×
LΓ
(
L− α

2 + 1
)

NΓ(L+ 1)
. (68)

Using Markov’s inequality

Pout ≤ E
{

E[IΣ]

Wθ−1

}
. (69)

Since Pout = ε, it follows from (68) and (69) that

λ ≥ 1

ν

{
Nε (α− 2)

2LθE[W−1]
× Γ(L+ 1)

Γ
(
L− α

2 + 1
)} 2

α

. (70)

Next, a lower bound on λ can be derived using the method in [15] where the success probability
(1−Pout) is upper bounded using Markov’s inequality. To this end, let U denote the set of (L+1) strongest
uncanceled interferers in terms of pre-cancellation interference power. Thus, the weakest interferer in U
corresponds to J́ = minT∈U JT . Using above definitions,

1− Pout ≤ Pr

(
W∑

T∈U JT δT
≥ θ
)

≤ Pr

(
W

J́T
∑

T∈U δT
≥ θ

)

≤ θ−1E[W ]E[J́−1]E
[

1∑
T∈U δT

]
(71)

where (71) uses Markov’s inequality. Note that the probability density function of J́ is given by (19)
with L replaced with 2L. Thus, similar to (65), it can be obtained that

E[J́−1] =
Γ(2L+ 1 + α

2 )

Γ(2L+ 1)(νλ)
α

2

. (72)
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Substituting the above equation into (71) gives

λ ≤ 1

ν

{
E[W ]

θ(1− ε)
×

Γ(2L+ 1 + α
2 )

Γ(2L+ 1)
× E

[
1∑

T∈U δT

]} 2

α

. (73)

The scaling of λ can be derived using (70) and (73) and applying Kershaw’s inequality [43]:(
x+

s

2

)1−s
<

Γ(x+ 1)

Γ(x+ s)
<

(
x− 1

2
+

√
s+

1

4

)1−s

, x > 0, 0 < s < 1. (74)

Specifically, given Γ(1 + x) = xΓ(x), we can write

Γ(L+ 1)

Γ
(
L− α

2 + 1
) =

Γ
(
L− dα2 e+ 2

)
Γ
(
L+ 1− dα2 e+ ∆α

) dα2 e−2∏
n=0

(L− n) (75)

where ∆α = dα2 e −
α
2 and hence 0 ≤ ∆α < 1. Using Kershaw’s inequality, for L >

⌈
α
2

⌉
(
L−

⌈α
2

⌉
+ 1 +

∆α

2

)1−∆α

<
Γ
(
L− dα2 e+ 2

)
Γ
(
L+ 1− dα2 e+ ∆α

) < (L− ⌈α
2

⌉
+

1

2
+

√
∆α+

1

4

)1−∆α

.

(76)
It follows from (75) and (76) that

lim
L→∞

Γ(L+ 1)

L
α

2 Γ
(
L− α

2 + 1
) = 1. (77)

Similarly, we can show that ν as defined in Lemma 2 scales as:

lim
L→∞

ν

πL
2

α

= 1. (78)

Combining (70), (77) and (78) gives

lim inf
L→∞

λ

L1− 2

α

≥ 1

π

{
ε (α− 2)

2θE[W−1]

} 2

α

. (79)

Again, the application of Kershaw’s inequality yields

lim
L→∞

Γ(2L+ 1 + α
2 )

(2L)
α

2 Γ(2L+ 1)
= 1. (80)

Moreover, it follows from the strong law of larger numbers that limL→∞

∑
T∈U δT
L+1 = E[δT ] = 1

L . Since
(N − L) is fixed,

lim
L→∞

E
[

1∑
T∈U δT

]
= 1. (81)

Substituting (80) and (81) into (73) gives

lim sup
L→∞

λ

L1− 2

α

≤ 2

π

{
E[W ]

θ(1− ε)

} 2

α

. (82)

The desired result follows from (79) and (82) as well as the TC definition.
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G. Proof of Lemma 6

