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Abstract—We present a mathematical connection between real-valued signal that is to be recovered in a hypothetical
channel coding and compressed sensing. In particular, werlk, on - communication problem.
the one hand,channel coding linear programming decoding (CC- At about the same time, in an independent line of research,
LPD), which is a well-known relaxation of maximum-likelihood Feld Wai ight d K idered th bl f
channel decoding for binary linear codes, and, on the other ¢ mf’;\n, aI.nWI’Ig- » an arger C(_)ns' ere € problem o
hand, compressed sensing linear programming decoding (CS-LPD), dgcodmg a bmary Ilnegr code that is used for data commu-
also known as basis pursuit, which is a widely used linear nication over a binary-input memoryless channel, a problem
programming relaxation for the problem of finding the sparsest that is also NP-hard in general. Inl [5].] [6], they formulated
solution of an under-determined system of linear equationsMore  this channel coding problem as an integer linear program
specifically, we establish a tight connection between CS-IOP I ith i l . | tion for i '
based on a zero-one measurement matrix over the reals and 20Ng WIth presenting a linear _programmlng re axallon ori
CC-LPD of the binary linear channel code that is obtained henceforth called channel coding linear programming decod
by viewing this measurement matrix as a binary parity-check ing (CC-LPD). Several theoretical results were subsequently
matrix. This connection allows the translation of performance proven about the efficiency &C-LPD, in particular for low-
guarantees from one setup to the other. The main message Ofdensity parity-check (LDPC) codes (sexg, [7]-[10])
this paper is that parity-check matrices of “good” channel mdes . . T i ' )
can be used as provably “good” measurement matrices under As we will see in the SUbsequem_seC“O@s’ LPDaOdCC_: .
basis pursuit. In particular, we provide the first deterministic LPD (and the setups they are derived from) look like similar
construction of compressed sensing measurement matricestv  linear programming relaxations, however, a priori it isheat
an order-optimal number of rows using high-girth low-density unclear if there is a connection beyond this initial supéfic
parity-check (LDPC) codes constructed by Gallager. similarity. The main technical difference is th&S-LPD is

a relaxation of the objective function of a problem that is

naturally over the reals whil€C-LPD involves a polytope
relaxation of a problem defined over a finite field. Indeed,
Candés and Tao in their original paper asked the question [3
Section VI.A]:“...In summary, there does not seem to be any
[. INTRODUCTION explicit known connection with this line of work J[5],][6]] ut

ECENTLY, there has been substantial interest in tHewould perhaps be of future interest to explore if there is
theory of recovering sparse approximations of signafie’’
that satisfy linear measurements. Compressed sensinarcase N this paper we present such a connection betw&én
(see, for examplée [3][]4]) has developed conditions for mekPD and CC-LPD. The general form of our results is that
surement matrices under which (approximately) sparsetsgnif & given binary parity-check matrix is “good” fa€C-LPD
can be recovered by solving a linear programming relaxatiéien the same matrix (considered over the reals) is a “good”
of the original NP-hard combinatorial problem. This lineafeasurement matrix fo€S-LPD. The notion of a “good”
programming relaxation is usually known as “basis pursuit.Parity-check matrix depends on which channel we use (and
In particular, in one of the first papers in this aref,[3], @ corresponding channel-dependent quantity called pseudo
Candés and Tao presented a setup they called “decodinngght)-
linear programming,” henceforth called compressed sgnsin « Based on results for the binary symmetric channel (BSC),
linear programming decodingCS-LPD), where the sparse we show that if a parity-check matrix can correct any

signal corresponds to real-valued noise that is added to a bit-flipping errors undeCC-LPD, then the same matrix
taken as a measurement matrix over the reals can be used

Index Terms—Approximation guarantee, basis pursuit, chan-
nel coding, compressed sensing, graph cover, linear programing
decoding, pseudo-codeword, pseudo-weight, sparse appnma-
tion, zero-infinity operator.
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to recover allk-sparse error signals unde€sS-LPD.

Based on results for binary-input output-symmetric chan-
nels with bounded log-likelihood ratios, we can extend
the previous result to show that performance guarantees
for CC-LPD for such channels can be translated into
robust sparse-recovery guarantees infhe, sense (see,
e.g, [11]) for CS-LPD.

Performance guarantees foC-LPD for the binary-input
additive white Gaussian noise channel (AWGNC) can be
translated into robust sparse-recovery guarantees in the
¢2 /¢, sense forICS-LPD.

Max-fractional weight performance guarantees G-
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LPD can be translated into robust sparse-recovery guahow that high-girth deterministic matrices can be used for
antees in the,/¢; sense foICS-LPD. compressed sensing to recover sparse signals. To the best of
« Performance guarantees f6C-LPD for the binary era- our knowledge, this is the first deterministic constructafn

sure channel (BEC) can be translated into performang®asurement matrices with an order-optimal number of rows.
guarantees for the compressed sensing setup where th8ubsequently, Sectidn VIl tightens the connection between
support of the error signal is known and the decoder tri€xC-LPD andCS-LPD with the help of graph covers, and Sec-
to recover the sparse signale(, tries to solve the linear tion [VII[l presents the above-mentioned results involvihg t
equations) by back-substitution only. zero-infinity operator. Finally, some conclusions are pnésd

All our results are also valid in a stronger, point-wise sensin Section(TX.

For example, for the BSC, if a parity-check matrix can recove The appendices contain the longer proofs. Moreover, Ap-

agiven sebf k bit flips underCC-LPD, the same matrix will pendix[D presents three generalizations of the bridge lemma

recover any sparse signal supported on theseoordinates (cf. LemmalIl in Sectiof V) to certain types of integer and

underCS-LPD. In general, “good” performance &C-LPD complex valued matrices.

on a given error support set will yield “goodCS-LPD

recovery for sparse signals supported by the same set. 1. BASIC NOTATION

It should be noted that all our results are only one-way: Let Z, Zso, Zoo, R, Roo, Ro, C, andF, be the ring of
y L0, 4450, N, IN>0, IN>0, L, 2

we do not prove that a “good” zero-one measurement matrixt O >
will always be a “good” parity-check matrix for a binary codeMCYErS, the _set of non-negative integers, the set of ".DeSIt
This remains an interesting open problem integers, the field of real numbers, the set of non-negatiak r

Besides these main results we also present reformulati&]‘ignbers’ the set of positive real numbers, the field of comple

of CC-LPD andCS-LPD in terms of so-called graph covers:numbers’ anq the finite f_ield of siz;_respecti\_/ely. Ur_1|_¢_ess
these reformulations will help in seeing further similestand EOted ott:r?rV\;l_sTdRex?Lesmgnsi ?qual:nes, fand 'n?mwb'i
differences between these two linear programming relamati ellobve:j et 'Z o € absolute value of a real humber
Moreover, based on an operator that we will call the zer&w_l_he .eno? y]gl- il be d d bvis| E o
infinity operator, we will define an optimization problemleal 7 € S'Zde f(') atﬁe thlw 2 lenoteM YIS|. For anyM €
CS-OPTy, o, along with a relaxation of it calle@S-REL, ,,. >0 W€ detine the sefM] = {1,..., M}. _
Let CS-OPT be the NP-hard combinatorial problem men- All vectors will becolumnvectors. Ifa is some vector with
tioned at the beginning of the introduction whose relaxatso N€Jer entries, them (mod 2) will denote an equally long
CS-LPD. First, we will show thatCS-REL, .. is equivalent vector whose entries are reduced mod2ldf S is a subset

to CS-LPD. Secondly, we will argue that the solution oiof the se_t of coordi_nate indices Qf a vecwrthen as i_s the
CS-LPD is “closer” to the solution ofCS-OPT, .. than the vector with |S]| _entneg that contains only the coo_rdm_ates of
solution of CS-LPD is to the solution ofCS-OPT. This is @ Whose coordinate mdex appearssn Moreover, 'f.a IS a
interesting becauseS-OPT, . is, like CS-OPT, in general real vector then we defina| to be the re_aI vectqn’ \fwth the

an intractable optimization problem, and 68-OPT, ., is at same ﬁumber of components asand with entriesy; = |a; |
least as justifiably a€S-OPT a difficult optimization problem for all <. Fmally,_the Inner produAc¢a, b) of two equally long
whose solution is approximated I§S-LPD. vectorsa andb is wnttAen <_a’ b) = 3_; aibi.

The organization of this paper is as follows. In Secfign 11 We definesupp(a) = {i | a; # 0} tokbeAthe support set
we set up the notation that will be used. Then, in Seciions #f SOMe vectora. Moreover, we letSy, = {a € R" |
andTV we review the compressed sensing and channel codingpp(a)| < k} and =4 2 {a € F3 | [supp(a)| < k}
problems, along with their respective linear programming the set of vectors iiR" and[F3, respectively, which have
relaxations. at mostk non-zero components. We refer to vectors in these

Sectiorl Y is the heart of this paper: it establishes the lemragts ask-sparse vectors.
that will bridgeCS-LPD andCC-LPD for zero-one matrices. For any real vectora, we define |jal|o to be the/,
Technically speaking, this lemma shows that non-zero vectmorm of a, i.e, the number of non-zero components @f
in the real nullspace of a measurement matiig.(vectors Note that|lallp = wu(a) = |supp(a)|, where wi(a) is
that are problematic foES-LPD) can be mapped to non-zerothe Hamming weight ofa. Furthermore,ali £ 3, |ail,
vectors in the fundamental cone defined by that same matfix/> = />, [a;[?>, and ||a|. = max; |a;| will denote,
(i.e. to vectors that are problematic fQC-LPD). respectively, theq, {5, and/,, norms ofa.

Afterwards, in Sectiof I we use the previously developed For a matrix M over R with n columns we denote it®-
machinery to establish the main results of this paper, namelullspace byNullspy (H) £ {a eR” ] M -a =0} and for a
the translation of performance guarantees from channéhgodmatrix M overFs with n columns we denote it8,-nullspace
to compressed sensing. By relying on prior channel codity Nullspy, (H) = {a e Fy | M -a =0 (mod2)}.
results [10], [[12], [[18] and the above-mentioned lemma, we Let H = (h,;);:; be some matrix. We denote the set of row
present novel results on sparse compressed sensing reatrized column indices o by 7(H) andZ(H), respectively.
Perhaps the most interesting corollary involves the spande will also use the sets/;(H) = {j € J | h;; # 0},
deterministic matrices constructed in Gallager's thedid, [ i € Z(H), andZ;(H) £ {i € T | h;; # 0}, j € J(H).
Appendix C]. In particular, by combining our translatiorMoreover, for any seS C Z(H ), we will denote its comple-
results with a recent breakthrough by Arcea al. [I3] we ment with respect t@(H) by S, i.e, S 2 Z(H)\ S. In the



following, when no confusion can arise, we will sometimes

omit the argumen# in the preceding expressions.
Finally, for anyn, M € Z-(, and any vectora € C",

we define theM -fold lifting of a to be the vector™ =

(a??.fn))um € CM» with components given by

M A
Aim) — >

(i,m) € [n] x [M].

(One can think oiz™ as the Kronecker product of the vector

a with the all-one vector with\/ components.) Moreover, for
any vectora = (G m))i,m) € CM™ or @ = (Ag;m))(im) €
3" we define the projection ai to the spaceéC” to be the
vectora £ ¢j/(a) with components given by

1 - .
a; Y Z agimy, 1€ [n].
me[M]

(In the case wheré is overFy, the summation is ovet and
we use the standard embedding{6f 1} into C.)

IIl. COMPRESSEDSENSING
LINEAR PROGRAMMING DECODING

A. The Setup

Let Hcg be a real matrix of sizew x n, called themeasure-
ment matrix and lets be a real-valued vector containing

measurements. In its simplest form, the compressed seng

problem consists of finding the sparsest real veetowith n
components that satisfiddcg - ¢’ = s, namely

CS-OPT: minimize ||€'|lo
subjectto Hcs-€' = s.

Assuming that there exists a sparse sigaathat satisfies
the measurementlcs - e = s, CS-OPT yields, for suitable
matricesHcg, an estimatee that equalse.

vectore is approximately sparse.e., where the number
of large entries is bounded by some positive intefger
The receiver first computes the syndrome vectoac-
cording tos £ Hcg - y. Note that

S:Hcs-(m+6):Hcs~m+Hcs~6
ZHcs-e.

