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Abstract

In many typical mobile communication receivers the chamelstimated based on pilot symbols to allow for
a coherent detection and decoding in a separate procesgsmg@urrently much work is spent on receivers which
break up this separation, e.g., by enhancing channel dgtimaased on reliability information on the data symbols.
In the present work, we evaluate the possible gain of a jaio¢gssing of data and pilot symbols in comparison to
the case of a separate processing in the context of stayi®aateigh flat-fading channels. Therefore, we discuss the
nature of the possible gain of a joint processing of pilot dath symbols. We show that the additional information
that can be gained by a joint processing is captured in thpaeashcorrelation of the channel estimation error of the
solely pilot based channel estimation, which is not retrébly the channel decoder in case of separate processing.
In addition, we derive a new lower bound on the achievable fat joint processing of pilot and data symbols.

Index Terms

Channel capacity, fading channels, information rates)tjprocessing, mismatched decoding, noncoherent,
Rayleigh, time-selective.

. INTRODUCTION

IRTUALLY all practical mobile communication systems fadetproblem that communication takes

place over a time varying fading channel whose realizasomiknown to the receiver. However, for
coherent detection and decoding an estimate of the chaadielgf process is required. For the purpose of
channel estimation usually pilot symbols, i.e., symbolsciwtare known to the receiver, are introduced
into the transmit sequence. In conventional receiver desigg channel is estimated based on these
pilot symbols. Based on these channel estimates, in a sepstep coherent detection and decoding
is performed. Both processing steps are executed separatel

In recent years, much effort has been spent on the study watiite joint channel estimation and

decoding schemes, i.e., schemes, in which the channelaggtimis iteratively enhanced based on reliability
information on the data symbols delivered by the decoder, sg., [1]-[4]. In this context, the channel
estimation is not solely based on pilot symbols, but also @aa dymbols. This approach is an instance of
ajoint processing of data and pilot symbols in contrast to the separate prowgss conventional receiver
design. Obviously, this joint processing results in aneased receiver complexity. To evaluate the payoff
for the increased receiver complexity, it is important todst the possible performance gain that can be
achieved by a joint processing, e.g., in form of an iteratvde-aided channel estimation and decoding
based receiver, in comparison tosgparate processing as it is performed in conventional synchronized
detection based receivers, where the channel estimatisoledy based on pilot symbols.
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Therefore, in the present work we evaluate the performaric joint processing in comparison to
synchronized detection with a solely pilot based chann@hesion based on the achievable rate. Regarding
the channel statistics, we assume a stationary Rayleigfatlaig channel as it is usually applied to model
the fading in a mobile environment without a line of sight gmment. Furthermore, we assume that the
power spectral density (PSD) of the channel fading proces®mpactly supported, and that the fading
process isnon-regular [5], which is reasonable as the maximum Doppler frequencyypical fading
channels is small in comparison to the inverse of the symbattbn. Furthermore, we assume that the
receiver is aware of the law of the channel, while neither tla@smitter nor the receiver knows the
realization of the channel fading process.

There has been a variety of publications studying the aebievrate with pilot symbols, see, e.g.,
[6]-[12]. Many of these works discuss the achievable raeumthe assumption that a channel estimate is
acquired based on pilot symbols which is then used for colheletection, i.e., separate processing. Some
of these works consider block-fading, [7], [10], and![12]hile [8] and [9] specifically discuss the case
of stationary fading. For the case of a stationary singpeHrsingle-output Rayleigh flat-fading channel,
as we study in the present work, tight bounds on the achieviaié with synchronized detection with
a solely pilot based channel estimation, i.e., separateegeing, have been given in [8]. In contrast, for
the case of a joint processing there is not much knowledgderathievable rate. Very recently, (n [13]
the value of joint processing of pilot and data symbols hantstudied in the context of a block-fading
channel. To the best of our knowledge, there are no resuttsecning the gain of joint processing of
pilot and data symbols for the case of stationary fading sk Thus, in the present work, we study the
achievable rate with a joint processing of pilot and datalsyism We identify the nature of the possible
gain of a joint processing of pilot and data symbols in congoar to a separate processing. Furthermore,
we derive a lower bound on the achievable rate with joint sstg of pilot and data symbols, which,
thus, can be seen as an extension of the work given_ in [13]eadise of stationary Rayleigh flat-fading.
In addition, we compare the given lower bound on the achievedie with joint processing of pilot and
data symbols to bounds on the achievable rate with separategsing given in[|8] and to bounds on
the achievable rate with i.i.d. zero-mean proper Gaussipatisymbols given in_[14], i.e., without the
assumption on pilot symbols inserted into the transmit sege.

The rest of the paper is organized as follows. In SecfiondIdystem model is introduced. Subsequently,
in SectionIll we discuss the nature of the gain by a joint pesing of pilot and data symbols, i.e., we
discuss which information is discarded in case of a separateessing. Furthermore, existing bounds on
the achievable rate with separate processing are briefglleelc Afterwards, in Section IV a new lower
bound on the achievable rate with a joint processing of mlod data symbols is derived, before it is
numerically evaluated and compared to the achievable rdteseparate processing and to the achievable
rate with i.i.d. zero-mean proper Gaussian inputs in Se@o Finally, Sectio_MI concludes the paper
with a brief summary.

[l. SYSTEM MODEL

We consider a discrete-time zero-mean jointly proper Qaosiat-fading channel with the following
input-output relation

y=Hx+n=Xh+n (1)

with the diagonal matriceH = diagh) and X = diagx). Here the diag) operator generates a diagonal
matrix whose diagonal elements are given by the argumenonéthe vectory = [y, . . ., yN]T contains
the channel output symbols in temporal order. Analogous; [xl,...,xN]T, n = [ny,. ..,nN]T, and
h=[hy,..., hN]T contain the channel input symbols, the additive noise sesnghd the channel fading
weights. All vectors are of lengthv.

The samples of the additive noise process are assumed tocbeero-mean jointly proper Gaussian
with variances? and, thusR,, = E [nnH] = o021y, with Iy being the identity matrix of sizé&V x N.



