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Abstract

In many typical mobile communication receivers the channelis estimated based on pilot symbols to allow for
a coherent detection and decoding in a separate processing step. Currently much work is spent on receivers which
break up this separation, e.g., by enhancing channel estimation based on reliability information on the data symbols.
In the present work, we evaluate the possible gain of a joint processing of data and pilot symbols in comparison to
the case of a separate processing in the context of stationary Rayleigh flat-fading channels. Therefore, we discuss the
nature of the possible gain of a joint processing of pilot anddata symbols. We show that the additional information
that can be gained by a joint processing is captured in the temporal correlation of the channel estimation error of the
solely pilot based channel estimation, which is not retrieved by the channel decoder in case of separate processing.
In addition, we derive a new lower bound on the achievable rate for joint processing of pilot and data symbols.

Index Terms

Channel capacity, fading channels, information rates, joint processing, mismatched decoding, noncoherent,
Rayleigh, time-selective.

I. INTRODUCTION

V IRTUALLY all practical mobile communication systems face the problem that communication takes
place over a time varying fading channel whose realization is unknown to the receiver. However, for

coherent detection and decoding an estimate of the channel fading process is required. For the purpose of
channel estimation usually pilot symbols, i.e., symbols which are known to the receiver, are introduced
into the transmit sequence. In conventional receiver design the channel is estimated based on these
pilot symbols. Based on these channel estimates, in a separate step coherent detection and decoding
is performed. Both processing steps are executed separately.

In recent years, much effort has been spent on the study of iterative joint channel estimation and
decoding schemes, i.e., schemes, in which the channel estimation is iteratively enhanced based on reliability
information on the data symbols delivered by the decoder, see, e.g., [1]–[4]. In this context, the channel
estimation is not solely based on pilot symbols, but also on data symbols. This approach is an instance of
a joint processing of data and pilot symbols in contrast to the separate processing in conventional receiver
design. Obviously, this joint processing results in an increased receiver complexity. To evaluate the payoff
for the increased receiver complexity, it is important to study the possible performance gain that can be
achieved by a joint processing, e.g., in form of an iterativecode-aided channel estimation and decoding
based receiver, in comparison to aseparate processing as it is performed in conventional synchronized
detection based receivers, where the channel estimation issolely based on pilot symbols.
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Therefore, in the present work we evaluate the performance of a joint processing in comparison to
synchronized detection with a solely pilot based channel estimation based on the achievable rate. Regarding
the channel statistics, we assume a stationary Rayleigh flat-fading channel as it is usually applied to model
the fading in a mobile environment without a line of sight component. Furthermore, we assume that the
power spectral density (PSD) of the channel fading process is compactly supported, and that the fading
process isnon-regular [5], which is reasonable as the maximum Doppler frequency oftypical fading
channels is small in comparison to the inverse of the symbol duration. Furthermore, we assume that the
receiver is aware of the law of the channel, while neither thetransmitter nor the receiver knows the
realization of the channel fading process.

There has been a variety of publications studying the achievable rate with pilot symbols, see, e.g.,
[6]–[12]. Many of these works discuss the achievable rate under the assumption that a channel estimate is
acquired based on pilot symbols which is then used for coherent detection, i.e., separate processing. Some
of these works consider block-fading, [7], [10], and [12], while [8] and [9] specifically discuss the case
of stationary fading. For the case of a stationary single-input single-output Rayleigh flat-fading channel,
as we study in the present work, tight bounds on the achievable rate with synchronized detection with
a solely pilot based channel estimation, i.e., separate processing, have been given in [8]. In contrast, for
the case of a joint processing there is not much knowledge on the achievable rate. Very recently, in [13]
the value of joint processing of pilot and data symbols has been studied in the context of a block-fading
channel. To the best of our knowledge, there are no results concerning the gain of joint processing of
pilot and data symbols for the case of stationary fading channels. Thus, in the present work, we study the
achievable rate with a joint processing of pilot and data symbols. We identify the nature of the possible
gain of a joint processing of pilot and data symbols in comparison to a separate processing. Furthermore,
we derive a lower bound on the achievable rate with joint processing of pilot and data symbols, which,
thus, can be seen as an extension of the work given in [13] to the case of stationary Rayleigh flat-fading.
In addition, we compare the given lower bound on the achievable rate with joint processing of pilot and
data symbols to bounds on the achievable rate with separate processing given in [8] and to bounds on
the achievable rate with i.i.d. zero-mean proper Gaussian input symbols given in [14], i.e., without the
assumption on pilot symbols inserted into the transmit sequence.

The rest of the paper is organized as follows. In Section II the system model is introduced. Subsequently,
in Section III we discuss the nature of the gain by a joint processing of pilot and data symbols, i.e., we
discuss which information is discarded in case of a separateprocessing. Furthermore, existing bounds on
the achievable rate with separate processing are briefly recalled. Afterwards, in Section IV a new lower
bound on the achievable rate with a joint processing of pilotand data symbols is derived, before it is
numerically evaluated and compared to the achievable rate with separate processing and to the achievable
rate with i.i.d. zero-mean proper Gaussian inputs in Section V. Finally, Section VI concludes the paper
with a brief summary.

II. SYSTEM MODEL

We consider a discrete-time zero-mean jointly proper Gaussian flat-fading channel with the following
input-output relation

y = Hx+ n = Xh+ n (1)

with the diagonal matricesH = diag(h) andX = diag(x). Here the diag(·) operator generates a diagonal
matrix whose diagonal elements are given by the argument vector. The vectory = [y1, . . . , yN ]

T contains
the channel output symbols in temporal order. Analogous,x = [x1, . . . , xN ]

T , n = [n1, . . . , nN ]
T , and

h = [h1, . . . , hN ]
T contain the channel input symbols, the additive noise samples and the channel fading

weights. All vectors are of lengthN .
The samples of the additive noise process are assumed to be i.i.d. zero-mean jointly proper Gaussian

with varianceσ2
n and, thus,Rn = E

[

nnH
]

= σ2
nIN , with IN being the identity matrix of sizeN ×N .
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The channel fading process is zero-mean jointly proper Gaussian with the temporal correlation charac-
terized by

rh(l) = E[hk+l · h∗

k]. (2)

Its variance is given byrh(0) = σ2
h. For mathematical reasons we assume that the autocorrelation function

rh(l) is absolutely summable, i.e.,
∞
∑

l=−∞

|rh(l)| < ∞. (3)

The PSD of the channel fading process is defined as

Sh(f) =
∞
∑

m=−∞

rh(m)e−j2πmf , |f | ≤ 0.5. (4)

We assume that the PSD exists, which for a jointly proper Gaussian fading process implies ergodicity.
Furthermore, we assume the PSD to be compactly supported within the interval[−fd, fd] with fd being
the maximum Doppler shift and0 < fd < 0.5. This means thatSh(f) = 0 for f /∈ [−fd, fd]. The
assumption of a PSD with limited support is motivated by the fact that the velocity of the transmitter, the
receiver, and of objects in the environment is limited. To ensure ergodicity, we exclude the casefd = 0.
In matrix-vector notation, the temporal correlation is expressed by the autocorrelation matrixRh given
by

Rh = E
[

hhH
]

. (5)

For the following derivation we introduce the subvectorsxD containing all data symbols ofx and the
vectorxP containing all pilot symbols ofx. Correspondingly, we define the vectorshD, hP , yD, yP , nD,
andnP .