In a second step, the receiver so@S-OPT to obtain
an estimateé for e, which can be used to obtain the
codeword estimaté = y — é, which in turn can be used
to obtain the information word estimate

Because the complexity of solvin@S-OPT is usually
exponential in the relevant parameters, one can try to fiarau
and solve a related optimization problem with the aim that
the related optimization problem vyields very often the same
solution asCS-OPT, or at least very often a very good
approximation to the solution given bZS-OPT. In the
context of CS-OPT, a popular approach is to formulate and
solve the following related optimization problem (whichithw
the suitable introduction of auxiliary variables, can bead
into a linear program):

CS-LPD: minimize ||€|:

subjectto Hcs-e' = s.

ng

This relaxation is also known dsasis pursuit

B. Conditions for the Equivalence &/S-LPD and CS-OPT

A central question of compressed sensing theory is under
what conditions the solution given b@S-LPD equals (or is
very close to) the solution given @S-OPT@

Clearly, if m > n and the matrixHcg has rankn, there
is only one feasible2’ and the two problems have the same
solution.

This problem can also be interpreted [3] as part of the |n this paper we typically focus on the linear sparsity
decoding problem that appears in a coded data communicatiggime,i.e, k = O(n) andm = O(n), but our techniques

setup where the channel input alphabetiiss £ R, the
channel output alphabet Fcs £ R, and the information
symbols are encoded with the help of a real-valued chge
of block lengthn and dimensiorns £ n — rankg(Hcs) as
follows.

« The code isCcs £ {x € R" | Hcs - @ = 0}. Because
of this, the measurement matr#{ g is sometimes also
called anannihilator matrix

A matrix Ges € R for whichCes = {Ges-u | u €
R“} is called agenerator matrixfor the codeCcg. With
the help of such a matrix, information vectonsc R”
are encoded into codewords € R™ according tox =
GCS - Uu.

Let y € Vg be thereceived vectorWe can writey =
x + e for a suitably defined vectag € R™, which will
be called theerror vector We initially assume that the
channel is such tha¢ is sparse i.e, that the number

of non-zero entries is bounded by some positive integ

are more generally applicable. The question is for which
measurement matrices (hopefully with a small number of
measurements:) the LP relaxation is tight.e., the estimate
given by CS-LPD equals the estimate given I§S-OPT.

Celebrated compressed sensing resudtg. (4], [15]) es-
tablished that “good” measurement matrices exist. Here, by
“good” measurement matrices we mean measurement matrices
that have onlym = ©(klog(n/k)) rows and can recover
all (or almost all)k-sparse signals und€&S-LPD. Note that
for the linear sparsity regimé; = ©(n), the optimal scaling
requires to construct matrices with a number of measuresnent
that scales linearly in the signal dimensian

Onesufficientway to certify that a given measurement ma-
trix is “good” is the well-known restricted isometry proper
(RIP), indicating that the matrix does not distort tfyenorm

1t is important to note that we worry only about the solutidveg by CS-
LPD being equal (or very close) to the solution given ®$-OPT, because
Elencs-oPT might fail to correctly estimate the error vector in the abov

k. This will be generalized later to channels where th@mmunication setup when the error vector has too many leoggonents.



of any k-sparse vector by too much. If this is the case, the Livhere the left-hand side is measured in thenorm and the
relaxation will be tight for allk-sparse vectors and further right-hand side is measured in thg-norm. O
the recovery will be robust to approximate sparsity [3],, [4Note that the minimizer of the right-hand side &f (1) (for
[15]. As is well known, however, the RIP is not a completeny norm) is the vectoe’ € ) that has thek largest
characterization of the LP relaxation of “good” measureme(in magnitude) coordinates af, also called the best-term
matrices (seee.g, [16]). In this paper we use the nullspaceapproximation ofe [22]. Therefore the right-hand side &fl (1)
characterization instead (see,g, [17], [18]), that gives a equalsC) (k) - |legs]|, Where S* is the support set of the
necessary and sufficient condition for a matrix to be “good% largest (in magnitude) components ef Also note that if
Definition 1: Let S C Z(Hcg) and letC € R>o. We say e is k-sparse then the above condition suggests éhat e
that Hcg has the nullspace properN/SP\(S (), and write since the right hand-side ofl(1) vanishes, therefore it is a
Hcs € NSP\(S o), if strictly stronger statement than recovery of sparse ssgnal
Clvs|i < (Of course, such a stronger approximation guaranteeéfor
is usually only obtained under stronger assumptions on the
We say that Hcs has the strict nullspace propertymeasurement matrix.)
NSPg (S,C), and write Hcg € NSPg (S, C), if The nullspace condition is a necessary and sufficient condi-
for all v € Nullspg (Hcs) \ {0}. tion on a measurement matrix to obtdiyy¢; approximation
] Quarantees. This is stated and proven in the next theorem
Definition 2: Let k € Zso and letC € Rso. We say which is adapted from [17, Theorem 1]. (Actually, we omit the
necessity part in the next theorem since it will not be needed
in this paper.)

|vglli, for all v € Nullspg (Hcs).

C-wslh < llvslh,

that Hcg has the nullspace properN'SPH%(k,C), and write

Hcs € NSP5 (k, C), f ,
- _ Theorem 5:Let Hcg be a measurement matrix, and let
Hcs € NSPR(S,C), forall § C I(Hcs) with [S| < C > 1 be a real constant. Further, assume that Hcsg - e.
We say that Hos has the strict nullspace propertyThe” for any setS C Z(Hcs) with |S| < k the solutioné
NSP5 (k, C), and write Hcs € NSPE (k, C), if produced byCS-LPD will satisfy

Hcs € NSPE(S,C), for all S € T(Hes) with |S] < k le — &l < 2- % leslh
Note that in the above two definition§; is usually chosen jf p¢ ¢ NSPS (k, C).
to be greater than or equal 10 Proof: See AppendikXA. -

As was shown independently by several authors (see [18]—
[21] and references therein) the nullspace condition in-Def
inition [2 is a necessary and sufficient con_dition_for a mea- LINEAR PROGRAMMING DECODING
surement matrix to be “good” fok-sparse signalg,e., that A The Setu
the estimate given byCS-LPD equals the estimate given P
by CS-OPT for these matrices. In particular, the nullspace We consider coded data transm|SS|on over a memoryless
characterization of “good” measurement matrices will be or¢hannel with input alphabetcc = {0,1}, output alphabet
of the keys to linkingCS-LPD with CC-LPD. Observe that Ycc, and channel lawPy|x (y|z). The coding scheme will
the requirement is that vectors in the nullspacefhfs have be based on a binary linear codec of block lengthn and
their ¢, mass spread in substantially more thanoordinates. dimensions, x < n. In the following, we will identify Xcc
(In fact, forC > 1, at least2k coordinates must be non—zero)With Fs.

The following theorem is adapted from 21, Proposition 2]. « Let Gcc € F3*" be agenerator matrixfor Ccc. Conse-

IV. CHANNEL CODING

Theorem 3:Let Hgs be a measurement matrix. Further,

assume thas = Hcg - e and thate has at mos& nonzero
elements,.e, |le||o < k. Then the estimaté produced by
CS-LPD will equal the estimate produced byCS-OPT if
Hcs € NSP]E(/C, C= 1).

Remark: Actually, as discussed in_[21], the condition
Hcs € NSPx(k,C =1) is also necessary, but we will not
use this here.

The next performance metric (semg, [11], [22]) for CS

involves recovering approximations to signals that are not

exactly k-sparse.

Definition 4: An ¢,/¢, approximation guarantee foCS-
LPD means tha€CS-LPD outputs an estimaté that is within
a factorC, 4(k) from the bestk-sparse approximation fa,
ie.,

le—elly < Cpy(h) - min ey (@
e/

(k)

guently,G¢cc has ranks overF,, and information vectors

u € F4 are encoded into codewordse F3 according to

Tr = GCC u (mod 2) ie, Coo = {GCC u (mod 2) ’

u € F§ }

Let Hce € F3P*" be aparity-check matrixfor Coc.
ConsequentlyHcc has rankn — x < m over Fy, and
anyx € F7 satisfiesHcc - = 0 (mod 2) if and only if

x € Ccc, i.e, Coc = {.’13 e Fg | Hce-x =0 (mod 2)}

In the following we will mainly consider the three
following channels (see, for examplé, [23]): the binary-
input additive white Gaussian noise channel (AWGNC,
parameterized by its signal-to-noise ratio), the binary
symmetric channel (BSC, parameterized by its cross-
over probability), and the binary erasure channel (BEC,
parameterized by its erasure probability).

2We remind the reader that throughout this paper we are usimgmn

R™ vectors, which is in contrast to the coding theory standardserow vectors.



o Lety € V¢ be thereceived vectoand define for each
€ T(H the log-likelihood ratio \; £ X\;(y;) 2
: Py(x(gico)))ﬁ J (v:) CC-LPD : minimize (A,z')

\X(yz‘l) . ’
Upon observingy” = y, the (blockwise) maximum-likelihood subject to  z’ € P(Hcc),

decoding(MLD) rule decides for

#(y) = argmax Py x (yle'), where the. _relaxed sé®?(Hcc) 2 conv(Cec) is given in the
@' €Coc next definition.

_ . Definition 6: For everyj € J(Hcc), let h] be thej-th
where P N=T]..+ P i|2h). Formally: J
vix (yle') = [Licr Prix (vilz7) y row of Hec and let

CC-MLD : maximize Py x(y|z') Cec,j = {x €Fy | (hy,x) =0 (mod2)}.

subject to  z’ € Cec. Then, thefundamental polytopé® £ P(Hcc) of Hec is
defined to be the set

P £ P(Hcc) = ﬂ CODV(CCCJ).

It is clear that instead ofPy|x(y|z') we can also maxi-
mize log Py | x (y|x') = > ,c71og Py x (yi|z;). Noting that

log Py x (yilx}) = —Niz} + log Py x (y:]0) for z; € {0,1}, jeJ(Heo)
CC-MLD1 can then be rewritten to read Vectors inP(Hcc) will be called pseudo-codewords [
In order to motivate this choice of relaxation, note that the
CC-MLD1 : minimize (A, codeCcc can be written as
subjectto z’ € Ccc. Ccc =Ceca N---NCC.m,

L . . and so
Because the cost function is linear, and a linear functitairet

its minimum at the extremal points of a convex set, this is conv(Ccc) = conv(Cec,1 N -+ N Ccc,m)

essentially equivalent to C conv(Cocr) N+~ N eonv(Coc.m)

=P(Hcc).