For λ→ 0, we can obtain from (28) that

P `out(λ) =

∞∑
k=L+1

(
νλθ

2

α

)k
Γ(k + 1)

E

[(
W

δP

)− 2k

α

e
−νλθ 2

α

(
W

δP

)− 2
α

]

= E

[(
W

δP

)− 2

α
(L+1)

] (
νλθ

2

α

)L+1

Γ(L+ 2)
+O(λL+2) (83)

= κ1λ
L+1 +O(λL+2) (84)

where (83) uses the distributions of W and δP in (5) and Lemma 3, respectively, and κ1 is defined in
the lemma statement. The first inequalities in (36) and (39) follow from the last equation.

Next, we prove the second inequalities in (36) and (39) as follows. Similar to (84), for λ→ 0, Λ1 in
(32) is obtained as

Λ1 =
E
[
W−

2

α
(L+1)

] (
νθ

2

α

)L+1

Γ(L+ 2)
λL+1 +O(λL+2). (85)

The asymptotic expression for Λ2 in (33) is derived as

Λ2(λ) =
2(νλ)L+1

αΓ(L+ 1)

∫ ∞
0

∫ wθ−1

wθ−1+O(λ)
g−

2(L+1)

α
−1e−νλg

− 2
α dgfW (w)dw (86)

=
2(νλ)L+1

αΓ(L+ 1)

∫ ∞
0

[(
wθ−1

)− 2(L+1)

α
−1

+O(λ)

]
×O(λ)fW (w)dw

= O(λL+2). (87)

where (86) uses (21). To derive the asymptotic expression for Λ3 in (34), it is split into two terms as
Λ3 = Λ3,1 + Λ3,2 where

Λ3,i =

∫∫
(w,g)∈D2,i

min

{
var(I | JP = g)

{wθ−1 − g − E [I | JP = g]}2
, 1

}
fW (w)fP (g)dwdg (88)

with

D2,1 =

{
(w, g) | wθ

−1

2
≤ g + E[Iß | JP = g] < wθ−1

}
D2,2 =

{
(w, g) | 0 ≤ g + E[Iß | JP = g] <

wθ−1

2

}
. (89)

For λ→ 0, Λ3,1 is obtained as

Λ3,1 ≤
∫∫

(w,g)∈D2,1

fW (w)fP (g)dwdg

=
(νλ)L+1

Γ(L+ 1)

∫ ∞
0

∫ (
wθ−1

2

)− 2
α+O(λ)

(wθ−1)−
2
α+O(λ)

gLdgfW (w)dw +O(λL+2)

=

[
2

2(L+1)

α − 1
]
E
[
W−

2(L+1)

α

] (
θ

2

α ν
)L+1

Γ(L+ 2)
λL+1 +O(λL+2). (90)



Revised on July 29, 2021 23

Next, Λ3,2 defined in (88) is upper bounded as

Λ3,2 ≤
∫∫

(w,g)∈D2,2

var(Iß | JP = g)

(wθ−1 − g − E[Iß | JP = g])2
fP (g)fW (w)dwdg

≤
∫ ∞

0

∫ wθ−1

2
+O(λ)

0

4var(Iß | JP = g)

(wθ−1)2
fP (g)dgfW (w)dw. (91)

where (91) holds since g + E[Iß | JP = g] < wθ−1

2 according to (89). To simplify notation, define
η = 8θ2

N(N+1)(α−1)Γ(L+1) . Substituting the distribution functions in (19) and (22) into (91) gives

Λ3,2 ≤ 2

α
η(νλ)L+2

∫ ∞
0

w−2

∫ wθ−1

2
+O(λ)

0
g−

2

α
(L+2)+1e−νλg

− 2
α dgfW (w)dw

= η(νλ)α
∫ ∞

0
w−2

∫ ∞
(wθ

−1

2 )
− 2
α νλ+O(λ2)

gL−α+1e−gdgfW (w)dw. (92)