The channel fading process is zero-mean jointly proper Sansvith the temporal correlation charac-
terized by

Th(l) = E[hk+l : hZ] (2

Its variance is given by, (0) = o7. For mathematical reasons we assume that the autocaorefatiction
rn(l) is absolutely summable, i.e.,

o0

> ()] < oc. 3)
l=—c0
The PSD of the channel fading process is defined as
Su(f)= > ra(m)e > |f] <05, (4)

We assume that the PSD exists, which for a jointly proper &ansfading process implies ergodicity.
Furthermore, we assume the PSD to be compactly supportééchwite interval|— f,, f4] with f; being
the maximum Doppler shift an < f; < 0.5. This means thatS,(f) = 0 for f ¢ [—f4, fa]. The
assumption of a PSD with limited support is motivated by thet that the velocity of the transmitter, the
receiver, and of objects in the environment is limited. Tewe ergodicity, we exclude the cage= 0.
In matrix-vector notation, the temporal correlation is egsed by the autocorrelation mati, given
by
R, = E [hh"]. (5)
For the following derivation we introduce the subvectgfs containing all data symbols of and the
vectorxp containing all pilot symbols ok. Correspondingly, we define the vectdrs, hp, yp, yp, np,
andnp.
The transmit symbol sequence consists of data symbols witiaxdmal average power?, i.e.,
1
with N being the length of the vectot,, and periodically inserted pilot symbols with a fixed traitsm
power o2, EachL-th symbol is a pilot symbol. We assume that the pilot spagsnchosen such that the
channel fading process is sampled at least with Nyquist r&te

1
L < —. 7
2, (7)
The processe$x, }, {hr} and{n,} are assumed to be mutually independent.
Based on the preceding definitions the average $N&given by

2 2
o 0:0h

(8)

o
I1l. THE NATURE OF THE GAIN BY JOINT PROCESSING OFDATA AND PILOT SYMBOLS

Before we quantitatively discuss the value of a joint preoss of data and pilot symbols, we discuss
the nature of the possible gain of such a joint processingomparison to a separate processing of
data and pilot symbols. The mutual information between thesimitter and the receiver is given by
Z(xp;¥p,yp,Xxp). As the pilot symbols are known to the receiver, the pilot bginvectorxp is found
at the RHS of the semicolon. We separéte&p;yp,yp,xp) as follows

I(Xp;yp,ypr,Xp) © I(xp;yplyp,xp) + Z(xp; yp|xp) + L(xp; Xp)
o I(xp;yplyp,xp) 9)
where (a) follows from the chain rule for mutual informatiand (b) holds due to the independency
of the data and pilot symbols. The question is, which portdé (xp;yp|yr,xp) can be achieved by
synchronized detection with a solely pilot based channinesion, i.e., with separate processing.



A. Separate Processing

The receiver has to find the most likely data sequengebased on the observatignwhile knowing
the pilotsxp, i.e.,

Xp = arg max p(y|x) = arg max p(yp|Xp,yr,Xp) (10)
xp€Cp xp€Cp

with the setCp containing all possible data sequencas It can be shown that the probability density
function (PDF)p(yp|xp,ypr, Xp) is proper Gaussian and, thus, is completely described bgahditional
mean and covariance

E [YD|XD7 YPaXP] = XpE [hD|YPaXP] = XDflpil,D (11)
cov|yp|Xp,yp,Xp] = XDRepn,DXg + UiIND (12)

where X, = diag(xp) andIy, is an identity matrix of sizeVp, x Np. The vectorflpn,p is an MMSE
channel estimate at the data symbol time instances basdaeguildt symbols, which is denoted by the
index pil. Furthermore, the corresponding channel estimation error

€pil,D = hp — flpil,D (13)
is zero-mean proper Gaussian and
R0 = E ey pefl plxp] (14)

is its correlation matrix, which is independentyf due to the principle of orthogonality.
Based on[(11) and (12) conditioningpf, onxp, yp, xp is equivalent to conditioning orp, h,i p, xp,
ie.,

~

p(yp|xp,yp,xp) = p(¥p|XD, hpit,p, Xp) (15)

as all information orhp delivered byyp is contained irﬁpw while conditioning onxp. Thus, [10) can
be written as

Xp = arg max p(yp|Xp, flpil,DuxP) = arg max p(y|xp, ﬁpibXP)- (16)
xp€Cp xp€Cp

For ease of notation in the following we will use the metrictbe RHS of [(16) Whereﬁp” corresponds
to hy; p but also contains channel estimates at the pilot symbol hirsinces, i.e.,

hyi = E [hlyp, xp]. (17)
Based onﬁp", (@) can be expressed by
y = X(hpi +epi) +n (18)

whereey is the estimation error including the pilot symbol time arstes. As the channel estimation is
an interpolation, the error process is not white but tempocarrelated, i.e.,

R, = E [enief/xp] (19)

is not diagonal, cf.[(35). As the estimation error procesaei®-mean proper Gaussian, the PDFLn (16)
is given by

p(yxp, i, xp) = CN (Xhgi, XRe,, X7 + 021y) (20)

whereCN (u, C) denotes a proper Gaussian PDF with mgaand covarianceC and wherely is the
N x N identity matri

!Note that for the case of data transmission ofilyl (20) becopigsxp) = CN (0, XR, X + 021y) as in this caséry = 0 and
R., =Rs.
pil



Corresponding to (15), we can also rewritey p|yp, xp) as follows
p(yplyr,xp) = /p(YD|XD>YPaxP)p(XDb’PaXP)dXD

@ /P(YD|XD7 flpil,Da xp)p(Xp)dxp
= p(}’D|flpil,D, Xp) (21)
where for (a) we have useld (15) and the independency,0bf xp andyp.
Based on[(15) and (21), we can also rewrite (9) as
I(xp; yolyp, xp) = Z(xp; yp|hpi, Xp) R Z(xp;yp|hpi) (22)

and where (a) holds as the pilot symbols are deterministic.

However, typical channel decoders like a Viterbi decoderrant able to exploit the temporal correlation
of the channel estimation error. Therefore, the decodefopes mismatched decoding based on the
assumption that the estimation error process is white,i(g/xp, hyi, xp) is approximated by

p(y|xp, flp“,xp) ~CN (Xflp“, O‘zp”XXH + UTQLIN) ) (23)

As it is assumed that the channel is at least sampled with iSyfrequency, sed [7), for an infinite
block lengthN — oo the channel estimation error variarm:@pil is independent of the symbol time instant
[8] and is given by

|
A
=

e /f Sew(1)df = A (24)

where S, (f) is the PSD of the channel estimation error process in casehifuenel estimation is solely
based on pilot symbols, which is given in_(102) in Appendix Hence, the variance of the channel
estimation process, i.e., the entrieslgfj, is given byo? — afp”, which follows from the principle of
orthogonality in LMMSE estimation.