CC-MLD2 : minimize (X, z’) - _ _
subject to @’ € conv(Coo) It can be verified[[b], [[6] that this relaxation possesses the
' important property that all the vertices @nv(Ccc) are also
vertices of P(Hcc). Let us emphasize that different parity-
(Here,conv(Ccc) denotes the convex hull @ after it has check matrices for the same code usually lead to different
been embedded iR". Note that we wrote “essentially equiv-fundamental polytopes and therefore to differ&@-LPDs.
alent” because if more than one codeworcCiiv: is optimal  Similarly to the compressed sensing setup, we want to
for CC-MLD1 then all points in the convex hull of theseunderstand when we can guarantee that the codeword estimate
codewords are optimal fa&€C-MLD2.) AlthoughCC-MLD2  given by CC-LPD equals the codeword estimate given by
is a linear program, it usually cannot be solved efficientigC-MLD ECIearIy, the performance @&C-MLD is a natural
because its description complexity is typically exporariti upper bound on the performance GC-LPD, and a way to
the block length of the cod. assessCC-LPD is to study the gap t€CC-MLD, e.g, by
However, one might try to solve a relaxation@E-MLD2. comparing the here-discussed performance guarante€<kor
Namely, as proposed by Feldman, Wainwright, and Kaider [3]JPD with known performance guarantees f€-MLD .
[6], we can try to solve the optimization problem When characterizing th€C-LPD performance of binary
30n the side, let us remark thatifcc is binary therycc can be identified linear codes over blpary-lnput OUtpUt_sym.memC memayle
with > and we can writey = « + e (mod 2) for a suitably defined vector channels we can, without loss of generality, assume that the
e € F%, which will be called the error vector. Moreover, we can defihe all-zero codeword was transmitted! [5].] [6]. With this, the

syndrome vectos = Hcg -y (mod2). Note that success probability oCC-LPD is the probability that the
s=Hcc-(x+e)=Hco-x+Hec - e all-zero codeword yields the lowest cost function value mhe
= Hcge-e (mod?2). compared to all non-zero vectors in the fundamental pobitop

However, in the following, with the exception of Sectibn vite will only Because the cost function is linear, this is equivalent ® th

use the log-likelihood ratio vectak, and not the binary syndrome vecter ~Statement that the success probabilityG€-LPD equals the
(iee Dfléfinitioritlll) Lorbar\g/ay t)O define a syndrome vector alsméor-binary  probability that the all-zero codeword yields the lowesstco
channel output alphabefBcc. : : :

4Examples of code families that have sub-exponential detimni complex- function value Compared to all non-zero vectors in the conic
ities in the block length are convolutional codes (with fbstdte-space size),
cycle codesi(e., codes whose Tanner graph has only degreertices), and 51t is important to note, as we did in the compressed sensitgp s¢hat
tree codesife., codes whose Tanner graph is a tree). (For more on this topiwe worry mostly about the solution given WyC-LPD being equal to the
see for example_[24].) However, these classes of codes argood enough solution given byCC-MLD , because eve@C-MLD might fail to correctly
for achieving performance close to channel capacity eveleuklL decoding identify the codeword that was sent when the error vectoej®hd the error
(see, for example[_[25].) correction capability of the code.



hull of the fundamental polytope. This conic hull is callégt C. Definition of Pseudo-Weights

fundamental condC < K(Hcc) and it can be written as Note that the fundamental polytope and cone are functions
only of the parity-check matrix of the code andt of the chan-
nel. The influence of the channel is reflected in the pseudo-
weight of the pseudo-codewords, so it is only natural thatev
The fundamental cone can be characterized by the ineasalig¢hannel has its own pseudo-weight definition. Thereforenev
listed in the following lemmal[5]£[8],[[26]. (Similar ine@l- communication channel model comes with the right measure
ities can be given for the fundamental polytope but we wilif “distance” that determines how often a (fractional) egrt
not list them here since they are not needed in this paper.)s incorrectly chosen i€C-LPD.

Lemma 7:The fundamental con& £ K(Hcc) of Heoc Definition 9 ( [S]-[8], [27], [28]): Let w be a nonzero
is the set of all vectorsy € R” that satisfy vector inRY; with w = (w1, ..., wy).

o The AWGNC pseudo-weight ab is defined to be

K = ’C(Hcc) = conic (P(Hcc)) = ﬂ COHiC(CCCJ‘).
jeJ(Hcc)

wi =0, for all i € Z, 2 |12
w
wi< Y wy, foralljegandallicz;. (3) wy VN (w) £ Hw”%'
i €T;\i ’
(]

Note that in the following, not only vectors in the fun-
damental polytope, but also vectors in the fundamental cone
will be called pseudo-codewords. MoreoverHiqg is azero-

« In order to define the BSC pseudo-weighff*° (w), we

let w’ be the vector with the same components.abut
in non-increasing order,e., w’ is a “sorted version” of
w. Now let

one measurement matyixe., a measurement matrix where all A
entries are in{0, 1}, then we will considetH s to represent f&) =wi
also the parity-check matrix of some linear code offgr a5
Consequently, its fundamental polytope will be denoted by F(§) = o F(€)dg,

P(Hgg) and its fundamental cone big(Hcs). o b gl (F(2n)> _ gt (||u;|1> .

With this, the BSC pseudo-weight}¢(w) of w is
defined to bew55¢ (w) £ 2e.
o The BEC pseudo-weight ab is defined to be

B. Conditions for the Equivalence @C-LPD and CC-MLD

The following lemma gives a sufficient condition diflcc
for CC-LPD to succeed over a BSC.

Lemma 8:Let Hc ¢ be a parity-check matrix of a codi:c
and letS C Z(Hcc) be the set of coordinate indices that are
flipped by a BSC with non-zero cross-over probabilityHt
is such that

wy B¢ (w) = [ supp(w)|.
« The max-fractional weight o& is defined to be

w
wmax—frac(w) = |||‘u|:1 .
oo

. Forw = 0 we define all of the above pseudo-weights and the
forall w € K(Hcc) \ {0}, then theCC-LPD decision equals o, fractional weight to be zefb. 0

the codeword that was sent. o For a parity-check matrixHcc, the minimum AWGNC
Remark:The above condition is also necessary; howe"‘ﬂseudo-weight is defined to be

we will not use this fact in the following.

(4)

lwslly < flwslls

. AWGNC,min : AWGNC

: min(Froc) A
Proof: See AppendiXB. [ wy, (Hco) werciin oy P (w)
= min wAWENC (),

Note that the inequality if{4) iglenticalto the inequality wek(Hoo)\{0} P
that appears in the definition of the strict nullspace priyper. . ) SC.min )
for C = 1 (1). This observation makes one wonder if there ighe minimum BSC Pse‘_ldo"gg('jgh‘? " (Hog), the min-
a deeper connection betwe@S8-LPD and CC-LPD beyond 'Mum BEC pseudo-weight,, " (Hoe), and the mini-
this apparent one, in particular for measurement matricats tMUmM max-fractional weighy s 4..(Hce) of Hoe are de-
contain only zeros and ones. Of course, in order to formalif8€d analogously. Note that althought\ ..(Hcc) yields
a connection we first need to understand how points in t}aker performance guarantees than the other quantifies [8
nullspace of a zero-one measurement maiis can be it has the advantage of bgmg eff|.C|.e.ntIy computable [5], [6]
associated with points in the fundamental polytope of the There are other possible definitions of a BSC pseudo-
parity-check matrixHcs (now seen as a parity-check matrixVeéight. For example, the BSC pseudo-weightueican also
for a code oveif,). Such a mapping will be exhibited in theP€ taken to be
upcoming Section V. Before turning to that section, though, BSC A | 2e if ||<,,;'{1 e}||1 = ||<,,;'{e+1 ...n}”l
we need to discuss pseudo-weights, which are a populdfp ) = 2% —1 if | o > [l o I
way of measuring the importance of the different pseudo- {1 It {etd,n
codewords in the fundamental cone and which will be usedsA detailed discussion of the motivation and significanceneft definitions
for establishing performance guarantees@&-LPD. can be found in[[8].



where w’ is defined as in Definition]9 and whekeis the vice-versa. Therefore, a problematic point for tkenullspace
smallest integer such thd@h,,,,,e}ﬂl > H“’f{e+1,...,n}||1- of H¢g will translate to a problematic point in the fundamental
This definition of the BSC pseudo-weight was for exampleone of Hcg and hence to bad performance GC-LPD.
used in [29]. (Note that in_[28] the quantihyl}f’sc' (w) was Similarly, a “good” parity-check matrixt{cs must have no
introduced as “BSC effective weight.”) low pseudo-weight points in the fundamental cone, which
Of course, the values?S¢(w) and w5 (w) are tightly means that there are no problematic points inRheullspace
connected. Namely, iwaSC’ (w) is an even integer then of Hcg. Therefore, “positive” results for channel coding will
wESC/ (w) = wBSC(w), and if w]E)BSC’ (w) is an odd integer Eranslqte Hlnto “positive” results for compresse_zd sensmgj.
thenwBSC (w) — 1 < wBC(w) < wESC’ (w) + 1. negative” results for compressed sensing will translat® i

P . = :
The following lemma establishes a connection between BSBegative” results for channel coding.

pseudo-weights and the condition that appears in Lefima 8. Further, Lemma 11 preserves the support of a given point
Lemma 10:Let Hoc be a parity-check matrix of a code? This means that if there are no low pseudo-weight points

Coc and letw be an arbitrary non-zero pseudo-codeword df the fundamental cone dafcs with a given support, there

Hec, e, w € K(Hoe)\{0}. Then, for all setss C T(Hco) &€ MO problematic points in thR-nullspace of Hcg with

with the same support, which allows point-wise versions of atl ou
results in Sectiof V1.
S| < 1-wlffsc(w) or with |S| < 1 P (w), Note that Lemmd 11 assumes thBlcs is a zero-one
_ 2 2 measurement matrix,e., that it contains only zeros and ones.
it holds that As we show in AppendiX_D, there are suitable extensions

of this lemma that put less restrictions on the measurement

w < ||w=l|1- . .
lwsly < llesll matrix. However, apart from Remaik]19, we will not use

Proof: See Appendix L. B these extensions in the following. (We leave it as an exercis
to extend the results in the upcoming sections to this more
V. ESTABLISHING A BRIDGE BETWEEN general class of measurement matrices.)

CS-LPD AND CC-LPD

We are now ready to establish the promised bridge between
CS-LPD and CC-LPD to be used in Section VI to translate In this section we use the above-established bridge be-
performance guarantees from one setup to the other. Our miigen CS-LPD and CC-LPD to translate “positive” results
tool is a simple lemma that was already established in [3@P0outCC-LPD to “positive” results abou€S-LPD. Whereas
but for a different purpose. Sections VI-A to[VI-E focus on the translation of abstract

We remind the reader that we have extended the useR§fformance bounds, Sectibn VI-F presents the translation
the absolute value operatpr| from scalars to vectors. So, if numerical performance bounds. Finally, in Secfion VI-G, we
a = (a;); is a real (complex) vector then we defite to be briefly discuss some limitations of our approach when dense
the real (complex) vectar’ = (a/); with the same number of Measurement matrices are considered.
components ag and with entries:, = |a;| for all i.

Lemma 11 (Lemma 6 in [80])Let Hcs be a zero-one A. The Role of the BSC Pseudo-Weight @&LPD

measurement matrix. Then Lemma 12:Let Hcg € {0,1}*" be a CS measurement
v € Nullspg (Hes) = |v| € K(Hes). matrix and letk be a non-negative integer. Then

BSC,min < _
Remark:Note thatsupp(v) = supp(|v|). Wy (Hes) > 2k = Hces € NSPR(k, C=1).

Proof: Let w £ |v|. In order to show that such a vector  pygof: Fix somev ¢ Nullspg (Hes)\{0}. By LemmdTi
w is indeed in the fundamental cone #cs, we need t0 e know that|v| is a pseudo-codeword dfl¢s, and by the
verify @) and [3). The wayw is defined, it is clear that assumptiono35¢™min (Hes) > 2k we know thatwB5C(|v|) >
it satisfies [(R). Therefore, let us focus on the proof that 91 Then, using Lemm& 10, we conclude that for all sets

VI. TRANSLATION OF PERFORMANCE GUARANTEES

satisfies [IB)_. Namely, from € NullspR(Hcs) it follows S C T with |S| < k, we must have|vs|ly = || lvs| |1 <
that for all j € J, 3 icrhjivi = 0,18, forall j € 7, ||ug||l, = |vslh. Becauser was arbitrary, the claim
> iez, vi = 0. This implies Hcs € NSPj (k, C=1) clearly follows. n
This result, along with Theoreld 3 can be used to establish
wi=lul=| =30 vl < 3 = 30w anal recot |
sparse signal recovery guarantees for a compressed sensing
i’er\i i/GZj\i i’te\i matI’IX HCS.
for all j € J and alli € Z;, showing thatw indeed Note that compressed sensing theory distinguishes between
satisfies[(B). B the so-calledstrong boundsand the so-callesveak bounds

The former bounds correspond to a worst-case setup and guar-
This lemma gives a one-way result: with every point in thantee the recovery of alt-sparse signals, whereas the latter
R-nullspace of the measurement matfif-g we can associate bounds correspond to an average-case setup and guaramtee th
a point in the fundamental cone @#fg, but not necessarily recovery of a signal on a randomly selected support with high



probability regardless of the values of the non-zero esitrieC. Connection between AWGNC Pseudo-Weight &nd;
Note that a further notion of a weak bound can be defined@uarantees
we randomize over the non-zero entries also, but this is not h _ mxn |
considered in this paper. T ieorem 13:Let Hcs € {0,1} e a measurement
. . . matrix and lets and e be such thats = Hcgg - e. Let

Similarly, for channel coding over the BSC, there is S . , ) -

R . C I(Hcs) with |S| = k, and letC” be an arbitrary positive
distinction between being able to recover frégmworst-case S .

oo . real number withC’ > 4k. Then the estimaté produced by
bit-flipping errors and being able to recover from randoml& ; :

. R S-LPD will satisfy

positioned bit-flipping errors.