For L− α+ 1 < 0, we obtain using (92) that

Λ3,2 ≤ η(νλ)α
∫ ∞

0
w−2

[(
wθ−1

2

)− 2

α

νλ

]L−α+1

fW (w)dw +O(λL+2)

=
2

2

α
(L+1)+1(L+ 1)

N(N + 1)(α− 1)
×

E
[
W−

2

α
(L+1)

]
(θ

2

α ν)L+1

Γ(L+ 2)
λL+1 +O(λL+2). (93)

Since P uout ≤ Λ1 + Λ2 + Λ3,1 + Λ3,2,

lim sup
λ→0

P uout
λL+1

≤ lim inf
λ→0

Λ1

λL+1
+ lim inf

λ→0

Λ2

λL+1
+ lim inf

λ→0

Λ3,1

λL+1
+ lim inf

λ→0

Λ3,2

λL+1
. (94)

The substitution of (85), (87), (90) and (93) into (94) gives that

lim sup
λ→0

P uout
λL+1

≤
[
1 +

2(L+ 1)

N(N + 1)(α− 1)

] 2
2

α
(L+1)E

[
W−

2

α
(L+1)

]
(θ

2

α ν)L+1

Γ(L+ 2)

≤ 2×
2

2

α
(L+1)E

[
W−

2

α
(L+1)

]
(θ

2

α ν)L+1

Γ(L+ 2)
(95)

where the last inequality holds since N ≥ L+ 1 and α > 2. The second inequality in (36) follows. For
L− α+ 1 ≥ 0, Γ(L− α+ 2) is finite and hence we obtain from (92) that

Λ3,2 ≤ κ3λ
α +O(λα+1) (96)

where κ3 is defined in the lemma statement. Substituting (85), (87), (90) and (96) into (94) gives the
second equality in (39). This completes the proof.

H. Proof of Theorem 3

Using (11) and by definition, the outage probability for imperfect CSI is given as

P̃out(θ̃) = E
[
Pr
(
Wθ̃−1 ≤ σ2

R + IΣ

∣∣∣Φ, {hT })] . (97)
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Conditioned on Φ and {hT }, the randomness of the residual interference IR in (10) depends only on the
data symbols {xT } that follow i.i.d. CN (0, 1) distributions. Thus, the conditional variance σ2

R of IR can
be written as

σ2
R =

1

M

∑
T∈T

∣∣∣∣∣∣
∑

T ′∈Φ\T

r
−α/2
T ′ v†0GT ′ x̃T ′,T

∣∣∣∣∣∣
2

=
1

M

∑
T∈T

∣∣∣∣∣∣
∑

T ′∈Φ\T

IT ′
v†0GT ′ x̃T ′,T

|v†0GT ′ |

∣∣∣∣∣∣
2

. (98)

Let ∼ represent equivalence in distribution. Since
{

v†0GT ′ x̃T ′,T
|v†0GT ′ |

}
consists of i.i.d. CN (0, 1) elements, we

obtain from (98) that conditioned on Φ and {hT },

σ2
R ∼ 1

M

∑
T ′∈Φ\T

IT ′
∑
T∈T

zT

∼ ζ

M
IΣ (99)

where {zT } are i.i.d. exponential random variables with unit mean and ζ is a chi-square random variable
having L complex degrees of freedom. By substituting (99) into (97), we obtain that

P̃out(θ̃) = Pr

(
Wθ̃−1 ≤ IΣ

(
1 +

ζ

M

))
. (100)

Given Z > 0, the above expression can be expanded as

P̃out(θ̃) = Pr

(
Wθ̃−1 ≤ IΣ

(
1 +

ζ

M

)∣∣∣∣ ζ ≤ Z)Pr(ζ ≤ Z) + (101)

Pr

(
Wθ̃−1 ≤ IΣ

(
1 +

ζ

M

)∣∣∣∣ ζ > Z

)
Pr(ζ > Z)

≤ Pr

(
Wθ̃−1 ≤ IΣ

(
1 +

Z

M

))
+ Pr(ζ > Z). (102)

By setting θ =
(
1 + Z

M

)
θ̃, the inequality in (102) reduces to

P̃out(θ̃) ≤ Pout(θ) + Pr(ζ > Z).