As the information contained in the temporal correlationihef channel estimation error is not retrieved
by synchronized detection with a solely pilot based chamstimation, the mutual information in this
case corresponds to the sum of the mutual information fon @atividual data symbol time instant. As,
obviously, by this separate processing information isatded, the following inequality for the achievable
rate holds:

Jim < T(xp; yplfipn) = T (<01 yo )
> %-’Z(«TD;C;ka‘hpil)
L—-1

= TI@D;J kaVAlpil,Dk) = Resep (25)

whereZ’ denotes the mutual information rate and the indgxrefers to an arbitrarily chosen data symbol,
i.e., zp, = [xpl,. Furthermorehy p, is the solely pilot based channel estimate at the data sytithel
instantDy. The pre-facton L — 1)/L arises from the fact that eadlith symbol is a pilot symbol. In the
following, we denote the achievable rate with separate gesiog byRsep

As the LHS of [25) is the mutual information of the channel @sdthe RHS of[(25) is the mutual
information achievable with synchronized detection withmatric corresponding td_(23) and a solely
pilot based channel estimation, i.e., a separate proggdsia difference of both terms upper bounds the
possible gain due to joint processing of data and pilot symlgbviously, the additional information that
can be gained by a joint processing in contrast to the sep@racessing is contained in the temporal
correlation of the channel estimation error process.



Regarding synchronized detection in combination with &lggbilot based channel estimation, i.e., the
separate processing approach, in [8] bounds on the acleeratb have been given, which for zero-mean
proper Gaussian data symbols become

L—1 o3\, |
RSEPZ RL’sep: —E” ) log 1 -+ 716

L hpl|,Dk ngna%_'_az

i

L—1 -2
=7 log | 14+ p———%—2|e “dz (26)

z=0 1 ‘|‘,0%

h

Rew< R Riwot Z2tE, |1 “’p"+a
e e e TR | e, o2, 02
Lo N g 2,

=Rprsept —— | log 1+p p' —/ log (14 p—2z)e"dz . (27)

Based on the lower bound in_(26) it can easily be seen thatdhieable rate is decreased in comparison
to perfect channel knowledge by two factors. First, symbuoktinstances that are used for pilot symbols
are lost for data symbols leading to the pre-log faétph and secondly, the average SNR is decreased by

o2 o2 . . . . .
the factor ""%; gl +p "") due to the channel estimation error variance. The additi@mm in

}
the upper bound i arises from the fact that the effeatwise, i.e.¢pi p, xp, +np,, IS non-Gaussian.

Hereep, is the estimation error at the data symbol time instapt i.e., ep, = [epi.p), .

V. JOINT PROCESSING OFDATA AND PILOT SYMBOLS

Now, we give a new lower bound on the achievable rate for at jpmocessing of data and pilot
symbols. The following approach can be seen as an extenkite avork in [13] for the case of a block-
fading channel to the stationary Rayleigh flat-fading sdendiscussed in the present work. Therefore,
analogously to[[13] we decompose and lower-bound the muinif@mation between the transmitter and
the receivetZ(xp;yp,yp,xp) as follows

I<XD§YDaYP7XP> @ I(XD§YDaYP7XP7h> - I(XD; h|YDaYPaXP)
b
(:) I(XD; Yb, h) - h(h|}’D, yp, XP) + h(h|XD, Yp,YpP, XP)

(2) Z(xp;yp,h) — h(h|yp,xp) + h(h|xp,yp,yr,Xp) (28)
where (a) follows from the chain rule for mutual informatidfor the first term in (b) we have used
the fact that due to the knowledge @n the knowledge oryr» and xp does not increase the mutual
information betweerx, andyp. Finally, (c) is due to the fact that conditioning reducesrgoy. Note,
the first term on the RHS of (28) is the mutual information iseaf perfect channel knowledge.

In the following we deviate from the derivation given in_[13Jow, we calculate both differential
entropy terms at the RHS df (28). Therefore, we rewrite theSRifl (28) as follows

I(xp;¥p,yp.Xp) > I(xp;yp, h) — h(hlyp,xp) + h(h|xp,yp,yp, Xp)

Z(xp;yp,h) — h(h|hpl|7XP) + h(h|thInta Xp,Xp)
Y Z(xp; yp, h) — A + epilpi, xp) + h(oin + ejoin Bioint, X0, x5)
9 I(xp;yp,h) - h(epn\Xp) + N(€joint| XD, Xp)
9 Z(xp;yp,h) — [log det (W@Rep”)} + Exp xp {log det (W@Reioim)}
< Z(xp; yp, h) — logdet (Re,, ) + Ex,, [logdet (Re, )] (29)
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where for the second term in (a) we have substituted the tondony» by flp", which is possible as
the estimateﬁp” contains the same information dnasyp while conditioning onxp. Corresponding to
the solely pilot based channel estimﬁt,ﬁ, based orxp, xp, yp, andyp, we can calculate the estimate
ﬁjoim, which is based on data and pilot symbols. Lflqg this estimate is a MAP estimate, which, due to
the jointly Gaussian nature of the problem, is an MMSE eggmice.,

hioine = E [h|yp, Xp, yp, Xp] - (30)

Thus, for (a) we have substituted the conditioningygf andyp» by conditioning onﬁjoim in the third
term, asﬁ,-oim contains all information o that is contained iy, andyp while xp andxp are known.
For equality (b) we have used for the second term thaan be expressed as a sum of its estinf@ne
and the estimation erragy;, cf. (18). Analogously, for the third term we used the sepanaof h into
the estimateﬁ,-oim and the corresponding estimation erefy, i.e.,

€joint = h — fljoint- (31)

Equality (c) is due to the fact that the addition of a const@dmés not change differential entropy and
that the estimation erragy; is independent of the estimalg; and analogouslyein:, Wwhich depends on
xp andxp, is independent oﬁjoim due to the orthogonality principle in LMMSE estimation. &iiy, (d)
follows from the fact that the estimation error processeszaro-mean jointly proper Gaussian. Here the
error correlation matrices are given By {(19) and by

Rejoint =E {ejOintejch)[int|XDv XP} . (32)

For (e) we have used that the pilot symbols are determini$tierefore, the expectation ovep in
the second and third term can be removed. However, the chastimation errorej,i; depends on the
distribution of the data symbols,. Concerning the third term on the RHS 6f129), it can be shdvat t
the differential entropy raté’(ejoint|xp, xp), i.€.,

1
Nh(ejoindXD, XP) (33)

is minimized for a given average transmit powe} if the data symbols are constant modulus (CM)
symbols with powers2, see AppendiX_A. Within this proof the restriction to an dbsely summable
autocorrelation functiom, (1), see[(B), is required.