In particular, recent results on the performance analykis o " _ A 1
CC-LPD have shown that parity-check matrices constructed |le — éll2 < —= - [leglli ~ with  C" & ——rj

. VEk [Cia |

from expander graphs can correct a constant fraction (of the ik
block lengthn) of worst-case errorsc{. [12]) and random
errors €f. [10], [13]). These worst-case error performancé w;"VENC(|v|) > C” holds for allv € Nullspg (Hcs) \ {0}
guarantees implicitly show that the minimum BSC pseudg particular, this latter condition is satisfied for a mes
weight of a binary linear code defined by a Tanner graph withent matrixHcs with wiWVENEmin(Heg) > C))
sufficient expansion (expansion strictly larger ttggfd) must Proof: See AppendiXE. ]
grow linearly inn. (A conclusion in a similar direction can
be drawn for the random error setup.) Now, with the help of

LemmalI2, we can obtain new performance guarantees f®r connection between Max-Fractional Weight afd /¢,
CS-LPD. Guarantees
Let us mention that id [11][31]/[32], expansion arguments
were used to directly obtain similar types of performancargu  Theorem 14:Let Hcs € {0,1}™*" be a measurement
antees for compressed sensing; in SedfionVI-F we comp&patrix and lets and e be such thats = Hcs - e. Let
these results to the guarantees we can obtain through Sur Z(Hcs) with |S| =k, and letC”’ be an arbitrary positive
translation techniques. real numbgr Wit!’C/ > 2k. Then the estimaté produced by
In contrast to the present subsection, which deals with tfre>~LPD will satisfy
recovery of (exactly) sparse signals, the next three stibssc v 1
(Sectiond VI-B[VI-C, and_VI-D) deal with the recovery of |le —é[lcc < — - |leg]t  with  C" 2

c’ ’
approximately sparse signals. Note that the type of gueeant k o — 1

resented in these subsections are knowrnagnce opti- .
P P it tima—trac(|7])=C" holds for all € Nullsps (Hes) \ {0}.

mality guaranteed [22]. . : L o
¥4 22] (In particular, this latter condition is satisfied for a maas

ment matrixHcs with w2 . (Hes) > C'.)
B. The Role of Binary-Input Channels Beyond the BSC for Proof: See AppendifF. u

CSLPD

In Lemmal 12 we established a connection between, on tBe connection between BEC Pseudo-Weight 886 PD
one hand, performance guarantees for the BSC umder

LPD, and, on the other hand, the strict nullspace propertyFor the binary erasure chann€C-LPD is identical to the
NSPx (k,C) for C = 1. It is worthwhile to mention that peeling decoder (see.g, [23, Chapter 3.19]) that solves a
one can also establish a connection between performasgstem of linear equations by only using back-substitution
guarantees for a certain class of binary-input channelemund We can define an analogous compressed sensing problem by
CS-LPD and the strict nullspace propertySPx (k,C) for assuming that theupportof the sparse signa is known to

C > 1. Without going into details, this connection is esthe decoder, and that the recovering of the values is pegdrm
tablished with the help of results from [33], that genemalizonly by back-substitution. This simple procedure is ralat®
results from [[12], and which deal with a class of binarykierative algorithms that recover sparse approximationsem
input memoryless channels where all output symbols are siafficiently than by solving an optimization problem (seeg,

that the magnitude of the corresponding log-likelihoodbrég  [35]-[38] and references therein).

bounded by some constdiit € R[] This observation, along  For this special case, it is clear thaC-LPD for the BEC

with Theoreni b, can be used to establish instance optimalifiid the described compressed sensing decoder have iflentica
¢1/¢, guarantees for a compressed sensing mdifix. Let  performance since back-substitution behaves exactlyatmees

us point out that in some recent follow-up wofk [34] this hagay over any field, be it the field of real numbers or any

been accomplished. finite field. (Note that whereas the result ©C-LPD for the
BEC equals the result of the back-substitution-based dacod
"Note that in [33], “This suggests that the asymptotic acagatover [...] for the BEC, the same is not true for compressed sensing,

is gained not by quantization, but rather by restricting th&s to have finite i.e., CS-LPD with given support of the sparse signal can be

support.” should read “This suggests that the asymptotiaratdge over [...] . L
is gained not by quantization, but rather by restricting teRs to have SmCtIy better than the back-substitution-based decadér

bounded support.” given support of the sparse signal.)



F. Explicit Performance Results graph of Hcg is a (dy, v, d)-expander with sufficient expan-

In this section we use the bridge lemma, Lenima 11, alori" MOr€ precisely, with
with previous positive performance results f6C-LPD, to 2 1
establish performance results for t&-LPD / basis pursuit 0> 3 + 3d,
setup. In particular, three positive threshold results Ga-
LPD of low-density parity-check (LDPC) codes are used t
obtain three results that are, to the best of our knowled

novel for compressed sensing:

E)along with the technical conditiond, € Z-,). ThenCS-
D based on the measurement matkbcg can recover all
-sparse vectors.e., all vectors whose support size is at most

] i .k, for
« Corollary [[6] (which relies on work by Feldman, Malkin,
Servedio, Stein, and Wainwright [12]) is very similar k< 30 -2 (v —1).
to [11], [31], [32], although our proof is obtained through 26 -1
the connection to channel coding. We obtain a strong proof: This result is easily obtained by combining
bound with similar expansion requirements. Lemmal Il with [12, Theorem 1]. -

« Corollary L7] (which relies on work by Daskalakis,

Dimakis, Karp, and Wainwright [10]) is a result that |nerestingly, fors = 3/4 the recoverable sparsitymatches

yields better constants.€, larger recoverable signals)eyacily the performance of the fast compressed sensing algo

but only with high probability over support&&. itis & (jthm in [31], [32] and the performance of the simple bit-

so-called weak bound). flipping channel decoder of Sipser an Spielman [39], how-
« Corollary L8] (which relies on work by Arora, Daskala-gyer, our result holds for th€S-LPD / basis pursuit setup.

kis, and Steuref[13]) is, in our opinion the mostimportanyoreover, using results about expander graphs fiom [18], th
contribution. We show the first deterministic constructiogy, e corollary implies, for example, that, for/n = 1/2

of compressed sensing measurement matrices with 4y ;. — 32, sparse expander-based zero-one measurement
order-optimal number of measurements. Further we shQWoyices will recover allk = an sparse vectors fon <
that a property that is easy to check in polynomial timg 44175 To the best of our knowledge, the only previously

(i-e, girth), can be used to certify measurement matricg,on result for sparse measurement matrices under basis

Further, in the follow-up paper [34] it is shown that simy,-qyit is the work of Berindet al. [I1]. As shown by the

ilar techniques can_be us_ed to construct the fir_st Optim&hthors of that paper, the adjacency matrices of expander
measurement matrices with /(, sparse approximation granhs (for expansiod > 5/6) will recover all k-sparse
properties. signals. Further, these authors also state results giifé
At the end of the section we also use Lemma 26 Ap- instance optimality sparse approximation guaranteesir The
pendix [D) with [-[, = |-| to study dense measuremenproof is directly done for the compressed sensing problem
matrices with entries if—1,0,+1}. and is therefore fundamentally different from our approach
Before we can state our first translation result, we need which uses the connection to channel coding. The result of
introduce some notation. Corollary[16 implies a strong bound for allsparse signals
Definition 15: Let G be a bipartite graph where the nodesinder basis pursuit and zero-one measurement matricegd base
in the two node classes are called left-nodes and rights)oden expander graphs. Since we only require expansior /4,
respectively. IfS is some subset of left-nodes, we I&f(S) however, we can obtain slightly better constants tHan [11].
be the subset of the right-nodes that are adjaceist tbhen, Even though we present the result of recovering exaktly
given parameterd, € Z-q, v € (0,1), € (0,1), we say that sparse signals, the results of[33] can be used to estahligh
Gis a(dy,~,d)-expander if all left-nodes df have degred, sparse recovery for the same constants. We note that in the
and if for all left-node subsetS with |S| < «v-|{left—nodes}| linear sparsity regimé = an, the scaling ofn = cn is order
it holds that|NV(S)| > dd, - |S]. O optimal and also the obtained constants are the best knawn fo
Expander graphs have been studied extensively in past wetkong bounds of basis pursuit. Still, these theoreticainols
on channel coding (see.g, [39]) and compressed sensingare quite far from the observed experimental performance.
(see,e.qg, [31], [32]). It is well known that randomly con- Also note that the work by Zhang and Pfister|[37] and by Lu
structed left-regular bipartite graphs are expanders Wil et al. [38] use density evolution arguments to determine the
probability (seege.g, [12]). precise threshold constant for sparse measurement nsatrice
In the following, similar to the way a Tanner graph idut these are for message-passing decoding algorithmdwhic
associated with a parity-check matrix [40], we will assteiaare often not robust to noise and approximate sparsity.
a Tanner graph with a measurement matrix. Note that theln contrast to Corollarl 16 that presented a strong boured, th
variable and constraint nodes of a Tanner graph will be d@alléllowing corollary presents a so-called weak bouwél the
left-nodes and right-nodes, respectively. discussion in Section VIFA), but with a better threshold.
With this, we are ready to present the first translation
result, which is a so-called strong bourdf. the discussion  Corollary 17: Let d, € Z~q. Consider a random measure-
in Section_VI-A). It is based on a theorem from [12]. ment matrixHcg € {0, 1}™*" formed by placingl, random
Corollary 16: Let d, € Z-o andy € (0,1). Let Hcg € ones in each column, and zeros elsewhere. This measurement
{0,1}™*™ be a measurement matrix such that the Tanneratrix succeeds in recovering a randomly suppofted an
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sparse vector with probability — o(1) if « is below some  There are several deterministic constructions of sparse me
threshold valuev,, (d,, m/n). surement matrices [42], [43] which, however, would reqaire
Proof: The result is obtained by combining Lemiina 1%lightly sub-optimal number of measuremerts.(m growing
with [10, Theorem 1]. The latter paper also contains a way swper-linearly as a function ot for & = an). The benefit
compute the achievable threshold valugs(d,, m/n). m of such constructions is that reconstruction can be peédrm
via algorithms that are more efficient than generic convex
Using results about expander graphs from| [10], the abo@gtimization. To the best of our knowledge, there are no
corollary implies, for example, that fom/n = 1/2 and previously known constructions of deterministic measiestn
d, = 8, a random measurement matrix will recover withmatrices with an optimal number of rows [44]. The best known
high probability ak = an sparse vector with random supporgonstructions rely on explicit expander constructions],[45
if o < 0.002. This is, of course, a much higher threshol46], but have slightly sub-optimal parameters|[11],|[4@Lr
compared to the one presented above, but it only holds witanstruction of Corollary 18 seems to be the first optimal
high probability over the vector support (therefore it isca s deterministic construction.
called weak bound). To the best of our knowledge, this is One important technical innovation that arises from the
the first weak bound obtained for random sparse measurem@achinery we develop is thairth can be used to certify
matrices under basis pursuit. good measurement matrices. Since checking and consguctin
The best thresholds known for LP decoding were recentljgh-girth graphs is much easier than constructing graphs
obtained by Arora, Daskalakis, and Steurler] [13] but requikéth high expansion, we can obtain very good deterministic
matrices that are both left and right regular and also haeasurement matrices. For example, we can use Gallager’s
logarithmically growing girttfl A random bipartite matrix will construction of LDPC matrices with logarithmic girth to alst
not have logarithmically growing girth but there are exjplic Sparse zero-one measurement matrices with an order-dptima
deterministic constructions that achieve this (for exasrtpe number of measurements under basis pursuit. The transition
construction presented in Gallager’s the5is [14, Appe@])x from expansion-based arguments to girth-based arguments
was achieved for the channel coding problem[in] [47], then