It follows that

∆P ≤ Pr(ζ > Z)

≤ 1−
(
1− e−ωZ

)L
(103)

≤ Le−ωZ (104)

where ω is defined in the theorem statement, (103) applies Alzer’s inequalities for the incomplete Gamma
function [44], and (104) uses Bernoulli’s inequality. Moreover, given θ =

(
1 + Z

M

)
θ̃, the rate loss is
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bounded as

∆B = log2(1 + θ)− log2

(
1 +

θ

1 + Z
M

)

≤ log2(1 + θ)− log2

(
1 + θ

1 + Z
M

)

= log2

(
1 +

Z

M

)
. (105)

From (104) and (105), to satisfy the constraints ∆P ≤ ϑp and ∆B ≤ ϑb, it is sufficient that

Le−ωZ = ϑp

log2

(
1 +

Z

M

)
= ϑb. (106)

Solving the above equations gives the training sequence length in (47).
Finally, from (1) and (43), the capacity loss defined in (46) is upper bounded as

∆C = (1− ε)λ log2(1 + θ)− (1− P̃out)λ log2(1 + θ̃)

= λ
[
(1− ε) log2(1 + θ)− (1− P̃out) log2(1 + θ)+

(1− P̃out) log2(1 + θ)− (1− P̃out) log2(1 + θ̃)
]

= λ
[
∆P log2(1 + θ) + (1− P̃out)∆B

]
= C

[
∆P

1− ε
+

1− P̃out

1− ε
× ∆B

log2(1 + θ)

]

≤ C

[
∆P

1− ε
+

∆B

log2(1 + θ)

]
.

The desired result in (48) follows from the above inequality, completing the proof.

I. Proof of Theorem 4

We prove in the sequel that the training sequence length stated in the theorem achieves the TC scaling
in (41) with ∆P

ε→ 0 and ∆B
ε→ 0. The parallel proof concerning the other capacity scaling in (42)

is similar and omitted for brevity. Recall that λ is fixed regardless of whether CSI is perfect. Thus, it
follows from (41) that for sufficiently small ε,

κ
− 1

L+1

2 ≤ C̃(ε)

log(1 + θ̃)ε
1

L+1

≤ κ
− 1

L+1

1 . (107)

As in Appendix H, we set θ =
(
1 + Z

M

)
θ̃ with Z > 0 and thus (104) holds. Furthermore, we choose

Z and M such that Le−ωZ = ε1+% and Z
M = ε% log 1

ε with % > 0, which yields ∆P
ε→ 0 as a result of
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(104) and has two other consequences:

M =
1 + %

ω
ε−ρ +

logL

ω
× ε−%

log 1
ε

(108)

=
1 + %

ω
ε−ρ + o

(
ε−%
)

(109)

lim
ε→0

θ

θ̃
= lim

ε→0

(
1 +

Z

M

)
= lim

ε→0

(
1 + ε% log

1

ε

)
= 1. (110)

It follows from (110) that ∆B
ε→ 0 and limε→0

log2(1+θ)

log2(1+θ̃)
= 1. Combining the last inequality and (107)

gives that for sufficiently small ε,

κ
− 1

L+1

2 ≤ C̃(ε)

log(1 + θ)ε
1

L+1

≤ κ
− 1

L+1

1 (111)

Therefore, the TC scaling for imperfect CSI is identical to the perfect-CSI counterpart in (41). Further-
more, the scaling of M in (49) follows from (108). Since above results hold for an arbitrary % > 0, the
proof is complete.
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