The transmit symbol sequence consists of data symbols with amaximal average powerσ2
x, i.e.,

1

ND

E
[

xH
DxD

]

≤ σ2
x (6)

with ND being the length of the vectorxD, and periodically inserted pilot symbols with a fixed transmit
powerσ2

x. EachL-th symbol is a pilot symbol. We assume that the pilot spacingis chosen such that the
channel fading process is sampled at least with Nyquist rate, i.e.,

L <
1

2fd
. (7)

The processes{xk}, {hk} and{nk} are assumed to be mutually independent.
Based on the preceding definitions the average SNRρ is given by

ρ =
σ2
xσ

2
h

σ2
n

. (8)

III. T HE NATURE OF THE GAIN BY JOINT PROCESSING OFDATA AND PILOT SYMBOLS

Before we quantitatively discuss the value of a joint processing of data and pilot symbols, we discuss
the nature of the possible gain of such a joint processing in comparison to a separate processing of
data and pilot symbols. The mutual information between the transmitter and the receiver is given by
I(xD;yD,yP ,xP ). As the pilot symbols are known to the receiver, the pilot symbol vectorxP is found
at the RHS of the semicolon. We separateI(xD;yD,yP ,xP ) as follows

I(xD;yD,yP ,xP )
(a)
= I(xD;yD|yP ,xP ) + I(xD;yP |xP ) + I(xD;xP )
(b)
= I(xD;yD|yP ,xP ) (9)

where (a) follows from the chain rule for mutual informationand (b) holds due to the independency
of the data and pilot symbols. The question is, which portionof I(xD;yD|yP ,xP ) can be achieved by
synchronized detection with a solely pilot based channel estimation, i.e., with separate processing.
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A. Separate Processing

The receiver has to find the most likely data sequencexD based on the observationy while knowing
the pilotsxP , i.e.,

x̂D = arg max
xD∈CD

p(y|x) = arg max
xD∈CD

p(yD|xD,yP ,xP ) (10)

with the setCD containing all possible data sequencesxD. It can be shown that the probability density
function (PDF)p(yD|xD,yP ,xP ) is proper Gaussian and, thus, is completely described by theconditional
mean and covariance

E [yD|xD,yP ,xP ] = XDE [hD|yP ,xP ] = XDĥpil,D (11)

cov[yD|xD,yP ,xP ] = XDRepil ,DX
H
D + σ2

nIND
(12)

whereXD = diag(xD) and IND
is an identity matrix of sizeND × ND. The vectorĥpil,D is an MMSE

channel estimate at the data symbol time instances based on the pilot symbols, which is denoted by the
index pil. Furthermore, the corresponding channel estimation error

epil,D = hD − ĥpil,D (13)

is zero-mean proper Gaussian and

Repil ,D = E
[

epil,De
H
pil,D|xP

]

(14)

is its correlation matrix, which is independent ofyP due to the principle of orthogonality.
Based on (11) and (12) conditioning ofyD onxD,yP ,xP is equivalent to conditioning onxD, ĥpil,D,xP ,

i.e.,

p(yD|xD,yP ,xP ) = p(yD|xD, ĥpil,D,xP ) (15)

as all information onhD delivered byyP is contained in̂hpil,D while conditioning onxP . Thus, (10) can
be written as

x̂D = arg max
xD∈CD

p(yD|xD, ĥpil,D,xP ) = arg max
xD∈CD

p(y|xD, ĥpil,xP ). (16)

For ease of notation in the following we will use the metric onthe RHS of (16) wherêhpil corresponds
to ĥpil,D but also contains channel estimates at the pilot symbol timeinstances, i.e.,

ĥpil = E [h|yP ,xP ] . (17)

Based onĥpil, (1) can be expressed by

y = X(ĥpil + epil) + n (18)

whereepil is the estimation error including the pilot symbol time instances. As the channel estimation is
an interpolation, the error process is not white but temporally correlated, i.e.,

Repil = E
[

epile
H
pil|xP

]

(19)

is not diagonal, cf. (35). As the estimation error process iszero-mean proper Gaussian, the PDF in (16)
is given by

p(y|xD, ĥpil ,xP ) = CN
(

Xĥpil ,XRepilX
H + σ2

nIN
)

(20)

whereCN (µ,C) denotes a proper Gaussian PDF with meanµ and covarianceC and whereIN is the
N ×N identity matrix.1

1Note that for the case of data transmission only (20) becomesp(y|xD) = CN (0,XRhX
H + σ2

nIN ) as in this casêhpil = 0 and
Repil = Rh.
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Corresponding to (15), we can also rewritep(yD|yP ,xP ) as follows

p(yD|yP ,xP ) =
∫

p(yD|xD,yP ,xP )p(xD|yP ,xP )dxD

(a)
=
∫

p(yD|xD, ĥpil,D,xP )p(xD)dxD

= p(yD|ĥpil,D,xP ) (21)

where for (a) we have used (15) and the independency ofxD of xP andyP .
Based on (15) and (21), we can also rewrite (9) as

I(xD;yD|yP ,xP ) = I(xD;yD|ĥpil ,xP )
(a)
= I(xD;yD|ĥpil) (22)

and where (a) holds as the pilot symbols are deterministic.
However, typical channel decoders like a Viterbi decoder are not able to exploit the temporal correlation

of the channel estimation error. Therefore, the decoder performs mismatched decoding based on the
assumption that the estimation error process is white, i.e., p(y|xD, ĥpil ,xP ) is approximated by

p(y|xD, ĥpil ,xP ) ≈ CN
(

Xĥpil , σ
2
epil
XXH + σ2

nIN
)

. (23)

As it is assumed that the channel is at least sampled with Nyquist frequency, see (7), for an infinite
block lengthN → ∞ the channel estimation error varianceσ2

epil
is independent of the symbol time instant

[8] and is given by

σ2
epil

=
∫ 1

2

f=−
1
2

Sepil(f)df =
∫ 1

2

f=−
1
2

Sh(f)
ρ

L

Sh(f)
σ2
h

+ 1
df (24)

whereSepil(f) is the PSD of the channel estimation error process in case thechannel estimation is solely
based on pilot symbols, which is given in (102) in Appendix B.Hence, the variance of the channel
estimation process, i.e., the entries ofĥpil , is given byσ2

h − σ2
epil

, which follows from the principle of
orthogonality in LMMSE estimation.

As the information contained in the temporal correlation ofthe channel estimation error is not retrieved
by synchronized detection with a solely pilot based channelestimation, the mutual information in this
case corresponds to the sum of the mutual information for each individual data symbol time instant. As,
obviously, by this separate processing information is discarded, the following inequality for the achievable
rate holds:

lim
N→∞

1

N
I(xD;yD|ĥpil) = I ′(xD;yD|ĥpil)

≥ L− 1

L
I(xDk

; yDk
|ĥpil)

=
L− 1

L
I(xDk

; yDk
|ĥpil,Dk

) = Rsep (25)

whereI ′ denotes the mutual information rate and the indexDk refers to an arbitrarily chosen data symbol,
i.e., xDk

= [xD]k. Furthermore,̂hpil,Dk
is the solely pilot based channel estimate at the data symboltime

instantDk. The pre-factor(L− 1)/L arises from the fact that eachL-th symbol is a pilot symbol. In the
following, we denote the achievable rate with separate processing byRsep.