Corollary 18: Let d,d, € Z-,. Consider a measuremengimplified and brought to a new analytical level by Araa
matrix Hcg € {0,1}™*" whose Tanner graph is @, d.)- al. in [13], and afterwards generalized in [41]. Our connection
regular bipartite graph witk2(log n) girth. This measurement results extend the applicability of these results to corsged
matrix succeeds in recovering a randomly suppokted an ~ S€NSING. . .
sparse vector with probability — o(1) if « is below some We note that Corollary 18 yields a weak boun,, the
threshold functiony, (d, d, m/n). recovery of almost allk-sparse signals and therefore does

Proof: The result is obtained by combining Lemia 1110t guarantee recovering altsparse signals as the Capalbo
with [13, Theorem 1]. The latter paper also contains a way & al. [45] construction (in conjunction with Corollarly 116)
compute the achievable threshold valuwés(d., d., m/n). & would ensure. On the other hand, girth-based constructions

have constants that are orders of magnitude higher than the

Using results from [[13], the above corollary yields foPN€S ob_tained by random expanders. Since the construction
m/n = 1/2 and a(3, 6)-regular Tanner graph with IogarithmicOf [45] glves_constants that are worse than the ones for mnd_o
girth (obtained from Gallager's construction) the fact tthXPanders, it seems that girth-based measurement matrices
sparse vectors with sparsity= an are recoverable with high Nave significantly higher provable thresholds of recovery.
probability for a < 0.05. Therefore, zero-one measuremerftNally, we note that following [13], logarithmic giri(log )
matrices based on Gallager’s deterministic LDPC constmct Will yield a probability of failure decaying exponentialip
form sparse measurement matrices with an order-optinidf Matrix sizen. However, even the much smaller girth
number of measurements (and the best known constants) ffuirement2(loglogn) is sufficient to make the probability

the CS-LPD / basis pursuit setup. of error decay as an inverse polynomialraf
A note on deterministic constructions; We say that a A final remark: Chandar [48] showed that zero-one mea-

method to construct a measurement matrix is deterministicSHrement matrices cannot have an optimal number of mea-
it can be created deterministically in polynomial time, tdnas  Suréments if they must satisfy the restricted isometry eriyp

a property that can be verified in polynomial time. Unfortuf-or the /5 norm. Note that this does not contradict our work,

nately, all known bipartite expansion-based construstiare SINC€ as mentioned earlier on, RIP is just a sufficient dadi
non-deterministic because even though random constnsctié®" Signal recovery.

will have the required expansion with high probability, be

is, to the best of our knowledge, no known efficient wag. Comments on Dense Measurement Matrices

to check expansion abowe > 1/2. Similarly, there are no
known ways to verify the nullspace property or the restdcted
isometry property of a given candidate measurement ma{trixg
polynomial time.

We conclude this section with some considerations about
ense measurement matrices, highlighting our currentrande
tanding that the translation of positive performance guar
antees fromCC-LPD to CS-LPD displays the following

SHowever, as shown iii[31], these requirements on the lefright degrees behavior: the denser a measurement matrix is, the weaker the
can be significantly relaxed. translated performance guarantees are.
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Remark 19:Consider a randomly generated x n mea-
surement matrixHcs where every entry is generated i.i.d.
according to the distribution

+1 with probability 1/6
0 with probability2/3 .
—1 with probability 1/6

This matrix, after multiplying it by the scalat/3/n, has
the restricted isometry property (RIP) with high probabili
(See[[49], which proves this property based on results i, [50 L
which in turn proves that this family of matrices has a nornze

threshold.) On the other hand, one can show that the family

of parity-check matrices where every entry is generatedl i.irig. 1. Top left: base graph. Top right: a sample of possibcovers of
according to the distribution G. Bottom left: a possible3-cover of G. Bottom right: a possible\/-cover
of G. Here,o.,,...,0e; are arbitrary edge permutations.
{1 with probability 1/3

0 with probability 2/3

Xy

doesnot have a non-zero threshold undécC-LPD for the

BSC [51]. O
Therefore, we conclude that the connection betw€&h

LPD and CC-LPD given by Lemma_25 (an extension of %2

Lemmalll that is discussed in Appenflix D) is not tight for

dense matrices, in the sense that the performanc€3f

LPD for dense measurement matrices can be much better than

predicted by the translation of performance results Gg@-

LPD of the corresponding parity-check matrix.

VIl. REFORMULATIONS BASED ONGRAPH COVERS

Xy

The aim of this section is to tighten the already close
formal relationship betwee@C-LPD and CS-LPD with the
help of (topological) graph cover$ [52]. [53]. We will se€ig. 2. Left: Tanner graphl (H). Middle: a possible3-cover of T(H).
that the so-called (blockwise) graph-cover decoder [8f (sggmutgﬂgﬁf'be -cover of T(H). Here, {m;;};,; are arbitrary edge
also [54]), which is equivalent t&€C-LPD and which can be
used to explain the close relationship betw&®-LPD and
message-passing iterative decoding algorithms like the miCC-MLD and CC-LPD, respectively. In particular, the latter
sum algorithm, can be translated to 88-LPD setup. subsection shows reformulations@$-LPD in terms of graph

For an introduction to graph covers in general, and tlevers. Switching to compressed sensing, in Sedtion VII-C
graph-cover decoder in particular, séé [8]. Figures 1 [@Andw2 discuss reformulations d€S-OPT that allow to see the
(taken from [[8]) show the main idea behind graph coverslose relationship o€CC-MLD and CS-OPT. Afterwards, in
Namely, Figuré L shows possible graph covers of some (geSection[VII-D, we present reformulations GfS-LPD which
eral) graph and Figuiffd 2 shows possible graph covers of sohighlight the close connections, and also the differences,
Tanner graph. betweenCC-LPD andCS-LPD.

Note that in this section the compressed sensing setup will
be over the complex numbers. Also, the entries of the siz&- Reformulations 0€C-MLD
m x n measurement matriflcs will be allowed to take on This subsection discusses several reformulation<GF

any value inC, i.e, the entries offgs are not restricted MLD, first for general binary-input output-symmetric mem-

o ha_lve absolute value equgl to zero or one. Moreover, a5g/less channels, then for the BSC. We start by repeating two
Section1V, the channel coding problem assumes an arb'tr?@formulations ofCC-MLD from Sectior T¥

binary-input output-symmetric memoryless channel, ofalzhi
the binary-input additive white Gaussian noise (AWGN) chan o
nel and the binary symmetric channel (BSC) are prominent ~ CC-MLD1 : minimize (A, ')
examples. As beforex € {0,1}" will be the sent vector, subjectto z’ € Ccc.
y € Y™ will be the received vector, andl € R™ will contain
the log-likelihood ratios); 2 X;(y;) 2 1og(§§;§7§7;j;'§),
1€ I(Hcs).

The rest of this section is organized as follows. In Sec-
tions[VII-Aland[VII-Bl we show a variety of reformulations of

CC-MLD2 : minimize (X, z’)
subjectto ' € conv(Cec).
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Towards yet another reformulation &C-MLD that we CC-LPD -
would like to present in this subsection, it is useful todctuce '
the hard-decision vect@, along with the syndrome vectar

minimize (X, z’)
subjectto x’ € P(Hcc).

induced byy.
Definition 20: Let y € F} be the hard-decision vectorThe aim of this subsection is to discuss various reformaoreti
based on the log-likelihood ratio vecta; namely let of CC-LPD in terms of graph covers. In particular, the
0 if A0 following reformulation of CC-LPD was presented in [8] and
= {1 " /\Z ~0 (for all i € 7). was called (blockwise) graph-cover decoding.

(If \; = 0, we sety; 2 0 or 7, = 1 according to some CC-LPD1: minimize % (AT g

deterministic or random rule.) Moreover, let _ ~ Y
subjectto Hcge-Z' =0 (mod2).

s& Hcc -y (mod2)

be the syndrome induced by O Here the minimization is over all € Z~., and over all parity-
Clearly, if the channel under consideration is a BSC witbheck matriced ¢ induced by all possiblé/-covers of the
cross-over probability smaller thary/2 theny = y. Tanner graph ol

With this, we have for any binary-input output-symmetric Using the same line of reasoning as in Seclion VIIE&C-
memoryless channel the following reformulation@®€-MLD  LPD can be rewritten as follows.
in terms ofe’ £ y — =’ (mod 2).

1
. minimi ™
o CC-LPD2: minimize M'HAsupp(é/)Hl
CC-MLD3 : minimize  |[Aguppen |1

i 7. & — ¢TM
subjectto Hce - € = s (mod 2). subjectto Hgc-€ =s'" (mod2).

Again, the minimization is over alM € Z-, and over all

Clearly, once the error vector estimateis found, the code- rj?arity-check matricedT o induced by all possiblé/-covers

word estimatez’ is obtained with the help of the expressio
x =y — e (mod2). of the Tanner graph o cc.

. . . For the BSC with cross-over probability 0 < ¢ < 1/2,
Note that for the special case of a binary-input AWGNC . . . )
. . i flon V-
this reformulation can be found, for example, [in][55] or [56We get, W'th a shght. abuse of notation as in Sec II-A,
Chapter 10]. the following specialized results.

Theorem 21:CC-MLD3 is a reformulation ofCC-MLD1. CC-LPD3 (BSC): minimize L l€’]x

Proof: See Appendix G. [ | , M
subjectto Hcc - & = s™ (mod?2).

For a BSC we can specialize the above reformulations.

Namely, for a BSC with cross-over probability0 < ¢ < 1/2,

we have|\;| = L, i € Z, whereL £ log(1£) > 0. Then, N 1.,

with a slight abuse of notation by emploiirﬂg |l also for CC-LPD4 (BSC): minimize M 1€"llo

vectors ovelf;, we obtain the following reformulation. subject to Hce - € = s™ (mod2).

CC-MLD4 (BSC): minimize ||€'|x
subjectto Hcc - € = s (mod?2). )
C. Reformulations o€S-OPT

We start by repeating the definition d€S-OPT from

Moreover, with a slight abuse of notation by employi -
g y employipg|o SectionTI.

also for vectors oveF,, CC-MLD4 (BSC) can be written as
follows.
CS-OPT: minimize ||€'[o
CC-MLD5 (BSC): minimize ||€||o subjectto Hcs € =s.
subjectto Hcc - € = s (mod?2).
Clearly, this is formally very similar te€C-MLD5 (BSC).

B. Reformulations o€C-L PD In order to show the tight formal relationship 6S-OPT

i _ with CC-MLD for general binary-input output-symmetric
We start by repeating the definition &&C-LPD from

Sectior[ V. 9Note that hereH ¢ is obtained by the standard procedure to construct a
graph cover[[8], and not by the procedure in Definiflan 277 Appendix[D).



memoryless channels, in particular with respect to therrefo

mulation CC-MLD3, we rewriteCS-OPT as follows.

CS-OPT1: minimize |[L1ppen |l

subjectto Hcs €' = s.

D. Reformulations o€S-LPD

We now come to the main part of this section, namely the
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straightforward generalization of the cost functiorG$-
OPT. PropertyP2’ is reflected by the fact that feasible
vectors in graph covers are such that thigy not yield
cost function values that are smaller than the cost function
value of the best feasible vector in the base graph.

VIII. M INIMIZING THE ZERO-INFINITY OPERATOR

For any real vecton we define the zero-infinity operator
to be

lallo.c = llallo - ],

reformulation of CS-LPD in terms of graph covers. We start

by repeating the definition c€S-LPD from Sectior(TI.

CS-LPD: minimize ||€|:

subjectto Hcs-e' = s.

As shown in the upcoming Theorem]22S-LPD can be
rewritten as follows.

. 1
CS-LPD1: minimize M'Hélul

subjectto Hgg-é' = s™.

Here the minimization is over alM € Z., and over all
measurement matricdd g induced by all possibld/-covers
of the Tanner graph oH¢s.