Thus, based ol _(29) a lower bound for the achievable rate jwittt processing of data and pilot
symbols is given by

h,(ejoint|XD7XP) = J%E)nm

I/(Xm YD, Yp,Xp) = ]\}1_?;0 NI(XD§ YD, YP,Xp)

> lim % {I(XD; Yb, h) — log det (Repn) + log det (Rejoim,cM)}

N—o0
@ : i . _ % Sepil (f)
N J&gnm ]\T:Z(XD7 b, h) /_% 1Og (Sejoinl,CM(f) df (34)

with R, ., corresponding to(32), but under the assumption of CM databsys with transmit power
o2. As Re,.., ONly depends on the distribution of the magnitude of the dgtabols contained ixp,
which is constant and deterministic, we can remove the dé&pen operation with respect to,. Note
that the CM assumption has only been used to lower-bounchtteeterm at the RHS 0f(29), and not the
whole expression at the RHS of (29). For (a) inl(34) we havel &eegd’s theorem on the asymptotic
eigenvalue distribution of Hermitian Toeplitz matrice$[1S. ,(f) and S, (f) are the PSDs of the

pil €joint,CM

channel estimation error processes, on the one hand, ifstiraation is solely based on pilot symbols,



and on the other hand, if the estimation is based on data dmidsgimbols, assuming CM data symbols.
They are given by
S
S(f) = ) (35)

B 41

Su(f)
Seipimen(f) = w (36)

The derivation of these PSDs is given in Appendix B.
However, the application of Szegd’s theorem for (a)in (BHuires several steps, which we discuss in
the following. The limit over the second and the third termtba LHS of (a) in[(34) can be transformed

as follows
lim % {log det (Rep”) — log det (REjoint,CM)}

N—o0
@) lim — {log det (Cep”) — log det (Cejoint,CM)}

N—oo N

log det (FA FH) log det (FAejoint,CMFH)}

® lim —
N—)oo

= lim — logdet (FAep”A‘ F))

v {
N—)oo { €joint,CM
G
SejothM
Snlf) 4
@ / log () df 37)

Su(f) | q
where for (a) we have substituted the Toeplitz matriBeg andR.,, ., by their asymptotic equivalent cir-
culant matrice€C., and Cejonicnr S€€ [16]. Furthermore, for (b) we have used the spectralmdpositions

of the circulant matrices given by

l= wl»—t

I b

=

= FA, FY (38)

€pil €pil
=FA F (39)

C
C

where A, and A, ., are diagonal matrices containing the eigenvalue€gf and C.,.,, and the
matrix F is a unitary DFT-matrix whose elements are given by

€joint,CM €joint,CM

1 o (k=1)(I—1)
[Flyy = \/—NeﬂwT- (40)
For (c) in [37) we have then used Szegd’s theorem on the asyimpigenvalue distribution of Hermitian
Toeplitz matrices[[15]. Therefore, first consider that thatmx FAepllAEJolmtc FH on the LHS of (c) is
again a circulant matrix and that there exists an asymjiibtiequivalent Toeplitz matrix. Furthermore,
the eigenvalues o€, are samples of the PSB,,(f) and the eigenvalues of. ., are samples of
the PSDS,,..u(f). Here we assume a construction of the circulant matricesasritbed in[[15, (4.32)],
see also in AppendiXJA froni (72) td (I76). Furthermore, theligpfion of Szegd’s theorem requires that
the log-function is continuous on the support of the eigenvaluethefmatrix A, A_ 1tCM This means
that we have to show that the eigenvaluesAgf, A eJmmCM are bounded away from zero and from infinity.
That this is indeed the case will become obvious after intoaty S, (f) and S, (f) given in (33)
and [36) as it has been done in (d). Obviously, the argumetitedbg at the RHS of[(3]7) is larger than
zero and smaller than infinity on the intervale [—0.5,0.5]. Therefore, the integral on the RHS m37)
exists, implying that also the LHS of (c) ih_(37) is boundedialrhus that the eigenvalues &f | A_ %MM



are bounded away from zero and from infinity. Thus, in coriolusve have shown that Szego’s theorem
is applicable and that (a) if_(34) holds.

The first term on the RHS of (B4) is the mutual information ratecase of perfect channel state
information, which for an average power constraint is mazed with i.i.d. zero-mean proper Gaussian
data symbols. Thus, we get the following lower bound on tHeea@able rate with joint processing

_ 48 1
L—-1 = n(f) + )d

R joint = TCPerf(p) a / 3 o (%Sh(f) +1

fun

(41)

where Cperi(p) corresponds to the coherent capacity with

)]::Llillog(14—pz)e—2dz (42)

and the factor( L — 1)/L arises as each-th symbol is a pilot symbol.

‘ 2

h
Cpert(p) = En, [log <1 + p| .

2
Oh

A. Lower Bound on the Achievable Rate for a Joint Processing of Data and Pilot Symbols and a Fixed
Pilot Spacing

Substituting [(4R) into[(41) we have found a lower bound onahbievable rate with joint processing
of data and pilot symbols, for a given pilot spacihgand stationary Rayleigh flat-fading.

For the special case of a rectangular Bsbthe channel fading process, i.e.,

_ [ sk for|fI<fa
S = 2fa 43
() { 0 otherwise (43)
the lower bound in[{41) becomes

L1

RLJoint

S Y -k 44
rect.Sy (f) L 2=0 Og( —|-,OZ)6 o fd o w . ( )

B. Lower Bound on the Achievable Rate for a Joint Processing of Data and Pilot Symbols and an Optimal
Pilot Spacing

Obviously, the lower bound in_(44) still depends on the pdpacingL. In case the pilot spacing is not
fixed, we can further enhance it by calculating the supreméif@4) with respect toL. In this regard,
it has to be considered that the pilot spacihgs an integer value. Furthermore, we have to take into
account that the derivation of the lower bound[inl(44) is Hase the assumption that the pilot spacing
is chosen such that the channel fading process is at leagtleshiwith Nyquist rate, i.e.[{7) has to be
fulfilled. In case the pilot spacing is chosen larger than the Nyquist rate, the estimation gnmocess
is no longer stationary, which is required for our derivatiét this point it is also important to remark
that periodically inserted pilot symbols do not maximize #chievable rate. For the special case of PSK
signaling, it is shown in[[17] that the use of a single pilotrdyol, i.e., not periodically inserted pilot
symbols, is optimal in the sense that it maximizes the aelhlevrate. However, in the present work we
restrict to the assumption of periodically inserted pilpindols with a pilot spacing fulfillingL{7), which
is customary and reasonable as this enables detection andidg with manageable complexity.