As the LHS of (25) is the mutual information of the channel andas the RHS of (25) is the mutual
information achievable with synchronized detection with ametric corresponding to (23) and a solely
pilot based channel estimation, i.e., a separate processing, the difference of both terms upper bounds the
possible gain due to joint processing of data and pilot symbols. Obviously, the additional information that
can be gained by a joint processing in contrast to the separate processing is contained in the temporal
correlation of the channel estimation error process.
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Regarding synchronized detection in combination with a solely pilot based channel estimation, i.e., the
separate processing approach, in [8] bounds on the achievable rate have been given, which for zero-mean
proper Gaussian data symbols become

Rsep≥ RL,sep=
L− 1

L
Eĥpil,Dk



log



1 +
σ2
x|ĥpil,Dk

|2
σ2
epil
σ2
x + σ2

n









=
L− 1

L

∫

∞

z=0
log









1 + ρ
1− σ2

epil

σ2
h

1 + ρ
σ2
epil

σ2
h

z









e−zdz (26)

Rsep≤ RU,sep= RL,sep+
L− 1

L
ExDk



log





σ2
xσ

2
epil

+ σ2
n

|xDk
|2σ2

epil
+ σ2

n









= RL,sep+
L− 1

L



 log

(

1 + ρ
σ2
epil

σ2
h

)

−
∫

∞

z=0
log

(

1 + ρ
σ2
epil

σ2
h

z

)

e−zdz



. (27)

Based on the lower bound in (26) it can easily be seen that the achievable rate is decreased in comparison
to perfect channel knowledge by two factors. First, symbol time instances that are used for pilot symbols
are lost for data symbols leading to the pre-log factorL−1

L
, and secondly, the average SNR is decreased by

the factor
(

1− σ2
epil

σ2
h

)

/
(

1 + ρ
σ2
epil

σ2
h

)

due to the channel estimation error variance. The additional term in

the upper bound in (27) arises from the fact that the effective noise, i.e.,epil,Dk
xDk

+nDk
, is non-Gaussian.

HereeDk
is the estimation error at the data symbol time instantDk, i.e., eDk

= [epil,D]k.

IV. JOINT PROCESSING OFDATA AND PILOT SYMBOLS

Now, we give a new lower bound on the achievable rate for a joint processing of data and pilot
symbols. The following approach can be seen as an extension of the work in [13] for the case of a block-
fading channel to the stationary Rayleigh flat-fading scenario discussed in the present work. Therefore,
analogously to [13] we decompose and lower-bound the mutualinformation between the transmitter and
the receiverI(xD;yD,yP ,xP ) as follows

I(xD;yD,yP ,xP )
(a)
= I(xD;yD,yP ,xP ,h)− I(xD;h|yD,yP ,xP )
(b)
= I(xD;yD,h)− h(h|yD,yP ,xP ) + h(h|xD,yD,yP ,xP )
(c)

≥ I(xD;yD,h)− h(h|yP ,xP ) + h(h|xD,yD,yP ,xP ) (28)

where (a) follows from the chain rule for mutual information. For the first term in (b) we have used
the fact that due to the knowledge onh, the knowledge onyP and xP does not increase the mutual
information betweenxD andyD. Finally, (c) is due to the fact that conditioning reduces entropy. Note,
the first term on the RHS of (28) is the mutual information in case of perfect channel knowledge.

In the following we deviate from the derivation given in [13]. Now, we calculate both differential
entropy terms at the RHS of (28). Therefore, we rewrite the RHS of (28) as follows

I(xD;yD,yP ,xP ) ≥ I(xD;yD,h)− h(h|yP ,xP ) + h(h|xD,yD,yP ,xP )
(a)
= I(xD;yD,h)− h(h|ĥpil ,xP ) + h(h|ĥjoint,xD,xP )
(b)
= I(xD;yD,h)− h(ĥpil + epil|ĥpil ,xP ) + h(ĥjoint + ejoint|ĥjoint,xD,xP )
(c)
= I(xD;yD,h)− h(epil |xP ) + h(ejoint|xD,xP )
(d)
= I(xD;yD,h)− ExP

[

log det
(

πeRepil

)]

+ ExP ,xD

[

log det
(

πeRejoint

)]

(e)
= I(xD;yD,h)− log det

(

Repil

)

+ ExD

[

log det
(

Rejoint

)]

(29)
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where for the second term in (a) we have substituted the condition on yP by ĥpil , which is possible as
the estimatêhpil contains the same information onh asyP while conditioning onxP . Corresponding to
the solely pilot based channel estimateĥpil , based onxD, xP , yD, andyP , we can calculate the estimate
ĥjoint, which is based on data and pilot symbols. Likeĥpil this estimate is a MAP estimate, which, due to
the jointly Gaussian nature of the problem, is an MMSE estimate, i.e.,

ĥjoint = E [h|yP ,xP ,yD,xD] . (30)

Thus, for (a) we have substituted the conditioning onyD and yP by conditioning onĥjoint in the third
term, asĥjoint contains all information onh that is contained inyD andyP while xD andxP are known.
For equality (b) we have used for the second term thath can be expressed as a sum of its estimateĥpil

and the estimation errorepil, cf. (18). Analogously, for the third term we used the separation of h into
the estimatêhjoint and the corresponding estimation errorejoint, i.e.,

ejoint = h− ĥjoint. (31)

Equality (c) is due to the fact that the addition of a constantdoes not change differential entropy and
that the estimation errorepil is independent of the estimatêhpil and analogouslyejoint, which depends on
xP andxD, is independent of̂hjoint due to the orthogonality principle in LMMSE estimation. Finally, (d)
follows from the fact that the estimation error processes are zero-mean jointly proper Gaussian. Here the
error correlation matrices are given by (19) and by

Rejoint = E
[

ejointe
H
joint|xD,xP

]

. (32)

For (e) we have used that the pilot symbols are deterministic. Therefore, the expectation overxP in
the second and third term can be removed. However, the channel estimation errorejoint depends on the
distribution of the data symbolsxD. Concerning the third term on the RHS of (29), it can be shown that
the differential entropy rateh′(ejoint|xD,xP ), i.e.,

h′(ejoint|xD,xP ) = lim
N→∞

1

N
h(ejoint|xD,xP ) (33)

is minimized for a given average transmit powerσ2
x if the data symbols are constant modulus (CM)

symbols with powerσ2
x, see Appendix A. Within this proof the restriction to an absolutely summable

autocorrelation functionrh(l), see (3), is required.
Thus, based on (29) a lower bound for the achievable rate withjoint processing of data and pilot

symbols is given by

I ′(xD;yD,yP ,xP ) = lim
N→∞

1

N
I(xD;yD,yP ,xP )

≥ lim
N→∞

1

N

{

I(xD;yD,h)− log det
(

Repil

)

+ log det
(

Rejoint,CM

)}

(a)
= lim

N→∞

1

N
I(xD;yD,h)−

∫ 1
2

−
1
2

log

(

Sepil(f)

Sejoint,CM(f)

)

df (34)

with Rejoint,CM corresponding to (32), but under the assumption of CM data symbols with transmit power
σ2
x. As Rejoint,CM only depends on the distribution of the magnitude of the datasymbols contained inxD,

which is constant and deterministic, we can remove the expectation operation with respect toxD. Note
that the CM assumption has only been used to lower-bound the third term at the RHS of (29), and not the
whole expression at the RHS of (29). For (a) in (34) we have used Szegö’s theorem on the asymptotic
eigenvalue distribution of Hermitian Toeplitz matrices [15]. Sepil(f) andSejoint,CM(f) are the PSDs of the
channel estimation error processes, on the one hand, if the estimation is solely based on pilot symbols,
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and on the other hand, if the estimation is based on data and pilot symbols, assuming CM data symbols.
They are given by

Sepil(f) =
Sh(f)

ρ

L

Sh(f)
σ2
h

+ 1
(35)

Sejoint,CM(f) =
Sh(f)

ρSh(f)
σ2
h

+ 1
. (36)