Theorem 22:CS-LPD1 is a reformulation ofCS-LPD.
Proof: See AppendixH. [ |
Clearly, CS-LPD1 is formally very close toCC-LPD3

(BSC), thereby showing that graph covers can be used

exhibit yet another tight formal relationship betwe@8-LPD

and CC-LPD.

i.e, the product of the zero norffu||o = | supp(a)| of a and
of the infinity norm|ja|l. = max; |a;| of a. Note that for
any ¢ € C and any real vectow it holds that||c - al|o,cc =
lef - allos-

Based on this operator, in the present section we introduce
CS-OPTy,, and we show, with the help of graph covers, that
CS-LPD can not only be seen as a relaxationG8-OPT but
also as a relaxation d8S-OPT, ... We do this by proposing
a relaxation ofCS-OPT .., calledCS-REL, ., and by then
showing thatCS-REL,  is equivalent toCS-LPD.

Moreover, we argue that the solution@$-LPD is “closer”
to the solution ofCS-OPTj o, than the solution o€S-LPD is
to the solution ofCS-OPT. Note that similar taCS-OPT, the
problemCS-OPT, . is in general an intractable optimization
problem.

One motivation for looking for different problems whose
relaxations equalsCS-LPD is to better understand the
“strengths” and “weaknesses” @S-LPD. In particular, if
CS-LPD is the relaxation of two different problems (like
CS-OPT and CS-OPTy ), but these two problems yield
different solutions, then the solution of the relaxed peoibl
will disagree with the solution of at least one of the two
poblems.

This section is structured as follows. We start by defining
CS-OPTy, in SectionVIII-A. Then, in Sectiofi VIII-B, we

Nevertheless, these graph-cover based reformulations aéscuss some geometrical aspect€8FOPT ., in particular

highlight differences between the relaxation used in theed
of channel coding and the relaxation used in the context
compressed sensing.

o When relaxingCC-MLD to obtain CC-LPD, the cost
function remains the same (call this propeity) but
the domain is relaxed (call this properB?2). In the
graph-cover reformulations d€C-LPD, propertyP1 is

reflected by the fact that the cost function is a straightfo

ward generalization of the cost function f@C-MLD .
Property P2 is reflected by the fact that in genera
there are feasible vectors in graph covers that cannot
explained as liftings of (convex combinations of) feasibl
vectors in the base graph and that, for suitableectors,
have strictly lower cost function values than any feasib
vector in the base graph.

When relaxingCS-OPT to obtain CS-LPD, the cost
function is changed (call this property1’), but the
domain remains the same (call this propeRg’). In
the graph-cover reformulations @S-LPD, propertyP1’

is reflected by the fact that the cost functionnist a

with respect to the geometry behi@5-OPT and CS-LPD.
Binally, in Section[VIII-C, we introduceCS-REL( », and
show its equivalence t€S-LPD.

A. Definition of CS-OPT o
The optimization problenCS-OPT, ., is defined as fol-

I|gws.

CS-OPTj,.0 : Mminimize

subjectto Hgg - €' = s.

lI€’ll0,c

be
e

M/hereas the cost function @S-OPT, i.e, ||e’||o, measures
the sparsity ok’ but not the magnitude of the elementsedf

the cost function ofCS-OPTy ., i.e., ||€'|jo,, represents a
trade-off between measuring the sparsityebfand measuring

the largest magnitude of the componentsedf Clearly, in

the same way that there are many good reasons to look for
the vectore’ that minimizes the zero-norm (among all that
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/ / i
véh fQ fz C. Relaxation ofCS-OPTj

X . ) X In this subsection we introduc@S-REL, ., as a relaxation
-1 +lep e 1€ of CS-OPTy.o; the main result will be thatCS-RELg

! = — — — equalsCS-LPD. Our results will be formulated in terms of
graph covers, we therefore use the graph-cover relatetiomta

] -1 —1
T T that was introduced in Sectidn VII, along with the mapping
@ that was defined in Sectidnl 11
Fig. 3. Unit balls for some operators. Lefte’ € R2 | ||e’|lo < 1}. Middle: In order to motivate the formulation o€S-RELg ., we
{e’ €R? | ||l€'[lo,00 < 1}. Right: {e’ € R? | |le’||l1 < 1}. first present a reformulation @C-LPD (BSC). NamelyCC-

LPD3 (BSC) orCC-LPD4 (BSC) from Sectiof VII-B can be
rewritten as follows.
satisfy Hcs - €/ = s), there are also many good reasons to
look for the vectore’ that minimizes the zero-infinity operator~~_| pps (BSC): minimize 1 |
(among alle’ that satisfyHcs-€’ = s). In particular, the latter M
is attractive when we are looking for a sparse veetothat subjectto Hce - € = s™ (mod 2).
does not have an imbalance in magnitudes between the largest

component and the set of most important components. - M.
P P P Then, because for any vectd@ e FLJ‘ M it holds that

With a slight abuse of notation, we can apply the zero- ., . = M )
infinity operator|| - [|o.« also to vectors oveF, and obtain (8) = s if and only if § = 5™, CC-LPDS (BSC) can
the following reformulation o£C-MLD (BSC). (Note that for
any vectora over[F; it holds that||al|o,cc = |la|li = wu(a).)

’

‘é 0,00

also be written as follows.

L 1
CC-LPD6 (BSC): minimize a [1€"10,00
CC-MLD6 (BSC): minimize |€'[/0.c subject to Hee € =3 (mod 2)
subjectto Hcc €' = s. pu(8) =s.
The transition that leads fro@C-MLD to its relaxationCC-

This clearly shows that there is a close formal relationshif”D6 (BSC) inspires a relaxation @S-OPT, o, as follows.
not only betweenCC-MLD (BSC) andCS-OPT, but also

betweenCC-MLD (BSC) andCS-OPTy . CS-RELy. : minimize % & Nlo.00
subjectto Hcg-é' =3
B. Geometrical Aspects @S-OPT o pm(3) =s.

We want to discuss some geometrical aspect€®fOPT,
CS-OPTy,oo, and CS-LPD. Namely, as is well knownCS- Here the minimization is over all/ € Z-, and over
OPT can be formulated as finding the smallegtnorm all measurement matriceBls induced by all possibleV/-
ball of radiusr (cf. Figure[3 (left)) that intersects the seicovers of the Tanner graph dcs. Note that, in contrast to
{€/ | Hcs - € = s}, and in the same spiritCS-LPD CC-LPD6 (BSC), in general the optimal solutiof€, 5) of
can be formulated as finding the smalléstnorm ball of CS-REL, ., doesnot satisfy 5 = s™.
radius r (cf. Figure[3 (right)) that intersects with the set Towards establishing the equivalence ®8-REL, ., and

{e/ | Hes - € = s}. Clearly, the fact thatCS-OPT and CS-LPD, the following simple lemma will prove to be useful.
CS-LPD can yield different solutions stems from the fact that

these ba_lls have different shapes. Of course, the success Qfeyma 23:For any real vectot it holds that
CS-LPD is a consequence of the fact that, nevertheless, under
suitable conditions, the solution given by thenorm ball is llallr < llallo.c
(nearly) the same as the solution given by thenorm ball.

In the same veinCS-OPT, .. can be formulated as finding With equality if and only if all non-zero components @fhave
the smallest zero-infinity-operator ball of radius(cf. Fig- the same absolute value. _ _
ure[3 (middle)) that intersects the 5@/ | Hes e = s}, Proof: The proof of this lemma is straightforward. =
As it can be seen from Figufd 3, the zero-infinity-operator
unit ball is closer in shape to thg-norm unit ball than the  Theorem 24:Let Hcg be a measurement matrix over the
fo-norm unit ball is to the/;-norm unit ball. Therefore, we reals with entries equal to zero, one, and minus one. For
expect that the solution given b®S-LPD is “closer” to the syndrome vectors that have only rational componentSs-
solution given byCS-OPT, ., than the solution o€S-LPDis LPD andCS-REL, ., are equivalent in the sense that there is
to the solution given byCS-OPT. In that senseCS-OPT, ., an optimale’ in CS-LPD and an optimak’ in CS-RELg
is at least as justifiably a€S-OPT a difficult optimization such thate’ = ¢,/(€’).
problem whose solution is approximated 6§-LPD. Proof: See AppendiX]I. [ ]



between channel coding and compressed sensing LP relax-
ations. The key observation, in its simplest version, wad th
points in the nullspace of a zero-one matrix (considered ove
the reals) can be mapped to points in the fundamental cone of
the same matrix (considered as the parity-check matrix of a
code overf,). This allowed us to show, among other results,
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IX. CONCLUSIONS ANDOUTLOOK infinity operator optimization problen€S-OPT o, an
optimization problem with the property that the solution
of CS-LPD can be considered to be at least as good
an approximation of the solution @S-OPT , as the
solution of CS-LPD is an approximation of the solution
of CS-OPT. We leave it as an open question if the results
and observations of Sectign MIll can be generalized for
more general matrices or specific families of signals (like
non-negative sparse signals aslinl [64],/ [65]).

In this paper we have established a mathematical connection

that parity-check matrices of “good” channel codes can be

used as provably “good” measurement matrices under basis

ACKNOWLEDGMENTS

pursuit.

« In addition to CS-LPD, a number of combinatorial al-

for stimulating discussions with respect to the topic o§ tha-
per. Moreover, we greatly appreciate the reviewers’ contmen

gorithms €.9. [11], [31], [32], [35], [5.7]’ [58]) have ”ﬁ“ lead to an improved presentation of the results.
been proposed for compressed sensing problems, wit

the benefit of faster decoding complexity and comparable
performance toCS-LPD. It would be interesting to APPENDIX A

investigate if the connection of sparse recovery problems PROOF OFTHEOREMIS

to channel coding extends in a similar manner for these Suppose that s has the claimed nullspace property. Since
decoders. One example of such a clear connection is the:s-e = s and Hcs - é = s, it easily follows thaty £ e —é
bit-flipping algorithm of Sipser and Spielman [39] ands in the nullspace ofics. So,

the corresponding algorithm for compressed sensing by

Xu and Hassibi[[3[1]. Channel-coding-inspired message- lesll + llesll = flellx

passing decoders for compressed sensing problems were (g) IER

also recently discussed in _[37], [38], [59]-[61].

An interesting research direction is to use optimized =lle—vlh

LDPC matrices (seeg.g.[23]) to create measurement = [les = vsll1 + [[eg — v3ll
matrices. There is a large body of channel coding work @ B i
that could be transferable to the measurement matrix > lleslly = llwsli + llvslh — lleslh

design problem. g les|l: + c-1 vl — lesli, (5)
In this context, an important theoretical question is edat C+1

to being able to certify in polynomial time that a giverwhere step (a) follows from the fact that the solutionG-
measurement matrix has “good” performance. To thePD satisfies||é||; < |le|/1, where step (b) follows from
best of our knowledge, our results form the first knowapplying the triangle inequality property of tidg-norm twice,
case where girth, an efficiently checkable property, cathd where step (c) follows from

be used as a certificate of goodness of a measurement

. - - . ) o C —
matrix. It is possible that girth can be used to establish a —llws|l + [lvglh = e-1 v
success witness faCS-LPD directly, and this would be _ C+1
an interesting direction for future research. Here, step (d) is a consequence of

One important research direction in compressed sensing
involves dealing with noisy measurements. This problem
can still be addressed with; minimization (see.e.qg,

) . . o
[62]) _and also with less complex S|gnal_recons_truct|on ( )—HV§H1 sl +C - llvshh + C - lvsh
algorithms (seeg.g, [63]). It would be very interesting to
investigate if our nullspace connections can be extended (C=1) - [lvslli + (C=1) - [z
to a coding theory result equivalent to noisy compressed =(C-1) V]|,
sensing.

(C+1)- (= sl + llvsll)
—C-wsll = llvslli + C - [lvsl + llvslh

WV

Beyond channel coding problems, the LP relaxatiomn bf [%IEELERSJE}DCS);:STKE? ;rsosrlrj]n?gt?(ln}:qg ;;VC' ‘;Z%%;% E]: hg)E
R\ &)

Is a special case qf a relaxation of the marglnal p.OIyto%eubtracting the ternfles||; on both sides of[{5), and solving
for general graphical models. One very interesting r?

search direction is to explore if the connection we havg" 1ll2 = lle — &fl; yields the promised result.
established betweedS-LPD andCC-LPD is also just a
special case of a more general theory.