For these conditions, i.e., positive integer values fofulfilling (), it can be shown that the lower

boundRL,,-oim‘rectS} 0 in (44) is maximized for

1
Lopt = {Q—fdJ . (45)

Note that a rectangular PSB), (f) corresponds ta,(1) = o7sing(2f41) which is not absolutely summable. However, the rectangular
PSD can be arbitrarily closely approximated by a PSD withisethcosine shape, whose corresponding correlation imési absolutely
summable.
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To prove this statement we differentiate the RHS[of (44) wébpect toL and set the result equal to
zero, which yields that the RHS df (44) has a unique localesmtmm at

i = i Cpert(p)p
» 2fq P — C(perf( )

Numerical evaluation shows that the factgi’e”— is larger than one. A$ (46) is the only local extremum
of the RHS of [(44), and with the constralnts dinglven by [T) and the fact that is an integer value,
and considering thaRLdo.m‘rectS (s monotonically increases with for L < Lopt we can conclude that
the lower bound is maximized 0o, in @5).

SubstitutingZ in (44) by Loy in (45) yields a lower bound on the achievable rate with jpirdcessing
in case the pilot spacing can be arbitrarily chosen whiléllinl (7).

(46)

V. NUMERICAL EVALUATION

Fig.[d shows a comparison of the bounds on the achievablefaatgeparate and joint processing of
data and pilot symbols.

On the one hand, the lower bound on the achievable rate fot jwbcessing in[(44) is compared to
bounds on the achievable rate with separate processingtafadia pilot symbols, i.e[ (26) and (27), for
a fixed pilot spacing. As the upper and lower bound on the mabie rate with separate processing are
relatively tight, we choose the pilot spacing such that tveelr bound on the achievable rate for separate
processing in(26) is maximized. It can be seen that excepteliy high channel dynamics, i.e., very large
fa the lower bound on the achievable rate for joint processsrigrger than the bounds on the achievable
rate with separate processing. This indicates the posgdile while using joint processing of data and
pilot symbols for a given pilot spacing. Note, the obsenatihat the lower bound for joint processing
for large f; is smaller than the bounds on the achievable rate with seppracessing is a result of the
lower bounding, i.e., it indicates that the lower bound i$ tght for these parameters.

On the other hand, also the lower bound on the achievablewdke joint processing and a pilot
spacing that maximizes this lower bound, i.e..](44) in carmabon with [4%), is shown. In this case the
pilot spacing is always chosen such that the channel fadiogegs is sampled by the pilot symbols with
Nyquist rate. Obviously, this lower bound is larger than qua to the lower bound for joint processing
while choosing the pilot spacing as it is optimal for sepanatocessing of data and pilot symbols. This
behavior arises from the effect that for separate procgsaicase of smallf; a pilot rate is chosen that
is higher than the Nyquist rate of the channel fading protesnhance the channel estimation quality.
In case of a joint processing all symbols are used for chagstéihation anyway. Therefore, a pilot rate
higher than Nyquist rate always leads to an increased lofiseimchievable rate as less symbols can be
used for data transmission.

Fig.[2 shows the lower bound on the achievable rate for jaint@ssing of data and pilot symbols when
choosingL as given in[(4b), which maximizes the lower bound[inl (44).sTlwer bound is compared
to the following bounds on the achievable rate with i.i.dcozmean proper Gaussian (PG) input symbols
for a rectangular PSD of the channel fading process,[sée \#8¢h have been given in [14]

) (y; x)’PG = max {C'perf(p) — 2f4log <1 + 2%%) ,0} 47

2fa

with Cperi(p) being the coherent capacity of a Rayleigh flat-fading chigiven in (42).

Obviously, for some parameters the lower bound on the aghievate for joint processing of data and
pilot symbols is larger than the lower bound on the achievable with i.i.d. zero-mean proper Gaussian
input symbols, i.e., without the assumption of any pilot &gis. However, this observation does not allow

T, (y; x)‘PG = min { log (1+ p) — 2f4 /z:) log <1 + —z) e *dz, Cperf(p)}. (48)
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Fig. 1. Comparison of bounds on the achievable rate withragp@rocessing of data and pilot symbols to lower boundserathievable
rate with joint processing of data and pilot symbols; exaspitB joint proc. Loy the pilot spacingL is chosen such that the lower bound
for separate processing {26) is maximized; the RSDf) is assumed to be rectangular, sed (43)

to argue that in these cases the use of pilot symbols is btbigeri.i.d. symbols, as we only compare
lower bounds.

VI. SUMMARY

In the present work, we have studied the achievable rate avijbint processing of pilot and data
symbols in the context of stationary Rayleigh flat-fadingmhels. We have discussed the nature of the
possible gain when using joint processing of data and pilatt®ls in contrast to separate processing.
We have shown that the additional information that can beexetd by joint processing is contained in
the temporal correlation of the channel estimation errocess when using a solely pilot based channel
estimation, which cannot be captured by standard decoddiseq are used in conventional synchronized
detection based receivers with a solely pilot based chaestghation. In addition, and this is the main
novelty of the present work, we have derived a lower boundherachievable rate for joint processing of
data and pilot symbols on a stationary Rayleigh flat-fadingnmel, giving an indication on the possible
gain in terms of the achievable rate when using a joint psingf pilot and data symbols in comparison
to the typically used separate processing.

APPENDIX A
MINIMIZATION OF R/ (€joint|Xp,%xp) BY CM MODULATION

In this appendix we will show that the differential entrogte”’(ejoint|xp, xp) in (33), which depends
on the distribution of the data symbols containeckj is minimized for constant modulus input symbols
among all distributions of the data symbols with an maximw®rage power ob?2.
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Fig. 2. Lower bound on the achievable rate with joint protes®f data and pilot symbols and a pilot spacibgy that maximizes this
bound, i.e.,[[44) in combination witlhh (45); for comparisomubds on the achievable rate with i.i.d. zero-mean properséan (PG) input
symbols are shown; rectangular PSR(f), see [4B)

The MAP channel estimate based on pilot and perfectly knoata dymbols is given by
hyoine = arg max p(hly, x)

= argmax p(y |h, x)p(h)

= argmax {log(p(y[h, x)) + log(p(h))} (49)
with
1 ly — Xh/?
byl = e (- (50)
p(h) = L exp (—hHR—lh) (51)
7 det(Ry,) b
Thus, [49) becomes
A 1
hjoint = arg max {—§|y — Xh|? - hHRglh} . (52)