The derivation of these PSDs is given in Appendix B.
However, the application of Szegö’s theorem for (a) in (34)requires several steps, which we discuss in

the following. The limit over the second and the third term onthe LHS of (a) in (34) can be transformed
as follows

lim
N→∞

1

N

{

log det
(

Repil

)

− log det
(

Rejoint,CM

)}

(a)
= lim

N→∞

1

N

{

log det
(

Cepil

)

− log det
(

Cejoint,CM

)}

(b)
= lim

N→∞

1

N

{

log det
(

FΛepilF
H
)

− log det
(

FΛejoint,CMF
H
)}

= lim
N→∞

1

N

{

log det
(

FΛepilΛ
−1
ejoint,CM

FH
)}

(c)
=
∫ 1

2

−
1
2

log

(

Sepil(f)

Sejoint,CM(f)

)

df

(d)
=
∫ 1

2

−
1
2

log







ρSh(f)
σ2
h

+ 1

ρ

L

Sh(f)
σ2
h

+ 1





 df (37)

where for (a) we have substituted the Toeplitz matricesRepil andRejoint,CM by their asymptotic equivalent cir-
culant matricesCepil andCejoint,CM, see [16]. Furthermore, for (b) we have used the spectral decompositions
of the circulant matrices given by

Cepil = FΛepilF
H (38)

Cejoint,CM = FΛejoint,CMF
H (39)

whereΛepil andΛejoint,CM are diagonal matrices containing the eigenvalues ofCepil andCejoint,CM, and the
matrix F is a unitary DFT-matrix whose elements are given by

[F ]k,l =
1√
N
ej2π

(k−1)(l−1)
N . (40)

For (c) in (37) we have then used Szegö’s theorem on the asymptotic eigenvalue distribution of Hermitian
Toeplitz matrices [15]. Therefore, first consider that the matrix FΛepilΛ

−1
ejoint,CM

FH on the LHS of (c) is
again a circulant matrix and that there exists an asymptotically equivalent Toeplitz matrix. Furthermore,
the eigenvalues ofCepil are samples of the PSDSepil(f) and the eigenvalues ofCejoint,CM are samples of
the PSDSejoint,CM(f). Here we assume a construction of the circulant matrices as described in [16, (4.32)],
see also in Appendix A from (72) to (76). Furthermore, the application of Szegö’s theorem requires that
the log-function is continuous on the support of the eigenvalues ofthe matrixΛepilΛ

−1
ejoint,CM

. This means
that we have to show that the eigenvalues ofΛepilΛ

−1
ejoint,CM

are bounded away from zero and from infinity.
That this is indeed the case will become obvious after introducing Sepil(f) andSejoint,CM(f) given in (35)
and (36) as it has been done in (d). Obviously, the argument ofthe log at the RHS of (37) is larger than
zero and smaller than infinity on the intervalf ∈ [−0.5, 0.5]. Therefore, the integral on the RHS of (37)
exists, implying that also the LHS of (c) in (37) is bounded and, thus, that the eigenvalues ofΛepilΛ

−1
ejoint,CM



9

are bounded away from zero and from infinity. Thus, in conclusion we have shown that Szegö’s theorem
is applicable and that (a) in (34) holds.

The first term on the RHS of (34) is the mutual information ratein case of perfect channel state
information, which for an average power constraint is maximized with i.i.d. zero-mean proper Gaussian
data symbols. Thus, we get the following lower bound on the achievable rate with joint processing

RL,joint =
L− 1

L
Cperf(ρ)−

∫ 1
2

−
1
2

log





ρ

σ2
h

Sh(f) + 1
ρ

Lσ2
h

Sh(f) + 1



 df (41)

whereCperf(ρ) corresponds to the coherent capacity with

Cperf(ρ) = Ehk

[

log

(

1 + ρ
|hk|2
σ2
h

)]

=
∫

∞

z=0
log (1 + ρz) e−zdz (42)

and the factor(L− 1)/L arises as eachL-th symbol is a pilot symbol.

A. Lower Bound on the Achievable Rate for a Joint Processing of Data and Pilot Symbols and a Fixed
Pilot Spacing

Substituting (42) into (41) we have found a lower bound on theachievable rate with joint processing
of data and pilot symbols, for a given pilot spacingL and stationary Rayleigh flat-fading.

For the special case of a rectangular PSD2 of the channel fading process, i.e.,

Sh(f) =

{

σ2
h

2fd
for |f | ≤ fd

0 otherwise
(43)

the lower bound in (41) becomes

RL,joint

∣

∣

∣

rect.Sh(f)
=

L− 1

L

∫

∞

z=0
log (1 + ρz) e−zdz − 2fd log





ρ

2fd
+ 1

ρ

L2fd
+ 1



 . (44)

B. Lower Bound on the Achievable Rate for a Joint Processing of Data and Pilot Symbols and an Optimal
Pilot Spacing

Obviously, the lower bound in (44) still depends on the pilotspacingL. In case the pilot spacing is not
fixed, we can further enhance it by calculating the supremum of (44) with respect toL. In this regard,
it has to be considered that the pilot spacingL is an integer value. Furthermore, we have to take into
account that the derivation of the lower bound in (44) is based on the assumption that the pilot spacing
is chosen such that the channel fading process is at least sampled with Nyquist rate, i.e., (7) has to be
fulfilled. In case the pilot spacingL is chosen larger than the Nyquist rate, the estimation errorprocess
is no longer stationary, which is required for our derivation. At this point it is also important to remark
that periodically inserted pilot symbols do not maximize the achievable rate. For the special case of PSK
signaling, it is shown in [17] that the use of a single pilot symbol, i.e., not periodically inserted pilot
symbols, is optimal in the sense that it maximizes the achievable rate. However, in the present work we
restrict to the assumption of periodically inserted pilot symbols with a pilot spacing fulfilling (7), which
is customary and reasonable as this enables detection and decoding with manageable complexity.

For these conditions, i.e., positive integer values forL fulfilling (7), it can be shown that the lower
boundRL,joint

∣

∣

∣

rect.Sh(f)
in (44) is maximized for

Lopt =

⌊

1

2fd

⌋

. (45)

2Note that a rectangular PSDSh(f) corresponds torh(l) = σ2
hsinc(2fdl) which is not absolutely summable. However, the rectangular

PSD can be arbitrarily closely approximated by a PSD with a raised cosine shape, whose corresponding correlation function is absolutely
summable.
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To prove this statement we differentiate the RHS of (44) withrespect toL and set the result equal to
zero, which yields that the RHS of (44) has a unique local extremum at

L̃opt =
1

2fd

Cperf(ρ)ρ

ρ− Cperf(ρ)
. (46)

Numerical evaluation shows that the factorCperf(ρ)ρ

ρ−Cperf(ρ)
is larger than one. As (46) is the only local extremum

of the RHS of (44), and with the constraints onL given by (7) and the fact thatL is an integer value,
and considering thatRL,joint

∣

∣

∣

rect.Sh(f)
monotonically increases withL for L < L̃opt we can conclude that

the lower bound is maximized byLopt in (45).
SubstitutingL in (44) byLopt in (45) yields a lower bound on the achievable rate with jointprocessing

in case the pilot spacing can be arbitrarily chosen while fulfilling (7).

V. NUMERICAL EVALUATION

Fig. 1 shows a comparison of the bounds on the achievable ratefor separate and joint processing of
data and pilot symbols.