We have also discussed various reformulations of the PROOF OFLEMMA [

optimization problems under investigation. This leads to Without loss of generality, we can assume that the all-zero
a strengthening of the ties between some of the optimizzedeword was transmitted. LetL > 0 be the log-likelihood
tion problems. Moreover, we have introduced the zeroatio associated with a receivéd and let—L < 0 be the

APPENDIXB
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log-likelihood ratio associated with a receivéd Therefore, |-| from scalars to vectors at the beginning of Seclidn V, we

N =+LifieSand\ = —Lif i €S. Then it follows will now extend its use from scalars to matrices.
from the assumptions in the lemma statement that for anyMoreover, we lef - |, be an arbitrary norm for the complex
w € K(Hce) \ {0} it holds that numbers. As such, |, satisfies for any, b, ¢ € C the triangle
inequality |a + b|, < |a|, + |b], and the equalityc- a|, =
Nwp=) (+L) wi+) (~L)-wi || -q|a|*. )I/n| the s|ame |vv|ay th|e|absolute vaI?Je op)lr;htqlrwas
ies ies extended from scalars to vectors and matrices, we extend the
@r. lwslli — L [|wsl @ 0= (X,0), norm operatot - |, from scalars to vectors and matrices.

We let|| - ||, be an arbitrary vector norm for complex vectors
where step (a) follows from the fact that;| = w; for all  that reduces to- |, for vectors with one component. As such,
i € I(Hcc), and where step (b) follows frorl(4). Thereforey . | satisfies for any: € C and any complex vectors and

underCC-LPD the all-zero codeword has the lowest cost fung; with the same number of components the triangle inequality
tion value when compared to all non-zero pseudo-codeworgs b, < |lall,+| ], and the equalityic - a||, = |c|-||a]l,.

in the fundamental cone, and therefore also compared to allye are now ready to discuss our first extension of

non-zero pseudo-codewords in the fundamental polytope. | emmalT1, which generalizes the setup of that lemma from

real measurement matrices where every entry is equal to

APPENDIXC either zero or one to complex measurement matrices where

PROOF OFLEMMA [10 the absolute value of every entry is equal to either zero

Case 1:Let S| < 3 - wBS(w). The proof is by con- or one. Note that the upcoming lemma also generalizes the

tradiction: assume thafwsl|j; > |lwsll1. This statement is mapping that is applied to the vectors in the nullspace of the
clearly equivalent to the statement tiat||ws||1 > |ws||1 + measurement matrix.

lwslli = |lwll1, which is equivalent to the statement that Lemma 25:Let Hcs = (h;:);,: be a measurement matrix
[wslli = % - [|w]|1. In terms of the notation in Definition] 9, over C such that|n; ;| € {0,1} for all (j,i) € J(Hcs) x
this means that I(Hcg), and let|- |, be an arbitrary norm of€. Then
@
wfsc(w) —9. "1 (@) <2 F'(|lws|) v € Nullspc(Hcs) = v, € K(|Hcs)).
®)  wslh S| - [|lw|lso Remark:Note thatsupp(v) = supp(|v,).
<2 o] <2 o] =2-5], Proof: Letw 2 |v|,. In order to show that such a vector

) ) w is indeed in the fundamental cone [ ¢g|, we need to
where at step (a) we have used the fact thiat is a (strictly) verify (@) and [3). The wayw is defined, it is clear that
non-decreasing function and where at step (b) we have usedatisfies [[2). Therefore, let us focus on the proof that
the fact that the slope df =" (over the domain wher& " is  sagisfies[(B). Namely, fronr € Nullsp(Hcs) it follows that
defined) is at least/||w ||« The obtained inequality, however,gor gi| j € 7, 3. s hjvi =0.Forallj e J andalli € Z
is a contradiction to the assumption thaf < 5 - wy™“(w).  this implies that

Case 2:Let [S| < - wPB5C(w). The proof is by contradic-

tion: assume thatws||1 > ||wsl|1. Then, using the definition

of w’ based onw (cf. Section 1V-C), we obtain wi = vil, = [hyal - il = [hyavil, = | = Z hjivi
VET\i
"y > |lwslli = |jwelr = || . R
sl > llwslh 2 sl = Hoqsten,.nplh <Y el = Y el = Y e,
If wBSC' (w) is an even integer, then the above line of inequal- €T\ €T\ €T, \i
ities shows thatS| > 1 - wB'(w), which is a contradiction = Z wir,
to the assumption thatS| < 3 - w55 (w). If W5 (w) is VET\i
an odd integer, then the above line of inequalities shows th . . -
9 d s%owmg thatw indeed satisfied3). [ |

S| > 4+ (wBSC (w) + 1) > JwBS(w), which again is a

contradiction to the assumption that| < § - w35 (w). Example 26:The measurement matrix

APPENDIXD o2 ( 1 0 \/%(14—1'))

EXTENSIONS OF THEBRIDGE LEMMA eS=\_1 3 1
The aim of this appendix is to extend Lemind tf Sec- satisfies

tion[VV) to measurement matrices beyond zero-one matriges. |

that vein we will present three generalizations in Lemmas 25 |Heg| = (1 0 1> ,

[29, and_3ML. Note that the setup in this appendix will be sljght 111

more general than the compressed sensing setup in SedtiomNd so Lemm& 25 is applicable. An example of a vector in

(and in most of the rest of this paper). In particular, WeWHONuHSpC(HCS) is

matrices and vectors to be ov€r and not just oveR. )

We will need some additional notation. Namely, similarly v (L(l + 1), 1 — <1 + _) , _1) )
to the way that we have extended the absolute value operator V2 V2 V2
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Choosing| - |, £ |-|, we obtain Proof: Let Hes = (A(jm,(i,m)) (jmo),(im)- Note that
by the construction in Definitioh 27, it holds that

lv|, = (1, \/ 2+ \/5, 1) =(1, 1.848..., 1) € IC(|HCS|)- Z il(j,m’),(i,m) =h;,; forany(j,i,m) € J xIx[M],
m’€[M]

7 — .. y s
The second extension of Lemia 11 generalizes that Iemmaz b mn im) = hye forany (j,m’,i) € I x [M]xZ.

to hold also for complex measurement matrices where the €[]

absolute value of every entry is an integer. In order et v € Nullsp.(Hcs). Then, for every(j,m’) € J x [M]
present this lemma, we need the following definition, whiclye have

is subsequently illustrated by Examplg 28.

o Z b . ™ _ Z by , .
Definition 27: Let Hcs = (h;,:);:; be a measurement (Gm"),(Em)Y (3 m) (G,m’),(i,m)Vi
matrix overC such thath; ;| € Z>, forall (j,i) € J(Hcs) x (i,m)E€Tx [M] (i,m)€Ix [M]
Z(Hcs), and letM € Zx be such thatl > max; ;) |hy,il- — Zyl- Z R(jm (im) = Zyihﬂ =0,
We define anM-fold cover Hcg of Hcg as follows: for €T me[M] ieT

(4,4) € J(Hcs) x I(Hcg), if the scalarh;; is non-zero
then it is replaced by a matrix, namehly ;/|h; ;| times the
sum of |h; ;| arbitrary M x M permutation matrices with non-
overlapping support. However, if; ; = 0 then the scalah; ;

is replaced by an all-zero matrix of siZd x M. O

where the last equality follows from the assumption that
Nullspe(Hcs). Thereforev™ ¢ Nullspe(Hcs). Because
|h(77m/) Gm)| € {0,1} for all (j,m’,i,m) € J x [M] x T x
[M], we can then apply Lemnial25 to conclude that" | <
K(|Hesl).

Now, in order to prove the last part of the lemma, assume
that # € Nullspe(Hcs) and definev 2 ¢y (2). Then for
everyj € J we have

Note that all entries of the matrifls in Definition [27
have absolute value equal to either zero or one.

Example 28:Let 1 .
P Dohjivi= hiic 5z D Him)
1 0 (1 4 g €T i€T me[M]
Heg 2 (_2 Z_ \/_(3+ Z)) _ ) ]
=372 > i Tam
Clearly €L me[M]

2> :_Z Z Z R Gim) * Pim)

1 0
|Hcs|— <2 1 3 €L me[M] m'€[M]

1 = -
and so, choosing/ £ 3 and = Z Z Z himny,(i;m) * V(i,m)

m’€[M] \i€Z me[M]

1414 141
0 1 010 00 ol O_ -0,
1 0 0|0 00 % 0 %
-, 0 0 110 0 ol 0 1 1% where the last_equality follows from the assumption that
Hcs = T =il 0 ol 1 \{5 \{5 » U € Nullspe(Hcs), i.e, for every (5,m') € J x [M]
1 -1 olo i ol 1 1 1 the expression in parentheses equals zero. Therefore,

we obtain a matrix described by the procedure of Defini- Example 30:Consider the measurement matrE{cs of

tion[27. 00 Exampleg28. A possible vector iNullsp(Hcs) is given by
Lemma 29:Let Hcs = (h,;);,: be a measurement matrix N
over C such that|h;;| € Zs, for all (j,i) € J(Hcs) x v= (\/_(1 +i), 2V2-i(3+2v2), - )

I(Hcs). Let M € Zo be such thatM > max; ;) |h;.l,

A
and let Hcs be a matrix obtained by the procedure in IAppIylng Lemma(2D withd/ = 3 and|-|, £ |-|, we obtain
Definition[27. Moreover, let- |, be an arbitrary norm oft. ’,,Tﬂ (2,2,2, 0,00, 1,1,1) € /C(IHcsl)
Then
Y - wherea = /25 + 12v/2 = 6.478..., and whereHcg can be
v € Nullspc(Hces) = v € Nullspe(Hes) chosen as in Example 28. O

= |[v™M] € /C(Iﬁcsl)- Our third extension of Lemmia L1l generalizes the mapping
that is applied to the vectors in the nullspace of the measure
Additionally, with respect to the first implication sign wave ment matrix.
the following converse: for anyg € C*" we have Lemma 31:Let Hcs = (h;;);; be a measurement matrix
_ _ - over C such that|h; ;| € {0,1} for all (5,7) € J(Hcs) x
¢um(P) € Nullspe(Hes) < © € Nullspe(Hos).- T(Hcs). Let L € Z, let |||, be an arbitrary norm for



complex vectors, and Ie{w(@}gem be a collection of vectors
with n components. Then

v, v e Nullspe(Hes) = w € K(|Hesl),

wherew € R"™ is defined such that for afl € Z(Hcsg),

w; = H (I/Z-(l)7 .. .,UZ-(L))

*
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Becausek' (|Hcs|) is a convex cone, the first statement
in Corollary[32 can also be proven by combining®| ¢
K(|Hcs|), ¢ € [L], with the fact that any conic combination of
vectors ink (| Hcg|) is a vector inkC(|Hcg|). In that respect,
the second statement of Corolland 32 is noteworthy in thesen
that althoughL vectors inkC(| H¢s|) are combined in a “non-
conic” way, we nevertheless obtain a vector fi{| Hcs).
(Of course, for the latter to work it is important that thelse

Proof: The proof is very similar to the proof of vectors are not arbitrary vectors i6(|Hcs|) but that they

Lemmal[25. Namely, in order to show thai is indeed
in the fundamental cone ofH¢s|, we need to verify [(2)

are derived from vectors in th€-nullspace ofHs.)
We conclude this appendix with two remarks. First, it is

and [3). The wayw is defined, it is clear that it satisfi€ls| (2).clear that Lemm& 31 can be extended in the same way as

Therefore, let us focus on the proof that satisfies [(B).
Namely, fromy(®) € Nullspe(Hcs), ¢ € [L), it follows that
D ier hj =0,jeJ, 0elL].Forallje J and all
i € Z; this implies that

Wi = (Ufl),7VfL))
= Al H(Vi(l)’ . .,ui(L))
- (hj.,wfl), e ha:i”i(m)‘
= o Z hj,i’yi(/l)a ey T Z hjwi,yz'(’L)
PeT\i “ET\: *
=3 he (AP
AV *
< Z ‘ hj,i’ . (VZ-(,l), ey VZ-(/L))
' €T\i "
= 3 Iyl H (yf,”, o ui(,L)) )
i'€T\i
= ()
' €T;\1 "
i/GIj\’i

showing thatw indeed satisfied [3). ]

Corollary 32: Consider the setup of Lemnial31. Lete
Z-0, and selectl arbitrary scalarsy*) € R, ¢ € [L], and
L arbitrary vectore/(¥) € Nullspe(Hcs), £ € [L].