Differentiating the argument of the maximum operation & RHS of [52) with respect th and setting
the result equal to zero yields

1
- {-X"y+XXh} - R;,'"h=0 (53)
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and, thusi
fljoint =R, (Rh + UiX_IXHil)_l X_ly. (55)

With (B5) the channel estimation error correlation maiRi

oint

is given by
Rejoim =E {(h - ﬁjoint) (h - ﬁjoint)H X}

=Ry — Ry, (Ra + 02(X"X)™") " Ry (56)

Thus, the differential entrop¥(ejoint|xp, xp) becomes
h(€joint|xp, xp) = Ex [log det (W@Rejoimﬂ
— log ((me)" det(Ry,)) + Ex [log det (IN — Ry + o2(x"x)) Rhﬂ . (57
The argument of the expectation operation in the last sundnoanthe RHS of[(5§7) can be rewritten as
log det (IN ~ (R + ag(XHX)—l)—l Rh>

= IOg det (IN — (IN + R}:lo‘i(XHX)_l)_1>

@ log det (IN — [IN — <%Rh + (XHX)—1>_1 (XHX)—ll)

n

1
= —log det (—ZRhXHX + IN> (58)
g,

n

where (a) follows from the matrix inversion lemma. Insegti®8) into [57) yields
h(€joint|xp, xp) = log ((We)N det(Rh)) — E llog det (%RhXHX + IN>] ) (59)
Un
As the matrixX = diagx) is diagonal, the producXX# is also diagonal and its diagonal elements
are the powers of the individual transmit symbols. In théof@ing we substitute this product by
Z = XXH (60)

andz = diagZ) contains the diagonal elements &f

The aim of this appendix is to show that the entropy rétejoin:|xp, xp) corresponding to the entropy
in (89) is minimized by constant modulus data symbols with powers? among all input distributions
fulfilling the maximum average power constraint in (6), ,i.e.

E[x"x| =E lfj 2%

k=1

< No? (61)

where thez;, with £ = 1... N are the elements of. Therefor, in a first step, we study the entropylinl (59),
i.e., a finite transmission length. Let the setP be the set containing all input distributions fulfilling
the maximum average power constraint [in](61). Note that ¢bisP includes the case of having pilot
symbols. However, when using pilot symbols, the transmitgroof eachL-th symbol is fixed tar2. For

®Note that the inverse oK in (B8) does not exist, if a diagonal element of the diagonatrim X is zero, i.e., one transmit symbol has
zero power. However, as the channel estimates can be @wet

Bjoint = Ry X" (XRy X" 4 02In) 'y (54)

it is obvious that the elements &joim are continuous iy for all k, and, thus, this does not lead to problems in the followingvegon.
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the moment, we allow all input distributions containedAn Later on, we will come back to the special
case of using pilot symbols.

We want to find the input vectar that minimizes[(59) provided that the average power coimstis
fulfilled. Therefor, we first show that the argument of the estiation operation on the RHS ¢f (59), i.e.,

1
9(Z) = log det (;ha + IN> (62)

is concave inZ. To verify the concavity ofy(Z), we follow along the lines of [18, Chapter 3.1.5] and
consider an arbitrary lin& = Z + tA. Based on this, we defingt) as

1
g(t) = log det (—
o2

n

R, (Z + tA) + IN>

o

= logdet 7 A (Z + aiR;l)_i)

© log det ( R,Z + IN> + Z log (1 + tAx) (63)

n k=1
where for (a) we have used the substltthn: Z+0’R; ! to simplify notation. Furthermore, thi, in
(b) are the eigenvalues ¢% + o2R;,') 7 A (Z+02R,") :

Based on[(63) the derivatives ¢ft) with respect tat are given by

dg(t) &

a 1+t>\ (64)
d2 ( N
dtz ,; 1+t>\k) (63)

As the second derlvatlvédtT is always negativey(Z) is concave on the set of diagonal matri@svith

non-negative diagonal entries.
Based on the concavity af(Z) with respect toZ we can lower-boundi(e;sin:|xp,xp) in (89) by
using Jensen’s inequality as follows, d¢f. {62):

h(€joint|xp,xp) = log det ((7T6)N det(Rh)) —E,[9(Z)]
> log det ((ﬂe)N det(Rh)) — log det <%RhE [Z] + IN> . (66)

Recall, that we want to show that constant modulus data skamhbith the powers? minimize the
entropy rateh’(ejint|xp, xp). Therefore, from here on we consider the entropy rate wtsaivien by

. 1
R (€joint|xp, Xp) = A}l_lgo Nh(ejoint|XDaxP)

.1 N 1
— Nh_rgo I [log det ((7‘(‘6) det(Rh)) — log det (;

n

R,E[Z] + INN . (67)
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In the next step, we show for which kind of distribution »ffulfilling the maximum average power
constraint in[(6l1) the RHS of (67) is minimized. l.e., we havdind

1 1
]\}1_%1)0 5P log det <§RhE Z] + IN> (68)

n

where the seP contains all input distributions fulfilling the maximum aage power constraint i _(61).

For the evaluation of_(68) we substitute the Toeplitz maRix by an asymptotic equivalent circulant
matrix Cj,, which is possible, as we are finally interested in the suprann (68) for the case of an
infinite transmission length, i.ely — oo. In the following, we will formalize the construction &, and
show that the following holds

. 1 1 . 1 1
Nh_r)rloo N s%p log det (;RhE [Z] + IN> = Nh_r)rloo N s%p log det <§ChE [Z] + IN> (69)

n n

Therefore, we express the channel correlation maiixby its spectral decomposition
R, = R{Y = UMADM (U™)” (70)

where we introduced the superscrigl’) to indicate the size of the matrices. Furthermore, the matri

U™ is unitary andA!™ = diag A", ..., AW} is diagonal and contains the eigenvalued’ of R\
We construct the circulant matrinﬁlN ) which is asymptotically equivalent to the Toeplitz matR)ﬁN )

following along the lines of[[16, Section 4.4, Eq. (4.32)h€Tfirst column of the circulant matri@ﬁlN)

is given by (¢, ™, ... ¢ )T with the elements
(N) 1 phligp [ jomlk
Cp. :N;S}l N e’ N, (71)
Here S, (f) is the periodic continuation o, (f) given in [3), i.e.,
Su(f)= > 8(f = k) *Su(f) (72)
k=—o00

and S,,(f) being zero outside the intervaf| < 0.5 for which it is defined in[(#). The asteriskin (72)
denotes convolution.