On the one hand, the lower bound on the achievable rate for joint processing in (44) is compared to
bounds on the achievable rate with separate processing of data and pilot symbols, i.e, (26) and (27), for
a fixed pilot spacing. As the upper and lower bound on the achievable rate with separate processing are
relatively tight, we choose the pilot spacing such that the lower bound on the achievable rate for separate
processing in (26) is maximized. It can be seen that except for very high channel dynamics, i.e., very large
fd the lower bound on the achievable rate for joint processing is larger than the bounds on the achievable
rate with separate processing. This indicates the possiblegain while using joint processing of data and
pilot symbols for a given pilot spacing. Note, the observation that the lower bound for joint processing
for largefd is smaller than the bounds on the achievable rate with separate processing is a result of the
lower bounding, i.e., it indicates that the lower bound is not tight for these parameters.

On the other hand, also the lower bound on the achievable ratewith joint processing and a pilot
spacing that maximizes this lower bound, i.e., (44) in combination with (45), is shown. In this case the
pilot spacing is always chosen such that the channel fading process is sampled by the pilot symbols with
Nyquist rate. Obviously, this lower bound is larger than or equal to the lower bound for joint processing
while choosing the pilot spacing as it is optimal for separate processing of data and pilot symbols. This
behavior arises from the effect that for separate processing in case of smallfd a pilot rate is chosen that
is higher than the Nyquist rate of the channel fading processto enhance the channel estimation quality.
In case of a joint processing all symbols are used for channelestimation anyway. Therefore, a pilot rate
higher than Nyquist rate always leads to an increased loss inthe achievable rate as less symbols can be
used for data transmission.

Fig. 2 shows the lower bound on the achievable rate for joint processing of data and pilot symbols when
choosingL as given in (45), which maximizes the lower bound in (44). This lower bound is compared
to the following bounds on the achievable rate with i.i.d. zero-mean proper Gaussian (PG) input symbols
for a rectangular PSD of the channel fading process, see (43), which have been given in [14]

I ′

L(y;x)
∣

∣

∣

PG
= max

{

Cperf(ρ)− 2fd log

(

1 +
ρ

2fd

)

, 0

}

(47)

I ′

U(y;x)
∣

∣

∣

PG
= min







log (1 + ρ)− 2fd

∫

∞

z=0
log

(

1 +
ρ

2fd
z

)

e−zdz, Cperf(ρ)







. (48)

with Cperf(ρ) being the coherent capacity of a Rayleigh flat-fading channel given in (42).
Obviously, for some parameters the lower bound on the achievable rate for joint processing of data and

pilot symbols is larger than the lower bound on the achievable rate with i.i.d. zero-mean proper Gaussian
input symbols, i.e., without the assumption of any pilot symbols. However, this observation does not allow
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Fig. 1. Comparison of bounds on the achievable rate with separate processing of data and pilot symbols to lower bounds on the achievable
rate with joint processing of data and pilot symbols; exceptof LB joint proc. Lopt the pilot spacingL is chosen such that the lower bound
for separate processing (26) is maximized; the PSDSh(f) is assumed to be rectangular, see (43)

to argue that in these cases the use of pilot symbols is betterthan i.i.d. symbols, as we only compare
lower bounds.

VI. SUMMARY

In the present work, we have studied the achievable rate witha joint processing of pilot and data
symbols in the context of stationary Rayleigh flat-fading channels. We have discussed the nature of the
possible gain when using joint processing of data and pilot symbols in contrast to separate processing.
We have shown that the additional information that can be retrieved by joint processing is contained in
the temporal correlation of the channel estimation error process when using a solely pilot based channel
estimation, which cannot be captured by standard decoders as they are used in conventional synchronized
detection based receivers with a solely pilot based channelestimation. In addition, and this is the main
novelty of the present work, we have derived a lower bound on the achievable rate for joint processing of
data and pilot symbols on a stationary Rayleigh flat-fading channel, giving an indication on the possible
gain in terms of the achievable rate when using a joint processing of pilot and data symbols in comparison
to the typically used separate processing.

APPENDIX A
M INIMIZATION OF h′(ejoint|xD,xP ) BY CM MODULATION

In this appendix we will show that the differential entropy rateh′(ejoint|xD,xP ) in (33), which depends
on the distribution of the data symbols contained inxD, is minimized for constant modulus input symbols
among all distributions of the data symbols with an maximum average power ofσ2

x.
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bound, i.e., (44) in combination with (45); for comparison bounds on the achievable rate with i.i.d. zero-mean proper Gaussian (PG) input
symbols are shown; rectangular PSDSh(f), see (43)

The MAP channel estimate based on pilot and perfectly known data symbols is given by

ĥjoint = argmax
h

p(h|y,x)
= argmax

h

p(y|h,x)p(h)
= argmax

h

{log(p(y|h,x)) + log(p(h))} (49)

with

p(y|h,x) = 1

πNσ2N
n

exp

(

−|y −Xh|2
σ2
n

)

(50)

p(h) =
1

πN det(Rh)
exp

(

−hHR−1
h h

)

. (51)

Thus, (49) becomes

ĥjoint = argmax
h

{

− 1

σ2
n

|y−Xh|2 − hHR−1
h h

}

. (52)

Differentiating the argument of the maximum operation at the RHS of (52) with respect toh and setting
the result equal to zero yields

− 1

σ2
n

{

−XHy +XHXh
}

−R−1
h h = 0 (53)
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and, thus,3

ĥjoint = Rh

(

Rh + σ2
nX

−1XH−1
)−1

X−1y. (55)

With (55) the channel estimation error correlation matrixRejoint is given by

Rejoint = E
[

(

h− ĥjoint

) (

h− ĥjoint

)H
∣

∣

∣

∣

x

]

= Rh −Rh

(

Rh + σ2
n(X

HX)−1
)−1

Rh. (56)

Thus, the differential entropyh(ejoint|xD,xP ) becomes

h(ejoint|xD,xP ) = Ex

[

log det
(

πeRejoint

)]

= log
(

(πe)N det(Rh)
)

+ Ex

[

log det
(

IN −
(

Rh + σ2
n(X

HX)−1
)−1

Rh

)]

. (57)

The argument of the expectation operation in the last summand on the RHS of (57) can be rewritten as

log det
(

IN −
(

Rh + σ2
n(X

HX)−1
)−1

Rh

)

= log det
(

IN −
(

IN +R−1
h σ2

n(X
HX)−1

)−1
)

(a)
= log det



IN −


IN −
(

1

σ2
n

Rh + (XHX)−1

)−1

(XHX)−1









= − log det

(

1

σ2
n

RhX
HX+ IN

)

(58)

where (a) follows from the matrix inversion lemma. Inserting (58) into (57) yields

h(ejoint|xD,xP ) = log
(

(πe)N det(Rh)
)

− Ex

[

log det

(

1

σ2
n

RhX
HX+ IN

)]

. (59)

As the matrixX = diag(x) is diagonal, the productXXH is also diagonal and its diagonal elements
are the powers of the individual transmit symbols. In the following we substitute this product by

Z = XXH (60)

andz = diag(Z) contains the diagonal elements ofZ.
The aim of this appendix is to show that the entropy rateh′(ejoint|xD,xP ) corresponding to the entropy

in (59) is minimized by constant modulus data symbols with the powerσ2
x among all input distributions

fulfilling the maximum average power constraint in (6), i.e.,

E
[

xHx
]

= E

[

N
∑

k=1

zk

]

≤ Nσ2
x (61)

where thezk with k = 1 . . .N are the elements ofz. Therefor, in a first step, we study the entropy in (59),
i.e., a finite transmission lengthN . Let the setP be the set containing all input distributions fulfilling
the maximum average power constraint in (61). Note that thissetP includes the case of having pilot
symbols. However, when using pilot symbols, the transmit power of eachL-th symbol is fixed toσ2

x. For

3Note that the inverse ofX in (55) does not exist, if a diagonal element of the diagonal matrix X is zero, i.e., one transmit symbol has
zero power. However, as the channel estimates can be rewritten as

ĥjoint = RhX
H
(

XRhX
H + σ

2
nIN

)

−1
y (54)

it is obvious that the elements of̂hjoint are continuous inxk for all k, and, thus, this does not lead to problems in the following derivation.
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the moment, we allow all input distributions contained inP. Later on, we will come back to the special
case of using pilot symbols.