« For||-|, = |-/ we have

Z a([) |1/(€)| S ’C(|Hcs|)
Le[L)

o For|l-||, = ||l we have

ST (@02 [p®]2 € K(|Hes)),
Le[L]

Lemma[29 extends Lemnial25. Second, although most of
Section[V] is devoted to using Lemnialll for translating
“positive results” abouCC-LPD to “positive results” about
CS-LPD, it is clear that Lemmas 25,9, ahd 31 can equally
well be the basis for translating results fr&@C-LPD to CS-
LPD.

APPENDIXE
PROOF OFTHEOREM[13

By definition, e is the original signal. Sincd s - e = s
and Hcg - é = s, it easily follows thatv £ e — é is in the
nullspace ofH¢s. So,

lesll1 + llesllr = [lell1 (6)
@
> €y
=lle-v|1
= |les — s + lles — v
(b)
2 llesllh — llvsllh + llvsll — llegllh - (7)

©
> lleslh+ (VO =2VE) V]2~ lleslh,  ®)

where step (a) follows from the fact that the solutionGf-
LPD satisfies||é||; < ||e||1 and where step (b) follows from
applying the triangle inequality property of tiie-norm twice.
Moreover, step (c) follows from

sl + sl = Il - 2lsll;
2V wz - 2lwsl
2V wllz - 2K ws:
2 VT wlls — 2Vl 2
= (VO —2VE) vz

where step (d) follows from the assumption that
wiWENC(Ju[) > €' holds for allv € Nullspg (Hcs) \ {0},
i.e., that||v|; = v/C’-||v||2 holds for allv € Nullspg (Hcs),
where step (e) follows from the inequalifyz||; < V% - [|al|2

that holds for any real vectoa with k& components, and

where the square root and the square of a vector &fiere step (f) follows from the inequalityas|ls < [lals2

understood component-wise.

that holds for any real vectoa whose set of coordinate

Proof: These are straightforward consequences of appipdices includesS. Subtracting the ternjes||; on both sides

ing Lemma 3]l to{a(®) - vV} [

Le[L]”

of [@)—(8), and solving fol|v||s = ||e — €||2, we obtain the
claim.



APPENDIXF
PrROOF OFTHEOREM[14

By definition, e is the original signal. Sincdcs - e = s
and Hcg - é = s, it easily follows thatvr £ e — é is in the
nullspace ofHcs. So,
leslli + llegll = llelly 9)
@

2 |leslli = llvsll + lvslh — llesl

()
> |lesll + (C" = 2k) - V]l — llesllr, (10)

19

APPENDIXH
PROOF OFTHEOREM[22Z

Because forM = 1 the measurement matrikl cs equals
the measurement matriflcg, it is clear that any feasible
vector of CS-LPD yields a feasible vector d€S-LPD1.

Therefore, let us show that far/ > 1 no feasible vector of
CS-LPD1 yields a smaller cost function value than the cost
function value of the best feasible vector in the base Tanner
graph. To that end, we demonstrate that for Ahye Z- o, any
M-cover basedH s, and anyé’ with Hcg - & = s™ the
cost function value o€’ is never smaller than the cost function

where step (a) follows from the same line of reasoning as Yalue of the feasible vector in the base Tanner graph given

going from [6) to [¥), and where step (b) follows from

—llwsll + lvsl = vl =2+ [[ws
©
20" Vlloo=2- [vslhy
@
2" [Vlloo =2k [lvs ]l

@
2 C' - |v]loo — 2k - [V]|0o
= (C" = 2k) - |V] o,

where step (c) follows from the assumption

Wmax—frac(|¥]) = C’ holds for allv € Nullspg (Hcs) \ {0},
i.e, |Vl = C" - ||v]l holds for allv € Nullspg(Hcs),
where step (d) follows from the inequalityx||s < % - ||a|| oo

that holds for any real vectar with k¥ components, and where
step (e) follows the inequalitifas||- < |la||~ that holds for

any real vectorn whose set of coordinate indices includgs

by the projectiony,,(€’). Indeed, the cost function value of
o (&) is

lon@lh =Y |52 3 el <1 3 el
]

i€l me[M)] i€l me[M
1 - .
=20 Y 1l = 57 1€,
1€Z me[M)

i.e. it is never larger than the cost function valueédf More-

thalver, sinceHcs - & = s™ implies thatHcg - ¢ (€') = s,

we have proven the claim thaty,(€') = s is a feasible vector
in the base Tanner graph.

APPENDIX |
PROOF OFTHEOREM[Z4

The proof has two parts. First we show that the minimal

Subtracting the ternjes||, on both sides of[(9)E(10), and¢qst function value oCS-REL. ., is never smaller than the

solving for ||v]|« = ||le — é|]|oo We obtain the claim.

APPENDIXG
PROOF OFTHEOREM[Z]]

In a first step, we discuss the reformulation of the cost func-yye

tion. Namely, for arbitrarye’ € Ccc, lete’ = g—x' (mod 2),

e,z =7, —e;, =7, +¢; (mod?2) for all ; € Z. Then

Z i @ Z Ai(T; + €] — 2g;€;)

i€ i€l
=D AT Y Ai-(1-27,) €
i€l €T
5 N+ DIl -, (11)
i€l €T

where at step (a) we used the fact that dob € {0,1}, the
result ofa + b (mod 2) can be written over the reals ast+
b — 2ab, and at step (b) we used the fact that foralt Z,

minimal cost function value a€S-LPD. Second, we show that
for any vector that minimizes the cost function 665-LPD
there is a graph cover and a configuration therein whose zero-
infinity operator equals the minimal cost function value of
CS-LPD.

prove the first part. Le¢’ minimize ||e’||; over all &/

such thatHcs - €’ = s. For anyM € Z-~, anyﬁcs whose
Tanner graph is aiV/-cover of the Tanner graph df s, and

any (¢/,5) with Hcg - & = § andpy,(3) = s, it holds that

1,., @1, _ ® G
27 1€l0.0c = 7l1ENs = llpar(@)]s = [le]ls,

where step (a) follows from Lemmal23, where step (b) uses
the same line of reasoning as the proof of Theokein 22, and
where step (c) follows from the easily verified fact thdt -
pm(€') = s, along with the definition ok’. Becausg€’, 3)
was arbitrary (subject tddcs - € = 5 and ) (3) = s), this
observation concludes the first part of the proof.

We now prove the second part. Again, let minimize

Xi - (1 —27;) = |\i]. Notice that the first sum in the last line||e’||; over all ¢’ such thatHcs - €/ = s. Once CS-LPD

of (IT) is only a function ofy, hence minimizing\, z') =
> icr Air; overz’ is equivalent to minimizing ;. |Ai|-€} =
<|)‘|a 6/> = ||)‘supp(e’)H1 overe'.

is rewritten as a linear program (with the help of suitable
auxiliary variables), we see that the coefficients that appe
in this linear program are all rationals. Using Cramér'teru

In a second step, we discuss the reformulation of ther determinants, it follows that the set of feasible poiats
constraint. Namely, for arbitrary’ € Ccc, and corresponding this linear program is a polyhedral set whose vertices dre al

e £y —x' (mod2), we haveHcc -€ = Hoo- (—2') =
Hcc.g_HCC.m/:Hcc-y—O:S (m0d2)

vectors with rational entries. Therefore gif is unique there’
is a vector with rational entries. B is not unique then there
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is at least one vectoe’ with rational entries that minimizes Consider now the seti* £ 4N A9, and letA’ be the set
the cost function ofcS-LPD. Let e’ be such a vector. of vertices of 4*. The setA* is a polytope and, interestingly,
Before continuing, let us simplify the notation slightlyit can be verified that the set of vertices 4f is a subset of
Namely, we rearrange the constraffi.s-e’ = s in CS-LPD  the set of vertices ofi7, i.e, all the points in4’ have integer
so that it reads coordinates. Becausg* € A*, this vector can be written as
e a convex combination of the vertices of*, i.e, there are
(Hes —I)- <S) =0 (12) non-negative real numbeia: } ., With >, 4/ Bar = 1
such thata* = )~ _,. 4, Bara’. Note that for alli € [d] the
and then we replacé (12) by following holds: if af > 0 thena) > 0 for all @’ € A, if
* / i i H * li
Hes- € = 0. %rzn();beenjllng Oforalla’ € A, and ifa} = 0 thena; =0
This is done by redefiningdcs to stand for (Hcs, —1I), We now definey £ max;ez|e;| and apply the above

and redefininge’ to stand for((e’)T, (S)T)T, Note that the observations to our setup, in particular to the veatbfy,
redefinedH s contains zeros, ones, or minus ones. Similarlyvhose coordinates are rational numbers lying betweemand
we rearrange the constrai#ilcs - & = 5 in CS-REL; , so +1 inclusive. Namely, for every € 7, we have}_, ., h

that it reads (ef/p) = 0 with h;; € {-1,41},4 € Z;, and so there |s a

set A’ and non-negative rational numbefrs;, o } e with

~ é
(Hes —I)- <5) =0, (3 3 cus Bray = 1, such thately /i = 3, B a) holds,
and then we replac&T13) by whereeI is the vectore’ restricted to the coordinates indexed
by the setZ Note that the setl’; is such that for al € Z; the
Hcog -8 =0. following holds ife, >0 thena € {0,+1} for all a’ € A,
- - if ef < 0thena, € {—1,0} for all @’ € A, and ife, = 0
This is done by redefiningZcs to stand for(Hcs, —1I), thena =0 for all a’ € Al
and redefiningg’ to stand for((&)T, (3) )T Note that the  Let y/ be the largest positive real number such gy €
redefinedH g contains only zeros, ones, or minus ones, ar# for all i € Z and such thai3; a) Ju e Zforall j €T,
that the Tanner graph representing the redefifed is a valid aj € A
M-fold cover of the Tanner graph representing the redefinedwe are now ready to construct the promisedfold cover
Hcs. of the base Tanner graph and the valid configuraébriVe
We will now exhibit a suitablel/-fold cover and a config- chooseM £ 1/’ (clearly, M € Z-,), and so the constructed
uration & therein such thatpy,;(é’) = €’ and such that for &’ will need to have the properties shown [n](14) with&
somey € R the vectore’ will satisfy w/M = y/. Without going into the details, tha/-fold cover
., with valid configuratioré’ can be obtained with the help of the
{0, 49} if e; > 0 above{f; o } values b
. . ) jal Yied, ale A, y using a construction that
€(i,m) € {0} if e;=0, (i,m)elx[M]. (14) jg very similar to the epr|C|t graph cover construction [8) [
{0,—} ifef<0 Appendix A.1]. For example, for every € 7 with ¢/ > 0
we setM - (el/u) = €i/u of the values in{é/(i,m)}me[M]
equal toy, and we setM - (1 —e}/u) = M — ¢,/ of the
Ml &), 2 O] loar(&)h £ © €’|ls, values in{é/zm)}me/ () equal to0, etc.. Similarly, for every
Jj € J anda’ € A’ we set the local configuration aff -
where step (a) follows from the fact that the equality candit (3; o ) = BJ a + /i’ out of the M copies of thej-th check
in Lemmd 23 is satisfied, step (b) follows from the fact that famode equal taz). Finally, the edges between the variable and
everyi € Z, all {&; ) tmep, e, 70 have the same sign, the constraint nodes of the/-fold cover of the base Tanner
and step (c) foIIows fromp s (€ )— e graph are suitably defined. (Note that the definition of the
Towards constructing such a graph cover and a véétave matrix in (I3) implies that the edge connections in the part
make the following observations. Namely, fix some Z~, of the graph cover corresponding to the right-hand side ef th
and somey; € {—1,+1},4 € [d], and consider the hyperplanematrix have already been pre-selected. However, this isanot
problem because the variable nodes associated with thisfpar
hiai =0
Zie[d] } constraint node assignments can always be chosen sujitably.
Let a* € A be a vector with all its coordinates satisfying This concludes the second part of the proof.
—1<af <+1,i€[d]. Let AV be the set
e0,+1] if af>0
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