As we assume that the autocorrelation function of the cHafadéng process is absolutely summable,
see [(8), the PSD of the channel fading procggsf) is Riemann integrable, and it holds that

oo LR e (D e
lim ¢ :]\}%NZ& ~)¢ "

N—oo

= [ Su(f)e*™Mdf = r(k) (73)

with 7, (k) defined in [(2).
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As the eigenvectors of a circulant matrix are given by a etgcFourier transform (DFT), the eigenvalues
)\,(CN) with £ =1,..., N of the circulant matrixCﬁfw are given by

m=0 =0
- (k—1
Consequently, the spectral decomposition of the circutaatrix C\" is given by
CY = FWALY (P0)" (75)
where the matri@ @) is a unitary DFT matrix, i.e., its elements are given by
1 . (k-10-1
(V) T jem——
FV] = = (76)

Furthermore, the matrid!" is diagonal with the elements) given in [73).

By this construction the circulant matr(ZﬁLN Vis asymptotically equivalent to the Toeplitz matﬁQéN ),
see [16, Lemma 4.6], if the autocorrelation functigsit) is absolutely summable, which is assumed to
be fulfilled, seel(B).

In the context of proving[[16, Lemma 4.6], it is shown that theak norm of the difference (Rﬁfv)
and CﬁLN) converges to zero a¥ — oo, i.e.,

lim [R™ — G| =0 (77)

N—oo

where the weak norm of a matri® is defined as
1 PR
B| = (NTr B BD . (78)

This fact will be used later on.
To exploit the asymptotic equivalence EﬁlN) and CEIN) for the current problem, we have to show that
the matrices in the argument of thes det operation on the LHS and the RHS 6f[69), i.e.,

1

KM = pRgN)E Z] + 1y (79)
1

K = ECSV)E ER (80)

are asymptotically equivalent.

In this context, we have to show that both matrices are balimdéhe strong norm, and the weak norm
of their difference converges to zero fof — oo [16, Section 2.3].

Concerning the condition with respect to the strong norm waeehto show that

K| = ‘ %R%N)E[Z] +1Iy| < o0 (81)
[ie38 :‘%CWE[Z]HN < 00 (82)
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with the strong norm of the matril8 defined by
IBJ* = max (83)

where v, are the eigenvalues of the Hermitian nonnegative definiteixn®BB’/. The diagonal matrix
E [Z] contains the average transmit powers of the individualsmainsymbols on its diagonal. Thus, its
entries are bounded In addition, as the strong normRSﬁ? and C are bounded, too, the strong
norms ofK and K(N are bounded. Concerning the boundedness of the eigenwaiules Hermitian
Toeplitz matrlth see [16, Lemma 4.1].

Furthermore, the weak norm of the differensg™’ — K" converges to zero foN — cc as

1

1
K™ - K| = ;RgN)E [Z] + Iy — ;C%N)E Z] — Iy

1
i (R - i) iz
(a)
< S (84)
where for (a) we have used [16, Lemma 2.3]. WE[Z] || is bounded, we get foN — o
Jim 11— KV| < i [RYY - )22 = 0 (85)

due to [77). Thus we have shown the asymptotic equivalendég’d? and KéN).
As K%N) anngN) are asymptotically equivalent, with [16, Theorem 2.4] theality in (69) holds. For
ease of notation, in the following we omit the use of the ssgdpt (/V) for all matrices and eigenvalues.
Based on[{69) the evaluation of the supremuntid (68) can bstituted by

1 1 1 1 v
lim o sup log det (U—%ChE [Z] + IN> = li_rgcl><J N 8171)p log det (U—%FA,LFHE [Z] + IN>

N—oo

U 1
= ]&1—1’)1100 N s%p log det <072L

AFPE[Z)F + IN> (86)

where for (a) we have used (75) and (b) is based on the follpweration
det (AB +1I) = det (BA +1) (87)

which holds asAB has the same eigenvalues B for A and B being square matrices [19, Theo-
rem 1.3.20].

As the matrix LALFPE [Z] F + Iy in the argument of the logarithm on the RHS Dbfl(86) is positive
definite, using Hadamards inequality we can upper-bourdatigument of the supremum on the RHS of
(86) as follows

AFPE[Z)F + 1N> < fj log <%)\k [FHE Z)] F}k + 1) (88)

1
log det <—2
o

n

where [FHE |Z] F}k are the diagonal entries of the matBiX'E [Z] F. Note, this means that distributions
of the input sequencaswhlch lead to the case that the matBX'E [Z] F is diagonal maximize the RHS
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of (88). Using [(88), the RHS of (86) is given by

. 1 1 Y H
Nh_r)réo o sup log det (—2AhF E[Z]F + 1y

n

:hm%suleog( ( iEzl> )

N—voo P k 1 =1

1 1
= J\;l_rgo N sl;p; log < ( l ZZ[]) ) . (89)

It rests to evaluate the supremum on the RHS[of (89). Howeasethe logarithm is a monotonically
increasing function with the maximum average power coimdtia (61) the supremum i (89) is given

by

b el ) ) b Em(ia)

P k=1

@ i Lioedet [ ZEC, + 1
—Nlif;oﬁoge g2 h
2

© %Ry + 1) (90)
Un

= ]\}1_{1(1)0 N log det (
where (a) is based on (75) and for (b) we have used the asyimptptivalence of the circulant matrix
C,, and the Toeplitz matrixR,.

Now, using [(69),[(86),[(89), and (P0) the supremumlin (68)iveIy by

1 1 . 1
lim N sup log det <a_%RhE [Z] + IN> = ]\}I_I)ICIXJ N log det (

2

%R, + IN> . (91)
Un

N—oo

However, this means that the entropy ratéejini|xp, xp) in (€4) is lower-bounded by
o1 1
h' (€joint|Xp, xp) = ]\}1_120 I [log det ((W@)N det(Rh)) — log det (U—%RhE [Z] + IN>]

.1 o2
> hm N [log det ((7T€)N det(Rh)) — log det (U—%Rh + IN>]

@ i Nlogdet €0 — (92)

N—oo

where for (a) we have use (57) and](58), and wHerg, ., is the estimation error correlation matrix
in case all input symbols have a constant modulus with payect. (58)