We want to find the input vectorz that minimizes (59) provided that the average power constraint is
fulfilled. Therefor, we first show that the argument of the expectation operation on the RHS of (59), i.e.,

g(Z) = log det

(

1

σ2
n

RhZ+ IN

)

(62)

is concave inZ. To verify the concavity ofg(Z), we follow along the lines of [18, Chapter 3.1.5] and
consider an arbitrary lineZ = Z̄+ t∆. Based on this, we defineg(t) as

g(t) = log det

(

1

σ2
n

Rh

(

Z̄+ t∆
)

+ IN

)

= log det

(

1

σ2
n

Rh

)

+ log det
(

Z̄+ σ2
nR

−1
h + t∆

)

(a)
= log det

(

1

σ2
n

Rh

)

+ log det (Q+ t∆)

= log det

(

Rh

σ2
n

)

+ log det
(

Q
H
2

(

IN + tQ−
H
2 ∆Q−

1
2

)

Q
1
2

)

= log det

(

Rh

σ2
n

)

+ log det (Q) + log det
(

IN + tQ−
H
2 ∆Q−

1
2

)

= log det

(

1

σ2
n

RhZ̄+ IN

)

+ log det
(

IN + t
(

Z̄+ σ2
nR

−1
h

)−
H
2
∆
(

Z̄+ σ2
nR

−1
h

)−
1
2

)

(b)
= log det

(

1

σ2
n

RhZ̄+ IN

)

+
N
∑

k=1

log (1 + tλk) (63)

where for (a) we have used the substitutionQ
△
= Z̄+ σ2

nR
−1
h to simplify notation. Furthermore, theλk in

(b) are the eigenvalues of
(

Z̄+ σ2
nR

−1
h

)−
H
2
∆
(

Z̄+ σ2
nR

−1
h

)−
1
2 .

Based on (63) the derivatives ofg(t) with respect tot are given by

dg(t)

dt
=

N
∑

k=1

λk

1 + tλk

(64)

d2g(t)

dt2
= −

N
∑

k=1

λ2
k

(1 + tλk)
2 . (65)

As the second derivatived
2g(t)
dt2

is always negative,g(Z) is concave on the set of diagonal matricesZ with
non-negative diagonal entries.

Based on the concavity ofg(Z) with respect toZ we can lower-boundh(ejoint|xD,xP ) in (59) by
using Jensen’s inequality as follows, cf. (62):

h(ejoint|xD,xP ) = log det
(

(πe)N det(Rh)
)

− Ez [g(Z)]

≥ log det
(

(πe)N det(Rh)
)

− log det

(

1

σ2
n

RhE [Z] + IN

)

. (66)

Recall, that we want to show that constant modulus data symbols with the powerσ2
x minimize the

entropy rateh′(ejoint|xD,xP ). Therefore, from here on we consider the entropy rate which is given by

h′(ejoint|xD,xP ) = lim
N→∞

1

N
h(ejoint|xD,xP )

= lim
N→∞

1

N

[

log det
(

(πe)N det(Rh)
)

− log det

(

1

σ2
n

RhE [Z] + IN

)]

. (67)
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In the next step, we show for which kind of distribution ofz fulfilling the maximum average power
constraint in (61) the RHS of (67) is minimized. I.e., we haveto find

lim
N→∞

1

N
sup
P

log det

(

1

σ2
n

RhE [Z] + IN

)

(68)

where the setP contains all input distributions fulfilling the maximum average power constraint in (61).
For the evaluation of (68) we substitute the Toeplitz matrixRh by an asymptotic equivalent circulant

matrix Ch, which is possible, as we are finally interested in the supremum in (68) for the case of an
infinite transmission length, i.e.,N → ∞. In the following, we will formalize the construction ofCh and
show that the following holds

lim
N→∞

1

N
sup
P

log det

(

1

σ2
n

RhE [Z] + IN

)

= lim
N→∞

1

N
sup
P

log det

(

1

σ2
n

ChE [Z] + IN

)

(69)

Therefore, we express the channel correlation matrixRh by its spectral decomposition

Rh = R
(N)
h = U(N)Λ

(N)
h

(

U(N)
)H

(70)

where we introduced the superscript(N) to indicate the size of the matrices. Furthermore, the matrix
U(N) is unitary andΛ(N)

h = diag(λ(N)
1 , . . . , λ

(N)
N ) is diagonal and contains the eigenvaluesλ

(N)
k of R(N)

h .
We construct the circulant matrixC(N)

h which is asymptotically equivalent to the Toeplitz matrixR(N)
h

following along the lines of [16, Section 4.4, Eq. (4.32)]. The first column of the circulant matrixC(N)
h

is given by(c(N)
0 , c

(N)
1 , . . . , c

(N)
N−1)

T with the elements

c
(N)
k =

1

N

N−1
∑

l=0

S̃h

(

l

N

)

ej2π
lk
N . (71)

Here S̃h(f) is the periodic continuation ofSh(f) given in (4), i.e.,

S̃h(f) =
∞
∑

k=−∞

δ(f − k) ⋆ Sh(f) (72)

andSh(f) being zero outside the interval|f | ≤ 0.5 for which it is defined in (4). The asterisk⋆ in (72)
denotes convolution.

As we assume that the autocorrelation function of the channel fading process is absolutely summable,
see (3), the PSD of the channel fading processS̃h(f) is Riemann integrable, and it holds that

lim
N→∞

c
(N)
k = lim

N→∞

1

N

N−1
∑

l=0

S̃h

(

l

N

)

ej2π
lk
N

=
∫ 1

0
S̃h(f)e

j2πkfdf

=
∫ 1

2

−
1
2

Sh(f)e
j2πkfdf = rh(k) (73)

with rh(k) defined in (2).
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As the eigenvectors of a circulant matrix are given by a discrete Fourier transform (DFT), the eigenvalues
λ̆
(N)
k with k = 1, . . . , N of the circulant matrixC(N)

h are given by

λ̆
(N)
k =

N−1
∑

l=0

c
(N)
l e−j2π

(k−1)l
N

=
N−1
∑

l=0

(

1

N

N−1
∑

m=0

S̃h

(

m

N

)

ej2π
ml
N

)

e−j2π
l(k−1)

N

=
N−1
∑

m=0

S̃h

(

m

N

)

{

1

N

N−1
∑

l=0

ej2π
l(m−(k−1))

N

}

= S̃h

(

k − 1

N

)

. (74)

Consequently, the spectral decomposition of the circulantmatrix C
(N)
h is given by

C
(N)
h = F(N)Λ̆

(N)
h

(

F(N)
)H

(75)

where the matrixF(N) is a unitary DFT matrix, i.e., its elements are given by
[

F(N)
]

k,l
=

1√
N
ej2π

(k−1)(l−1)
N . (76)

Furthermore, the matrix̆Λ(N)
h is diagonal with the elements̆λ(N)

k given in (74).
By this construction the circulant matrixC(N)

h is asymptotically equivalent to the Toeplitz matrixR(N)
h ,

see [16, Lemma 4.6], if the autocorrelation functionrh(k) is absolutely summable, which is assumed to
be fulfilled, see (3).

In the context of proving [16, Lemma 4.6], it is shown that theweak norm of the difference ofR(N)
h

andC(N)
h converges to zero asN → ∞, i.e.,

lim
N→∞

∣

∣

∣R
(N)
h −C

(N)
h

∣

∣

∣ = 0 (77)

where the weak norm of a matrixB is defined as

|B| =
(

1

N
Tr
[

BHB
]

)

1
2

. (78)

This fact will be used later on.
To exploit the asymptotic equivalence ofR

(N)
h andC(N)

h for the current problem, we have to show that
the matrices in the argument of thelog det operation on the LHS and the RHS of (69), i.e.,

K
(N)
1 =

1

σ2
n

R
(N)
h E [Z] + IN (79)

K
(N)
2 =

1

σ2
n

C
(N)
h E [Z] + IN (80)

are asymptotically equivalent.
In this context, we have to show that both matrices are bounded in the strong norm, and the weak norm

of their difference converges to zero forN → ∞ [16, Section 2.3].
Concerning the condition with respect to the strong norm we have to show that

∥

∥

∥K
(N)
1

∥

∥

∥ =

∥

∥

∥

∥

∥

1

σ2
n

R
(N)
h E [Z] + IN

∥

∥

∥

∥

∥

< ∞ (81)

∥

∥

∥K
(N)
2

∥

∥

∥ =

∥

∥

∥

∥

∥

1

σ2
n

C
(N)
h E [Z] + IN

∥

∥

∥

∥

∥

< ∞ (82)
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with the strong norm of the matrixB defined by

‖B‖2 = max
k

γk (83)

whereγk are the eigenvalues of the Hermitian nonnegative definite matrix BBH. The diagonal matrix
E [Z] contains the average transmit powers of the individual transmit symbols on its diagonal. Thus, its
entries are bounded. In addition, as the strong norms ofR

(N)
h and C

(N)
h are bounded, too, the strong

norms ofK(N)
1 andK(N)

2 are bounded. Concerning the boundedness of the eigenvaluesof the Hermitian
Toeplitz matrixR(N)

h see [16, Lemma 4.1].
Furthermore, the weak norm of the differenceK(N)

1 −K
(N)
2 converges to zero forN → ∞ as

∣

∣

∣K
(N)
1 −K

(N)
2

∣

∣

∣ =

∣

∣

∣

∣

∣

1

σ2
n

R
(N)
h E [Z] + IN − 1

σ2
n

C
(N)
h E [Z]− IN

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

σ2
n

(

R
(N)
h −C

(N)
h

)

E [Z]

∣

∣

∣

∣

∣

(a)

≤ 1

σ2
n

∣

∣

∣R
(N)
h −C

(N)
h

∣

∣

∣ ‖E [Z] ‖ (84)

where for (a) we have used [16, Lemma 2.3]. As‖E [Z] ‖ is bounded, we get forN → ∞

lim
N→∞

∣

∣

∣K
(N)
1 −K

(N)
2

∣

∣

∣ ≤ lim
N→∞

1

σ2
n

∣

∣

∣R
(N)
h −C

(N)
h

∣

∣

∣ ‖E [Z] ‖ = 0 (85)

due to (77). Thus we have shown the asymptotic equivalence ofK
(N)
1 andK(N)

2 .
As K

(N)
1 andK(N)

2 are asymptotically equivalent, with [16, Theorem 2.4] the equality in (69) holds. For
ease of notation, in the following we omit the use of the superscript (N) for all matrices and eigenvalues.

Based on (69) the evaluation of the supremum in (68) can be substituted by

lim
N→∞

1

N
sup
P

log det

(

1

σ2
n

ChE [Z] + IN

)

(a)
= lim

N→∞

1

N
sup
P

log det

(

1

σ2
n

FΛ̆hF
HE [Z] + IN

)

(b)
= lim

N→∞

1

N
sup
P

log det

(

1

σ2
n

Λ̆hF
HE [Z]F+ IN

)

(86)

where for (a) we have used (75) and (b) is based on the following relation

det (AB+ I) = det (BA+ I) (87)

which holds asAB has the same eigenvalues asBA for A and B being square matrices [19, Theo-
rem 1.3.20].

As the matrix 1
σ2
n
Λ̆hF

HE [Z]F + IN in the argument of the logarithm on the RHS of (86) is positive
definite, using Hadamard’s inequality we can upper-bound the argument of the supremum on the RHS of
(86) as follows

log det

(

1

σ2
n

Λ̆hF
HE [Z]F+ IN

)

≤
N
∑

k=1

log

(

1

σ2
n

λ̆k

[

FHE [Z]F
]

k,k
+ 1

)

(88)

where
[

FHE [Z]F
]

k,k
are the diagonal entries of the matrixFHE [Z]F. Note, this means that distributions

of the input sequencesz which lead to the case that the matrixFHE [Z]F is diagonal maximize the RHS
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of (86). Using (88), the RHS of (86) is given by

lim
N→∞

1

N
sup
P

log det

(

1

σ2
n

Λ̆hF
HE [Z]F+ IN

)

= lim
N→∞

1

N
sup
P

N
∑

k=1

log

(

1

σ2
n

λ̆k

(

1

N

N
∑

l=1

E [zl]

)

+ 1

)

= lim
N→∞

1

N
sup
P

N
∑

k=1

log

(

1

σ2
n

λ̆k

(

E

[

1

N

N
∑

l=1

zl

])

+ 1

)

. (89)

It rests to evaluate the supremum on the RHS of (89). However,as the logarithm is a monotonically
increasing function with the maximum average power constraint in (61) the supremum in (89) is given
by

lim
N→∞

1

N
sup
P

N
∑

k=1

log

(

1

σ2
n

λ̆k

(

E

[

1

N

N
∑

l=1

zl

])

+ 1

)

= lim
N→∞

1

N

N
∑

k=1

log

(

σ2
x

σ2
n

λ̆k + 1

)

(a)
= lim

N→∞

1

N
log det

(

σ2
x

σ2
n

Ch + 1

)

(b)
= lim

N→∞

1

N
log det

(

σ2
x

σ2
n

Rh + 1

)

(90)

where (a) is based on (75) and for (b) we have used the asymptotic equivalence of the circulant matrix
Ch and the Toeplitz matrixRh.

Now, using (69), (86), (89), and (90) the supremum in (68) is given by

lim
N→∞

1

N
sup
P

log det

(

1

σ2
n

RhE [Z] + IN

)

= lim
N→∞

1

N
log det

(

σ2
x

σ2
n

Rh + IN

)

. (91)

However, this means that the entropy rateh′(ejoint|xD,xP ) in (67) is lower-bounded by

h′(ejoint|xD,xP ) = lim
N→∞

1

N

[

log det
(

(πe)N det(Rh)
)

− log det

(

1

σ2
n

RhE [Z] + IN

)]

≥ lim
N→∞

1

N

[

log det
(

(πe)N det(Rh)
)

− log det

(

σ2
x

σ2
n

Rh + IN

)]

(a)
= lim

N→∞

1

N
log det

(

πeRejoint,CM

)

(92)

where for (a) we have used (57) and (58), and whereRejoint,CM is the estimation error correlation matrix
in case all input symbols have a constant modulus with powerσ2

x, cf. (56)

Rejoint,CM = Rh −Rh

(

Rh +
σ2
n

σ2
x

IN

)−1

Rh. (93)