2 -1
Ry = Ry — Ry, (Rh + %h) R;. (93)
This mean, that the entropy raté(ejint|xp,xp) is minimized for the given maximum average power
constraint in[(6) when all input symbols are constant mosluiyput symbols with powes2. Note that
this includes the case that eatkth symbol is a pilot symbol with power? and all other symbols are
constant modulus data symbols with powsér

In conclusion, we have shown that the differential entragig ' (ejoint|xp, X ) iS minimized for constant
modulus data symbols with powet, i.e.,

R (€joint|xp, xp) > ' (€joint| XD, Xp) ‘CM

1
= Jlim - log det (TeRepmon) - (94)

N—oo
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APPENDIX B
ESTIMATION ERRORSPECTRAS,  (f) AND Se, ... on(f)

First, we calculate the PSD., (f) of the channel estimation error in case of a solely pilot Base
channel estimation. The channel estimation error in thgueacy domain is given by

N
En (™) =3 epity, - e 72" (95)
k=1
whereep; ;. are the elements of the vectgy;. In the following we are interested in the caSe— oo. As in
this case the sum in [(B5) does not exist, in the following we scas
limy o0 v En(e/?"), which can be expressed as follows

1 ; (@
_ j2rf ) gzwa —jomlf
Nhi%oNEN(e ) NIEONZ vl Je

L jorLf
® . i jonLfy jorLf Y, p(e ) —jonlf
= J}EI})oN > |Hy,(e ) — Wi(e J—

=1 Oz
I L 7L
© lim i €j27rf ZW eg27rLf egzwz]fYNP(eJ f)e—j27rlf
N—oo N Pt Oy
1 [ ) ) Y, (ej27rLf)
= lim — Ji2rfy . j2rLf\ANP\E )
= Z\;l_rgo N -HN(6 ) L W(6 ) o
@ . i J2mfN T jorLf jorLf NN,P(ej%Lf)
= ]\}1_{1100 N HN(e ) L W(e ) HN,P(e ) + —O'x . (96)

For (a) we have used that the estimation error in frequenayaito is the sum of the interpolation errors
at the individual symbols time instances between the pyatl®ls, where the temporal shift yields the
phase shift of2rlf. Here Ey,(e/?™2) is the frequency transform of the estimation error at the tsym
position with the distancé to the next pilot symbols, i.e.,

N

L
EN,l(ejZWLf) = Z Epil,(k—1)L+1+1 ° 6_j27rka, for [ = 0,..., L—1 (97)

k=1
where without loss of generality we assume thatis an integer multiple ofL and that the transmit
sequence starts with a pilot symbol. Equality (b) resultenfrexpressing®y,(e/2*2/) by the difference
between the actual channel realization and the estimaizadneh realization at the different interpolation
positions in time domain transferred to frequency domaereliwithout loss of generality, we assume that
the pilot symbols are given by,. Furthermore W, (e/>"L/) is the transfer function of the interpolation
filter for the symbols at distandeéfrom the previous pilot symbol. Furthermoiéy p(¢27/) is the channel
output at the pilot symbols time instance transferred tquescy domain. For (¢) we have used that the
sum of the phase shifted channel realizations in frequecyaih at sampling raté/L corresponds to
the frequency domain representation of the fading procesgmbol rate. In addition, we have used that
for N — oo the interpolation filter transfer functioW;(e/>*%/), which is an MMSE interpolation filter,
can be expressed as

VVl(ejQNLf) — W(ejQTFLf)ejZWlf (98)

e., the interpolation filter transfer functions for thedividual time shifts are equal except of a phase
shift. Finally, for (d) we have expresséd; »(e’>*/) as the sum of the frequency domain representations
of the fading process and the additive noise process.
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Based on[(96) the PSDB,,,(f) is given by
1 1 27 f\ |2
Sew(f) = Jim B [|Ex(e )]

1
= lim —FE
Te N

N—o0

|HN(ej2”f)|2 _ L. HN(6j27rf)W*(6j27rLf)H]>§[’P(ej27rLf)

N H;f(6j27rf)W(ej27rLf)HN’P(6j27rLf)
NN,P(€j2ﬂLf)

Oz

—I—L2|W(6j27rLf)|2 [|HN,p(6j27rLf)|2 _‘_’

2:| :|
L- W*(ej27rLf) Z HNJ(€j27rLf)6_j27rlfH;77P(6]27TLf)

, 1
= ()~ i
=1

L
+ L W(ej27rLf) Z H;[J(6j27rLf)€j2ﬂlfHN7p(6j27rLf)]
=1

L2 %% j2rLfy|2 15 j2nLf 1 O-TzL
LW | 25, ) + 15
| a1 ' 2nLfy R L '
— Sp(e?™) — L. W () S i Sp(e??™ Ty — L W (™) 3 T Sp(e*mH)
=1 =1
. 1 , 102
L L n
+ L?|W (e H))? [ZSh(eﬂ N+ EU_:%]
2
@ Sh(ejzﬂf) _9],. W(ejzwa)Sh(ej%rLf) + L‘w<ej27rLf)‘2 [Sh(ej%rLf) 4 %1 (99)

where for (a) we have used th&i(f) is real and, thus, the MMSE filteil/ (¢2727) is also real, see
below.
The MMSE filter transfer functionV (e/2"Lf) is given by

SH) _ fSi(e)

W(ejZWLf) = X o2 1 X 2 (100)
Sp(e2mLl) + o fSh(eﬂ“f) + 55
where we have used that
. 1 .
Sp(e?* Iy = Zsh(eﬂ’ff). (101)

Inserting [10D) into[(99) yields

2
) j2nf ) 72 f ) 2
S () = S(e?) — 20— W) g ey p | ST [Sh<eﬂmf>+g—§]
Si(erf) + L% Si(erf) + L% 02
. 2
Sh(ei®) RAG

@ Sh(€j27rf) ) S (ej27rf)

Su(ed?) + L%
Sh(ej27rf)LZ_ZL
- Su(e) + L%

Su(ed?7f) + L%
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Sh(ejzwf)

TS g

o

3
(b Sh(f)
= 250 ] (102)

g
v

O

=~

where (a) results fron{ (I01) and for (b) we simplified the tiotaand substituted’?"/ by f to get a
consistent notation with {4).
The PSDS,,,,.(f) is then obviously given by setting = 1 in (102), i.e.,

as

(1]
(2]

(3]

(4]

(5]
(6]

(7]
(8]
(9]
[10]
[11]
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[13]
[14]

[15]
[16]

[17]

[18]
[19]

Su(f)
Se'ointCM = TS5(H . 4

o

(103)

all data symbols are assumed to be known and of constantimsodith powers?, cf. (34).
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