This mean, that the entropy rateh′(ejoint|xD,xP ) is minimized for the given maximum average power
constraint in (6) when all input symbols are constant modulus input symbols with powerσ2

x. Note that
this includes the case that eachL-th symbol is a pilot symbol with powerσ2

x and all other symbols are
constant modulus data symbols with powerσ2

x.
In conclusion, we have shown that the differential entropy rateh′(ejoint|xD,xP ) is minimized for constant

modulus data symbols with powerσ2
x, i.e.,

h′(ejoint|xD,xP ) ≥ h′(ejoint|xD,xP )
∣

∣

∣

CM

= lim
N→∞

1

N
log det

(

πeRejoint,CM

)

. (94)
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APPENDIX B
ESTIMATION ERROR SPECTRASepil(f) AND Sejoint,CM

(f)

First, we calculate the PSDSepil(f) of the channel estimation error in case of a solely pilot based
channel estimation. The channel estimation error in the frequency domain is given by

EN (e
j2πf) =

N
∑

k=1

epil,k · e−j2πfk (95)

whereepil,k are the elements of the vectorepil . In the following we are interested in the caseN → ∞. As in
this case the sum in (95) does not exist, in the following we discuss
limN→∞

1
N
EN (e

j2πf), which can be expressed as follows

lim
N→∞

1

N
EN(e

j2πf)
(a)
= lim

N→∞

1

N

L
∑

l=1

EN,l(e
j2πLf)e−j2πlf

(b)
= lim

N→∞

1

N

L
∑

l=1



HN,l(e
j2πLf)−Wl(e

j2πLf)
YN,P (e

j2πLf)

σx



e−j2πlf

(c)
= lim

N→∞

1

N



HN(e
j2πf)−

L
∑

l=1

W (ej2πLf)ej2πlf
YN,P (e

j2πLf)

σx

e−j2πlf





= lim
N→∞

1

N

[

HN(e
j2πf)− L ·W (ej2πLf)

YN,P (e
j2πLf )

σx

]

(d)
= lim

N→∞

1

N



HN(e
j2πf)− L ·W (ej2πLf)

[

HN,P (e
j2πLf) +

NN,P (e
j2πLf)

σx

]



. (96)

For (a) we have used that the estimation error in frequency domain is the sum of the interpolation errors
at the individual symbols time instances between the pilot symbols, where the temporal shift yields the
phase shift of2πlf . HereEN,l(e

j2πLf ) is the frequency transform of the estimation error at the symbol
position with the distancel to the next pilot symbols, i.e.,

EN,l(e
j2πLf) =

N
L
∑

k=1

epil,(k−1)L+1+l · e−j2πfkL, for l = 0, . . . , L− 1 (97)

where without loss of generality we assume thatN is an integer multiple ofL and that the transmit
sequence starts with a pilot symbol. Equality (b) results from expressingEN,l(e

j2πLf) by the difference
between the actual channel realization and the estimated channel realization at the different interpolation
positions in time domain transferred to frequency domain. Here, without loss of generality, we assume that
the pilot symbols are given byσx. Furthermore,Wl(e

j2πLf) is the transfer function of the interpolation
filter for the symbols at distancel from the previous pilot symbol. Furthermore,YN,P (e

j2πLf) is the channel
output at the pilot symbols time instance transferred to frequency domain. For (c) we have used that the
sum of the phase shifted channel realizations in frequency domain at sampling rate1/L corresponds to
the frequency domain representation of the fading process at symbol rate. In addition, we have used that
for N → ∞ the interpolation filter transfer functionWl(e

j2πLf), which is an MMSE interpolation filter,
can be expressed as

Wl(e
j2πLf) = W (ej2πLf)ej2πlf (98)

i.e., the interpolation filter transfer functions for the individual time shifts are equal except of a phase
shift. Finally, for (d) we have expressedYN,P (e

j2πLf ) as the sum of the frequency domain representations
of the fading process and the additive noise process.
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Based on (96) the PSDSepil(f) is given by

Sepil(f) = lim
N→∞

1

N
E
[

|EN(e
j2πf )|2

]

= lim
N→∞

1

N
E



|HN(e
j2πf)|2 − L ·HN(e

j2πf)W ∗(ej2πLf)H∗

N,P (e
j2πLf)

− L ·H∗

N(e
j2πf)W (ej2πLf)HN,P (e

j2πLf)

+ L2|W (ej2πLf)|2


|HN,P (e
j2πLf)|2 +

∣

∣

∣

∣

∣

NN,P (e
j2πLf)

σx

∣

∣

∣

∣

∣

2








= Sh(e
j2πf)− lim

N→∞

1

N
E



L ·W ∗(ej2πLf)
L
∑

l=1

HN,l(e
j2πLf)e−j2πlfH∗

N,P (e
j2πLf)

+ L ·W (ej2πLf)
L
∑

l=1

H∗

N,l(e
j2πLf)ej2πlfHN,P (e

j2πLf )





+ L2|W (ej2πLf)|2
[

1

L
Sh(e

j2πLf) +
1

L

σ2
n

σ2
x

]

= Sh(e
j2πf)− L ·W ∗(ej2πLf)

L
∑

l=1

1

L
· Sh(e

j2πLf)− L ·W (ej2πLf)
L
∑

l=1

1

L
· S∗

h(e
j2πLf )

+ L2|W (ej2πLf)|2
[

1

L
Sh(e

j2πLf) +
1

L

σ2
n

σ2
x

]

(a)
= Sh(e

j2πf)− 2L ·W (ej2πLf)Sh(e
j2πLf) + L|W (ej2πLf)|2

[

Sh(e
j2πLf) +

σ2
n

σ2
x

]

(99)

where for (a) we have used thatSh(f) is real and, thus, the MMSE filterW (ej2πLf) is also real, see
below.

The MMSE filter transfer functionW (ej2πLf) is given by

W (ej2πLf) =
Sh(e

j2πLf)

Sh(ej2πLf ) +
σ2
n

σ2
x

=
1
L
Sh(e

j2πf)
1
L
Sh(ej2πf) +

σ2
n

σ2
x

(100)

where we have used that

Sh(e
j2πLf) =

1

L
Sh(e

j2πf). (101)

Inserting (100) into (99) yields

Sepil(f) = Sh(e
j2πf)− 2L

Sh(e
j2πf)

Sh(ej2πf) + Lσ2
n

σ2
x

Sh(e
j2πLf) + L

∣

∣

∣

∣

∣

∣

Sh(e
j2πf)

Sh(ej2πf) + Lσ2
n

σ2
x

∣

∣

∣

∣

∣

∣

2 [

Sh(e
j2πLf) +

σ2
n

σ2
x

]

(a)
= Sh(e

j2πf)− 2 · Sh(e
j2πf)

Sh(ej2πf) + Lσ2
n

σ2
x

Sh(e
j2πf) +

∣

∣

∣Sh(e
j2πf)

∣

∣

∣

2

Sh(ej2πf) + Lσ2
n

σ2
x

=
Sh(e

j2πf)Lσ2
n

σ2
x

Sh(ej2πf) + Lσ2
n

σ2
x
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=
Sh(e

j2πf)
ρ

L

Sh(ej2πf )
σ2
h

+ 1

(b)
=

Sh(f)
ρ

L

Sh(f)
σ2
h

+ 1
(102)

where (a) results from (101) and for (b) we simplified the notation and substitutedej2πf by f to get a
consistent notation with (4).

The PSDSejoint,CM(f) is then obviously given by settingL = 1 in (102), i.e.,

Sejoint,CM(f) =
Sh(f)

ρSh(f)
σ2
h

+ 1
(103)

as all data symbols are assumed to be known and of constant modulus with powerσ2
x, cf. (34).
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